Editors：Osamu Saeki，Wojciech Domitrz，Stanisław Janeczko， Marcin Zubilewicz，Michał Zwierzyński
九州大学マス・フォア・インダストリ研究所

International Project Research-Workshop (I)
 WORKSHOP on Mathematics for Industry Basis of Mathematics in nanomedicine structures and life sensing

Editors Osamu Saeki, Wojciech Domitrz, Stanisław Janeczko, Marcin Zubilewicz, Michał Zwierzyński

About MI Lecture Note Series

The Math-for-Industry (MI) Lecture Note Series is the successor to the COE Lecture Notes, which were published for the 21st COE Program "Development of Dynamic Mathematics with High Functionality," sponsored by Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT) from 2003 to 2007. The MI Lecture Note Series has published the notes of lectures organized under the following two programs: "Training Program for Ph.D. and New Master's Degree in Mathematics as Required by Industry," adopted as a Support Program for Improving Graduate School Education by MEXT from 2007 to 2009; and "Education-and-Research Hub for Mathematics-for-Industry," adopted as a Global COE Program by MEXT from 2008 to 2012.

In accordance with the establishment of the Institute of Mathematics for Industry (IMI) in April 2011 and the authorization of IMI's Joint Research Center for Advanced and Fundamental Mathematics-for-Industry as a MEXT Joint Usage / Research Center in April 2013, hereafter the MI Lecture Notes Series will publish lecture notes and proceedings by worldwide researchers of MI to contribute to the development of MI.

October 2022
Kenji Kajiwara
Director, Institute of Mathematics for Industry

WORKSHOP on Mathematics for Industry

 Basis of Mathematics in nanomedicine structures and life sensing[^0]ISSN 2188-1200
Date of issue: March 14, 2024
Editors: Osamu Saeki, Wojciech Domitrz, Stanisław Janeczko, Marcin Zubilewicz, Michał Zwierzyński
Publisher:
Institute of Mathematics for Industry, Kyushu University
Graduate School of Mathematics, Kyushu University
Motooka 744, Nishi-ku, Fukuoka, 819-0395, JAPAN
Tel +81-(0)92-802-4402, Fax +81-(0)92-802-4405
URL https://www.imi kyushu-u.ac.jp/

Preface

The "WORKSHOP on Mathematics for Industry 2023 - Basis of Mathematics in nanomedicine structures and life sensing" convened during September 25-29, 2023, at Warsaw University of Technology, Poland, under the joint auspices of the Faculty of Mathematics and Information Science, Warsaw University of Technology; Center for Advanced Studies, Warsaw University of Technology; and Institute of Mathematics for Industry, Kyushu University, with the support of the Excellence Initiative: Research University Programme at the Warsaw University of Technology. With the participation of approximately 70 attendees, including researchers, students, and PhD candidates, the workshop served as a nexus for interdisciplinary dialogue and collaboration between the realms of mathematics and applied sciences.

The workshop program encompassed 25 individual talks and 5 mini-courses, each comprising 3 lectures, spanning a spectrum of topics such as topological data analysis, medical imaging methods, human genome models, big data, machine learning, cryptography, information geometry, convex optimization, physical models of elastic/plastic bodies and fluids and material engineering. Delivered by experts from Polish and Japanese institutions, the presentations illuminated the symbiotic relationship between abstract mathematical constructs and real-world engineering challenges, thereby fostering innovation and knowledge exchange. The accompanying booklet contains comprehensive materials from the workshop prepared by the speakers, including detailed summaries, presentation slides and references, providing a valuable resource for continued study of the concepts presented during the event, with hope that it will not only facilitate the exploration of novel research directions, but also catalyze the establishment of international collaborations between academic environments in Poland and Japan with the goal of leveraging mathematical methodologies to address pressing industrial concerns and societal needs.

This work was supported by Institute of Mathematics for Industry, Joint Usage/Research Center in Kyushu University (FY2023 Workshop(I) "WORKSHOP on Mathematics for Industry 2023 - Basis of Mathematics in nanomedicine structures and life sensing" (2023b004)).

February 2024

WORKSHOP
 on Mathematioss for Indulusity

Basis of Mathematics in nanomedicine structures and life sensing

25-29 September 2023 Warsaw - Poland

Scientific Committee:
Tomasz Cieślak (Warsaw)
Wojciech Domitrz (Warsaw)
Leon Gradoń (Warsaw)
Naoki Hamada (KLab Inc.)
Yuichi Ike (Kyushu)
Stanislaw Janeczko (Warsaw)
Shizuo Kaji (Kyushu)
Kenji Kajiwara (Kyushu)
Miyuki Koiso (Kyushu)
Shigeki Matsułani (Kanazawa)
Jan Mielniczuk (Warsaw)
Takashi Nishimura (Yokohama)
Dariusz Plewczyński (Warsaw)
Maria Aparecida Soares Ruas (São Carlos)
Osamu Saeki (Kyushu)
Hiroshi Teramoto (Kansai)
Organizers:
Wojciech Domitrz (Warsaw)
Stanislaw Janeczko (Warsaw)
Osamu Saeki (Kyushu)
Marcin Zubilewicz (Warsaw)
Michal Zwierzyński (Warsaw)

Organizing Institutions:
Institułe of Mathematics for Industry, Kyushu University
Center for Advanced Studies, Warsaw University of Technology
Faculty of Mathematics and Information Sciences, Warsaw University of Technology
hłtps://wmi2023.mini.pw.edu.pl

Center for Advanced Studies
waksew onivasity of tecknotoor
liaculty of NIathematics and Information Siciences Waraaw onivinaty of trehwoloay

WORKSHOP on Mathematics for Industry 2023 Programme						\square Mini courses \square Registration		
	Monday (25.09)	Tuesday (26.09)		Wedr	esday (27.09)	Thursday (28.09)		Friday (29.09)
8:00-9:00	Registration (up to 11:00) Opening of the Workshop	8:30-9:00	Lecture: PawełJóziak	8:15-9:00	Mini course: Shunsuke Ichiki 2	8:30-9:00	Lecture: Piotr Borowik	Lecture: Kenji Kajiwara
9:15-10:00	Mini course: Jan Mielniczuk 1	Mini course: Jan Mielniczuk 2		Mini course: Dariusz Plewczyński 2		Mini course: Jan Mielniczuk 3		Mini course: Shunsuke Ichiki 3
10:15-11:00	Mini course: Shunsuke Ichiki 1	Mini course: Dariusz Plewczyński 1		Mini course: Paweł Dłotko 3		Mini course: Arimura Hidetaka 1		Mini course: Dariusz Plewczyński 3
11:00-11:30	Coffee break	Coffee break		Coffee break			ffee break	Coffee break
11:30-12:15	Mini course: Paweł Dłotko 1	Mini course: Paweł Dłotko 2		Lecture: Yuichi Ike		Mini course Arimura Hid	taka 2	Mini course: Arimura Hidetaka 3
12:30-13:00	Lecture: Naoki Hamada	Lecture: Tomasz Cieślak		Lecture: Przemysław Grzegorzewski		Lecture: Shigeki Matsutani		Lecture: Hiroshi Teramoto
13:00-15:00	Lunch		Lunch		Lunch		Lunch	Lunch
15:00-15:30	Lecture: Przemysław Biecek	Lecture: Leon Gradoń				Lecture: Zbigniew Peradzyński		Lecture: Osamu Saeki
15:45-16:15	Lecture: Mariusz Niewęgłowski	Lecture: Karol Ćwieka				Lecture: Konrad Kisiel		Lecture: Naomichi Nakajima
16:15-16:45	Coffee break	Coffee break				Coffee break		Coffee break
16:45-17:15	Lecture: Lucía Ivonne Hernández Martínez	Lecture: Toshizumi Fukui				Lecture: Shizuo Kaji		Lecture: Bartosz Kołodziejek
17:30-18:00	Lecture: Stanisław Janeczko	Lecture: Miyuki Koiso				Lecture: Takashi Nishimura		Lecture: Konstanty Junosza-Szaniawski
18:00-22:00	Dinner @ MaIS Faculty					Dinner @ MaIS Faculty		

Contents

Preface i
Poster of the Workshop ii
Photos iii
Workshop Program iv
Abstracts \& Slides for Mini-courses
Paweł Dłotko (Polish Academy of Sciences) 1
"Introduction to Topological Data Analysis"
Arimura Hidetaka (Kyushu University) 63
"Medical imaging signatures with topology for cancer"
Shunsuke Ichiki (Tokyo Institute of Technology) 103
"Singularity theory and its applications to strongly convex multiobjective optimization problems"
Abstracts \& Slides for Talks
Przemysław Biecek (Warsaw University of Technology) 109
"Explanatory Model Analysis"
Tomasz Cieślak (Polish Academy of Sciences) 125
"Linear instability of Prandtl spirals"
Toshizumi Fukui (Saitama University) 131
"Pseudospheres from singularity theory view-point with a classification of 2 -soliton surfaces"
Leon Gradoń (Warsaw University of Technology) 139
"Formation of nanostructured functional particles with the spray-drying method"
Przemysław Grzegorzewski (Warsaw University of Technology) 153
"On comparing distributions with imprecise data"
Naoki Hamada (KLab Inc.) 167
"Brief Introduction to Topology for Multi-objective Optimization"
Yuichi Ike (Kyushu University) 183"Persistent Homology and Machine Learning"
Stanisław Janeczko (Warsaw University of Technology) 193
"Exotic shapes of nano-spherical structures - new DNA coding"
Paweł Józiak (Warsaw University of Technology) 213
"How to measure data diversity and why is it important?"
Konstanty Junosza-Szaniawski (Warsaw University of Technology) 229
"Cryptographic protocol verification - results of EPW project"
Shizuo Kaji (Kyushu University) 239
"Synergies of medicine, physics, and mathematics in medical imaging"
Konrad Kisiel (Warsaw University of Technology) 247
"Plasticity - Modeling and mathematical analysis"
Miyuki Koiso (Kyushu University) 253
"Developable surfaces with curved folds and applications"
Bartosz Kołodziejek (Warsaw University of Technology) 261
"Learning Permutation Symmetry of a Gaussian Vector"
Shigeki Matsutani (Kanazawa University) 271
"Supercoiled structure of DNA and hyperelliptic functions"
Naomichi Nakajima (Waseda University) 299
"Information geometry of positive measures"
Mariusz Niewęgłowski (Warsaw University of Technology) 309
"Multivariate Hawkes processes"
Takashi Nishimura (Yokohama National University) 323
"On envelopes created by circle families in the plane (a joint work with Yongqiao Wang)"
Zbigniew Peradzyński (Military University of Technology) 333
"Calcium waves sustained by calcium influx through mechanically activated channels in the cell membrane"
Osamu Saeki (Kyushu University) 355
"Generalization of Reeb spaces and application to data visualization"

Introduction to Topological Data Analysis

Paweł Dłotko

Dioscuri Centre in Topological Data Analysis, IMPAN, Poland

In this mini-course we will explore both theoretical and practical foundations of Topological Data Analysis (TDA) - a field with a number of applications in physical, natural and social sciences in the intersection between algebraic topology, computational geometry and computational methods. We will cover the basic tools of TDA including discretization of spaces (in the form of various point cloud-based simplicial, cubical and general CW-complexes), algorithms to compute homology and persistent homology and applications of those. We will also explore TDA tools of visualization, like mapper and ball mapper algorithms. Moreover we will present new tools of Euler Characteristic curves and profiles and show how they can be applied to standard statistics. All the concepts will be illustrated with real examples. You will also be required to perform computations on a number of toy and real-world datasets.

References

[1] Edelsbrunner, Harrer (2011), Computational Topology: An Introduction
[2] P. Dłotko, Computational and applied topology, tutorial, https://arxiv.org/abs/1807.08607

Introduction to Topological Data Analysis

Paweł Dłotko, Dioscuri Centre in TDA, IMPAN,

WORKSHOP on Mathematics for Industry 2023

Politechnika Warszawska, MINI, 25-27 September 2023

Topological Data Analysis

- Persistent homology,
- Conventional mapper,
- Ball mapper
- Discrete Morse theory (if time permits),
- TopoTests (alternative option),
- On a very intuitive level,
- with a number of practical examples.

The credo

> Data have shape, shape has meaning, meaning brings value.

We all know this story

Trap of models

It is not possible to adjust an algebraic model to any possible shape of the data - over-fitting.

Topology and statistics, together

- Statistics provide a vast collection of tools to summarize properties of point clouds.
- However, there are numerous examples (line Anscombe's quartet and Datasaurus dataset presented below) of point clouds with the same descriptive statistics, but very different shape.
- This is why, in statistics, we should always visualize the considered dataset.
- It is however not possible to visualize high dimensional data.
- That is where the tools from topology came into rescue topological tools we discuss in this tutorial allow us to estimate if two datasets have similar shape.

Anscombe's Quartet

Anscombe's Quartet; Same statistics, different shapes Anscombe, "Graphs in Statistical Analysis", Anrerican Statistician, 1973.

Datasaurus Dataset

Datazaurus Dozen, Alberto Cairo, http://www.thefunctionalart.com/ 2016/08/ download-datasaurus-never-trust-summary.html

TDA pipeline

Simplicial complexes

- \mathcal{K} is an abstract simplicial complex iff for every $A \in \mathcal{K}$ and $B \subset A, B \in \mathcal{K}$.
- Each abstract simplicial complex has its geometrical realization built from simplices.
- In this case, simplices consist of points in a general position.
a

Dim 1

Dim 0

Dim 2

Dim 3

Sample simplicial complexes

Source: Wikipedia, typical use FEM-like methods.

Let the data tell you the story

Topological data analysis:

- Persistent homology - point-cloud based homology.
- Accurate network models to examine landscapes of data,
! Stable.
!! No black boxes.
II! We do not enforce any models of data.

What do you see?

What do you see?

- We may say that we see a circle,
- But we really see is 19 points...
- ...that may be sampled from a probability distribution supported at a circle.
- Persistent homology is a tool to make this observation precise.
- To do so, we need to construct a filtered complex of the point cloud.
- The filtered complex is a nested sequence of subcomplexes - a way of building a model by adding a sequence of simplices in a number of steps.

What do you see?

What do you see?

What do you see?

Simplicial complexes built from point clouds

- $P=\left\{p_{1}, \ldots, p_{n}\right\}$, a finite point cloud with a metric d.
- We need a finite, combinatorial representation of the union of balls.
- Rips complex at level ϵ consists of simplices supported in p_{0}, \ldots, p_{n} if $B\left(p_{i}, \frac{\epsilon}{2}\right) \cap B\left(p_{j}, \frac{\epsilon}{2}\right) \neq \emptyset$ for every $i, j \in\{0, \ldots, n\}$.
- Čech complex at level ϵ consists of simplices supported in p_{0}, \ldots, p_{n} iff $\bigcap_{i=0}^{n} B\left(p_{i}, \frac{\epsilon}{2}\right) \neq \emptyset$.

Filtration of Rips complex

Filtration of Rips complex

Filtration of Rips complex

4 vertices, 3 edges, 1 triangle

Filtration of Rips complex

4 vertices, 4 edges, 1 triangle

Filtration of Rips complex

Filtration of Rips complex

4 vertices, 6 edges, 4 triangles, 1 tetrahedra

Rips vs Čech

In this case Rips complex is a triangle with a boundary, the Cech complex is the boundary of a triangle

Čech complex is topologically accurate

- $\bigcup_{p \in P} B\left(p, \frac{\epsilon}{2}\right)$ is topologically equivalent to the Čech complex based on those balls.
- Meaning, there exist a continuous deformation from one into another.
- No tearing, no gluing.

Rips and Čech complexes can grow large

If all points get connected by edges in the complex, we witness so-called combinatorial explosion. You will encounter it when using Rips complexes.

Rips and Čech complexes can grow large

For N points, $\binom{N}{1}$ vertices, $\binom{N}{2}$ edges, $\binom{N}{3}$ triangles, ... This is why we always limit the level (ϵ) and the maximal dimension of simplices in the complex.

Alpha complexes

Intersecting $B(x, r)$, for $x \in X$ with Voronoi cells of X allows to build much smaller complexes that preserve homotopy type of $U_{x \in X} B(x, r)$.

$$
\therefore a \cdot \theta \cdot \equiv \cdot \equiv \equiv \equiv \mathrm{rac}
$$

Be careful with distances (in high dimensions)

1. Concentration of measure $(1-2 \epsilon)^{n}$,
2. Points in dimension d close to be of the same distance $\frac{d}{3}$ from each other in I^{1} distance,
3. Manifold hypothesis.

From complexes to parameter dependent homology

Homology

One connected component，one hole in dimension 1.

Practical exercise 1

－Please go to https：／／github．com／dioscuri－tda／tutorials，
－Open PH＿intro＿to＿homology and play with triangulation of a torus．
－What are the homology groups of this triangulation？

Triangulation of a torus

Triangulation of a torus

Persistent homology, under the hood

- Let us order simplices according to the minimal ϵ for which they appear (filtration).
- Algorithm to compute (persistent) homology is a version of Gaussian elimination.
- If we run it for a prefix of filtration, we will get homology of the complex composed by simplices in that prefix (a subcomplex of the final complex).
- Analyzing the structure of zero and non-zero columns in the reduced matrix allows us to find generators that are created and which become trivial as we move along the filtration.

Persistence matrix algorithm

Persistence matrix algorithm

	ab	ac	bc	cd	bd	abc
a	1	1				
b	1		1		1	
c		1	1	1		
d				1	1	
ab						1
ac						1
bc						1

Persistence matrix algorithm

	ab	ac	bc	cd	bd	abc
a	1	1				
b	1		1		1	
c		1	1	1		
d				1	1	
ab						1
ac						1
bc						1

Persistence matrix algorithm

Persistence matrix algorithm

	ab	ac	b	cd	bd	abc
a	1	1				
b	1		1		1	
c		1	1	1		
d				1	1	
ab						1
ac						1
bc						1

Persistence matrix algorithm

$\mathrm{bc}+$						
	ab	ac	ac	cd	bd	abc
a	1	1	1			
b	1		1		1	
c		1		1		
d				1	1	
ab						1
ac						1
bc						1

Persistence matrix algorithm

$\begin{aligned} & \mathrm{bc}+ \\ & \mathrm{ac}+ \end{aligned}$						
	ab	ac	ab	cd	bd	abc
a	1	1				
b	1				1	
c		1		1		
d			,	1	1	
ab						1
ac						1
bc						1

Persistence matrix algorithm

bc+ ac+						
	ab	ac	ab	cd	bd	abc
a	1	1		ת		
b	1				1	
c		1		1		
d				1	1	
ab						1
ac						1
bc						1

Persistence matrix algorithm

	$\begin{aligned} & \text { bc+ } \\ & \text { ac+ } \end{aligned}$					
	ab	ac	ab	cd	bd	abc
a	1	1			(
b	1				1	
c		1		1		
d				1	1.	
ab						1
ac						1
bc						1

Persistence matrix algorithm

Persistence matrix algorithm

Persistence matrix algorithm

Interpretation of reduced matrix

1. The reduced matrix gives the persistence intervals.
2. If the column is zero, then it creates a new homology class.
3. If the column is nonzero, then it kills a homology class.

Persistence matrix algorithm

		a	b	C	d	ab	ac	$\begin{aligned} & \mathrm{bc}+ \\ & \mathrm{ac+} \\ & \mathrm{ab} \\ & \hline \end{aligned}$	cd	$\begin{aligned} & \mathrm{bd}+ \\ & \mathrm{cd}+ \\ & \mathrm{ac}+ \end{aligned}$	abc
	a					1	1				
-	b					1					
	c						1		1		
$6 \mid 10 \gg b$	d								1		
,	ab										1
	ac										1
	bc										1

Persistence matrix algorithm

3
c

Persistence matrix algorithm

		a	b	c	d	ab					
$4 \square d$	a					1					
3	b					1					
C	C										
$\frac{\square}{2} b$	d										
	ab										
	ac										
	bc										

Persistence matrix algorithm

Dim 0: [2,5], [3,6], [4,8]
Dim 1: [7.10]

Persistence matrix algorithm

$\operatorname{Dim} 0:[2,5],[3,6],[4,8],[1, \mathrm{inf}] \operatorname{Dim} 1:[7.10],[9, \mathrm{inf}]$

Invariance

- Persistent homology is a rigorous way of quantifying closed shapes,
- ... like connected components, cycles, voids and more.
- No matter if they are embedded in two or a million dimensional space,
- No matter if they are rotated, stretched or transformed in any other way.
$-$
-

Lots of \mathbf{B}, or a single \mathbf{A} ?

B BB

Lots of small circles，or a large one？

Multiscale

－Persistent homology is a rigorous way of quantifying closed shapes，
－．．．like connected components，cycles，voids and more．
－No matter if they are embedded in two or a million dimensional space，
－No matter if they are rotated，stretched or transformed in any other way．
－Multi－scale，
－

Robustness

- Persistent homology is a rigorous way of quantifying closed shapes,
- ... like connected components, cycles, voids and more.
- No matter if they are embedded in two or a million dimensional space,
- No matter if they are rotated, stretched or transformed in any other way
- Multi-scale,
- Robust.

Distances between diagrams

Optimal matchings between points of two persistence diagrams allow us to define standard distances between them - bottleneck
(length of the longest edge in the matching) and p-Wasserstein
(sum of lengths of matching lines to the power q) to the power $\frac{1}{q}$.

Practical exercise 2

- Let us go back to our jupyter-notebooks exercises.
- Open PH_persistence_simple_point_cloud,
- Compute persistent homology of a point cloud sampled from a circle (without and with a considerable amount of noise).

Warning, outliers!

Outlayers can be a problem, filtration weighted by a distance to measure estimators

Warning, outliers!

outliers can be a problem, filtration weighted by a distance to measure estimators

Warning, outlayers!

outliers can be a problem, filtration weighted by a distance to measure estimators

Not only point clouds....

- If you work with:
- Pixel / voxel / cubical data,
- Time series,
- Correlation and similarity measures,
- ...
- you may still use similar ideas and track connected components and holes emerging and disappearing.

Apply to digital images

Left - osteoporotic, right - normal bone (vertebrae). Not only density, but mostly structure is responsible for osteoporotic fractures.

What is a cubical persistence?

- Sub-level sets of a function.
- Cubes enter from lower to highest function/filtration value.
- We track changes in homology of sub-level sets.

Practical exercise 3

- Digital images are partially-constant discretization of functions
- Let us go back to our exercises.
- Open PH_distance_from_circle,
- In this exercise we will construct a cubical approximation of a function $f:[-2,2]^{2} \rightarrow \mathbb{R} . f(x, y)$ is a distance from (x, y) to a unit circle $x^{2}+y^{2}=1$.
- Let us visualize it as an image, and let us compute persistent homology of the corresponding cubical complex.

Persistence for time series analysis

S\&P-500 and crashes

Persistence-based descriptors of nanoporous materials
 Nature Communications, 15396

And more...

- We do not have time to cover all this ground.
- But, there are numerous resources for further work:
- https://arxiv.org/abs/1807. 08607
- https:
//www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf
- https://gudhi.inria.fr/tutorials/
- and many more...

Persistent homology

- We have robust,
- multi scale,
- coordinate-free,
- compressed,
- tool to detect connected components, cycles, voids and their generalizations.
- It can be interfaced in various ways with standard stat. and ML tools.

Persistent homology, the output

- Muti set of points in \mathbb{R}^{2}.
- Variable size, not ideal representation to interface with ML/AI and statistics \rightarrow persistence representations, embeddings, ...
- We need to embed persistence diagrams into a Hilbert space (vectorize them).
- That makes topological/statistical inference - hypothesis testing, confidence intervals,... possible.

Homology and persistent homology, biased collection of resources

- Edelsbrunner and Harer, Computational Topology, An Introduction, AMS.
- Kaczynski, Mischaikow, Mrozek, Computational Topology, Springer 2003.
- Dłotko, Applied and Computational Topology, Tutorial
- Multiple youtube videos.

Persistence is nice, but, what about flares?

Persistence homology of those two point clouds will be very similar, as they both have one connected component and one hole.

But，what about flares？

But，oftentimes the information in the flares may be important（it may for instance carry information about anomalies）．

Reeb graph

source：Wikipedia

Reeb graph，formally
－Input：$M, f: M \rightarrow \mathbb{R}$ ．
－We define an equivalence relation $x \mathrm{R} y$ iff：
－$f(x)=f(y)$ ，
－x and y belong to the same connected component of $f^{-1}(x)$ ．
－M / R ．

Conventional Mapper algorithm

Conventional mapper graph is an attempt to define Reeb graph for discrete point cloud instead of a manifold.

Mapper algorithm, idea

- Input: finite collection of points sampled from $M, f: M \rightarrow \mathbb{R}$
- We define a relation $x \mathrm{R} y$ iff:
- $f(x)$ is close to $f(y)$,
- x and y belong to the same cluster ...

Conventional Mapper algorithm

Conventional Mapper algorithm

Mapper algorithm, formally

- Input: finite collection of points sampled from $M, f: M \rightarrow \mathbb{R}$.
- Cover of the range of f with overlapping boxes.
- Fix a clustering algorithm
- We define a relation $x \mathrm{R} y$ iff:
$-f(x)$ and $f(y)$ belong to the same element I of a cover of the range of f,
- x and y belong to the same cluster in $f^{-1}(I)$.
- Vertices of Mapper graph corresponds to the clusters,
- An edge is placed between two vertices if the corresponding clusters have nonempty intersection.

Mapper algorithm, coloring

- Vertices of the Mapper graph may be colored by an average value of an objective function on points covered by clusters.
- Fix a point cloud X and an objective function $f: X \rightarrow \mathbb{R}$.
- Each vertex of the Mapper graph correspond a subset (cluster) of points from X.
- Typically the value of the vertex will be an average value of f on the corresponding cluster.

Mapper is the most well known tool of TDA

Nicolau, Levine, Carlsson, Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, PNAS 2011.

Practical exercise 1

- Let us play with Mapper algorithm!
- Go to https://github.com/dioscuri-tda/tutorials
- Let us start from something simple - open Mapper_concentric_circles
- In this exercise we will generate two concentric circles in a plane.
- We will use projection to the y coordinate as a lens function,
- And a DBSCAN with certain parameters as a clustering algorithm.
- What is the Mapper graph we obtain?

Practical exercise 2

- Let us play with something more advanced, let us consider standard Boston property dataset.
- Please open Mapper_boston_dataset
- It contains 13 variables, we want to understand its relation to prices of properties in Boston area (in '1970).
- Here we will use t-distributed stochastic neighbor embedding as a filtering function.
- We will be able to experiment with numerous clustering methods as well.
- Obtained mapper graphs will be colored by the average price of a property in a given cluster.
- This is not the last time we see Boston Property Dataset!

Ball Mapper algorithm

- As the last part of our schedule, we will play with Ball Mapper algorithm.
- As you might have noticed, it is not always trivial to choose the lens function as well as clustering algorithm in standard Mapper construction.
- The idea of Ball Mapper is intuitively explained in the following slides.

Ball Mapper algorithm

Take a point cloud X

Ball Mapper algorithm

Given $\epsilon>0$, select subset of points $N \subset X$ such that for every $x \in X$ there exists $n \in N$ such that $d(x, n) \leq \epsilon$ (we call N an ϵ-net)

Ball Mapper algorithm

Consequently $X \subset \bigcup_{n \in N} B(n, \epsilon)$, i.e. $\{B(n, \epsilon), n \in N\}$ cover X.

Ball Mapper algorithm

Take one dimensional nerve of that cover (an abstract graph whose vertices correspond to $B(n, \epsilon)$, and edges to nonempty intersections of balls)

Ball Mapper algorithm

This way we obtain a Ball Mapper graph of X with radius ϵ. Vertices of the graph can be colored analogously to those of standard Mapper graph.

Network based landscapes of data

Meet the Lucky Cat

Network based landscapes of data

$$
128 \times 128=16384 \text { dimensional space }
$$

From a gray scale image to a point

Gray scale images converted to vectors in high dimensional space

Network based landscapes of data

$128 \times 128=16384$ dimensional space

Practical exercise 1

- Please open BM_basic_circle.
- In this proof-of-concept example we will generate a collection of points sampled from a unit circle $x^{2}+y^{2}=1$.
- And built a Ball Mapper graph based on it.
- Do we see what we expected to see?

Practical exercise 2

- In our second example we will re-visit already known Boston Property Dataset.
- Please open BM_Boston_property
- This time we will use Ball Mapper to examine the structure of the 13 dimensional point cloud, and the distribution of the explanatory variable (price of properties) on the top of it.
- We will use tools from the Ball Mapper implementations to recognize which coordinates makes most statistical differences between the regions of the graph.

Basic stats

Topology and hypotehesis testing

Basic stats

- One-sample problem: We are given a data sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and cumulative distribution function $F: R^{d} \rightarrow[0,1]$. Does the data X follow the distribution $F: X \sim F$?

$$
H_{0}: X \sim F \text { vs. } H_{1}: X \nsim F
$$

- Two-sample problem: We are given two samples $X_{1} \sim F_{1}$ and $X_{2} \sim F_{2}$ and want to test hypothesis that X_{1} and X_{2} were drawn from the same (unknown) distribution

$$
H_{0}: F_{1}=F_{2} \text { vs. } H_{1}: F_{1} \neq F_{2}
$$

Testing, for one-sample problem
Available methods depends on the data dimension

- 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov, Cramer-von Mises, Andersonâ€ "Darling, Chi-squared, Shapiro-Wilks
- 2-D: theoretical results for Kolmogorov-Smirnov and Cramer-von Mises, some implementations available in python and R
- d-D: Kolmogorov-Smirnov should work but no implementation available, critical values of test statistics unknown, impractical in higher dimensions
Kolmogorov-Smirnov test

Here, K-S will be used as benchmark

- one-sample: $D_{n}=\sup _{x}\left|F_{n}(x)-F(x)\right|$
two-sample:
$D_{n, m}=\sup _{x}\left|F_{1, n}(x)-F_{2, m}(x)\right|$

Testing, for one-sample problem
Available methods depends on the data dimension

- 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov, Cramer-von Mises, Andersonâ€ "Darling, Chi-squared, Shapiro-Wilks
- 2-D: theoretical results for Kolmogorov-Smirnov and Cramer-von Mises, some implementations available in python and R
- d-D: Kolmogorov-Smirnov should work but no implementation available, critical values of test statistics unknown, impractical in higher dimensions

Kolmogorov-Smirnov test

Here, K-S will be used as benchmark

- one-sample: $D_{n}=\sup _{x}\left|F_{n}(x)-F(x)\right|$
- two-sample:
$D_{n, m}=\sup _{x}\left|F_{1, n}(x)-F_{2, m}(x)\right|$

TopoTests, one-sample problem, input

We are given a data sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and cumulative distribution function $F: R^{d} \rightarrow[0,1]$.

One sample TopoTests

Input: sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and CDF
$F: R^{d} \rightarrow[0,1]$.
Step 1: $E_{F}(\chi(n, r))$, the Blueprint of F

- draw n-element samples $X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{M}^{\prime}$ from F
- for each sample X_{i}^{\prime} compute its ECC $\chi\left(C_{r}\left(X_{i}^{\prime}\right)\right)$
-

$$
\frac{1}{M} \sum_{i=1}^{M} \chi\left(C_{r}\left(X_{i}^{\prime}\right)\right) \xrightarrow[M \rightarrow \infty]{\text { a.s. }} E_{F}(\chi(n, r))
$$

One sample TopoTests

Input: sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and CDF
$F: R^{d} \rightarrow[0,1]$.
Step 2: variation form $E_{F}(\chi(n, r))$

- draw a new set of m-element samples $Y_{1}^{\prime}, Y_{2}^{\prime}, \ldots, Y_{m}^{\prime}$ from F
- Calculate sup distance between $\chi\left(C_{r}\left(Y_{i}^{\prime}\right)\right), i=1, \ldots, m$ and average ECC
\rightarrow determine the threshold value t_{α} as a $(1-\alpha)$ 'th quantile of $\left\{d_{i}\right\}_{i=1}^{m}$, where α is required level of statistical significance

TopoTests

Input: sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and CDF
$F: R^{d} \rightarrow[0,1]$.
Step 3: Actual testing

- compute the ECC for sample
data X : $\chi\left(C_{r}(X)\right)$
- compute the I_{∞} between
$\chi\left(C_{r}(X)\right)$ and $E_{F}(\chi(n, r))$
$D=\sup _{r \in \mathbb{R}}\left|\chi\left(C_{r}(X)\right)-E_{F}(\chi(n, r))\right|$
- reject H_{0} if $D>t_{\alpha}$
- it is possible to get p-value as well

For the two-sample problem the procedure is slightly different but the idea remains.

TopoTests - properties

Design and goals

- general method: works regardless of the data dimension and form of probability distribution function we are testing against
- computationally feasible in higher dimensions
- theoretical results derived (no ML-like approach)
- in fact it is framework not one particular test
- outperforms baseline methods i.e. Kolmogorov-Smirnov test

TopoTests - Translational \& rotational invariance

The test is not sensitive to:

- change of location parameter
- rotation
- reflection
- components reordering (c.f. $\mathcal{N} \times \Gamma$ vs. $\Gamma \times \mathcal{N}$)
- This can be tested using standard moments (after topotest is done)

Theoretical guarantees

Type II erorr (false negative, fail to reject H_{0} when it is false For fixed significance level α, probability of type II error goes to 0 exponentially with number of points sampled

$$
P(\text { type II error }) \leq \sim e^{-n^{2}} \rightarrow 0
$$

(Technical details swapped under the rug)

Two-sample problem

- $X \sim F, Y \sim G,|X|=n,|Y|=m$,

$$
H_{0}: F=G \text { vs. } H_{1}: F \neq G
$$

- compute distance D between ECC curves on X and Y
- data samples are pooled $Z=X \cup Y$
- split Z randomly into $X_{(p)}$ and $Y_{(p)}$ of same sizes

- compute distance $d_{(p)}$ between ECC build on $X_{(p)}$ and $Y_{(p)}$
- p-value is obtained as
$p=\sum_{p} I\left(d_{(p)}>D\right) / N$

Simulation results (one-sample)

Test Power: probability that H_{0} is correctly rejected when H_{1} is true

- samples sizes 100-5000 data points
- test power estimated using 1000 MC replications
- power compared with KS $(d \leq 3)$
- α on diagonal is expected
- distributions easy to confuse with normal:
- t-Student with $\nu=\{3,5,10\}$ DoF
- MVN non-diagonal Σ matrix
- Cartesian products with $\mathcal{N}(0,1)$ marginals
- TopoTests yielded higher power than KS in most of the cases
- Heavy MC simulations powered by Google.

Simulation results (one-sample)

Simulation results (two-sample)

- TopoTests still outperforms the KS $(d=2, n=250$, 0.765 vs. 0.603)
- very expensive method

TopoTests, take home message

- There are multiple papers where topological techniques are used to show differences in distributions
- Usually they work
- We shown an important case, where it works, is comparable or better than state of the art in low dimension and have no competitions in high dimensions
- Not only that, we have theoretical guarantee for that
- Those guarantees does not depend on the fact that we started from point clouds
- We hope that this meta-observation will open up new opportunities in applied topology

Every mathematician has a secret weapon. Mine is Morse theory.

Raoul Bott

Discrete Morse Theory

1. Let us now have a look at a Discrete Morse Theory
2. \mathcal{K} - finite regular CW complex.
3. $f: \mathcal{K} \rightarrow \mathbb{R}$, constant on every cell, is a discrete Morse function if for every $\alpha^{p} \in \mathcal{K}$:
$3.1 \#\left\{\beta^{p+1}>\alpha^{p} \mid f\left(\beta^{p+1}\right) \leq f\left(\alpha^{p}\right)\right\} \leq 1$
$3.2 \#\left\{\gamma^{p-1}<\alpha^{p} \mid f\left(\gamma^{p-1}\right) \geq f\left(\alpha^{p}\right)\right\} \leq 1$
4. Simplex is critical if both $(1)=0$ and $(2)=0$.
5. For any simplex conditions (1) and (2) cannot be both $=1$ (\Longrightarrow define discrete gradient)

Which of them is discrete Morse function？

Why it is called discrete Morse Theory

1．Suppose \mathcal{K} is a cell complex with a discrete Morse function． Then \mathcal{K} is homotopy equivalent to a CW complex with exactly one cell of dimension p for each critical simplex of dimension p（we will construct this complex soon）．
2．If there are no critical simplices a with $f(a) \in(a, b]$ ，then $\mathcal{K}(b)$ is homotopy equivalent to $\mathcal{K}(a)$ ．（In fact， $\mathcal{K}(b)$ collapses to $\mathcal{K}(a))$ ．
3．If there is a single critical simplex a with $f(a) \in(a, b]$ then $\mathcal{K}(b)$ is homotopy equivalent to $\mathcal{K}(a)$ with a handle of dimension $\operatorname{dim}(a)$ glued．
4．Morse inequities hold．
5．Gradient of a function is more convenient to use then a function itself．

Discrete Gradient

How discrete Morse functions are usually constructed?

1. We almost never assign the values. Gradient is sufficient.
2. It will be represented by arrows.
3. Every simplex can be either tail of head of exactly one arrow.
4. The vector field is curl-free (i.e. there are no loops).
5. Critical cells of Morse functions $=$ cells which are unpaired.

Illustration

Illustration

The Morse complex

- Cells of Morse complex = critical cells of discrete vector field
- Boundary relation computed by using gradient paths.
- Over $\mathbb{Z}_{2}-\kappa(A, h)=$ number of gradient paths from A to h $\bmod 2$.
- Morse complex (over integers) and the initial complex are homotopically equivalent.
- Homology of a complex and its Morse complex - isomorphic.
- $\kappa(A, h)=0$.

Iterated Morse Complex

- By iterating construction of a Morse complex we can obtain both (field) homology and persistence.
- Let us concentrate first on standard homology.
- Homology over a field \Longrightarrow pairing between A, B can be made iff $\kappa(A, B) \neq 0$ (Dmitry Kozlov).
- Algorithm to construct Morse complex - a functor $\mathbb{M}: \mathbb{C} \rightarrow \mathbb{C}$.
- \mathbb{C} category of chain complexes.
- Assumption: if there are some Morse pairings in C, at least one of them is made in $\mathbb{M}(C)$ (vitality).
- E.g. \mathbb{M} procedure search for a single possible pairing and do it.

Iterated Morse Complex and homology

- Let us apply \mathbb{M} iteratively.
- Homology is preserved, homotopy type is not.
- $\exists_{n \in \mathbb{N}} \mathbb{M}^{n}(C)=\mathbb{M}^{n+1}(C)=\ldots=: \mathbb{M}^{\infty}(C)$ - Iterated Morse complex.
- $\beta_{i}(C)=\#\left\{\right.$ cells in $\mathbb{M}^{\infty}(C)$ of dimension $\left.i\right\}$.
- Generators can be obtained from this procedure.

The Dounce hat.

First iteration pairings

Boundary on the first iteration

$\mathbb{M}^{1}(\mathcal{K})$ with Morse pairings on it

Morse complex for persistence
－C－chain complex with filtration $g: C \rightarrow \mathbb{Z}$ ．
－s．t．$a, B \in C, a<B \Longrightarrow g(a) \leq g(B)$ ．
－Morse pairing $v: C \rightarrow C$ is compatible with filtration if $g(a)=g(v(a))$ for every paired a ．
－Assumption： \mathbf{M} constructs only a vector fields compatible with filtration．
－Persistence of C and $\mathbb{M}(C)$ are the same．

Filtered complex

Filtered complex

三 rac
Filtered complex

三 nac
Filtered complex

Filtered complex

Filtered complex

Iterated Morse Complex for persistence

- Dimension $0-[0, \infty)$, $[1,3]$.
- Dimension 1 - [4, 6], [5, 6].

First iteration

Second iteration

Final iteration

Critical cells

Critical cells

Critical cells

Observations

- $A \in M^{\infty}(C)$, and B_{1}, \ldots, B_{n} be in boundary of A in $M^{\infty}(C)$.
- $g(A)>g\left(B_{1}\right), \ldots, g\left(B_{n}\right)$.
- $M^{\infty}(C)$ is the minimal cell complex (w.r.t number of cells) with the same persistence as C.

Observations

$$
(Y, 6)
$$

(X,6)

$(a, 1)$
(b, 1)

Observations

Persistent Homology via DMT

- Based on Morse theory one can obtain persistent intervals.
- No need to change representation for one suitable for matrix algorithm.
- Unlike the simplification phase, cells of different filtration value are paired and nonzero persistent intervals are reported
- Pairings between cells of different filtration value - allowed (to some extent).

Level 0

Level 3

Level ∞
a

The story begins here?

1. We have barely scratch the surface,
2. there are many more invariants,
3. and more applications.
4. Hence, I would like to invite you to Topological Data Analysis!

Collaborators

This research has been conducted over several years with the invaluable contributions of numerous great collaborators:

1. Phd students: Ahmad Farhad, Davide Gurnari, Niklas Hellmer, Jakub Malinowski, Jan Senge,
2. Postdocs: John Harvey, Tak-Shing Chan (Swansea), Michal Lipinski, Bartosz Naskrecki, Justyna Signerska-Rynkowska, Anastasios Stefanou, Rafal Topolnicki (Dioscuri),
3. Collaborators: Senja Barthel, Hubert Wagner, Simon Rudkin, Radmila Sazdanovic, Berend Smit, Alex Smith, Ruben Specogna, Lukasz Stettner and others

Support

I gratefully acknowledge support by Dioscuri program initiated by the Max Planck Society, jointly managed with the National Science Centre (Poland), and mutually funded by the Polish Ministry of Science and Higher Education and the German Federal Ministry of Education and Research.

Thank you for your time!

