Gas entrainment rate coefficient of an ideal momentum atomizing liquid jet

Fermín Franco Medrano, Yasuhide Fukumoto, Clara M. Velte & Azur Hodžić

MI 2016-9

(Received May 25, 2016)
Gas entrainment rate coefficient of an ideal momentum atomizing liquid jet

Fermín Franco Medrano, Yasuhide Fukumoto, Clara M. Velte and Azur Hodžić

Graduate School of Mathematics
Institute of Mathematics for Industry
Kyushu University, Motooka 744 Nishi ward, Fukuoka 819-0395, Japan

Department of Mechanical Engineering
Technical University of Denmark, Kgs. Lyngby 2800, Denmark

May 24, 2016

Abstract

We propose a two-phase-fluid model for a turbulent full-cone high-speed atomizing liquid jet that describes its dynamics in a simple but comprehensive manner with only the apex angle of the cone being a disposable parameter. The basic assumptions are that (i) the jet is statistically stationary and that (ii) it can be approximated by a mixture of a liquid and a gas with its phases in dynamic equilibrium. To derive the model, we impose conservation of the liquid volume and total momentum fluxes. Our model equation admits analytical solutions for the composite density and velocity of the two-phase fluid, both as functions of the distance from the nozzle, from which the dynamic pressure and gas entrainment rate coefficient are calculated. Assuming a far-field approximation, we theoretically derive a constant gas entrainment rate coefficient solely in terms of the cone angle. Moreover, we carry out experiments for a single-phase turbulent air jet and show that the predictions of our model compare well with this and other experimental data.

1 Introduction

Liquid jets appear in a vast range of applications. A very active field of application is that of fuel jet injection engines, widely used in the automotive and aerospace industry; other fields of application include medical apparatuses, so-called “atomizers” used by commercial products in many industries, flows through hoses and nozzles for various industrial purposes as well as firefighting. Some of these applications and atomization methods are described in Ref. [20].

After the pioneering theoretical work of Lord Rayleigh[29] many other early works advanced and improved upon this subject [40, 37, 36] (see Ref. [15]). However, these results were focused on what is termed “primary breakup”, i.e. the transition of the jet from a cylindrical geometry to the formation of the first detached droplets and “ligaments”. This breakup has been found to depend on numerous parameters, and a characterization of the breakup mechanism, based on the dominant physical forces acting on it has been achieved with some success. This was summarized in what is called the “breakup regimes” and it can be described broadly in terms of two parameters: the jet’s Reynolds and the Weber numbers. Another classification which separated
these breakup regimes was based on the jet’s speed and the “Z length” or the length of the “continuous” part of the jet. Four main breakup regimes have been identified: (i) the capillary or Rayleigh regime; (ii) the first wind-induced regime; (iii) the second wind-induced regime; and (iv) the atomization regime. Some review articles on the topic include Refs. [26, 24, 25, 2, 20].

The range of applications involving atomizing liquid jets forming two-phase fluid flows is still large. The complexity of the atomizing process, involving numerous physical phenomena and many variables, ranging from the conditions inside the nozzle (or some generating source) to the interaction between the atomization process and the environment into which the jet is penetrating, all account for numerous challenges in physical and mathematical modeling. Notwithstanding, several mathematical models have been attempted to describe different aspects of the jets in this regime. For example, differential equations for a fuel jet’s tip penetration distance as a function of time[39, 33, 5]; models for the gas entrainment rate in a full-cone spray[3]; and a one-dimensional model for the induced air velocity in sprays[14]. None of these models is sufficient by itself as explained below.

In this study we propose an original 1D mathematical model for the macroscopic dynamics of a full-cone high-speed liquid jet ensuing from a circular nozzle into an stagnant gas. This kind of jet serves as a basis for many industrial processes in modern manufacturing industry [20]. An advantage of our model over other analytical 1D models is that this model has a single experimentally measurable parameter while it maintains reasonable predictive power and gives theoretical understanding that allows it to analytically calculate other physical quantities of interest. Moreover, this model can be extended to accommodate an energy conservation approach with simple turbulence and energy dissipation models, resulting in an increased accuracy as will be reported in a sequel paper.

In particular, the local entrainment rate coefficient, K_e, defines the amount of gas entrainment in an atomizing liquid jet. This quantity has been extensively measured for broad experimental settings, as defined from early work on single-phase gas jets [30, 16] and later for two-phase liquid-gas jets [31, 17, 18, 4]. Formulas derived from data fitting or dimensional analysis are available in the mentioned works. One such formula for K_e resulting from dimensional analysis, as introduced by Ricou and Spalding[30] for single-phase gaseous jets of uniform density, high Reynolds number and originally proposed to be applicable for large distances from the nozzle as compared to the diameter of its orifice, and as later modified by Hill[16] for uniform velocity across the jet nozzle’s exit, is

$$K_e := \frac{\dot{m}_e(z)}{\dot{m}_0} = \frac{\rho_0}{\rho_g} \left(\frac{D_0}{\dot{m}_0} \right)^{1/2},$$ (1)

where \dot{m}_0 and $\dot{m}_e(z)$ are respectively the liquid and gas mass flux rates, defined as the mass flux per unit time through a cross-section at respectively axial distance 0 and z from the nozzle. Notice that the gas mass flux rate is the same as the “entrainment rate”, as it is the gas phase that is being entrained. Despite being originally formulated for gaseous jets, the definition in Eq. (1) is also used for the entrainment rate coefficient of (two-phase) atomized liquid jets[31, 4, 3, 18, 34, 28]. To the authors’ knowledge however, there is so far no theoretical derivation of it from first principles that is of practical use; although there are some models available[3, 28], the most relevant of which are discussed below. One of the goals of this paper is to present this derivation. Our obtained formula generalizes and reduces to a constant K_e at large distances from the nozzle (far field). An approximation for the near field is also given.

In the context of a fuel injection engine, Sazhin et al.[33] derived a specialized model for the fuel jet’s tip penetration distance as a function of time. Their model, however, relied on the unrealistic assumption that the mass ratio of droplets-to-gas (α_d, in their notation) is constant throughout the jet’s length, which they then used in order to be able to integrate the resulting 1D ODE. In the same context of a combustion engine and fuel injection, Desantes et al.[5] proposed another 1D model also for the diesel spray tip penetration. Their model relied only on conservation of momentum and on fixing the jet’s geometry by means of measuring the cone angle. They replaced
the dynamic analysis of a spray by the analysis of an assumed analogously-behaved incompressible gas jet (i.e. ignoring the droplets), by exchanging the original nozzle’s exit diameter for an “equivalent diameter” and setting the density of the jet equal to that of the gas. Another related mathematical model was made by Cossali[3], who proposed a model for the gas entrainment in a full cone spray. The model contained newly proposed physical parameters that are not easy to measure experimentally (like three different mean droplet sizes, integrals over the radial distributions of gas and droplets concentrations, velocity, etc.) so it is unclear how the overall theory may produce any prediction from first principles. Thus, compared to the present study, past models lack a description of the density or liquid fraction of the spray, make unrealistic assumptions or introduce parameters unavailable experimentally.

