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◯◯  Division of Advanced Mathematics Technology

Discrete Optimization and its Applications

Naoyuki KAMIYAMA
Degree: Doctor of Engineering(Kyoto University)
Research Interests: Discrete Optimization, Graph Theory, Computational Complexity

I carry out research of the theoretical aspects of discrete 

optimization. My main fields of interest include graph theory 

and computational complexity, which are deeply related to 

discrete optimization. These fields lie at the intersection 

of mathematics and computer science, and there is great 

interaction between them. The main problem in which I am 

presently engaged is to obtain a unified understanding of these 

fields by using submodularity, which is a discrete analogue of 

convexity and polyhedral approaches based on duality. In the 

following, I will briefly explain these fields and the problems I 

am investigating in my research.

Let me first explain discrete optimization. Optimization is 

the problem of finding a solution that maximizes or minimizes 

an objective function among all feasible solutions. Discrete 

optimization deals with optimization problems possessing 

discrete structures. In this field, we attempt to determine 

which properties enable us to find an optimal solution without 

checking all feasible solutions, and we derive methods for 

finding optimal solutions (called algorithms). I am presently 

studying stable matching problems, in which one attempts to 

find an optimal assignment between two groups (see Figure 

1). I am also studying network flows that model flow through 

a network and matroids and submodular functions, which are 

abstract frameworks for discrete optimization.
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Next, I explain graph theory. A graph consists of vertices 

and edges connecting vertices. Edges represent topological 

relationships among vertices (see Figure 2). Intuitively, a graph 

can be understood as a mathematical model of a road network 

in an urban area. In graph theory, we try to elucidate general 

properties of graphs. For example, we attempt to determine 

whether graphs are sufficiently robustness for some purpose. I 

am presently studying min-max theorems concerning packing 

arborescences (see Figure 2) and the edge-dominating set 

problem, which is one of the most fundamental optimization 

problems in graph theory.

　

Finally, I explain computational complexity. Roughly 

speaking, the goal of the above two fields is to understand 

what we can do. Contrastingly, the aim of computational 

complexity is to understand what we cannot do, i.e., the limits 

of our computational capability. More precisely, in this field we 

formally define abstract models of computation and study the 

limitations of these models. The P vs NP problem proposed by 

the Clay Mathematics Institute is a central problem in this field. 

At first glance, optimization and computational complexity 

seem to be, in some sense, opposites. However, there is a 

deep connection between these fields. Recently, techniques 

in optimization have been used for analysis in computational 

complexity. I am interested in the application of optimization 

techniques (e.g., the polyhedral approach) to computational 

complexity. I am also interested in applications of optimization 

techniques to real-world problems arising in urban planning, 

the design of transportation systems and social networks.

Figure 1: (left) An example of a stable matching problem.
The numbers represent preference lists. (right) An example of 
an assignment．

Figure 2: (left) A directed graph. (right) An arborescence.
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Modeling, Optimization, and Control of Energy and Other Complex Systems

Hoa Dinh NGUYEN
Degree: PhD (Information Science and Technology), (The University of Tokyo)
Research Interests: Modeling, optimization and control toward low-carbon and autonomous energy, transportation and 
other interconnected, complex systems. Particular focuses are on renewables and distributed energy resources, smart 
grid, intelligent transportation, multi-agent systems, graph theory, artificial intelligence, and decentralized optimization.

My research theme is Modeling, Optimization, and Control of Energy 

and Other Complex Systems. An illustration of such complex systems is 

depicted in Fig. 1.  

The ultimate goals of this research are: (i) low-carbon, decentralized, 

resilient, autonomous, and comfortable energy systems; and (ii) 

harmonization of interconnected and complex systems. To achieve that, 

the following studies will be conducted. First, mathematical models will 

be built for representing the multi-scale, complicated dynamics and 

behaviors in energy systems, as well as other systems in engineering and 

nature. Then mathematical frameworks will be developed based on the 

derived models for optimizing and controlling such complex systems, 

given specific system objectives. 

A variety of branches in mathematics will be employed in this research, 

for example dynamical systems and their stability theories, linear and 

nonlinear optimization, graph theory, control theory, multi-agent system, 

and artificial intelligence. 

Particular applications include smart grid, smart cities, renewable and 

distributed energy systems, network systems, wireless power transfer, 

intelligent and decarbonized transportation systems, bio systems for 

clean energy production and carbon capture.

Figure 1. Illustration for power systems decision and control over different time scales.
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◯◯  Division of Applied Mathematics

Discrete Differential Geometry and Integrable Systems

Kenji KAJIWARA
Degree: PhD(Engineering)(the University of Tokyo)
Research Interests: ‌�Discrete Differential Geometry, Integrable Systems, 

Painlevé Systems, discrete and ultradiscrete systems

My research activities are based on the study of integrable systems, 
which originates from the study of nonlinear waves with a particle-like 
characteristic called solitons. In mathematics, although fundamental 
equations to describe solitons are nonlinear partial differential equations, 
which are generally difficult to analyze, they possess a miraculous 
property in that they can be exactly solved. Behind such miracles lies 
the mathematics of infinite-dimensional space with the symmetry of 
infinite degrees of freedom. A family of functional equations that share 
this property is called integrable systems. A deep understanding of 
the underlying mathematics of integrable systems enables various 
applications. Three such examples follow.

1. Discretization and ultra-discretization: A method to discretize 
both independent and dependent variables of the soliton equations  
preserving the integrability has been developed (ultra-discretization). 
A typical interaction of solitons is shown on the top of Fig. 1, where 
a large soliton with a higher velocity comes from the left and passes 
a smaller, slower soliton. An automaton that describes solitons is 
shown on the bottom of Fig. 1. There are rows of boxes and balls. At 
each time stop, from the left to the right, each ball is moved to the 
empty box closest to the right once, and the time is incremented by 
one when all balls have been moved. This simple model describes 
solitons, and a sound correspondence to a partial differential equation 
can be established through ultra-discretization. Discretization and 
ultra-discretization preserving integrability have been applied to a wide 
range of mathematical sciences and engineering, including numerical 
analysis and traffic flow analysis, and this is my theoretical backbone of 
the collaborated activities with other area, in particular, those related to 
geometry (discrete differential geometry). Recently, applications of the 
ultra-discretization have been extended to the non-integrable diffusion-
reaction systems so that many reaction-diffusion cellular automata have 
been constructed. In addition, the underlying geometric structure of ultra-
discrete systems has recently been clarified in terms of tropical geometry.

 

2. Discrete Painlevé equations and elliptic curves: A family of 
difference equations called discrete Painlevé equations is formulated as 
an addition theorem on moving pencils of cubic curves in the complex 
projective plane. Their solutions can be regarded as the generalization 
of the special functions of hypergeometric type, such as the Bessel 
functions. On the top of these equations there lies the elliptic Painlevé 
equation with the symmetry of E8

(1) type, and the elliptic hypergeometric 

function expressible by the elliptic theta functions arises as the 
particular solutions. This function is considered to be at the top of all the 
hypergeometric type special functions. As an application, discretization 
of certain complex regular functions can be described by the (discrete) 
Painlevé equations. Figure 2 illustrates the discrete power function Z1/2, 
where the grid is characterized by the circle patterns.

3. Discrete integrable differential geometry and geometric 
shape generation :  Various integrable sytems arise as the 
fundamental equations describing the space curves and surfaces and 
their deformations. Further, recently, the theory of curves and surfaces 
consistent with the discrete integrable systems advanced, so that I am 
now developing the geometric shape generation, in particular, generation 
of “good” curves and surfaces in a certain sense, collaborating with the 
experts of industrial design and architecture. Figure 3 shows the typical 
dynamics of tornados, namely natural vortex filaments (left), and the 
results obtained by the integrable discrete model (right). It gives high 
quality results with low-cost computation since the underlying structure 
is preserved. Figure 5 (left) is a family of plane curves called the log-
aesthetic curves which was proposed in Japan as shape elements of CAD 
with built-in aesthetic property, and they were extracted from the shapes 
which we think beautiful, such as Japanese swords and butterflies (Figure 
4). Recently, we have proposed a new theoretical framework from the 
standpoint of the integrable geometry, from which we constructed the 
high-speed and high-quality discretization and a space curve extension 
(Figure 5 right). We develop this theory to the surfaces, and implement 
the family of curves and surfaces with aesthetic character as the geometric 
shape elements, and eventually we aim at standardization of those shape 
elements in the area of industrial design. Those shapes would serve as 
important examples of mathematical models incorporating the element of 
human feeling of “aesthetics”: Good equations can generate good 
shapes.Figure 1：

Solitons and cellular automaton
Figure 2：
Discrete power function and circle pattern

Figure 3: ‌�vortex filament in tornado (left), numerical computation of loops of the 
vortex filament and vortex ring by using integrable discrete model (right).

Figure 4：“aesthetic” curves in a Japanese sword and a butterfly.
Figure 5: Log-aesthetic curves and space curve extensions. 
Figure 6：Log-aesthetic curves and their discretization.
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Fluid Dynamics, Focusing on 
Vortex Motion and its Applications

Yasuhide FUKUMOTO
Degree: Ph.D. （Science） （the University of Tokyo） 
Research Interests: Fluid Dynamics, Magnetohydrodynamics （MHD）, Topological Fluid Mechanics

From a mathematical viewpoint, fluid motions are composed of vortices 
and waves. Typical examples of vortical structures include the patterns of two 
long lines of clouds left behind an aircraft wing and the column of air bubbles 
that forms above the drain hole in a bathtub. Vortex motion is a dynamical 
system with infinite degrees of freedom, where various modes of different 
sizes in a hierarchical structure, nonlinearly interacting with one another, 
evolve autonomously into coherent structures or into chaotic and turbulent 
states. Once formed, a vortex acquires functions such as ‘transporting’ and 
‘mixing’ matters. It is well known that an air gun can send a specific volume 
of air to a far place. As exemplified by the cardiac pump driving blood flow, 
living organisms exploit vortex rings in various forms. The formation and 
stability/instability of trailing vortices are vital to safe aviation, efficiency in 
wind power generation by wind turbines, and the design of flying robots. In 
this way, nonlinear dynamics of vortices holds a key to present day issues in 
a diversity of fields, ranging from energy and global environmental problems 

to advanced technologies in the 
manufacturing industry.

My major research interest lies 
in mathematical analyses of vortex 
motion. Some of my results in 
the theory of three-dimensional 
vor tex motion precede other 
groups in the world. In 1994, I 
became the first recipient of the 
Ryuumon Award, which is given 
to a young researcher from the 
Japan Society of Fluid Mechanics, 
for my work on three-dimensional 
motion of a vortex filament. We 
recently succeeded in deriving a 
formula for the traveling velocity 
of a vortex ring that agrees well 
with experiments. This formula 
covers not only high but also 

low Reynolds number regions. Moreover, we discovered a new instability 
mechanism of a vortex ring (Figure 1). Our group is currently developing a 
new Lagrangian approach for the continuous as well as the point spectra of 
vortex motion and for nonlinear dynamics of vortices, from the viewpoint of 
Hamiltonian mechanical systems of infinite degrees of freedom.

Euler first developed an approach to analyze fluid motion using partial 
differential equations in the 18th century, but an entire century passed before 
Helmholtz published his seminal paper (1858) opening up the research field 
of vortex motion. Helmholtz demonstrated that “in the absence of viscosity, 
vortex lines are frozen into the fluid”. This implies that the link and the knot 
types of vortex lines do not change with time. One of the thrusts of fluid 
dynamics in the latter half of the 20th century was to discover the topological 
meaning of Helmholtz’s law and to find its applications as initiated by Arnol’d 
(1966). However, this research had yet been limited to two-dimensional 
flows. The Lagrangian approach, which takes the displacement field of fluid 

particles as the basic variables, is capable of investigating vortex motion 
with rigorously maintaining topological invariants and thereby provides a 
common ground to investigate motions of molecules, solid (elastic) bodies, 
fluids, and even plasmas. I am trying to construct, by exploiting the high 
degree of extensibility of the Lagrangian description, a new mathematical 
framework in which three-dimensional interactions between waves and mean 
flows can be calculated, and its extension to rotating and stratified flows and 
to the magnetohydrodynamics. In March 2013, I held, as the chair, the IUTAM 
Symposium on vortex dynamics in Fukuoka. Since January 2015, I have been 
the Editor-in-Chief of Fluid Dynamics Research, an international scientific 
journal, published by the IOPP.

I was the subleader in the Global COE Program “Education and Research 
Hub for Mathematics-for-Industry” supported by the Ministry of Education, 
Culture, Sports, Science and Technology (MEXT), Japan (Graduate School of 
Mathematics, Kyushu University, FY2008-2012). I have organized the Forums 
“Math-for-Industry” (FMfI) started under this program in 2008 and the Study 
Group Workshops (SGW) that started in Japan in 2010. The SGW is a one-
week training camp in which mathematics researchers and students tackle 
with unsolved problems posed by invited companies. I made a contribution 
to founding the Institute of Mathematics for Industry (IMI, FY2011-) and to 
its receiving a certification of the Joint Usage / Research Center from the 
MEXT, Japan (FY2013-). Recently I have been engaged in organizing the 
Japanese Consignment Research Project “Mathematical Innovation powered 
by Mathematics Platform (AIMaP)" for the MEXT for promoting collaboration 
of mathematics with other fields and industrial technologies (FY2017-2021). 
I am now struggling for widening the frontier of industrial mathematics for 
dealing with social sciences and humanities.

A substantial effort has been made in training graduate students, including 
those in the PhD course, and in accepting students from abroad. Over 5 
PhD students of my group performed the long-term research internship, 
with its period over 3 months, in domestic companies. Our group also 
actively conducts international exchange for promoting advanced research. 
I won the Visiting Professorship of the Japan Society for the Promotion of 
Science (JSPS) (Long Term) and visited the University of Cambridge for 
ten months in 1996 for collaboration with Prof. Moffatt on the motion of a 
viscous vortex ring. Since my return to Japan, prominent, world-renowned 
researchers have frequently visited our group to exchange information on 
research frontiers. Since 2001, I have hosted over 10 researchers under the 
Invitation Fellowships Program (Short Term) of the JSPS. In 2016, I acted as 
the leader of the Japanese team to jointly organize the SGWs between New 
Zealand and Japan. Since 2016, I have also been contributing to organizing 
the FMfIs in abroad, with appointing, as chairs, influential mathematician 
belonging to the Asia-Pacific Consortium of Mathematics for Industry 
(APCMfI). These activities have led us to grow an international network of 
first-class researchers on “Topological Fluid Mechanics”, including Prof. 
Moffatt, the pioneer, and Prof. Ricca (University of Milan), and on “Industrial 
Mathematics”, including leading researchers belonging to the APCMfI and 
in the USA and Europe. I intend to leverage this network to train young 
researchers.