Dioscuri Centre in Topological Data Analysis
@Facebook

DIOSCURI
CENTRE IN TOPOLOGICAL DATA ANALYSIS

Paweł Dłotko
pdlotko @ impan.pl
pdlotko @ gmail
pawel_dlotko @ skype

Medical imaging signatures with topology for cancer

Hidetaka Arimura
Faculty of Medical Sciences, Kyushu University, Japan

What the author is interested in is the connection between medicine and mathematics. A human body is equivalent to a tube or donut (without considering holes of nose and eyes). The central hole is a digestive system. The body is covered by surface tissue (epithelial cells). The epithelial cells exposed to the outside world might have gene mutations, thereby resulting in cancer cells. On the other side, the heterogeneity of pixel values in medical images (computed tomography, magnetic resonance imaging, positron emission tomography, etc) would reflect biological tumor heterogeneity, which could be related to the degree of malignancy and patients' prognoses. We have attempted to develop novel medical imaging signatures, which are defined as sets of features calculated based on mathematical models from medical images, for prediction of the degree of malignancy and patients' prognoses. As results, the author's group has shown several data that the topological imaging signatures could be superior to conventional ones in terms of the prediction. The topological image features are derived from Betti number maps $\left(b_{0}, b_{1}\right.$, and b_{2}) within cancer regions of medical images. The assumption that the author has thought through (not twisting things around) is that the b_{0}, b_{1}, b_{2} features may characterize high tumor cell density areas, scattered dead cell areas (necrotic tissues), cancer blood vessels (angiogenesis), respectively. The author will present the basics of topological image features and the applications to lung cancer and head and neck cancer.

What is physics?

\checkmark Basic science that understands and describes concrete natural phenomena by using mathematics that can explain them
\checkmark Basically, the natural phenomena could be theoretically predicted in the macroscopic world, but probabilistically predicted in the microscopic world (quantum mechanics).

What is medicine?

\checkmark Science of uncertainty and an art of Uncertain science ? probability [William Osler (1849-1919),

Principle and Practice of Medicine]
\checkmark Inherent uncertainty in health care [The
Lancet 2010; 375: 1666]

What is medical physics (my field)?

Applied science that could describe natural phenomena
Concrete, but
Uncertain science?
related to human bodies with uncertainties (due to thermal motion or dynamic metabolic activity?) using mathematics that can be used for diagnosis and therapy
with abstract spice ? ?

What we can get in cancer properties

Big pictures on human body and diseases, because you can only predict softly something with uncertainties

Outcomes of surgery and radiotherapy are almost the same, but they are not perfect
Non-small-cell
lung cancer
(NSCLC)
Stage I

Onishi, et al. Int J Radiat

Table 3. Comparison of 5-y overall survival rate between				
surgical series and SBRT				

Abbreviation: SBRT $=$ stereotactic body radiotherapy. Values are percentages.

A treatment method has been effective for some patients, but the method is not always effective for all patients.

My definition of radiomics

Radiomics: one of omics research fields where a set of medical image features related to patients' prognoses are considered "radiome" like genome, transcriptome, proteome, metabolome, to improve diagnosis, treatment, and prognosis
Application: Selection of patients for a more appropriate treatment strategy by prediction of of patients prognoses obtained from pre-treatment medical images (except molecularly targeted drugs for tumors with gene mutations)

Prediction of cancer prognosis* (expected outcome) after treatment from medical images

Prediction: progression (left to right) and partial response (right to left)
*Prognosis: expected outcome or outlook related to a medical condition or treatment

What are requirements of better features in radiomics
from medical point of view?
\checkmark Image features should reflect one or some of cancer phenotypes
\checkmark Image features should be mathematically invariant

What are requirements of better features in radiomics from AI (pattern recognition) point of view?

Features should be similar to those for objects in a same category, but they should be different from those for objects in different categories [Duda 2000]
\checkmark Features should be invariant to irrelevant transformations of the inputs such as translation,
rotation, and scale.

Good features

Ducta, RO.: Hart, P.E; Stork, D.G. Pattern dasisincation, 2nd ed.; Wier-Interscience: New Yark, NY, USA, 2000.

Topology is one of theories that we want

Topologists can eat a coffee cup with trying to drink coffee from donut!

They can not differentiate a coffee cup and donut.

Hypothesis: Classification of cancer patterns into several categories depending on Betti numbers

Mathematical classification of objects by simplifying connectivity

- Bettinumber Invariant value

19. Rote in Ele Comput. Geome Corves Sarfoces 2006:277-312

Cancer patterns with prognostic information could be classified into several categories based on Betti numbers with intrinsic geometrical patterns

Overall outline

1st: Background and radiomics
\checkmark 2nd: Medical background for topological radiomics
3rd: Applications of topological radiomics

Outline

\checkmark Are there relationships among cancer properties, cancer geometry and prognosis?
\checkmark Hole analysis (topological radiomics) as an explainable AI
\checkmark Summary (2)

Definitions of connected components and holes within a kernel

Number of connected components (white) with a pixel of $1, b 0=7$

$b 0=7$

Number of holes $=$
(Number of all connected background) - (Number of connected background contacting with edges)

ack background contacting with edges: 2
b1 $=3-2=1$

2D Betti maps

Ninomiya K, Arimura H, et al., Ptys Med. 2020; 69 90-100

Purpose

To develop a novel image features based on topologically invariant Betti numbers for prognosis prediction of non-small cell lung cancer patients

Optimization of parameters in Cox proportional hazard model
$\beta \quad \operatorname{argmax}\left[k l(\beta)-\lambda P_{\alpha}(\beta)\right]$
$P_{\alpha}(\beta) \quad a\|\beta\|+\frac{\alpha}{2}\|\beta\|_{2}^{2}$

Cross-validation error $C E(\lambda)$ of s fold cross-validation
$C E(\lambda) \quad-\sum_{n}^{2 l}-\left\{\left(\beta_{\chi}^{(k)}-l^{l}\left(\beta_{\chi}^{l}\right)\right\}\right.$
k:3caling factor
0) Alog partial ineilionos
${ }^{2}=\mathrm{Pa}$ arameter vector
() Fenally yerm
n: Number of patients in a training dataset
11. 412 norm
() log partial IWelihood calculitaded from a dataset without the
β_{4} Parameter vector optimized from a dataset without the in

>5 fold cross va idation test based on random numbers
>5 foid cross va idal
$>$ Significant foatures solected by more then 50 U umas

Equation of partial likelihood

$$
\begin{aligned}
& \text { in frilure/ecensocing time. We wish to fivd } \beta \text { which maximives }
\end{aligned}
$$

anbject to our constraint: $a \sum \beta_{1}+(1-a) \sum \beta_{1}^{2} \leqslant c$ Saximizing the partial liksilitood is
quituleut to maímizing a seabed log partial liberibsod,

$$
\frac{2}{n} r(\theta)=\frac{2}{n}\left[\sum_{i=1}^{\infty} x_{j\left(\theta^{B}\right.}^{\top}-\log \left(\sum_{N \in K_{i}} e^{\gamma_{n} n}\right)\right]
$$

We scale by a fartor of $2 / n$ for conveniknce. Hence, if we considhe the Legrangian formulation,
er protken hecones

$$
\begin{aligned}
& \lambda P_{a}(\beta)=\lambda\left(a \sum_{i=1}^{p}|\beta|+\frac{1}{2}(1-\alpha) \sum_{i=1}^{p} \beta_{i}^{2}\right)
\end{aligned}
$$

While often desirnhk, this can eanse problems. Ef two predietoes are very correlated, the lasso will pick one and entirely ignore the otber.

Evaluation method

Results: constituent features in the signatures

Betti number (BN)	Wavelet-decomposition (WD)
GLSZM_SZLGE_62	GLRLM_LRE_HL
GLSZM_SZE_28	Hist_Mean_HL
GLSZM_SZE_108	GLRLM_LRHGE_LL
GLRLM_SRHGE_4	GLSZM_ZP_L
GLSZM_SZHGE_95	GLSZM_LZE_LL
GLRLM_SRHGE_94	GLSZM_LZIGE_U
GLRLM_SRHGE_111	
GLSZM_SZHGE_100	
GLSZM_SZHGE_102	
GLSZM_LZHGE_95	
GISZM: Gray level size zone matrix	Hist: Histogram
GLRLM: Gray level run length matrix	LRE: Long run emphasis
SZLGE: Small zone low gray level emphasis	LRHGE: Long run high gray level emphasis
SZE: Small zone emphasis	ZP: Zone percentage
SRHGE: Short run high gray level emphasis	LZE: Large zone emphasis
SZHGE: Small zone high gray level emphasis	LZIGE: Large zone low gray level emphasis

Results: rad-scores and survival time

Results: p-values of Kaplan-Meier curves

	(hazard ratio, 95% confidence interval)	
	Training (n 135)	Validation (n 70)
BN	$6.7 \times 10^{-6}(0.41,0.26-0.65)$	$3.4 \times 10^{-5}(0.32,0.16-0.62)$
WF	$5.9 \times 10^{-3}(0.57,0.37-0.88)$	$6.7 \times 10^{-1}(0.88,0.48-1.60)$

Background

-Surgery is a first treatment option for patients with stage I nonsmall cell lung cancer (NSCLC), and stereotactic ablative radiotherapy (SABR) is recommended for inoperable patients
-Outcomes of surgery and SABR for stage I NSCLC patients were comparable ${ }^{2.3}$
-Probabilities of locoregional recurrence (LRR) after surgery and SABR were also comparable ${ }^{2,3}$

Prediction of the cancer relapse before treatment is important to select a more appropriate therapy

Overall outline

1st: Background and radiomics
2nd: Medical background for topological radiomics
\checkmark 3rd: Applications of topological radiomics

Outline

- Robust radiogenomics approach to identification of EGFR mutations among patients with NSQLC from three different countries using topologically invariant Betti numbers (Ninomiya K, Arimura H, PLOS ONE 2021)
. Three-dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients (Ninomiya K, Arimura H , Comput Methods Programs Biomed. 2023)
\checkmark Topology-based radiomic features for prediction of parotid gland cancer malignancy grade in magnetic resonance images (Ikushima K, Arimura H, et al. Magnetic Resonance Materials in Physics, Biology and Medicine 2023)
\checkmark Can Persistent Homology Features Capture More Intrinsic Information about Tumors from 18 F Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients? (Le QC, Arimura H , et al. Metabolites 2022)
\checkmark Summary (3)

Issues on "wet" biopsy for cancer treatment
> Some patients may refuse the invasive needle biopsy due to concems about pneumothorax [refusing rate: around 30-40\% (Fukui T, Thoracic Cancer 2019;10:501-7)]
> Liquid biopsy (circulating tumour DNA: ctDNA) has not shown high sensitivities [sensitivity: around 50% (Uchida J, Clin Chem 2015;61(9):1191-1196)]
> A single biopsy of heterogeneous tumors could lead to under- or overestimation of omics information [Gerlinger M, et al. N Engl] Med 2012;366:883-92]
> Normal tissue should not be sampled

Liquid biopsy

7

Imaging biopsy or "dry" biopsy
> Non-invasive virtual biopsy that extracts what are equivalent to information obtained from conventional invasive "wet" biopsies, from medical images for cancer treatment
$>$ Computational processes to characterize tumors as well as normal tissues by extracting intrinsic information from medical images

Non-Invasive Imaging blopsy based on radlomics

Three－dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients
（Ninomiya K，Arimura H，Comput Methods Programs Biomed．2023）
Kenta Ninomilya ${ }^{1}$ ，Hidetaka Arimura ${ }^{2}$ ，Wai Yee Chan ${ }^{3{ }^{3}}$
Kentaro Tanaka ${ }^{4}$ ，Shinichi Mizuno ${ }^{2}$ ，Nadia Fareeda Muhammad Gowdh ${ }^{3}$
Nur Adura Yaakup ${ }^{3}$ ，Chong－Kin Liams ${ }^{5}$ ，Chee－Shee Chal ${ }^{6}$
Kwan Hoong Ng^{3}
1：Department of Health Sciences Graduate School of Medical Sciences Kyushu University 2：Department of Health Sciences Faculty of Medical Sciences Kyeshu University
4：Respiratory Medicine Kyusha University Hospital

5：Department of Medicine Faculty of Medicine Uninersity of Malyea
6：Department of Medicine Faculty of Medicine and Healith Science University Malyysia Sarawak

Topology-based radiomic features for prediction of parotid gland cancer malignancy grade in magnetic resonance images
(Ikushima K, Arimura H, et al. Magnetic Resonance Materials in Physics, Biology and Medicine 2023)

Kojiro Ikushima ${ }^{1,2}$, Hidetaka Arimura ${ }^{3}$, Ryuji Yasumatsu4,
Hidemi Kamezawa ${ }^{5}$, Kenta Ninomiya ${ }^{6}$

KYUSHU
UNIVERSITY

Parotid gland salivary

\checkmark The three major salivary glands are the parotid gland, submandibular gland, and sublingual glands.
\checkmark Salivary glands produce saliva, and the gland ducts (tunnels) function as conduits for delivering
the saliva to the oral cavity. ${ }^{1}$
\checkmark Parotid gland cancer (PGC) is a rare form of cancer
accounting for approximately 5% of all head and neck cancers. ${ }^{2}$

Parotid gland cancer (PGC)
The overall survival was significantly worse in patients with high grade cancer than in patients with low to intermediate grade cancer ${ }^{1}$.

The treatment approaches for parotid cancer depend on the malignancy grade of PGC.
The malignancy grade is determined by using an invasive fine-needie aspiration cytology (FNAC).
\checkmark Therefore, quantitative and noninvasive
Therefore, quantitative and noninvasive
approaches such as radiomics are preferable
approaches such as radiomics
for assessing PGC malignancy.

Honda K et al Am J Otolaryngol $20839(1) 65.70$
${ }^{2}$ Nsthilado A et al. int J Cin Oncol 23(4) 615 -624 2018

Can Persistent Homology Features Capture More
Intrinsic Information about Tumors from 18F-
Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients?
(Le QC, Arimura H, et al. Metabolites 2022)

Quoc Cuong LE ${ }^{1}$, Hidetaka ARIMURA ${ }^{2}$, Takmi KODAMA ${ }^{3}$, Yutaro KABATA ${ }^{4}$
${ }^{1}$ Ho Chi Minh City Oncology Hospital, Ho Chi Minh City, Vietnam ${ }^{2}$ Faculty of Medical Sciences, Kywshn University, Japan
${ }^{\text {a }}$ School of Information and Data Sciences, Nagasaldi University, Japan

Purpose

This study investigated the feasibility of using PH features for prognostic prediction of patients with HN cancer by using PET/CT images.

This is the first study to examine the potential of PH features on PET/CT images for prognostic prediction of patients with HN cancer.

Persistent homology with considering size

What PH can capture:
topologically intrinsic properties associated with umor heterogeneity with respect to number of connected components and holes, and size

bO PH-CT and PH-PET images for long- and shortsurvival patients

PET
b0 PH-PET

Short survival

CT
b0 PH-CT
b0 PH-PET

PET

Kaplan-Meier curves obtained from three types of signatures

Clinical and PH-PET signature

PH-PET: persistent
homolog-p-pos
tomography

Investigation of repeatability of persistent homology
features for patients with lung cancer based on computed tomography images
(Le QC, Arimura H, et al. Metabolites 2022)

Quoc Cuong LE ${ }^{1}$, Hidetaka ARIMURA ${ }^{2}$, Takumi KODAMA ${ }^{3}$, Yutaro KABATA 4
${ }^{1}$ Ho Chi Minh City Oncology Hospital, Ho Chi Minh City, Vietnam
${ }^{2}$ Faculty of Medical Sciences, Kyushu University, Japan
${ }^{3}$ Graduate school of Medical Sciences, Kyushu University, Japan
${ }^{4}$ School of Information and Data Sciences, Nagasaki University, Japan

Evidences of usefulness of topology to
characterize cancer and adverse events
 Biagsy with Scgnatures Inc ue
(Eccepted on גuly 21, 2023)
2. Dushima K , Arimura H , Yasumatsu R, Kamerzwa H , Ninomily K . Topology-based rasiomic fatures for prediction of parotd gland cancer
2. maignancy gride n mignet c resonance mages. MAGMA. 2023 Ape 20. $60: 10.1007 / 110334-023-01084-0$. Epub ahead of print. MIID: 37079154
3. N nom ya K, Armura H, Tranka K, Chan WY, Kabata Y, M rumo S, Gowdh NFM, Yaakup NA, Uam CK, Chai CS, Ng KH. Trree-Gimens onal topological

4. Le QC, Arimura H, Ninomipa K, Kodama T, Moryama T. Can Persistert Homology Features Capture Mare Intinsic Information about Tumers from

 Sradiction of symptomatic raciation preumonits before stargotactic ablative nefiotherapy for ung cancer: A retrospective anal)s s. PLos One. 2022
7. Kodama T, Ar mura H, Sh rakawa Y, Nenomipa K, Yoah take T, Stioyama Y, Re apse presictatity of topolipgical signature an pretreatment plannin CT mages of stage I non-smal cei ling cancer pabents before treatment wath stereotactic ablative radiotherapy. Ticrac Cancez 2022 1). 211212

Feasibility for Prediction of Primary Cancer Sites of Brain Metastases Based on Hessian Index Images (Moriyama K, Arimura H, Medical Imaging and Information Sciences 2022, in Japanese)

Physical examinations, such as invasive needle biopsy, biochemical examinations, and medical imaging (e.g., MRA, CT) to identify primary sites

Issues of current invasive examinations for brain metastases
\checkmark Invasive biopsy may not always identify primary sites owing to different cells in brain metastases from those in primary sites, and there could be a risk of tract recurrence after stereotactic needle biopsy of brain metastases
\checkmark Approximately 15% of brain metastases remain unidentified
\checkmark Invasive biopsy can impose a large burden on patients; in particular, it is unsuitable for patients in poor condition

Singularity theory and its applications to strongly convex multiobjective optimization problems

Shunsuke Ichiki
Department of Mathematical and Computing Science, School of Computing, Tokyo Institute of Technology, Japan

A multiobjective optimization problem is a problem to optimize multiple objectives, such as cost, quality, safety and environmental impact in the industrial world. In this mini-course, I would like to introduce theoretical applications of "singularity theory of differentiable mappings", which is a branch of geometry, to strongly convex multiobjective optimization problems.

For this purpose, we first introduce some of basic notions of singularity theory. We also discuss a result called a "parametric transversality theorem", which is an important and fundamental tool in singularity theory for investigating generic mappings. Then, as an application, we give a transversality theorem on linear perturbations. Next, we explain some basic notions of multiobjective optimization and introduce a property of the Pareto set (i.e. the set of optimal solutions) of a strongly convex multiobjective optimization problem from the viewpoint of topology. Finally, based on them, we introduce theoretical applications of singularity theory to strongly convex multiobjective optimization problems.

Multiobjective optimization

- X : a set
- $f=\left(f_{1}, \ldots, f_{\ell}\right): X \rightarrow \mathbb{R}^{\ell}$: a mapping
- $L=\{1, \ldots, \ell\}$
- $x \in X$: a Pareto solution of f
$\stackrel{\text { def }}{\ominus}$ there does not exist another point $y \in X$ such that $f_{i}(y) \leq f_{i}(x)$ for all $i \in M$ and $f_{j}(y)<f_{j}(x)$ for at least one index $j \in M$.
\Leftrightarrow for any $x^{\prime} \in X$, either (a) or (b) holds.
(a) $\forall i \in L, f_{i}(x)=f_{i}\left(x^{\prime}\right)$.
(b) $\exists i \in L$ s. t. $f_{i}(x)<f_{i}\left(x^{\prime}\right)$.
- $X^{*}(f)=\{x \in X \mid x:$ a Pareto solution of $f\}$: the Pareto set of f
- The set $f\left(X^{*}(f)\right)$ is called the Pareto front of f.

Multiobjective optimization

- $f=\left(f_{1}, \ldots, f_{\ell}\right): X \rightarrow \mathbb{R}^{\ell}, L=\{1, \ldots, \ell\}$

The problem of determining $X^{*}(f)$ is called the problem of minimizing f.
For a non-empty subset $I=\left\{i_{1}, \ldots, i_{k}\right\}$ of $L\left(i_{1}<\cdots<i_{k}\right)$, set

$$
f_{I}=\left(f_{i_{1}}, \ldots, f_{i_{k}}\right)
$$

The problem of determining $X^{*}\left(f_{I}\right)$ is called a subproblem of the problem of minimizing f.
-

$$
\Delta^{\ell-1}=\left\{\left(w_{1}, \ldots, w_{\ell}\right) \in \mathbb{R}^{\ell} \mid \sum_{i=1}^{\ell} w_{i}=1, w_{i} \geq 0\right\}
$$

- We also denote a face of $\Delta^{\ell-1}$ for a non-empty subset I of L by

$$
\Delta_{I}=\left\{\left(w_{1}, \ldots, w_{\ell}\right) \in \Delta^{\ell-1} \mid w_{i}=0(i \notin I)\right\}
$$

Definition 1 (Simplicial problems, Weakly simplicial problems)
$f: X \rightarrow \mathbb{R}^{\ell}\left(X \subset \mathbb{R}^{m}\right), L=\{1, \ldots, \ell\}, r \in \mathbb{Z}_{\geq 0}$ or $r=\infty$

- The problem of minimizing f is C^{r} simplicial $\stackrel{\text { def }}{\ominus} \exists \Phi: \Delta^{\ell-1} \rightarrow X^{*}(f) \subset \mathbb{R}^{m}:$ a C^{r} mapping s. t. $\forall I \subset L(I \neq \emptyset)$, both
$\left.\Phi\right|_{\Delta_{I}}: \Delta_{I} \rightarrow X^{*}\left(f_{I}\right)$ and
$\left.f\right|_{X^{*}\left(f_{I}\right)}: X^{*}\left(f_{I}\right) \rightarrow f\left(X^{*}\left(f_{I}\right)\right)$
are C^{r} diffeomorphisms.
- The problem of minimizing f is C^{r} wealkly simplicial $\stackrel{\text { def }}{\Leftrightarrow} \exists \phi: \Delta^{\ell-1} \rightarrow X^{*}(f) \subset \mathbb{R}^{m}:$ a C^{r} mapping s. t. $\forall I \subset L(I \neq \emptyset), \phi\left(\Delta_{I}\right)=X^{*}\left(f_{I}\right)$.

Definition 2

X : a convex set of \mathbb{R}^{m}
(1) $f: X \rightarrow \mathbb{R}:$ a strongly convex function $\stackrel{\text { def }}{\Leftrightarrow} \exists \alpha>0$ s. t. $\forall x, y \in X, \forall t \in[0,1]$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{1}{2} \alpha t(1-t)\|x-y\|^{2}
$$

where $\|z\|$ is the Euclidean norm of $z \in \mathbb{R}^{m}$.
(α : a convexity parameter of f.)
(2) $f=\left(f_{1}, \ldots, f_{\ell}\right): X \rightarrow \mathbb{R}^{\ell}$: a strongly convex mapping $\stackrel{\text { def }}{\Leftrightarrow} f_{i}$ is strongly convex for any $i \in L$.
strongly convex \Longrightarrow strictly convex \Longrightarrow convex
Proposition 3
f is strongly convex with a convexity parameter $\alpha>0$
$\Longleftrightarrow \exists g: X \rightarrow \mathbb{R}$: convex s.t. $f(x)=g(x)+\frac{\alpha}{2}\|x\|^{2}$
i.e. (a strongly convex function with $\alpha>0)=($ a convex function $)+\frac{\alpha}{2}\|x\|^{2}$

Some results on strongly convex multiobjective optimization problems

Theorem 4

- $f=\left(f_{1}, \ldots, f_{\ell}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}:$ a strongly convex C^{r} mapping, where $1 \leq r \leq \infty$
Then, we have the following:
(1) The problem of minimizing f is C^{r-1} weakly simplicial.
(2) Moreover, if $\operatorname{rank} d f_{x}=\ell-1\left(\forall x \in X^{*}(f)\right)$, then this problem is C^{r-1} simplicial.
- The case $2 \leq r \leq \infty$: N. Hamada, K. Hayano, S. Ichiki, Y. Kabata and H. Teramoto, Topology of Pareto sets of strongly convex problems, SIAM Journal on Optimization, 30 (2020), no. 3, 2659-2686.
- The case $r=1: \mathbf{N}$. Hamada, S. Ichiki, Simpliciality of strongly convex problems, Journal of the Mathematical Society of Japan, 73 (2021), no. 3, 965-982.

Some results on strongly convex multiobjective optimization problems

Without differentiability, on C^{0} weak simpliciality, the following result is obtained.

Theorem 5

- $f=\left(f_{1}, \ldots, f_{\ell}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}:$ a strongly convex mapping Then, the problem of minimizing f is C^{0} weakly simplicial.
- Y. Mizota, N. Hamada and S. Ichiki, All unconstrained strongly convex problems are weakly simplicial, available from arXiv:2106.12704.

Remark 1

The result has recently been applied to engineering, and the application was introduced by the following talk:
Naoki Hamada, Brief Introduction to Topology for Multi-objective Optimization

Dropping the rank assumption of the theorem

Remark 2

For the proof, we use the mapping $x^{*}: \Delta^{\ell-1} \rightarrow X^{*}(f)$ defined by

$$
x^{*}(w)=\arg \min _{x \in \mathbb{R}^{m}}\left(\sum_{i=1}^{\ell} w_{i} f_{i}(x)\right)
$$

Remark 3

- $f=\left(f_{1}, f_{2}\right): \mathbb{R} \rightarrow \mathbb{R}^{2}\left(f_{1}(x)=f_{2}(x)=x^{2}\right)$

Then, we have the following.

- f : a strongly convex mapping of class C^{∞}
- Since rank $d f_{0}=0$ and $X^{*}(f)=\{0\}, f$ does not satisfy the assumption of the theorem.
Since $X^{*}(f)=\{0\}, f$ is not C^{0} simplicial.

A theoretical application of Singularity Theory to multiobjective optimization
Proposition 6 (।)

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}(m \geq \ell):$ a C^{2} mapping
- $\Sigma=\left\{\pi \in \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{\ell}\right) \mid \exists x \in \mathbb{R}^{m}\right.$ s. $\left.t . \operatorname{rank} d(f+\pi)_{x} \leq \ell-2\right\}$

If $m-2 \ell+4>0$, then Σ has Lebesgue measure zero.

Lemma 7

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}$: a strongly convex mapping

Then, $\forall \pi \in \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{\ell}\right), f+\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}$ is also strongly convex.

Theorem 8 (Hamada, Hayano, Kabata, Teramoto, I)

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}(m \geq \ell)$: a strongly convex C^{r} mapping, where $2 \leq r \leq \infty$
- Let Σ be the set defined by
$\left\{\pi \in \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{\ell}\right) \mid\right.$ The problem of minimizing $f+\pi$ is not C^{r-1} simplicial $\}$.
If $m-2 \ell+4>0$, then Σ has Lebesgue measure zero.

Proposition 9 (I)

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}(m \geq \ell):$ a C^{2} mapping.
- $\Sigma=\left\{\pi \in \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{\ell}\right) \mid \exists x \in \mathbb{R}^{m}\right.$ s. t. $\left.\operatorname{rank} d(f+\pi)_{x} \leq \ell-2\right\}$

If $m-2 \ell+4>0$, then for any non-negative real number s satisfying

$$
s>m \ell-(m-2 \ell+4)
$$

it follows that $\mathcal{H}^{s}(\Sigma)=0$, and thus,

$$
\begin{cases}\Sigma=\varnothing & \text { if } \ell=1 \\ \operatorname{dim}_{H} \Sigma \leq m \ell-(m-2 \ell+4) & \text { if } \ell \geq 2\end{cases}
$$

- S. Ichiki, A refined version of parametric transversality theorems, Journal of Geometric Analysis, 32 (2022), no. 9, Paper No. 234, 14 pp.

Theorem 10 (I)

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}(m \geq \ell)$: a strongly convex C^{r} mapping $(2 \leq r \leq \infty)$
- Let Σ be the set defined by
$\left\{\pi \in \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{\ell}\right) \mid\right.$ The problem of minimizing $f+\pi$ is not C^{r-1} simplicial $\}$ If $m-2 \ell+4>0$, then

$$
\begin{cases}\Sigma=\varnothing & \text { if } \ell=1 \\ \operatorname{dim}_{H} \Sigma \leq m \ell-(m-2 \ell+4) & \text { if } \ell \geq 2\end{cases}
$$

Example 11

- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}, x_{1}^{2}+x_{2}^{2}\right) \leftarrow C^{\infty}$ strongly convex
- Let Σ be the set defined by
$\left\{\pi \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right) \mid\right.$ The problem of minimizing $f+\pi$ is not C^{∞} simplicial $\}$ By the above theorem, $\operatorname{dim}_{H} \Sigma \leq 2$.
By a direct calculation, $\Sigma=\left\{\pi=\left(\pi_{1}, \pi_{2}\right) \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right) \mid \pi_{1}=\pi_{2}\right\}$.
Since $\operatorname{dim}_{H} \Sigma=2$, we cannot improve the evaluation " ≤ 2 ".
- S. Ichiki, A refined version of parametric transversality theorems, Journal of Geometric Analysis, 32 (2022), no. 9, Paper No. 234, 14 pp

Explanatory Model Analysis

Przemysław Biecek

$M I^{2}$ Data Lab, Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

Shapley values currently stand as the most widely employed technique for conducting Explanatory Model Analysis (EMA) and achieving Explainable Artificial Intelligence (XAI). Ongoing efforts are focused on crafting modifications and extensions to adapt this method to address the diverse challenges posed by a wide array of applications. In this presentation, I will illustrate instances where Shapley values, and by extension, techniques utilized in explainable artificial intelligence, prove effective in distinguishing models exhibiting distinct behaviors, even if their performance appears identical at first glance. Subsequently, I will present a proposal for an iterative model analysis process utilizing Shapley values. Drawing inspiration from Rashomon perspectives, this approach, termed Shapley Lenses, provides a more nuanced perspective on predictive models. The insights derived from predictive models can then be leveraged to construct subsequent iterations of models with enhanced interpretability.

We develop methods, tools and processes for responsible machine learning.

Shapley values for ML models

Problem B:

In machine learning, we train a function $f(x): R^{p} \rightarrow R$ that calculates predictions based on p variables.

How to quantify the effect of each variable on the final prediction?

Example:

We have a complex predictive model
$\mathrm{f}(\mathrm{x})$ that predicts the probability of surviving the Titanic disaster.

How do we calculate contributions of individual variables to the prediction for a single passenger.

Here: an eight-year-old boy travelling 1st class.

Example:
We have a complex predictive model $f(x)$ that predicts the probability of surviving the Titanic disaster.

How do we calculate contributions of individual variables to the prediction for a single passenger.

Here: an eight-year-old boy travelling 1st class.

$f(\underline{X}) \mid X^{1}=x_{2}^{1}, \ldots, X^{j}=x_{x}^{j}$

Shapley values for ML models MI ReDteam

Example:

We have a complex predictive model $f(x)$ that predicts the probability of surviving the Titanic disaster.

How do we calculate contributions of individual variables to the prediction for a single passenger.

Here: an eight-year-old boy travelling 1st class.

$f(\underline{X}) \mid X^{1}=x_{*}^{1}, \ldots, X^{j}=x_{*}^{j}$

Shapley values for ML models \quad MI REDTEAM				
Explanstory Model Anslysis. Prremyslaw Blecek, Tomssz Burykowski. 2021. CRC. httpe://ema.drwhy.ai				

Problem C:

In survival modelling, the model output is a survival function $\mathrm{S}(\mathrm{t})$.

How to quantify the effect of each variable on the final prediction (which is a function)?

How to calculate SurvSHAP(t) values

Contribution of variable \boldsymbol{d} in time point \boldsymbol{t} for the patient \boldsymbol{x} :

$$
\begin{aligned}
& \phi_{t}\left(\mathbf{x}_{*}, d\right)=\frac{1}{|\Pi|} \sum_{\pi \in \Pi} e_{t, \mathbf{x}_{*}}^{\text {before }(\pi, d) \cup\{d\}}-e_{t, \mathbf{x}_{*}}^{\text {before }(\pi, d)} \\
& e_{t, \mathbf{x}_{*}}^{D}=\mathbb{E}\left[\hat{S}(t, \mathbf{x}) \mid \mathbf{x}^{D}=\mathbf{x}_{*}^{D}\right]
\end{aligned}
$$

Local variable importance of variable \boldsymbol{d} for the patient \boldsymbol{x} :

$$
\psi\left(\mathbf{x}_{*}, d\right)=\int_{0}^{t_{\max }}\left|\phi_{t}\left(\mathbf{x}_{*}, d\right)\right| \mathrm{d} w(t)
$$

SurvSHAP(u: Tirens Krzyzinski, Mikolaj Spytek, Hubert Baniecki, Przemyslaw Blecek.
SurvSHAP(): Time-dapendent explanations of machine learning survival models. Knowledge-Based Systems. 2023

Linear instability of Prandtl spirals
 Tomasz Cieślak
 Institute of Mathematics, Polish Academy of Sciences, Poland

We review a recent result with P.Kokocki and W.Ożański stating that the union of three or more uniformly distributed Prandtl spirals is linearly unstable as a solution to the Birkhoff-Rott equation. First, a linearization of the Birkhoff-Rott equation around the Prandtl spirals is found. Next, a perturbation leading to the instability is shown. Notice that, unlike for the flat sheet, the unstable modes grow only algebraically in time. In our talk we partially answer the question of Helmholtz from his famous 1868 paper on discontinuous flows.

$M \geqslant 3$ unfformly distranted Prandtt spinils (6) solve $B-R$ equation.
[! M>1 uniforming distonlanted Pronollt sparals
sohe 2D Eunler in a weah seuse; Ginhtk-Kolacki-
-Ozanistes 2021].
BACK TO THE QLESTION OF HENMHOLTZ!
The union of $H \geqslant 3$ umifornly distentated
Pranctlt rpirals in limeary unstable As soluhoos
[Kelum-Helinhodtz instatility]. The grath
of wirtabisition is algeltricac in time!
Comment. CKO '23.
Mayde/Bertozens show that the flat heet

$$
\longrightarrow \quad \begin{aligned}
& \longrightarrow \\
& \leftarrow \\
& \text { (with solution to } B \text { enernial on time groith }
\end{aligned}
$$

of witasilites).

Mumay llllicox 2022 show that the curalar
sheet flos is limeorly stoble !!', $v=0)^{r-\frac{x^{2}}{k l^{2}}}$

> HOW DO WE COMPUTE IT?
> THE IDEA OF KELVIN-HELMHOLZ INSTABUTIES. TAKE
> $Z_{m}\left(t_{1} T_{m}\right)+\varepsilon \zeta_{m}\left(t_{1} T_{m}\right)$, EXPAND $\mathbb{N} \varepsilon$.
> NEGLECT HIGHER ORDER TERMS,
> SHOW INSTABILITY OF THE LINEARIZATION.
> FIRST STEP:
> $P_{r} \int_{\mathbb{R}} \sum_{k=0}^{M-1} \frac{d T_{k}}{Z_{m}\left(t, T_{m}\right)-Z_{k}\left(\hbar T_{n}\right)+\varepsilon\left(\zeta_{u}\left(t, T_{m}\right) \zeta_{k}\left(\hbar T_{k}\right)\right)}=$
> $=-\varepsilon f_{p} \int_{R^{2}} \sum_{k=0}^{\mu-1} \frac{\zeta_{n}\left(6 \sigma_{m}\right)-\zeta_{k}\left(\sigma_{T} T_{k}\right)}{\left[Z_{n}\left(t_{1} \Gamma_{n}\right)-z_{k}\left(t_{1} F_{k}\right)\right]^{2}} d \pi_{k}+O\left(\varepsilon^{2}\right)$.
> f p is the Hadamard trunte part
> THE LINEARIZED B-R:
> $t \partial_{t} \zeta_{m}(G \theta)^{*}-\frac{2 \mu-1}{2 a} \partial_{E} \zeta_{m}(G \theta)^{k}=$
> $=-7 t_{m} 5$, where

	THE EXACT FORM OF UNSTABGE MODES: Then, taking $X_{i}(t)=x_{j}(t)$, $Y_{c}(t)=\zeta(t),$ one obtain: $\partial_{t}\left(t^{\frac{i+2 \pi}{2 \pi}} X(t)\right)=-t^{-1+1+\frac{12 t}{2 \pi}}$. $\begin{gathered} \left(c_{0}^{*}-c^{-}(\alpha)^{k}\right) Y^{*}(t) ; \\ \partial_{t}\left(t^{i \frac{1-2 t}{2 \pi}} Y(t)\right)=-t^{-1+i+\frac{1-2 n}{2 \pi}}\left(c_{0}{ }^{*}-c^{+}(\alpha)\right)^{*} X^{*}(t) . \end{gathered}$ For some chacices of $C_{0} \& C^{ \pm}(\alpha)$ $\|x(t)\|,\|Y(t)\| \geqslant c t^{\delta}$.
	\cdots

Pseudospheres from singularity theory view-point with a classification of 2 -soliton surfaces
 Toshizumi Fukui
 Department of Mathematics, Saitama University, Japan
 (joint work with Yutaro Kabata)

We discuss pseudospheres in the Euclidean 3-space with taking care about their singularity types and Backlünd transformations. We investigate a classification of 2-soliton surfaces by noting how the ridge lines appear.

Pseudospheres from sincularity theory view point with a classification of 2 -soliton surfaces (j / ω with Yutaro Kabata)
 Toshi Fukui (Saitama University) 16:45-17:5, 26 SeptemBer, 2023
 Workshop for Mathmatics for Industry
 $$
\text { 25-29 SeptemBer, } 2023
$$
 Warsaw University of Technology

Surfaces in \mathbb{R}^{3}

$\varphi: \mathbb{R}^{2} \longrightarrow M=\varphi\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}, C^{\infty}$

$$
\begin{aligned}
& E=\left\langle\varphi_{u}, \varphi_{u}\right\rangle, F=\left\langle\varphi_{u}, \varphi_{v}\right\rangle, \quad G=\left\langle\varphi_{v}, \varphi_{v}\right\rangle \\
& L=\left\langle\varphi_{u v}, \nu\right\rangle, M=\left\langle\varphi_{u v}, \nu\right\rangle, \quad N=\left\langle\varphi_{w}, \nu\right\rangle
\end{aligned}
$$

where ν is a unit normal.
The first fundamental form

$$
I=E d u^{2}+2 F d u d v+G d v^{2}
$$

The second fundamental form

$$
\|=L d u^{2}+2 M d u d v+N d v^{2}
$$

Chebyshev' net

A pseudosphere is a surface with constant
negative Gauss curvatures. We can assume that
they have Gauss curvature -1 up to similarity
transformations.
For a surface with $K=-1$, we can take the asymptotic coordinate (u, v) with the following fundamental forms:

$$
\begin{aligned}
& I=d u^{2}+2 \cos \phi d u d v+d v^{2} \\
& I I=2 \sin \phi d u d v
\end{aligned}
$$

where ϕ is the asymptotic ancle.
Gauss Coddazi equation Becomes sine Gordon equation:

$$
\phi_{U V}=\sin \phi
$$

Curvature coordinate

The curvature coordinate is Given By

$$
x=\frac{u+v}{2}, \quad y=\frac{u-v}{2} .
$$

The fundamental forms are

$$
\begin{aligned}
& I=\cos ^{2} \frac{\phi}{2} d x^{2}+\sin ^{2} \frac{\phi}{2} d y^{2} \\
& I=\frac{1}{2} \sin \phi\left(d x^{2}-d y^{2}\right)
\end{aligned}
$$

The principal curvatures are

$$
\tan \frac{\phi}{2}, \text { and }-\cot \frac{\phi}{2}
$$

Ridge and flecnodal

Let v_{i} denote a principal vector of a surface and let κ_{i} denote the corresponding principal curvature of a surface.

A point P on a surface is v_{i} ridge if $v_{i} \kappa_{i}(P)=0$.

A point P on a surface is flecnodal if there is a line with at least 4 point contact with the surface at P.

1. The level sets of ϕ, κ_{1} and κ_{2} contaning P are equal.
2. The differentials of the principal curvatures are given as follows:

$$
\begin{array}{ll}
\partial_{x} \kappa_{1}=\frac{\phi_{x}}{1+\cos \phi}, & \partial_{y} \kappa_{1}=\frac{\phi_{y}}{1+\cos \phi}, \\
\partial_{x} \kappa_{2}=\frac{\phi_{x}}{-1+\cos \phi}, & \partial_{y} \kappa_{2}=\frac{\phi_{y}}{-1+\cos \phi} .
\end{array}
$$

So ∂_{x} ridge (resp. ∂_{y} ridge) is given $B y \phi_{x}=0$ (resp. $\phi_{y}=0$). (A level of ϕ has a horizontal (or vertical) tangent.)
Flecnodal point on pseudosphere is Given By $\phi_{u} \phi_{v}=0$. (i.e., A level of ϕ has a diaconal (or anti diagonal) tangent.)

Backlünd transformation

We say $\tilde{\phi}$ is Backlünd transformation of ϕ if

$$
\begin{equation*}
\left(\frac{\tilde{\phi}+\phi}{2}\right)_{u}=\lambda \sin \frac{\tilde{\phi}-\phi}{2}, \quad\left(\frac{\tilde{\phi}-\phi}{2}\right)_{v}=\lambda^{-1} \sin \frac{\tilde{\phi}+\phi}{2} \tag{1}
\end{equation*}
$$

where $\lambda=\tan \theta / 2 \theta$ is in the next sheet.
If ϕ is a solution of sine Gordon equation, so is $\tilde{\phi}$.
\{sol. Of sine Gordon $\} \xrightarrow{B T}$ \{sol. Of sine Gordon $\}$

Geometric BT

We say

$$
M \longrightarrow \widetilde{M}, \quad p \longmapsto \tilde{p},
$$

is cemetric BT, if

- The line $\overline{p \tilde{p}}$ is in $T_{p} M$ and also in $T_{\bar{p}} \tilde{M}$.
- $d(p, \tilde{p})$ is constant $(=r)$.
- the unit normals ν_{p} and $\tilde{\nu}_{\rho}$ has a constant ancle θ, that is $\left\langle\nu_{p}, \tilde{\nu}_{p}\right\rangle=\cos \theta$.
Geometric BT Between $K=-1$ surfaces is Given
By

$$
\tilde{\varphi}=\varphi+r\left(\frac{\cos \tilde{\phi} / 2}{\cos \phi / 2} \varphi_{x}+\frac{\sin \tilde{\phi} / 2}{\sin \phi / 2} \varphi_{y}\right), r=\sin \theta
$$

and it preserves Chebyshev's nets.