There are also widely used numerical models based on turbulence modeling for jets, like the one by Vallet et al.[38] used in CFD programs like Star-CD, KIVA-3V, Ansys Fluent, as well as open source codes like OpenFOAM[35]. The present work is concerned with developing an analytical model with the advantage of producing closed expressions.

The article is organized as follows: Sect. 2 describes the experimental setting. In Sect. 3 we derive from physical conservation laws the basic mathematical model for the ideal momentum atomizing liquid jet. In Sect. 4 we present the theoretical derivation of the entrainment rate coefficient, based on the derived model, and in Sect. 5 we apply the model to some common limiting and special cases that recover the known solutions (viz. very thin ambient fluid, (single-phase) submerged jet, and cylindrical jet without breakup). Next, in Sect. 6 we compare the predictions with laboratory experiments from the literature and our own from the Technical University of Denmark. Finally, in Sect. 7 we summarize the main conclusions of the present work.

2 Experimental method

The experiments for a single-phase turbulent air jet were carried out at the Department of Mechanical Engineering, Technical University of Denmark. Although this is not an atomizing liquid jet, the special case equations of Sect. 5.4 can be used to test the present theory for this case and general insight into how to determine the jet’s geometry is obtained (needed for the present model).

Jet facility and enclosure

The jet was the same as that used by Ewing et al.[8] and the enclosure was similar as well. The jet was a cubic box of dimensions 58 × 58.5 × 59 cm³ fitted with an axisymmetric plexiglas nozzle, tooled into a fifth-order polynomial contraction from an interior diameter of 32 mm to an exit diameter of \(D_0 = 10 \) mm. The interior of the box was stacked with foam baffles in order to damp out disturbances from the fan that supplied the generator with pressurized air. For further details on the generator box, see Refs. [21, 13].

The flow generating box rested rigidly on an aluminum frame. The exit velocity was monitored via a pressure tap in the nozzle positioned upstream of the contraction and connected to a digital manometer by a silicon tube. The ambient pressure was monitored by an independent barometer. The air intake was located inside the jet enclosure so that both jet and ambient are seeded to provide as homogeneous a seeding distribution in the measured flow as possible. The seeding particles were generated from liquid Glycerin using an atomizing nozzle built in-house, providing tracers with a typical size of about 2 – 3 \(\mu \)m. The enclosure consisted of a large tent of dimension 2.5 × 3.0 × 4.5 m³, yielding a cross-sectional area of 2.5 × 3.0 m² that resulted in a momentum conservation of 100.0% at \(z/D_0 = 30 \) and 98.4% at \(z/D_0 = 100 \), where \(z \) is the downstream distance from the jet exit[19].

Depending on ambient conditions, such as barometric pressure and ambient temperature, a pressure drop of about 570 \(Pa \) was measured across the jet exit nozzle corresponding to a target jet exit velocity of 30 m/s and \(\text{Re}=20,000 \).
Measurement equipment

The ensemble averaged flow field was measured using planar 2-component Particle Image Velocimetry (PIV). The scatterers were illuminated using a DualPower 200 – 15 200 mJ double cavity Nd:YAG 532 nm pulsed PIV laser with maximum power output of 1200 mJ and a pulse duration of 4 ns. In order to produce a light sheet following the downstream development of the jet, the laser was positioned below the jet nozzle where an adjustable optical mirror was placed. Acquisition of the flow field was carried out in four different regions to utilize the spatial resolution capacity of the cameras efficiently. The near field ($z/D_0 = 0.2 – 6.8$) and the intermediate field ($z/D_0 = 6.8 – 28$) were acquired independently using a HiSense MkII camera with a 1344×1024 pixels CCD sensor and a 60 mm focal length lens. The aperture was set to $f^2 2.8$. The far field ($z/D_0 = 27.4 – 68.6$ and 66.4 – 106.3, respectively) was acquired using two Dantec FlowSenseEO 16 M Pix cameras (4872×3248 Pix with a pixel pitch of 7.4 μm) with 60 mm Nikon lenses with an aperture of $f^2 2.8$. The different regions sampled and their respective final Interrogation Area (IA) side lengths are listed in Table 1. A sketch of the experimental setup adjusted for acquisition in the intermediate field is displayed in Fig. 1. A detailed diagram of the whole setup is shown in Fig. 2.

![Figure 1: Sketch of the experimental setup adjusted for the intermediate field.](image1)

![Figure 2: Diagram of the experimental setup and measuring devices.](image2)

<table>
<thead>
<tr>
<th>Measured region</th>
<th>extent, z/D_0</th>
<th>side length [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near field</td>
<td>1.2 – 6.8</td>
<td>0.80</td>
</tr>
<tr>
<td>Intermediate field</td>
<td>6.8 – 28.0</td>
<td>2.59</td>
</tr>
<tr>
<td>Far field 1</td>
<td>27.4 – 68.6</td>
<td>1.69</td>
</tr>
<tr>
<td>Far field 2</td>
<td>66.4 – 106.3</td>
<td>2.66</td>
</tr>
</tbody>
</table>
Data processing

The images were acquired and processed using Dynamic Studio 2015a (4.15.115). A correlation scheme computing 32 × 32 pixels interrogation areas with 50% overlap in both directions using 2 refinement steps, deforming windows and subpixel interpolation for enhanced accuracy. Local median validation with a 3 × 3 vector neighborhood validation base was implemented to discard invalid vectors.

Preliminary measurements in the most down- stream far field measurement provided an estimate of the integral time scale of 0.059 s from the local jet- half width velocity. In order to ensure statistical independence of the acquired samples, a sampling rate of 1 Hz was chosen. In the near and intermediate fields, 2000 realizations of the flow were collected to ensure statistical convergence of the mean velocity. Averaging over 500, 1000 and 1500 samples did not display significant deviations from the average from 2000 realizations and the statistics can therefore be considered converged to sufficient degree for the current purposes. For the far field, 11,000 realizations were collected.

In relevant cases, to remove faint reflections and other adverse effects of the background, the images were first preprocessed by computing, for each pixel separately, the minimum intensity of the ensemble of measurement images and subtracting this from the same ensemble. The average velocity field was then obtained by only including valid vectors, discarding vectors substituted by the validation algorithm of the software.