Figure1: Nonparametric kernel 
smoothed density estimator
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High-Performance Computing for Graph Analysis and 
Mathematical Optimization Problem

Katsuki FUJISAWA
Degree: PhD (Science)(Tokyo Institute of Technology)
Research Interests: Mathematical Optimization Problem, Graph Analysis, High Performance Computing

The objective of our ongoing research project is to develop an advanced 

computing and optimization infrastructure for extremely large-scale graphs on 

post peta-scale supercomputers. The recent emergence of extremely 

large-scale graphs in various application fields, such as transportation, social 

networks, cyber-security, and bioinformatics, requires fast and scalable 

analysis (Figure 1). For example, a graph that represents interconnections of 

all neurons of the human brain has over 89 billion vertices and over 100 

trillion edges. To analyze these extremely large-scale graphs, we require an 

exascale supercomputer, which will not appear until the 2020’s.

 

We have entered the Graph 500 (http://www.graph500.org) and Green 

Graph 500 (http://green.graph500.org) benchmarks, which are designed to 

measure the performance of a computer system for applications that require 

irregular memory and network access patterns. Following its announcement 

in June 2010, the Graph500 list was released in November 2010. The list has 

been updated semiannually ever since. The Graph500 benchmark measures 

the performance of any supercomputer performing a breadth-first search 

(BFS) in terms of traversed edges per second (TEPS). We implemented the 

world’s first GPU-based BFS on the TSUBAME 2.0 supercomputer at the 

Tokyo Institute of Technology and came in 4th in the 4th Graph500 list in 2012. 

Rapidly increasing numbers of these large-scale graphs and their applications 

drew significant attention in recent Graph500 lists (Figure 2). In 2013, our 

project team came in 1st in both the big and small data categories in the 2nd 

Green Graph 500 benchmarks (Figure 3). The Green Graph 500 list collects 

TEPS-per-watt metrics. 

 

We also present our parallel implementation for large-scale mathematical 

optimization problems. The semidefinite programming (SDP) problem is one 

of the most predominant problems in mathematical optimization. The 

primal-dual interior-point method (PDIPM) is one of the most powerful 

algorithms for solving SDP problems, and many research groups have 

employed it for developing software packages. However, two well-known 

major bottleneck parts (the generation of the Schur complement matrix (SCM) 

and its Cholesky factorization) exist in the algorithmic framework of PDIPM. 

We have developed a new version of SDPARA, which is a parallel 

implementation on multiple CPUs and GPUs for solving extremely large-scale 

SDP problems that have over a mil l ion constraints.  SDPARA can 

automatically extract the unique characteristics from an SDP problem and 

identify the bottleneck. When the generation of SCM becomes a bottleneck, 

SDPARA can attain high scalability using a large quantity of CPU cores and 

some techniques for processor affinity and memory interleaving. SDPARA can 

also perform parallel Cholesky factorization using thousands of GPUs and 

techniques to overlap computation and communication if an SDP problem 

has over two million constraints and Cholesky factorization constitutes a 

bottleneck. We demonstrate that SDPARA is a high-performance general 

solver for SDPs in various application fields through numerical experiments 

at the TSUBAME 2.5 supercomputer, and we solved the largest SDP problem 

(which has over 2.33 million constraints), thereby creating a new world 

record. Our implementation also achieved 1.713 PFlops in double precision 

for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs 

(Figure 4).

 

Figure 1 : Graph analysis and its application fileds

Figure 2 : Size of graphs in various application fields and 
Graph500 benchmark.

Figure 3 : The 2nd Green Graph500 list and our achievements

Figure 4 : High-performance Computing for Mathematical 
Optimization Problem

The graph structure has been a subject of research and application even before 

computers were created, as it is a basic tool to intuitively describe a complex 

situation. However, since the introduction of computers, the graph structure has 

been used not only for internal expression within a computer program (data 

structure), but also as a newly devised computational system to execute a computa-

tion by rewriting the graph itself. These advances have made conducting research 

on the property changes of a graph due to an operation on the graph (graph 

rewriting theory) particularly important, in addition to the conventional research on 

static graph structures (graph theory). Moreover, a viewpoint is needed for 

constructing an algorithm based on the assumption that a computer’s hardware has 

a certain kind of basic graph rewriting operation, rather than graph rewriting 

operation being implemented on an existing computer. There have been many 

research projects recently to devise and design computers within the framework of 

natural computation, such as molecular computation and quantum computation, 

which necessitate the fundamental theory of computation using graph rewriting 

theory. 

Formula translation with a computer is executed by expressing a formula using 

a tree structure and by altering part of the tree corresponding to a pattern to calculate 

or transform the formula. Graph rewriting improves the computation efficiency by 

expressing a formula with a graph structure that shares the same terms within the 

formula (Fig. 1). In this process, a pattern matching algorithm for the graph 

structure and a graph formalization that does not change the meaning of a formula 

are important. 

Graph rewriting procedures can be computed simultaneously as long as the 

rewriting computation regions do not overlap. Computation algorithms using graph 

rewriting have been developed for computations such as the shortest path length in 

traffic networks, the reliability of networks, and impedance in an electrical circuit. 

Computations using a rewriting do not always produce the same computation result 

because computation processes branch out due to application locations and the 

application order of rewriting (Fig. 2). For this reason, it is important to theoretically 

confirm that these branches are always confluent or to construct rewriting rules to 

derive the same computation result.

Computation by transforming a graph, which is a connection of points on a 

straight line, is closely related to computation using a cellular automaton, which is 

applied to modeling physical phenomena (Fig. 3). A molecular computation, which 

uses a DNA strand as in a gene, is considered a possible device to directly achieve 

a computation mechanism using a cellular automaton. Theories of computability for 

a graph rewriting system and cellular automaton, computational universality, and 

computational equivalence can be used to evaluate the effectiveness of computer 

performance.  

Formulating a simultaneous parallel computation of graph conversion and 

demonstrating computation convergence, algebraic methods, including discrete 

mathematics, relational algebra theory using binary relations, and category theory 

are necessary. Furthermore, evaluation of computability requires automata and 

language theory, computation theory, and mathematical logic theory. Theoretical 

computer science is not only the theory of data structures and algorithms to be used 

with current computers, but also the theory of logic and computation to design and 

devise computers for future computer architecture.

Our research group is conducting research in mathematics and theoretical 

computer science to revolutionize technologies utilizing computers, which are the 

foundation of our modern information-based society, as well as to develop novel 

computation mechanisms. 

Theoretical Computer Science and its Applications

Yoshihiro MIZOGUCHI
Degree: PhD(Science)(Kyushu University)
Research Interests: Computer Science

Figure 1: Efficient computation using graph rewriting 
by sharing terms

Figure 2: Branching and converging of a computation, depending 
on different application locations of conversion rules

Figure 3: Example of fractal triangles using cellular automaton

During an organism’s long-term struggle for existence, it evolves many 

refined techniques for life phenomena. I transcribe such life phenomena to 

numerical formulas in my work. I also extract the techniques from the 

organisms and apply them industrially.

There are various types of transportation networks, such as railway 

networks, ant trails, blood vessel networks, and leaf veins. Commonly 

used paths develop in these networks, while paths that are not frequently 

used degenerate. These networks are called "adaptive networks". The 

network topology of an adaptive network varies (such as capillaries and the 

aorta). The purpose of my study is to understand the formation of such an 

adaptive network.

A true slime mold, Physarum polycephalum, was used for this study 

(Fig. 1). This slime mold is a unicellular organism, but it has the collective 

property of containing many nuclei. For example, if it is cut into pieces, 

each piece can live as an individual. However, the pieces can also fuse and 

become one living individual. The mold has an adaptive network to 

transport nutrients. It is a superior specimen for understanding adaptive 

networks because it can be cut and handled in this way. The transportation 

network of this slime mold is a product of its solving of mazes(Figs. 2a-c) 

and is an optimal network(Fig. 3b), according to my co-worker Prof. 

Toshiyuki Nakagaki (Future University-Hakodate). However, how the 

slime mold solves the network problem without a brain or global informa-

tion remains unanswered.

I reproduced this phenomenon by describing it with numerical 

equations (Figs. 2d–f). The parameter to solve the maze was found to be 

the boundary of the network topology. When the growth rate of a thick path 

is strong, it is the only path that remains (Fig. 3a) because a thick path at 

the initial state easily grows and further growth also becomes easy. 

Conversely, if the maintenance cost is high for a thick path, the path cannot 

maintain its thickness, and the other paths remain (Fig. 3c). The parameter 

for solving the maze is the boundary of these two types of network 

formation(Fig. 3b).

I applied this common theory of adaptive networks to a real railway 

network (Figs. 4a–c). I will also apply it for various adaptive networks. In 

addition, I study action control using a variety of rhythms and voluntary 

morphosis of organisms.

Adaptive Network Theory with Organism

Atsushi TERO
Degree: PhD (Science)(Hokkaido University)
Research Interests: Mathematical Modeling, Network Theory

Fig.1

Fig.2

Fig.4

Fig.3

（a）

One Path
（by intial condition）

Shortest Path

(a) Real Railway network (b) Physarum Network (c) Simulation results

All Paths

（b） （c）
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Development of Optimization Techniques and Software

Hayato WAKI
Degree: Doctor of Science (Tokyo Institute of Technology)
Research Interests: Optimization, Mathematical Programming

The optimization problem is that of finding the maximum or 
minimum of a given function over a given set. This problem is 
widely confronted in industry, as well as daily life. In a recent 
public statement, IBM asserted that BAO (business analytics 
and optimization) and the importance of optimization in 
business are rapidly becoming more and more prominent.

My main research interests are the following: (i) to solve 
continuous optimization problems, e.g., convex optimization 
problems and semi-definite programming problems (SDPs); 
(ii) to develop effective algorithms and software. I am 
particularly interested in developing methods to solve 
nonlinear and nonconvex optimization problems by using 
convex optimization and SDPs. In fact, my collaborators and I 
have proposed an efficient approach for determining global 
solutions of optimization problems that are described by 
polynomials. I refer to such optimization problems as 
polynomial  opt imizat ion problems (POPs).  We have 
demonstrated that our approach is effective for POPs that 
possess a sparse structure. In general, it is known that finding 
a global solution of a POP is NP-hard. Lasserre and Parrilo 
independently proposed approaches that use SDPs for the 
purpose of solving POPs. Although their results are very nice 
from the theoretical point of view, they are not effective for 
POPs with more than 20 decision variables. With our 
approach, some POPs with more than 100 variables can be 
solved.  In this work, we developed the software SparsePOP for 
solving POPs. This is open-source software and is available at 
the following site: 

SparsePOP  http://sourceforge.net/projects/sparsepop/
As an application of POPs, we have treated a number of 

sensor network localization problems, which arise in 
monitoring and controlling applications in which wireless 
sensor  ne tworks  a re  employed ,  such  as  ga the r ing  
environmental data. Although GPS technology is more suitable 
than wireless sensors for this purpose, it is usually very 
expensive for such applications, and thus it is not a feasible 
option. For this work, we proposed an approach based on our 
work related to POPs and developed the software SFSDP. This 

is also open-source software, and it is available at the 
following site:
SFSDP http://www.is.titech.ac.jp/~kojima/SFSDP/SFSDP.html

The figure demonstrates that we can accurately estimate the 
locations of sensors from distance data with noise using the 
SFSDP software. The blue lines in the figures represent the 
differences between the actual locations of the sensors and the 
locations determined using two methods. The data in the left 
figure were obtained using an existing method, while those in 
the right figure were obtained using our method with the 
SFSDP software. In the left figure, there are many long blue 
lines. It is thus seen that the existing method cannot accurately 
estimate the locations of the sensors. Contrastingly, the right 
figure contains no such long blue lines, and we thus conclude 
that our method employing the SFSDP software is capable of 
estimating the locations of the sensors with much greater 
accuracy. 

There are two main difficulties involved in our approach to 
treating POPs: (1) the resulting SDPs still are too large to 
handle in the case of POPs that do not possess sparse 
structure; (2) the resulting problems have too great a degree of 
degeneracy to solve accurately. As a result of the second 
problem, it is difficult to find an accurate global solution. In 
addition, for some POPs, we often encounter phenomena in 
which the theoret ical  resul ts  di f fer  great ly  f rom the 
computational results due to numerical errors, e.g., rounding 
errors in the computation. We welcome collaboration with 
researchers who are interested in the challenge of overcoming 
such difficulties and/or researchers who have some practical 
experience in optimization problems.
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FO definable 

piecewise testable 

regular languages finite monoids 

J-trivial 

aperiodic 

Between the theory of computation and number theory

Takeo URAMOTO
Degree: Ph.D（Science）（Kyoto University）
Research Interests: theoretical computer science

My major interests are broadly in theoretical computer science. In 

this relation, I’m recently working on intersections between algebraic 

language theory and classical class field theory.

(1) algebraic language theory
Algebraic language theory is a branch of formal language theory, and 

historically speaking, has been developed in relation with classifications 

of hierarchies of languages (= sets of finite words).  Intuitively, we 

feel that it is difficult to judge whether the finite binary sequence, say, 

1101110110101 when read as a binary number is a prime number or 

not, while it is easy to judge whether the number of “0” appearing in 

1101110110101 can be divided by 3. In formal language theory (or 

computational complexity theory), we are interested in classifying the 

difficulties of such problems on judging some properties of finite words, 

by formalizing them in terms of some computational models such as 

Turing machines. 

 

Among several approaches in formal language theory, algebraic 

language theory is characterized by the use of algebraic methods. 

In particular, as far as regular languages (i.e. languages that can be 

accepted by finite automata) are concerned, it is well known that we have 

a beautiful theory (Eilenberg theory) to classify their hierarchy by means 

of the theory of finite semigroups. My research also concerns this theory.

 Eilenberg theory may be best described by its important instance, 

Schützenberger’s theorem, which was proved in 1965 in relation with 

a logical description of regular languages. Before Schützenberger’s 

theorem, it had been known that regular languages can be characterized 

as those languages which can be defined by Büchi’s monadic second-

order logic (MSO). In this relation, it had been of concern whether one 

can effectively characterize when a regular language can be defined by the 

first-order fragment (FO) of MSO. Schützenberger solved this problem 

by means of semigroup theory, and this result gave a starting point of 

Eilenberg theory. After Schützenberger’s work, it has been observed that 

several hierarchies of regular languages naturally correspond to those of 

finite monoids, and Eilenberg theory concerns a systematization of such 

relationship (duality). 

(2) Unification with Galois theory
Technically speaking, Schützenberger’s theorem states that a regular 

language L is FO definable if and only if the syntactic monoid of L 

(i.e. a finite monoid canonically attached to L) contains only trivial 

subgroups. In other words, the FO-definability of regular languages 

can be characterized by the purely semigroup-theoretic property of the 

corresponding finite monoids (syntactic monoids M(L)). 