Bianchi's permutability

If $\phi_{i}(i=1,2)$ satisfies

$$
\left(\frac{\phi_{i}+\phi}{2}\right)_{u}=\lambda_{i} \sin \frac{\phi_{i}-\phi}{2}, \quad\left(\frac{\phi_{i}-\phi}{2}\right)_{v}=\lambda_{i}^{-1} \sin \frac{\phi_{i}+\phi}{2},
$$

and $\tilde{\phi}$ satisfies

$$
\left(\lambda_{2}-\lambda_{1}\right) \tan \frac{\tilde{\phi}-\phi}{4}=\left(\lambda_{2}+\lambda_{1}\right) \tan \frac{\phi_{2}-\phi_{1}}{4}
$$

then

$$
\begin{aligned}
& \left(\frac{\tilde{\phi}+\phi_{1}}{2}\right)_{u}=\lambda_{2} \sin \frac{\tilde{\phi}-\phi_{1}}{2}, \quad\left(\frac{\tilde{\phi}-\phi_{1}}{2}\right)_{v}=\lambda_{2}^{-1} \sin \frac{\tilde{\phi}+\phi_{1}}{2} . \\
& \left(\frac{\tilde{\phi}+\phi_{2}}{2}\right)_{u}=\lambda_{1} \sin \frac{\tilde{\phi}-\phi_{2}}{2}, \quad\left(\frac{\tilde{\phi}-\phi_{2}}{2}\right)_{v}=\lambda_{1}^{-1} \sin \frac{\tilde{\phi}+\phi_{2}}{2} .
\end{aligned}
$$

Soliton

0 soliton $\xrightarrow{B T} 1$ soliton $\xrightarrow{B T} 2$ soliton
$\phi=0$

$$
\begin{array}{r}
\phi_{\lambda}=4 \tan ^{-1}\left(\lambda u+\lambda^{-1} v\right) \quad \xi_{i}=\lambda_{i} u+\lambda_{j}^{-1} v \\
\phi_{\lambda_{1}, \lambda_{2}}=4 \tan ^{-1}\left(\frac{\lambda_{1}+\lambda_{2}}{\lambda_{2}-\lambda_{1}} \cdot \frac{\sinh \frac{\xi_{1}-\xi_{2}}{2}}{\cosh \frac{\xi_{1}+\xi_{2}}{2}}\right)
\end{array}
$$

line
Beltrami's pseudosphere
Dini's pseudosphere

2 soliton surfaces

Singular locus of φ

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ Be a Chevyshev net for a pseudosphere with $K=-1$. Let ϕ denote the asymptotic angle. Then

$$
\begin{aligned}
I & =d u^{2}+2 \cos \phi d u d v+d v^{2} \\
I & =2 \sin \phi d u d v
\end{aligned}
$$

Remark that the singular locus of φ is defined By

$$
\Sigma: \sin \phi=0, \quad \text { i.e, } \quad \phi=k \pi, \quad k \in \mathbb{Z} .
$$

For 2 soliton surface, we have $k=0, \pm 1$

Criteria of singularities

Let C denote the curvature line through P whose principal direction is null direction at P.

1. Assume that ϕ is nonsingular at P, i.e, the singular locus of φ is nonsingular at P.
1.1φ is cuspidal edge at P if and only if Σ and C intersect transversely at P.
1.2φ is swallowtail at P if and ony if Σ has 2 -point contact with C at P.
2. Assume that ϕ has a Morse singularity at P.
2.1φ is cuspidal Beaks at P if and ony if the Hessian of ϕ is positive.
2.2φ is cuspidal lips at P if and only if the Hessian of ϕ is negative.

Flecnodal and ridge on a
 2 -soliton surface

On pseudospheres, we have
∂_{u} fleconodal line ($\phi_{u}=0$),
∂_{v} fleconodal line ($\phi_{v}=0$),
∂_{x} ridge line $\left(\phi_{x}=0\right)$,
∂_{y} ridge line $\left(\phi_{y}=0\right)$
and, on 2 soliton surfaces, they are

$$
\frac{\cosh \xi_{2}}{\cosh \xi_{1}}=\frac{\lambda_{2}}{\lambda_{1}}, \frac{\lambda_{1}}{\lambda_{2}}, \frac{\lambda_{2}+\lambda_{2}^{-1}}{\lambda_{1}+\lambda_{1}^{-1}}, \frac{\lambda_{2}-\lambda_{2}^{-1}}{\lambda_{1}-\lambda_{1}^{-1}}, \text { respectively. }
$$

Here $\xi_{i}=\lambda_{i} u+v / \lambda_{i}, i=1,2$

When $\lambda_{2} \rightarrow \lambda_{1}=\lambda$,

$$
\phi_{\lambda, \lambda}=\lim _{\lambda^{\prime} \rightarrow \lambda} \phi_{\lambda, \lambda^{\prime}}=4 \tan ^{-1} \frac{-\eta}{\cosh \xi},
$$

where $\xi=\lambda u+\lambda^{-1} v+c$ and $\eta=\lambda u-\lambda^{-1} v$.
The ∂_{u} fleconodal, ∂_{v} fleconodal, ∂_{x} ridge and ∂_{y} ridge are defined By

$$
\eta \tanh \xi=1, \quad-1, \frac{\lambda-\lambda^{-1}}{\lambda+\lambda^{-1}}, \frac{\lambda+\lambda^{-1}}{\lambda-\lambda^{-1}}, \text { respectively }
$$

Classification of 2 -soliton

The result in this section should compare the classification of 2 soliton surfaces (Popov). They show four types for Generic 2 soliton surfaces. The correspondence Between their classification and our results is summarized as follows:

Type	$\lambda_{1} \lambda_{2}$	μ	flecnodal	∂_{x} ridge	∂_{y} ridce
1	+	+	exist	exist	exist
2	+	-	exist	exist	not exist
3	-	+	not exists	not exist	not exist
4	-	-	not exists	not exist	exist

$$
\mu=\left(\lambda_{1}^{2}-1\right)\left(\lambda_{2}^{2}-1\right) .
$$

Breather surfaces

For $\lambda \in \mathbb{C}$, with $\operatorname{Re} \lambda \neq 0, \operatorname{Im} \lambda \neq 0$, we have

$$
\phi_{\lambda, \bar{\lambda}}=-4 \tan ^{-1}\left(\cot \arg \lambda \cdot \frac{\sin \operatorname{Im} \xi}{\cosh \operatorname{Re} \xi}\right)
$$

where $\xi=\lambda u+v / \lambda$
The ∂_{u} flecnodal, ∂_{v} fleconodal, ∂_{x} ridce and ∂_{y} ridge are defined By
$\frac{(\tanh \operatorname{Re} \xi)(\tan \operatorname{Im} \xi)}{\tan \arg \lambda}=1,-1, \frac{|\lambda|-|\lambda|^{-1}}{|\lambda|+|\lambda|^{-1}}, \frac{|\lambda|+|\lambda|^{-1}}{|\lambda|-|\lambda|^{-1}}$,
respectively.

Formation of nanostructured functional particles with the spray-drying method

Leon Gradoń

Faculty of Chemical and Process Engineering, Warsaw University of Technology, Poland

The structure of matter, on both an atomic and macroscopic scale, is a result of the interplay between the requirements of the physical forces operating between the individual parts and the mathematical requirements of space-filling. Nanoparticles with well-defined chemical composition can act as a building block for the construction of functional structures, such as highly ordered aggregates, as well as porous and hollow aggregates. A spray drying technique is used for the production of crystal-like structures with nanoparticle building blocks. When spray-drying uniform spherical particles tightly packed aggregates with either simple or broken symmetry were formed using polystyrene particles with varied zeta potential as templates, it is also possible to form highly ordered porous and hollow aggregates from inorganic colloidal particles potentially useful for controlled drug delivery and catalysis. The process by which organized mesoporous silica particles are formed by the spray-drying method was examined using elementary laws of topology.

Formation of nanostructured functional particles with the spray-drying method

Leon Gradon
Faculty of Chemical and Process Engineering,
Warsaw University of Technology.Warsaw, Poland
Stanisław Janeczko
Faculty of Mathematics and Information Sciences Warsaw University of Technology.Warsaw, Poland

Ratna Balgis, Takahashi Ogi, Kikuo Okuyama Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, Japan

Contents

```
1 Introduction
Principles of self-assembly
Shapes of the structures
Examples of nanostructures applications
Principle of spray-drying process
Examples of produced templates
Topographical structures for challenging aspects of nanocatalysis
Conclusions
```

"There is plenty of room at the bottom"

Richard P. Feynman
(there is a room for great development even in the microscopic world)

The structure of matter, on both an atomic and macroscopic scale, is a result of the interplay between the requirements of the physical forces operating between the individual parts and the mathematical requirements of space filling.

Self-assembly

Reasons for interest in self-assembly:

1) Humans are attracted by the appearance of order from disorder.
2) Living cells self-assemble \Rightarrow stimulation for the design of non-living systems.
3) Self-assembly is one of the few practical strategies for making ensembles of nanostructures.

It will therefore be an essential part of nanotechnology

4) Manufacturing and robotics will benefit from applications of self-assembly.
5) Self-assembly is common to many dynamic and multicomponent systems:

- smart materials
- self-healing structures
- netted sensors
- computer networks

Types of self-assembly

Static self-assembly (S)
S - involves systems that are at global or local equilibrium and do not dissipate energy

Examples of static self-assembly
(A) Crystal structure of a ribosome
(B) Self-assembled peptideamphiphile nanofibers
(C) An array of millimetersized polymeric plates assembled at a water/perfluorodecalin interface by capillary interactions
(D) Thin film of a nematic liquid crystal on an isotropic substrate
(E) Micrometersized metallic polyhedra folded from planar substrates
(F) A three-dimensional aggregate of micrometer plates assembled by capillary forces

Dynamic self-assembly (D)

D - interaction responsible for the formation of structures or pattern between components only occur if the system is dissipating energy

Examples of dynamic self-assembly

(A) An optical micrograph of a cell with fluorescently labeled cytoskeleton and nucleus; microtubules ($\sim 24 \mathrm{~nm}$ in diameter) are colored red
(B) Reaction-diffusion waves in a Belousov-Zabatinski reaction in a 35 -inch Petri dish
(C) A simple aggregate of three millimeter-sized, rotating, magnetized disks interacting with one another via vortex-vortex interactions
(D) A school of fish
(E) Concentric rings formed by charged metallic bead 1 mm in diameter rolling in circular paths on a dielectric support
(F) Convection cells formed above a micropatterned metallic support
The distance between the centers of the cells is $\sim 2 \mathrm{~mm}$

Self-assembly reflects information coded as: shape, surface properties, charge, polaribility, etc.

The design of components that organize themselves into desired patterns and function is the key to application of self-assembly

The components must be able to move with respect to one another. Their steady-state positions balance attraction and repulsion.

Self-assembly requires that the components are mobile. It takes place in fluid phases or on the smooth surfaces.

Molecular self-assembly involves: non-covalent or weak covalent interactions, i.e. van der Waals, electrostatic, hydrophobic, hydrogen and coordinative bonds.

Self-assembly of meso- or macroscopic objects: interactions are selected and tailored include gravity, external electromagnetic fields, capillary, entropic interactions.

Using shape for self-assembly

Major milestones towards the goal of self-assembly:

1) Making the building blocks
2) Understanding and controlling the interactions
3) Predicting the consequence of many components interacting in a prescribed environment
4) Identify components and interactions that will organize to form a desired product (reverse self-assembly)
5) Knowing how to use self-assembly

What is "shape"?

- The idea of the shape is used for the purpose of understanding its effect on self-assembly.
- It defines the shape of an object as the ensemble of the geometries of all interactions elicited by that object.
- By this definition an object could have multiple shapes, depending on the particular interaction of interest.
- Challenge of self-assembly is thus to understand how these different shapes of the same objects contribute to its assembly.

Templates

A brute force approach to create nearly arbitral shapes uses templates
Template is a sacrificial mold in which material is grown or deposited, eg micelles, membrane, colloid crystals, zeolites, and block copolymers

Instabilities

This approach aims to create a highly symmetric yet metastable structure (spherical colloid coated with a metal)

Under the stimulus the structure "relaxes" toward one of its ground states by breaking its own symmetry, eg stimulus heat, shell devotes leading to the formation of a lower symmetry, stimulus-stretch metastable conformation fold into functional shape (proteins)

Close-packing of spheres in Euclidean space:

$$
\{S\}=\left\{\left(S_{1}, p_{1} \ldots\left(S_{N}, p_{N}\right)\right\}\right.
$$

Two spheres $\left(S_{i} p_{i}\right)$ and $\left(S_{j} p_{j}\right)$ of radius r are in contact, i.e.:

$$
\operatorname{dist}\left(p_{i} p_{j}\right)=2 \mathrm{r}
$$

Cluster of spheres is weakly tetrahedral, T, if for each sphere $\left(S_{i 1}, p_{i 1}\right)$ there exist three spheres $\left(S_{i 2}, p_{i 2}\right),\left(S_{i 3}, p_{i 3}\right)$ and $\left(S_{i 4} p_{i 4}\right)$.

Such the distance $\quad \operatorname{dist}\left(S_{i k}, p_{i l}\right)=2 r \quad$ if $1 \leq k, l \leq 4$

Tetrahedral nano-cluster (cluster which consists of tetrahedrals)

For every two tetrahedra $T_{i_{l}}, T_{i_{k}}$ there exist an ordered chain: $\left\{T_{i_{l}}\right\}_{l=1 k}$ That $T_{i n}, T_{i_{n 1}}$ have common face, $n=1 \ldots k-1$

- Tetrahedron is a basic unit of the tight packing by equal spheres.
- Distortion associated with tetrahedral packing.
- 13 spheres icosahedron have small distortion.
- 12 spheres arranged symmetrically around one sphere are not packed in perfectly way.
- Distance a between spheres: $a>2 r$
- Elementary property of icosahedron gives a relation:

$$
a=8 r /(10+2 \sqrt{5})^{1 / 2}
$$

Organization of spheres in the droplet

Sample	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}
n	one	two	three	four	five	six
Silica paricle						0
Model						

Conflict sets arrangements and the intercells patterns

Svstem of competition organizing centers

$$
\mathrm{P}=\left\{\mathrm{P}_{1}, \mathrm{P}_{2} \ldots \ldots \mathrm{P}_{\mathrm{n}}\right\}=\left\{\left(\mathrm{P}_{1}, \mathrm{f}_{1}\right),\left(\mathrm{P}_{2}, \mathrm{f}_{2}\right) \ldots\left(\mathrm{P}_{\mathrm{n}}, \mathrm{f}_{\mathrm{n}}\right)\right\}
$$

Cells corresponding to the svstem

$$
\mathrm{CP}_{\mathrm{i}}=\left\{\mathrm{x} \in \mathrm{R}^{2}: \forall_{\mathrm{k} \in(1 \mathrm{n})} \mathrm{f}_{\mathrm{i}}(\mathrm{x}) \mathrm{d}_{\mathrm{i}}^{2}(\mathrm{x}) \leq \mathrm{f}_{\mathrm{k}}(\mathrm{x}) \mathrm{d}_{\mathrm{k}}^{2}(\mathrm{x})\right\}
$$

SiO_{2} Nanostructuration using Ultrasonic SD
Two components
Gas flow: $1.0 \mathrm{~L} / \mathrm{min}, \mathrm{M}_{115 / 46}$ is the mass ratio of $115 / 16 \mathrm{~nm} \mathrm{SiO}$

When the mass ratio of silica particles ($\mathrm{M}_{115 / 16}$) was increased:

- the number of small particles layer decreases
- the particles surface changed from smooth to rough
SiO_{2} Nanostructuration using Ultrasonic SD
Three components
Mass ratio of $\mathbf{S i O}_{2}$ particles 16 nm : $115 \mathrm{~nm}: 360 \mathrm{~nm}$

- 360 nm particles were surrounded by 115 nm particles
- When the mass ratio of large particles was increased, surface morphology changed from smooth to concave-convex

Conclusions

- The aerosol assisted spray-drying process is an useful method for production of developed and desired space-forms made of nanoparticles
- Mesoporous nanostructured particles were produced using PSL particles as a template material for organizing nanoparticles around them
- The composition of the cells on the surface of sphere is described using the concept of conflict set arrangement
- Stationary state of cell configuration on the sphere has equal infinitesimal of cell boundaries in real vortex and they are equal $2 \pi / 3$
- The signs of zeta potential of the template particles and colloid particles used in the spray drying process define the structure of the final product, which could be either hollow or porous

Thank you for your attention

On comparing distributions with imprecise data

Przemysław Grzegorzewski

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

One of the most fundamental problems in mathematical statistics is the comparison of two or more distributions that characterize the underlying populations. Classical tests applied there are constructed with pretty specific assumptions concerning the distributions, like normality, exponentiality, etc. However, in reality, these assumptions are often not met. The problem becomes much more difficult when the output of an experiment consists of data that are imprecise, or vague. There we need a model that allows us to grasp both aspects of uncertainty that appear in such data: randomness, associated with the data generation mechanism, and fuzziness, connected with data imprecision. To cope with this problem Puri and Ralescu (1986) introduced a fuzzy random variable.

On the other hand, in analyzing fuzzy data from the statistical perspective we immediately come upon some key obstacles, like the nonlinearity associated with the fuzzy number arithmetic, the lack of a universally accepted total ranking, the lack of suitable probability distribution models, or no limit theorems for random mechanisms producing fuzzy data which could be directly applied in statistical inference. Therefore, statistical tests with imprecise data usually cannot be generalized straightforwardly from their classical prototypes.

We show that some of the aforementioned difficulties in test construction can be overcome by using permutation-based nonparametric procedures. Combining these with a distance-based approach or a dominance credibility index gives us some interesting goodness-of-fit and location tests, respectively.

On comparing distributions with imprecise data

Przemysław Grzegorzewski

Faculty of Mathematics and Information Science,
Warsaw University of Technology

Motivations

$$
\left\{\begin{array}{l}
H_{0}: \text { no treatment effect } \\
H_{1}: \text { new treatment effect }
\end{array}\right.
$$

X_{1}, \ldots, X_{n} i.i.d. $\mathrm{N}\left(\mu_{1}, \sigma_{1}\right)$ and Y_{1}, \ldots, Y_{m} i.i.d. $\mathrm{N}\left(\mu_{2}, \sigma_{2}\right)$

$$
\left\{\begin{array} { l }
{ H _ { 0 } : \mu _ { 1 } = \mu _ { 2 } } \\
{ H _ { 1 } : \mu _ { 1 } \neq \mu _ { 2 } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
H_{0}: \mu_{1}=\mu_{2} \\
H_{1}: \mu_{1}>\mu_{2}
\end{array}\right.\right.
$$

Here we can use the well-known parametric tests.
X_{1}, \ldots, X_{n} i.i.d. $F=$? and Y_{1}, \ldots, Y_{m} i.i.d. $G=$?

$$
\left\{\begin{array} { l }
{ H _ { 0 } : F = G } \\
{ H _ { 1 } : F \neq G }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
H_{0}: F=G, \\
H_{1}: X \stackrel{s t}{>} Y .
\end{array}\right.\right.
$$

Here we can use some nonparametric tests.

Example

The Gamonedo cheese is a kind of a blue cheese produced in Asturias. In quality control experts (tasters) express their perceptions about

- visual parameters (shape, rind, appearance),
- texture parameters (hardness and crumbliness),
- olfactory-gustatory parameters (smell intensity, smell quality, flavour intensity, flavour quality and aftertaste),
- an overall impression of the cheese.
(Ramos-Guajardo A.B., et al., 2019)

Outline:

- How do we model imprecise data?
- fuzzy numbers
- fuzzy random variables
- pro and cons
- How do we compare distributions with imprecise data?
- distance-based goodness-of-fit permutation tests
- tests based on the credibility degree of dominance

Fuzzy numbers

A fuzzy number is identified by a mapping $\widetilde{A}: \mathbb{R} \rightarrow[0,1]$, called a membership function, such that its α-cuts

$$
\widetilde{A}_{\alpha}= \begin{cases}\{x \in \mathbb{R}: \widetilde{A}(x) \geqslant \alpha\} & \text { if } \alpha \in(0,1], \\ c l\{x \in \mathbb{R}: \widetilde{A}(x)>0\} & \text { if } \alpha=0,\end{cases}
$$

are nonempty compact intervals for each $\alpha \in[0,1]$, where cl denotes the closure operator.

A fuzzy number is completely characterized by its membership function $\widetilde{A}(x)$ or by a family of its α-cuts $\left\{\widetilde{A}_{\alpha}\right\}_{\alpha \in[0,1]}$.

Let $\mathbb{F}(\mathbb{R})$ denote the family of all fuzzy numbers.

Each α-cut of a fuzzy number is a closed interval \widetilde{A}_{α}.
$\widetilde{A}_{0}=\operatorname{supp}(\widetilde{A})$ is called the support and $\widetilde{A}_{1}=\operatorname{core}(\widetilde{A})$ is known as the core of fuzzy number \widetilde{A}, respectively.

Arithmetic in $\mathbb{F}(\mathbb{R})$

$$
(\widetilde{A}+\widetilde{B})_{\alpha}=\left[\inf \widetilde{A}_{\alpha}+\inf \widetilde{B}_{\alpha}, \sup \widetilde{A}_{\alpha}+\sup \widetilde{B}_{\alpha}\right], \quad \forall \alpha \in[0,1]
$$

$$
(\theta \cdot \widetilde{A})_{\alpha}=\left\{\begin{array}{ll}
{\left[\theta \inf \widetilde{A}_{\alpha}, \theta \sup \widetilde{A}_{\alpha}\right]} & \text { if } \theta>0 \\
{\left[\theta \sup \widetilde{A}_{\alpha}, \theta \inf \widetilde{A}_{\alpha}\right]} & \text { if } \theta<0
\end{array}, \quad \forall \alpha \in[0,1]\right.
$$

Note $(\mathbb{F}(\mathbb{R}),+, \cdot)$ has not linear but semilinear structure since $\widetilde{A}+(-1 \cdot \widetilde{A}) \neq \mathbb{1}_{\{0\}}$.

Moreover, the Minkowski difference does not satisfy, in general, the addition/subtraction property that $(\widetilde{A}+(-1) \widetilde{B})+\widetilde{B}=\widetilde{A}$.

Let λ denote a normalized measure associated with a continuous distribution with support in $[0,1]$ and let $\gamma>0$.

Then for any $\widetilde{A}, \widetilde{B} \in \mathbb{F}(\mathbb{R})$ we define a metric D_{γ}^{λ} as follows
$D_{\gamma}^{\lambda}(\widetilde{A}, \widetilde{B})=\sqrt{\int_{0}^{1}\left[\left(\operatorname{mid} \widetilde{A}_{\alpha}-\operatorname{mid} \widetilde{B}_{\alpha}\right)^{2}+\gamma\left(\operatorname{spr} \widetilde{A}_{\alpha}-\operatorname{spr} \widetilde{B}_{\alpha}\right)^{2}\right] d \lambda(\alpha)}$,
where $\operatorname{mid} \widetilde{A}_{\alpha}=\frac{1}{2}\left(\inf \widetilde{A}_{\alpha}+\sup \widetilde{A}_{\alpha}\right), \operatorname{spr} \widetilde{A}_{\alpha}=\frac{1}{2}\left(\sup \widetilde{A}_{\alpha}-\inf \widetilde{A}_{\alpha}\right)$.
(Gil et al., 2002; Trutschnig et al., 2009)
Whatever (λ, γ) is chosen D_{γ}^{λ} is invariant to translations and rotations.
Moreover, $\left(\mathbb{F}(\mathbb{R}), D_{\gamma}^{\lambda}\right)$ is a separable metric space and for each fixed λ all metrics D_{γ}^{λ} are topologically equivalent.

Fuzzy random variables

Fuzzy random variables (random fuzzy numbers) integrate randomness (associated with data generation) and fuzziness (associated with data nature).

Definition (Puri M.L., Ralescu D., 1986)

Let (Ω, \mathcal{A}, P) be a probability space. A mapping $\widetilde{X}: \Omega \rightarrow \mathbb{F}(\mathbb{R})$ is a fuzzy random variable (random fuzzy number) if for all $\alpha \in[0,1]$ the α-level function is a compact random interval.

In other words, \tilde{X} is a fuzzy random variable if and only if \tilde{X} is a Borel measurable function w.r.t. the Borel σ-field generated by the topology induced by D_{γ}^{λ}.

The Aumann-type mean of a fuzzy random variable \tilde{X} is the fuzzy number $E(\widetilde{X}) \in \mathbb{F}(\mathbb{R})$ such that for each $\alpha \in[0,1]$ the α-cut $(E(\widetilde{X}))_{\alpha}$ is equal to the Aumann integral of \widetilde{X}_{α}, i.e.

$$
(E(\widetilde{X}))_{\alpha}=\left[\mathbb{E}\left(\operatorname{mid} \tilde{X}_{\alpha}\right)-\mathbb{E}\left(\operatorname{spr} \tilde{X}_{\alpha}\right), \mathbb{E}\left(\operatorname{mid} \tilde{X}_{\alpha}\right)+\mathbb{E}\left(\operatorname{spr} \tilde{X}_{\alpha}\right)\right] .
$$

The D_{γ}^{λ}-Fréchet-type variance $V(\widetilde{X})$ is a non-negative real number such that

$$
\begin{aligned}
V(\tilde{X}) & =\mathbb{E}\left(\left[D_{\gamma}^{\lambda}(\tilde{X}, E(\tilde{X}))\right]^{2}\right) \\
& =\int_{0}^{1} \operatorname{Var}\left(\operatorname{mid} \tilde{X}_{\alpha}\right) d \lambda(\alpha)+\gamma \int_{0}^{1} \operatorname{Var}\left(\operatorname{spr} \tilde{X}_{\alpha}\right) d \lambda(\alpha) .
\end{aligned}
$$

Given a fuzzy sample $\widetilde{\mathbb{X}}=\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{n}\right)$ we can determine its various characteristics, like the average $\overline{\widetilde{X}} \in \mathbb{F}(\mathbb{R})$ defined by its α-cuts

$$
\begin{gathered}
\overline{\widetilde{X}}_{\alpha}=\left[\frac{1}{n} \sum_{i=1}^{n} \operatorname{mid}\left(\widetilde{X}_{i}\right)_{\alpha}-\frac{1}{n} \sum_{i=1}^{n} \operatorname{spr}\left(\widetilde{X}_{i}\right)_{\alpha}\right. \\
\left.\frac{1}{n} \sum_{i=1}^{n} \operatorname{mid}\left(\tilde{X}_{i}\right)_{\alpha}+\frac{1}{n} \sum_{i=1}^{n} \operatorname{spr}\left(\tilde{X}_{i}\right)_{\alpha}\right]
\end{gathered}
$$

or the sample variance $S^{2} \in \mathbb{R}$ given by

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n} D_{\gamma}^{\lambda}\left(\widetilde{X}_{i}, \overline{\widetilde{X}}\right)^{2}
$$

Note

In contrast to the statistical analysis of numerical data one should be aware of the following problems typical for fuzzy data:

- problems with subtraction and division of fuzzy numbers;
- the lack of universally accepted total ranking between fuzzy numbers;
- there are not yet realistic suitable models for the distribution of random fuzzy numbers;
- there are not yet Central Limit Theorems for random fuzzy numbers that can be directly applied for making inference.

Conclusion

No straightforward generalizations of the classical statistical tests for fuzzy data exist.

Permutation ANOVA for r.f.n.

Suppose, we observe independently $p \geqslant 2$ fuzzy random samples drawn from populations with unknown distributions, i.e.

$$
\begin{aligned}
\widetilde{\mathbb{X}}_{1}= & \left(\widetilde{X}_{11}, \ldots, \widetilde{X}_{1 n_{1}}\right) \\
& \vdots \\
\widetilde{\mathbb{X}}_{p}= & \left(\widetilde{X}_{p 1}, \ldots, \widetilde{X}_{1 n_{p}}\right) .
\end{aligned}
$$

We want to verify the null hypothesis that all p samples come from the same distribution, i.e.

$$
H_{0}: \widetilde{\mathbb{X}}_{1} \stackrel{d}{=} \ldots \stackrel{d}{=} \widetilde{\mathbb{X}}_{p}
$$

against the alternative hypothesis $H_{1}: \neg H_{0}$ that at least two population distributions differ.

Let $\widetilde{\mathbb{V}}=\widetilde{\mathbb{X}}_{1} \uplus \ldots \uplus \widetilde{\mathbb{X}}_{p}$, where \uplus stands for vector concatenation, so that the p samples are pooled into one, i.e. $\widetilde{V}_{i}=\widetilde{X}_{1 i}$ if $1 \leqslant i \leqslant n_{1}$, $\widetilde{V}_{i}=\widetilde{X}_{2 i}$ if $n_{1}+1 \leqslant i \leqslant n_{1}+n_{2}$ and so on until $\tilde{V}_{i}=\widetilde{X}_{p, i-\left(n_{1}+\ldots n_{p-1}\right)}$ if $n_{1}+\ldots n_{p-1}+1 \leqslant i \leqslant N$.

Now, let $\widetilde{\mathbb{V}}^{*}$ denote a permutation of the initial dataset $\widetilde{\mathbb{V}}$.
Then

$$
\begin{gathered}
\widetilde{\mathbb{X}}_{1}^{*}=\left(\widetilde{X}_{11}^{*}, \ldots, \widetilde{X}_{1 n_{1}}^{*}\right) \longleftarrow\left(\widetilde{V}_{1}^{*}, \ldots, \widetilde{V}_{n_{1}}^{*}\right) \\
\widetilde{\mathbb{X}}_{2}^{*}=\left(\widetilde{X}_{21}^{*}, \ldots, \widetilde{X}_{2 n_{2}}^{*}\right) \longleftarrow\left(\widetilde{V}_{n_{1}+1}^{*}, \ldots, \widetilde{V}_{n_{1}+n_{2}}^{*}\right) \\
\vdots \\
\widetilde{\mathbb{X}}_{p}^{*}=\left(\widetilde{X}_{p 1}^{*}, \ldots, \widetilde{X}_{p n_{p}}^{*}\right) \longleftarrow\left(\widetilde{V}_{N-n_{p}+1}^{*}, \ldots, \widetilde{V}_{N}^{*}\right) .
\end{gathered}
$$

If H_{0} holds we expect that all p sample means would not differ to much from the overall sample mean.

Thus to decide whether the distance between the observed sample means is large enough to conclude as significant we consider the following test statistic

$$
T\left(\widetilde{\mathbb{V}}^{*}\right)=\sum_{i=1}^{p} n_{i} \cdot D_{\theta}^{\lambda}\left(\overline{\widetilde{X}_{i}^{*}}, \overline{\widetilde{X}}\right)^{2},
$$

where

$$
\overline{\widetilde{X}_{i}^{*}}=\frac{1}{n_{i}} \sum_{j=n_{1}+\ldots+n_{i-1}+1}^{n_{1}+\ldots+n_{i}} \widetilde{V}_{j}^{*}
$$

Obviously, $\overline{\widetilde{\widetilde{X}}^{*}}=\frac{1}{p} \sum_{i=1}^{p} \overline{\widetilde{X}_{i}^{*}}=\frac{1}{N} \sum_{i=1}^{N} \widetilde{V}_{i}^{*}=\overline{\overline{\tilde{X}}}$ for any $\widetilde{\mathbb{V}}^{*}$.
(Grzegorzewski P., 2020)

For a given realization of a fuzzy sample $\widetilde{\mathbb{v}}=\widetilde{\mathbb{x}}_{1} \uplus \ldots \uplus \widetilde{\mathbb{x}}_{p}$ we compute the observed test statistic

$$
t_{0}=T(\widetilde{\mathbb{v}})=\sum_{i=1}^{k} n_{i} \cdot D_{\theta}^{\lambda}\left(\overline{\widetilde{x}_{i}^{*}}, \overline{\bar{x}}\right)^{2}
$$

The p-value of our test is defined as the proportion of cases when the test statistic values are greater or equal to the observed experimental value $t_{0}=T(\widetilde{\mathrm{v}})$.

We repeat the whole procedure, i.e. we draw a permutation and compute a value of the test statistic $T\left(\widetilde{\mathrm{w}}^{*}\right) B$ times (usually about 1000). Then the approximate p -value of our test is given by

$$
\text { p-value } \simeq \frac{1}{B} \sum_{B=1}^{B} \mathbb{1}\left(T\left(\widetilde{\mathrm{w}}_{b}^{*}\right) \geqslant t_{0}\right) .
$$

Example (cont.)
So far, the experts provide an ordinal number ranging from 1 to 7 to describe their perceptions about different cheese characteristics. Recently, the tasters were proposed to express their subjective perceptions about the quality of the Gamonedo cheese by using fuzzy numbers.

Opinion of a taster expressed by means of a trapezoidal fuzzy set
(Ramos-Guajardo A.B., et al., 2019)

We consider some data given in Ramos-Guajardo A.B. et al.(2019) to compare the opinions of the three experts about the overall impression of the Gamonedo cheese. We have three independent fuzzy samples of sizes $n_{1}=40, n_{2}=38$ and $n_{3}=42$, coming from the unknown distributions.

Opinion	Expert 1	Expert 2	Expert 3
1	$(65,75,85,85)$	$(50,50,63,75)$	$(60,63,67,72)$
2	$(35,37,44,50)$	$(39,47,52,60)$	$(53,58,63,68)$
3	$(66,70,75,80)$	$(60,70,85,90)$	$(43,47,54,58)$
4	$(70,74,80,84)$	$(50,56,64,74)$	$(70,76,83,86)$
5	$(65,70,75,80)$	$(39,45,53,57)$	$(54,60,65,70)$
\vdots	\vdots	\vdots	\vdots

Our problem is to check whether there is a general agreement between these experts.

To reach the goal we verify the following null hypothesis

$$
H_{0}: \widetilde{\mathbb{X}}_{1} \stackrel{d}{=} \widetilde{\mathbb{X}}_{2} \stackrel{d}{=} \widetilde{\mathbb{X}}_{3},
$$

stating there is no significant difference between experts' opinions, against $H_{1}: \neg H_{0}$ that their opinions on the cheese quality differ.

Substituting data into formula for T we obtain $t_{0}=2259.436$.
Then, after generating $M=10000$ random permutations we have obtained the p-value of 0.0011 . Hence, we may conclude that there is no general agreement between experts' opinion on the overal impression of the Gamonedo cheese.

Other tests based on distances

- Energy distance test (Grzegorzewski P., Gadomska O., 2022)

$$
\begin{aligned}
T_{e n}(\widetilde{\mathbb{X}}, \widetilde{\mathbb{Y}})== & \frac{n m}{n+m}\left[\frac{2}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} D_{\gamma}^{\lambda}\left(\widetilde{X}_{i}, \widetilde{Y}_{j}\right)\right. \\
& \left.-\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} D_{\gamma}^{\lambda}\left(\widetilde{X}_{i}, \widetilde{X}_{j}\right)-\frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} D_{\gamma}^{\lambda}\left(\widetilde{Y}_{i}, \widetilde{Y}_{j}\right)\right] .
\end{aligned}
$$

- Nearest neighbor test (Grzegorzewski P., Gadomska O., 2022)

$$
T_{k n n}(\widetilde{\mathbb{X}}, \widetilde{\mathbb{Y}})=\frac{1}{k N} \sum_{i=1}^{N} \sum_{j=1}^{k} I_{j}\left(\widetilde{V}_{i}\right)
$$

where $\widetilde{V}=\widetilde{X} \uplus \widetilde{Y}$ and

$$
I_{k}\left(\widetilde{V}_{i}\right)= \begin{cases}1, & \text { if } \widetilde{V}_{i} \text { and } \mathrm{NN}_{k}\left(\widetilde{V}_{V}\right) \text { belong to the same sample, } \\ 0, & \text { if } \widetilde{V}_{i} \text { and } \mathrm{NN}_{k}\left(\widetilde{V}_{i}\right) \text { belong to different samples, }\end{cases}
$$

The generalized Mann-Whitney test for fuzzy data

Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\mathbb{Y}=\left(Y_{1}, \ldots, Y_{m}\right)$ denote independent samples from two populations F and G, respectively.
We consider the following testing problem

$$
\left\{\begin{array}{l}
H_{0}: F=G, \\
H_{1}: X \stackrel{s t}{>} Y .
\end{array}\right.
$$

The Mann-Whitney test statistic is given by

$$
U(\mathbb{X}, \mathbb{Y})=\sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{1}\left(X_{i}>Y_{j}\right) .
$$

Our goal: to generalize the Mann-Whitney test for fuzzy data.

Consider the possibility and necessity measures (Dubous \& Prade, 1983) for ranking fuzzy numbers \widetilde{A} and \widetilde{B} :

$$
\begin{aligned}
\operatorname{Pos}(\widetilde{A} \succ \widetilde{B}) & =\sup _{x>y} \min \{\widetilde{A}(x), \widetilde{B}(y)\}, \\
\operatorname{Nes}(\widetilde{A} \succ \widetilde{B}) & =1-\operatorname{Pos}(\widetilde{A} \preceq \widetilde{B}) \\
& =1-\sup _{x \leqslant y} \min \{\widetilde{A}(x), \widetilde{B}(y)\} .
\end{aligned}
$$

Obviously, $\operatorname{Nes}(\widetilde{A} \succ \widetilde{B})>0$ implies that $\operatorname{Pos}(\widetilde{A} \succ \widetilde{B})=1$.
Following Liu (2004) we aggregate both measures by the following index

$$
\operatorname{Cr}(\widetilde{A} \succ \widetilde{B})=\frac{\operatorname{Pos}(\widetilde{A} \succ \widetilde{B})+\operatorname{Nes}(\tilde{A} \succ \widetilde{B})}{2}
$$

to obtain the credibility degree that \widetilde{A} is larger than \widetilde{B}.

Lemma 1

For any trapezoidal fuzzy numbers $\tilde{A}=\operatorname{Tra}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $\widetilde{B}=\operatorname{Tra}\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ the credibility degree that \widetilde{A} is larger than \widetilde{B} is given by the following formula

$$
\operatorname{Cr}(\tilde{A} \succ \widetilde{B})= \begin{cases}0, & a_{4} \leqslant b_{1} \text { and } a_{3}<b_{2}, \\ \frac{a_{4}-h\left(a_{4}, b_{1}\right)}{2\left(a_{4}-a_{3}\right)}, & a_{4}>b_{1} \text { and } a_{3}<b_{2}, \\ \frac{a_{2}}{2}, & a_{3} \geqslant b_{2}, a_{4} \geqslant b_{1} \text { or } a_{2} \leqslant b_{3}, a_{1} \leqslant b_{4}, \\ 1-\frac{h\left(a_{1}, b_{4}\right)-a_{1}}{2\left(a_{2}-a_{1}\right)}, & a_{1}<b_{4} \text { and } a_{2}>b_{3}, \\ 1, & b_{4} \leqslant a_{1} \text { and } a_{2}>b_{3},\end{cases}
$$

where

$$
\begin{aligned}
h\left(a_{4}, b_{1}\right) & =\frac{a_{4} b_{2}-b_{1} a_{3}}{b_{2}-b_{1}+a_{4}-a_{3}}, \\
h\left(a_{1}, b_{4}\right) & =\frac{b_{4} a_{2}-a_{1} b_{3}}{b_{4}-b_{3}+a_{2}-a_{1}} .
\end{aligned}
$$

Lemma 2

For any triangular fuzzy numbers $\widetilde{A}=\left(l_{A}, c_{A}, r_{A}\right)$ and $\widetilde{B}=\left(l_{B}, c_{B}, r_{B}\right)$ the credibility degree that \widetilde{A} is larger than \widetilde{B} is given by the following formula

$$
\operatorname{Cr}(\tilde{A} \succ \widetilde{B})= \begin{cases}0, & r_{A} \leqslant l_{B} \text { and } c_{A} \neq c_{B}, \\ \frac{h\left(r_{A}, l_{B}\right)-r_{A}}{2\left(c_{A}-r_{A}\right)}, & c_{A}<c_{B} \text { and } r_{A}>l_{B}, \\ \frac{1}{2}, & c_{A}=c_{B}, \\ 1-\frac{h\left(l_{A}, r_{B}\right)-l_{A}}{2\left(c_{A}-l_{A}\right)}, & c_{A}>c_{B} \text { and } l_{A}<r_{B}, \\ 1, & r_{B} \leqslant l_{A} \text { and } c_{A} \neq c_{B},\end{cases}
$$

where

$$
\begin{aligned}
h\left(r_{A}, l_{B}\right) & =\frac{r_{A} c_{B}-l_{B} c_{A}}{c_{B}-l_{B}-\left(c_{A}-r_{A}\right)} \\
h\left(l_{A}, r_{B}\right) & =\frac{l_{A} c_{B}-r_{B} c_{A}}{c_{B}-r_{B}-\left(c_{A}-l_{A}\right)}
\end{aligned}
$$

Example

Consider triangular fuzzy numbers $\widetilde{A}=(3,5,7)$ and $\widetilde{B}=(1,2,4)$.

$$
\begin{aligned}
& \text { (} \\
& \operatorname{Cr}(\tilde{A} \succ \widetilde{B})=1-\frac{h\left(l_{A}, r_{B}\right)-l_{A}}{2\left(c_{A}-l_{A}\right)}=1-\frac{3.5-3}{2 \cdot 2}=\frac{7}{8} .
\end{aligned}
$$

Let $\widetilde{\mathbb{X}}=\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{n}\right)$ and $\widetilde{\mathbb{Y}}=\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{m}\right)$ denote independent samples, each consisting of i.i.d. random fuzzy numbers.
We want to verify

$$
\left\{\begin{array}{l}
H_{0}: \widetilde{X} \stackrel{d}{=} \widetilde{Y} \\
H_{1}: \widetilde{X} \succ \widetilde{Y}
\end{array}\right.
$$

Using the credibility index for each pair of observations from both samples we obtain the following test statistic

$$
U_{C R}(\widetilde{\mathbb{X}}, \widetilde{\mathbb{Y}})=\sum_{i=1}^{n} \sum_{j=1}^{m} C r\left(\widetilde{X}_{i} \succ \widetilde{Y}_{j}\right)
$$

To decide whether to reject or not the null hypothesis H_{0} we design a permutation test.
(Grzegorzewski P. and Zacharczuk M., 2023)

```
Algorithm 1: The generalized Mann-Whitney test for fuzzy data
Data: Fuzzy samples \(\widetilde{\mathbb{x}}=\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)\) and \(\widetilde{\mathbb{y}}=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{m}\right)\)
begin
    \(u_{0} \longleftarrow \sum_{i=1}^{n} \sum_{j=1}^{m} C r\left(\widetilde{x}_{i} \succ \widetilde{y}_{j}\right) ;\)
    Pool the data: \(\widetilde{\mathrm{w}}=\widetilde{\mathbb{x}} \uplus \widetilde{\mathrm{y}}\);
    for \(b=1\) to \(B\) do
            Take a permutation \(\widetilde{\mathrm{w}}^{*}=\left(\widetilde{w}_{1}^{*}, \ldots, \widetilde{w}_{n+m}^{*}\right)\) of \(\widetilde{\mathbb{w}}\);
            \(\widetilde{\mathrm{x}}^{*}=\left(\widetilde{x}_{1}^{*}, \ldots, \widetilde{x}_{n}^{*}\right) \longleftarrow\left(\widetilde{w}_{1}^{*}, \ldots, \widetilde{w}_{n}^{*}\right) ;\)
            \(\widetilde{\mathrm{y}}^{*}=\left(\widetilde{y}_{1},{ }^{*} \ldots, \widetilde{y}_{m}^{*}\right) \longleftarrow\left(\widetilde{w}_{n+1}^{*}, \ldots, \widetilde{w}_{n+m}^{*}\right) ;\)
            \(U_{C R} \longleftarrow \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cr}\left(\widetilde{x}_{i}^{*} \succ \widetilde{y}_{j}^{*}\right) ;\)
    end
    p -value \(\longleftarrow \frac{1}{B} \sum_{b=1}^{B} \mathbb{1}\left(U_{C R}\left(\widetilde{\mathbb{x}}_{b}^{*}, \widetilde{\mathbb{y}}_{b}^{*}\right) \geqslant u_{0}\right)\).
end
```


Power comparison for the increasing difference in location.