3 The ideal momentum atomizing liquid jet model

Consider a stationary full-cone high-speed atomizing turbulent liquid jet ensuing from a circular nozzle (of small diameter) into an ambient gas, with a constant high gauge pressure liquid input and a small conical jet angle. We want to calculate the dynamical variables of the two-phase jet at some distance from the nozzle. The relevant variables and parameters of the model are depicted in Fig. 3, where θ is the spread half-angle of the conical jet, ρ the density of the fluid, D the diameter of jet, p the fluid’s gauge (static) pressure, v the axial velocity of a fluid element averaged over a cross section of constant z, where z is the axial distance from the nozzle. The subscript “0” indicates initial values (at the nozzle’s exit position), e.g. D₀ is the diameter of the jet at the nozzle’s exit (equal to the nozzle’s orifice diameter).

3.1 Initial momentum flux

The momentum of a flat disc of water of infinitesimal width exiting the circular nozzle is

\[d\Pi_0 = m_0 v_0, \]

where the mass of the flat disc is \(m_0 = \frac{1}{2} \rho_0 \pi D_0^2 dz \). Note that \(dz = v_0 dt \). This velocity may be calculated from the input gauge pressure, \(p_0 \), by Bernoulli’s theorem, neglecting the dynamic pressure inside the nozzle and assuming the static pressure is totally converted to the jet’s dynamic pressure just outside the nozzle. Thus \(p_0 \approx \frac{1}{2} \rho_0 v_0^2 \) implies

\[v_0 = \sqrt{\frac{2p_0}{\rho_0}}. \]

Substituting \(m_0 \) and \(v_0 \) into equation (2) we get

\[\Pi_0 := \left. \frac{d\Pi}{dt} \right|_{z=0} = \frac{1}{2} \pi D_0^2 p_0, \]

which is the momentum flux per unit time coming out of the nozzle as a result of the input gauge pressure inside the nozzle.
3.2 Conservation of momentum

We assume that the fluid at a distance \(z \) is a two-phase fluid of mixed liquid droplets and gas. The present model has been termed “ideal momentum” to distinguish it from “ideal energy” and “non-ideal” models including momentum, energy or mass loss parameters, developed by the present authors and to be reported in detail in a subsequent article. Accordingly, first assume conservation of momentum, i.e. the momentum of the two-phase fluid is solely that from the original input pressure. The droplets transfer momentum to the initially static gas by drag forces [32, 12] and they reach local dynamic equilibrium in such a way that both gas and droplets move at the same speed \(v \) inside the jet [6]; this is also the main assumption under the wide class of “Locally Homogeneous Flows” (LHF) [9, 10, 11]. We assume that the fluid at a distance \(z \) is a two-phase fluid of mixed liquid droplets and gas. The latter process occurs so fast immediately outside the nozzle’s exit that we may neglect the non-equilibrium zone near the nozzle. The latter assumption is reasonable for high-speed pressure atomized jets, e.g. like the ones used in real life diesel engines [33]. This effectively allows us to treat the two-phase flow as a single fluid with a composite density \(\rho \) and a single velocity \(v \), depending on the distance from the nozzle, \(z \).

Analogous to the calculations in Sect. 3.1, the momentum at some distance \(z \) is \(d\Pi = mv \), where \(m = \frac{1}{4} \rho \pi D^2 dz \) and \(dz = v dt \), by which

\[
\frac{d\Pi}{dt} \bigg|_z = \frac{1}{4} \pi \rho D^2 v^2 ,
\]

which is the momentum flux at a cross-section of the two-phase fluid jet at a distance \(z \) from the nozzle.

Equating Eq. (4) and Eq. (5) by conservation of the momentum contained between the two planes \(z = 0 \) and at axial distance \(z \) in a steady state, using again Eq. (3) and solving for \(v \) we get

\[
v^2 = \left(\frac{D_0}{D} \right)^2 \frac{\rho_0 v_0^2}{\rho}.
\]

This can be written in simpler form by using dimensionless units as \(\bar{v} = \hat{\rho}^{-1} \hat{D}^2 v \), where \(v, D \) and \(\rho \) have been scaled respectively by \(v_0, D_0 \) and \(\rho_0 \) (the quantities at the nozzle’s exit) and denoted by a hat symbol.

3.3 Volume of air in the two-phase fluid

The total fluid volume of the thin disc at the impact distance is \(dV = dV_0 + dV_g \), where the subscript “g” denotes the quantities related to the “gas”, i.e. the total volume \(dV \) of the two-phase fluid spray is just the sum of the volume of the original quantity of liquid coming out of the nozzle \(dV_0 \) plus the added volume of entrained gas in dynamic equilibrium \(dV_g \). The volume of liquid is already known since it is just the original volume of liquid coming out of the nozzle. Also, the total volume of the spray at the target distance is straightforward to calculate from the conical geometry. Then \(dV_g = dV - dV_0 \) from where we can calculate a volumetric flow rate of the gas entrainment:

\[
\frac{dV_g}{dt} = \frac{1}{4} \pi (D^2 v - D_0^2 v_0) \quad (7)
\]

Here we can substitute for \(v_0 \) from equation (3) and \(D = D_0 + 2z \tan(\theta) \).

3.4 Density of the two-phase Fluid

The mean composite density of a two-phase fluid spray thin-disc element is just the total mass over the total volume:

\[
\rho = \frac{\frac{dm}{dV}}{\frac{dm_0}{dV_0} + \frac{dm_g}{dV_g}} = \frac{\rho_0 dV_0 + \rho_g dV_g}{dV_0 + dV_g}. \quad (8)
\]

After substituting \(dV_g \) from Eq. (7), and the initial volume element \(dV_0 \) from analogous calculations, simplifying and solving for \(\rho \), we obtain

\[
\rho = \rho_g + \frac{D_0^2 v_0}{D^2 v} (\rho_0 - \rho_g) \quad \text{or} \quad \dot{\rho} = \rho_* + (1 - \rho_*) \hat{D}^2 \bar{v},
\]

the density of the two-phase fluid spray at the distance \(z \) from the nozzle. Unfortunately, it depends on \(v \) which makes the dependency circular as we can see from Eq. (6). The second equation in Eq. (9) is the dimensionless form, where \(\rho_* = \rho_g / \rho_0 \).

We implicitly assume, by calculating the mean composite density of the two-phase fluid in Eq. (8), that the droplets distribution throughout the disc.
two-phase fluid element does not differ greatly from a uniform distribution. Notice that we approximate the front of the jet by a planar front of equal density, i.e. a “top-hat” radial distribution. In reality this is not true, since the front should be spherical in the first order, and it is then in a spherical shell within the jet’s cone that we should consider \(\rho \) to be approximately constant, not in a plane. However, for small half-angles \(\theta \) and short distances \(z \) a plane should be suffice as a first order approximation. The same could be said of the front’s velocity \(v \). Overall, we may take the above considerations as utilizing “top-hat” velocity and density distributions as a first approximation. Note that slicing the spherical jet front with a \(z \)-normal plane provides a non-constant density distribution in this plane. This distribution should, however, be similar to a two-dimensional Gaussian distribution centered around the \(z \)-axis, i.e. the jet’s “centerline”. There are some models \[14, 5, 28, 27, 6\] which apply Gaussian velocity distributions as initial assumptions; however, this calculation will be included in a later work since we anticipate that it would not lead to a major refinement of the axial centerline quantities.