 This phenomenon is somewhat analogous to the classical result 

due to Galois: The roots of a polynomial f(z) can be expressed by four 

arithmetic operations and roots if and only if the galois group of the 

smallest splitting field K over Q is soluble. In fact, this is not just an 

“analogy” but can be justified using the abstract language of category 

theory; and as its consequence, we can unify Eilenberg theory and 

Galois theory in a certain precise sense. Moreover, it turns out that this 

unification sheds a new light on classical class field theory, a central 

field of number theory concerning classification of abelian extensions 

of number fields. Currently, I’m working on this interesting intersection 

between classical algebraic language theory (Eilenberg theory) and class 

field theory, or more specifically, explicit class field theory and non-

abelian class field theory.

Figure 2: Duality between regular languages and finite monoids

 Figure 1: Finite automaton judging 3-divisibility of the number 
of 0's in binary words
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Fig.2: Compact and conformally compact

Fig.3: Cloaking

Fig.1: Inverse problems
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Inverse problems for hyperbolic partial differential equations

Hiroshi TAKASE
Degree: Ph.D. （Mathematical Sciences） （The University of Tokyo） 
Research Interests: Partial Differential Equations, Inverse Problems, Geometric Analysis

Hyperbolic partial differential equations have important 

mathematical features such as finite propagation of solutions 

and Huygens’ principle. In addition to its importance in the 

mathematical sciences, it has also played an important role in 

physics and engineering because of its ability to model various 

natural phenomena such as dynamics and waves. In particular, 

the inverse problem of determining the governing system of 

equations from information on existing solutions is extremely 

important in the mathematical sciences as an ill-posed 

problem. In addition, it has attracted strong attention as a tool 

for understanding the background of physical phenomena in 

detail.

 Typical research problems in inverse problems for partial 

differential equations are the inverse source problem, which 

identifies an unknown wave source, and the inverse coefficient 

problem, which identifies an unknown physical property 

described by the equation. The objective is to determine 

whether an observer who observes waves in part of the domain 

of interest can identify these unknowns in the vicinity of the 

domain of interest or in the entire domain of interest (Fig.1).

 

Among the various types of partial differential equations, 

hyperbolic partial differential equations can often be described 

geometrically independent of local coordinates. Thus, for 

example, it is very compatible with analysis on pseudo-

Riemannian manifolds that introduce indefinite metrics. In 

recent years, geometric analysis on compact Lorentzian 

manifolds has been used to study aspects of inverse problems 

from a geometric viewpoint. Furthermore, as an interest from 

physics, analysis of inverse problems on conformally compact 

manifolds where the metric diverges at the boundary of the 

manifold is also attracting attention (Fig.2). The principal 

part of the equations on a conformally compact manifold is 

degenerate, which increases the difficulty, and a new theory 

of inverse problems for degenerate equations needs to be 

developed.

 

The inverse problem of identifying the unknown quantity 

that is the cause of the result is, of course, not always resolved 

in the affirmative. A negative example is light cloaking 

technology, such as the invisibility cloak in the Harry Potter 

movie. This is a technique to make an object invisible by 

bending the progress of light by changing the medium in a 

bounded domain around the object, creating an invisible zone 

where light from the outside does not propagate (Fig.3). In the 

theory of partial differential equations, changes in the medium 

are often formulated as potentials, which are lower-order 

terms. The situation in which light cannot propagate from 

the outside in the invisible zone due to its potential can also 

be understood in terms of the Cauchy problem of the wave 

equation with a potential term. This renewed consideration of 

negative situations may help in discovering mathematically 

interesting structures.
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I'm working on mathemat-

ics, in particular, algebraic 

analysis. We know that most 

of sciences are talked in 

mathematical languages, 

experiences are often stated 

and examined as a formula, 

and complicated systems are 

understood as an abstract 

model. Algebraic analysis 

gives an abstract/categorical 

understanding of a non-commutative object/phenomenon arising in a 

various field. What is “non-commutativity” ? A daily example of non-

commutative actions is to wear socks and to wear shoes, as the order of the 

actions does affect the results. At the contrary, to wear socks and to wear 

pants are commutative. Non-commutativity is also a source of a fun of 

games. For example, if the operations of Rubik’s Cube would be commuta-

tive, then it might not be so fun and so deep. An example of non-

commutativity from physics will be the Heisenberg canonical commutation 

relation (CCR), which is one of the characteristics of quantum mechanics. 

CCR is also understood in mathematics, located at the intersection of 

several branches of mathematics such as differential operators in analysis 

and Lie algebras in geometry. Representation theory serves a systematic 

treatment of non-commutativity, or symmetry in general, by using groups 

and algebras. Symmetry is technically a key to solve a complicated system,

and is philosophically related with a beauty in nature.

In 1980’s, Kazhdan-Lusztig conjecture was solved by using the 

algebraic analysis, to be more 

specific, the localization of a Lie 

algebra by differential operators on 

the flag manifold. In a word, a rather 

complicated part of representation 

theory of non-compact semisimple 

Lie groups, an example of which is 

Lorentz group, turns out to have a 

relation with the geometry of orbits on the flag manifold. I am interested in 

and working on both non-commutative objects called modules and 

geometric objects such as orbits on homogeneous spaces and their 

cotangent bundles. On one hand, the category of D-modules and the 

operations on this category has close relation with a part of theory of 

special functions such as a hypergeometric function and its generalization; 

this is my favorite. On the other hand, the orbit decomposition on homoge

neous spaces, as Bruhat decomposition is a classical example, is a source 

of combinatorics, which is a hard and non-trivial finite mathematics, and 

gives a basic example of geometry and topology, such as resolution of 

singularities. These two are at the same point in my mind. I am also 

interested in special functions arising in number theory and probability 

theory. I like to find the structure of unorganized data, or objects, and like 

to introduce a bridge between the branches of mathematics and a new 

viewpoint. This will help to contribute to the work at the institute of math-

for-industry.

Algebraic Analysis: A Crossroad of Mathematics

Hiroyuki OCHIAI
Degree: PhD(Mathematical Science)(the University of Tokyo)
Research Interests: Algebraic Analysis

Geometric variational problems are a fundamental subject in differential 

geometry. I am working on mainly variational problems for hypersurfaces 

in Riemannian manifolds with constant curvature. In general, a solution of 

a variational problem is said to be stable if the second variation of the 

energy is non-negative; in particular, a solution that attains a minimum 

energy is stable. Therefore, it is important to study the stability of solutions 

from both mathematical and physical points of view. My main interests are 

the existence, uniqueness, stability, and global properties of these 

solutions. 

My recent subjects of study are surfaces with constant mean curvature 

(CMC surfaces) and surfaces with constant anisotropic mean curvature 

(CAMC surfaces) (Fig. 1). The former are critical points of area (that is, 

isotropic surface energy) for volume-preserving variations, while the latter 

are critical points of anisotropic surface energy for such variations. Thus, 

CMC surfaces serve as mathematical models of thin liquid bubbles, and 

CAMC surfaces serve as mathematical models of, for example, certain 

kinds of small liquid crystals. Usually, CMC surfaces are regarded as a 

special case of CAMC surfaces. 

CMC surfaces are a classical subject and are still very actively studied. 

In addition, CAMC surfaces are now studied in many research areas of not 

only mathematics but also other fields, e.g., physics and technology, as 

both basic research and applied science. There had not been much 

geometric research of CAMC surfaces until recently, but a series of joint 

studies by Professor Bennett Palmer (Idaho State University, U.S.A.) and 

myself has produced a new development in this field. We have obtained 

many important results about geometric properties, representation 

formulas, the Gauss map (the unit normal) and its removable set of CAMC 

surfaces, existence and uniqueness for stable solutions of free boundary 

problems for anisotropic surface energies, etc. 

Recently we proved that any CAMC surface that is a topological sphere 

is a rescaling of the Wulff shape. We hope that this result can contribute 

toward determining the shape of materials that have anisotropic surface 

energies.

At present, my greatest interest is constructing a bifurcation theory of 

solutions to geometric variational problems with constraint. It is especially 

interesting to study bifurcations from stable solutions with symmetry to 

unstable solutions with the same symmetry and stable solutions with lower 

symmetry (Fig. 2), which may be important from both mathematical and 

physical points of view. I would like to emphasize that the problem of 

stability for variational problems with constraint is much more complicat-

ed than that for variational problems without constraint, and variational 

problems with constraint appear naturally in various situations. In fact, 

CMC and CAMC surfaces are such examples. I hope that this research will 

not only contribute to the development of mathematics, but also give 

mathematical assurance of various physical phenomena. 

Global Analysis of Variational Problems for Surfaces

Miyuki KOISO
Degree: Doctor of Science(Osaka University)
Research Interests: Differential Geometry
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Topology is the study of extremely soft geometry, where an object is regarded 

as being composed of some soft material, like rubber, and a continuously 

deformed object is considered to be identical to the original object. In other 

words, topology is a field of pure mathematics in which we are interested in the 

properties of geometric objects that do not change as those objects are continu-

ously deformed. For instance, a doughnut and a mug are regarded as identical in 

topology (see Fig. 1). This is because each of them has exactly one hole, which is 

a typical example of a quantity that does not change under continuous deforma-

tion.

Given its nature, topology is a powerful tool for analyzing flexible objects. One 

extreme such example is provided by a string, in which we can create knots and 

links through various manipulations. These are important actions in daily life and 

have been part of human existence since a primitive age. In fact, it is known that 

wild gorillas can tie knots. Moreover, it has recently been found that such knots 

are deeply connected to research into deoxyribonucleic acid (DNA).

DNA, taking the form of two twisted thread-like strands, carries hereditary 

information and exists in the cells of living organisms. This molecule often 

assumes a ring-like form. Biological observations have shown that strands of 

ring-shaped DNA are often knotted and linked with each other. Although certain 

enzymes are responsible for these DNA knots and links (see Fig. 2), due to 

limitations in experimental techniques the details of the mechanisms involved in 

such processes have not yet been elucidated. In the late 1980s, the mathemati-

cians C. Ernst and D. W. Sumners used the most recent knot theory in topology at 

the time to describe some of the mechanisms employed by enzymes. Although it 

is often said that knot theory has its origin in the electromagnetism of Gauss and 

the vortex atom hypothesis of Lord Kelvin from the 19th century, chemists and 

physicists seem to have forgotten about knots, and only mathematicians have 

maintained this topic as a field of research. Our group is making extensive use of 

knot theory, which is one of the most actively researched fields in modern 

mathematics, to analyze DNA recombination mediated by an enzyme called 

topoisomerase from a mathematical point of view (see Fig. 2). Our main goal is to 

apply these analyses to industrial technologies.

In addition to knot theory, we are 

actively investigating singularities 
of differentiable mappings, 
using techniques of differential 

topology. In particular, we have made 

a number of discoveries for specific 

cases in which singular points of 

mappings between smooth objects 

deeply reflect the topological 

properties of those objects. I am 

considered a worldwide authority on 

the theory of inverse images of 

points, called singular fibers (see Fig. 3), and I recently published the first book 

that formulates this theory. More recently, I have been attempting to apply the 

theory to visual data analysis for multivariate functions. Our group is also interest-

ed in analyzing large datasets by employing processes through which the data can 

be visualized and their characteristics can be grasped in a robust manner. 

Differential topology plays an essential role in the realization of this project. 

We have also been working on a broad range of topics in topology, including 

separation properties of codimension-one mappings, topology of isolated 

singularities of complex hypersurfaces, 4-dimensional manifolds, embeddings in 

codimension one, and differential geometric invariants of space curves. These 

studies can be applied in various fields; e.g., they provide powerful tools for 

studying properties of materials at the microscopic level. In fact, our group has 

collaborated with industrial firms and found that certain topological invariants can 

be used to estimate physical properties of hard materials. We have thus found that 

although topology is a study of soft geometric objects, it can also be used to study 

hard objects!

My diverse research has greatly impacted my students. This fact is reflected by 

the broad range of the research topics studied by my master’s and Ph.D. students. 

In addition, some of my students have made important contributions to industrial 

technologies. I am also the coordinator of the WISE program “Graduate Program 

of Mathematics for Innovation”, nurturing doctoral talents in mathematics.

I hope that we can continue to strengthen the relationship between mathemat-

ics and industrial technologies through application of topology, a branch of pure 

mathematics.

Topology and its Practical Applications

Osamu SAEKI
Degree: PhD(Science)(the University of Tokyo)
Research Interests: Topology, Singularity Theory, Differential Topology, DNA Knots

Fig. 1: A doughnut and a mug are identical in topology. 
Fig. 3: Singular fiber holding the 
key to 4-dimensional manifolds

Fig. 2: Example of enzyme-mediated DNA recombination

Various random phenomena such as lotteries, roulettes, weather forecasts, 

and stock prices can be seen in everyday life．While such phenomena contain 

clear randomness, there are some problems to which probabilistic methods 

can be applied although they do not seem to be random at first glance. I am 

interested in finding the randomness behind such problems and studying them 

by using probabilistic techniques. 

Here are three examples of such a situation. 

(1) Kakutani's problem, also referred to as the Collatz problem or the 3x+1 

problem, is well known. In this problem, we consider a function f on natural 

numbers such that f(n)=n/2 if n is even and f(n)=3n+1 if n is odd. It is 

conjectured that repeated iteration of this function eventually produces 1 for 

every initial value n. For example, if one chooses initially 7, then the sequence 

becomes 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. As of 2009, 

this conjecture was verified up to 20X258 , but it still remains unsolved at 

present. This problem itself is undoubtedly deterministic (non-random), but, 

randomness lies behind it.

In the 1960s, a Japanese mathematician Shizuo Kakutani was interested in 

this problem and circulated it to a number of people. Here I quote his words 

from a Lagarias’ paper. ''For about a month everybody at Yale worked on it, with 

no result. A similar phenomenon happened when I mentioned it at the 

University of Chicago. A joke was made that this problem was part of a conspir-

acy to slow down mathematical research in the U.S.''

(2) The following sequence of letters is a cypher-text that is encoded by a 

classical method of a simple substitution cypher.    

Once we realize that this cypher-text is encoded by the method above, we 

can employ a Markov chain (one of the most basic stochastic processes) to 

decrypt it. The following is a simulation result of the decryption. 

Some coded messages like the above written by a prisoner in the California 

prison system was brought into a drop-in consulting service in Stanford's 

Statistics Department by a psychologist and it was decrypted by Stanford 

students by using Markov Chain Monte Carlo (MCMC) methods. This is a 

good example which shows how well MCMC works. 

(3) The Millennium Problems are seven problems in mathematics established 

by the Clay Mathematics Institute in 2000. The Poincare conjecture was solved 

by Gregory Perelman recently, but, six problems still remain open, among 

which is the Riemann hypothesis. The Riemann hypothesis asserts that the 

non-trivial zeros of the Riemann zeta-function defined by lie on the 

so-called critical line. The nature of this problem seems to be irrelevant to 

randomness, but, the zeros are known to look like the eigenvalues of certain 

random Hermitian matrices. 