The p -sample $(p \geqslant 2)$ location problem

More generally, we observe $p \geqslant 2$ independent samples

$$
\begin{gathered}
\mathbb{X}_{1}=\left(X_{11}, \ldots, X_{1 n_{1}}\right) \sim F_{1} \\
\vdots \\
\mathbb{X}_{p}=\left(X_{p 1}, \ldots, X_{p n_{p}}\right) \sim F_{p} .
\end{gathered}
$$

We want to verify the hypotheses

$$
\left\{\begin{array}{l}
H_{0}: F_{1}=\ldots=F_{p} \\
H_{1}: F \leqslant F_{2} \leqslant \ldots \leqslant F_{p},
\end{array}\right.
$$

where at least one inequality is strict.

The generalized Jonkheere-Terpstra test for fuzzy data
More generally, we observe $p \geqslant 2$ independent fuzzy samples:
$\widetilde{\mathbb{X}}_{1}=\left(\widetilde{X}_{11}, \ldots, \widetilde{X}_{1 n_{1}}\right), \ldots, \widetilde{\mathbb{X}}_{p}=\left(\widetilde{X}_{p 1}, \ldots, \widetilde{X}_{p n_{p}}\right)$.
We want to verify

$$
\left\{\begin{array}{l}
H_{0}: \widetilde{X}_{1} \stackrel{d}{=} \widetilde{X}_{2} \stackrel{d}{=} \ldots \stackrel{d}{=} \widetilde{X}_{p}, \\
H_{1}: \widetilde{X}_{1} \succ \widetilde{X}_{2} \succ \ldots \succ \widetilde{X}_{p}
\end{array}\right.
$$

The generalized Jonkheere-Terpstra test statistic:

$$
\begin{aligned}
J_{C R} & =\sum_{1 \leq i<j \leq p} \sum_{C R}\left(\widetilde{\mathbb{X}}_{i}, \widetilde{\mathbb{X}}_{j}\right) \\
& =\sum_{1 \leq i<j \leq p} \sum_{r=1} \sum_{s=1}^{n_{i}} \sum_{n_{j}}^{n_{j}} \operatorname{Cr}\left(\widetilde{X}_{i r} \succ \tilde{X}_{j s}\right) .
\end{aligned}
$$

Conclusions and further research

- Due to certain difficulties with fuzzy modeling statistical tests with imprecise data usually cannot be generalized straightforwardly from their classical prototypes.
- Some of those difficulties in test constructions might be solved by applying nonparametric tests based of permutations.
- Permutation tests require extremely limited assumptions, i.e. exchangeability (we can exchange the labels of the observations under H_{0} without affecting the results).
- The credibility index might appear useful for some test constructions, especially for situations connected with the dominance relation.
and this is the end

Thank you for your attention :)

Brief Introduction to Topology for Multi-objective Optimization

Naoki Hamada

Machine Learning Group, KLab Inc.

A broad range of scientific and engineering tasks, including data analysis, product design, modeling, planning, and management, can be formulated in multi-objective optimization problems. Recent developments in convex analysis and data science using topology have brought a new paradigm for solving and analyzing multi-objective optimization problems. In this talk, several applications of topology to multi-objective optimization will be presented. We will show how the topology of convex analysis can be applied to a sparse modeling task, generalizing the regularization path of the elastic net and efficiently tuning its two hyper-parameters simultaneously. To extend this idea beyond the convexity assumption, we introduce a statistical test using persistent homology and the Poincaré conjecture whether the hyper-parameter tuning method works.

\square
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strongly convex $\stackrel{\text { det }}{\Longleftrightarrow} \exists \alpha>0, \forall x, y \in \mathbb{R}^{n}$,
$\forall t \in[0,1]$
$f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{1}{2} \alpha t(1-t)\|x-y\|^{2}$
where $\|z\|$ is the Euclidean norm of $z \in \mathbb{R}^{n}$. The constant α is called a convexity parameter of the function f.
A mapping $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is strongly convex if
all component functions are strongly convex.

Previous work shows that if f is C^{r} strongly convex where $1 \leq r \leq \infty$, then the problem of minimizing f is C^{r-1} weakly simplicial.

references	strongly convex	weakly simplicial
[Hamadat 2020]	C^{∞}	C^{∞}
[Hamadat 2020]	C^{r}	$C^{r-1}(r \geqq 2)$
[Hamadat 2021]	C^{1}	C^{0}

If f is C^{0} strongly convex, what happens?

We can define a mapping $x^{*}: \Delta^{m-1} \rightarrow X^{*}(f)$ for any strongly convex mapping $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ as follows:

$$
x^{*}(w)=\arg \min _{x \in \mathbb{R}^{n}}\left(\sum_{i=1}^{m} w_{i} f_{i}(x)\right)
$$

where $\arg \min _{x \in \mathbb{R}^{n}}\left(\sum_{i=1}^{m} w_{i} f_{i}(x)\right)$ is the unique minimizer of $\sum_{i=1}^{m} w_{i} f_{i}$.
Theorem 2
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a strongly convex mapping. Then, the mapping $x^{*}: \Delta^{m-1} \rightarrow X^{*}(f)$ is surjective and continuous.
Thus, the problem of minimizing f is weakly simplicial.

Our strategy

1. Show all multi-objective strongly convex problems are weakly simplicial
2. Reformulate the elastic net problem to a multi-objective strongly convex problem
3. Extend the regularization path on that problem and approximate it by a Bezier simplex

Single-objective stronsly convox problem

Multh-objective stronsly convox problem

$$
\begin{gathered}
\underset{\theta \in \mathbb{R}^{n}}{\operatorname{minimize}} \tilde{f}(\theta):=\left(\tilde{f}_{1}(\theta), \tilde{f}_{2}(\theta), \tilde{f}_{3}(\theta)\right) \\
\text { where } \tilde{f}_{i}(\theta)=f_{i}(\theta)+\varepsilon f_{3}(\theta) \quad(i=1,2,3) \\
\text { strongly corvex } \quad \text { corvex } \quad \text { strongly convex }
\end{gathered}
$$

- When the simplicity of the problem is unknown, we need to estimate it from data
- We statistically test Condition 1 from a sample of Pareto set and front

Persistent Homology and Machine Learning

Yuichi Ike
Institute of Mathematics for Industry, Kyushu University, Japan

Persistent homology is a central tool in topological data analysis. It encodes the topological features of given data into persistence diagrams, which are multisets in the two-dimensional space. In connection with machine learning, persistence diagrams have been used as an input of machine learning algorithms as feature vectors and are effectively applied in material science and medical science. Recently, many techniques have been developed to incorporate persistence diagrams into loss functions for controlling the topology of parameters. In this talk, I will start with the basics of persistent homology and some applications. Then I would like to discuss several recent developments in optimizing TDA-based loss functions and their applications in dimensionality reduction or visualization.

Persistent Homology and Machine Learning

WORKSHOP on Mathematics for Industry
2023-09-27
Yuichi Ike
Institute of Mathematics for Industry, Kyushu University
Joint work with
Mathieu Carrière, Frédéric Chazal, Marc Glisse,
Hariprasad Kannan, Théo Lacombe, Martin Royer, Yuhei Umeda
(Collaboration with Inria and Fujitsu)

Outline

1. Persistent Homology and Applications

- "Shape" of data and persistence diagrams
- Typical applications of persistent homology

2. PH-based Loss Functions

- Differentiability of persistence diagrams
- Applications of PH-based loss functions

2/26

Persistent Homology and Applications

- Extracting the shape of data
- Persistent homology and persistence diagrams (PDs)
- Some applications

Idea of persistent homology (PH)

Topological Data Analysis (TDA)
-Method to extract topological features of data

Without hole

Q. How to extract the "topology" of a discrete point cloud?

Idea of persistent homology (PH)

Topological Data Analysis (TDA)
-Method to extract topological features of data

Without hole

Q. How to extract the "topology" of a discrete point cloud? -Idea1: Consider the union of balls centered at data points

Idea of persistent homology (PH)
Topological Data Analysis (TDA)
-Method to extract topological features of data

Without hole

Q. How to extract the "topology" of a discrete point cloud? -Idea1: Consider the union of balls centered at data points

Idea of persistent homology (PH)

Topological Data Analysis (TDA)
-Method to extract topological features of data

Without hole

Q. How to extract the "topology" of a discrete point cloud? -Idea1: Consider the union of balls centered at data points -> How to adjust the radius value of balls?

Idea of persistent homology (PH)

Topological Data Analysis (TDA)

Q. How to extract the "topology" of a discrete point cloud? -Idea1: Consider the union of balls centered at data points $->$ How to adjust the radius value of balls?
-Idea2: Consider all radii and track the evolution: persistent homology -> Can distinguish noise and essential topological features

Filtrations on simplicial complexes

Filtration: increasing family of subcomplexes
■Simplicial complex: collection $K \subset 2^{\boldsymbol{V}}$ s.t. $\sigma \in K, \tau \subset \sigma \Rightarrow \tau \in K$
■ $\mathcal{K}=\left(K_{r}\right)_{r}, K_{r} \subset K$ filtration of $K: \Leftrightarrow K_{r} \subset K_{s}(r \leq s)$ and $\mathrm{U}_{r} K_{r}=K$
\rightarrow Function $f: K \rightarrow \mathbb{R}$ s.t. $\sigma \subset \tau \Rightarrow f(\sigma) \leq f(\tau), K_{r}=\{\sigma \in K \mid f(\sigma) \leq r\}$

Čech filtration

$\left\{x_{0}, \ldots x_{k}\right\} \in C(P ; r): \Leftrightarrow \cap_{i} B\left(x_{i} ; r\right) \neq \emptyset$

Rips filtration
$\left\{x_{0}, \ldots x_{k}\right\} \in R(P ; r): \Leftrightarrow B\left(x_{i} ; r\right) \cap B\left(x_{j} ; r\right) \neq \emptyset(\forall i, j)$

PH and persistence diagrams (PDs)

Filtration: increasing family of subcomplexes
■Simplicial complex: collection $K \subset 2^{V}$ s.t. $\sigma \in K, \tau \subset \sigma \Rightarrow \tau \in K$
■ $\mathcal{K}=\left(K_{r}\right)_{r}, K_{r} \subset K$ filtration of $K: \Leftrightarrow K_{r} \subset K_{s}(r \leq s)$ and $\mathrm{U}_{r} K_{r}=K$
\rightarrow Function $f: K \rightarrow \mathbb{R}$ s.t. $\sigma \subset \tau \Rightarrow f(\sigma) \leq f(\tau), K_{r}=\{\sigma \in K \mid f(\sigma) \leq r\}$

Persistent homology of $\mathcal{K}=\left(K_{r}\right)_{r}$ is the family

$$
\cdots \rightarrow H_{n}\left(K_{r}\right) \rightarrow H_{n}\left(K_{s}\right) \rightarrow H_{n}\left(K_{t}\right) \rightarrow \cdots(r \leq s \leq t)
$$

m Persistence diagram (PD): encodes the birth and death time of each homology class

How to use PDs

\square Points far from the diagonal express essential shapes while those near the diagonal are regarded as noises
■We can analyze which type of shape is represented by a point in PD

11/26

How to use PDs

More directly ...
We can distinguish data points with different "shapes"

$$
\bullet: \cdot: \cdot
$$

No hole

Connected components

 One hole Loops

Analysis with persistent homology

Analysis of silica glass

Kusano, Fukumizu, and Hiraoka: Persistence weighted Gaussian kernel for topological data analysis, ICML2016

■cf. Nakamura et al.: Description of medium-range order in amorphous structures by persistent homology
Estimate the temperature that SiO_{2} changes from liquid to glass state ■Idea: Transform point clouds into PDs and analyze them

Application to graph classification

PH extracts some global structure of graphs, which can be used for classification

- Need to find suitable filtrations on graphs
e.g., degree function, Heat Kernel Signature

PersLay, M. Carrière, F. Chazal, I., T. Lacombe, M. Royer, Y. Umeda, AISTATS 2020
-Proposed a new architecture for graph classification
■PersLay (NN vectorization) + one-layer NN

More and more studies to combine PH and Machine Learning

PH-based Loss Functions

- Applications of PH-based loss functions
- Differentiability and convergence of PH-based functions
- Applications

PH-based loss functions

■Many attempts to construct PH-based loss functions
data

$■$ Brüel-Gabrielsson et al., A Topology Layer for Machine Learning,
AISTATS2020: deformation of point clouds, topological generative models
■Moor et al., Topological Autoencoders, ICML2020: Topology-preserving AE

Parametrized filtrations and PDs

Recall: A filtration of a simplicial complex K
\leftrightarrow a vector $f \in \mathbb{R}^{K}$ s.t. $\sigma \subset \tau \Rightarrow f_{\sigma} \leq f_{\tau}$

$$
\text { Filt }_{K}:=\left\{f \in \mathbb{R}^{K} \mid \sigma \subset \tau \Rightarrow f_{\sigma} \leq f_{\tau}\right\}
$$

A parametrized filtration: a function $F: A \rightarrow$ Filt K_{K}, where $A \subset \mathbb{R}^{d}$
\square Rips filtration $\quad F:\left(\mathbb{R}^{d}\right)^{N} \rightarrow \mathbb{R}^{\left|\Delta_{N}\right|}, F_{\sigma}(x):=1 / 2 \max _{i, j \in \sigma}\left\|x_{i}-x_{j}\right\|$
$■$ Parameters in ML $f_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}(\theta \in \theta), P \subset \mathbb{R}^{d}$: finite subset

$$
F: \theta \rightarrow \mathbb{R}^{\left|\Delta_{N}\right|}, F_{\sigma}(\theta):=1 / 2 \max _{i, j \in \sigma}\left\|f_{\theta}\left(x_{i}\right)-f_{\theta}\left(x_{j}\right)\right\|
$$

The PD is a vector in $\mathbb{R}^{|K|}:\left(p_{1}, \ldots, p_{m}, e_{1}, \ldots, e_{n}\right), p_{i} \in \mathbb{R}^{2}, e_{i} \in \mathbb{R}$ \Rightarrow The assignment is viewed as Pers: Filt ${ }_{K} \rightarrow \mathbb{R}^{|K|}$ persistence map Pers $\circ F: A \rightarrow \mathbb{R}^{|K|}$ parametrized PD

Optimization of PH-based functions

■ . How can we optimize PH-based loss functions?
-A. Usually just apply gradient descent
■For a differentiable function $\mathcal{C}: A \rightarrow \mathbb{R}, A \subset \mathbb{R}^{d}$, update the parameter by $x_{k+1}=x_{k}-\alpha_{k} \nabla \mathcal{L}\left(x_{k}\right)$,
where α_{k} is the learning rate at step k
■Toy example: optimize a point set to maximize "\# of loops"

- For the 1st PD $D_{1}(P)$, consider

$$
\mathcal{L}(P)=-\sum_{p \in D_{1}(P)}\left\|p-\pi_{\Delta}(p)\right\|_{\infty}^{2}+d(P, C),
$$

where π_{Δ} is the projection to the diagonal and C is the square

Optimize with \mathcal{L}

Differentiability of persistence map

■How to compute PDs from filtrations?

1. Find the pairs of birth and death simplices $\left\{\left(\sigma_{b_{i}}, \sigma_{d_{i}}\right)\right\}_{i}$ (combinatorial)
e.g.
: birth
: death
2. Associate the filtration value to each pair $\left\{\left(F\left(\sigma_{b_{i}}\right), F\left(\sigma_{d_{i}}\right)\right)\right\}_{i}$ e.g. $(1,2)$
$\square F$ is smoothly parametrized $=>$ can consider $x \mapsto\left\{\left(\nabla_{x} F\left(\sigma_{b_{i}}\right), \nabla_{x} F\left(\sigma_{d_{i}}\right)\right)\right\}_{i}$ in the area where the order of simplices does not change

PH-based functions and subdifferential

Function of PDs: a permutation invariant function $E: \mathbb{R}^{|K|} \rightarrow \mathbb{R}$

$$
E\left(p_{\alpha(1)}, \ldots, p_{\alpha(m)}, e_{\beta(1)}, \ldots, e_{\beta(n)}\right)=E\left(p_{1}, \ldots, p_{m}, e_{1}, \ldots, e_{n}\right)
$$

e.g.

- Distance between PDs,
- Persistence landscape,
- Persistence image, ...

If F and E are in a good class, then so is $\mathcal{L}=E \circ$ Pers $\circ F: A \rightarrow \mathbb{R}$ and it is differentiable a.e.
$=>$ can define the subdifferential

$$
\partial \mathcal{L}(z)=\operatorname{Conv}\left\{\lim _{z_{i} \rightarrow z} \nabla \mathcal{L}\left(z_{i}\right): \mathcal{L} \text { is differentiable at } z_{i}\right\}
$$

Convergence of PH-based functions
We can apply stochastic (sub)gradient descent to optimize PH-based loss functions using automatic differentiation
data

-However, there was no guarantee of convergence
Carrière, Chazal, Glisse, I., Kannan, and Umeda,
Optimizing persistent homology based functions, ICML2021

- Proved the almost surely convergence of stochastic subgradient descent for a wide class of PH-based loss functions
-The class includes almost all the PH-based functions in the literature

Convergence result

- Theorem K simplicial compex, $F: A \rightarrow \mathbb{R}^{|K|}$ parametrized family of filtration,
$E: \mathbb{R}^{|K|} \rightarrow \mathbb{R}$ function of PDs, $\mathcal{L}=E \circ$ Pers $\circ F: A \rightarrow \mathbb{R}$
Assume that F and E are in a good class (definable) and \mathcal{L} is locally Lipschitz.
Consider the sequence obtained by

$$
x_{k+1}=x_{k}-\alpha_{k}\left(y_{k}+\xi_{k}\right), \quad y_{k} \in \partial \mathcal{L}\left(x_{k}\right)
$$

where α_{k} : learning rate and ξ_{k} : random variable s.t.

1. $\alpha_{k} \geq 0, \sum_{k} \alpha_{k}=\infty, \sum_{k} \alpha_{k}^{2}<\infty$;
2. $\sup _{k}\left\|x_{k}\right\|<\infty$ almost surely;
3. For $\mathcal{F}_{k}=\sigma\left(x_{j}, y_{j}, \xi_{j}, j<k\right)$, there exists a function $p: \mathbb{R}^{d} \rightarrow \mathbb{R}$ that is bounded on any bounded set s.t. for any k almost surely

$$
\mathbb{E}\left[\xi_{k} \mid \mathcal{F}_{k}\right]=0, \quad \mathbb{E}\left[\left|\xi_{k}\right|^{2} \mid \mathcal{F}_{k}\right]<p\left(x_{k}\right) .
$$

Then $\left(\boldsymbol{x}_{\boldsymbol{k}}\right)_{k}$ converges to a critical point of \mathcal{L} almost surely.
cf. Davis et al., Stochastic subgradient method converges on tame functions, 2020

Applications: Filtration learning

Learn filtrations to give PDs for a classification task
-Consider the toy task to classify the MNIST images with Oth PDs + RF
-For a linear function f to some direction, consider

$$
\mathcal{L}(f)=\sum_{l} \frac{\sum_{y_{l}=y_{j}=l} d\left(D_{0}\left(I_{i}, f\right), D_{0}\left(I_{j}, f\right)\right)}{\sum_{y_{i}=l} d\left(D_{0}\left(I_{i} ; f\right), D_{0}\left(I_{j} ; f\right)\right)} .
$$

Optimize $\mathcal{L}(f)$ to find the best direction.

Applications: Graph Filtration Learning

Hofer et al., Graph Filtration Learning, ICML2020
-Learn a filter function of graphs end-to-end
-Recall that a function on vertices gives a filtration of a graph

-Vectorization of the resulting PDs is used for classification

- Parametrized vertex filter function can be implemented by GNN and learned thanks to the differentiability and the convergence result

Summary

1. Persistent Homology and Applications

- Extract "topology" of data as persistence diagrams (PDs)
- We can use PD as input of machine learning (ML)
- Applications: material science, graph classification, ...

2. PH-based Loss Functions

- Many attempts to combine PH and ML
- Proved the convergence of SSGD for a PH-based loss functions
- Developing thanks to differentiability of PDs

Optimize

- Filtration Leaning, Topologically Regularized Embeddings, .

Thank you for your attention!

Exotic shapes of nano-spherical structures - new DNA coding

Stanisław Janeczko

Center for Advanced Studies, Warsaw University of Technology, Poland
(joint work with Hassan Babiker)

The simplest naturally ordered tetrahedral packing consists of an ordered sequence of regular tetrahedra glued together face to face as with the linear packing of a tetrahedral helix.Such tetrahedral structures are called tetrahedral chains.

Any tetrahedral chain consists of the three types of simplest configurations of four consecutive tetrahedra called tetrahedral units. Two of these types are left and right tetrahedral short spirals, U, D, and the third type, F, is a flat configuration of four tetrahedra. The structure of a tetrahedral chain in D, F, U elementary units is written as a word like $U U D F U D \ldots$.

The three strands of the left or right oriented tetrahedral helix form a spiral with irrational slope. This is the reason for the effective density of tetrahedral chains and nonexistence of closed tetrahedral chains in Euclidean space.

Let us assume that the gluing process of tetrahedra is ordered along a chain and each step of this process is realized by reflection in a particular face of adjacent tetrahedron. To each tetrahedron we assign four reflections $R_{i}, i=1, \ldots, 4$, in the configurational three dimensional space V. Reflections R_{i} in V are represented by four corresponding reflect-morphisms $\bar{R}_{i}, i=1, \ldots, 4$, acting in the space of regular tetrahedra \mathcal{T} through a reflectional transformation of their vertices. In $V, \operatorname{dim} V=n$, any tetrahedral chain of length $n+1$ is uniquely represented by an initial tetrahedron T and an ordered sequence of n reflect-morphisms

$$
\bar{R}_{i_{1}}, \ldots, \bar{R}_{i_{n}}, \quad i_{k} \neq i_{k+1}, k=1, \ldots, n-1
$$

The fact that a tetrahedral chain is so rigid in 3 -space and regular tetrahedra can not tile the space gives rise to several questions. The main question we consider is the recognition of combinatorial and algebraic structures of tetrahedral chains. We want to investigate their geometric properties and determine what kind of information is contained in the chain invariants of orthogonal transformations and re-numberings. We use the parametrization of the chains by sequences of ordered reflections in barycentric coordinates and find their combinatorial structure. Periodicity along a chain is based on the structure of sequences of admissible triplets of integers and their cycling properties. The corresponding numerical invariants and an indexing role of a binary tetrahedral group defines the complete coding properties in dimension three.

Exotic shapes of nano-spherical structures - new DNA coding

Stanislaw Janeczko

Faculty of Mathematics and Information Sciences, Warsaw University of Technology

Workshop on Mathematics for Industry Kyushu - Warsaw 25-29 September 2023

- Hexagonal packing, the third layer sits exactly above the first layer.

Almost closed tetrahedral chains

Dual tetrahedral chains

Tetrahedra in barycentric coordinates

$$
T \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\},\left\{\left(S_{1}, p_{1}\right), \ldots,\left(S_{4}, p_{4}\right)\right\}
$$

\mathcal{T}-regular tetrahedra, $\left\|p_{i}-p_{j}\right\|=\left\|p_{k}-p_{l}\right\|, i \neq j, k \neq l$

$$
\mathcal{T} \subset V \otimes U^{*}, \quad U \equiv \mathbb{R}^{4}
$$

V - configurational affine space, $\operatorname{dim} V=3$
U - barycentric coordinates $\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in U$
$H=\left\{\Sigma_{i=1}^{4} \alpha_{i}=1\right\}$ - canonical affine hyperplane
$T \in \mathcal{T}, T=\Sigma_{i=1}^{4} p_{i} \otimes e_{i}^{*}$
Barycentric coordinate map $\mathbb{T}: H \rightarrow V$:
$\mathbb{T}(\alpha)=\Sigma_{i=1}^{4} p_{i} \otimes e_{i}^{*}(\alpha)=\Sigma_{i=1}^{4} \alpha_{i} p_{i}$,
$\alpha=\sum_{i=1}^{4} \alpha_{i} e_{i} \in H$, and geometrically
$T=\mathbb{T}\left(H \cap\left\{\alpha_{i} \geq 0\right\}\right)$
$F: V \rightarrow V$ affine mapping.
F lifts to a linear mapping

$$
M:(U, H) \rightarrow(U, H)
$$

preserving the hyperplane H
M is defined uniquely by the commuting diagram

$$
\mathbb{T}(M(\bullet))=F(\mathbb{T}(\bullet))
$$

$F\left(p_{i}\right)=\Sigma_{j=1}^{4} \alpha_{j i} p_{j}$ in barycentric coordinates $\alpha_{j i}$.
Then
$\sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{j i} p_{j} \otimes e_{i}^{*}=\sum_{j=1}^{4} p_{j} \otimes\left(\sum_{i=1}^{4} \alpha_{j i} e_{i}^{*}\right)=\sum_{j=1}^{4} p_{j} \otimes M^{*}\left(e_{j}^{*}\right)$.

Generation of tetrahedral chain

s_{i} center of $S_{i}, s_{i}=\frac{1}{3}\left(\sum_{j=1}^{4} p_{j}-p_{i}\right)$
Four orthogonal reflections by S_{i}

$$
\begin{gathered}
R_{i}(p)=p-2 \frac{\left(p-s_{i} \mid s_{i}-p_{i}\right)}{\left(s_{i}-p_{i} \mid s_{i}-p_{i}\right)}\left(s_{i}-p_{i}\right) \\
R_{i}\left(p_{j}\right)=p_{j}+2 \delta_{i j}\left(\frac{1}{3} \sum_{k \neq i} p_{k}-p_{j}\right), \quad j=1, \ldots, 4
\end{gathered}
$$

$\left\{T^{(i)}\right\}_{i=0}^{n}$ tetrahedral chain

$$
\begin{aligned}
T^{(0)}= & T, \\
T_{i_{1}}^{(1)}= & \bar{R}_{i_{1}} T, \\
T_{i_{1} i_{2}}^{(2)}= & \bar{R}_{i_{2}} R_{i_{1}} T, \quad i_{1} \neq i_{2}, \\
& \ldots \quad \ldots \\
T_{i_{1} i_{2} \ldots i_{n}}^{(n)}= & \bar{R}_{i_{n}} \ldots \bar{R}_{i_{2}} \bar{R}_{i_{1}} T, \quad i_{k+1} \neq i_{k}, k=1, \ldots, n-1 .
\end{aligned}
$$

$\bar{R}_{i}: \mathcal{T} \rightarrow \mathcal{T}$ twist morphisms, defined by R_{i}.

Representation in barycentric coordinates

$\bar{R}_{i}: \mathcal{T} \rightarrow \mathcal{T}, \quad \bar{R}_{i}\left(v \otimes u^{*}\right)=v \otimes M_{i}^{*} u^{*}$

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{cccc}
-1 & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)^{T}, M_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{2}{3} & -1 & \frac{2}{3} & \frac{2}{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)^{T}, \\
& M_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{2}{3} & \frac{2}{3} & -1 & \frac{2}{3} \\
0 & 0 & 0 & 1
\end{array}\right)^{T}, M_{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{2}{3} & \frac{2}{3} & \frac{2}{3} & -1
\end{array}\right)^{T} .
\end{aligned}
$$

\bar{R}_{i} is represented by transpose of M_{i}
EXAMPLE

$$
R_{1}\left(\sum_{i=1}^{4} p_{i} \otimes e_{i}^{*}\right)=\sum_{i=1}^{4} p_{i}^{(1)_{1}} \otimes e_{i}^{*},
$$

where

$$
\begin{gathered}
\left(\begin{array}{l}
p_{1}^{(1)_{1}} \\
p_{2}^{(1)_{1}} \\
p_{3}^{(1)_{1}} \\
p_{4}^{(1)}
\end{array}\right)=\left(\begin{array}{cccc}
-1 & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right), \\
T_{i_{1} \ldots i_{n}}^{(n)}=\bar{R}_{i_{n}} \ldots \bar{R}_{i_{1}} T .
\end{gathered}
$$

Coding in triplets of consecutive steps

$$
\begin{aligned}
& T_{k}^{(r+1)}=\bar{R}_{k} T^{(r)} \\
& T_{k j}^{(r+2)}=\bar{R}_{j} \bar{R}_{k} T^{(r)} \\
& T_{k j i}^{(r+3)}=\bar{R}_{i} \bar{R}_{j} \bar{R}_{k} T^{(r)} . \\
& \quad U, D, F: \quad T_{k j i}^{(r+3)}=\bar{R}_{i} \bar{R}_{j} R_{k} T^{(r)} \\
& F: \quad T^{(r+3)} ; \quad \operatorname{det}\left(x_{r+1}, x_{r+2}, x_{r+3}\right)=0 \\
& U: \quad T^{(r+3)} ; \quad \operatorname{det}\left(x_{r+1}, x_{r+2}, x_{r+3}\right)>0 \\
& D: \quad T^{(r+3)} ; \quad \operatorname{det}\left(x_{r+1}, x_{r+2}, x_{r+3}\right)<0
\end{aligned}
$$

Shape orientation

Basic units

Tetrahedral chains: $D D U F \ldots U D F F D$.

Combinatorial codes for U, D, F

Admissible triplets parametrizing U D F:

$$
(k, i, j), 1 \leq i, j, k \leq 4, \quad k \neq j \neq i
$$

EXAMPLE

$U U D F D$

$$
\begin{gathered}
(3,4,2) \rightarrow(4,2,1) \rightarrow(2,1,4) \rightarrow(1,4,1) \rightarrow(4,1,3) \\
T_{3421413}^{(7)}=R_{3} R_{1} R_{4} R_{1} R_{2} R_{4} R_{3} T
\end{gathered}
$$

Classification of admissible triplets

u	d	f
$\operatorname{det}\left(x_{1}, x_{2}, x_{3}\right)=32 \sqrt{3} / 243$	$\operatorname{det}\left(x_{1}, x_{2}, x_{3}\right)=-32 \sqrt{3} / 243$	$\operatorname{det}\left(x_{1}, x_{2}, x_{3}\right)=0$
(k, j, i)	(k, j, i)	(k, j, i)
$(3,2,1)$	$(4,2,1)$	$(1,2,1)$
$(4,3,1)$	$(2,3,1)$	$(1,3,1)$
$(2,4,1)$	$(3,4,1)$	$(1,4,1)$
$(4,1,2)$	$(3,1,2)$	$(2,1,2)$
$(1,3,2)$	$(4,3,2)$	$(2,3,2)$
$(3,4,2)$	$(1,4,2)$	$(2,4,2)$
$(2,1,3)$	$(4,1,3)$	$(3,1,3)$
$(4,3,3)$	$(1,2,3)$	$(3,2,3)$
$(1,4,3)$	$(2,4,3)$	$(3,4,3)$
$(3,4,4)$	$(2,1,4)$	$(4,1,4)$
$(1,2,4)$	$(3,2,4)$	$(4,2,4)$
$(2,3,4)$	$(1,3,4)$	$(4,3,4)$

Combinatorial structure

$$
\begin{gathered}
\mathbb{I}=\{(\alpha, \beta) \in \Delta \times \Delta: \alpha \neq \beta\} \\
\Delta=\{1,2,3,4\}
\end{gathered}
$$

Uniquely defined mappings

$$
L_{u}, L_{d}, L_{f}: \mathbb{I} \rightarrow \Delta, \quad \# \mathbb{I}=12
$$

and bijections

$$
\mathcal{L}_{u}, \mathcal{L}_{d}, \mathcal{L}_{f}: \mathbb{I} \rightarrow \mathbb{I},
$$

$\mathcal{L}_{*}\left(i_{1}, i_{2}\right)=\left(i_{2}, L_{*}\left(i_{1}, i_{2}\right)\right), *=u, d, f$.

CAS-MINI Warsaw 25-29 September 2023, Stanisław Janeczko 32

\mathcal{L} - sequence for tetrahedral chain

Example

$$
\text { DUUFD } \quad \longrightarrow \quad \mathcal{L}_{d} \mathcal{L}_{f} \mathcal{L}_{u} \mathcal{L}_{d} \mathcal{L}_{d}
$$

Any periodic tetrahedral chain is characterized by cycling composition of a numerical representation of its period

Compositions of \mathcal{L}_{*}-sequences form the indexing space for tetrahedral chains

The indexing space is a binary tetrahedral subgroup of S_{12}
generated by three elements $\mathcal{L}_{u}, \quad \mathcal{L}_{d}, \quad \mathcal{L}_{f}$ with the relations

$$
\mathcal{L}_{u}^{3}=i d, \quad \mathcal{L}_{d}^{3}=i d, \quad \mathcal{L}_{f}^{2}=i d, \quad\left(\mathcal{L}_{u} \mathcal{L}_{d}\right)^{2}=i d
$$

Geometric characteristics

-proper tetrahedral chains

n	3	4	5	6	7	8	9	10	11	12	13
A_{n}	1	3	9	26	76	218	628	1802	5146	14670	41734

-branching order $0 \leq b \leq 3$
-vertex order $P(p), \Sigma_{p \in V_{C_{n}}} P(p)=4 n$
-clustering function

$$
C l\left(C_{n}\right)=\sum_{p \in V_{C_{n}}} \max (0, P(p)-4)
$$

Tetrahelix

Proper chains sharing one common vertex

$b \backslash n$	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	0	0	1	2	6	9	19	38	49	69	79	71	34	6
2	0	0	1	4	6	10	24	46	78	113	137	153	132	85	36	6	0
3	2	4	6	9	16	27	38	48	55	56	50	35	22	12	2	0	0
total	2	4	7	13	22	38	64	100	142	188	225	237	223	176	109	40	6

Big periodic

Silica particles

Sample	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	■	f
n	one	two	three	four	five	six
silica particle				0		
Model						

Large silica particles

Porous particles

Stable porous particles

CAS-MINI Warsaw 25-29 September 2023
Stanisław Janeczko 54

Hollow particles

S.Y. Lee, L. Gradon, S. Janeczko, F. Iskandar, K. Okuyama, Formation of Highly Ordered Nanostructures by drying Micrometer Colloidal Droplets, ACS Nano Journal, Vol. 4, No. 8, (2010), 4717-4724
L. Gradon, S. Janeczko, M. Abdullah, F. Iskandar, K. Okuyama, SelfOrganization Kinetics of Mesoporous Nanostructured Particles, AIChE Journal Vol. 50, No. 10, (2004), 2583-2593.

Stanisław Janeczko	57

How to measure data diversity and why it is important?

Paweł Józiak

Faculty of Mathematics and Computer Science, Warsaw University of Technology, Poland

In Machine Learning we often hear about patterns that algorithms overfit to. To prevent it, a high quality data, a bunch of data that is curated needs to be prepared. I will discuss what tools are available, other than manual labor, in order to tell whether the dataset is diverse, and how we used the knowledge gained through it in order to prepare a highly diverse (and thus highly challenging) Document Understanding Dataset and Evaluation (DUDE) in the domain of DocumentAI, a field at the boundary of Natural Language Processing and Computer Vision. Joint work with Jordy Van Landeghem, Rubén Tito, Łukasz Borchmann, Michał Pietruszka, Rafał Powalski, Dawid Jurkiewicz, Mickaël Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko, Sien Moens, Tomasz Stanisławek.

References

[1] Jordy Van Landeghem, Rubén Tito, Lukasz Borchmann, Michał Pietruszka, Rafał Powalski, Dawid Jurkiewicz, Mickaël Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko, Sien Moens, Tomasz Stanisławek. Document Understanding Dataset and Evaluation (DUDE). Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 19528-19540

How to measure data diversity and why it is important?

26 IX 2023
Warsaw University of Technology Mathematics in Industry

Plan of the talk

Data from ML practitioner's perspective
(2) Current approaches
(3) Our approach
(4) Conclusions

Plan of the talk
(1) Data from ML practitioner's perspective
(2) Current approaches
(3) Our approach

4 Conclusions

Data in Computer Vision

Images have natural representation as quaternionic matrices (CMYK) of width \times height size.

- Pros: naturality, robust representation
- Cons: uneven \& possibly hight dimensionality.
cale images to standarized sizes, apply Rol-pooling
- uniform dimensionality.
- dimensionality reduction, but makes method prone to small
perturbations.

Data in Computer Vision

Images have natural representation as quaternionic matrices (CMYK) of width \times height size.

- Pros: naturality, robust representation.
- Cons: uneven \& possibly hight dimensionality.

Scale images to standarized sizes, apply Rol-pooling.

- uniform dimensionality,
- dimensionality reduction, but makes method prone to small perturbations.

Data in Natural Language Processing

One-dimensional chain of tokens (words).

- Term frequency Inverse document frequency
- Contextual embeddings (Word2Vec, Glove)

Data in Document Understanding

Data in Document Understanding

Data in Document Understanding

Pawet Józiak (MiNI PW. Snowflake)

Plan of the talk		
(1) Data from ML practitioner's perspective		
(2) Current approaches		
3 Our approach		
(4) Conclusions		

Simpson diversity measure

- Let $\pi: 2^{[d]} \rightarrow[0,1]$ be a probability distribution on $[d]=\{1,2, \ldots, d\}$.
- Denote $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$ the Fisher concentration.
- Let x_{1}, \ldots, x_{N} is a sample drawn from π and let
$n_{i}=\left|\left\{j \in[N] \mid x_{j}=i\right\}\right|$.
- $\hat{\lambda}=\frac{\sum_{i=1}^{n_{n}}\left(n_{i}-1\right)}{N(N-1)}$ is an unbiased estimator of λ
- If now N is random, the above still holds under factorization
assumption

- $\operatorname{Var}(\hat{\lambda})=\frac{4}{N}\left(\sum_{i=1}^{d} \pi(i)^{3}-\lambda^{2}\right)+O\left(N^{-2}\right)$

Simpson diversity measure

- Let $\pi: 2^{[d]} \rightarrow[0,1]$ be a probability distribution on $[d]=\{1,2, \ldots, d\}$.
- Denote $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$ the Fisher concentration.
- Let x_{1}, \ldots, x_{N} is a sample drawn from π and let
$\begin{aligned} n_{i} & =\left|\left\{j \in[N] \mid x_{j}=i\right\}\right| . \\ \text { - } \hat{\lambda} & =\frac{\sum_{i=1}^{d} n_{i}\left(n_{i}-1\right)}{N(N-1)} \text { is an unbiased estimator of } \lambda\end{aligned}$
- If now N is random, the above still holds under factorization
assumption

- $\operatorname{Var}(\hat{\lambda})=$

Simpson diversity measure

- Let $\pi: 2^{[d]} \rightarrow[0,1]$ be a probability distribution on $[d]=\{1,2, \ldots, d\}$.
- Denote $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$ the Fisher concentration.
- Let x_{1}, \ldots, x_{N} is a sample drawn from π and let $n_{i}=\left|\left\{j \in[N] \mid x_{j}=i\right\}\right|$.
- $\hat{\lambda}=\frac{\sum_{i=1}^{d} n_{i}\left(n_{i}-1\right)}{N(N-1)}$ is an unbiased estimator of λ
- If now N is random, the above still holds under factorization
assumption
$P\left(n_{1}, n_{2}, \ldots, n_{d}\right)=P(N)=$
NI

Simpson diversity measure

- Let $\pi: 2^{[d]} \rightarrow[0,1]$ be a probability distribution on $[d]=\{1,2, \ldots, d\}$.
- Denote $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$ the Fisher concetration.
- Let x_{1}, \ldots, x_{N} is a sample drawn from π and let $n_{i}=\left|\left\{j \in[N] \mid x_{j}=i\right\}\right|$.
- $\hat{\lambda}=\frac{\sum_{i=1}^{d} n_{i}\left(n_{i}-1\right)}{N(N-1)}$ is an unbiased estimator of λ.