3.5 Explicit expressions for the axial velocity and composite density of the spray

From Eqs. (6) and (9) we identify a system of two nonlinear equations with two unknowns, \(v \) and \(\rho \). We can eliminate \(\rho \) from the system to get \(v \) explicitly in dimensionless form as

\[
\hat{v} = \frac{\rho_* - 1 + \sqrt{(\rho_* - 1)^2 + 4\hat{D}^2\rho_*}}{2\hat{D}^2\rho_*}.
\]

Analogously, we obtain an explicit dimensionless form for the density, \(\hat{\rho} = \rho/\rho_0 \), by eliminating \(v \) from the same described system, obtaining:

\[
\hat{\rho} = \frac{\hat{\rho} + \sqrt{\hat{\rho}^2 - \rho_*^2}}{\hat{\rho}}.
\]

where \(\hat{\rho} = \rho_* + (1 - \rho_*)^2/2\hat{D}^2 \). With this form of \(\hat{\rho} \) and \(\hat{v} \), the dimensionless form of the dynamic pressure, \(\hat{p} = p/p_0 \) (where \(p_0 = \frac{1}{4}\rho_0 v_0^2 \) is the output dynamic pressure at the nozzle’s exit), which accounts for the total pressure at the target distance, may be calculated as

\[
\hat{p} = \left(\frac{\hat{\rho}}{\hat{D}} \right)^2.
\]

Notice the implicit single-variable dependence of \(\hat{v}(\hat{z}) \), \(\hat{\rho}(\hat{z}) \) and \(\hat{p}(\hat{z}) \) on the dimensionless form of the axial distance \(\hat{z} \) by substituting \(\hat{D} = 1 + 2\hat{z}\tan\theta \) in Eqs. (10)-(12), where \(\hat{z} = z/D_0 \).

4 Gas entrainment rate coefficient

The gas entrainment process is sketched in Fig. 4. We have a volumetric entrainment rate \(dV_g/dt \) as given by Eq. (7); using the dimensionless notation introduced above, normalizing by the liquid volumetric flux at the nozzle, \(\dot{m}_0 = \frac{1}{4}\pi\rho_0 D_0^2 v_0 \), and multiplying Eq. (7) by the corresponding densities, we get the dimensionless mass entrainment rate

\[
\dot{m}_e = \rho_*(\hat{D}^2\hat{v} - 1).
\]

Equation (14) gives us an explicit relationship between the entrainment rate \(\dot{m}_e \) and the axial distance, \(z \), remembering that \(\hat{D}(\hat{z}) \) depends solely this distance and the jet’s spread angle, \(\theta \). It is easy to

Figure 4: Diagram of the gas entrainment process and relevant physical variables.
check that when \(z \to 0 \), i.e. at the nozzle’s exit, \(\tilde{n}_e \to 0 \), as it should be since there is no entrained gas there yet.

Taking the derivative of Eq. (13) with respect to \(\tilde{z} \) and substituting \(\tilde{v} \) from (10), we get

\[
\frac{d\tilde{n}_e}{d\tilde{z}} = \frac{4\rho_s \tilde{D} \tan \theta}{\sqrt{(\rho_s - 1)^2 + 4\rho_s \tilde{D}^2}}.
\]

(15)

We can transform Eq. (15) into its dimensional form and substitute it into Hill’s [16] definition of \(K_e \) given by Eq. (1) to obtain a new explicit formula for \(K_e \), which can then be written as

\[
K_e(z) = \frac{4\rho_s^{1/2} D(z) \tan \theta}{\sqrt{(\rho_s - 1)^2 D^2 + 4\rho_s D(z)^2}}.
\]

(16)

Equation (16) is a general explicit expression for the mass entrainment rate coefficient as a function of the axial distance from the nozzle. Notably, \(K_e(z) \) includes the half angle \(\theta \) of the cone apex as an adjustable parameter. In Sect. 5.1 below we will theoretically verify that our formula in Eq. (16) can be approximated by a constant for the near and far fields, as was originally proposed by Ricou & Spalding [30] and Hill [16] based on experimental results.

5 Limiting and special cases

Let us now calculate some special and limit cases of the ideal momentum atomizing liquid jet model.

5.1 The near and far fields

Very near the nozzle, taking \(\tilde{z} \to 0 \) in Eq. (10) we get \(\tilde{D} \to 1 \) and \(\tilde{v} \to 1 \), correspondingly \(v \to v_0 \) in dimensional form, as expected since \(v_0 \) is the velocity of the liquid exiting the nozzle. From Eq. (11) we get \(\tilde{p} \to 1 \) thus \(p \to p_0 \), also as expected. We can also check from Eq. (12) that \(\tilde{\rho} \to 1 \), thus \(\rho \to \rho_0 \). All the limiting values agree with the ones inside the nozzle. As for the entrainment rate, taking the limit of Eq. (16) for \(z \to 0 \) we have the near field approximation

\[
K_{e,\text{near}} = \frac{4\rho_s^{1/2} \tan \theta}{\rho_s + 1}.
\]

(17)

because \(D(z) \to D_0 \) as \(z \to 0 \). On the other hand, in the far limit, taking \(\tilde{z} \to +\infty \) in (10) we get \(\tilde{v} \to 0 \) which also corresponds to \(v \to 0 \) in dimensional form, as expected since the ideal jet expands infinitely, \(\tilde{D} \to +\infty \), and thus eventually tends to diffuse all its kinetic energy to the increasing amounts of entrained gas. From Eq. (11) we get \(\tilde{p} \to \rho_s \) and thus \(\rho \to \rho_g \), also as expected, since the initial amount of liquid should diffuse with the ever-increasing amounts of entrained gas and eventually the composite density tend to the one of the latter. From Eq. (12) we get \(\tilde{\rho} \to 0 \), as does \(p \) then, which follows from the zero velocity. For the entrainment rate coefficient, taking the limit of Eq. (16) for \(z \gg D_0 \), i.e. \(\tilde{D} \gg 1 \), we get the far field approximation

\[
K_{e,\text{far}} = 2\tan \theta.
\]

(18)

Considering a half-angle of \(8^\circ \lesssim \theta \lesssim 10^\circ \) as found in the experiments by Hiroyasu and Arai [17] for high-speed (over 70 m/s) pressure-atomized liquid jets, we get \(0.28 \lesssim K_{e,\text{far}} \lesssim 0.35 \). Remarkably, the value 0.32 used by Ricou & Spalding [30] for gaseous jets in their experiments falls into the range above, suggesting a half-angle of \(9^\circ \).