The mathematician Alfréd Rényi had said that “A mathematician is a device 

for turning coffee into theorems”. Freeman Dyson, a theoretical physicist, made 

an interesting comment on a result of Hugh Montgomery, a number theorist, 

during afternoon tea in the Common Room at the Institute for Advanced Study.  

This comment shed light on a new aspect of the Riemann zeta-function. This 

was the very moment that important research was turned in a new direction by 

a cup of coffee (tea?). 

We hope that we can collaborate with one another with an open mind and in 

an intercultural way at IMI. 

Probability Theory and its Applications

Tomoyuki SHIRAI
Degree: PhD(Mathematical Sciences)(the University of Tokyo)
Research Interests: Probability Theory

MCMC simulation (every 1000 steps)

The pair-correlation function for eigenvalues of random Hermitian matrices (GUE)
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Topology is the study of extremely soft geometry, where an object is regarded 

as being composed of some soft material, like rubber, and a continuously 

deformed object is considered to be identical to the original object. In other 

words, topology is a field of pure mathematics in which we are interested in the 

properties of geometric objects that do not change as those objects are continu-

ously deformed. For instance, a doughnut and a mug are regarded as identical in 

topology (see Fig. 1). This is because each of them has exactly one hole, which is 

a typical example of a quantity that does not change under continuous deforma-

tion.

Given its nature, topology is a powerful tool for analyzing flexible objects. One 

extreme such example is provided by a string, in which we can create knots and 

links through various manipulations. These are important actions in daily life and 

have been part of human existence since a primitive age. In fact, it is known that 

wild gorillas can tie knots. Moreover, it has recently been found that such knots 

are deeply connected to research into deoxyribonucleic acid (DNA).

DNA, taking the form of two twisted thread-like strands, carries hereditary 

information and exists in the cells of living organisms. This molecule often 

assumes a ring-like form. Biological observations have shown that strands of 

ring-shaped DNA are often knotted and linked with each other. Although certain 

enzymes are responsible for these DNA knots and links (see Fig. 2), due to 

limitations in experimental techniques the details of the mechanisms involved in 

such processes have not yet been elucidated. In the late 1980s, the mathemati-

cians C. Ernst and D. W. Sumners used the most recent knot theory in topology at 

the time to describe some of the mechanisms employed by enzymes. Although it 

is often said that knot theory has its origin in the electromagnetism of Gauss and 

the vortex atom hypothesis of Lord Kelvin from the 19th century, chemists and 

physicists seem to have forgotten about knots, and only mathematicians have 

maintained this topic as a field of research. Our group is making extensive use of 

knot theory, which is one of the most actively researched fields in modern 

mathematics, to analyze DNA recombination mediated by an enzyme called 

topoisomerase from a mathematical point of view (see Fig. 2). Our main goal is to 

apply these analyses to industrial technologies.

In addition to knot theory, we are 

actively investigating singularities 
of differentiable mappings, 
using techniques of differential 

topology. In particular, we have made 

a number of discoveries for specific 

cases in which singular points of 

mappings between smooth objects 

deeply reflect the topological 

properties of those objects. I am 

considered a worldwide authority on 

the theory of inverse images of 

points, called singular fibers (see Fig. 3), and I recently published the first book 

that formulates this theory. More recently, I have been attempting to apply the 

theory to visual data analysis for multivariate functions. Our group is also interest-

ed in analyzing large datasets by employing processes through which the data can 

be visualized and their characteristics can be grasped in a robust manner. 

Differential topology plays an essential role in the realization of this project. 

We have also been working on a broad range of topics in topology, including 

separation properties of codimension-one mappings, topology of isolated 

singularities of complex hypersurfaces, 4-dimensional manifolds, embeddings in 

codimension one, and differential geometric invariants of space curves. These 

studies can be applied in various fields; e.g., they provide powerful tools for 

studying properties of materials at the microscopic level. In fact, our group has 

collaborated with industrial firms and found that certain topological invariants can 

be used to estimate physical properties of hard materials. We have thus found that 

although topology is a study of soft geometric objects, it can also be used to study 

hard objects!

My diverse research has greatly impacted my students. This fact is reflected by 

the broad range of the research topics studied by my master’s and Ph.D. students. 

In addition, some of my students have made important contributions to industrial 

technologies. I am also the coordinator of the WISE program “Graduate Program 

of Mathematics for Innovation”, nurturing doctoral talents in mathematics.

I hope that we can continue to strengthen the relationship between mathemat-

ics and industrial technologies through application of topology, a branch of pure 

mathematics.

Topology and its Practical Applications

Osamu SAEKI
Degree: PhD(Science)(the University of Tokyo)
Research Interests: Topology, Singularity Theory, Differential Topology, DNA Knots

Fig. 1: A doughnut and a mug are identical in topology. 
Fig. 3: Singular fiber holding the 
key to 4-dimensional manifolds

Fig. 2: Example of enzyme-mediated DNA recombination

Various random phenomena such as lotteries, roulettes, weather forecasts, 

and stock prices can be seen in everyday life．While such phenomena contain 

clear randomness, there are some problems to which probabilistic methods 

can be applied although they do not seem to be random at first glance. I am 

interested in finding the randomness behind such problems and studying them 

by using probabilistic techniques. 

Here are three examples of such a situation. 

(1) Kakutani's problem, also referred to as the Collatz problem or the 3x+1 

problem, is well known. In this problem, we consider a function f on natural 

numbers such that f(n)=n/2 if n is even and f(n)=3n+1 if n is odd. It is 

conjectured that repeated iteration of this function eventually produces 1 for 

every initial value n. For example, if one chooses initially 7, then the sequence 

becomes 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. As of 2009, 

this conjecture was verified up to 20X258 , but it still remains unsolved at 

present. This problem itself is undoubtedly deterministic (non-random), but, 

randomness lies behind it.

In the 1960s, a Japanese mathematician Shizuo Kakutani was interested in 

this problem and circulated it to a number of people. Here I quote his words 

from a Lagarias’ paper. ''For about a month everybody at Yale worked on it, with 

no result. A similar phenomenon happened when I mentioned it at the 

University of Chicago. A joke was made that this problem was part of a conspir-

acy to slow down mathematical research in the U.S.''

(2) The following sequence of letters is a cypher-text that is encoded by a 

classical method of a simple substitution cypher.    

Once we realize that this cypher-text is encoded by the method above, we 

can employ a Markov chain (one of the most basic stochastic processes) to 

decrypt it. The following is a simulation result of the decryption. 

Some coded messages like the above written by a prisoner in the California 

prison system was brought into a drop-in consulting service in Stanford's 

Statistics Department by a psychologist and it was decrypted by Stanford 

students by using Markov Chain Monte Carlo (MCMC) methods. This is a 

good example which shows how well MCMC works. 

(3) The Millennium Problems are seven problems in mathematics established 

by the Clay Mathematics Institute in 2000. The Poincare conjecture was solved 

by Gregory Perelman recently, but, six problems still remain open, among 

which is the Riemann hypothesis. The Riemann hypothesis asserts that the 

non-trivial zeros of the Riemann zeta-function defined by lie on the 

so-called critical line. The nature of this problem seems to be irrelevant to 

randomness, but, the zeros are known to look like the eigenvalues of certain 

random Hermitian matrices. 

The mathematician Alfréd Rényi had said that “A mathematician is a device 

for turning coffee into theorems”. Freeman Dyson, a theoretical physicist, made 

an interesting comment on a result of Hugh Montgomery, a number theorist, 

during afternoon tea in the Common Room at the Institute for Advanced Study.  

This comment shed light on a new aspect of the Riemann zeta-function. This 

was the very moment that important research was turned in a new direction by 

a cup of coffee (tea?). 

We hope that we can collaborate with one another with an open mind and in 

an intercultural way at IMI. 

Probability Theory and its Applications

Tomoyuki SHIRAI
Degree: PhD(Mathematical Sciences)(the University of Tokyo)
Research Interests: Probability Theory

MCMC simulation (every 1000 steps)

The pair-correlation function for eigenvalues of random Hermitian matrices (GUE)
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Arithmetic invariant theory and related geometry

Yasuhiro ISHITSUKA
Degree: PhD （Science） （Kyoto University） 
Research Interests: Number theory, Arithmetic invariant theory, Diophantine geometry

My main research interest is a subject called arithmetic invariant 
theory.  It belongs to number theory, a branch of algebra.  The objects 

and methods are described as follows (see Figure 1):

(1) ‌�Objects: The subject studies arithmetic objects which are interested 

in number theory; for example, algebraic number fields and its 

ideal class groups, Mordell—Weil groups of elliptic curves over 

rational number fields.  Number fields and elliptic curves are easily 

constructed, but to compute their class groups or Mordell—Weil 

groups is often a difficult task.  Moreover, it drastically change when 

we change its parameters.  We then consider their statistical behavior 

such as the “average’’ order of ideal class groups, or the “proportion’’ 

of elliptic curves with high Mordell—Weil rank.

(2) ‌�Methods: We interpret arithmetic objects as orbits of linear 

representations of algebraic groups.  This sometimes enables us to 

replace the counting problem of arithmetic objects to the counting 

problems of lattice points in a fundamental domain.  In such cases, 

we can apply techniques of analytic number theory, and discuss the 

average or proportion of arithmetic objects.  

Along this scheme, I treat the proportion of plane cubic curves 

admitting a linear determinantal representation (for example, Figure 2).  

Actually, we also study the plane cubics whose Jacobian variety has a 

positive Mordell—Weil rank.

I am also interested in explicit construction of curves with arithmetic 

properties, and study properties of explicitly given curves.  An example 

is a construction of plane quartic curves which fails the local—global 
properties of the existence of bitangents.  Bitangents of a plane 

quartic curve is a line in plane which tangents to the curve at two points, 

or tangents quadruply at one point 

(Figure 3).  A smooth plane quartic 

over the rational number field does not 

need to have a bitangent defined over 

the field.  In a joint work with T. Ito et 

al., we explicitly construct a smooth 

plane quartic which admits a bitangent 

locally, but not globally.  Besides 

arithmetic geometry, we use computer 

algebra systems.

In both topics, we study classical 

topics of algebraic geometry and 

invariant theory in arithmetic settings.  

It gives a new perspective of objects; for example, the correspondences 

between arithmetic objects and orbits used in arithmetic invariant theory 

are valid over the complex number field, but difficult to find detailed 

structures since it is very simple.  I am particularly interested in those 

structures appearing over arithmetic settings.

Figure 1. A flow of arithmetic invariant theory

Figure 2. An example of linear determinantal 
representations

Figure 3. A bitangent 
（green） of a plane quartic 

curve （blue）
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Blood glucose and
insulin data

Blood glucose control support
system and Estimation of an

insulin administration algorithm

Blood glucose control from the viewpoint of 
mathematical sciences

Hisatoshi KODANI
Degree: Ph.D.(mathematics)(Kyushu University) 
Research Interests: Topology, number theory, and arithmetic topology

Recently I have been engaged in an interdisciplinary research  in 

cooperation with researchers of medicine and applied mathematics 

at other universities, investigating the control of blood glucose. More 

specifically, this study, using data from patients in a postoperative 

intensive care unit (ICU), is aimed at developing a blood glucose control 

algorithm that is useful in medical practice. This study is different from 

the fields of study presented above, but I would like to introduce it here 

as a study related to IMI toward the application of mathematics and 

mathematical sciences to industrial society.

Immediately after surgery, the blood glucose levels of ICU patients 

rise rapidly because of stress caused by surgical invasion, cardiotonics, 

and other factors. Maintaining the blood glucose level in an adequate 

range by insulin administration is considered important because high 

blood glucose concentrations can cause multiple organ failure, coma, 

poorer outcomes, and other complications. Nevertheless, blood glucose 

control by insulin is difficult because of various factors such as delayed 

action of insulin and variation in insulin sensitivity. Another difficulty is 

that seriously poor outcomes might result from hypoglycemia triggered 

by insulin administration. Currently, blood glucose control in ICUs is 

conducted by nurses under predetermined conditions. Since no standard 

control algorithm has been established, blood glucose control is based 

largely on the experience of nurses under present circumstances. 

Such methods of blood glucose control are a burden on them. Some 

standardized method must be found.

Through cooperative study, we intend to develop a standardized method 

to assist blood glucose control in a way that is useful in actual clinical 

situations, and strive to estimate an algorithm used by experienced nurses 

to judge insulin administration based on a combination of mathematical 

approaches and observations of medical practice.

Regarding mathematical approaches to such problems, mathematical 

models of blood glucose and insulin related to blood glucose control 

have been designed to date. Existing models have different capacities and 

objectives, with difficulties such that mathematical models which express 

kinetics in the body include many unmeasurable variables. Parameters 

that are specific to each patient must be estimated. By contrast, various 

new data-driven study methods have been developed in recent years in 

the field of data science. Our cooperative study has adopted conventional 

methods and novel methods in an endeavor to contribute to the 

development of algorithms that are better suited for the study objectives.

In cooperative studies such as those of blood glucose control, 

for which medical observations are important, conducting studies 

cooperatively with surgeons and Certified Nurse Specialists in ICUs 

is crucially important, not only from the viewpoint of mathematics and 

mathematical sciences. We will proceed steadily with cooperative studies, 

carefully communicating with medical specialists, and thereby improving 

the application of mathematics and mathematical sciences to the field of 

medicine and to industrial society.
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An annulus and Möbius band.

Arranging (singular) surfaces over a surface.

An actual example of the blueprint of a 4D manifold.

◯◯  Division of Fundamental Mathematics

Blueprints for 4D Figures: Visualizing the Invisible Dimension

Noriyuki HAMADA
Degree: PhD (Mathematical Science) (Kyushu University)
Research Interests: Low-dimensional Topology, Mapping Class Groups of Surfaces, Symplectic Topology

I am researching a field of pure mathematics called low-dimensional 
topology. More specifically, there is a theory of “drawing” 4-dimensional 

figures on surfaces, and I am fascinated by the strong interplay between 

these 4D world and 2D world.

Before delving into the explanation of how to draw 4 dimensions, let’s 

first look at a simplified model with reduced dimensions. Consider a 

long rectangular strip and connect both ends, as shown in the following 

figure. There are two ways to connect them: in one way, a normal loop 

(called an annulus) is formed, and in the other way, a twisted loop (known 

as a Möbius strip) is created. Now, we place a hypothetical circle under 

the annulus and Möbius strip respectively, as shown in the figure, then 

it can be observed that there is a structure in which a short line segment 

is arranged above each point on the circle. In essence, lines (1D) are 

arranged over a circle (1D), resulting in an overall 1+1 = 2D figure.

Expanding upon this line of thinking with imagination, one can 

conceive a space where surfaces (2D) are arranged over another surface 

(2D). The dimension of this space becomes 2 + 2 = 4D. Furthermore, by 

relaxing the conditions a bit more and allowing for surfaces above to have 

occasional singular points, as depicted in the following figure, it becomes 

possible to handle a very rich class of 4-dimensional objects (referred to 

in technical terms as symplectic 4-dimensional manifolds).