- If now N is random, the above still holds under factorization

 assumption
Simpson diversity measure

- Let $\pi: 2^{[d]} \rightarrow[0,1]$ be a probability distribution on $[d]=\{1,2, \ldots, d\}$.
- Denote $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$ the Fisher concetration.
- Let x_{1}, \ldots, x_{N} is a sample drawn from π and let $n_{i}=\left|\left\{j \in[N] \mid x_{j}=i\right\}\right|$.
- $\hat{\lambda}=\frac{\sum_{i=1}^{d} n_{i}\left(n_{i}-1\right)}{N(N-1)}$ is an unbiased estimator of λ.
- If now N is random, the above still holds under factorization assumption

$$
P\left(n_{1}, n_{2}, \ldots, n_{d}\right)=P(N) \frac{N!}{n_{1}!n_{2}!\ldots n_{d}!} \pi(1)^{n_{1}} \pi(2)^{n_{2}} \ldots \pi(d)^{n_{d}}
$$

Simpson diversity measure

- Let $\pi: 2^{[d]} \rightarrow[0,1]$ be a probability distribution on $[d]=\{1,2, \ldots, d\}$.
- Denote $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$ the Fisher concetration.
- Let x_{1}, \ldots, x_{N} is a sample drawn from π and let $n_{i}=\left|\left\{j \in[N] \mid x_{j}=i\right\}\right|$.
- $\hat{\lambda}=\frac{\sum_{i=1}^{d} n_{i}\left(n_{i}-1\right)}{N(N-1)}$ is an unbiased estimator of λ.
- If now N is random, the above still holds under factorization assumption

$$
P\left(n_{1}, n_{2}, \ldots, n_{d}\right)=P(N) \frac{N!}{n_{1}!n_{2}!\ldots n_{d}!} \pi(1)^{n_{1}} \pi(2)^{n_{2}} \ldots \pi(d)^{n_{d}}
$$

- $\operatorname{Var}(\hat{\lambda})=\frac{4}{N}\left(\sum_{i=1}^{d} \pi(i)^{3}-\lambda^{2}\right)+O\left(N^{-2}\right)$

PAMI places 1

- Consider (X, Σ, \mathbb{P}) and an embedding function $f: X \rightarrow \mathbb{R}^{d}$; by abuse of notation: $\mathbb{P}=f_{*} \circ \mathbb{P}$.
- The sizes $n_{j}=\left\{i: x_{i}=j\right\}$ no longer makes sense
- E.g. we can ask if x and x^{\prime} look similar, or at least: whether $\left(x, x^{\prime}\right)$ look more similar than $\left(y, y^{\prime}\right)$.

Relative diversity
Diversity of set X relative to set Y :
for a similarity function $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and
\qquad

PAMI places 1

- Consider (X, Σ, \mathbb{P}) and an embedding function $f: X \rightarrow \mathbb{R}^{d}$; by abuse of notation: $\mathbb{P}=f_{*} \circ \mathbb{P}$.
- The sizes $n_{j}=\left|\left\{i: x_{i}=j\right\}\right|$ no longer makes sense
if x and x^{\prime} look similar (wrt to some similarity function d).
- E.g. we can ask if x and x^{\prime} look similar, or at least: whether (x, x^{\prime}) look more similar than $\left(y, y^{\prime}\right)$

Relative diversity

Diversity of set X relative to set Y :
for a similarity function $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $X, X^{\prime} \in X$ and
\qquad

PAMI places 1

- Consider (X, Σ, \mathbb{P}) and an embedding function $f: X \rightarrow \mathbb{R}^{d}$; by abuse of notation: $\mathbb{P}=f_{*} \circ \mathbb{P}$.
- The sizes $n_{j}=\left|\left\{i: x_{i}=j\right\}\right|$ no longer makes sense \rightarrow we can still ask if x and x^{\prime} look similar ($w r$ to some similarity function d).
- E.g. we can ask if x and x^{\prime} look similar, or at least: whether (x, x^{\prime}) look more similar than $\left(y, y^{\prime}\right)$.

Pelative diversity

Diversity of set X relative to set Y :
$\operatorname{Div}_{Y}(X)=1-\mathbb{P}\left(d\left(x, x^{\prime}\right)<d\left(y, y^{\prime}\right)\right)$
for a similarit, function d : $(X \cup V)^{2},(0, \infty)$..ith,$x^{\prime} \subset X$ and
\square

PAMI places 1

- Consider (X, Σ, \mathbb{P}) and an embedding function $f: X \rightarrow \mathbb{R}^{d}$; by abuse of notation: $\mathbb{P}=f_{*} \circ \mathbb{P}$.
- The sizes $n_{j}=\left|\left\{i: x_{i}=j\right\}\right|$ no longer makes sense \rightarrow we can still ask if x and x^{\prime} look similar ($w r$ to some similarity function d).
- E.g. we can ask if x and x^{\prime} look similar, or at least: whether $\left(x, x^{\prime}\right)$ look more similar than $\left(y, y^{\prime}\right)$.

Relative diversity

Diversity of set X relative to set Y :

for a similarity function $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and
\qquad

PAMI places 1

- Consider (X, Σ, \mathbb{P}) and an embedding function $f: X \rightarrow \mathbb{R}^{d}$; by abuse of notation: $\mathbb{P}=f_{*} \circ \mathbb{P}$.
- The sizes $n_{j}=\left|\left\{i: x_{i}=j\right\}\right|$ no longer makes sense \rightarrow we can still ask if x and x^{\prime} look similar ($w r$ to some similarity function d).
- E.g. we can ask if x and x^{\prime} look similar, or at least: whether $\left(x, x^{\prime}\right)$ look more similar than $\left(y, y^{\prime}\right)$.

Relative diversity

Diversity of set X relative to set Y :

$$
\operatorname{Div}_{Y}(X)=1-\mathbb{P}\left(d\left(x, x^{\prime}\right)<d\left(y, y^{\prime}\right)\right)
$$

for a similarity function $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$.

PAMI places 2

Relative diversity

Diversity of set X relative to set Y :

$$
\operatorname{Div}_{Y}(X)=1-\mathbb{P}\left(d\left(x, x^{\prime}\right)<d\left(y, y^{\prime}\right)\right)
$$

for a similarity fn $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$.
Fisher concentration
For $\pi: 2^{[d]} \rightarrow[0,1]$ probability distribution define $\lambda=\sum^{d}$

Let $X=Y=[n]$ and $p Y=\delta_{1}$. Then

$=1-P\left(x \neq x^{\prime}\right)=P\left(x=x^{\prime}\right)=\sum^{n} p_{X}(x)^{2}=\lambda x$.

PAMI places 2

Relative diversity

Diversity of set X relative to set Y

$$
\operatorname{Div}_{Y}(X)=1-\mathbb{P}\left(d\left(x, x^{\prime}\right)<d\left(y, y^{\prime}\right)\right)
$$

for a similarity fn $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$.

Fisher concentration

For $\pi: 2^{[d]} \rightarrow[0,1]$ probability distribution define $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$
Let $X=Y=[n]$ and $p_{Y}=\delta_{1}$. Then

$D_{X}(Y)=1-P\left(d\left(y, y^{\prime}\right)<d\left(x, x^{\prime}\right)\right)$

PAMI places 2

Relative diversity

Diversity of set X relative to set Y :

$$
\operatorname{Div}_{Y}(X)=1-\mathbb{P}\left(d\left(x, x^{\prime}\right)<d\left(y, y^{\prime}\right)\right)
$$

for a similarity fn $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$.
Fisher concentration
For $\pi: 2^{[d]} \rightarrow[0,1]$ probability distribution define $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$
Let $X=Y=[n]$ and $p_{Y}=\delta_{1}$. Then

PAMI places 2

Relative diversity

Diversity of set X relative to set Y :

$$
\operatorname{Div}_{Y}(X)=1-\mathbb{P}\left(d\left(x, x^{\prime}\right)<d\left(y, y^{\prime}\right)\right)
$$

for a similarity fn $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$.

Fisher concentration

For $\pi: 2^{[d]} \rightarrow[0,1]$ probability distribution define $\lambda=\sum_{i=1}^{d} \pi(i)^{2} \in\left[\frac{1}{d}, 1\right]$
Let $X=Y=[n]$ and $p_{Y}=\delta_{1}$. Then

$$
\begin{aligned}
D_{X}(Y) & =1-P\left(d\left(y, y^{\prime}\right)<d\left(x, x^{\prime}\right)\right) \\
& =1-P\left(x \neq x^{\prime}\right)=P\left(x=x^{\prime}\right)=\sum_{x=1}^{n} p_{X}(x)^{2}=\lambda_{X} .
\end{aligned}
$$

PAMI places 3

Relative diversity

Diversity of set X relative to set Y :

$$
\operatorname{Div}_{Y}(X)=1-\mathbb{P}\left(d\left(x, x^{\prime}\right)<d\left(y, y^{\prime}\right)\right)
$$

for a similarity fn $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$.

Relative diversity

Diversity of set X_{1} relative to a family of sets X_{2}, \ldots, X_{n} :
$\operatorname{Div} x_{2}, \ldots, x_{n}\left(x_{1}\right)=1-\mathbb{P}\left(d\left(x_{1}, x_{1}^{\prime}\right)<\min _{2 \leq i \leq n} d\left(x_{i}, x_{i}^{\prime}\right)\right)$
for a similarity fn $d:\left(\bigcup_{i=1}^{n} x_{i}\right)^{2} \rightarrow(0, \infty)$, with $x_{i}, x_{i}^{\prime} \in X_{i}$

PAMI places 3

Relative diversity

Diversity of set X relative to set Y :

$$
\operatorname{Div}_{Y}(X)=1-\mathbb{P}\left(d\left(x, x^{\prime}\right)<d\left(y, y^{\prime}\right)\right)
$$

for a similarity fn $d:(X \cup Y)^{2} \rightarrow(0, \infty)$, with $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$.

Relative diversity

Diversity of set X_{1} relative to a family of sets X_{2}, \ldots, X_{n} :

$$
\operatorname{Div}_{x_{2}, \ldots, x_{n}}\left(X_{1}\right)=1-\mathbb{P}\left(d\left(x_{1}, x_{1}^{\prime}\right)<\min _{2 \leq i \leq n} d\left(x_{i}, x_{i}^{\prime}\right)\right)
$$

for a similarity fn $d:\left(\bigcup_{i=1}^{n} X_{i}\right)^{2} \rightarrow(0, \infty)$, with $x_{i}, x_{i}^{\prime} \in X_{i}$.

Plan of the talk
(1) Data from ML practitioner's perspective

2 Current approaches
(3) Our approach

4 Conclusions

Embeddings

- Use a learnable representation $f: X \rightarrow \mathbb{R}^{d}$.
- calculate the cosine similarity: $d\left(x, x^{\prime}\right)=1-\arccos \left(f(x), f\left(x^{\prime}\right)\right)$.
- Use uniform distribution on X, calculation easier than with
push-forward to $f(X)$ as a measure on (discrete subset of) \mathbb{R}^{d}
- Calculate

Embeddings

- Use a learnable representation $f: X \rightarrow \mathbb{R}^{d}$.
- calculate the cosine similarity: $d\left(x, x^{\prime}\right)=1-\arccos \left(f(x), f\left(x^{\prime}\right)\right)$.
- Use uniform distribution on X, calculation easier than with
push-forward to $f(X)$ as a measure on (discrete subset of) \mathbb{R}^{d}.
- Calculate

Embeddings

- Use a learnable representation $f: X \rightarrow \mathbb{R}^{d}$.
- calculate the cosine similarity: $d\left(x, x^{\prime}\right)=1-\arccos \left(f(x), f\left(x^{\prime}\right)\right)$.
- Use uniform distribution on X, calculation easier than with push-forward to $f(X)$ as a measure on (discrete subset of) \mathbb{R}^{d}.

[^1]
Embeddings

- Use a learnable representation $f: X \rightarrow \mathbb{R}^{d}$.
- calculate the cosine similarity: $d\left(x, x^{\prime}\right)=1-\arccos \left(f(x), f\left(x^{\prime}\right)\right)$.
- Use uniform distribution on X, calculation easier than with push-forward to $f(X)$ as a measure on (discrete subset of) \mathbb{R}^{d}.
- Calculate

$$
\operatorname{Div}_{x_{2}, \ldots, X_{n}}\left(X_{1}\right)=1-p\left(d\left(x_{1}, x_{1}^{\prime}\right)<\min _{2 \leq i \leq n} d\left(x_{i}, x_{i}^{\prime}\right)\right)
$$

Embeddings

- Use a learnable representation $f: X \rightarrow \mathbb{R}^{d}$.
- calculate the cosine similarity: $d\left(x, x^{\prime}\right)=1-\arccos \left(f(x), f\left(x^{\prime}\right)\right)$.
- Use uniform distribution on X, calculation easier than with push-forward to $f(X)$ as a measure on (discrete subset of) \mathbb{R}^{d}.
- Calculate

$$
\begin{aligned}
& \operatorname{Div}_{x_{2}, \ldots, x_{n}}\left(X_{1}\right)=1-p\left(d\left(x_{1}, x_{1}^{\prime}\right)<\min _{2 \leq i \leq n} d\left(x_{i}, x_{i}^{\prime}\right)\right) \\
& =1-\frac{\sum_{x_{1}, x_{1}^{\prime} \in X_{1}} \ldots \sum_{x_{n}, x_{n}^{\prime} \in X_{n}} \mathbb{1}_{\left(0, d\left(x_{2}, x_{2}^{\prime}\right)\right)}\left(d\left(x_{1}, x_{1}^{\prime}\right)\right) \ldots \mathbb{1}_{\left(0, d\left(x_{n}, x_{n}^{\prime}\right)\right)}\left(d\left(x_{1}, x_{1}^{\prime}\right)\right)}{\binom{\left|X_{1}\right|}{2} \ldots\binom{\left|X_{n}\right|}{2}}
\end{aligned}
$$

Embeddings

- Use a learnable representation $f: X \rightarrow \mathbb{R}^{d}$.
- calculate the cosine similarity: $d\left(x, x^{\prime}\right)=1-\arccos \left(f(x), f\left(x^{\prime}\right)\right)$.
- Use uniform distribution on X, calculation easier than with push-forward to $f(X)$ as a measure on (discrete subset of) \mathbb{R}^{d}.
- Calculate

$$
\begin{aligned}
& \operatorname{Div}_{x_{2}, \ldots, x_{n}}\left(X_{1}\right)=1-p\left(d\left(x_{1}, x_{1}^{\prime}\right)<\min _{2 \leq i \leq n} d\left(x_{i}, x_{i}^{\prime}\right)\right) \\
& =1-\frac{\sum_{x_{1}, x_{1}^{\prime} \in X_{1}} \ldots \sum_{x_{n}, x_{n}^{\prime} \in X_{n}} \mathbb{1}_{\left(0, d\left(x_{2}, x_{2}^{\prime}\right)\right)}\left(d\left(x_{1}, x_{1}^{\prime}\right)\right) \ldots \mathbb{1}_{\left(0, d\left(x_{n}, x_{n}^{\prime}\right)\right)}\left(d\left(x_{1}, x_{1}^{\prime}\right)\right)}{\binom{\left|X_{1}\right|}{2} \ldots\binom{\left|X_{n}\right|}{2}} \\
& =1-\frac{\sum_{x_{1}, x_{1}^{\prime} \in X_{1}} \prod_{j=2}^{n} \sum_{x_{j}, x_{j}^{\prime} \in X_{j}} \mathbb{1}_{\left(0, d\left(x_{j}, x_{j}^{\prime}\right)\right)}\left(d\left(x_{1}, x_{1}^{\prime}\right)\right)}{\binom{\left|X_{1}\right|}{2} \ldots\binom{\left|X_{n}\right|}{2}}
\end{aligned}
$$

Results

Natural candidates for these representations

- Visual: ResNet, VGG etc Neural Networks
- Textual: Tfldf, word2vec etc statistical vectorization techniques

	ResNet	Tfldf
DUDE	0.82	0.95
DocVQA	0.76	0.93
VisualMRC	0.83	0.99
InfographicsVQA	0.86	0.94
TAT-DQA	0.73	0.15

Plan of the talk

(1) Data from ML practitioner's perspective
(2) Current approaches
(3) Our approach
(4) Conclusions

The dataset is challenging.

Model type	ANSL test score	ANLS diagnostic score
Big Bird	26.27	30.67
BERT-large	25.48	32.18
Longformer	27.14	33.45
T5-base	$19.65-41.8$	$25.62-44.95$
ChatGPT	-	$35.07-41.89$
GPT3	-	$43.95-47.04$
T5-2D-base	$37.1-42.1$	$40.5-45.73$
T5-2D-large	46.06	48.14
HiVT5	23.06	22.33
LayoutLMv3	20.31	25.27
Human	-	74.76

Dataset	Human scor
DocVQA	98.11
TAT-DQA	84.1
InfographicVQA	97.18

VisualMRC

The dataset is challenging. Model type ANSL test score				ANLS diagnostic score
Big Bird	26.27	30.67		
BERT-large	25.48	32.18		
Longformer	27.14	33.45		
T5-base	$19.65-41.8$	$25.62-44.95$		
ChatGPT	-	$35.07-41.89$		
GPT3	-	$43.95-47.04$		
T5-2D-base	$37.1-42.1$	$40.5-45.73$		
T5-2D-large	46.06	48.14		
HiVT5	23.06	22.33		
LayoutLMv3	20.31	25.27		
Human	-	74.76		
Dataset	Human score	best models		
DocVQA	98.11	$87.05-90.16 ;$		
TAT-DQA	84.1	$70.3-76.8 ;$		
InfographicVQA	97.18	$52.58-61.2$		
VisualMRC	-	$56-57.2$		
Pawel Joziak (MinN PW. Snowilake)	On data diversity measures.			

References

- E. H. Simpson, Measurement of Diversity, Nature 163, https://doi.org/10.1038\%2F163688a0.
- B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places: A 10 Million Image Database for Scene Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 40, https://doi.org/10.1109/tpami.2017.2723009.
- J. Van Landeghem, R. Tito, Ł. Borchmann, M. Pietruszka, P. Józiak, R. Powalski, D. Jurkiewicz, M. Coustaty, B. Ackaert, E. Valveny, M. Blaschko, S. Moens, T. Stanisławek, Document Understanding Dataset and Evaluation (DUDE), to appear in: International Conference on Computer Vision 2023, https://arxiv.org/abs/2305.08455.

Cryptographic protocol verification - results of EPW project

Konstanty Junosza-Szaniawski
Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

Cryptographic protocols are fundamental to cybersecurity, necessitating assurance that these protocols are devoid of flaws. Among the various tools available for the verification of cryptographic protocols, ProVerif stands out. ProVerif models protocols using Horn formulas and verifies the security properties through the satisfiability of corresponding logical formulas. However, the complexity of modeling protocols and their properties in ProVerif is time-consuming and requires a high level of knowledge. To address this, we have developed a translator from the AnB language, which describes protocols from a global perspective, to ProVerif syntax. This translator simplifies the modeling process, enabling easy verification of key security properties with ProVerif, such as secrecy, forward secrecy, weak secrecy, indistinguishability, authentication, non-replay authentication, and key compromise impersonation. Our translator is a principal outcome of the project "Experimental Platform for Automatic Validation of Crypto Algorithms and Verification of Crypto Protocols" (EPW), funded by The National Centre for Research and Development under the grant CYBERSECIDENT/456962/III/NCBR/2020.

R+D Project EPW brief presentation

Experimental platform for automatic validation of cryptoalgorithms and verification of cryptoprotocols (acronym: EPW)
> Project financed under the national program sponsored by National Centre of Research and Development „Cybersecurity and e-Identity" (CyberSecIdent)
$>$ The Consortium consists of 3 R\&D Polish entities:

* National Institute of Telecommunications - State Research Institute (Consortium Leader)
- NASK - State Research Institute
- Warsaw University of Technology, Mathematics and Information Science Faculty >timeframe: July 2020 - December 2023

Example:
Task: Encode
$x_{1}+x_{2}+x_{3}+x_{4}=0$ (where + denote addition modulu 2$)$
as CNR formula.

Solution:
$\left.\left[\left(\sim x_{1}^{\wedge} \sim x_{2} \wedge \sim x_{3}\right)=>\sim x_{4}\right]^{\wedge}\left[x_{1} \wedge \sim x_{2} \wedge \sim x_{3}\right)=>x_{4}\right]^{\wedge} \ldots$
$\left(x_{1} \vee x_{2} \vee x_{3} \vee \sim x_{4}\right)^{\wedge}\left(\sim x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)^{\wedge} \ldots$
8 clauses with 4 literals

Equivalence checking

Example2:

Task: Encode

$$
x_{1}+x_{2}+x_{3}+x_{4}=0
$$

$$
x_{3}+x_{4}+x_{5}=0
$$

as CNR formula.

Solution: 8 clauses with 4 literals and 4 clauses with 3 literals

Equivalence checking

Example2:

Task: Encode

$$
x_{1}+x_{2}+x_{3}+x_{4}=0
$$

$$
x_{3}+x_{4}+x_{5}=0
$$

as CNR formula.

Solution: 8 clauses with 4 literals and 4 clauses with 3 literals
Adding second equality to the first one we obtain

$$
\begin{array}{r}
x_{1}+x_{2}+\quad x_{5}=0 \\
x_{3}+x_{4}+x_{5}=0
\end{array}
$$

What gives us 8 clauses with 3 literals

Synergies of medicine, physics, and mathematics in medical imaging

Shizuo Kaji

Institute of Mathematics for Industry, Kyushu University, Japan

Medical imaging provides detailed visual representations of internal structures and functions of the human body and plays a pivotal role in diagnosing, monitoring, and treating various medical conditions. Mathematical disciplines intersect with medical imaging in multifaceted ways, encompassing:

- Image reconstruction involves the transformation of raw measurements across diverse modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound into coherent, human-interpretable images.
- Image enhancement and information Extraction aim at refining image quality while extracting vital information embedded within.
- Quantitative analysis unveils deeper insight into the heterogeneity and progression of diseases in an objective and reproducible manner.
We will present some of our collaborative endeavours, bridging the expertise of medical doctors, medical physicists, and the realm of mathematics. Our work showcases applications of machine learning and topology that fortify and enrich the field of medical imaging.

Topological Image Analysis
Function \rightarrow Space \Rightarrow "Numbers"

topological space X function $f: X \rightarrow R$

Each threshold value gives rise to the sub-level set $\{\mathrm{x} \mid \mathrm{f}(\mathrm{x})<\mathrm{a}\}$

Persistent homology (PH)

- Extension of homology defined for functions over topological spaces - For each topological feature(cycle), the threshold values with which it was born and destroyed are recorded

Remark
We can also view PH as a "continnous relasation" of homology. Homology is a discrete quantity that is sometimes problematic (eg, homology can change abruptly with small variation in the input)

Persistent homology (formal definition)

Increasing sequence of spaces $\quad \emptyset \subset X_{t_{1}} \subset X_{t_{2}} \subset \quad \cdot \subset X_{t_{m}}=X$
Apply th homology fuac or
(with coefficients in F_{2})

PH is by definition the sequence of F_{2}-vector spaces (for each dimension d)
$H_{d}(\emptyset) \rightarrow \cdots \rightarrow H_{d}\left(X_{t_{1}} 1\right) \rightarrow H_{d}\left(X_{t_{1}}\right) \rightarrow \cdots \rightarrow H_{d}\left(X_{t_{j}} 1\right) \rightarrow H_{d}\left(X_{t_{j}}\right) \rightarrow \cdots \rightarrow H_{d}(X)$
The sequence decomposes into the direct sum of "intervals" having the form

$$
\begin{aligned}
& 0 \longrightarrow \cdots \longrightarrow \mathbf{F}_{2} \xrightarrow{\mathrm{Id}} \cdots \xrightarrow{\mathrm{Id}} \mathrm{~F}_{2} \longrightarrow \longrightarrow 0 \longrightarrow \longrightarrow \longrightarrow \\
& \text { which correspond to cycles } \\
& \text { (= generators = topological features) }
\end{aligned}
$$

2D Example

0	0	0	0	0	0	0	0	0	0	0				0	0
0	0	1	2	0	0	0	1	2	0	0	0	0	1	2	0
1	1	1	2	0	1	1	1	2		1		1	1	2	0
	1	0	0	0	0		0	0		0			0		

$$
\begin{aligned}
& \mathrm{PH}_{0}=\{(0,1],(0, \infty)\} \text { (islands) A ocle of the form (a,b) is epepesented } \\
& \mathrm{PH}_{1}=\{(1,2]\} \quad \text { (holes) }
\end{aligned}
$$

Software for Persistent Homology computation for image and volumetric data

- Cubical Ripser (K-Sudo-Ahara, 2021)
- Open-source (MIT license), Available at my github reposito y
h tps://g thub com/ hizuo- ji/CubicalRipser 3dim/
- Capable of computing persistent homology of time series, image, volumetric data
- One of the fastest program for computing persistent homology of cubical complexes
- The only program which can handle two major constructions of cubical complexes
\circ Python binding that works nicely with Numpy (including DICOM converters)
- Tutorial (run on Google Co ab): google "shizuo TDA tutorial"

2D or 3D image
Sublevel sets by sweeping thresholds
Persistent
homology

PH as a feature

Input: Function (ore a topologi al space)

Output : Persistence Diagram
(finite points in R^{2})

2D, 3D

Summary

- Topology (persistent homology) provides a way to extract image/volume features that are not easy to obtain by conventional method
- Global and invariant features encoded by persistent homology (PH) complement those (mainly local) features obtained by deep learning (DL) and can be used in conjunction to boost performance
- PH-based image analysis has some advantages:
- robust and easily transferable (\Leftrightarrow DL needs re-training)
- interpretable ($\Leftrightarrow \mathrm{DL}$ is often a blackbox)
- 3D (\Leftrightarrow many conventional analyses are 2D slice-based)

Plasticity - Modeling and mathematical analysis

Konrad Kisiel

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland
(joint work with Krzysztof Chełmiński)

Abstract

Systems of equations describing an inelastic response of metals, with the fundamental assumption of small deformations, consist of linear partial differential equations coupled with nonlinear differential inclusions (or ordinary differential equations) for the vector of internal variables. The partial differential equations result from general mechanical laws. The differential inclusions are experimental, and depend on the kind of considered materials. One of the main assumptions needed in known existence theories is so-called safe-load condition. This kind of assumption is an indirect assumption on regularity of data. Our main goal is to present a method to obtaining existence of solutions, where the safe-load condition can be replaced by an assumption abouth the size of the set of addmissible stresses.

Table of contents

1. Theory of inelastic deformations - short introduction
2. Elasto-perfect plasticity
3. Safe-load condition
4. Energy estimates without safe-load condition
5. Theory of inelastic deformations - short introduction

Let $\Omega \subset \mathbf{R}^{3}$ be a bounded domain with a smooth boundary $\partial \Omega$.
Balance of momentum

$$
\rho u_{t t}(x, t)=\operatorname{div}_{x} T(x, t)+F(x, t), \quad \rho u_{t t} \sim 0 \quad \text { (quasistatic case) }
$$

$(u, T): \Omega \times\left(0, T_{e}\right) \rightarrow \mathbf{R}^{3} \times \mathcal{S}^{3}-$ (the displacement vector, the stress tensor)
$F: \Omega \times\left(0, T_{e}\right) \rightarrow \mathbb{R}^{3}$ - the given external force, $\rho>0$ - the mass density
Elastic constitutive relation

$$
T(x, t)=\mathcal{D}\left(\varepsilon(x, t)-\varepsilon^{P}(x, t)\right)
$$

$\varepsilon=\frac{1}{2}\left(\nabla u+\nabla^{T} u\right)-$ the linearized strain tensor
$\varepsilon^{p}: \Omega \times\left(0, T_{e}\right) \rightarrow \mathcal{S}^{3}$ - the plastic strain tensor, $\mathcal{D}: \mathcal{S}^{3} \rightarrow \mathcal{S}^{3}$ - the elasticity tensor (symmetric, >0)
Inelastic constitutive relation

$$
\varepsilon_{t}^{p}(x, t) \in f\left(\varepsilon(x, t), \varepsilon^{p}(x, t)\right)
$$

$f: D(f) \subset \mathcal{S}^{3} \times \mathcal{S}^{3} \rightarrow \mathcal{P}\left(\mathcal{S}^{3}\right)$ - a given constitutive multifunction

Models of premonotone type
Prof. Dr. Dr. h.c. Hans-Dieter Alber in the monograph Materials with memory LNM 1998 has defined a very large class of models: models of premonotone type.

Definition 1
A model is called of premonotone type if the inelastic constitutive relation is in the form

$$
\varepsilon_{t}^{p} \in g\left(-\rho \nabla_{\varepsilon^{p}} \psi\left(\varepsilon, \varepsilon^{p}\right)\right)
$$

where $\psi\left(\varepsilon, \varepsilon^{p}\right)=\frac{1}{2} \mathcal{D}\left(\varepsilon-\varepsilon^{p}\right) \cdot\left(\varepsilon-\varepsilon^{p}\right)$ is the free energy function and $g: D(g) \subset \mathcal{S}^{3} \rightarrow \mathcal{P}\left(\mathcal{S}^{3}\right)$ is a given inelastic multifunction satisfying:

$$
\begin{equation*}
\forall z \in D(g) \quad g(z) \cdot z \geq 0 \tag{*}
\end{equation*}
$$

If we additionally assume that $g(0) \ni 0 \quad(*) \Leftrightarrow$ monotonicity at the point 0 . All models used in practice are of premonotone type.

Models of monotone type $\Leftrightarrow g$ is additionally monotone
2. Elasto - perfect plasticity (the Prandtl-Reuss model)

$$
\varepsilon_{t}^{p}(x, t) \in \partial I_{\mathcal{K}}(T(x, t)), \quad \mathcal{K}=\operatorname{dev} \mathcal{K} \times\{c \cdot \mathbb{I}: c \in \mathbb{R}\}
$$

where $\operatorname{dev} T=T-1 / 3(\operatorname{tr} T) \cdot \mathbb{I}$. Moreover, $\operatorname{dev} \mathcal{K}$ is convex with $0 \in \operatorname{int}(\mathcal{K})$.
Hencky flow rule $\operatorname{dev} \mathcal{K}=B(0, k) \quad \Leftrightarrow \quad \forall S \in \mathcal{K} \quad|\operatorname{dev} S| \leq k$.
| ${ }^{*}{ }^{*}$

$$
\begin{aligned}
& { }^{{ }^{T / I}} \\
& S \in \partial I_{\mathcal{K}}(T) \Leftrightarrow(S, T-\tau) \geq 0 \quad \forall \tau \in \mathcal{K} \\
& \partial I_{\mathcal{K}}(T) \text { is monotone and } 0 \in \partial I_{\mathcal{K}}(0)
\end{aligned}
$$

3. Safe-load condition

Definition 2 (quasistatic case)
The given data F, g_{N} satisfy the safe-load condition if there exists g_{D}^{*} such that the unique solution $\left(u^{*}, T^{*}\right)$ of the linear system

$$
\begin{aligned}
\operatorname{div}_{x} T^{*}(x, t) & =-F(x, t) \\
T^{*}(x, t) & =\mathcal{D} \varepsilon\left(u^{*}(x, t)\right) \\
u^{*}(x)_{\mid \Gamma_{D}} & =g_{D}^{*}(x, t), \quad T^{*}(x) \cdot n(x)_{\mid \Gamma_{N}}=g_{N}(x, t) .
\end{aligned}
$$

have the regularity:
$u^{*} \in \mathbb{W}^{1, \infty}\left(\mathbb{H}^{1}\right), T^{*} \in \mathbb{W}^{1, \infty}\left(\mathbb{L}^{2}\right)$ and there exists $\delta>0$ such that

$$
\left\{T^{*}+\sigma:|\sigma| \leq \delta\right\} \subset D(g)
$$

and there exist uniformly bounded in $\mathbb{L}^{\infty}\left(\mathbb{L}^{2}\right)$ selections of the sets $g\left(T^{*}+\sigma\right)$.
For the Prandtl-Reuss model with the Hencky flow rule this condition is equivalent to: there exists $\delta>0$ such that $\left|\operatorname{dev} T^{*}\right| \leq k-\delta$.

Theorem 1
If the given data satisfy the safe-load condition then the sequences $\left\{\varepsilon_{t}^{p, k}\right\},\left\{\varepsilon_{t}^{k}\right\}$ from a "good enough" approximation are bounded in the space $\mathbb{L}^{\infty}\left(\mathbb{L}^{1}\right)$.

Remark 1
Without any additional geometrical conditions for g the strains are weakly relatively compact in the space $\mathbb{L}^{\infty}(\mathcal{M})$ where \mathcal{M} is the space containing bounded measures.

Remark 2
C. Johnson in 1976 was the first mathematician, which has formulated the safe-load condition for the Prandtl-Reuss model. The condition of Johnson is a little bit weaker as presented in this lecture.

The Johnson safe-load condition for the Prandtl-Reuss model
There exists a stress field S^{*} such that
$-\operatorname{div} S^{*}=F, S^{*} \cdot n=g_{N}$ and $\exists \delta>0 \quad S^{*}+B(0, \delta) \subset \mathcal{K} \Leftrightarrow\left|\operatorname{dev} S^{*}\right| \leq k-\delta$.
4. Energy estimates without safe-load condition

Let us consider for simplicity the quasistatic Prandtl-Reuss model .

$$
\begin{aligned}
-\operatorname{div}_{x} T & =F, \\
T & =\mathcal{D}\left(\varepsilon-\varepsilon^{p}\right), \\
\varepsilon_{t}^{p} & \in \partial I_{\mathcal{K}}(T),
\end{aligned}
$$

Our approach is to modify only the inelastic constitutive equation and consider the following problem

$$
\begin{aligned}
-\operatorname{div}_{x} T^{\lambda} & =F \\
T^{\lambda} & =\mathcal{D}\left(\varepsilon^{\lambda}-\varepsilon^{p, \lambda}\right), \\
\varepsilon_{t}^{p, \lambda} & =\mathcal{M}^{\lambda}\left(T^{\lambda}\right),
\end{aligned}
$$

where $\mathcal{M}^{\lambda}: \mathcal{S}^{3} \rightarrow \mathcal{S}^{3}$ denotes the Yosida approximation of the maximal-monotone operator $\partial I_{\mathcal{K}}$.

Let us recall the definition of the space $L D(\Omega)$.
Definition 3

$$
L D(\Omega)=\left\{u \in \mathbb{L}^{1}\left(\Omega ; \mathbb{R}^{3}\right): \varepsilon(u) \in \mathbb{L}^{1}\left(\Omega ; \mathcal{S}^{3}\right)\right\}
$$

$L D(\Omega)$ is the Banach space equipped with the standard norm

$$
\|u\|_{L D(\Omega)}=\|u\|_{\mathbb{L}^{1}(\Omega)}+\|\varepsilon(u)\|_{\mathbb{L}^{1}(\Omega)}
$$

Theorem 2
Assume that $\Omega \subset \mathbb{R}^{3}$ is open, bounded and $\partial \Omega \in C^{1}$. Then, there exists a bounded linear operator

$$
\gamma: L D(\Omega) \rightarrow \mathbb{L}^{1}\left(\partial \Omega ; \mathbb{R}^{3}\right)
$$

such that $\gamma(u)=u_{\mid \partial \Omega}$ for every $\varphi \in L D(\Omega) \cap C^{0}(\bar{\Omega})$. Hence

$$
\exists C_{L D}>0 \quad \forall u \in L D(\Omega) \quad\|\gamma(u)\|_{\mathbb{L}^{1}(\partial \Omega)} \leqslant C_{L D}\|u\|_{L D(\Omega)}
$$

Moreover, the following embedding theorem holds,

$$
\exists C_{E L D}>0 \quad \forall u \in L D(\Omega) \quad\|u\|_{\mathbb{L}^{3 / 2}(\Omega)} \leqslant C_{E L D}\|u\|_{L D(\Omega)}
$$

We observed that in order to obtain proper energy estimates it is enough to assume the admissibility of the Neumann boundary data and the external force, which means

Definition 4 (Admissibility of forces)
We say that in the dynamical case the Neumann boundary data g_{N} is admissible if

$$
C_{L D}\left\|g_{N}\right\|_{\mathbb{L}^{\infty}\left(0, T_{e} \mathbb{L}^{\infty}\left(\Gamma_{N}\right)\right)}<C^{*}
$$

where $C_{L D}$ is a positive constant from the trace theorem in the space $L D(\Omega)$. The constant C^{*} depends on the maximal monotone inelastic multifunction only (for the Prandtl-Reuss model with the Hencky flow rule C^{*} is equal to the yield constant k.)

We say that in the quasi-static case the Neumann boundary data g_{N} and the external force F are admissible if

$$
C_{E L D}\|F\|_{\mathbb{L}^{\infty}\left(0, T_{e} ; \mathbb{L}^{3}(\Omega)\right)}+C_{L D}\left\|g_{N}\right\|_{\mathbb{L}^{\infty}\left(0, T_{e} ; \mathbb{L}^{\infty}\left(\Gamma_{N}\right)\right)}<C^{*},
$$

where the constant $C_{E L D}$ is from the embedding theorem for the space $L D(\Omega)$ and the constant C^{*} is the same as in the dynamical case.

Theorem 3 Assume that the data are regular enough and boundary data g_{N} is admissible or in the quasistatic case g_{N} and F are admissible. Then there exists a positive constant C, independent of λ, such that in the dynamical case

$$
\mathcal{E}\left(u_{t}^{\lambda}, \varepsilon^{\lambda}, \varepsilon^{p, \lambda}\right), \int_{0}^{t} \int_{\Omega} \varepsilon_{t}^{p, \lambda} \cdot T^{\lambda}, \mathcal{E}\left(u_{t t}^{\lambda}, \varepsilon_{t}^{\lambda}, \varepsilon_{t}^{p, \lambda}\right),\left\|\varepsilon_{t}^{p, \lambda}\right\|_{\mathbb{L}^{\infty}\left(\mathbb{L}^{1}\right)} \leq C .
$$

where $2 \mathcal{E}\left(u_{t}^{\lambda}, \varepsilon^{\lambda}, \varepsilon^{p, \lambda}\right)=\int_{\Omega}\left(\rho\left|u_{t}^{\lambda}\right|^{2}+\mathcal{D}\left(\varepsilon^{\lambda}-\varepsilon^{p, \lambda}\right) \cdot\left(\varepsilon^{\lambda}-\varepsilon^{p, \lambda}\right)\right) d x$
and in the quasistatic case

$$
\mathcal{E}\left(\varepsilon^{\lambda}, \varepsilon^{p, \lambda}\right), \int_{0}^{t} \int_{\Omega} \varepsilon_{t}^{p, \lambda} \cdot T^{\lambda}, \mathcal{E}\left(\varepsilon_{t}^{\lambda}, \varepsilon_{t}^{p, \lambda}\right),\left\|\varepsilon_{t}^{p, \lambda}\right\|_{\mathbb{L}^{\infty}\left(\mathbb{L}^{1}\right)} \leq C .
$$

where $2 \mathcal{E}\left(\varepsilon^{\lambda}, \varepsilon^{p, \lambda}\right)=\int_{\Omega} \mathcal{D}\left(\varepsilon^{\lambda}-\varepsilon^{p, \lambda}\right) \cdot\left(\varepsilon^{\lambda}-\varepsilon^{p, \lambda}\right) d x$

Literature used in the lecture

- H.-D. Alber - Materials with memory - Lecture Notes in Math. v. 1682, Springer, Berlin Heidelberg New York, 1998
- C.Johnson - Existence theorems for plasticity problems - J. M. P. Appl. 1976
- R. Temam - A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity - ARMA, 1986
- K. Ch. - Coercive approximation of viscoplasticity and plasticity - Asymptotic Anal., 2001
- K. K., - Dynamical problems in the theory of inelastic deformations - PhD thesis, 2018
- K. K., K. Ch. - On strong solutions of viscoplasticity without safe-load conditions - J. Diff. Equ., 2020
- K. K, K. Ch. - Prandtl-Reuss dynamical elasto-perfect plasticity without safe-load conditions - Nonlinear Analysis TMA, 2020
- K. K, K. Ch. - Quasistatic viscoplasticity without safe load conditions - J. Diff. Equ., 2021

Developable surfaces with curved folds and applications

Miyuki Koiso
Institute of Mathematics for Industry, Kyushu University, Japan

A developable surface is a surface which is isometric to a planar region, that is, there exists a continuous bijective mapping from the surface to a planar region which preserves the length of every curve. If the considered surface is smooth, then it is developable if and only if its Gaussian curvature vanishes everywhere. Moreover, in this case, the surface can be continuously and isometrically deformed until the planar region. In this talk, we discuss developable surfaces with curved folds, which are naturally appear as origami works and have many applications in manufacturing objects. We discuss intrinsic and extrinsic singular points (such as vertices and points in edges), curvatures at each singular point, and the existence and nonexistence of continuous isometric deformations from such a surface to a planar region. We also discuss applications and discretization of these objects.

WORKSHOP on Mathematics for Industry 2023
Developable surfaces with curved folds and applications*

Miyuki Koiso (Kyushu University, Japan)

Collaborated with:
J. Mitani (information science), T. Homma (architecture),
Y. Yokosuka (architecture), T. Kitahata (physics),
M. Yasumoto (discrete geometry), Y. Jikumaru (geometry)

September 26, 2023, Warsaw University of Technology, Poland
*This work is supported by JST CREST Grant Number JPMJCR1911 and JSPS KAKENHI Grant Number JP2OH01801.

Plan of the talk

We consider oriented piecewise smooth (PW smooth) surfaces $M=\sum_{i} M_{i}$ in \mathbb{E}^{3}. Here M is a 2-dimensional manifold, each M_{i} is a smooth surface with boundary, and locally the number of M_{i} is finite.

- Developable surfaces
- A specific class of PW smooth developable surfaces called "pillow boxes", and a variational problem for them.

- Continuous isometric deformations from pillow boxes to planar regions
- Application

Developable surfaces

Def. 1. A PW-smooth surface M is said to be developable if it is isometric to a planar region R (that is, there exists a continuous bijective mapping F from M onto R that preserves the length of each curve).

Remark 1. It is well-known that a smooth surface M is developable if and only if the Gaussian curvature $K(p)$ of M vanishes at any point $p \in M$.