By comparing Eqs. (17) and (18), we have

\[
K_{e,\text{near}} = \frac{2\rho_s^{1/2}}{\rho_s + 1} K_{e,\text{far}}.
\]

(19)

We can check that the coefficient of \(K_{e,\text{far}} \) in the right-hand-side of Eq. (19) is always positive and less than one since \(0 < \rho_s \lesssim 1 \). Therefore we prove that \(K_{e,\text{near}} < K_{e,\text{far}} \), implying that the entrainment rate has a tendency of growing with the distance from the nozzle, independently of the density ratio \(\rho_s \). Thus, Eq. (16) is a generalization of the empirical one given by Eq. (1), and provides a theoretical account for it.

5.2 Liquid jet without breakup

In this case, the liquid jet does not disintegrate, i.e. it does not atomize, and the jet consists of pure liquid. This corresponds to a spread half-angle zero, \(\theta = 0 \). Taking \(\theta \to 0 \) in Eq. (10) and thus \(\tilde{D} \to 1 \), we immediately see that \(\tilde{v} \to 1 \), so that \(v \to v_0 \), which has the physical interpretation that the liquid keeps
propagating at the same initial speed. As for the density, we see from Eq. (11) that \(\rho \rightarrow \rho_0 \) since \(\hat{\rho} \rightarrow 1 \), which again agrees with the physical meaning as we should only have liquid. \(\hat{\rho} \rightarrow 1 \) so that the dynamic pressure is unaltered along the jet’s flight. Finally it is immediate to see from Eq. (16) that if \(\theta = 0 \) then \(K_e = 0 \) as expected.

5.3 The ideal liquid jet in a very thin atmosphere

In its dimensionless form, this condition means \(\rho_* \approx 0 \). With this assumption, \(\rho_0 \approx 0 \) or \(\rho_0 \ll \rho_0 \), which physically means a liquid jet inside a very thin ambient gas. Taking the limit in Eq. (10) we see that \(\hat{\nu} \rightarrow 1 \), which corresponds to \(\nu \rightarrow \nu_0 \); i.e. the velocity remains constant at the same initial value, which is physically acceptable in the sense that liquid droplets would not loose any momentum to the surrounding thin ambient gas since there would be little drag forces present. As for the density, taking the same limit in Eq. (11) we see that \(\hat{\rho} \rightarrow 1/2D^2 \) implies \(\hat{\rho} = D^{-2} \), and \(\hat{\rho} = D^{-0} \). The entrainment rate in this case is also zero as can be verified from (16) by taking the limit \(\rho_* \rightarrow 0 \); this is physically consistent as well.

From the above, in dimensional form, the state equations for an ideal momentum atomizing liquid jet in a thin atmosphere are then

\[
\begin{align*}
v &= v_0, \quad \rho = \rho_0 \left(\frac{D_0}{D_0 + 2z \tan \theta} \right)^2, \quad (20) \\
p &= p_0 \left(\frac{D_0}{D_0 + 2z \tan \theta} \right)^6, \quad \text{and } K_e(z) = 0; \quad (21)
\end{align*}
\]

where we can see that as \(z \rightarrow 0 \), \(\rho \rightarrow \rho_0 \) and \(p \rightarrow p_0 \), accordingly. As \(z \rightarrow \infty \), \(\rho \rightarrow 0 \) and \(p \rightarrow 0 \), the approximately null density and dynamic pressure of the thin gas, respectively.

5.4 The submerged jet

This is a single-phase jet, e.g. liquid-liquid or gas-gas jet; correspondingly, we should have \(\rho_\gamma = \rho_0 \). This case corresponds to \(\rho_* = 1 \) in dimensionless form.

From Eq. (11) we have that \(\rho = \rho_0(\equiv \rho_0) \), as expected so the density is just that of the common fluid for all distances. Landau and Lifshitz\[22\] called this a “submerged jet” while Batchelor\[1\] called it a “point source of momentum jet”.

From Eqs. (10), (12) and (16) we get that for this case \(\hat{\nu} = D^{-1} \), \(\hat{\rho} = D^{-2} \) and \(K_e(z) = 2 \tan \theta \); so that, in dimensional form, the state equations for the ideal momentum submerged jet are

\[
\begin{align*}
v &= v_0 \left(\frac{D_0}{D_0 + 2z \tan \theta} \right), \quad \rho = \rho_0, \quad (22) \\
p &= p_0 \left(\frac{D_0}{D_0 + 2z \tan \theta} \right)^2, \quad \text{and } K_e = 2 \tan \theta; \quad (23)
\end{align*}
\]

which for \(z \rightarrow 0 \), i.e. at the nozzle’s exit, still gives \(v = v_0 \) and \(p = p_0 \), while for \(z \rightarrow \infty \), \(v = p = 0 \), which is physically correct. Notice that in this case density remains constant and velocity decays with distance whilst for the case of a thin ambient gas we had the converse, i.e. the velocity remains constant and the density decays. Also, the entrainment rate coefficient is constant and \(K_e = K_e_{,for} \) for all distances, which is the same as the constant coefficient defined by Ricou & Spalding\[30\]. This can be interpreted from Eq. (19) where we can see that, while on the near-field the effect of the density ratio is considerable, in the far field it is not present. This is because the mass flux through a cross-section close to the nozzle is highly influenced by the density of the fluid exiting it, while this effect gradually decreases becoming negligible in the far-field, as the mass flux of the original fluid is small compared to the entrained mass flux.

Finally, if we substitute \(v_0 \) from Eq. (3) into Eq. (22) we obtain

\[
\begin{align*}
v &= 2\pi^{-1/2} \left(\frac{\dot{\Pi}_0}{\rho} \right)^{-1/2} (D_0 + 2z \tan \theta)^{-1} \quad (24)
\end{align*}
\]

where \(\dot{\Pi}_0 = d\Pi_0/dt \) is the momentum flux at the nozzle exit given in Eq. (4). For \(z \gg D_0 \) we can drop the \(D_0 \) in the last factor of Eq. (24) obtaining the following proportionality relationship:

\[
v \propto z^{-1} \sqrt{\frac{\dot{\Pi}_0}{\rho}}, \quad (25)
\]
6 Comparison with experiments and discussion

We will show the agreement of the ideal atomizing liquid jet model with two sets of experimental results for the entrainment rate coefficient of two-phase liquid-gas jets and two more sets for the axial velocity of a single-phase air jet.