The surfaces arranged above are referred to as fibers. By drawing 

closed curves corresponding to singular points on a fiber, a “blueprint” 

that encompasses all the information of the envisioned 4-dimensional 

manifold can be obtained. More precisely, this blueprint is described in 

terms of a group called the mapping class group associated with the 

fiber surface.

In this way, there is a complementary study where 4-dimensional 

manifolds and the mapping class groups of surfaces are interconnected. 

For example, from the constraints of 4-dimensional manifolds, properties 

of mapping class groups have been derived, and conversely, discussions 

on mapping class groups have yielded properties of 4-dimensional 

manifolds.

My expertise lies in creating such “blueprints” within the mapping 

class groups. I have discovered foundational examples, crafted reusable 

and practical blueprints, and then constructed elaborate blueprints 

based on them, which established previously unknown 4-dimensional 

manifolds.

By the way, in the classification of 4-dimensional manifolds, there 

are two perspectives: the homeomorphic stance, where two manifolds 

are considered the same when they can be transformed into each 

other “continuously,” and the diffeomorphic stance, where they are 

considered the same when they can be transformed into each other 

“smoothly.” The distinction between these two approaches is highly 

subtle and is a central topic in 4-dimensional topology. In my recent 

study with a collaborator, we have discovered many 4-dimensional 

manifolds that are homeomorphic to certain standard 4-dimensional 

manifolds but not diffeomorphic. This has provided new insights into the 

gap between homeomorphism and diffeomorphism in 4D topology.
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Algebraic topology and applied topology

Shizuo KAJI
Degree: Doctor of Sciences (Kyoto University)
Research Interests: Topology, Lie Groups, Applied Mathematics

My main research interest is in the areas of topology. In 

addition to so-called "pure maths" problems, I work on various 

problems to which the methodology of topology applies. For 

example, I am interested in topological data analysis, an 

emerging interdisciplinary field in which topologists and data 

scientists work together.

Topology is a study of shapes and their deformation. As 

is often said, in topology a mug and a doughnut are not 

distinguished; they both have a "hole" and can be "deformed" 

to one another. Topologists do not care length, area, or angle 

but do care the numbers of connected components and holes 

of a shape. One of the main goals in topology is to assign 

numbers (or more generally, some algebraic objects) to shapes 

(topological spaces) which do not change under continuous 

deformation. These topological invariants tell the nature of the 

shapes and provide a way to distinguish and classify them. My 

specialty is in exploiting symmetry of the space to compute 

topological invariants such as cohomology and homotopy 

groups. Symmetry is usually encoded in the action of a Lie 

group on the space and it often reveals a beautiful connection 

between topology and combinatorics.

Looking at things in a topological manner is in fact close to 

how we view the world. As opposed to machines, which are 

very sensitive to subtle changes, we humans perceive things 

less accurately. But this enables us to recognise things robustly 

in a noisy environment. To extract information from big data, 

details are not so important and should be discarded to have 

a perspective view of the data. By the rigorous mathematical 

language of topology, we could teach a machine how to see 

things like a human. One such example is to use homology 

in data analysis. Homology captures “holes” of a space, and 

can be computed efficiently by a computer. The technique is 

successfully employed in clinical medicine, neuroscience, 

chemoinfomatics, and so on.

 

Aside from data analysis, perhaps a more direct application 

of topology is in handling shapes. Just as we can deform a 

mug to a doughnut, we may think of interpolating shapes. The 

figure below shows my computation with penguins. It looks 

fun but at the same time it can have serious applications in 

designing and optimising shapes.

（‌�Armadillo model is courtesy of the Stanford 3D Scanning 
Repository）

（Three yellow penguins are blended to produce variations）
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Mathematics for materials structure analysis

Ryoko Oishi-TOMIYASU
Degree: PhD（Mathematical Sciences）（The University of Tokyo）
Research Interests: ‌�Applied Algebra/Number theory, Mathematical 

Crystallography, Algorithm

The research for materials structure analysis includes algorithm 

development based on harmonic analysis, signal processing, optimization 

and statistics, but I often obtain new findings by combining these with 

ideas and techniques in pure mathematics including algebra and number 

theory. The following focuses on my three projects that have resulted in 

patents.

(1) ‌�CONOGRAPH method for ab-initio indexing  
(lattice determination)

“Ab-initio” means an analysis that does not use any prior information 

on the material structure (in this case the crystal lattice). After publishing 

papers about fundamental algorithms for the analyses listed below, I 

released programs for powder diffraction[1] and electron back scattering 

diffraction[2] far with the support by a lab of KEK I belonged to, and 

Nippon Steel Corporation.

• ‌�Determination of lattice symmetry (Bravais lattice) under large 

observation errors … Application of lattice-basis reduction theory

• ‌�Peak search

• ‌�Figure of merit for finding solutions that fit experimental data well

• ‌�General rules of forbidden reflections (described using topographs)

• ‌�Method to detect ambiguity (uniqueness of solutions) … Application 

of arithmetic theory of quadratic forms

The software CONOGRAPH enhanced the success ratio in ab-

initio indexing. The obtained results can be applied to various lattice-

determination problems from diffraction data.

(2) ‌�Semidefinite programming relaxation (SDR) to 
ensure the global optimality

Local minimum is a well-known problem in nonlinear optimization. 

SDR is a method to obtain the global minima of quadratic optimization 

problems (QP) in a guaranteed situation (Fig.1). In general, phase 

retrieval to determine the amplitudes of the Fourier transform of the 

crystal structure (=structure factors) can be expressed as a QP. 

This study was originally started to investigate the uniqueness of 

solutions in ab-initio crystal structure determination, but a useful 

application in magnetic structure analysis was found in a joint work with 

experimental scientists[3].

(2) ‌�Golden angle method for general surfaces and 
dimensions

The generalization of the golden angle method used for modeling 

phyllotaxis and sunflower heads has been an open problem addressed in 

various literature. We succeeded in the generalization by attributing it to a 

problem in geometry of numbers known as “product of linear forms”.

We're now investigating how the developed method and ideas can be 

applied to modeling, pattern generation and mesh generation.

[1] https://z-code.kek.jp/zrg/

[2] J. Appl. Cryst. (2021) 54 (2), 624-635

[3] Scientific Reports (2018) 8:16228.

Fig.1: Structure analysis with SDR

Fig.2: Results　(for 3D, cross-sections colored by packing 
density around each point).
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High-Performance Computing for Graph Analysis and 
Mathematical Optimization Problem

Katsuki FUJISAWA
Degree: PhD (Science)(Tokyo Institute of Technology)
Research Interests: Mathematical Optimization Problem, Graph Analysis, High Performance Computing

The objective of our ongoing research project is to develop an advanced 

computing and optimization infrastructure for extremely large-scale graphs on 

post peta-scale supercomputers. The recent emergence of extremely 

large-scale graphs in various application fields, such as transportation, social 

networks, cyber-security, and bioinformatics, requires fast and scalable 

analysis (Figure 1). For example, a graph that represents interconnections of 

all neurons of the human brain has over 89 billion vertices and over 100 

trillion edges. To analyze these extremely large-scale graphs, we require an 

exascale supercomputer, which will not appear until the 2020’s.

 

We have entered the Graph 500 (http://www.graph500.org) and Green 

Graph 500 (http://green.graph500.org) benchmarks, which are designed to 

measure the performance of a computer system for applications that require 

irregular memory and network access patterns. Following its announcement 

in June 2010, the Graph500 list was released in November 2010. The list has 

been updated semiannually ever since. The Graph500 benchmark measures 

the performance of any supercomputer performing a breadth-first search 

(BFS) in terms of traversed edges per second (TEPS). We implemented the 

world’s first GPU-based BFS on the TSUBAME 2.0 supercomputer at the 

Tokyo Institute of Technology and came in 4th in the 4th Graph500 list in 2012. 

Rapidly increasing numbers of these large-scale graphs and their applications 

drew significant attention in recent Graph500 lists (Figure 2). In 2013, our 

project team came in 1st in both the big and small data categories in the 2nd 

Green Graph 500 benchmarks (Figure 3). The Green Graph 500 list collects 

TEPS-per-watt metrics. 

 

We also present our parallel implementation for large-scale mathematical 

optimization problems. The semidefinite programming (SDP) problem is one 

of the most predominant problems in mathematical optimization. The 

primal-dual interior-point method (PDIPM) is one of the most powerful 

algorithms for solving SDP problems, and many research groups have 

employed it for developing software packages. However, two well-known 

major bottleneck parts (the generation of the Schur complement matrix (SCM) 

and its Cholesky factorization) exist in the algorithmic framework of PDIPM. 

We have developed a new version of SDPARA, which is a parallel 

implementation on multiple CPUs and GPUs for solving extremely large-scale 

SDP problems that have over a mil l ion constraints.  SDPARA can 

automatically extract the unique characteristics from an SDP problem and 

identify the bottleneck. When the generation of SCM becomes a bottleneck, 

SDPARA can attain high scalability using a large quantity of CPU cores and 

some techniques for processor affinity and memory interleaving. SDPARA can 

also perform parallel Cholesky factorization using thousands of GPUs and 

techniques to overlap computation and communication if an SDP problem 

has over two million constraints and Cholesky factorization constitutes a 

bottleneck. We demonstrate that SDPARA is a high-performance general 

solver for SDPs in various application fields through numerical experiments 

at the TSUBAME 2.5 supercomputer, and we solved the largest SDP problem 

(which has over 2.33 million constraints), thereby creating a new world 

record. Our implementation also achieved 1.713 PFlops in double precision 

for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs 

(Figure 4).

 

Figure 1 : Graph analysis and its application fileds

Figure 2 : Size of graphs in various application fields and 
Graph500 benchmark.

Figure 3 : The 2nd Green Graph500 list and our achievements

Figure 4 : High-performance Computing for Mathematical 
Optimization Problem

The graph structure has been a subject of research and application even before 

computers were created, as it is a basic tool to intuitively describe a complex 

situation. However, since the introduction of computers, the graph structure has 

been used not only for internal expression within a computer program (data 

structure), but also as a newly devised computational system to execute a computa-

tion by rewriting the graph itself. These advances have made conducting research 

on the property changes of a graph due to an operation on the graph (graph 

rewriting theory) particularly important, in addition to the conventional research on 

static graph structures (graph theory). Moreover, a viewpoint is needed for 

constructing an algorithm based on the assumption that a computer’s hardware has 

a certain kind of basic graph rewriting operation, rather than graph rewriting 

operation being implemented on an existing computer. There have been many 

research projects recently to devise and design computers within the framework of 

natural computation, such as molecular computation and quantum computation, 

which necessitate the fundamental theory of computation using graph rewriting 

theory. 

Formula translation with a computer is executed by expressing a formula using 

a tree structure and by altering part of the tree corresponding to a pattern to calculate 

or transform the formula. Graph rewriting improves the computation efficiency by 

expressing a formula with a graph structure that shares the same terms within the 

formula (Fig. 1). In this process, a pattern matching algorithm for the graph 

structure and a graph formalization that does not change the meaning of a formula 

are important. 

Graph rewriting procedures can be computed simultaneously as long as the 

rewriting computation regions do not overlap. Computation algorithms using graph 

rewriting have been developed for computations such as the shortest path length in 

traffic networks, the reliability of networks, and impedance in an electrical circuit. 

Computations using a rewriting do not always produce the same computation result 

because computation processes branch out due to application locations and the 

application order of rewriting (Fig. 2). For this reason, it is important to theoretically 

confirm that these branches are always confluent or to construct rewriting rules to 

derive the same computation result.

Computation by transforming a graph, which is a connection of points on a 

straight line, is closely related to computation using a cellular automaton, which is 

applied to modeling physical phenomena (Fig. 3). A molecular computation, which 

uses a DNA strand as in a gene, is considered a possible device to directly achieve 

a computation mechanism using a cellular automaton. Theories of computability for 

a graph rewriting system and cellular automaton, computational universality, and 

computational equivalence can be used to evaluate the effectiveness of computer 

performance.  

Formulating a simultaneous parallel computation of graph conversion and 

demonstrating computation convergence, algebraic methods, including discrete 

mathematics, relational algebra theory using binary relations, and category theory 

are necessary. Furthermore, evaluation of computability requires automata and 

language theory, computation theory, and mathematical logic theory. Theoretical 

computer science is not only the theory of data structures and algorithms to be used 

with current computers, but also the theory of logic and computation to design and 

devise computers for future computer architecture.

Our research group is conducting research in mathematics and theoretical 

computer science to revolutionize technologies utilizing computers, which are the 

foundation of our modern information-based society, as well as to develop novel 

computation mechanisms. 

Theoretical Computer Science and its Applications

Yoshihiro MIZOGUCHI
Degree: PhD(Science)(Kyushu University)
Research Interests: Computer Science

Figure 1: Efficient computation using graph rewriting 
by sharing terms

Figure 2: Branching and converging of a computation, depending 
on different application locations of conversion rules

Figure 3: Example of fractal triangles using cellular automaton

20

九州大学マス・フォア・インダストリ研究所
Institute of Mathematics for Industry
Kyushu University



(Fig.1)

（Fig.2）

◯◯  Division of Intelligent Societal Implementation of Mathematical Computation

Mathematical analysis of the compressible rotating fluids

Mikihiro FUJII
Degree: Doctor of Philosophy (Mathematics)(Kyushu University)
Research Interests: ‌�Mathematical analysis of partial differential 

equations appeared in fluid dynamics

The motion of large-scale geophysical fluids, such as the 
atmosphere and oceans, has the characteristic property of 
the Coriolis force due to the effect of the earth's rotation. In 
fact, an anisotropic linear term representing the Coriolis force 
appears in the acceleration terms of the fluid if the Navier-
Stokes equations, which are the fundamental equations of the 
fluid, are rewritten under a rotating coordinate system (Fig.1). 
“Incompressible rotating fluid”, in which the density of the 
fluid is constant, is a physically natural situation, and has 
been the subject of much mathematical research in this case. 
In particular, since the Coriolis force has a dispersive effect on 
the linear solution, it is known that a time global solution can 
be constructed for large data provided that the rotation speed is 
sufficiently fast, even though the Coriolis force does not affect 
the energy of the fluid.

On the other hand, there seems to be little mathematical 
research on the case of “compressible rotating fluid” that takes 
into account changes for the density of the fluid. Although 
the analysis of the compressibe case has been neglected in 
geophysical fluid dynamics because the incompressible case is 
sufficient, compressible rotating flows have important physical 
applications such as the rotating shallow water equation, and 
their mathematical analysis is an important issue. My recent 
research has revealed that compressible rotating fluid have 
different characteristics from incompressible rotational flows 
and exhibit characteristic behaviors. The main difference is 
that the Coriolis force affects the energy of the fluid due to the 
interaction between the velocity and the gradient of density. 
In particular, since the Coriolis force is a zero-order linear 
term, the time-decay rate of the linear solution get worse 

than the non-rotational case, so there are many difficulties 
in constructing the time global solvability of the nonlinear 
solution, but we have solved these difficulties by applying 
some new technical innovations.