Smooth developable surfaces
(smooth surfaces with 0-Gaussian curvature)

Fact 1. Smooth developable surfaces in \mathbb{E}^{3} are the following: (1) cylinders, (2) cones, (3) tangent developable surfaces.

cylinder

cone

tangent developable surface

S nce deve opab e surfaces can be constructed by bend ng a fat sheet, they are mportant n manufactur ng objects from sheet meta, cardboard, and pywood (cons sts of three or more ayers of veneer).

A variational problem for developable surfaces
"Find the optimal pillow box!"
What is a pillow box?

A double flat rectangle
(topologically, 2-spere S^{2}) $\xlongequal[\text { Fold }]{\text { along curves }}$
made of paper
Pillow box
Def. 2 (Pillow box). A pillow box is a compact PW-smooth surface without boundary with genus 0 that consists of four parts of (generalized) cylinders and that is isometric to a double rectangle.

Q: For a given double rectangle, find the pillow box with the maximal volume. \underline{A} : We will give a (rigorous) answer.

A double rectangle

Pillow box

Existence and uniqueness of the optimal pillow box

Theorem 1 (K): For any given double rectangle $R(2 a, 2 b)$ with side lengths $2 a, 2 b$ (see the picture below) there exists a unique pillow box $M(2 a, 2 b)$ (which we call the optimal pillow box) that encloses the largest volume. It has an explicit representation using elliptic integrals. It consists of four (generalized) cylinders (of C^{∞} class) of which the base curves (the top and the bottom half of Γ_{0} and two blue curves in the picture below right) are congruent and they are elastic curves.

Remark 2.
(1) $\lim _{b \rightarrow \infty} M(2 a, 2 b)=a$ right circular cylinder with radius $2 a / \pi$.
(2) $\lim _{a \rightarrow \infty} M(2 a, 2 b)=$ two parallel rectangles with width b and infinite length.

Step1. We observe that, for any pillow box M, the base curves of the four cylinders of which M consists are all congruent. We denote one of them by $\Gamma_{0}: z=f(x)(-c \leq x \leq c)$ (see the picture below), and it is sufficient to study only $1 / 4$ of the pillow box.

Therefore, our problem becomes a problem for plane curves!

Outline of the proof of Theorem 1 (2) --- Step 2---

Step2. We consider the following variational problem for plane curves. For a given surface area, we maximize the enclosed volume of the pillow box given by a plane curve $\Gamma_{0}: z=f(x)$. Using the method of Lagrange multiplier, we derive the Euler-Lagrange equation for $\Gamma_{0}: z=$ $f(x)$ which gives a critical point of the functional "Area $+\mu$-Volume". The result is the following ODE:

$$
\begin{equation*}
\left(1+\left(f^{\prime}\right)^{2}\right)^{\frac{3}{2}} f^{\prime \prime}=\left(\frac{2 \mu}{b}\right) f-\mu \tag{1}
\end{equation*}
$$

This equation means that the curvature κ of Γ_{0} is a linear function of the height, which implies that Γ_{0} is an elastic curve.

Outline of the proof of Theorem 1 (3) --- Step 3, 4, 5---

Step3. We derive the boundary condition for our ODE:

$$
\begin{equation*}
\left(1+\left(f^{\prime}\right)^{2}\right)^{\frac{3}{2}} f^{\prime \prime}=\left(\frac{2 \mu}{b}\right) f-\mu \tag{1}
\end{equation*}
$$

in order that the solution gives a (local) maximum of volume. The result is: the curve $\Gamma_{0}: z=f(x)$ must be orthogonal to the $x y$ plane.

Step4. We solve our ODE (1) for the curve $\Gamma_{0}: z=f(x)$ under the boundary condition that the curve Γ_{0} is orthogonal to the $x y$ plane.

Step5 (final step). We prove the existence of the (global) maximum of the volume of pillow boxes for any given double rectangle $R(2 a, 2 b)$.

Representation of the optimal pillow box (I) -- base curves--

The base curve $\Gamma_{0}: z=f(x)$ of the optimal pillow box is represented as follows.
$\left\{\begin{array}{l}x=I_{\mu}(z)+c, \quad 0 \leq z \leq z_{0}, \quad(0 \leq x \leq c) \\ x=I_{\mu}(z) \quad c, \quad 0 \leq z \leq z_{0}, \quad(c \leq x \leq 0)\end{array}\right.$
where, $I_{\mu}(z):=\int_{0}^{z} \frac{-\mu \zeta\left(1 \frac{\zeta}{b}\right)}{\sqrt{1-\left(\mu \zeta\left(1-\frac{\zeta}{b}\right)\right)^{2}}} d \zeta>0,(0<z<b), z_{0}:=\frac{b}{2}($

$c=I_{\mu}\left(z_{0}\right) \cdot \mu(<0)$ is the curvature of Γ_{0} at the end points that is determined by the following.

A rectangle
$a=\int_{0}^{z_{0}} \frac{d \zeta}{\sqrt{1-\left(\mu \zeta\left(1-\frac{\zeta}{b}\right)\right)^{2}}}$
(3)

bend

1/4 of a pillow box.

Representation of the optimal pillow box (II)
--- surface and volume ---
Let $\Gamma_{0}: z=f(x)$ be the base curve of the optimal pillow box given in the previous slide.

The parts S_{1}, S_{2} of the $1 / 4$ of the optimal pillow box are represented as

$$
\left\{\begin{array}{l}
S_{1}=\{(x, f(x), z) ;-c \leq x \leq c, 0 \leq z \leq f(x)\} \tag{4}\\
S_{2}=\{(x, y, f(x)) ;-c \leq x \leq c, f(x) \leq y \leq b\}
\end{array}\right.
$$

Hence, the volume $V(f)$ of the optimal pillow box is

Continuous isometric (i.e. not expanding,not contracting) deformation from a planar double rectangle to a pillow box

For application, it is important to obtain the explicit representation from a planar region to a developable surface.
We can deform the initial double rectangle R to any given pillow box M which is isometric to R continuously and isometrically.
However, the crease pattern (the red curves in the pictures below) is changed, which is not good for application.

An isometric deformation from R to M

Isometric deformation from the single rectangle to $1 / 2$

 of the pillow box without changing crease pattern! (I)The crease Γ_{1} of a pillow box is represented as $(\eta(s), \zeta(s), \zeta(s))$, ($0 \leq s \leq L$), where s is arc-length parameter of Γ_{1}. Set

$$
\begin{gathered}
\varphi_{t}(s)=\int_{0}^{s} \sqrt{1-\left(1+t^{2}\right)\left(\zeta^{\prime}(s)\right)^{2}} d s-c \\
C_{t}(s)=\left(\varphi_{t}(s), \zeta(s), t \zeta(s)\right), \quad 0 \leq t \leq 1 \\
q_{t}(s, \tau)=C_{t}(s)+\tau \cdot(0,1,0), \quad 0 \leq \tau \leq b-\zeta(s)
\end{gathered}
$$

Then, $C_{0}=\gamma_{1}, C_{1}=\Gamma_{1}$, and q_{t} gives an isometric deformation from Ω_{2} to S_{2}.

Isometric deformation from the single rectangle to 1/2 of the pillow box without changing crease pattern! (II)

Next, set $p_{t}(s, \tau) \quad C_{t}(s) \quad \tau \beta_{t}(s)$,

$$
0 \leq t \leq 1, \quad 0 \leq s \leq L, \quad \zeta(s) \leq \tau \leq 0,
$$

Where $C_{t}(s) \quad\left(\varphi_{t}(s), \zeta(s), t \zeta(s)\right), \beta_{t}(s) \quad\left(0, \frac{t^{2} 1}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)$.
Then, p_{t} gives an isometric deformation from Ω_{1} to S_{1}.
p_{t} with q_{t} (in the previous page) gives an isometric deformation from a rectangle to $1 / 4$ of the pillow box.

By extending the above deformation using the reflection with respect to the plane $\left\{\begin{array}{ll}y & b\end{array}\right\}$, we obtain an isometric deformation from a single rectangle to $1 / 2$ of the pillow box.

Future works

- For application, it is important to discuss "good" discretization of surfaces with curved folds.
- Discuss continuous isometric deformations from a general developable surface with curved folds to planar regions.

Summary

- We gave the definition of developable surfaces.
- We gave the existence, uniqueness, and representation formula of the optimal pillow box.
- We gave a continuous isometric deformation (concretely) from a planar region to a pillow box.
- We mentioned an application to architecture and discretization in the talk in the workshop. Because this work is in progress, its details are not included in this article.

Learning Permutation Symmetry of a Gaussian Vector

Bartosz Kołodziejek

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

The study of hidden structures in data presents challenges in modern statistics and machine learning. We introduce a Bayesian model selection approach, which allows to identify permutation subgroup symmetries in Gaussian vectors. In other words, given a finite iid sample of a p-dimensional Gaussian vector $Z=\left(Z_{1}, \ldots, Z_{p}\right)^{\top}$, we are looking for a permutation subgroup Γ acting on $\{1, \ldots, p\}$ such that

$$
\left(Z_{i}\right)_{i=1}^{p} \text { and }\left(Z_{\sigma(i)}\right)_{i=1}^{p} \text { have the same distributions }
$$

for any $\sigma \in \Gamma$. We also find the maximum likelihood estimate of the covariance matrix in a Gaussian model obeying such symmetry restrictions. The talk is based on [1] and [2].

References

[1] Graczyk, P., Ishi, H., Kołodziejek, B. and Massam, H. (2022) Model selection in the space of Gaussian models invariant by symmetry. Ann. Statist. 50, no. 3, pp. 1747-1774.
[2] Graczyk, P., Ishi, H. and Kołodziejek, B. (2022) Graphical Gaussian models associated to a homogeneous graph with permutation symmetries, Physical Sciences Forum, 5(1), 20, pp. 1-9.

Learning Permutation Symmetry of a Gaussian Vector

Bartosz Kołodziejek

Warsaw University of Technology

Workshop on Mathematics for Industry Warsaw 2023
29.09.2023

Talk is based on
Graczyk, Ishi, K., Massam
Model selection in the space of Gaussian models invariant by symmetry.
Annals of Statistics (2022)
and
Graczyk, Ishi, K.
Graphical Gaussian models associated to a homogeneous graph with permutation symmetries.
Proceedings of MaxEnt2022 (Physical Sciences Forum (2022))
This is an ongoing project.
R package: gips: Gaussian Model Invariant by Permutation Symmetry https://cran.r-project.org/package=gips
Chojecki, Morgen, K.
Learning permutation symmetries with gips in R arXiv:2307.00790

Program

(1) Colored graphical Gaussian models.
(2) Bayesian model selection when the graph is known.
(3) Sketch of the main argument.
(a) Main theoretical results and main message.
(5) Some simulations.

Gaussian graphical models

- Assume that $Z=\left(Z_{1}, \ldots, Z_{p}\right)^{\top}$ follows a Gaussian centered distribution with covariance matrix Σ.
- Let $K=\Sigma^{-1}$ be its precision/concentration matrix.
- Crucial fact: one has for $i \neq j$

$$
K_{i j}=0 \quad \Longleftrightarrow \quad Z_{i} \text { and } Z_{j} \text { given }\left(Z_{k}\right)_{k \neq i, j} .
$$

- We can define a undirected graph $G=(V, E)$ with $V=\{1, \ldots, p\}$ and

$$
\{i, j\} \in E \quad \Longleftrightarrow \quad K_{i j} \neq 0
$$

- Graph G encodes the conditional independence structure of Z.
- Model selection problem: based on a iid sample $Z^{(1)}, \ldots, Z^{(n)}$ find graph G - frequentist (e.g. GLASSO) and Bayesian methods.
- Knowledge about graph G significantly improves the usual estimator of Σ and gives a nice interpretation.
- This is not only a representation of a problem: many algorithms from graph theory are important in this setting.

Colored graphical models

- Colored graphical model is a special type of a graphical model.
- Apart from the conditional independence structure, symmetry restrictions are imposed on the concentration or partial correlation matrices.
- These symmetries can represented by a colored graph.
- Three types of such models (RCON, RCOR, RCOP) were introduced by Höjsgaard and Lauritzen (JRSSB, 2008) to describe situations where some entries of concentration or partial correlation matrices are approximately equal.
- Motivation: Imposing symmetry reduces the number of parameters to estimate. This is especially useful when parsimony is needed, i.e. $p \gg n$.

Colored graphical Gaussian models

- Let $G=(V, E)$ be a undirected graph with $V=\{1, \ldots, p\}$.

$$
\mathcal{P}_{G}=\left\{K \in \operatorname{Sym}^{+}(p ; \mathbb{R}): K_{i j}=0 \quad \text { iff } \quad i \nsim j\right\}
$$

Statistical model is $\left\{\mathrm{N}_{\rho}\left(0, K^{-1}\right): K \in \mathcal{P}_{G}\right\}$.

Colored graphical Gaussian models

- Let $G=(V, E)$ be a undirected graph with $V=\{1, \ldots, p\}$.

$$
\mathcal{P}_{G}=\left\{K \in \operatorname{Sym}^{+}(p ; \mathbb{R}): K_{i j}=0 \quad \text { iff } \quad i \nsim j\right\}
$$

Statistical model is $\left\{\mathrm{N}_{p}\left(0, K^{-1}\right): K \in \mathcal{P}_{G}\right\}$.

- For a permutation subgroup Γ on V, we define the space of concentration matrices invariant under Γ :

$$
\operatorname{RCOP}_{G}(\Gamma)=\left\{K \in \mathcal{P}_{G}: K_{i j}=K_{\sigma(i) \sigma(j)} \text { for all } \sigma \in \Gamma\right\} .
$$

- Clearly, one requires that zeros are preserved, i.e.

$$
i \sim j \quad \Longleftrightarrow \quad \sigma(i) \sim \sigma(j) \text { for all } \sigma \in \Gamma
$$

which implies that $\Gamma \subset \operatorname{Aut}(G)$

- Nice algebraic structure of RCOP and nice interpretation:

$$
\begin{aligned}
& Z \sim \mathrm{~N}_{p}(0, \Sigma) \\
\Sigma^{-1} \in \operatorname{RCOP}_{G}(\Gamma) & \Longleftrightarrow \quad Z \stackrel{d}{=}\left(Z_{\sigma(i)}\right)_{i} \quad \text { for all } \sigma \in \Gamma .
\end{aligned}
$$

- Interpretation: If the distribution of Z is invariant under the subgroup Γ and $(i, j) \in \Gamma$, then Z_{i} and Z_{j} play a symmetrical role.
- E.g.: some genes may have similar functions or groups of genes may have similar interactions or regulatory mechanisms.
- Central problem $=$ model selection: given a centered Gaussian iid sample $Z^{(1)}, \ldots, Z^{(n)}$ find a subgroup Γ under which the distribution of Z is most likely (in a Bayesian setting) invariant.
- There are no other model selection procedures which search among RCOP models.
- There is a number of articles dealing with model selection within RCON models:
- Gehrmann. Symmetry, 2011.
- Gao and Massam. J. Comput. Graph. Statist., 2015.
- Massam, Li and Gao. Biometrika, 2018.
- Li, Gao and Massam. J. Stat. Comput. Simul., 2020
- Li, Sun, Wang and Gao. Stat. Anal. Data Min., 2021.
- Ranciati, Roverato and Luati. J. R. Stat. Soc. Ser. C. , 2021.

Typically, both the graph G and the coloring \mathcal{C} are assumed unknown.
Methods: both Bayesian and penalized likelihood methods.

Example (Graphical model)

If $K \in \mathcal{P}_{G}=\left\{K \in \operatorname{Sym}^{+}(p ; \mathbb{R}): K_{i j}=0 \quad\right.$ iff $\left.\quad i \nsim j\right\}$, then

$$
K=\left(\begin{array}{ccccc}
x_{11} & x_{21} & x_{31} & 0 & 0 \\
x_{21} & x_{22} & x_{32} & 0 & 0 \\
x_{31} & x_{32} & x_{33} & x_{43} & x_{53} \\
0 & 0 & x_{43} & x_{44} & x_{54} \\
0 & 0 & x_{53} & x_{54} & x_{55}
\end{array}\right)
$$

Example (Colored graphical model)

There are 10 subgroups of $\operatorname{Aut}(G)$, they correspond to 7 different colorings.
Let $\Gamma=\left\langle\left(1 \begin{array}{ll}1 & 5\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)\right\rangle=\left\{\mathrm{id},\left(\begin{array}{ll}1 & 5\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)\right\}$.
If $K \in \operatorname{RCOP}_{G}(\Gamma)=\left\{K \in \mathcal{P}_{G}: K_{i j}=K_{\sigma(i) \sigma(j)}\right.$ for all $\left.\sigma \in \Gamma\right\}$, then

$$
K=\left(\begin{array}{lllll}
a & d & e & 0 & 0 \\
d & b & f & 0 & 0 \\
e & f & c & f & e \\
0 & 0 & f & b & d \\
0 & 0 & e & d & a
\end{array}\right) \text {, }
$$

Bayesian model

- Fixed graph G is chordal, i.e. each cycle in G has a chord (there are no induced cycles of length $\geqslant 4$).
- We assume that $K=\Sigma^{-1}$ and the subgroup Γ are random.
- Z_{1}, \ldots, Z_{n} given $\{K, \Gamma\}$ are i.i.d. $N_{p}\left(0, K^{-1}\right)$.
- Γ is uniform on (a subfamily of) subgroups of $\operatorname{Aut}(G)$.
- $K \mid \Gamma=\gamma$ is the Diaconis-Ylvisaker conjugate prior on $\operatorname{RCOP}_{G}(\gamma)$:

$$
f_{K \mid \Gamma=\gamma}(k)=\frac{1}{l_{G}^{\gamma}(\delta, D)} \operatorname{Det}(k)^{(\delta-2) / 2} e^{-\frac{1}{2} \operatorname{Tr}[D \cdot k]} \mathbf{1}_{\mathrm{RCOP}_{G}(\gamma)}(k) .
$$

- By standard argument, we have the posterior distribution:

$$
\mathbb{P}\left(\Gamma=\gamma \mid Z_{1}, \ldots, Z_{n}\right) \propto \frac{l_{G}^{\gamma}\left(\delta+n, D+\sum_{i=1}^{n} Z_{i} \cdot Z_{i}^{\top}\right)}{I_{G}^{\gamma}(\delta, D)}
$$

- Bayesian paradigm: choose the model with the highest posterior probability:

$$
\hat{\Gamma}=\underset{\Gamma}{\arg \max } \frac{I_{G}^{\Gamma}\left(\delta+n, D+\sum_{i=1}^{n} Z_{i} \cdot Z_{i}^{\top}\right)}{I_{G}^{\Gamma}(\delta, D)}
$$

- Caution: as we will see, the state space is very big for large p.
- When p is large, we have to resort to MCMC methods. We can define a irreducible Markov chain on (a subfamily of) subgroups of $\operatorname{Aut}(G)$.
- We have to compute Gamma-like integrals over the colored cones:

$$
I_{G}^{\Gamma}(\delta, D)=\int_{\operatorname{RCOP}_{G}(\Gamma)} \operatorname{Det}(k)^{(\delta-2) / 2} e^{-\frac{1}{2} \operatorname{Tr}[D \cdot k]} d k
$$

Example

Let $G=K_{3}$ be the full graph on $V=\{1,2,3\}$ and let $\Gamma=\langle(13)\rangle$. We
have
$\operatorname{RCOP}_{K_{3}}(\Gamma)=\left\{\left(\begin{array}{ccc}\alpha & \beta & \Delta \\ \beta & \gamma & \beta \\ \Delta & \beta & \alpha\end{array}\right): 2 \beta^{2} \Delta+\alpha^{2} \gamma>2 \alpha \beta^{2}+\Delta^{2} \gamma, \alpha \gamma>\beta^{2}\right\}$
and therefore

$$
\begin{aligned}
& I_{K_{3}, \Gamma}(\delta, D)=\iiint \int_{2 \beta^{2} \Delta+\alpha^{2} \gamma>2 \alpha \beta^{2}+\Delta^{2} \gamma, \alpha \gamma>\beta^{2}} \\
& \operatorname{Det}^{(\delta-2) / 2}\left(\begin{array}{ccc}
\alpha & \beta & \Delta \\
\beta & \gamma & \beta \\
\Delta & \beta & \alpha
\end{array}\right) e^{-\operatorname{Tr}\left[D \cdot\left(\begin{array}{ccc}
\alpha & \beta & \Delta \\
\beta & \gamma & \beta \\
\Delta & \beta & \alpha
\end{array}\right)\right]}
\end{aligned}
$$

$$
\boldsymbol{d} \alpha \boldsymbol{d} \gamma \boldsymbol{d} \beta \boldsymbol{d} \triangle
$$

Such integrals were known only if $\Gamma=\{\mathrm{id}\}$.

Sketch of the main argument

- Let $R(\sigma)$ be a permutation matrix of $\sigma \in \mathfrak{S}_{p}$
- $R: \Gamma \mapsto \mathrm{GL}(p ; \mathbb{R})$ satisfies

$$
R\left(\sigma \circ \sigma^{\prime}\right)=R(\sigma) \cdot R\left(\sigma^{\prime}\right), \quad \sigma, \sigma^{\prime} \in \mathfrak{S}_{p}
$$

- In other words, R is a representation of group Γ.
- Observe that for any $\sigma \in \mathfrak{S}_{p}$,

$$
R(\sigma)\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

- The space $W_{0}=\mathbb{R}(1, \ldots, 1)^{\top}$ is a Γ invariant subspace for any subgroup Γ, that is, $\forall \sigma \in \Gamma$,

$$
\forall w \in W_{0} \quad R(\sigma) w \in W_{0}
$$

- Similarly for $W_{0}^{\perp}=\left\{x \in \mathbb{R}^{p}: \sum_{i=1}^{p} x_{i}=0\right\}$.

Sketch of the main argument

- Let orthogonal matrix U_{Γ} be constructed from a basis of W_{0} (one column) and any basis of W_{0}^{\perp}. Then,

$$
U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}=\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right)
$$

- Define

$$
\begin{aligned}
\mathcal{Z}_{\Gamma} & =\left\{x \in \operatorname{Sym}(p ; \mathbb{R}) ; x_{i j}=x_{\sigma(i), \sigma(j)} \text { for all } \sigma \in \Gamma\right\} \\
& =\{x \in \operatorname{Sym}(p ; \mathbb{R}) ; R(\sigma) \cdot x=x \cdot R(\sigma) \text { for all } \sigma \in \Gamma\} .
\end{aligned}
$$

and recall that $\operatorname{RCOP}_{\Gamma}(G)=\mathcal{P}_{G} \cap \mathcal{Z}_{\Gamma}$.

- Then $U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma}$ coincides with

$$
\left\{y \in \operatorname{Sym}(p ; \mathbb{R}) ;\left[U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}\right] \cdot y=y \cdot\left[U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}\right]\right\}
$$

- Block decomposition of $U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}$ implies block decomposition of $y \in U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma}$.

Sketch of the main argument

- In general, there exist many proper Γ-invariant subspaces of W_{0}^{\perp} Finding them is a classical problem and is not easy.
- Formally, \mathcal{Z}_{Γ} is the set of symmetric intertwining operators of the representation $\left(R, \mathbb{R}^{p}\right)$.
- This implies the existence of a orthogonal matrix U_{Γ} such that $U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma}$ coincides with

$$
\left\{\left(\begin{array}{ccc}
M_{\mathbb{K}_{1}}\left(x_{1}\right)^{\oplus k_{1} / d_{1}} & & \\
& \ddots & \\
& & M_{\mathbb{K}_{L}}\left(x_{L}\right)^{\oplus k_{L} / d_{L}}
\end{array}\right): \begin{array}{r}
x_{i} \in \operatorname{Herm}\left(r_{i} ; \mathbb{K}_{i}\right) \\
i=1,2, \ldots, L
\end{array}\right\}
$$

where consecutive blocks correspond to irreducible components in a decomposition of $\left(R, \mathbb{R}^{p}\right)$.

- Each block corresponds to a uncolored model.

Theoretical results and the main message

- We have explicit formulas for normalizing constants I_{G}^{Γ} when G is a decomposable graph.
- These formulas depend on so-called structure constants. In principle, we know how to find these constants: "just" find irreducible representations over reals of Γ, which is a classical problem.
- However, this is generally computationally impossible for big p
- We therefore identify a good subfamily of subgroups for which we can find these structure constants efficiently with p-polynomial complexity.
- We restrict our search space to models corresponding to that good subfamily

Good subfamily $=$ Cyclic subgroups

- Cyclic subgroups $=$ groups generated by one permutation.
- A distribution is invariant under Γ if and only if it is invariant under any cyclic subgroup of Γ.
- Easy to interpret and seem rich enough.
- When G is sparse, then $\operatorname{Aut}(G)$ is small and contains mostly cyclic subgroups.
- We can use a permutation random walk to travel through cyclic subgroups: $\sigma_{n}=\sigma_{n-1} \circ \tau_{n}$, where $\left(\tau_{n}\right)_{n}$ are i.i.d. transpositions.

p	\#subgroups of \mathfrak{S}_{p}	\#RCOP $_{K_{p}}(\Gamma)$	\#cyclic groups
1	1	1	1
2	2	2	2
3	6	5	5
4	30	22	17
5	156	93	67
6	1455	739	362
7	11300	4508	2039
\vdots	$7 \cdot 10^{18}$		
$\mathbf{1 8}$		$?$	$7 \cdot 10^{14}$

The MLE of Σ in $\mathrm{RCOP}_{K_{p}}(\Gamma)$

Assume that G is complete:

- We have "if and only if" condition on n for the MLE to exist.
- E.g.: if $V=\{1, \ldots, p\}$ and $\Gamma=\langle(1,2, \ldots, p)\rangle$, then the MLE exists already for $n=1$!
- If the graph is complete, then the MLE (if exists) under $\operatorname{RCOP}_{G}(\Gamma)$ model is given by

$$
\hat{\Sigma}_{\mathrm{RCOP}(\Gamma)}=\pi_{\Gamma}(\hat{\Sigma}),
$$

where

- $\hat{\Sigma}$ is the usual empirical covariance matrix,
- π_{r} is the projection onto the colored matrix space: it averages entries corresponding to the same color
- This results in improved estimation properties.

Simulations

- We choose $p=10$ and $n=20$,
- Let Σ_{0} be a symmetric circulant matrix of the form

- We sample Z_{1}, \ldots, Z_{n} from $\mathrm{N}_{p}\left(0, \Sigma_{0}\right)$.
- The distribution of Z is invariant under $\Gamma_{0}=\langle(1,2, \ldots, p)\rangle$.
- We construct a Markov chain on permutations and use it to travel through cyclic subgroups.
- The usual hyperparameters are $\delta=3, D=I_{p}$.
- We iterate Metropolis-Hastings algorithm 100000 times.
- We do this 100 times to assess variability of the procedure.

Tabela: Cyclic subgroups which were chosen by M-H algorithm

generator of a cyclic group	\#most visited	ARI
$(1,2,3,4,5,6,7,8,9,10)$	25	1.00
$(1,3,5,7,9)(2,4,6,8,10)$	13	0.60
$(1,2,4,3,5,6,7,9,8,10)$	3	0.43
$(1,2,4,3,5,6,7,8,9,10)$	2	0.46
$(1,3,2,4,5,6,8,7,9,10)$	2	0.43
$(1,3,5,9,2,6,8,10,4,7)$	2	0.43
$(1,4,3,5,2,6,9,8,10,7)$	2	0.35
$(1,4,5,7,8)(2,3,6,9,10)$	2	0.24
$(1,8,10,9)(2,7)(3,5,4,6)$	2	0.19
$(1,2,10,3)(4,9)(5,8,6,7)$	2	0.19

- ARI = adjusted Rand index is a similarity measure comparing given coloring with the true one. $\mathrm{ARI} \in[-1,1]$
- For $n=p=10$, the results were only slightly worse.

Real data example: $p=150$

- Breast cancer data set: $p=150$ genes and $n=58$ samples.
- Cardinality of the search space is about 10^{250}.
- We iterate Metropolis-Hastings algorithm 150000 times.
- The cyclic subgroup $\hat{\Gamma}$ with highest estimated posterior probability (7.1\%) is of order 720.
- We have dim $\operatorname{RCOP}_{K_{p}}(\hat{\Gamma})=844$ vs 11325 parameters of unrestricted model.
- The MLE for Σ exists for this model.

The color pattern of the space of $p \times p$ matrices from $\operatorname{RCOP}_{\kappa_{p}}(\hat{\Gamma})$

Thresholding the partial correlation

Thank you for your attention

Graczyk, Ishi, K., Massam
Model selection in the space of Gaussian models invariant by symmetry. Annals of Statistics (2022)
Chojecki, Morgen, K.
Learning permutation symmetries with gips in R
arXiv:2307.00790

Supercoiled structure of DNA and hyperelliptic functions

Shigeki Matsutani
Institute of Science and Engineering, Kanazawa University, Japan

The geometry of DNA has a helical structure as well as a more global supercoiled structure. The geometry of this supercoiled structure is dominated by weak elastic forces, but its geometry has not yet been mathematically described. Geometric models that minimize its elastic energy, known as elasticae (elastic curves), cannot describe the shape of DNA, even if three-dimensional effects are considered. Since 1997, the speaker has been working to mathematically represent this shape by considering finite temperature effects [1]. It is known from elementary considerations that the shape of elastic curves under a finite temperature can be described by the hyperelliptic solution of the modified KdV equation, which is a nonlinear integrable equation, in the twodimensional plane, and of the nonlinear Schrodinger equation in the three-dimensional space. However, Abelian function theory, including hyperelliptic function theory, had not reached the level where hyperelliptic function solutions could be specifically described and concretely treated at all as of 1997. Therefore, the speaker, together with late Emma Previato since 2003, has restructured the Abelian function theory to the level of elliptic function theory, and has also developed related theories [2]. With Previato, he obtained certain shapes in 2022, albeit incomplete [3]. Although incomplete means that it does not fully satisfy the reality condition, we were able to produce mathematically shapes that have some features of the supercoiled structure of DNA, albeit tentatively. This talk will describe the results obtained in 2022 and the process that led to them.

The speaker has been studied novel devies and materials mathematically in research and development of devices and materials for 27 years in Canon Inc. The usefulness of mathematics, including the theory of singularity, in modern society will be briefly discussed.

References

[1] S. Matsutani, Statistical mechanics of elastica on a plane: origin of the MKdV hierarchy , J. Phys. A: Math. \& Gen., 31 (1998) 2705-2725.
[2] S. Matsutani, E. Previato, The Weierstrass sigma function in higher genus and applications to integrable equations, (in preparation).
[3] S. Matsutani, E. Previato, An algebro-geometric model for the shape of supercoiled DNA Physica D 430 (2022) 133073

Supercoiled structure of DNA and hyperelliptic functions

WORKSHOP on Mathematics for Industry 2023
September 28, (Thursday) 2023
Shigeki Matsutani
Kanazawa University

Menu

1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the MKdV equation
7. MKdV hyperelliptic curve solution for genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2
8. Future task

$$
\begin{aligned}
& \text { We live in an age in which we can create a } \\
& \text { new reality by translating the real world into } \\
& \text { mathematical language and investigating it. }
\end{aligned}
$$

Real World

point preess Math World Quasi-conf Conformal

> | We live in an age in which we can create a |
| :--- |
| new reality by translating the real world into |
| mathematical language and investigating it. |

Menu

1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the MKdV equation
7. MKdV hyperelliptic curve solution for genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2
8. Future task

What is an elastica (elastic curve)?

 Elastica is a curve on a (complex) plane determined by elastic forces.

What is an elastica (elastic curve)?

$\mathbf{Z}: \mathbf{N} \rightarrow \mathbf{C}$:analytic immersion $\quad\left(\left|\partial_{s} \mathbf{Z}\right|=1\right)$
$N=S{ }^{1}$ or $=[0,1]$
s :arclength
$Z(s)=X(s)+i Y(s)$,
$\boldsymbol{t}=\partial_{s} \boldsymbol{Z}=\boldsymbol{e}^{\dagger \phi}$,
$\left(\boldsymbol{\Phi} \in C^{\omega}(\mathrm{N}, \mathrm{R})\right)$
$=\cos \phi+\mathbf{i} \sin \phi$

$\mathrm{k}:=\partial_{s} \phi:$ curvature: $\mathrm{k}=1$ /[curvature radius]

What is an elastica (elastic curve)?

Curvature \& Frenet-Serret relation
$\Uparrow:=\partial_{s} Z$:tangential vector, $n_{n}=\mathrm{i} \partial_{s} Z$:normal vector

$$
\partial_{\mathrm{s}} \mathrm{t}=\mathrm{k} \mathfrak{n}, \quad \partial_{\mathrm{s}} \mathbf{n}=-\mathrm{k} \Uparrow, \quad\left(\partial_{s}^{2} Z=\mathrm{i} \partial_{s} Z\right)
$$

$k:=\partial_{s} \phi:$ curvature: $k=1 /[$ curvature radius].

What is an elastica (elastic curve)?

Curvature \& Frenet-Serret relation
$\Uparrow:=\partial_{s} Z$:tangential vector, n: $n=\mathfrak{i} \partial_{s} Z$:normal vector

$$
\partial_{\mathrm{s}} \mathrm{t}=\mathrm{k} \mathfrak{n}, \quad \partial_{\mathrm{s}} \mathbf{n}=-\mathrm{k} \Uparrow, \quad\left(\partial_{s}^{2} Z=\mathrm{ik} \partial_{s} Z\right)
$$

$k:=\partial_{s} \phi:$ curvature: $k=1$ /[curvature radius].
Elastica Problem (Jacob/Daniel Bernoulli-Euler (1691-1744))
Determine the shape of the elastic curve that exists on the plane mathematically!
\Leftrightarrow Find the shape that minimizes the energy
$\mathcal{E}[Z]=\frac{1}{2} \int_{N} k(s)^{2} d s$ under the iso-arc length.

Infinitesimal isometric deformation

$$
\begin{gathered}
\begin{array}{c}
\text { Infinitesimal } \\
\text { variation: }
\end{array} Z_{\varepsilon}\left(s_{\varepsilon}\right)=Z(s)+\mathfrak{i} \varepsilon(s) \partial_{s} Z \\
\begin{array}{c}
\partial_{s} Z_{\varepsilon}=\left(1-\varepsilon k(s)+\mathfrak{i} \partial_{s} \varepsilon\right) \partial_{s} Z \\
d s_{\varepsilon}^{2}=d \overline{Z_{\varepsilon}} d Z_{\varepsilon}=\left(1-2 \varepsilon k+O\left(\varepsilon^{2}\right)\right) d s^{2} \\
-\mathfrak{i} \partial_{s_{\varepsilon}} \log \partial_{s_{\varepsilon}} Z_{\varepsilon} \\
k_{\varepsilon}=k+\left(k^{2}+\partial_{s}^{2}\right) \varepsilon+O\left(\varepsilon^{2}\right) \\
\left(k_{\varepsilon}^{2} d s_{\varepsilon}=\left(k^{2}+\left(k^{3}+2 k \partial_{s}^{2}\right) \varepsilon+O\left(\varepsilon^{2}\right)\right) d s\right.
\end{array}
\end{gathered}
$$

Infinitesimal isometric deformation

$$
\frac{\delta\left(2 \mathcal{E}_{\varepsilon}-a \int_{N} d s_{\varepsilon}\right)}{\delta \varepsilon(s)}=k^{3}+2 \partial_{s}^{2} k+2 a k=0
$$

Static modified KdV equation

$$
a k+\frac{1}{2} k^{3}+\partial_{s}^{2} k=0
$$

Elastica Problem is to find the shape of the curve whose curvature obeys the static modified KdV equation

It is a prototype of the nonlinear integrable system.

Infinitesimal isometric deformation

$$
\frac{\delta\left(2 \mathcal{E}_{\varepsilon}-a \int_{N} d s_{\varepsilon}\right)}{\delta \varepsilon(s)}=k^{3}+2 \partial_{s}^{2} k+2 a k=0
$$

$$
a k+\frac{1}{2} k^{3}+\partial_{s}^{2} k=0
$$

$\left(\partial_{s} k\right)^{2}+\frac{1}{4} k^{4}+a k^{2}+b=0$

Infinitesimal isometric deformation

$$
\left(\partial_{s} k\right)^{2}+\frac{1}{4} k^{4}+a k^{2}+b=0
$$

$x(s):=\frac{\mathfrak{i}}{4 a} \partial_{s} k+\frac{1}{8} k^{2}+\frac{1}{12} a$

$$
y(s):=\partial_{s} x
$$

$$
y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)
$$

Elliptic curve

Elliptic curve

$$
y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)
$$

$$
\begin{aligned}
e_{1} & =-\frac{1}{6} a \quad a^{2}-b=16 \\
e_{2} & =\frac{1}{12} a+\frac{1}{4} \sqrt{b} \\
e_{3} & =\frac{1}{12} a-\frac{1}{4} \sqrt{b} \\
a & =2\left(e_{2}+e_{3}-2 e_{1}\right) \\
b & =-\left(e_{2}-e_{3}\right)^{2}
\end{aligned}
$$

Elliptic curve

$$
y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)
$$

x, y are regarded as complex numbers

$$
x \rightarrow x+x^{\prime} \sqrt{-1}, \quad y \rightarrow y+y^{\prime} \sqrt{-1}
$$

Meromorphic function over elliptic curve = Elliptic function

Elastica is expressed by the elliptic functions!

$$
\begin{aligned}
& \partial_{s} Z(s)=\sqrt{-1}\left(\wp\left(s+u_{0}\right)-e_{1}\right) \\
& Z(s)=\sqrt{-1}\left(-\zeta\left(s+u_{0}\right)-e_{1} s\right)+Z_{0}
\end{aligned}
$$

Elastica (Elastic curve):

Euler' s solutions

$s=\int^{X} \frac{a^{2} d X}{\sqrt{a^{4}-\left(\alpha+\beta X+\gamma X^{2}\right)^{2}}}$
$Y=\int^{X} \frac{\left(\alpha+\beta X+\gamma X^{2}\right) d X}{\sqrt{a^{4}-\left(\alpha+\beta X+\gamma X^{2}\right)^{2}}}$

It is a solution of MKdV equation from a modern point of view.

$$
a k+\frac{1}{2} k^{3}+\partial_{s}^{2} k=0
$$

Elastica (Elastic curve):

Real transcendental curves

Euler' s sketch by numerical comp. (1744)

Menu

1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the MKdV equation
7. MKdV hyperelliptic curve solution for genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2
8. Future task

Statistical mechanics of elastica

$$
\mathcal{Z}[\beta]=\int_{\mathbb{M}} D Z \exp (-\beta \mathcal{E}[Z])
$$

$\mathcal{M}_{S^{1}}:=\left\{Z: S^{1} \hookrightarrow \mathbb{C}\left|Z \in \mathcal{C}^{\omega}\left(S^{1}, \mathbb{C}\right),|d Z / d s|=1\right\}\right.$, $\operatorname{pr}_{1}: \mathcal{M}_{S^{1}} \rightarrow \mathbb{M}:=\mathcal{M}_{S^{1}} / \sim, \sim$: eulidean move :

The geometric structure of the parameter space (moduli) of a shape is unknown:

Find orbits with iso-energy. E.Previato 2015 SM 1997

Menu

1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the MKdV equation
7. MKdV hyperelliptic curve solution for genus 2
7.1 Review of the case of genus 1 7.2 Review of the case of genus 2
8. Future task

Formulation of iso-energetic geometry

$$
\begin{gathered}
\mathcal{Z}[\beta]=\int_{0}^{\infty} \operatorname{Vol}\left(\mathcal{M}_{E}\right) \mathrm{e}^{-\beta E} d E \\
\mathcal{M}_{E}:=\left\{Z: S^{1} \hookrightarrow \mathbb{C} \left\lvert\, \begin{array}{l}
\text { Analytic, isometric } \\
E=\mathcal{E}[Z]
\end{array}\right.\right\} \\
\mathcal{E}[Z]=\frac{1}{2} \oint k(s)^{2} d s
\end{gathered}
$$

Find orbits with the iso-eners

E.Previato2015 SM 1997

MKdV equation

$$
\partial_{t} k+\frac{3}{2} k^{2} \partial_{s} k+\partial_{s}^{3} k=0
$$

MKdV equation contains the static MKdV equation of elastica as $t=s$.
\Leftrightarrow It is a natural generalization of elastica

$$
a k+\frac{1}{2} k^{3}+\partial_{s}^{2} k=0
$$

Statistical mechanics of elastica

$$
\mathcal{Z}[\beta]=\int_{\mathbb{M}} D Z \exp (-\beta \mathcal{E}[Z])
$$

$$
\mathcal{M}_{S^{1}}:=\left\{Z: S^{1} \hookrightarrow \mathbb{C}\left|Z \in \mathcal{C}^{\omega}\left(S^{1}, \mathbb{C}\right),|d Z / d s|=1\right\}\right.
$$

$$
\mathrm{pr}_{1}: \mathcal{M}_{S^{1}} \rightarrow \mathbb{M}:=\mathcal{M}_{S^{1}} / \sim, \sim: \text { eulidean move }
$$

Find orbits with iso-energy
Find higher-order solutions of the
MKdV equation!

$$
\partial_{t} k+\frac{3}{2} k^{2} \partial_{s} k+\partial_{s}^{3} k=0
$$

MKdV equation

$$
\partial_{t} k+\frac{3}{2} k^{2} \partial_{s} k+\partial_{s}^{3} k=0
$$

1. The MKdV equation has hyperelliptic function solutions.
2. Due to the higher genus of hyperelliptic curves (compact Riemann surfaces), the solutions are expected to express more complicated (elastic) curves.

Statistical mechanics of elastica

Assign the appropriate topology in the parameter space of the geometry (moduli),formulate the above integral in terms of the measures determined from the Boltzmann weights of the Euler-Bernoulli energy functional, and perform the integration.

1. Construct hyperelliptic solutions to the MKdV equation of higher genus.
2. Extract "real" part of hyperelliptic Jacobi variety as the moduli of "real" hyperelliptic curves over C.

