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I'm working on mathemat-

ics, in particular, algebraic 

analysis. We know that most 

of sciences are talked in 

mathematical languages, 

experiences are often stated 

and examined as a formula, 

and complicated systems are 

understood as an abstract 

model. Algebraic analysis 

gives an abstract/categorical 

understanding of a non-commutative object/phenomenon arising in a 

various field. What is “non-commutativity” ? A daily example of non-

commutative actions is to wear socks and to wear shoes, as the order of the 

actions does affect the results. At the contrary, to wear socks and to wear 

pants are commutative. Non-commutativity is also a source of a fun of 

games. For example, if the operations of Rubik’s Cube would be commuta-

tive, then it might not be so fun and so deep. An example of non-

commutativity from physics will be the Heisenberg canonical commutation 

relation (CCR), which is one of the characteristics of quantum mechanics. 

CCR is also understood in mathematics, located at the intersection of 

several branches of mathematics such as differential operators in analysis 

and Lie algebras in geometry. Representation theory serves a systematic 

treatment of non-commutativity, or symmetry in general, by using groups 

and algebras. Symmetry is technically a key to solve a complicated system,

and is philosophically related with a beauty in nature.

In 1980’s, Kazhdan-Lusztig conjecture was solved by using the 

algebraic analysis, to be more 

specific, the localization of a Lie 

algebra by differential operators on 

the flag manifold. In a word, a rather 

complicated part of representation 

theory of non-compact semisimple 

Lie groups, an example of which is 

Lorentz group, turns out to have a 

relation with the geometry of orbits on the flag manifold. I am interested in 

and working on both non-commutative objects called modules and 

geometric objects such as orbits on homogeneous spaces and their 

cotangent bundles. On one hand, the category of D-modules and the 

operations on this category has close relation with a part of theory of 

special functions such as a hypergeometric function and its generalization; 

this is my favorite. On the other hand, the orbit decomposition on homoge

neous spaces, as Bruhat decomposition is a classical example, is a source 

of combinatorics, which is a hard and non-trivial finite mathematics, and 

gives a basic example of geometry and topology, such as resolution of 

singularities. These two are at the same point in my mind. I am also 

interested in special functions arising in number theory and probability 

theory. I like to find the structure of unorganized data, or objects, and like 

to introduce a bridge between the branches of mathematics and a new 

viewpoint. This will help to contribute to the work at the institute of math-

for-industry.
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Topology is the study of extremely soft geometry, where an object is regarded 

as being composed of some soft material, like rubber, and a continuously 

deformed object is considered to be identical to the original object. In other 

words, topology is a field of pure mathematics in which we are interested in the 

properties of geometric objects that do not change as those objects are continu-

ously deformed. For instance, a doughnut and a mug are regarded as identical in 

topology (see Fig. 1). This is because each of them has exactly one hole, which is 

a typical example of a quantity that does not change under continuous deforma-

tion.

Given its nature, topology is a powerful tool for analyzing flexible objects. One 

extreme such example is provided by a string, in which we can create knots and 

links through various manipulations. These are important actions in daily life and 

have been part of human existence since a primitive age. In fact, it is known that 

wild gorillas can tie knots. Moreover, it has recently been found that such knots 

are deeply connected to research into deoxyribonucleic acid (DNA).

DNA, taking the form of two twisted thread-like strands, carries hereditary 

information and exists in the cells of living organisms. This molecule often 

assumes a ring-like form. Biological observations have shown that strands of 

ring-shaped DNA are often knotted and linked with each other. Although certain 

enzymes are responsible for these DNA knots and links (see Fig. 2), due to 

limitations in experimental techniques the details of the mechanisms involved in 

such processes have not yet been elucidated. In the late 1980s, the mathemati-

cians C. Ernst and D. W. Sumners used the most recent knot theory in topology at 

the time to describe some of the mechanisms employed by enzymes. Although it 

is often said that knot theory has its origin in the electromagnetism of Gauss and 

the vortex atom hypothesis of Lord Kelvin from the 19th century, chemists and 

physicists seem to have forgotten about knots, and only mathematicians have 

maintained this topic as a field of research. Our group is making extensive use of 

knot theory, which is one of the most actively researched fields in modern 

mathematics, to analyze DNA recombination mediated by an enzyme called 

topoisomerase from a mathematical point of view (see Fig. 2). Our main goal is to 

apply these analyses to industrial technologies.

In addition to knot theory, we are 

actively investigating singularities 
of differentiable mappings, 
using techniques of differential 

topology. In particular, we have made 

a number of discoveries for specific 

cases in which singular points of 

mappings between smooth objects 

deeply reflect the topological 

properties of those objects. I am 

considered a worldwide authority on 

the theory of inverse images of 

points, called singular fibers (see Fig. 3), and I recently published the first book 

that formulates this theory. More recently, I have been attempting to apply the 

theory to visual data analysis for multivariate functions. Our group is also 

interested in analyzing large datasets by employing processes through which the 

data can be visualized and their characteristics can be grasped in a robust manner. 

Differential topology plays an essential role in the realization of this project. 

We have also been working on a broad range of topics in topology, including 

separation properties of codimension-one mappings, topology of isolated 

singularities of complex hypersurfaces, 4-dimensional manifolds, embeddings in 

codimension one, and differential geometric invariants of space curves. These 

studies can be applied in various fields; e.g., they provide powerful tools for 

studying properties of materials at the microscopic level. In fact, our group has 

collaborated with industrial firms and found that certain topological invariants can 

be used to estimate physical properties of hard materials. We have thus found that 

although topology is a study of soft geometric objects, it can also be used to study 

hard objects!

My diverse research has greatly impacted my students. This fact is reflected by 

the broad range of the research topics studied by my master’s and Ph.D. students. 

In addition, some of my students have made important contributions to industrial 

technologies.

I hope that we can continue to strengthen the relationship between mathemat-

ics and industrial technologies through application of topology, a branch of pure 

mathematics.
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Fig. 1: A doughnut and a mug are identical in topology. 
Fig. 3: Singular fiber holding the 
key to 4-dimensional manifolds

Fig. 2: Example of enzyme-mediated DNA recombination
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