In the future work, I will focus on the analysis of the rotating 
shallow water equation, which is important for applications 
such as the analysis of Jupiter's Great Red Spot (Fig.2)

While the compressible rotating Navier-Stokes equation 
described above is a three-dimensional fluid, the rotating 
shallow water equation is a two-dimensional flow, which makes 
it more difficult in the nonlinear estimates of the low frequency 
parts. In addition, the singular limit of the fast rotation is 
expected to behave differently from the three-dimensional case, 
and there are many interesting problems to be solved.
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Sparse Multivariate Analysis via L1 Regularization

Kei HIROSE
Degree: PhD（Functional Mathematics）（Kyushu University） 
Research Interests: Sparse estimation, L1 regularization, Multivariate Analysis

Recently, the analysis of big data has becoming more and more 

important.  Although the data volumes are increasing, most of 

the data values can be meaningless.  Therefore, it is important 

to extract meaningful information from the big data.  The sparse 

estimation, such as L1 regularization, is one of the most efficient 

methods to achieve this.  The sparse estimation makes most of the 

parameters exactly zeroes. The meaningful variables correspond 

to the nonzero parameters.  A remarkable feature of the L1 

regularization is that even if the number of parameters is several 

millions, it takes only several minutes to compute the solution.  

In addition, the L1 regularization has many good statistical 

properties.  For these reasons, many statisticians are interested in 

the L1 regularization. 

I am interested in multivariate analysis via L1 regularization.  

Multivariate analysis investigates a relationship among variables 

by some procedure such as aggregating several variables.  The 

multivariate analysis has been widely used for several tens of 

years.  I am interested in factor analysis, which is one of the most 

popular multivariate analyses.  Conventionally, the factor analysis 

has been used in psychology and social sciences, but recently it 

has been used in life science and machine learning.  The factor 

analysis has been becoming more and more important in many 

research areas. In the following, I introduce two recent results 

related to factor analysis. 

(1) Sparse estimation in factor analysis

An interesting fact of the factor analysis is that the factor 

loadings have a rotational indeterminacy, that is, the loading 

matrix is not unique.  In factor analysis, we estimate parameters 

by using rotation technique.  This kind of technique may not be 

used in any other statistical models.  The rotation technique has 

been widely used in factor analysis for more than 50 years.

I applied the L1 regularization to factor analysis model and 

compared the L1 regularization with the rotation techniques.

Then, I found a very interesting fact: the regularization is a 

generalization of the rotation technique, and the regularization 

can achieve sparser solutions than the rotation technique.  

Furthermore, I developed an efficient algorithm for computing 

the entire solutions, and made an R package fanc(https://cran.

r-project.org/web/packages/fanc/index.html).  There exists papers 

that use the fanc package.

(2) ‌�Maximum likelihood estimation in factor analysis for 

a large number of missing values

In some cases, the data values can be missing.  For example, 

when a questionnaire asks a research participant about a feeling 

towards another person, many questions are prepared in order to 

investigate their impressions, using a wide variety of personal-

assessment measures. However, answering all of the questions 

may cause participants fatigue and inattention.  In order to gather 

the high-quality data, the participants may be asked to select just 

a few of questions; this leads to a large number of missing values. 

When the data values are missing, we can use a standard EM 

algorithm to estimate parameters.  However, when a majority 

of data values are missing, the ordinary EM algorithm is 

extremely slow.  In order to handle this problem, I modified 

the EM algorithm.  I found that the modified EM algorithm is 

several hundreds or thousands times faster than the ordinary EM 

algorithm.

Only blue parts are observed

We develop a 
fast algorithm 

even when there 
are a number of 
missing values
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Figure 1: Traffic crash rate clustering of 
different regions in Victoria, Australia.

Figure 3: Mixture-based false discovery
rate control of p-values for a mouse brain

morphometry experiment.

Figure 2: Quantization of mandrill
photograph using different mixture models.

◯◯  Division of Industrial and Mathematical Statistics

Finite mixture models for statistical inference

Hien Duy NGUYEN
Degree: PhD （University of Queensland, Australia）
Research Interests: ‌�‌�Mathematical Statistics, Statistical Computing, Statistical Learning, Bayesian 

Statistics, Signal Processing, Stochastic Programming, Optimization Theory

Many real-world datasets are heterogeneous and multipopulational 
phenomena. In such contexts, it is insufficient to capture the overall 
variation among the data using a single statistical model. Therefore, 
a cohesive approach to modeling the multiple subpopulations within 
the superpopulation is necessary. In such scenarios, a useful approach 
involves modeling each subpopulation and their contributions to the 
superpopulation through a weighted averaging construction, known as a 
finite mixture model. These models are highly flexible and interpretable, 
enabling them to capture and provide inference for known heterogeneities 
in the data while also identifying new heterogeneous phenomena that 
were previously concealed.

The class of finite mixture models is extensive, and choosing 
between different mixture models can be challenging. In my work, I have 
studied model selection procedures required to make mathematically 
principled choices among competing finite mixture models. I have made 
progress in two key directions to address this problem. Firstly, I employ 
sequences of hypothesis tests to determine the number of components or 
subpopulations required in each mixture model. This approach relies on 
a new hypothesis testing method called universal inference, which offers 
a straightforward and assumption-light mechanism for deciding whether 
a model accurately represents the observed data. Using these universal 
inference tests, I have developed a way to construct confidence intervals 
for the number of underlying subpopulations in the data, providing 
insight into the complexity of the overall superpopulation.

Secondly, by leveraging modern stochastic programming techniques 
for optimizing random objects, I have developed new penalization 
methods for selecting between different finite mixture models within 
broader model selection and decision problems. My novel information 
criterion, known as PanIC, offers a more assumption-light alternative 
to existing methods like the Bayesian information criterion or Akaike 
information criterion. PanIC provides a single-number summary for 
choosing between competing models, guaranteed to asymptotically select 
the correct model as the dataset size increases.

Beyond their utility for modeling heterogeneous processes, finite 
mixtures and their regression variants, the mixture of experts (MoEs) 
also serve as excellent functional approximations of probability density 
functions (PDFs) and conditional PDFs that characterize statistical 
relationships. My colleagues and I have contributed to understanding 
the approximation theoretic properties of mixture models and MoEs 
for various classes of PDFs. We have provided sufficient conditions for 
ensuring that PDFs, conditional PDFs, or mean functions of conditional 
PDFs can be effectively approximated using a sufficiently large number 
of components in a finite mixture model construction. These results, 
often referred to as universal approximation theorems, are valuable for 
determining whether a class of functions serves as an adequate basis for 
modeling an underlying mathematical phenomenon.

My research in mixture model computation, estimation, and inference 
has found widespread application in real-world scenarios. For example, 
I have collaborated with neuroscientists and cell biologists to analyze 
heterogeneous biological phenomena, worked with quantum physicists 
to characterize switching behaviors of quantum circuitry, assisted 
economists in characterizing subpopulations of experimental outcomes, 
partnered with civil engineers to study regional differences in traffic 
behavior, supported fisheries scientists in characterizing growth stages of 
aquatic species, and collaborated with image scientists to segment and 
characterize imaging data, among other practical applications.
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Figure 1: Two point clouds

Figure 2: The union of discs with different radii

Figure 3: Relation among persistent homology, sheaf theory, 
and symplectic geometry

Topological Data Analysis and Sheaf Theory

Yuichi IKE
Degree: PhD (Mathematical Science) (The University of Tokyo)
Research Interests: ‌�Topological Data Analysis, Microlocal Sheaf Theory

I am working on topological data analysis and sheaf 
theory. These may seem quite different, as applied and pure 
mathematics, respectively, but their relationship has been 
actively studied recently.

(1) Topological Data Analysis (Persistent Homology)

When we look at two point clouds in Figure 1, we humans 
can distinguish them by the presence of a hole. Topological 
data analysis is a method for extracting such "rough shapes" 
of data and making computers handle such information. In 
mathematics, the "rough shape" of a space is studied in the 
field of topology, and the number of holes can be extracted by 
a tool called homology. Upon this framework, the simplest idea 
to study the shape of a point cloud is to consider the union of 
discs of a certain radius r centered at each point and look at 
their homology (Figure 2).

 

However, with this method, depending on the radius of the 
discs, we may see only small holes that come from noises 
(Figure 2(a)) or no holes at all (Figure 2(c)). Thus, the extracted 
shape is highly dependent on the choice of the radius r, and it 
is generally difficult to determine an appropriate radius r from a 
given dataset. Here, we give up on setting a single radius r and 
instead consider how the "shape" of the point cloud, especially 
the homology, changes when we move the radius r. By looking 

at the information on how long the holes persist with respect 
to r, we can distinguish between large holes and noises. This 
method is called persistent homology.

The features extracted from data in the above way with 
persistent homology, which represent the "rough shapes" of 
the data, can be used as the input for machine learning and 
sometimes are useful for various tasks. I am interested in 
applying persistent homology to neural networks to examine 
the state of the networks and in using persistent homology to 
train the networks.

(2) Sheaf Theory and Persistent Homology

In addition to the above research, I am also studying the 
connection between sheaf theory and persistent homology. 
Sheaves are mathematical objects that are useful in algebraic 
geometry and topology. In recent years, there have been 
appeared some attempts to understand persistent homology 
from the viewpoint of sheaves.

I am interested in the sheaf-theoretic interpretation of 
the distance for persistent homology and in using this 
understanding for topological data analysis or other areas in 
mathematics. Recently, I investigated the relationship between 
the distance for sheaves and the distance between zigzag 
persistence, as well as the relationship to energy in symplectic 
geometry.

I hope my research in the intersection of applied and pure 
mathematics will cause an exciting exchange across these 
areas.
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Figure 1: An example of observed data and its components: 
mathematical model observation noise, and model discrepancy.

◯◯  Division of Industrial and Mathematical Statistics

Bridge between measurements and mathematical
modeling via Bayesian inference

Satoru TOKUDA
Degree: PhD (Science) (the University of Tokyo)
Research Interests: Bayesian inference, modeling, statistical mechanics

As highlighted by Kepler’s laws of planetary motion since the 
17th century, mathematical modeling that describes observed 
data using simple formulas has deepened our understanding of 
various physical phenomena. However, observed data are often 
beyond our understanding in modern science, which makes 
full use of advanced measurement technologies to capture 
more complex phenomena. My grand challenge is establishing 
principles of modeling rooted in observed data to provide 
guidelines for understanding all phenomena without ambiguity. 
I am exploring the mathematics of a statistical method called 
Bayesian inference and promoting empirical research through 
collaboration with researchers from a wide range of natural 
sciences focused on condensed matter physics.Through my 
research to date, I have focused on the following three issues 
that can make data difficult to understand.

(1) Model uncertainty
Models represent the essence of a phenomenon, but the 

essence is not always obvious. In many cases, the decision 
relies on the researcher's insight, and they sometimes differ in 
opinion. For example, the vibration phenomenon shown by the 
observed data in Figure 1 can be modeled by a function that 
represents simple harmonic motion if friction can be ignored 

or damped vibration if not, while which is more appropriate 
depends on the situation.

We are conducting empirical research to resolve such 
uncertainties using Bayesian inference, which quantifies the 
validity of each model against observed data as a probability. 
We have shown that our approach is useful for selecting 
models in condensed matter physics, such as velocity 
distribution functions and band structures.

(2) Observation noise
Measurements involve the observation noise. The parameter 

values estimated from more noisy data are more uncertain. 
Focusing on the fact that such an error propagation also 
affects model evaluation, we have developed a methodology 
to estimate the noise level and the valid model jointly. 
We also demonstrated its usefulness through empirical 
research. Estimating the valid model and its parameter 
values depends on the noise level (data quality) and data 
amount. By proceeding with theoretical analysis based on the 
correspondence between Bayesian inference and statistical 
mechanics, we have elucidated the scaling law for Bayesian 
inference depending on the quantity and quality of the 
observed data.

(3) Model discrepancy
There is always a gap between ideal and reality, that 

is, between model and observed data. First, a model is 
an approximate representation of the truth. Additionally, 
observation noise and systematic errors occur between the 
truth and the data. Collectively, I refer to everything other 
than random noise as the model discrepancy. Attributing the 
origin of model discrepancy is difficult, and it is even more 
challenging to describe them in concrete formulas. Besides, 
the traditional asymptotic theory only justifies Bayesian 
inference by assuming an ideal situation without model 
discrepancy. Through empirical research, we are developing 
a methodology to deal with model discrepancy systematically 
and trying to construct a novel asymptotic theory of Bayesian 
inference to support its validity.
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On robust model selection criteria 
based on statistical divergence measures

Sumito KURATA
Degree: Doctor of Science (Osaka University)
Research Interests: ‌�Statistical Science, Model Selection, Robustness

In real data, there frequently exist some outliers (observations 
that are markedly different in value from others) derived from, 
for example, unusual abilities, catastrophe-level phenomena, 
or human errors. It is difficult to provide a clear definition or 
threshold of such outliers, moreover, it is effectively impossible 
to prevent their occurrence. Thus, robust methods that reduce 
the influence of outliers have a large significance. My research 
focuses on robust analytical methods, especially in the model 
selection problems. I focus on applying  statistical divergence, 
a measure of farness between probability distributions, to 
examine the closeness of the underlying "true distribution" and 
models. When selecting a model, the robustness is a desirable 
property, but most model selection criteria based on the 
Kullback-Leibler divergence tend to have reduced performance 
when the data are contaminated by outliers. I have derived and 
investigated criteria that generalize conventional information 
criteria such as AIC and BIC, based on the BHHJ divergence, a 
divergence family that has robustness in parametric estimation. 

Since outliers are distant from other observations, they 
often have a bad influence on values of estimates and model 
selection criteria. To discuss the robustness of a criterion, 
we need to evaluate the perturbation of it. In this field, we 
evaluate the sensitivity of an estimator against contamination, 
by exploring the difference between populations with and 
without outlier-generating distribution. We assume that most 
of observations are drawn from a (true) population distribution, 
and we can interpret that outliers are drawn from a probability 
distribution differing from the true distribution (Figure 1). I 
have investigated the robustness of criteria based on many 
divergence measures by evaluating the difference of its values 
between contaminated and non-contaminated data-generating 
distributions. Consequently, I verified that criteria derived 
from some class of divergence measures, such as the BHHJ 
divergence, have robustness in model selection (Figure 2). 
Since models can be created for all phenomena, it is significant 
to investigate “good” model selection criteria for all fields. 
By examining various properties that contribute to selection 
including robustness, I aim to conduct a research that can 
support a wide range of fields. 

(Caption of Figure 1) We consider two distributions: 
the “true” population distribution (black curve) and another one 
that generates outliers (red), and we suppose that observations 
are drawn from the mixture distribution composed of the two 
distributions. If a result of analysis varies greatly depending on 
the presence of absence of outliers, the corresponding method 
is regarded as to be sensitive against contamination. 