Statistical mechanics of elastica

Assign the appropriate topology in the parameter space of the geometry (moduli),formulate the above integral in tern Boltzn 1. To Construct solutions to the f. tid MKdV equation

2. If hyperelliptic function theory had the same level of sophistication and concreteness as Weierstrass' elliptic function theory, this problem would be solved! but it is not at that level.

Reconstruct the theory of hyperelliptic (Abelian) functions to have the same level as the theory of elliptic functions.
N The main theme is a reconstruction of Abelian function theory with E.Previato

MKdV solutions of genus two

-Review the genus one case

- Step to genus two

> S.M., and Emma Previato, An algebro-geometric model for the shape of supercoiled DNA Physica D, 2022

Review the genus one case:

$$
\begin{aligned}
y^{2} & =\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right) \\
d s & =\Re d u \quad u=\int_{\infty}^{(x, y)} \frac{d x}{2 y} \\
\partial_{s} Z & =\left(x-e_{1}\right)=\mathrm{e}^{\mathfrak{i} \phi} \quad\left|\partial_{s} Z\right|=1
\end{aligned}
$$

They satisfy the SMKdV eq. $\partial_{s} \phi+\frac{1}{8}\left(\partial_{s} \phi\right)^{3}+\frac{1}{4} \partial_{s}^{3} \phi=0$
$a k+\frac{1}{2} k^{3}+\partial_{s}^{2} k=0$.

Review the genus one case:

Meromorphic function over elliptic curve = Elliptic function

Elastica is expressed by the elliptic functions!

$$
\begin{aligned}
& \partial_{s} Z(s)=\sqrt{-1}\left(\wp\left(s+u_{0}\right)-e_{1}\right) \\
& Z(s)=\sqrt{-1}\left(-\zeta\left(s+u_{0}\right)-e_{1} s\right)+Z_{0}
\end{aligned}
$$

$\zeta(u)=\frac{d}{d u} \log \sigma(u), \quad \wp(u)=-\frac{d^{2}}{d u^{2}} \log \sigma(u)$

Review the genus one case:

$$
\begin{gathered}
y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right) \\
d s=\Re d u \quad u=\int_{\infty}^{(x, y)} \frac{d x}{2 y} \\
\partial_{s} Z=\left(x-e_{1}\right)=\mathrm{e}^{\mathfrak{i} \phi \quad\left|\partial_{s} Z\right|=1} \begin{aligned}
& \phi=2 \varphi \quad e_{a b}:=e_{a}-e_{b} \\
& k:=\frac{2 \mathfrak{i} \sqrt[4]{e_{b a} e_{c a}}}{\sqrt{e_{b a}}-\sqrt{e_{c a}}} \\
& d u= \frac{2 k d \varphi}{\sqrt{1-k^{2} \sin ^{2} \varphi}} \\
& a=1, b=2, c=3
\end{aligned}
\end{gathered}
$$

Review the genus one case:

MKdV solutions of genus two

-Review the genus one case
-Step to genus two
S.M., and Emma Previato,

An algebro-geometric model for the shape of supercoiled DNA
Physica D, 2022

Genus two case:

$y^{2}=\left(x-b_{1}\right) \cdots\left(x-b_{5}\right)$
$d s=\Re d u_{2} \quad u_{2}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{x d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{x d x}{2 y}$
$d t=\Re d u_{1} / 4 \quad u_{1}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{d x}{2 y}$
$\partial_{s} Z=\left(x_{1}-b_{1}\right)\left(x_{2}-b_{1}\right)=\mathrm{e}^{\mathrm{i} \phi} \quad\left|\partial_{s} Z\right|=1$

Genus two case:

$y^{2}=\left(x-b_{1}\right) \cdots\left(x-b_{5}\right)$
$d s=\Re d u_{2} \quad u_{2}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{x d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{x d x}{2 y}$
$d t=\begin{aligned} & \phi_{a}:=\left(\log \left(x_{a}-b_{1}\right)\right) / \mathfrak{i} \\ & k_{s}: \frac{2 \mathfrak{i} \sqrt[4]{e_{2 a-1} e_{2 a}}}{\sqrt{e_{2 a-1}}-\sqrt{e_{2 a}}}=\frac{\sqrt{\gamma}}{\beta_{a}},(a=1,2) \quad \phi=2 \varphi\end{aligned}$

$$
\begin{aligned}
\left(d u_{1}^{\mathrm{a}}, d u_{2}^{\mathrm{a}}\right)= & \left(\frac{\left(\sin \varphi^{\mathrm{a}}+\mathrm{i} \cos \varphi^{\mathrm{a}}\right) d \varphi^{\mathrm{a}}}{2 \gamma K\left(\varphi^{\mathrm{a}}\right)},-\frac{\sin \varphi d \varphi^{\mathrm{a}}}{K\left(\varphi^{\mathrm{a}}\right)}\right) \\
K(\varphi) & :=\frac{\sqrt{\gamma\left(1-k_{1}^{2} \sin ^{2} \varphi\right)\left(1-k_{1}^{2} \sin ^{2} \varphi\right)}}{k_{1} k_{2}}
\end{aligned}
$$

Genus two case:

$$
\begin{aligned}
& y^{2}=\left(x-b_{1}\right) \cdots\left(x-b_{5}\right) \\
& d s=\Re d u_{2} \quad u_{2}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{x d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{x d x}{2 y} \\
& d t=\Re d u_{1} / 4 \quad u_{1}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{x x}{2 y} \\
& \partial_{s} Z=\left(x_{1}-b_{1}\right)\left(x_{2}-b_{1}\right)=\mathrm{e}^{i \phi} \quad\left|\partial_{s} Z\right|=1
\end{aligned}
$$

MKdV equation/C

$$
\begin{array}{r}
\left(4 \partial_{u_{1}}-a \partial_{u_{2}}\right) \phi+\frac{1}{2}\left(\partial_{u_{2}} \phi\right)^{3}+\partial_{u_{2}}^{3} \phi=0 \\
a:=\sum_{i=2}^{5} b_{i}-2 b_{1}
\end{array}
$$

Genus two case:

Meromorphic function over hyperelliptic curve = Hyperelliptic function

Shape of elastica is determined by

 hyperelliptic functions$$
\begin{aligned}
\partial_{u_{2}} Z & =b_{1}^{2}-\wp_{22} b_{1}+\wp_{21} \\
Z & =b_{1}^{2} u_{2}+\zeta_{2} b_{1}-\zeta_{1}+Z_{0}
\end{aligned}
$$

$\zeta_{i}(u):=\frac{\partial}{\partial u_{i}} \log \sigma(u), \wp_{i j}(u):=-\frac{\partial^{2}}{\partial u_{i} \partial u_{j}} \log \sigma(u)$

Genus two case:

MKdV equation/C

$$
\begin{array}{r}
\left(4 \partial_{u_{1}}-a \partial_{u_{2}}\right) \phi+\frac{2}{2}\left(\partial_{u_{2}} \phi\right)^{3}+\partial_{u_{2}}^{3} \phi=0 \\
a:=\sum_{i=2}^{5} b_{i}-2 b_{1}
\end{array}
$$

$$
\square \begin{cases}d s=\Re d u_{2} & \phi_{\mathrm{r}}:=\Re \phi \\ d t=\Re d u_{1} / 4 & \phi_{\mathrm{i}}:=\Im \phi\end{cases}
$$

MKdV equation with gauge field/R

$$
\begin{array}{r}
\left(\partial_{t}-A \partial_{s}\right) \phi_{\mathrm{r}}+\frac{1}{2}\left(\partial_{s} \phi_{\mathrm{r}}\right)^{3}+\partial_{s}^{3} \phi_{\mathrm{r}}=0 \\
A:=a-3\left(\partial_{s} \phi_{\mathrm{i}}\right)^{2} / 2
\end{array}
$$

Genus two case:

MKdV equation with gauge field/R

$$
\begin{array}{r}
\left(\partial_{t}-A \partial_{s}\right) \phi_{\mathrm{r}}+\frac{1}{2}\left(\partial_{s} \phi_{\mathrm{r}}\right)^{3}+\partial_{s}^{3} \phi_{\mathrm{r}}=0 \\
A:=a-3\left(\partial_{s} \phi_{\mathrm{i}}\right)^{2} / 2
\end{array}
$$

$$
\begin{aligned}
& \Im d u_{1}=\Im d u_{2}=0 \\
& d \phi_{\mathrm{i}}=0 \quad d \partial_{s} \phi_{\mathrm{i}}=0
\end{aligned}
$$

MKdV equation/R

Genus two case:

MKdV equation with gauge field/R

$$
\begin{array}{r}
\left(\partial_{t}-A \partial_{s}\right) \phi_{\mathrm{r}}+\frac{1}{2}\left(\partial_{s} \phi_{\mathrm{r}}\right)^{3}+\partial_{s}^{3} \phi_{\mathrm{r}}=0 \\
A:=a-3\left(\partial_{s} \phi_{\mathrm{i}}\right)^{2} / 2 \\
\hline
\end{array}
$$

$\Im d u_{1}=\Im d u_{2}=0$
$d \phi_{\mathrm{i}}=0 \quad d \partial_{s} \phi_{\mathrm{i}}=0$

MKdV equation/R
4=Dim. of parameter space

Genus two case:

MKdV equation with gauge field/R

$$
\begin{array}{r}
\left(\partial_{t}-A \partial_{s}\right) \phi_{\mathrm{r}}+\frac{1}{2}\left(\partial_{s} \phi_{\mathrm{r}}\right)^{3}+\partial_{s}^{3} \phi_{\mathrm{r}}=0 \\
A:=a-3\left(\partial_{s} \phi_{\mathrm{i}}\right)^{2} / 2 \\
\square \begin{array}{c}
\Im d u_{1}=\Im d u_{2}=0 \\
d \phi_{\mathrm{i}}=0 \quad d \partial_{s} \phi_{\mathrm{i}}=0
\end{array}
\end{array}
$$

MKdV equation/R

$4=$ Dim. of parameter spaces ill-posed $\stackrel{\text { he }}{ }$ Dim of sol. of of hyperelliptc curve $\mathrm{g}=2$ MKdV (t\&s) $=2$

| Genus two case: |
| :--- | :--- |
| MKdV equation/R |
| Need to adjust the parameters ($\boldsymbol{h}_{\mathbf{i}}$) of the
 curve itself to find the situation where the
 conditions are degenerate
 \Rightarrow Extremely difficult
 (only possible with more than genus 3?) |
| of hyperelliptc curve $\mathrm{g}=2$ |

Genus two case:

MKdV equation/R

$$
\Im d u_{1}=\Im d u_{2}=0
$$

1 anditionc
We conclude that in this stage, the
hyperelliptic curves X with genus two cannot exhibit the generalized elastica well because we cannot extract the real parts in both X and its Jacobi variety J_{x} over C.
(S.M. ,E. Previato, Physica D, 2022)
(only possible with more than genus 3?)

First, loosen the conditions, Investigate the properties of $\mathrm{g}=2$

Genus two case:

MKdV equation/C
 3 conditions

 $\phi_{a}:=\left(\log \left(x_{a}-b_{1}\right)\right) / \mathfrak{i}$
 $\Im\left(d \phi_{a}\right)=0 \quad a=1.2$
 $d \partial_{s} \phi_{\mathrm{i}}=0$

$d \partial_{s} \phi_{\mathrm{i}}=\frac{\partial\left(\partial_{s} \phi_{\mathrm{i}}\right)}{\partial \phi_{1 \mathrm{r}}} d \phi_{1 \mathrm{r}}+\frac{\partial\left(\partial_{s} \phi_{\mathrm{i}}\right)}{\partial \phi_{2 \mathrm{r}}} d \phi_{2 \mathrm{r}}=0$ $d \phi_{1 \mathrm{r}}=\frac{\partial\left(\partial_{s} \phi_{\mathrm{i}}\right)}{\partial \phi_{2 \mathrm{r}}} d \eta, \quad d \phi_{2 \mathrm{r}}=-\frac{\partial\left(\partial_{s} \phi_{\mathrm{i}}\right)}{\partial \phi_{1 \mathrm{r}}} d \eta$

Genus two case:

$$
\begin{aligned}
& y^{2}=\left(x-b_{1}\right) \cdots\left(x-b_{5}\right) \\
& d s=\Re d u_{2} \quad u_{2}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{x d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{x d x}{2 y}
\end{aligned}
$$

$$
d t=\Re d u_{1} / 4 \quad u_{1}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{d x}{2 y}
$$

$$
\partial_{s} Z=\left(x_{1}-b_{1}\right)\left(x_{2}-b_{1}\right)=\mathrm{e}^{\mathrm{i} \phi} \quad\left|\partial_{s} Z\right|=1
$$

Genus two case:

$$
\begin{aligned}
& y^{2}=\left(x-b_{1}\right) \cdots\left(x-b_{5}\right) \\
& d s=\Re d u_{2} \quad u_{2}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{x d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{x d x}{2 y} \\
& d t=\phi_{a}:=\left(\log \left(x_{a}-b_{1}\right)\right) / \mathrm{i} \\
& \partial_{s} 2 \quad k_{a}=\frac{2 \mathrm{i} \sqrt[4]{e_{2 a-1} e_{2 a}}}{\sqrt{e_{2 a-1}}-\sqrt{e_{2 a}}}=\frac{\sqrt{\gamma}}{\beta_{a}},(a=1,2) \quad \phi=2 \varphi \\
& \mathrm{~S}^{1} \\
& \begin{array}{c}
\left(d u_{1}^{a}, d u_{2}^{a}\right)=\left(\frac{\left(\sin \varphi^{a}+\mathrm{i} \cos \varphi^{a}\right) d \varphi^{a}}{2 \gamma K\left(\varphi^{a}\right)},-\frac{\sin \varphi d \varphi^{a}}{K\left(\varphi^{a}\right)}\right) \\
K(\varphi):=\frac{\sqrt{\gamma\left(1-k_{1}^{2} \sin ^{2} \varphi\right)\left(1-k_{1}^{2} \sin ^{2} \varphi\right)}}{k_{1} k_{2}}
\end{array}
\end{aligned}
$$

Genus two case:

$$
\begin{aligned}
& y^{2}=\left(x-b_{1}\right) \cdots\left(x-b_{5}\right) \\
& d s=\Re_{2} d u_{2} \quad u_{2}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{x d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{x d x}{2 y} \\
& d t=\overbrace{1} d u_{1} / 4 \quad u_{1}=\int_{\infty}^{\left(x_{1}, y_{1}\right)} \frac{d x}{2 y}+\int_{\infty}^{\left(x_{2}, y_{2}\right)} \frac{d x}{2 y} \\
& \partial_{s} Z=\left(x_{1}-b_{1}\right)\left(x_{2}-b_{1}\right)=e^{i \phi} \quad\left|\partial_{s} Z\right|=1
\end{aligned}
$$

$S^{1} \quad b^{b_{2}} \cdot b_{4}$
 b_{1}
 - b_{5}

Genus two case:

Genus two case:

The orbit s on the complex plane

Future tasks:

1. to investigate the cases of $\mathrm{g}>\mathbf{3}$.
2. to evaluate the moduli space of generalized elastica analytically and numerically
3. to extend them to a generalized elasitca in R^{3} by finding the hyperelliptic solutions of non-linear Schrodinger equation in our novel approach with Emma Previato.

Information geometry of positive measures

Naomichi Nakajima

Faculty of Science and Engineering, Waseda University, Japan

Information geometry brings a united geometric insight into various aspects of statistical science, machine learning and so on by regarding the parameter space of a statistical model as a Riemannian manifold equipped with the Fisher-Rao metric. The dually flat structure on a Riemannian manifold introduced by Amari-Nagaoka takes a central role in information geometry. It is known that the space of probability distributions on a finite set naturally has the dually flat structure. For this space, Amari has characterized the dually flat structure from the viewpoint of statistics through defining the space of positive measures simply by removing the normalization condition. On the other hand, we have developed the counterpart for the space of transition probabilities of a given Markov chain, which may provide a new geometric insight into Markov chains. In this presentation, I would like to talk about Amari's theory and our theory for Markov chains.

Information geometry of positive measures

Naomichi Nakajima
Waseda University, Japan
Sep. 29th, 2023
WORKSHOP on Mathematics for Industry
@Warsaw University of Technology
supp.: JSPS KAKENHI Grant Number 22KJ0052, 22KK0034

Summary of my talk

- Information geometry brings a united geometric insight on various fields such as statistics, machine learning, optimization theory and so on. In information geometry, a statistical model is regarded as a Riemannian manifold endowed with the Fisher-Rao metric and two kinds of affine connections satisfying a certain duality, called a statistical manifold.
- A dually flat manifold is a statistical mfd with flat connections, that takes a central role in information geometry, introduced by Amari-Nagaoka.
- Regarding dually flat structures, there is a well established theory of positive measures on a finite set S due to Amari. It investigates dually flat structures of the space $\mathcal{P}(S)$ of probability distributions on S in terms of some "asymmetric distance function" on $\mathcal{P}(S)$, called a divergence.

Summary of my talk

- On the other hand, information geometry of Markov chains has been studied by Nagaoka and others using the dually flat structure of the space of transition probabilities.
- In comparison with information geometry of $\mathcal{P}(S)$, roughly speaking, the studies above are on information geometry of the space of conditional probabilities.
- Main topic of my talk.

We will investigate the counterpart for a Markov chain of Amari's theory of positive measures. This study does not only investigate information geometry of the specific model, a Markov chain, but also suggests a new direction of statistics of conditional probabilities.

Contents

- Backgrounds
- Statistical manifolds, dually flat manifolds and divergences
- Amari's theory of positive measures on a finite set [Amari]
- Information geometry of transition probabilities of a given Markov chain [Nagaoka]
- Our theory for transition probabilities [N]
[N] The space of positive transition measures of a Markov model, in preparation.
[Amari] S. Amari, α-divergence is unique, belonging to both f-divergence and Bregman divergence classes, IEEE Trans. Inform. Theory 55 (2009), 4925-4931.
[Nagaoka] H. Nagaoka, The exponential family of Markov chains and its information geometry, Proceedings of The 28th Symposium on Information Theory and Its Applications (SITA2005) (2005).

Statistical manifolds, dually flat manifolds and divergences

Let (M, h) be a pseudo-Riem. mfd and ∇ a torsion-free affine connection of $T M$.

- The triplet (M, h, ∇) is a statistical mfd if the cubic tensor $C:=\nabla h$ is totally symmetric. Then C is called the Amari-Chentsov tensor [3, 4].
- The dual connection ∇^{*} of ∇ w.r.t. h is defined by

$$
X h(Y, Z)=h\left(\nabla_{X} Y, Z\right)+h\left(Y, \nabla_{X}^{*} Z\right)(X, Y, Z \in \mathfrak{X}(M))
$$

Also, an "asymmetric distance" $\rho: M \times M \rightarrow \mathbb{R}$ induces (h, ∇, ∇^{*}) on M as follows. For vector fields $X_{1}, \cdots, X_{k}, Y_{1}, \cdots, Y_{l}$ on M, define the function

$$
\begin{aligned}
& \rho\left[X_{1} \cdots X_{k} \mid Y_{1} \cdots Y_{l}\right]: M \rightarrow \mathbb{R} \\
& \rho\left[X_{1} \cdots X_{k} \mid Y_{1} \cdots Y_{l}\right](r)=\left.\left(X_{1}\right)_{p} \cdots\left(X_{k}\right)_{p}\left(Y_{1}\right)_{q} \cdots\left(Y_{l}\right)_{q}(\rho(p, q))\right|_{p=q=r}
\end{aligned}
$$

Statistical manifolds, dually flat manifolds and divergences

We call ρ a contrast function if it satisfies
$\left\{\begin{array}{l}\text { (i) } \quad \rho[-\mid-](r)=\rho(r, r)=0, \\ \text { (ii) } \quad \rho[X \mid-](r)=\rho[-\mid X](r)=\end{array}\right.$
(ii) $\rho[X \mid-](r)=\rho[-\mid X](r)=0$,
(iii) $-\rho[X \mid Y]$: pseudo-Riemannian metric on M.

We call ρ a weak contrast function if it satisfies only (i) and (ii) ([N.-Ohmoto2021]).

Statistical manifolds, dually flat manifolds and divergences

For a statistical $\mathrm{mfd}(M, h, \nabla), \quad \nabla$ is flat \Longleftrightarrow its dual connection ∇^{*} is flat.
Definition (Amari-Nagaoka [3, 4])
A statistical $\mathrm{mfd}\left(M, h, \nabla, \nabla^{*}\right)$ is a dually flat mfd if ∇ is flat. Then we also call (h, ∇, ∇^{*}) the dually flat structure of M.
We write $\theta=\left(\theta_{1}, \cdots, \theta_{n}\right)$ for ∇-affine coords. Put $\partial_{i}:=\frac{\partial}{\partial \theta_{i}}$. Then there exists a potential function $f(\theta)$ on θ s.t.

1. the metric h is locally given by the Hessian matrix of $f(\theta): h\left(\partial_{i}, \partial_{j}\right)=\partial_{i} \partial_{j} f$,
2. the gradient map $\eta=\left(\eta_{1}, \cdots, \eta_{n}\right) \quad\left(\eta_{i}:=\frac{\partial f}{\partial \theta_{i}}\right)$ gives ∇^{*}-affine coordinates, called the dual coordinates of θ,
Another definition (Hessian structure [Shima]):
Given a $(M, h,(\nabla, \theta), f(\theta))$ with $h=\partial_{i} \partial_{j} f$
\rightsquigarrow define the dual flat connection and the dual coord $\left(\nabla^{*}, \eta=\left(\eta_{i}\right)\right)$ by $\eta_{i}:=\frac{\partial f}{\partial \theta_{i}} \quad 7 / 23$

Statistical manifolds, dually flat manifolds and divergences

A dually flat $\mathrm{mfd}\left(M, h, \nabla, \nabla^{*}\right)$ has the canonical contrast function $\mathcal{D}: M \times M \rightarrow \mathbb{R}$, called the Bregman divergence:

$$
\mathcal{D}(p, q)=f(\theta(p))-f(\theta(q))+\frac{\partial f}{\partial \theta}(\theta(q))^{T}(\theta(q)-\theta(p)) \quad(p, q \in M)
$$

where $f(\theta)$ is a potential function of M. (strictly speaking, \mathcal{D} is defined on an open neighborhood of the diagonal set of M)

Remark:

- The definition of \mathcal{D} is independent of the choice of $(\theta, f(\theta))$.
- \mathcal{D} restores the dually flat structure $\left(h, \nabla, \nabla^{*}\right)$, i.e.,

$$
\left\{\begin{array}{l}
h(X, Y)=\mathcal{D}[X \mid Y], \\
h\left(\nabla_{X} Y, Z\right)=-\mathcal{D}[X Y \mid Z], \quad h\left(\nabla_{X}^{*} Y, Z\right)=-\mathcal{D}[Z \mid X Y] .
\end{array}\right.
$$

Example: the space of discrete distributions

- $S=\{0,1, \cdots, n\}$: a finite set
- $\mathcal{P}(S)=\left\{\left(p_{0}, p_{1}, \cdots, p_{n}\right) \in \mathbb{R}^{n+1} \mid p_{i}>0\right.$ and $\left.\sum_{i=0}^{n} p_{i}=1\right\}$

We call $\mathcal{P}(S)$ the space of discrete distributions on S. Take a system of coordinates $\left(p_{1}, \cdots, p_{n}\right)\left(p_{0}=1-p_{1}-\cdots p_{n}\right)$. We regard it as flat coordinates $\left(\nabla, \eta=\left(\eta_{i}\right)_{i=1}^{n}\right)$: $\eta_{i}:=p_{i}$ (the expectation parameters).
Then

$$
\varphi(\eta)=\sum_{i=1}^{n} p_{i} \log p_{i}
$$

is a convex function, known as the negative entropy in statistics.
Hence the metric h is defined by

$$
h\left(\frac{\partial}{\partial \eta_{i}}, \frac{\partial}{\partial \eta_{j}}\right)=\frac{\partial^{2} \varphi}{\partial \eta_{i} \partial \eta_{j}} .
$$

Therefore, $(\mathcal{P}(S), h,(\nabla, \eta), \varphi(\eta))$ is a dually flat mfd (Hessian mfd).

Example: the space of discrete distributions

Importantly, the Bregman divergence $\mathcal{D}: \mathcal{P}(S) \times \mathcal{P}(S) \rightarrow \mathbb{R}$ induced by φ is the KL-divergence on $\mathcal{P}(S)$, i.e.,

$$
\mathcal{D}(p, q)=\sum_{i=0}^{n} p_{i} \log \frac{p_{i}}{q_{i}}=: K L[p, q],
$$

where $p=\left(p_{0}, \cdots, p_{n}\right), \quad q=\left(q_{0}, \cdots, q_{n}\right) \in \mathcal{P}(S)$.

- We consider the following problem: are there any other contrast functions to derive a dually flat structure of $\mathcal{P}(S)$?
- Of course, for example, we consider a quadratic function as a potential function, and then it derives another dually flat structure of $\mathcal{P}(S)$.
- We are interested in the dually flat structure with "statistical invariance", which is a certain condition required from statistics.

The space of positive measures on a finite set

- Amari has introduced the space $\overline{\mathcal{P}}(S)$ of positive measures on S as an extended space of $\mathcal{P}(S)$ and investigated the problem above by finding the Bregman and F-divergence on $\overline{\mathcal{P}}(S)$ suitably.
- An F-divergence \mathcal{D}_{F} on $\overline{\mathcal{P}}(S)$ is a contrast function, and it is known that the statistical manifold structure induced by \mathcal{D}_{F} of $\overline{\mathcal{P}}(S)$ satisfies statistical invariance.
- In [Amari], Amari has shown that the KL-divergence $\mathcal{D}_{K L}$ on $\overline{\mathcal{P}}(S)$ is the only contrast function such that
- it is both a Bregman divergence and an F-divergence,
- it and its restriction to $\mathcal{P}(S)$ induce the dually flat structures of $\overline{\mathcal{P}}(S)$ and $\mathcal{P}(S)$, respectively.

The space of positive measures on a finite set and F-divergences

- $S=\{0,1, \cdots, n\}$: a finite set
- $\overline{\mathcal{P}}(S)=\left\{\left(p_{0}, p_{1}, \cdots, p_{n}\right) \in \mathbb{R}^{n+1} \mid p_{i}>0\right\} \supset \mathcal{P}(S)=\left\{p_{i}>0\right.$ and $\left.\sum_{i=0}^{n} p_{i}=1\right\}$

We call $\overline{\mathcal{P}}(S)$ the space of positive measures on S.
Given a strictly convex function $F:(0, \infty) \rightarrow \mathbb{R}$ with

$$
F(1)=F^{\prime}(1)=0 \text { and } F^{\prime \prime}(1)=1,
$$

called a standard convex function [Amari], the function $\mathcal{D}_{F}: \overline{\mathcal{P}}(S) \times \overline{\mathcal{P}}(S) \rightarrow \mathbb{R}$ defined by

$$
\mathcal{D}_{F}(p, q)=\sum_{i=0}^{n} p_{i} F\left(\frac{q_{i}}{p_{i}}\right)
$$

is called the F-divergence on $\overline{\mathcal{P}}(S)$, where $p=\left(p_{0}, \cdots, p_{n}\right), q=\left(q_{0}, \cdots, q_{n}\right)$.

The space of positive measures on a finite set and F-divergences

In the case where $F(t)=-\log t+(t-1)$, the F-divergence \mathcal{D}_{F} is the KL-divergence on $\overline{\mathcal{P}}(S)$:

$$
\mathcal{D}_{F}(p, q)=\sum_{i=0}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)+\sum_{i=0}^{n} q_{i}-\sum_{i=0}^{n} p_{i} .
$$

- In fact, $\overline{\mathcal{P}}(S)$ has the dually flat structure; its flat coordinates are $\eta=\left(p_{0}, \cdots, p_{n}\right)$ and the potential function $\varphi(\eta)$ is given by

$$
\varphi(\eta)=\sum_{i=0}^{n} p_{i} \log p_{i}
$$

- For $p, q \in \mathcal{P}(S)$, it holds that $\sum_{i=0}^{n} p_{i}=\sum_{i=0}^{n} q_{i}=1$, which yields

$$
\mathcal{D}_{F}(p, q)=\sum_{i=0}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)=K L[p, q]
$$

Information geometry of the space of transition probabilities

- Setting:

- $\mathcal{X}=\{0,1, \cdots, d\}$: a finite set
- $\mathcal{E} \subset \mathcal{X} \times \mathcal{X}$: a subset
\sim We regard $(\mathcal{X}, \mathcal{E})$ as a direct graph.
- $\mathcal{F}^{+}=\{f: \mathcal{E} \rightarrow \mathbf{R} \mid f(x, y)>0$ for any $(x, y) \in \mathcal{E}\}$
- $\mathcal{W}=\left\{w \in \mathcal{F}^{+} \mid \sum_{y:(x, y) \in \mathcal{E}} w(x, y)=1\right.$ for any $\left.x \in \mathcal{E}\right\} \subset \mathcal{F}^{+}$

We call $w \in \mathcal{W}$ a transition probability on \mathcal{E} (the word "transition probability" comes from Markov chains).

Information geometry of the space of transition probabilities

We assume that \mathcal{E} is strongly connected, that is, for any $x, y \in \mathcal{X}$ there exist $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \cdots,\left(x_{N-1}, x_{N}\right) \in \mathcal{E}$ such that $x_{1}=x, x_{N}=y(N \geq 2)$.
By this assumption, for every $f \in \mathcal{F}^{+}$we can apply the Perron-Frobenius theorem to

$$
A(f)=\left[a_{i j}(f)\right]_{0 \leq i, j \leq d}, \quad a_{i j}(f)= \begin{cases}f(i, j) & (i, j) \in \mathcal{E} \\ 0 & (i, j) \notin \mathcal{E}\end{cases}
$$

Then we get a unique real value $r(f)>0$ and vector $\mu_{f}=\left(\mu_{f}(0), \cdots, \mu_{f}(d)\right)^{T}$ satisfying

- $r(f)$ is the Perron-Frobenius root, which is an eigenvalue of $A(f)$,
- μ_{f} is a left eigenvector associated with $r(f)$ such that $\mu_{f}(i)>0$ for any i, and $\sum_{i=0}^{d} \mu_{f}(i)=1$.
We call the vector μ_{f} the stationary distribution for f.

Information geometry of the space of transition probabilities

We consider the following two spaces:

$$
\begin{aligned}
\bar{M}=\left\{\boldsymbol{\eta}=\left(\eta_{x y}\right)_{(x, y) \in \mathcal{E}} \in \mathbb{R}^{|\mathcal{E}|} \mid\right. & \left.\eta_{x y}>0\right\}, \\
M=\left\{\boldsymbol{\eta}=\left(\eta_{x y}\right)_{(x, y) \in \mathcal{E}} \in \bar{M} \quad\right. & \sum_{(x, y) \in \mathcal{E}} \eta_{x y}=1 \text { and } \\
& \left.\sum_{y:(x, y) \in \mathcal{E}} \eta_{x y}=\sum_{y:(y, x) \in \mathcal{E}} \eta_{y x} \text { for any } x \in \mathcal{X}\right\} .
\end{aligned}
$$

In [Nagaoka], it is shown that \mathcal{W} is a dually flat manifold, and its expectation parameter space is M.

Theorem ([Nagaoka])

1. The mapping $T: \mathcal{W} \rightarrow M, w \mapsto\left(\mu_{w}(x) w(x, y)\right)_{(x, y) \in \mathcal{E}}$ is a diffeomorphism.
2. There exists a convex function $\varphi: M \rightarrow \mathbb{R}$; the Bregman divergence
$\mathcal{D}: \mathcal{W} \times \mathcal{W} \rightarrow \mathbb{R}$ induced by φ is

$$
\mathcal{D}\left(w_{1}, w_{2}\right)=\sum_{(x, y) \in \mathcal{E}} \mu_{w_{1}}(x) w_{1}(x, y) \log \frac{w_{1}(x, y)}{w_{2}(x, y)}
$$

Positive transition measures on \mathcal{W} (our work)

- Aim: We construct the counterpart of Amari's picture in $(\mathcal{P}(S), \overline{\mathcal{P}}(S))$ for \mathcal{W}.
- Main results:
- We extend \mathcal{W} to the bigger space \mathcal{F}^{+}
- We define an F-divergence on \mathcal{F}^{+}and a diffeomorphism \bar{T} between \mathcal{F}^{+}and \bar{M}.
- We give a divergence that is both a Bregman divergence and an F-divergence.
- Actually, the potential function $\bar{\varphi}$ has a 1-dimensional kernel of its Hessian matrix at every point of \bar{M}, thus we take a hyperplane section \tilde{M} in \bar{M} so that a genuine dually flat structure is defined on it. That induces a hypersurface $\tilde{\mathcal{W}}$ in \mathcal{F}^{+}.

Positive transition measures on \mathcal{W} (our work)

Definition ([N])

Let $F:(0, \infty) \rightarrow \mathbb{R}$ be a strictly convex function with $F(1)=F^{\prime}(1)=0$ and $F^{\prime \prime}(1)$.
We define the F-divergence on \mathcal{F}^{+}as $\mathcal{D}_{F}: \mathcal{F}^{+} \times \mathcal{F}^{+} \rightarrow \mathbb{R}$,

$$
\mathcal{D}_{F}(f, g)=\sum_{(x, y) \in \mathcal{E}} \mu_{f}(x) f(x, y) F\left(\frac{g(x, y)}{r(g)} / \frac{f(x, y)}{r(f)}\right) .
$$

Proposition ([N])

The F-divergence \mathcal{D}_{F} has the following properties:

1. $\mathcal{D}_{F}(f, g) \geq 0$.
2. $\mathcal{D}_{F}(f, g)=0$ if and only if $g=a f$ for some $a>0$.
3. \mathcal{D}_{F} is a weak contrast function on \mathcal{F}^{+}. Let h_{F} denote the symmetric (0,2)-tensor on \mathcal{F}^{+}induced by \mathcal{D}_{F}.
4. The null space of h_{F} at $f \in \mathcal{F}^{+}$is the tangent space of the halfline

$$
\{a f \mid a>0\} \subset \mathcal{F}^{+}
$$

Positive transition measures on \mathcal{W} (our work)

We set

$$
\bar{T}: \mathcal{F}^{+} \rightarrow \bar{M}, \quad f \mapsto\left(\mu_{f}(x) f(x, y)\right)_{(x, y) \in \mathcal{E}}
$$

We also set for $\boldsymbol{\eta}=\left(\eta_{x y}\right)_{(x, y) \in \mathcal{E}} \in \bar{M}$

$$
r(\boldsymbol{\eta}):=\sum_{(x, y) \in \mathcal{E}} \eta_{z y} .
$$

Lemma ([N])

\bar{T} has the following properties:

1. \bar{T} is a diffeomorphism, and $\left.\bar{T}\right|_{w}=T: \mathcal{W} \xrightarrow{\sim} M$.
2. $\bar{T}(a f)=a \bar{T}(f)$ for $f \in \mathcal{F}^{+}$and $a>0$.
3. $r(f)=r(\eta)$ with $\bar{T}(f)=\eta$.

Positive transition measures on \mathcal{W} (our work)

Theorem ([N])

Let $F(t)=-\log t+(t-1)$. Then the F-divergence is the Bregman divergence given by the following potential function on \bar{M} :

$$
\begin{equation*}
\bar{\varphi}(\boldsymbol{\eta})=\sum_{(x, y) \in \mathcal{E}} \eta_{x y} \log \eta_{x y}-\sum_{x \in \mathcal{X}} \eta_{x} \log \eta^{x} . \tag{1}
\end{equation*}
$$

For $w_{1}, w_{2} \in \mathcal{W}$ we see

$$
\begin{aligned}
\mathcal{D}_{F}\left(w_{1}, w_{2}\right) & =\sum_{(x, y) \in \mathcal{E}} \mu_{w_{1}}(x) w_{1}(x, y) F\left(\frac{w_{2}(x, y)}{w_{1}(x, y)}\right) \\
& =\sum_{(x, y) \in \mathcal{E}} \mu_{w_{1}}(x) w_{1}(x, y) \log \frac{w_{1}(x, y)}{w_{2}(x, y)}+\sum_{(x, y) \in \mathcal{E}} \mu_{w_{1}}(x)\left(w_{2}(x, y)-w_{1}(x, y)\right) \\
& =\sum_{(x, y) \in \mathcal{E}} \mu_{w_{1}}(x) w_{1}(x, y) \log \frac{w_{1}(x, y)}{w_{2}(x, y)}: \text { the divergence by Nagaoka }
\end{aligned}
$$

Positive transition measures on \mathcal{W} (our work)

We see that the Hessian matrix of $\bar{\varphi}$ at every point $\boldsymbol{\eta} \in \bar{M}$ has the 1-dimensional kernel spanned by the numerical vector $\eta \in \mathbb{R}^{|\mathcal{E}|} \cong T_{\eta} \bar{M}$.
Therefore, by imposing only the normalization condition $\sum_{(x, y) \in \mathcal{E}} \eta_{x y}=1$ on \bar{M}, we have the hyperplane section \tilde{M} in \bar{M} so that $\bar{\varphi}$ is strictly convex on it:

$$
\tilde{M}:=\left\{\boldsymbol{\eta}=\left(\eta_{x y}\right) \in \bar{M} \mid r(\boldsymbol{\eta})=1\right\}
$$

Using the relation $r(f)=r(\boldsymbol{\eta})$ with $\bar{T}(f)=\boldsymbol{\eta}$, we get the genuine dually flat manifold

$$
\tilde{\mathcal{W}}=\left\{f \in \mathcal{F}^{+} \mid r(f)=1\right\}
$$

which is an extended space of \mathcal{W} as a hypersurface in \mathcal{F}^{+}.

Positive transition measures on \mathcal{W} (our work)

Theorem ([N])
The hypersurface $\tilde{\mathcal{W}}$ has the dually flat structure induced by the potential function $\tilde{\varphi}:=\left.\bar{\varphi}\right|_{\tilde{M}}$ on \tilde{M}; the restriction of this dually flat structure to \mathcal{W} restores the dually flat structure of [Nagaoka]. We call $\tilde{\mathcal{W}}$ the space of positive transition measures. Moreover F-divergences on $\tilde{\mathcal{W}}$ are written as

$$
\mathcal{D}_{F}(f, g)=\sum_{(x, y) \in \mathcal{E}} \mu_{f}(x) f(x, y) F\left(\frac{g(x, y)}{f(x, y)}\right) \quad(f, g \in \tilde{\mathcal{W}})
$$

Summary and future plans

- We have defined the class of F-divergences on \mathcal{F}^{+}and given a divergence which is both a Bregman divergence and an F-divergence. Moreover, we have given a dually flat manifold $\tilde{\mathcal{W}}$ which is an extension of \mathcal{W} by analyzing the kernels of the potential function $\bar{\varphi}$ on \bar{M}.
- In order to completely establish the counterpart of Amari's theory for the pair $(\mathcal{W}, \tilde{\mathcal{W}})$, we need some discussions from the view point of statistics.
- In the first place, the "statistical invariance" for conditional probabilities must be discussed.
- Then, F-divergences should be characterized by the statistical invariance above.
- Besides, a divergence on $\tilde{\mathcal{W}}$ which is both a Bregman divergence and an F-divergence may be uniquely determined under certain conditions.

Reference i

[1] N. Nakajima and T. Ohmoto, The dually flat structure for singular models, Info. Geom., 4 (2021), 31-64.
[2] S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks, 8 (1995), 1379-1408.
[3] S. Amari, Information Geometry and Its Application, Applied Math. Sci., 194, Springer(2016)
[4] S. Amari and H. Nagaoka, Methods of Information Geometry, A.M.S., Oxford Univ. Press (2000).
[5] S. Eguchi, Geometry of minimum contrast, Hiroshima Math. J., 22 (1992), 631-647.

Reference if

[6] T. Matumoto, Any statistical manifold has a contrast function - On the C^{3}-functions taking the minimum at the diagonal of the product manifold, Hiroshima Math. J., 23 (1993), 327-332.
[7] H. Nagaoka, The exponential family of Markov chains and its information geometry, Proceedings of The 28th Symposium on Information Theory and Its Applications (2005).
[8] H. Shima, The geometry of Hessian Structures, World Scientific (2007).
[9] J. Takeuchi, Fisher information determinant and stochastic complexity for Markov models, 2009 IEEE International Symposium on Information Theory (2009), 1894-1898.

Multivariate Hawkes processes with graphs

 Mariusz Niewegłowski

 Mariusz Niewegłowski}

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

A very interesting and important class of stochastic processes was introduced by Alan Hawkes in [1]. These processes, called now Hawkes processes, are meant to model self-exciting and mutually-exciting random phenomena that evolve in time. The selfexciting phenomena are modeled as univariate Hawkes processes, and the mutuallyexciting phenomena are modeled as multivariate Hawkes processes. The Hawkes processes have been applied to modeling in meany areas of science, including: insurance, finance, seismology and neurology. In this talk we provide some results on markovianity of the Generalized Multivariate Hawkes Processes (GMHP) introduced in our earlier papers. GMHP are multivariate marked point processes that add an important feature to the family of the (classical) multivariate Hawkes processes: they allow for explicit modelling of simultaneous occurrence of excitation events coming from different sources, i.e. caused by different coordinates of the multivariate process. We propose that this structure of mutual excitations is specified in terms of the excitation graph. We provide results which show that under some conditions on its kernels the intensities of GMHP's are functions of a Markov processes. Moreover we show that it is possible to compute their Laplace transform by means of system of ODE's. The talk is based on [4].