6.1 Atomizing diesel jet in air

Cossali et al.[4, 3] reported experimental results for the air entrainment coefficient of two-phase pressure-atomized diesel jets in air inside pressure and temperature-controlled chambers, approximating the conditions inside a fuel-injection combustion engine. For all experiments they used single-hole small opening nozzles with $D_0 = 0.25$ mm, using standard diesel fuel of density $\rho_0 = 820$ kg/m3. Of these, only one experiment was performed with a chamber at an ambient pressure of 101.325 kPa (1 atm) and an chamber temperature equal to an ambient temperature of 25$^{\circ}$C, denoted as experiment “C”. At this temperature, $\rho_0 \approx 1.169$ kg/m3. The injection pressure is reported therein to have been 21.4 MPa (214 bar). Using Eq. (3) we can estimate $v_0 \approx 228.5$ m/s and consequently $m_0 \approx 9.1$ g/s. The results are shown in Fig. 5. The solid line is Eq. (16), using a parameter $\theta = 3.07^\circ$ optimized by least squares fitting of the curve. In this case, the trend only agrees with the experimental data in the far field, viz. $\zeta \gtrsim 50$. However, it must be noted that the best experimental curve fit available for the same data, as given by the original authors themselves[4], is not much closer (this curve is not shown in their article). The dotted curve in Fig. 5 labeled “Exp. Fit 8(C)” corresponds to this experimental power-law fit given in Cossali et al.[4] as

$$K_e(z) = B \left(\frac{z + z_0}{D_0} \right)^{0.5} \left(\frac{\rho_2}{\rho_0} \right)^{0.31} \left(\frac{T_g}{T_0} \right)$$

where $B = 0.044$ is some scaling parameter, z_0 is the position of the nozzle’s exit (defined when $z = 0$) and T_g and T_0 are the temperatures of the gas and liquid, respectively. The exponents of the power law were calculated using an optimized fit of the parameters in a RMS sense, adjusting not only for this but for the data of several experiments altogether. This experimental power-law seems to approximate better in other cases presented by the same authors.

Finally, we must note that the obtained optimized angle $\theta \approx 3^\circ$ is smaller than the angle expected for the whole jet, estimated between about $8^\circ \lesssim \theta \lesssim 10^\circ$ as in the experiments by Hiroyasu and Arai[17]. We must, however, note that there are great variations in the angle depending on the specific jet characteristics, most notably the densities ratio $\rho_2[23, 17, 5, 41, 7]$. The constant-value approximations for the entrainment rate coefficient in the near and far fields are also shown in Fig. 5 using the same angle in Eqs. (17) and (18). Here we see that K_e,far agrees relatively well with the far field data, while K_e,near more notably underestimates the experimental value in this case.

6.2 Atomizing water jet in air

Ruff et al.[31] reported experimental results for a pressure-atomized water jet entering stagnant ambient air, injected downward using a nozzle with $D_0 = 9.5$ mm, a fuel density of $\rho_0 = 998$ kg/m3, ambient temperature $T_0 = 298$ ± 2$^{\circ}$K, reporting for water a Reynolds number (Re = $\rho v D/\mu$, where μ is the kinematic viscosity) of Re = 5.34×105 and a Weber number (We = $\rho v^2 D/\sigma$, where σ is the surface tension) of We = 411.5×103, while for air We = 492.8. The results for the air entrainment coefficient using a pressure drop of 2.52 MPa are shown in Fig. 6 along with our model fit, Eqs. (16), (17) and (18), using a jet’s half angle parameter of $\theta = 1.91^\circ$. We estimate $v_0 = 71.05$ m/s from Eq. (3). The power-law experimental fit by Cossali et al.[4] is also shown in the same figure. It must be noted, however, that in their paper Cossali et al. gave $B = 0.444$, but using this value gives a very bad fit for the presently considered experiment by Ruff et al.[31]. Therefore, we recalculated the value of this parameter by least-
The optimized jet’s half-angle parameter is $\theta \approx 3.1^\circ$, pressure drop of 21.4 MPa and ambient air temperature of 298$^\circ$K.

squares optimization, obtaining $B = 0.0204$. Notably our model seems to adjust very well in the far field, while still not being so far in the near field. The experimental power-law follows an opposite trend in this case, giving a better fit in the near field but differing in the far field. $K_e;\text{near}$ underestimates the experimental values in the near field but is still a reasonable approximation. $K_e;\text{far}$ does seem to overestimate the far field trend considerably. We must remark that the optimized value of the half-angle, $\theta \approx 2^\circ$, is again smaller than the expected value for the whole jet geometry[18]. However, which angle to use as a parameter is not clear, as there is no single universally agreed definition of $\theta[23, 17, 5, 41, 7]$. We will give our own original approach to this issue in Sect. 6.3 below.

6.3 Single-phase air jet

The data for our own experiment at DTU was acquired as described in Sect. 2. For these experiments, the initial velocity was $v_{0,exp} = 30.59$ m/s, as determined experimentally at the axial position of $\hat{z} = 1.16$, remarkably close to the theoretical velocity given by Eq. (3), $v_{0,bern} = 30.51$ m/s. The latter value is the one used to normalize the other measured velocities. We estimate $Re_0 \approx 20,000$. Two data sets were acquired for the single dependent variable of the axial velocity: (i) a coarse 2D field as a function of the axial and traversal positions as coordinates; and (ii) a high-resolution sampling 1D line along the jet’s axis. Both of these data sets are divided in the same near, intermediate and far fields. A 2D iso-contour representation of the axial velocity in the different fields is shown in Fig. 7. A more detailed view of each field can be seen in Fig. 8.

From the Fig. 8(a) we can see there is a small jump or acceleration in the axial velocity of the fluid after exiting the nozzle, reaching a maximum at about 3 nozzle diameters and decaying thereafter. This initial acceleration has been reported by several authors in experiments [28, 2] and, in this case, it is most likely due to the expansion of the gas as it comes out of the pressurized conditions inside the nozzle. Our current model does not intend to address this initial acceler-
ation phenomenon, by which we will hereafter only consider the intermediate and far fields. In order to do this, we need to calculate an equivalent nozzle diameter, d_{eq}, for a further downstream axial position. This was done by inspecting the jet’s geometry and determining an appropriate angle. However, this is not a straightforward task, as there are many possible angle definitions, depending on the focus of different authors[23, 41, 7]. A common procedure based on the velocity distribution, as done by Desantes et al.[6] is to define the “half-velocity angle”, i.e. the angle for which the velocity has decayed to half the centerline maximal value. This, however, does not give a full account of the whole limits of the jet, and we have here preferred to select an angle that contains 99% of the total momentum of the jet. In order to do this, we have defined and calculated “Cumulative Momentum Radii” (CMRs), i.e. for each axial position, we calculate the radius that contains a certain proportion of the jet’s total momentum in that cross section. These CMRs are shown in Fig. 9. Note that the near field has not been taken into account to calculate the CMRs, the reason being that CMRs were calculated using Gaussian curve fits for each velocity profile at

Figure 7: Air jet’s axial velocity contour map, all fields of view. The velocity is normalized to the Bernoulli theoretical velocity.