(Caption of Figure 2) Accuracy rates of model 
selection criteria based on some divergence measures 
(Divergences A-D) in a numerical simulation of selection 
problem of the generalized linear model, for different sample 
sizes and contamination rates. Criteria based on Divergence A 
and B are sensitive against outliers. In contrast, we can see that 
Divergence D has strong robustness against contamination of 
data-generating distribution.
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Small Area Statistical Inference and its Application

Masayo HIROSE
Degree： PhD（Engineering） （Osaka University）
Research Interests： Statistical Science, Small area estimation, Mixed effect model

Recently, there is a growing importance of Evidence-Based 

Policy Making (EBPM). For estimating characteristic values of 

each small administrative division, the statistical model-based 

approach can get more efficiency of estimating method than 

the design-based approach. The concept of the model-based 

approach is "borrow strength from other areas" (Ghosh and 

Rao, 1994). That implies the approach can provide high-quality 

evidence for new policymaking or service planning. And also, 

it could contribute to solving some social problems (see Figure 

1). Such statistical methodology has been accomplished the 

development especially in the research field of official statistics. 

Hereafter, we shall briefly introduce some of my researches about 

model-based approaches.

(1) Constructing Small Area Estimation Method

In estimating characteristic values of each small administrative 

division, model-based approach conduces the empirical best 

linear unbiased predictor under the assumed model, which 

minimizes the mean squared (prediction) error among any linear 

unbiased predictors in asymptotic sense. However, there are 

some practical issues of the existing empirical predictor still yet. 

Therefore, we have constructed a new statistical method which 

not only avoids a practical problem but also maintain efficiency 

in asymptotic sense. Moreover, we have addressed several issues 

for the development of confidence interval method for small area 

inference.

(2) Application to Survey Data

We are also interested in the application of our statistical 

method to real survey data to make high-quality evidence for 

EBPM. We already applied our model-based approach to Japanese 

consciousness survey data for understanding a consciousness 

trend of each small administrative division, like Cho-Chome. 

Moreover, we compared the approach with the conventional 

estimation method used in the Japanese public administrative 

research area. For more details, please see Hirose et al. (2018, 

JJSS/Japanese version)

Fig.1　One example of statistical contribution for EBPM
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Secure Computation

Post-Quantum Cryptography 

Homomorphic Encryption 

Security Analysis

Combinatorial Codes for 
Digital Rights Management

Psudorandom Numbers 

Card-Based Cryptography
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Finite Fields

Integral Lattices
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Orthogonal Polynomials

Measure Theory and Probability Theory 
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…
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Intertwining Mathematics and Cryptography

Koji NUIDA
Degree: Ph.D. (Mathematical Sciences) (The University of Tokyo) 
Research Interests: Mathematical Cryptography, Secure Multiparty Computation, Combinatorial Group Theory

Information technology, such as secure internet shopping, 
is nowadays a ubiquitous tool for our convenient daily life, 
and cryptography is one of its main underlying indispensable 
technology.  And also, mathematics is playing a fundamental 
role in cryptography.  The RSA cryptosystem invented at the 
end of 1970s is based on properties from elementary number 
theory.  The so-called elliptic curve cryptography invented 
around the middle of 1980s is (as the name suggests) based 
on properties of elliptic curves.  Moreover, post-quantum 
cryptography, a kind of new-generation cryptosystems for the 
forthcoming era with development of quantum computers, is 
further based on several mathematics such as linear algebra, 
Gröbner basis, high-dimensional integral lattices, etc.

Mathematicians can enjoy cryptographic research by “making 
use of various, state-of-the-art mathematics” of course, but 
further by “achieving advanced work by cleverly utilizing 
even elementary tools” and by “exploring good definitions for 
several cryptographic notions in both intuitively natural and 
theoretically convenient ways”.

My main interest  in cryptography is with “secure 
computation”.  Secure (multiparty) computation is a kind of 
“magical” technology that enables necessary information 
processing on many users’ input data while keeping their 
individual input data secret to each other.  Among standard 
mathematical and cryptographic tools for secure computation, 
“fully homomorphic encryption” (FHE) is a special kind of 
encryption by which the original data inside given ciphertexts 
can be processed without decrypting the ciphertexts.  In our 
proposed FHE scheme (presented at international conference 
EUROCRYPT 2015), a major ingredient was the following 
algebraic property: any function over a finite field admits 
a polynomial expression.  This property itself is in fact an 
elementary fact, and it is a typical episode showing that even 
elementary mathematics can yield a significant cryptographic 
work when properly used.

There is a certain complicated operation unavoidable in 
the existing constructions of FHE, which has been a major 
bottleneck towards efficiency improvements.  One of my recent 
research challenges is to remove this operation by using 
group-theoretic approaches not used in the previous research.  
I am expecting that combinatorial group theory, which is my 
main expertise in mathematics, might also be applicable to this 
subject, which gives me further motivations for the research.

As other recent result on secure computation with 
“mathematical” flavor, I found a “pathological example” 
showing that an “intuitively reasonable” known construction 
methodology that had widely been regarded secure is in fact 
not always secure(presented at international conference PKC 
2021).

Cryptography (as well as other research areas) is really 
related to various mathematics.  I myself have also encountered 
several surprising situations where some mathematical topic 
has an unexpected application to cryptography.  I would also 
like to make such connections between mathematics and 
cryptography more popular.
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Security analysis on Post-Quantum Cryptography

Yasuhiko IKEMATSU
Degree: PhD (Mathematical Science)（Kyushu University）
Research Interests: ‌�Post-Quantum Cryptography, Multivariate Public Key Cryptosystem

RSA and Elliptic Curve Cryptosystems (ECC), which 

support modern information security, are constructed based 

on the hardness of integer factorization problem and discrete 

logarithm problem. However, if a large-scale quantum 

computer is built, then these problems can be solved in 

polynomial time by Shor’s algorithm and its variant, it means 

RSA and ECC will be vulnerable any longer.

Post-Quantum Cryptosystem (PQC), which resists against 

quantum computer attacks, is being researched all over the 

world because of the above-mentioned reason. PQC requires 

research to deal with various mathematical problems different 

from integer factorization and discrete logarithm problems. 

It is necessary to use various mathematical theories beyond 

elementary number theory.

My research interest is on PQC, especially,  Multivariate 

Public Key Cryptosystem (MPKC), constructed based on the 

(MQ) problem of finding a solution to Multivariate Quadratic 

equations over a finite field. Since it is proven to be NP-

complete, it is expected that MPKC is resistant to quantum 

computer.

The virtues of MPKC are high-speed performance and its 

small signature size among other candidates. Therefore, MPKC 

is suitable for smart cards and IoT devices. There is also an 

interesting trial of creating crypto currency from an MPKC 

signature scheme, Rainbow, in recent. 

 I mainly study security analysis on MPKC. Mathematical 

arguments with respect to Gröbner basis or algebraic geometry 

are necessary. However, the complexity analysis against 

Gröbner basis algorithm, especially, F4/F5 algorithm is still 

not theoretically clear. Its complexity analysis depends on 

experimental results. For EFC MPKC encryption scheme, I am 

curre-ntly working on, I experimentally found that its security 

is weaker against hybrid attack than original estimation (Fig.1). 

However, its theoretical explanation is not yet established and 

remained as an open problem.

I also study other PQC, as lattice and isogeny cryptosystems. 

I am interest-ed in constructing a new cryptosystem by 

combining them. 
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“Weird” = “Honest”
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Degree: Doctor of Science (Kyoto University) 
Research Interests: ‌�Dynamical Systems, Numerical Analysis (Rigorous 

Numerics), Singular Perturbation Theory, Combustion, etc.

Many natural phenomena, such as the motion of objects, the flow of 
air, or the temperature of objects or spaces, are described by solutions to 
differential equations. Typically, the solutions gradually approach stationary 
states (described by constants, time-periodic oscillating functions, etc.) or 
diverge exponentially, but occasionally there are “singular” behaviors that 
do not fit into this framework. For example, for u’ = u2 (prime is the time 
derivative), if we take the values of u at time t=0 positive, the solution goes 
to infinity at t→T for some finite value of T, and the equation becomes 
“unsolvable” thereafter.

This is a “weird” behavior that cannot occur in typical physical 
phenomena and is called a “finite-time blow-up” of the solution. Finite-
time blow-ups are often identified as mathematical objects of peculiar 
phenomena, such as thermal runaway associated with heat source ignition. 
On the other hand, like the above equation, the system itself is often 
nonsingular, and for a given system, questions “does blow-up occur?” 
and if so, “when, where, and how?” are nontrivial to answer, and control 
of such behavior requires a deep understanding of the phenomenon itself. 
Meanwhile, we are dealing directly with “infinity” for blow-up, which is 
difficult to capture mathematically and numerically, and this phenomenon 
itself has been the subject of mathematical research for many years.

Figure 1: Does the Solution Blow-Up? Or Not?

Solutions to a certain two-dimensional ordinary differential equation. We solved an 
initial value problem with slightly different initial values until a certain time. Then (i): both 
(u,v) converge to zero as we move forward in time, while (ii): both (u,v) diverge at a finite 
time, i.e., they “blow up in finite time”. The right-hand side (vector field) of the equation 
is smooth. Can you imagine this picture from these observations?

One of my research themes is to realize a unified description of “weird 
behavior” such as blow-ups in a standard way. One concrete idea is to 
“embed the entire space in a hemisphere or cut paraboloid and represent 
infinity as its boundary”. This is analogous to the Riemann sphere in 
Complex Function Theory and compactification in Topology, but here we 
also pay attention to the scalability of the system, construct an embedding 
of the entire space in an appropriate (bounded) surface, and express 
infinity as the boundary: the “horizon”. This idea originates from the 
way singularities and infinity points are viewed in algebraic geometry. 
Combining it with dynamical systems theory, which comprehensively 
describes the possible (qualitative) behavior of all solutions, we obtain 
the correspondence “Divergent Solutions = Those approaching to sets on 
the horizon”. Furthermore, the way the solution converges to the horizon 
makes it possible to accurately describe the blow-up behavior. This is 
achieved by combining geometric aspects of dynamical systems, algebraic 
geometry, and asymptotic analysis.

Figure 2: Divergence to Infinity = Convergence to the Horizon.

(i): Embedding a plane into a parabolic plane. Draw a line segment through the focal 
point and a point M on the plane, and map M to the intersection of the parabola P(M) 
(and the projection of M onto the plane). When M goes to infinity, P(M) approaches 
the boundary of the parabola: the horizon, keeping its direction. (ii): the approach of 
the solution to the horizon. Divergent solutions, especially blow-up solutions, are then 
realized by sets describing the basin of attraction: the “local stable manifolds”.

One advantage of this approach is a big compatibility with other theories 
and techniques, such as numerical analysis; (1): the behavior of the 
solution is covered, including the presence or absence of blow-ups; (2): 
blow-up solutions broken by perturbations of initial values are computed 
numerically with mathematical rigor; and (3): even “complex” blow-ups 
can be accurately captured through the horizon. These can be achieved by 
combining rigorous numerics, singularity theory, etc.

Figure 3: Visualize Blow-Up Solutions

(i): All solutions of the system shown above when embedded in a parabolic plane. 
Solutions through the red region are bounded at all times and converge to the origin, or 
bounded states. Solutions through other regions correspond to blow-up solutions. Blow-
up is described by convergence to any of the four points on the horizon. (ii): Blow-up 
solutions “broken by perturbations of initial values” in another system. By combining 
dynamical system theory and rigorous numerics, not only the way it behaves, but also the 
blow-up time at each point can be rigorously evaluated.

Not only blow-ups, but also various “finite-time singularities” are 
difficult to characterize. However, by changing the way of looking at it as 
described above, it is gradually becoming clear that it is actually just a 
straightforward behavior seen from a different viewpoint. This way has 
been applied to multiscale dynamics in the past, and more recently to 
tipping points, which can also be “interpreted in a straightforward manner” 
with knowledge of dynamical systems theory and geometry. The idea of 
describing these in a comprehensive manner will lead to the view that 
“weird” = “honest” in many respects.
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I am interested in understanding phenomena in nature and industry, for example, 

water flow in rivers and heat transfer in furnaces, by numerical simulations. The 

numerical simulation consists of three parts: mathematical modeling, discretization, 

and numerical computation; see Fig.1. First, in the mathematical modeling part, the 

phenomena are described by differential equations based on physical laws. Next, in 

the discretization part, the differential equations are approximated by linear systems, 

which can be handled with computers. Finally, in the numerical computation part, 

methods to solve the linear systems are implemented in computers to show the 

phenomena. I focus my attention to proposed numerical simulation methods and to 

justify the accuracy and efficiency of the methods mathematically. Moreover, I 

perform numerical computations of various practical problems by using the 

proposed methods, then I apply them for understanding the phenomena in nature 

and the design of industrial products.

One of my research projects is numerical simulation of the heat transfer phenom-

enon of glass raw material in melting glass furnaces; see Fig.2. Glass raw material, 

which is high temperature (about 1,500℃), is considered as an incompressible 

viscous fluid, so the phenomenon in the furnaces can be described by thermal 

convection equations with strongly temperature-dependent coefficients. By 

introducing the backward Euler method in time and the mixed consistent finite 

element in space, we have proposed numerical simulation methods for thermal 

convection equations, and have established optimal error estimates of them. 

Moreover, we have also proposed a numerical simulation methos for heat balance 

in the whole melting glass furnace, which is based on the consistent flux method. 

Due to the consistent flux method, we have established optimal error estimates, 

which imply mathematically that the computation of the boundary flux by the 

domain integral is more accurate than one by the boundary integral. Therefore 

numerical simulations based on the mathematically justified methods can be 

applied to determine the optimal design of melting glass furnaces, which maintains 

the quality of products and reduces the energy consumption.

Another research project is numerical simulations of magnetic field problems, 

for example, eddy current problems in transformers; see Fig.3. To obtain accurate 

numerical simulation results in cases of complicated domains and phenomena, we 

need to solve linear systems effectively in the numerical computation part , whose 

number of degrees of freedom is about 107 (or more). By introducing a mixed 

formulation of magnetostatic problems with corrected electric currents, we have 

proposed an iterative domain decomposition method for magnetostatic problems 

based on the mixed formulation, and then we have simplified the systems by using 

properties of the Lagrange multiplier. The product of matrices and vectors appearing 

in the procedure comes down to a magnetostatic problem in each subdomain, 

therefore the method is applicable to parallel computing, where the large systems 

can be solved effectively. The convergence properties of an iterative procedure are 

improved, and the cost of computations can be reduced. Therefore, we have 

computed larger numerical models, which has not been solved before. By applying 

such an effective approximation method, we can perform numerical simulations to 

understanding of the phenomena of magnetic fields and to optimal design of 

transformers.

Finally, we extend our interests to the understanding of other phenomena, for 

example, viscoelastic flows, moving boundary flows, and interference and scattering 

of light, and so on. Then, numerical simulations could be performed by mathemati-

cally justified methods.