Figure 8: Air jet’s axial velocity color map, detailed view of the three different fields. The velocity is normalized to the Bernoulli theoretical, Eq. (3), and the distances are normalized by the nozzle’s diameter, D_0.
every axial position, and such curves are not a good approximation to the velocity profile in the near field, as can be seen in Fig. 10. It is worth noting that the exit velocity at the nozzle is very close to that predicted by the Bernoulli theorem \((v_{0, \text{Bern}} = 30.51) \), as can be seen in the same Fig. 10, as the velocity used for normalization is precisely \(v_0 \) which is calculated from the Bernoulli theorem in Eq. (3). Also from the same figure, note that the Gaussian profiles are a reasonable approximation only after about 5 or 6 nozzle diameters; before that, the central portion is evidently flat and the profile is more consistent with a “top-hat” shape. The intermediate field dataset starts at \(\hat{z} \approx 7 \) (as shown in Fig. 8-b) so the Gaussian profiles are a reasonable approximation thereafter for these datasets, although they tend to underestimate the velocity at the tails. This, however, can be neglected for the purpose of calculating the CMRs as they contain a very small proportion of the total momentum. In the intermediate field, the Gaussian fits are a good approximation overall; such profiles are shown in Fig. 11. The lines shown in Fig. 9 are least-squares linear fits (shown in logarithmic scale). The CMR99 (99% CMR) linear fit was calculated by fitting a line with 0.5 as its intercept (one radius), forcing it to cross at the nozzle’s exit edge. This defined a virtual origin of the jet inside the nozzle at \(\hat{z}_0 = -2.62 \) (and \(\hat{y} = 0 \)); this virtual origin was used as an anchor for the fitting of the lines for subsequent CMRs, so as to produce a consistent set of lines with the same virtual origin defining the concentric cones geometry of the jet.

The initial acceleration of the velocity in the near field, as shown in Fig. 8-a, is a physical phenomenon that was not intended to be dealt with in the present ideal momentum jet model, by which we cannot apply the theory to this initial portion of the experimental data. One solution to this is to skip the near field range and define a “virtual nozzle exit” at some distance downstream from the real nozzle exit, as shown in Fig. 12. We thus define the position of the virtual nozzle exit as the first value of the intermediate field dataset (leftmost value of the horizontal axis in Fig. 8-b), and denote it by \(\hat{z}_{VN} = 7.06 \). With this virtual nozzle exit position, we can define the diameter of the virtual nozzle exit using the CMR99 line shown in Fig. 9, obtaining \(d_{VN} = 1.85 \). In the following, we take \(d_{VN} \), the corresponding experimental axial velocity, denoted by \(\hat{v}_{VN} = 0.88 \) (or \(v_{VN} = 26.88 \text{ m/s} \)), and initial position for the intermediate field to be the
boundary values “at the virtual nozzle exit” for input in our dynamical models, so as to avoid the initial accelerating region affecting the calculations. We will thus re-normalize our calculations using these values, normalizing distances by d_{VN}, velocities by v_{VN} and shifting axial positions by z_{VN}.

With the above virtual nozzle setting, the evolution of the jet’s centerline axial velocity is shown in Fig. 13. The vertical scale is normalized to v_{VN}. All the parameter optimizations were done using only the intermediate and far fields data; in this case the high resolution centerline dataset was used. The ideal momentum submerged jet curve given by Eq. (22) is shown as the dashed curve with the label “ideal-infar”, which shows excellent agreement with the experimental data. In the same figure, the solid curve shows also Eq. (22), but having fixed the initial velocity to v_{VN} and optimizing the angle only. The other curve shown in a dash-dot line is the result of a model not described in this paper but also developed by the present authors; this and other additional related models will be described in detail in a sequel article. Suffice it to say now that an extension of the present model using partial energy conservation by introducing an energy loss factor, which effectively serves as a simple turbulence model, and producing a numerical scheme (shown as the dash-dot line in Fig. 13), gives the best result in terms of accuracy, but the small increase in accuracy is at a loss of analytical solutions.
The results of all parameter optimizations by least-squares are shown in Table 2, where \hat{H}_e is the dimensionless “energy half-loss” parameter used in the nonideal energy jet model. Overall, the models give similar results for the initial velocity, where it was left as a free parameter to be optimized, and the angles are between 4 and 8°. Focusing on the presently discussed model of the ideal momentum jet, when v_0 was left as a free parameter, the optimization result was still a velocity close to that of the theoretical Bernoulli velocity (11% greater). Fixing v_0 or setting it as a free parameter gave a similar optimized jet half-angle of around 7°, which is somewhat lower than the experimental result by Hosoya and Obokata\[18\], but still in the range of other experimental results\[23, 41, 7\]. In order to determine the best angle for the model optimization, we investigated the relationship between the cumulative momentum value, denoted by Π_c, and the jet’s spread half-angle, θ. Let $\alpha = 1 - \Pi_c$ so that for the 75% CMR, $\alpha = 0.25$, for the CMR99, $\alpha = 0.99$, etc. The relationship between θ and α for the turbulent air jet is shown in Fig. 14, where an experimental curve

$$\theta(\alpha) = a(1 - \alpha^b) + c(1 - \alpha^d)$$ \hspace{1cm} (27)

optimized by a least squares procedure has produced $a \approx -376474$, $b \approx -4.8 \times 10^{-4}$, $c \approx 112997$, $d \approx -1.6 \times 10^{-3}$. Based on Eq. (27) we can select CMRs closest to a determined half-angle as shown in Table 2. Thus, as a rough approximation we can recommend the CMR95, i.e. the cone angle containing approximately 95% of the jet’s total momentum, as an appropriate angle to be used as a parameter in the current ideal momentum jet model. For this experiment, the CMR95 corresponds to $\theta \approx 7.3^\circ$.

<table>
<thead>
<tr>
<th>Model</th>
<th>θ (°)</th>
<th>CMR</th>
<th>v_0</th>
<th>\hat{H}_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal Momentum</td>
<td>7.83</td>
<td>96</td>
<td>1.11</td>
<td>-</td>
</tr>
<tr>
<td>Id.Mo. Bernoulli</td>
<td>6.75</td>
<td>93</td>
<td>1.0*</td>
<td>-</td>
</tr>
<tr>
<td>Energy Loss</td>
<td>4.31</td>
<td>80</td>
<td>1.04</td>
<td>7,053,879</td>
</tr>
</tbody>
</table>

Table 2: Least-squares optimized parameters for the model fittings (except \(\alpha\) which has been fixed beforehand) and the closes corresponding cumulative momentum radius (CMR).