Understanding Phenomena by Numerical Simulations

Daisuke TAGAMI
Degree: PhD（Mathematical Science）（Kyushu University）
Research Interests: Numerical Analysis, Computational Mechanics

Fig.1: Schematic view of numerical simulations. Italicized terms 
represent examples in case of incompressible viscous flows.

Fig.2: Temperature distributions of glass raw material in a melting 
glass furnace obtained by a numerical simulation of thermal 
convection problems ((a): with the electrodes; (b): without the 
electrodes). Joule heat generated by electric current between the 
electrodes causes different convection patterns.

Fig.3: Eddy current flows in a transformer by numerical simula-
tions of time-harmonic eddy current problems. Figures are from  
different lines of sight. Eddy current flows are along the 
magnetic shields (the rectangles surrounded by green or light 
blue lines) inside wall of the transformer.

(a) There is a child with a lower score at my first choice.

(b) Siblings should have been admitted together to their third choice.

Figure 1: Patterns of dissatisfaction among applicants

Figure 2: Processing a triangular transport matching request

◯◯  Division of Strategic Liaison

Social Mathematics and Dynamic Optimization 

Akifumi KIRA
Degree: Doctor of Functional Mathematics (Kyushu University)
Research Interests: ‌�Social Mathematics, Dynamic Optimization, 

Stochastic Optimization, Markov Decision Process

My main research field is mathematical optimization. I am particularly 

interested in problems that require repeated decision making (multi-

stage decision processes) and problems involving uncertainty (stochastic 

models). I have been researching the theory and application of dynamic 

programming, which is a method to efficiently solve these kinds of 

problems. I am also engaged in research on social mathematics, which 

uses mathematical techniques to design fair and highly convincing 

systems and measures to address social issues. My co-researchers and I 

have developed technology in collaboration with real world sites of social 

issues. Two of these case studies are presented below.

The admissions process of matching children to daycare centers 

takes into consideration not only applicant priority criteria (i.e., each 

applicant’s childcare needs are calculated as a score.), but also requests  

for siblings to be admitted to the same daycare center. This is called 

“Matching with Couples” and is known to be a difficult problem even 

academically. Figure 1 shows two patterns of applicant dissatisfaction. An 

excellent seat assignment that does not cause this type of dissatisfaction 

is called “stable matching.” However even its existence is not guaranteed, 

and satisfactory adjustments are not easy to achieve.

As a result, each local government required a great deal of manpower 

and time for trial and error, and in some local governments, problems 

arose such as an increase in the number of cases where siblings were 

placed in separate daycare centers. Therefore, Division of Fujitsu Social 

Mathematics of IMI, together with Fujitsu Laboratories, addressed this 

issue and proposed a new method (using the theory of extensive form 

games) to achieve fair seat assignment. The proposed method has been 

commercialized by Fujitsu Limited and is already in use by 35 local 

governments as of June 2020.

The logistics industry in Japan is facing a severe shortage of labor, 

and there is an increasing need for joint transportation allowing large 

amounts of cargo to be transported using fewer trucks. Therefore, we 

developed a joint transportation matching technology that instantly lists 

and proposes combinations of highly efficient combined transportation 

using a database with many registered transport lanes. For example, 

round-trip and triangular transportation are effective in reducing the 

empty backhauls (Figure 2). The lower the empty running rate is, the 

more efficient the process is. However, browsing through enormous 

combinations of two transport lanes is time consuming. Therefore, our 

newly developed technology makes good use of the hidden inequalities, 

such as the “distance axiom,” to narrow down the search range without 

sacrificing accuracy. This technology has been installed as a core engine 

in the joint transportation matching system “TranOpt” provided by 

Japan Pallet Rental Corporation. As of October 2023, approximately 180 

companies are using this system.
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I am interested in understanding phenomena in nature and industry, for example, 

water flow in rivers and heat transfer in furnaces, by numerical simulations. The 

numerical simulation consists of three parts: mathematical modeling, discretization, 

and numerical computation; see Fig.1. First, in the mathematical modeling part, the 

phenomena are described by differential equations based on physical laws. Next, in 

the discretization part, the differential equations are approximated by linear systems, 

which can be handled with computers. Finally, in the numerical computation part, 

methods to solve the linear systems are implemented in computers to show the 

phenomena. I focus my attention to proposed numerical simulation methods and to 

justify the accuracy and efficiency of the methods mathematically. Moreover, I 

perform numerical computations of various practical problems by using the 

proposed methods, then I apply them for understanding the phenomena in nature 

and the design of industrial products.

One of my research projects is numerical simulation of the heat transfer phenom-

enon of glass raw material in melting glass furnaces; see Fig.2. Glass raw material, 

which is high temperature (about 1,500℃), is considered as an incompressible 

viscous fluid, so the phenomenon in the furnaces can be described by thermal 

convection equations with strongly temperature-dependent coefficients. By 

introducing the backward Euler method in time and the mixed consistent finite 

element in space, we have proposed numerical simulation methods for thermal 

convection equations, and have established optimal error estimates of them. 

Moreover, we have also proposed a numerical simulation methos for heat balance 

in the whole melting glass furnace, which is based on the consistent flux method. 

Due to the consistent flux method, we have established optimal error estimates, 

which imply mathematically that the computation of the boundary flux by the 

domain integral is more accurate than one by the boundary integral. Therefore 

numerical simulations based on the mathematically justified methods can be 

applied to determine the optimal design of melting glass furnaces, which maintains 

the quality of products and reduces the energy consumption.

Another research project is numerical simulations of magnetic field problems, 

for example, eddy current problems in transformers; see Fig.3. To obtain accurate 

numerical simulation results in cases of complicated domains and phenomena, we 

need to solve linear systems effectively in the numerical computation part , whose 

number of degrees of freedom is about 107 (or more). By introducing a mixed 

formulation of magnetostatic problems with corrected electric currents, we have 

proposed an iterative domain decomposition method for magnetostatic problems 

based on the mixed formulation, and then we have simplified the systems by using 

properties of the Lagrange multiplier. The product of matrices and vectors appearing 

in the procedure comes down to a magnetostatic problem in each subdomain, 

therefore the method is applicable to parallel computing, where the large systems 

can be solved effectively. The convergence properties of an iterative procedure are 

improved, and the cost of computations can be reduced. Therefore, we have 

computed larger numerical models, which has not been solved before. By applying 

such an effective approximation method, we can perform numerical simulations to 

understanding of the phenomena of magnetic fields and to optimal design of 

transformers.

Finally, we extend our interests to the understanding of other phenomena, for 

example, viscoelastic flows, moving boundary flows, and interference and scattering 

of light, and so on. Then, numerical simulations could be performed by mathemati-

cally justified methods.

Understanding Phenomena by Numerical Simulations

Daisuke TAGAMI
Degree: PhD（Mathematical Science）（Kyushu University）
Research Interests: Numerical Analysis, Computational Mechanics

Fig.1: Schematic view of numerical simulations. Italicized terms 
represent examples in case of incompressible viscous flows.

Fig.2: Temperature distributions of glass raw material in a melting 
glass furnace obtained by a numerical simulation of thermal 
convection problems ((a): with the electrodes; (b): without the 
electrodes). Joule heat generated by electric current between the 
electrodes causes different convection patterns.

Fig.3: Eddy current flows in a transformer by numerical simula-
tions of time-harmonic eddy current problems. Figures are from  
different lines of sight. Eddy current flows are along the 
magnetic shields (the rectangles surrounded by green or light 
blue lines) inside wall of the transformer.
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Modeling of Solid-to-Solid Phase-Transformations in Shape-Memory Alloys
Homogenization and Gamma-Convergence Problems for Nematic Elastomers

Pierluigi CESANA
Degree: PhD (Applied Mathematics)(SISSA International School for Advanced Studies, Italy) 
Research Interests: Partial Differential Equations, Variational Problems

The main focus of my research work is on rigorous mathematical 

modeling and analysis of multiscale and multiphysics systems in 

materials science. My investigations explore ways information and 

disorder emerge and evolve generating complexity and patterns in 

smart materials such as martensite, nematic elastomers and liquid 

crystals. Understanding the microscale features and mechanisms of 

multifunctional materials and predicting their interactions on the overall 

macroscopic properties is of strategic importance in the design of 

materials for engineering applications. Two specific lines from my past 

and current research are summarized below. 

1) ‌�Solid-to-solid phase-transformations in shape-memory 
alloys 
Austenite-to-Martensite phase transformation is observed in various 

metals, ceramics and biological systems. It is the activation mechanism 

of the Shape-Memory effect. Despite the vast potential to the shape-

memory effect, practical implementations have been slow, and to-date, 

mostly limited to NiTi. It is strategically important to improve and stabilize 

the shape-memory effect in known materials and develop new modeling 

strategies. A problem I have considered is the analysis and modeling 

of disclinations (topological defects at the lattice level characterized by 

rotational mismatch). Disclinations as in Fig. 1-a are characterized by 

a self-similar triple-star pattern resulting in intense rotational stretches. 

Mathematically, I have shown that such configurations arise as a solution 

of differential inclusion problems with special rotational symmetry 

and rigidity. By identifying the basic algebraic structure underlying the 

differential inclusion I have computed exact solutions both in linearized 

and finite elasticity models shedding light on the mechanism that drives 

formation of triple-stars. Moreover, I have investigated onset of criticality 

and self-organization in the evolution of martensite via sequential 

avalanching. Here the modeling strategy describes the nucleation of 

martensitic variants as a branching random walk process (see Fig. 1-b). 

The question that I addressed is the behavior of certain features of the 

self-similar structure thus formed and the computation of power laws 

for the length interfaces in a martensitic transformation. This project 

involved collaboration with the groups of J. Ball and B. Hambly (Oxford, 

stochastic modeling of martensite); E. Vives and A. Planes (Barcelona) 

and T. Inamura (TiTech) on experiments on avalanches and disclinations 

in martensite. Work is in progress on the investigation of the activation 

mechanisms that drive avalanches in metals with the ultimate goal 

of mechanically characterizing the dynamics of solid-to-solid phase-

transformations. 

Fig. 1 
a) Self-similar triple-star patterns observed in Pb3(VO4)2 and MgCd 

resulting from the rotation of twin boundaries and matching of different 

crystal variants via kinematic compatibility. 

b) Numerical realization of a microstructure as a 2D fragmentation 

process. 

c) analytical construction of a rank-1 4-phase microstructure in NLCEs. 

2) ‌�Homogenization and Gamma-Convergence problems for 
nematic elastomers 
Nematic Liquid Crystal Elastomers (NLCEs) are a class of soft Shape-

Memory Alloys that combine the entropic elasticity of a network of cross-

linked polymeric chains with the peculiar optical properties of nematic 

liquid crystals. A thorough understanding of the manipulation of optical 

birefringence in thin-films of NLCEs by mechanical, electric and thermal 

means is a tremendous mathematical task which has strategical potential 

applications in materials design and fundamental sciences. Focusing 

on the strain-order coupling in NLCEs, I have investigated mechanisms 

that rule the low energy states in mechanically and geometrically 

constrained systems such as artificial muscles, sensors and actuators. 

The mathematical language required to tackle NLCEs problems is that 

of calculus of variations, Gamma-convergence and relaxation. These 

are sophisticated techniques at the intersection of the analysis of PDEs, 

functional analysis and measure theory based on energy minimization 

approach and which are particularly suitable for the study of singularly 

perturbed variational problems. Collaborations are in progress with the 

experimental Lab of K. Urayama (KyotoTech). 
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Algebraic specification

Daniel GAINA
Degree: PhD （Japan Advanced Institute of Science and Technology） 
Research Interests: Universal Logic, Formal Methods, Category Theory

Universal logic is a general study of logical structures with no 

commitment to any particular logical system in the same way that 

universal algebra is a general study of algebraic structures. The term 

“universal” refers to the collection of global concepts that allow one to 

unify the treatment of the logical systems and avoid repetition of similar 

results. One major approach to universal logic, in terms of both number 

of research contributions and significance of the results, is institution 

theory. This relies upon a category-based definition of the informal 

notion of logical system, called institution, which includes both syntax 

and semantics as well as the satisfaction relation between them. As 

opposed to the bottom-up methodology of conventional logic tradition, 

the institution theory approach is top-down: the concepts describe the 

features that a logic may have and they are defined at the most appropriate 

level of abstraction; the hypothesis are kept as general as possible and 

they are introduced only on by-need basis. This has the advantage of 

proving uniformly results for a multitude of logical systems. It leads to 

a deeper understanding of the logic ideas since the irrelevant details of 

particular logics are removed and the results are structurally obtained by 

clean causality. My research interests cover, roughly, institution theory 

and its applications to computing science.

(1) Foundation of system specification and verification
There are many contributions of institution theory to computing 

science, the most visible one is providing mathematical foundations 

for the formal methods techniques, i.e. specification, development 

and verification of systems. In algebraic specification, one of the most 

important classes of formal methods, it is a standard and mandatory 

practice to have an institution to underlie each language basic feature 

and construct; institution theory sets a standard style for developing an 

algebraic specification language that initially requires to define a logical 

system formalized as an institution and then develop all the language 

constructs as mathematical entities in the framework provided by the 

underlying institution.

(2) Reconfigurable software systems
The main direction of my research consists of developing logical 

structures supporting the efficient development of correct reconfigurable 

software systems, i.e. systems with reconfigurable mechanisms 

managing the dynamic evolution of their configurations in response to 

external stimuli or internal performance measures. A typical example 

of reconfigurable system is given by the cloud-based applications that 

flexibly react to client demands by allocating, for example, new server 

units to meet higher rates of service requests. The model implemented 

over the cloud is pay-per-usage, which means that the users will pay 

only for using the services. Therefore, the cloud service providers have 

to maintain a certain level of quality of service to keep up the reputation. 

Generally speaking, reconfigurable systems are safety- and security-

critical systems with strong qualitative requirements, and consequently, 

formal verification is needed.

(3) System development
I am currently maintaining the Constructor-based Theorem Prover 

(CITP), a proof management tool built on top of an algebraic specification 

language for verifying safety properties of transition systems. The 

methodology supported by the tool is not intended for formalizing 

mathematics, but for the application to the development of software 

systems. In order to achieve the targeted goal, the following important 

research directions are pursued: 

(a) proposing more expressive logical systems to allow engineers to 

specify easily and accurately the software systems, 

(b) develop decision procedures that can reason efficiently about these 

more sophisticated logics, and 

(c) improvements of the proof assistant interface to help the user 

understand the current state of the proof and interact with the tool in a 

more natural way. 

The interest is in the design of software systems as one can see in the 

table below.

The system will be specified at the most appropriate level of 

abstraction depending on the requirements for its behavior. The result of 

the verification performed with the tool will determine if improvements of 

the design are required or not.

Table 1. Algebraic specification language development

Table 3. Deductive verification process

Table 2. Lifecycle of reconfigurable software
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