Figure 13: Axial velocity of the jet vs. axial distance. Results for a pressure-atomized single-phase turbulent air jet.
Figure 14: Half-angle of the jet vs. α tail value of the CMR. Results for a pressure-atomized single-phase turbulent air jet.

7 Conclusions

We have presented a 1D mathematical model applicable to the dynamics of a wide class of turbulent atomizing jets. The model’s main assumptions include the so-called Locally Homogeneous Flow (LHF) for a two-phase flow. The model is based on conservation laws of the momentum and mass, and describes the dynamical quantities, viz. density, velocity and dynamic pressure, along the jet’s axis. The main advantages of the model over others in the literature are that the solutions are analytical, it contains a single free parameter, viz. the jet’s angle, and the fact that this angle can be approximated from experimental measurements with an also herein proposed method. In particular, we theoretically derive a new explicit formula on a sound physical ground, Eq. (16), for the gas entrainment rate coefficient as defined by Hill (1972). Special cases of the model give constant approximations of the gas entrainment rate coefficients for the near and far fields. The comparison with experimental data for atomizing jets from the literature shows reasonable agreement but more data is needed for testing the limits of the theory. Other special cases considered include a liquid jet in a very thin atmosphere and a submerged jet. In the latter case, the derived state equations agree with the classic result for the velocity decay given by Landau and Lifshitz. For the same special case, we carried out our own experiments with turbulent air jets, showing excellent agreement with the centerline velocity decay in the intermediate and far fields. A reasonable approach to finding the jet’s angle has also been given, introducing the concept of Cumulative Momentum Radii (CMRs).

The present theory can be extended to include partial conservation of energy and mass, producing semi-analytical and numerical solutions, improving the prediction power, as will be described in a subsequent paper.

Acknowledgements

FFM wishes to thank the financial support of the Ministry of Education, Sports, Science and Technology (MEXT) of Japan, the Bank of Mexico (Banxico)’s FIDERH program, the Mexican National Council of Science and Technology (CONACYT), and Kyushu University’s Graduate School of Mathematics and Institute of Mathematics for Industry. This research has also been partially supported by the Center of Innovation Program from the Japan Science and Technology Agency, JST. YF was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society of Promotion of Science (Grant No. 16K05476). AH and CMV wish to gratefully acknowledge the support of DTU MEK for sponsoring the complete PhD studies programme of AH.

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiko T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke's zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type($A_2 + A_1$)$^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
 An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
 Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
 Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
 Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
 On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
 Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
 Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
 The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
 On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
 Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
 Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
 Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
 Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
 A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
 Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
 A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queuing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queuing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTsu, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D^{(1)}_7$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier- Stokes equations with potential force

MI2013-1 Abduwaili PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem

MI2013-2 Yasuhide FUKUMOTO & Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits

MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing
MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing

MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization

MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks

MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, eigenstates degeneration, and Rabi’s model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA & Sadanori KONISHI
Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space

MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints

MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression

MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints

MI2014-2 Yasuhide FUKUMOTO & Youichi MIE
Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetry-breaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

MI2014-4 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints
MI2014-5 Yoshiyuki KAGEI & Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry

MI2014-6 This paper was withdrawn by the authors.

MI2014-7 Masatoshi OKITA
On decay estimate of strong solutions in critical spaces for the compressible Navier-Stokes equations

MI2014-8 Rong ZOU & Yasuhide FUKUMOTO
Local stability analysis of azimuthal magnetorotational instability of ideal MHD flows

MI2014-9 Yoshiyuki KAGEI & Naoki MAKIO
Spectral properties of the linearized semigroup of the compressible Navier-Stokes equation on a periodic layer

MI2014-10 Kazuyuki TSUDA
On the existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space

MI2014-11 Yoshiyuki KAGEI & Takaaki NISHIDA
Instability of plane Poiseuille flow in viscous compressible gas

MI2014-12 Chien-Chung HUANG, Naonori KAKIMURA & Naoyuki KAMIYAMA
Exact and approximation algorithms for weighted matroid intersection

MI2014-13 Yusuke SHIMIZU
Moment convergence of regularized least-squares estimator for linear regression model

MI2015-1 Hidetoshi MATSUI & Yuta UMEZU
Sparse regularization for multivariate linear models for functional data

MI2015-2 Reika AOYAMA & Yoshiyuki KAGEI
Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain

MI2015-3 Naoyuki KAMIYAMA
Stable Matchings with Ties, Master Preference Lists, and Matroid Constraints

MI2015-4 Reika AOYAMA & Yoshiyuki KAGEI
Large time behavior of solutions to the compressible Navier-Stokes equations around a parallel flow in a cylindrical domain

MI2015-5 Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-Stokes-Korteweg system on \mathbb{R}^3

MI2015-6 Naoyuki KAMIYAMA
Popular Matchings with Ties and Matroid Constraints
MI2015-7 Shoichi EGUCHI & Hiroki MASUDA
Quasi-Bayesian model comparison for LAQ models

MI2015-8 Yoshiyuki KAGEI & Ryouta OOMACHI
Stability of time periodic solution of the Navier-Stokes equation on the half-space under oscillatory moving boundary condition

MI2016-1 Momonari KUDO
Analysis of an algorithm to compute the cohomology groups of coherent sheaves and its applications

MI2016-2 Yoshiyuki KAGEI & Masatoshi OKITA
Asymptotic profiles for the compressible Navier-Stokes equations on the whole space

MI2016-3 Shota ENOMOTO & Yoshiyuki KAGEI
Asymptotic behavior of the linearized semigroup at space-periodic stationary solution of the compressible Navier-Stokes equation

MI2016-4 Hiroki MASUDA
Non-Gaussian quasi-likelihood estimation of locally stable SDE

MI2016-5 Yoshiyuki KAGEI & Takaaki NISHIDA
On Chorin’s method for stationary solutions of the Oberbeck-Boussinesq equation

MI2016-6 Hayato WAKI & Florin NAE
Boundary modeling in model-based calibration for automotive engines via the vertex representation of the convex hulls

MI2016-7 Kazuyuki TSUDA
Time periodic problem for the compressible Navier-Stokes equation on R^2 with antisymmetry

MI2016-8 Abulizi AIHAITI, Shota ENOMOTO & Yoshiyuki KAGEI
Large time behavior of solutions to the compressible Navier-Stokes equations in an infinite layer under slip boundary condition

MI2016-9 Fermín Franco MEDRANO, Yasuhide FUKUMOTO, Clara M. VELTE & Azur HODŽIĆ
Gas entrainment rate coefficient of an ideal momentum atomizing liquid jet