References

[1] A.G. Hawkes, "Spectra of Some Self-Exciting and Mutually Exciting Point Processes", Biometrika 58(1):83-90, 1971.
[2] T.R. Bielecki, J. Jakubowski, M. Niewegłowski, "Construction and Simulation of Generalized Multivariate Hawkes Processes", Methodology and Computing in Applied Probability (2022) 24:2865-2896
[3] T.R. Bielecki, J. Jakubowski, M. Niewegłowski, "Multivariate Hawkes processes with simultaneous occurrence of excitation events coming from different sources", Stochastic Models (2022) online
[4] T.R. Bielecki, J. Jakubowski, M. Niewegłowski, "Markovianization of Multivariate Hawkes processes", preprint

Multivariate Hawkes processes

Mariusz Niewęgłowski

Faculty of Mathematics and Information Science
Warsaw University of Technology
based on joint work
Tomasz R. Bielecki, Illinois Institute of Technology, Jacek Jakubowski, Warsaw University

WORKSHOP on Mathematics for Industry
Warsaw, Poland 2023

Hawkes Processes

- Hawkes processes (self-exciting point process, 1971 Allan Hawkes) one dimensional point process (counting) N, defined by intensity

$$
\begin{aligned}
\lambda(t) & =\lim _{\Delta t \downarrow 0} \frac{\mathbb{P}\left(N_{t+\Delta t}-N_{t}=1 \mid \mathcal{F}_{t-}^{N}\right)}{\Delta t}=\eta(t)+\int_{(0, t)} w(t-s) d N_{s} \\
& =\eta(t)+\sum_{n: T_{n}<t} w\left(t-T_{n}\right),
\end{aligned}
$$

where η non-negative function-background intensity, w non-negative function-impact function.

- Multivariate Hawkes Process: (mutually-exciting point processes), $N=\left(N^{1}, \ldots, N^{d}\right)$ where $N^{i}, i=1, \ldots, d$, is a point process with the intensity given by

$$
\lambda_{i}(t)=\eta_{i}(t)+\sum_{j=1}^{d} \int_{(0, t)} w_{i, j}(t-s) d N^{j}(s), \quad t \geq 0
$$

Trajectory of 2-dimensional Hawkes process

Applications

Y．Ogata
Space－time point－process models for earthquake occurrences．
Ann Inst Stat Math 50（2）：379－402．（1998）
（ A．Bonnet，Ch．Dion－Blanc，F．Gindraud，S．Lemler， Neuronal network inference and membrane potential model using multivariate Hawkes processes．
Journal of Neuroscience Methods，Volume 372，（2022）．
R．B．Bessy－Roland，A．Boumezoued，\＆C．Hillairet， Multivariate Hawkes process for cyber insurance．
Annals of Actuarial Science，15（1），14－39，（2021）．
（ M．Morariu－Patrichi \＆M．S．Pakkanen
State－dependent Hawkes processes and their application to limit order book modelling．
Quantitative Finance，22：3，563－583，（2022）

Introduction

－Goal：Provide framework for tractable specification of multivariate Hawkes processes（with common event times）．
－What makes model tractable ？
－Statistical methods．
－Explicit formula for some distribution－related quantities．
－Numerical methods for computations of such quantities．
－Markov property
－N－univariate Hawkes process is not a Markov process ！
－Markovianization Problem：Find a Markov process X ，function g such that $\lambda(t)=g\left(t, X_{t}\right)$ and (X, N) is a Markov process．
－Let $\eta=$ const，$w(t)=a e^{-b t}$ ，

$$
X(t):=\int_{0}^{t} a e^{-b(t-s)} d N_{s}
$$

then (X, N) is a Markov process．

MPP－Marked Point Process

－Let us consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ ．
－Marked Point process N

$$
N=\left(T_{n}, X_{n}\right)_{n \in \mathbb{Z}},
$$

where $\left(T_{n}\right)_{n \in \mathbb{Z}}$ satisfies

$$
T_{n} \leq T_{n+1}, \quad\left|T_{n}\right|<\infty \Rightarrow T_{n}<T_{n+1}
$$

and $\left(X_{n}\right)$ sequence of random variables，called marks，with values in $\left(E^{\partial}, \mathcal{E}^{\partial}\right)(\partial$－point external to $E)$

$$
X_{n}=\partial \Leftrightarrow\left|T_{n}\right|=\infty, \quad X_{n} \in E \Leftrightarrow\left|T_{n}\right|<\infty
$$

－The explosion time of N ，say T_{∞} ，is defined as

$$
T_{\infty}:=\lim _{n \rightarrow \infty} T_{n} .
$$

Random measures and MPP

- We associate with the N an integer valued random measure on $(\mathbb{R} \times E, \mathcal{B}(\mathbb{R}) \otimes \mathcal{E}):$

$$
N(d t, d x):=\sum_{n \in \mathbb{Z}} \delta_{\left(T_{n}, x_{n}\right)}(d t, d x) \mathbb{1}_{\left\{\left|T_{n}\right|<\infty\right\}}
$$

- Filtration $\mathbb{F}^{N}=\left(\mathcal{F}_{t}^{N}, t \geq 0\right)$ generated by N (completed)

$$
\mathcal{F}_{t}^{N}=\sigma(N((s, r] \times A): 0 \leq s<r \leq t, A \in \mathcal{E}), \quad t \geq 0
$$

Multivariate Mark space

- Let $\left(E_{i}, \mathcal{E}_{i}\right), i=1,2, \ldots, d$, be some non-empty Borel measurable spaces. We extend $\left(E_{i}, \mathcal{E}_{i}\right)$

$$
E_{i}^{\Delta}:=E_{i} \cup \Delta, \quad \mathcal{E}_{i}^{\Delta}=\sigma\left(\mathcal{E}_{i},\{\Delta\}\right)
$$

where Δ is a dummy mark.

- Then, we define a multivariate mark space, say E^{Δ} by

$$
E^{\Delta}:=E_{1}^{\Delta} \times E_{2}^{\Delta} \times \ldots \times E_{d}^{\Delta} \backslash(\Delta, \Delta, \ldots, \Delta)
$$

σ-field \mathcal{E} on E^{Δ},

$$
\mathcal{E}^{\Delta}:=\left\{A \cap E^{\Delta}: A \in \otimes_{i=1}^{d} \mathcal{E}_{i}^{\Delta}\right\} .
$$

Motivation for $d=2$

$N^{1}=$| t_{m}^{1} | x_{m}^{1} |
| :---: | :---: |
| $00: 25$ | 12.34 |
| $00: 45$ | 10.45 |
| $01: 30$ | 15.54 |
| $02: 25$ | 11.64 |
| $03: 11$ | 10.82 |
| $03: 59$ | 9.91 |
| $04: 21$ | 7.64 |
| $05: 05$ | 10.99 |
| $06: 15$ | 12.99 |
| $09: 05$ | 11.21 |

$N^{2}=$| t_{m}^{2} | x_{m}^{2} |
| :---: | :---: |
| $01: 54$ | 3.49 |
| $03: 11$ | 5.78 |
| $03: 45$ | 4.31 |
| $03: 59$ | 3.95 |
| $04: 35$ | 7.91 |
| $06: 15$ | 9.99 |
| $09: 05$ | 8.74 |
| | |,

$N=$| t_{n} | x_{n}^{1} | x_{n}^{2} |
| :---: | :---: | :---: |
| $00: 25$ | 12.34 | Δ |
| $00: 45$ | 10.45 | Δ |
| $01: 30$ | 15.54 | Δ |
| $01: 54$ | Δ | 3.49 |
| $02: 25$ | 11.64 | Δ |
| $03: 11$ | 10.82 | 5.78 |
| $03: 45$ | Δ | 4.31 |
| $03: 59$ | 9.91 | 3.95 |
| $04: 21$ | 7.64 | Δ |
| $04: 35$ | Δ | 7.91 |
| $05: 05$ | 10.99 | Δ |
| $06: 15$ | 12.99 | 9.99 |
| $09: 05$ | 11.21 | 8.74 |

Multivariate Marked Hawkes process

Definition
Let N^{0} be random measure on $\left(\mathbb{R}_{-} \times E^{\Delta}, \mathcal{B}\left(\mathbb{R}_{-}\right) \otimes \mathcal{E}^{\Delta}\right), \mathbb{G}$ a given filtration and a pair of kernels η, f satisfying
(1) η is a finite kernel from $\left(\Omega \times[0, \infty), \mathcal{P}^{\mathbb{G}}\right)$ to $\left(E^{\Delta}, \mathcal{E}^{\Delta}\right)$
(1) f is a finite kernel from $\left(\Omega \times \mathbb{R}_{+} \times \mathbb{R} \times E^{\Delta}, \mathcal{P}^{\mathbb{G}} \otimes \mathcal{B}(\mathbb{R}) \otimes \mathcal{E}^{\Delta}\right)$ to $\left(E^{\Delta}, \mathcal{E}^{\Delta}\right)$ and satisfies $f(t, s, x, A)=0$ for $s>t$.
We call MPP N with multivariate mark space E^{Δ} a generalized \mathbb{G}-doubly stochastic multivariate Hawkes process (GDSMHP) directed by (η, f) with initial condition N^{0} if $N=N^{0}$ on $\left(\mathbb{R}_{-} \times E^{\Delta}, \mathcal{B}\left(\mathbb{R}_{-}\right) \otimes \mathcal{E}^{\Delta}\right)$ and $\mathbb{G} \vee \mathbb{F}^{N_{-}}$compensator of N on $\left(\mathbb{R}_{+} \times E^{\Delta}, \mathcal{B}\left(\mathbb{R}_{+}\right) \otimes \mathcal{E}^{\Delta}\right)$, is of the form

$$
\nu(\omega, d t, d y)=\mathbb{1}_{\rrbracket 0, T_{\infty} \llbracket^{\kappa}(\omega, t, d y) d t, ~}^{\text {, }}
$$

where

$$
\kappa(t, d y)=\eta(t, d y)+\int_{(-\infty, t) \times E^{\Delta}} f(t, s, x, d y) N(d s, d x)
$$

Auxiliary notation

- By $2^{[d]}$ we denote all non-empty subsets of $[d]:=\{1, \ldots, d\}$.
- For generic $\mathcal{I} \in 2^{[d]}$ we let $\mathcal{I}^{c}:=[d] \backslash \mathcal{I}$ and we set

$$
E^{\mathcal{I}}=\underset{i=1}{d} A_{i}, \quad \text { where } \quad A_{i}= \begin{cases}E_{i} & \text { if } i \in \mathcal{I} \\ \{\Delta\} & \text { otherwise }\end{cases}
$$

- Let $\left(i_{1}, \ldots, i_{d_{\mathcal{I}}}\right)$ be the ordered sequence of elements of \mathcal{I} we denote

$$
\begin{aligned}
E_{\mathcal{I}} & =\mathrm{X}_{j=1}^{d_{\mathcal{I}}} E_{i_{j}}, \\
x_{\mathcal{I}} & =\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{d_{\mathcal{I}}}}\right) \in E_{\mathcal{I}}, \\
\mathrm{d} x_{\mathcal{I}} & =\mathrm{d} x_{i_{1}} \mathrm{~d} x_{i_{2}}, \ldots \mathrm{~d} x_{i_{d_{\mathcal{I}}}}, \\
\delta_{\Delta^{\tau c}}\left(\mathrm{~d} y_{\mathcal{I} c}\right) & =\otimes_{i \in \mathcal{I}^{c}} \delta_{\Delta}\left(\mathrm{d} y_{i}\right)
\end{aligned}
$$

- $E^{\mathcal{I}} \subset E^{\Delta}, E^{\Delta}=\bigcup_{\mathcal{I} \in 2^{[d]}} E^{\mathcal{I}}$.

\mathcal{I}-idiosyncratic coordinate

Definition

For a random measure $N(\mathrm{~d} u, \mathrm{~d} x)$ on $\left(\mathbb{R} \times E^{\Delta}\right)$ and a set $\mathcal{I} \in 2^{[d]}$ we define a random measure $N_{\mathcal{I}}^{\text {id }}\left(\mathrm{d} s, \mathrm{~d} x_{\mathcal{I}}\right)$ on $\left(\mathbb{R} \times E_{\mathcal{I}}\right)$ by setting

$$
N_{\mathcal{I}}^{\text {id }}((s, t] \times A)=N\left((s, t] \times \Gamma^{\mathcal{I}}(A)\right), \quad A \in E_{\mathcal{I}}
$$

where $\Gamma^{\mathcal{I}}: E_{\mathcal{I}} \rightarrow E^{\mathcal{I}}$ is a lifting mapping defined by

$$
\left[\Gamma^{\mathcal{I}}\left(x_{\mathcal{I}}\right)\right]_{i}=\left\{\begin{array}{ll}
x_{i} & \text { if } i \in \mathcal{I}, \\
\Delta & \text { otherwise },
\end{array} \quad i \in[d]\right.
$$

We call $N_{\mathcal{I}}^{\text {id }}$ - the \mathcal{I}-idiosyncratic coordinate process.
N can be represented in the form
$N((s, t] \times A)=\sum_{\mathcal{T} \in \mathcal{I}|d|} N\left((s, t] \times\left(A \cap E^{\mathcal{J}}\right)\right)=\sum_{\mathcal{T}=\tau|d|} N_{\mathcal{J}}^{\mathrm{d}}\left((s, t] \times\left(\Gamma^{\mathcal{J}}\right)^{-1}\left(A \cap E^{\mathcal{J}}\right)\right)$

Illustration for $d=2$
$N=$

t_{n}	x_{n}^{1}	x_{n}^{2}
$00: 25$	12.34	Δ
$00: 45$	10.45	Δ
$01: 30$	15.54	Δ
$01: 54$	Δ	3.49
$02: 25$	11.64	Δ
$03: 11$	10.82	5.78
$03: 45$	Δ	4.31
$03: 59$	9.91	3.95
$04: 21$	7.64	Δ
$04: 35$	Δ	7.91
$05: 05$	10.99	Δ
$06: 15$	12.99	9.99
$09: 05$	11.21	8.74

$$
\begin{gathered}
\left\lvert\, \begin{array}{|c|c|}
\hline t_{m}^{1} & x_{m}^{1} \\
\hline 00: 25 & 12.34 \\
\hline 00: 45 & 10.45 \\
\hline 01: 30 & 15.54 \\
\hline 02: 25 & 11.64 \\
\hline 04: 21 & 7.64 \\
\hline 05: 05 & 10.99 \\
\hline & \\
\hline t_{m}^{2} & x_{m}^{2} \\
\hline 01: 54 & 3.49 \\
\hline 03: 45 & 4.31 \\
\hline 04: 35 & 7.91 \\
\hline
\end{array}\right.
\end{gathered}
$$

$N_{\{1,2\}}^{\text {id }}=$

$t_{m}^{1,2}$	x_{m}^{1}	x_{m}^{2}
$03: 11$	10.82	5.78
$03: 59$	9.91	3.95
$06: 15$	12.99	9.99
$09: 05$	11.21	8.74

Niewęgłowski (PW MiNI)
Multivariate Hawkes processes

Lemma

1. Every kernel η from a measurable space $\left(\Omega \times \mathbb{R}_{+}, \mathcal{A}\right)$ to $\left(E^{\Delta}, \mathcal{E}^{\Delta}\right)$ can be uniquely written as

$$
\eta(t, \mathrm{~d} y)=\sum_{\mathcal{J} \in 2^{[d]}} \eta_{\mathcal{J}}\left(t, \mathrm{~d} y_{\mathcal{J}}\right) \otimes \delta_{\Delta^{\mathcal{J}}}\left(\mathrm{d} y_{\mathcal{J} c}\right)
$$

where $\eta_{\mathcal{J}}$ are kernels from $\left(\Omega \times \mathbb{R}_{+}, \mathcal{A}\right)$ to $\left(E_{\mathcal{J}}, \mathcal{E}_{\mathcal{J}}\right)$ such that

$$
\eta_{\mathcal{J}}\left(t, A_{\mathcal{J}}\right)=\eta\left(t, \Gamma^{\mathcal{J}}\left(A_{\mathcal{J}}\right)\right) \quad \text { for } A_{\mathcal{J}} \in \mathcal{E}_{\mathcal{J}} .
$$

2. Every kernel f from $\left(\Omega \times \mathbb{R}_{+} \times \mathbb{R} \times E^{\Delta}, \mathcal{A} \otimes \mathcal{B}(\mathbb{R}) \otimes \mathcal{E}^{\Delta}\right)$ to $\left(E^{\Delta}, \mathcal{E}^{\Delta}\right)$ can be uniquely written as

$$
f(t, s, x, \mathrm{~d} y)=\sum_{\mathcal{I}, \mathcal{J} \in 2^{[d]}} f_{\mathcal{I}, \mathcal{J}}\left(t, s, x_{\mathcal{I}}, \mathrm{d} y_{\mathcal{J}}\right) \otimes \delta_{\Delta^{\jmath c}}\left(\mathrm{~d}_{\left.\mathcal{J}_{\mathcal{J}}\right)} \mathbb{1}_{\mathbb{E}^{\mathcal{I}}}(x),\right.
$$

where $f_{\mathcal{I}, \mathcal{J}}$ are kernels from $\left(\Omega \times \mathbb{R}_{+} \times \mathbb{R} \times E_{\mathcal{I}}, \mathcal{A} \otimes \mathcal{B}(\mathbb{R}) \otimes \mathcal{E}_{\mathcal{I}}\right)$ to $\left(E_{\mathcal{J}}, \mathcal{E}_{\mathcal{J}}\right)$ such that

$$
f_{\mathcal{I}, \mathcal{J}}\left(t, s, x_{\mathcal{I}}, A_{\mathcal{J}}\right)=f\left(t, s, \Gamma^{\mathcal{I}}\left(x_{\mathcal{I}}\right), \Gamma^{\mathcal{J}}\left(A_{\mathcal{J}}\right)\right) \quad \text { for } A_{\mathcal{J}} \in \mathcal{E}_{\mathcal{J}} .
$$

Introducing graph(-ic)

- Suppose that directing kernels (η, f) are defined by means of a given $\mathbb{M} \subset \mathbb{V} \subset 2^{[d]}, \mathbb{A} \subset \mathbb{V} \times \mathbb{V}$ and families of non-zero kernels $\left\{\eta_{\mathcal{J}}: \mathcal{J} \in \mathbb{M}\right\},\left\{f_{\mathcal{I}, \mathcal{J}}:(\mathcal{I}, \mathcal{J}) \in \mathbb{A}\right\}$ by following formula

$$
\begin{aligned}
\eta(t, d y) & =\sum_{\mathcal{J} \in \mathbb{M}} \eta_{\mathcal{J}}\left(t, \mathrm{~d} y_{\mathcal{J}}\right) \otimes \delta_{\Delta^{\mathcal{J}}}\left(\mathrm{d} y_{\mathcal{J}^{c}}\right), \\
f(t, s, x, d y) & =\sum_{(\mathcal{I}, \mathcal{J}) \in \mathbb{A}} f_{\mathcal{I}, \mathcal{J}}\left(t, s, x_{\mathcal{I}}, \mathrm{d} y_{\mathcal{J}}\right) \otimes \delta_{\Delta^{\mathcal{J}}}\left(\mathrm{d} y_{\mathcal{J}^{c}}\right) \mathbb{1}_{E^{\mathcal{I}}}(x) .
\end{aligned}
$$

- We call $G=((\mathbb{V}, \mathbb{A}), \mathbb{M})$ an excitations graphic.
- We call \mathbb{M} set of exogenous sources of excitations.
- For a given $\mathcal{J} \in \mathbb{V}$ we define the parents of \mathcal{J} in G

$$
\operatorname{Pa}_{G}(\mathcal{J})=\{\mathcal{I} \in \mathbb{V}:(\mathcal{I}, \mathcal{J}) \in \mathbb{A}\}
$$

for a given $\mathcal{I} \in \mathbb{V}$ we define the set of ancestors of \mathcal{I} in G

$$
\operatorname{An}_{G}(\mathcal{I})=\{\mathcal{J} \in \mathbb{V}:(\mathcal{I}, \mathcal{J}) \in \mathbb{A}\} .
$$

Graphical description

$$
d=3,|\mathbb{A}|=49,|\mathbb{M}|=8 \quad d=3,|\mathbb{A}|=8,|\mathbb{M}|=2
$$

Proposition
The Hawkes intensity kernel of \mathbb{G}-DSGMHP N with initial condition N^{0} directed by such (η, f) is of the form

$$
\begin{aligned}
\kappa(t, \mathrm{~d} y)= & \sum_{\mathcal{J} \in \mathbb{M}} \eta_{\mathcal{J}}\left(t, \mathrm{~d} y_{\mathcal{J}}\right) \otimes \delta_{\Delta^{\mathcal{J}}}\left(\mathrm{d} y_{\mathcal{J}^{c}}\right) \\
& +\sum_{(\mathcal{I}, \mathcal{J}) \in \mathbb{A}} \int_{(-\infty, t) \times E_{\mathcal{I}}} f_{\mathcal{J}}\left(t, s, x_{\mathcal{I}}, \mathrm{d} y_{\mathcal{J}}\right) \otimes \delta_{\Delta^{\mathcal{J}}}\left(\mathrm{d} y_{\mathcal{J}^{c}}\right) N_{\mathcal{I}}^{\mathrm{id}}\left(\mathrm{~d} s, \mathrm{~d} x_{\mathcal{I}}\right) .
\end{aligned}
$$

The $\mathbb{G} \vee \mathbb{F}^{N}$-intensity kernel of the random measure $N_{\mathcal{K}}^{\text {id }}$ is given by

$$
\begin{aligned}
\kappa_{\mathcal{K}}^{\text {id }}\left(t, \mathrm{~d} y_{\mathcal{K}}\right)= & \mathbb{1}_{\mathbb{M}}(\mathcal{K}) \eta_{\mathcal{K}}\left(t, \mathrm{~d} y_{\mathcal{K}}\right) \\
& +\sum_{\mathcal{I} \in \operatorname{Pa}_{G}(\mathcal{K})} \int_{(-\infty, t) \times E_{\mathcal{I}}} f_{\mathcal{I}, \mathcal{K}}\left(t, s, x_{\mathcal{I}}, \mathrm{d} y_{\mathcal{K}}\right) N_{\mathcal{I}}^{\text {id }}\left(\mathrm{d} s, \mathrm{~d} x_{\mathcal{I}}\right) .
\end{aligned}
$$

Structural Assumption (1)

Respective components $\eta_{\mathcal{J}}$ and $f_{\mathcal{I}, \mathcal{J}}$ satisfy
(1) For every $\mathcal{J} \in \mathbb{M}$ the kernel $\eta_{\mathcal{J}}\left(t, \mathrm{~d}_{\mathcal{J}}\right)$ takes form

$$
\eta_{\mathcal{J}}\left(t, \mathrm{~d} y_{\mathcal{J}}\right)=\tilde{\eta}_{\mathcal{J}}(t) Q_{\mathcal{J}}\left(\mathrm{d} y_{\mathcal{J}}\right)
$$

where $\left(\widetilde{\eta}_{\mathcal{J}}(t)\right)$ is a \mathbb{G}-predictable stochastic process, $Q_{\mathcal{J}}$ is a probability measure on $\left(E_{\mathcal{J}}, \mathcal{E}_{\mathcal{J}}\right)$
(2) For every $(\mathcal{I}, \mathcal{J}) \in \mathbb{A}$ the kernel $f_{\mathcal{I}, \mathcal{J}}\left(t, s, x_{\mathcal{I}}, \mathrm{d} y_{\mathcal{J}}\right)$ takes form

$$
f_{\mathcal{I}, \mathcal{J}}\left(t, s, x_{\mathcal{I}}, \mathrm{d} y_{\mathcal{J}}\right)=\widetilde{f}_{\mathcal{I}, \mathcal{J}}\left(t, s, x_{\mathcal{I}}\right) R_{\mathcal{I}, \mathcal{J}}\left(\mathrm{d} y_{\mathcal{J}}\right)
$$

where $\left(\widetilde{f}_{\mathcal{I}, \mathcal{J}}\left(t, \mathrm{~s}, x_{\mathcal{I}}\right)\right)$ is a \mathbb{G}-predictable mapping, $R_{\mathcal{I}, \mathcal{J}}$ is a probability measure on $\left(E_{\mathcal{J}}, \mathcal{E}_{\mathcal{J}}\right)$.

Proposition
Assume that structural assumption holds. Then
(1) The Hawkes kernel of N has the form

$$
\begin{aligned}
\kappa(t, \mathrm{~d} y)=\sum_{\mathcal{I} \in \mathbb{M}} \tilde{\eta}_{\mathcal{I}}(t) & Q_{\mathcal{I}}\left(\mathrm{d} y_{\mathcal{I}}\right) \otimes \delta_{\Delta^{\tau c}}\left(\mathrm{~d} y_{\mathcal{I}^{c}}\right) \\
& +\sum_{(\mathcal{I}, \mathcal{J}) \in \mathbb{A}} \lambda_{\mathcal{I}, \mathcal{J}}(t) R_{\mathcal{I}, \mathcal{J}}\left(\mathrm{d} y_{\mathcal{J}}\right) \otimes \delta_{\Delta^{\mathcal{J}}}\left(\mathrm{d} y_{\mathcal{J}^{c}}\right),
\end{aligned}
$$

where

$$
\lambda_{\mathcal{I}, \mathcal{J}}(t)=\int_{(-\infty, t) \times E_{\mathcal{I}}} \widetilde{f}_{\mathcal{I}, \mathcal{J}}\left(t, s, x_{\mathcal{I}}\right) N_{\mathcal{I}}^{\mathrm{id}}\left(\mathrm{~d} s, \mathrm{~d} x_{\mathcal{I}}\right)
$$

(2) Fix $\mathcal{K} \in 2^{[d]}$. The \mathbb{F}-compensator of the random measure $N_{\mathcal{K}}^{\text {id }}$, say $\kappa_{\mathcal{K}}^{\text {id }}\left(t, \mathrm{~d} y_{\mathcal{K}}\right) \mathrm{d} t$, is given by

$$
\kappa_{\mathcal{K}}^{\mathrm{id}}\left(t, \mathrm{~d} y_{\mathcal{K}}\right) d t=\mathbb{1}_{\mathbb{M}}(\mathcal{K}) \widetilde{\eta}_{\mathcal{K}}(t) Q_{\mathcal{K}}\left(\mathrm{d} y_{\mathcal{K}}\right) \mathrm{d} t+\sum_{\mathcal{I} \in \mathrm{Pa}_{G}(\mathcal{K})} \lambda_{\mathcal{I}, \mathcal{K}}(t) R_{\mathcal{I}, \mathcal{K}}\left(\mathrm{d} y_{\mathcal{K}}\right) \mathrm{d} t .
$$

$$
\begin{array}{|l|l|l}
\hline \text { Niewęgłowski (PW MiNI) } & \text { Multivariate Hawkes processes } & \text { 25.09.2023 } \\
\hline
\end{array}
$$

Proposition
In particular, intensity process of $N_{K}^{i d}$ is given by

$$
\Lambda_{\mathcal{K}}^{\mathrm{id}}(t):=\kappa_{\mathcal{K}}^{\mathrm{id}}\left(t, E_{\mathcal{K}}\right)=\widetilde{\eta}_{\mathcal{K}}(t)+\lambda_{\mathcal{K}}^{\mathrm{id}}(t), \quad \text { where } \quad \lambda_{\mathcal{K}}^{\mathrm{id}}(t):=\sum_{\mathcal{I} \in \operatorname{Pa}_{G}(\mathcal{K})} \lambda_{\mathcal{I}, \mathcal{K}}(t) .
$$

Definition

We say that a Markov process (X, Y) (possibly time inhomogeneous) with a state space $(S, \mathcal{S})=\left(S_{1} \times S_{2}, \mathcal{S}_{1} \otimes \mathcal{S}_{2}\right)$ is a markovianization of \mathbb{G}-doubly stochastic Hawkes process N directed by (η, f) if

$$
\tilde{\eta}_{\mathcal{I}}(t)=\widehat{\eta}_{\mathcal{I}}(t, Y(t-)), \quad \lambda_{\mathcal{I}, \mathcal{K}}(t)=\widehat{\lambda}_{\mathcal{I}, \mathcal{K}}(t, X(t-)),
$$

for some measurable functions $\left\{\hat{\eta}_{\mathcal{I}}: \mathbb{R}_{+} \times S_{2} \rightarrow \mathbb{R}_{+}: \mathcal{I} \in \mathbb{M}\right\}$ and $\left\{\widehat{\lambda}_{\mathcal{I}, \mathcal{K}}: \mathbb{R}_{+} \times S_{1} \rightarrow \mathbb{R}_{+}:(\mathcal{I}, \mathcal{K}) \in \mathbb{A}\right\}$. We call Y the exogenous factor process if it is \mathbb{G}-adapted and X endogenous factor process if it is \mathbb{F}^{N}-adapted.

Structural Assumption (2)

- For every $\mathcal{I} \in \mathbb{M}$

$$
\widetilde{\eta}_{\mathcal{I}}(t)=\mu_{\mathcal{I}}(t)+\beta_{\mathcal{I}}(t) \int_{(0, t) \times \mathbb{R}} \phi_{\mathcal{I}}(t-s, s, x) M_{\mathcal{I}}(\mathrm{d} s, \mathrm{~d} x)
$$

where $\beta_{\mathcal{I}}, \mu_{\mathcal{I}}$ are non-negative deterministic functions on \mathbb{R}_{+}, whereas $\phi^{\mathcal{I}}: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$, and $\left(M_{\mathcal{I}}\right)_{\mathcal{I}}$ are independent Poisson r.m. such that the \mathbb{F}-compensator of $M_{\mathcal{I}}$ is $P_{\mathcal{I}}(\mathrm{d} x) \theta_{\mathcal{I}} d t$ for $\theta_{\mathcal{I}} \geq 0$,
$P_{\mathcal{I}}$-probability measure.

- For every $(\mathcal{I}, \mathcal{J}) \in \mathbb{A}$

$$
f_{\mathcal{I}, \mathcal{J}}\left(t, s, x_{\mathcal{I}}\right)=\alpha_{\mathcal{I}, \mathcal{J}}(t) \psi_{\mathcal{I}, \mathcal{J}}\left(t-s, s, x_{\mathcal{I}}\right)
$$

where $\alpha_{\mathcal{I}, \mathcal{J}}$, is a non-negative deterministic function on \mathbb{R}_{+}, whereas $\psi_{\mathcal{I}, \mathcal{J}}: \mathbb{R}_{+} \times \mathbb{R} \times E_{\mathcal{I}} \rightarrow \mathbb{R}_{+}$.

- The above assumption implies that the $\widetilde{\eta}_{\mathcal{J}}(t)$ and $\lambda_{\mathcal{I}, \mathcal{J}}$ can be written as
$\widetilde{\eta}_{\mathcal{J}}(t)=\mu_{\mathcal{J}}(t)+\beta_{\mathcal{J}}(t) Y_{\mathcal{J}}(t-), \quad \lambda_{\mathcal{I}, \mathcal{J}}(t)=\alpha_{\mathcal{I}, \mathcal{J}}(t) X_{\mathcal{I}, \mathcal{J}}(t-), \quad t \geq 0$
where

$$
\begin{aligned}
Y_{\mathcal{J}}(t) & :=\int_{(0, t] \times \mathbb{R}} \phi_{\mathcal{I}}(t-s, s, x) M_{\mathcal{I}}(\mathrm{d} s, \mathrm{~d} x) \\
X_{\mathcal{I}, \mathcal{J}}(t) & :=\int_{(-\infty, t] \times E_{\mathcal{I}}} \psi_{\mathcal{I}, \mathcal{J}}\left(t-s, s, x_{\mathcal{I}}\right) N_{\mathcal{I}}^{i d}\left(\mathrm{~d} s, \mathrm{~d} x_{\mathcal{I}}\right),
\end{aligned}
$$

- First step: Provide conditions for Markovian dynamics of these processes
- Note that the intensity kernel of $N_{\mathcal{I}}^{\text {id }}$ is given by

$$
\kappa_{\mathcal{I}}^{\mathrm{id}}\left(t, \mathrm{~d} y_{\mathcal{I}}\right)=\mathbb{1}_{\mathbb{M}}(\mathcal{I}) \widetilde{\eta}_{\mathcal{I}}(t) Q_{\mathcal{I}}\left(\mathrm{d} y_{\mathcal{I}}\right)+\sum_{\mathcal{K} \in \mathrm{Pa}_{G}(\mathcal{I})} \lambda_{\mathcal{K}, \mathcal{I}}(t) R_{\mathcal{K}, \mathcal{I}}\left(\mathrm{d} y_{\mathcal{I}}\right) .
$$

Exponential case generalized

Theorem
Suppose that $\psi_{\mathcal{I}, \mathcal{J}}$ satisfies linear ODE (in first variable)
$\psi_{\mathcal{I}, \mathcal{J}}^{(n)}\left(t, s, z_{\mathcal{I}}\right)=g_{\mathcal{I}, \mathcal{J}}^{-1}+g_{\mathcal{I}, \mathcal{J}}^{0} \psi_{\mathcal{I}, \mathcal{J}}^{(0)}\left(t, s, z_{\mathcal{I}}\right)+g_{\mathcal{I}, \mathcal{J}}^{\mathcal{1}} \psi_{\mathcal{I}, \mathcal{J}}^{(1)}\left(t, s, z_{\mathcal{I}}\right)+\ldots+g_{\mathcal{I}, \mathcal{J}}^{(n-1)} \psi_{\mathcal{I}, \mathcal{J}}^{(n-1)}\left(t, s, z_{\mathcal{I}}\right)$ with initial conditions

$$
\psi_{\mathcal{I}, \mathcal{J}}^{(0)}\left(0, s, z_{\mathcal{I}}\right)=\bar{\psi}_{\mathcal{I}, \mathcal{J}}^{0}\left(s, z_{\mathcal{I}}\right), \ldots, \psi_{\mathcal{I}, \mathcal{J}}^{(n-1)}\left(0, s, z_{\mathcal{I}}\right)=\bar{\psi}_{\mathcal{I}, \mathcal{J}}^{n-1}\left(s, z_{\mathcal{I}}\right)
$$

where $\psi^{(i)}$ denotes the derivative of i-th order in first variable. Let $\bar{X}_{\mathcal{I}, \mathcal{J}}$ be a \mathbb{R}_{n+1} valued process given by

$$
\bar{X}_{\mathcal{I}, \mathcal{J}}(t)=\int_{(-\infty, t] \times E_{\mathcal{I}}} \bar{\psi}_{\mathcal{I}, \mathcal{J}}\left(t-s, s, x_{\mathcal{I}}\right) N_{\mathcal{I}}^{i d}\left(\mathrm{~d} s, \mathrm{~d} x_{\mathcal{I}}\right)
$$

where

$$
\bar{\psi}_{\mathcal{I}, \mathcal{J}}\left(t-s, s, x_{\mathcal{I}}\right)=\left[1, \psi_{\mathcal{I}, \mathcal{J}}^{(0)}\left(t-s, s, x_{\mathcal{I}}\right), \ldots, \psi_{\mathcal{I}, \mathcal{J}}^{(n-1)}\left(t-s, s, x_{\mathcal{I}}\right)\right]^{\prime}
$$

Theorem (cont'd)
Then $\bar{X}_{\mathcal{I}, \mathcal{J}}=\left(\bar{X}_{\mathcal{I}, \mathcal{J}}^{k}\right)_{k=1}^{n+1}$ solves $S D E$ on \mathbb{R}_{+}

$$
\begin{aligned}
\mathrm{d} \bar{X}_{\mathcal{I}, \mathcal{J}}(t) & =G_{\mathcal{I}, \mathcal{J}} \bar{X}_{\mathcal{I}, \mathcal{J}}(t) \mathrm{d} t+\bar{\psi}_{\mathcal{I}, \mathcal{J}}\left(0, t, z_{\mathcal{I}}\right) N_{\mathcal{I}}^{\mathrm{d}}\left(\mathrm{~d} t, \mathrm{~d} z_{\mathcal{I}}\right), \\
\bar{X}_{\mathcal{I}, \mathcal{J}}(0) & =\int_{(-\infty, 0] \times E_{\mathcal{I}}} \bar{\psi}_{\mathcal{I}, \mathcal{J}}\left(-s, s, x_{\mathcal{I}}\right) N_{\mathcal{I}}^{\mathrm{id}}\left(\mathrm{~d} s, \mathrm{~d} x_{\mathcal{I}}\right),
\end{aligned}
$$

where $G_{\mathcal{I}, \mathcal{J}} \in \mathbb{R}_{n+1, n+1}$ and $\bar{\psi}_{\mathcal{I}, \mathcal{J}}\left(t, z_{\mathcal{I}}\right) \in \mathbb{R}_{n+1}$ are given by

$$
G_{\mathcal{I}, \mathcal{J}}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
g_{\mathcal{I}, \mathcal{J}}^{-1} & g_{\mathcal{I}, \mathcal{J}}^{0} & g_{\mathcal{I}, \mathcal{J}}^{1} & g_{\mathcal{I}, \mathcal{J}}^{2} & g_{\mathcal{I}, \mathcal{J}}^{n-2} & g_{\mathcal{I}, \mathcal{J}}^{n-1}
\end{array}\right] .
$$

Moreover

$$
\lambda_{\mathcal{I}, \mathcal{J}}(t):=\alpha_{\mathcal{I}, \mathcal{J}}(t) \bar{X}_{\mathcal{I}, \mathcal{J}}^{2}(t-)
$$

Lemma
Suppose that for every $\mathcal{I} \in \mathbb{M} \phi_{\mathcal{I}}$ satisfies linear $O D E$ (in first variable)

$$
\phi_{\mathcal{I}}^{(m)}(t, s, x)=h_{\mathcal{I}}^{-1}+h_{\mathcal{I}}^{0} \phi_{\mathcal{I}}^{(0)}(t, s, x)+h_{\mathcal{I}}^{1} \phi_{\mathcal{I}}^{(1)}(t, s, x)+\ldots+h_{\mathcal{I}}^{(m-1)} \phi_{\mathcal{I}}^{(m-1)}(t, s, x)
$$

with initial conditions

$$
\phi_{\mathcal{I}}^{(0)}(0, s, x)=\bar{\phi}_{\mathcal{I}}^{0}(s, x), \ldots, \phi_{\mathcal{I}}^{(m-1)}(0, s, x)=\bar{\phi}_{\mathcal{I}}^{m-1}(s, x)
$$

and let

$$
\bar{Y}_{\mathcal{I}}(t)=\int_{(0, t] \times \mathbb{R}} \bar{\phi}_{\mathcal{I}}(t-s, s, x) M_{\mathcal{I}}(\mathrm{d} s, \mathrm{~d} x)
$$

where

$$
\bar{\phi}_{\mathcal{I}, \mathcal{J}}\left(t-s, s, x_{\mathcal{I}}\right)=\left[1, \phi_{\mathcal{I}, \mathcal{J}}^{(0)}\left(t-s, s, x_{\mathcal{I}}\right), \ldots, \phi_{\mathcal{I}, \mathcal{J}}^{(m-1)}\left(t-s, s, x_{\mathcal{I}}\right)\right]^{\prime}
$$

Then $\bar{Y}_{\mathcal{I}}$ is a Markov process which solves SDE

$$
\mathrm{d} \bar{Y}_{\mathcal{I}}(t)=H_{\mathcal{I}} \bar{Y}_{\mathcal{I}}(t) \mathrm{d} t+\int_{\mathbb{R}} \bar{\phi}_{\mathcal{I}}(0, t, x) M_{\mathcal{I}}(\mathrm{d} t, \mathrm{~d} x), \quad \bar{Y}_{\mathcal{I}}(0)=0_{m+1}
$$

Moreover

$$
\tilde{\eta}_{\mathcal{I}}(t)=\mu_{\mathcal{I}}(t)+\beta_{\mathcal{I}}(t) \bar{Y}_{\mathcal{I}}^{2}(t)
$$

Vectorizations of $\left(\bar{X}_{\mathcal{I}, \mathcal{J}}\right)_{(\mathcal{I}, \mathcal{J}) \in \mathbb{A}}$

- We first let σ to be a bijection

$$
\sigma: \mathbb{A} \rightarrow[|\mathbb{A}|]=\{1, \ldots,|\mathbb{A}|\} .
$$

- Then, for $(\mathcal{I}, \mathcal{J}) \in \mathbb{A} w$ define vector $\mathcal{C}_{\mathcal{I}, \mathcal{J}} \in \mathbb{R}_{|\mathbb{A}|}$ by formula

$$
\left({\left.c_{\mathcal{I}, \mathcal{J}}\right)_{i}=\left\{\begin{array}{ll}
1 & \text { if } i=\sigma(\mathcal{I}, \mathcal{J}) \\
0 & \text { otherwise }
\end{array}, .\right.}^{\text {. }}\right.
$$

- and the stacked vector

$$
X=\sum_{(\mathcal{I}, \mathcal{J}) \in \mathbb{A}} \mathrm{c}_{\mathcal{I}, \mathcal{J}} \otimes \bar{X}_{\mathcal{I}, \mathcal{J} .}
$$

where \otimes denotes Kornecker product of vectors.

- We have
$\bar{X}_{\mathcal{I}, \mathcal{J}}^{k}=X^{\mathfrak{i}(\mathcal{I}, \mathcal{J}, k)}$, where $\mathfrak{i}(\mathcal{I}, \mathcal{J}, k):=(\sigma(\mathcal{I}, \mathcal{J})-1)(n+1)+k$.

Vectorization of $\left(Y_{\mathcal{I}}\right)_{\mathcal{I} \in \mathbb{M}}$

- We let τ be a bijection

$$
\tau: \mathbb{M} \rightarrow[|\mathbb{M}|]=\{1, \ldots,|\mathbb{M}|\}
$$

- for $\mathcal{I} \in \mathbb{M}$ let $\mathcal{c}_{\mathcal{I}}$ be a vector $\mathcal{c}_{\mathcal{I}} \in \mathbb{R}_{|\mathbb{M}|}$ defined by formula

$$
\left(\mathrm{c}_{\mathcal{I}}\right)_{i}= \begin{cases}1 & \text { if } i=\tau(\mathcal{I}) \\ 0 & \text { otherwise }\end{cases}
$$

- Now the stacked vector \bar{Y} is defined by

$$
Y=\sum_{\mathcal{I} \in \mathbb{M}} c_{\mathcal{I}} \otimes \bar{Y}_{\mathcal{I}}
$$

-

$$
\bar{Y}_{\mathcal{I}}^{k}=Y^{\mathfrak{j}(\mathcal{I}, k)} \text {, where } \quad \mathfrak{j}(\mathcal{I}, k):=(\tau(\mathcal{I})-1)(m+1)+k,
$$

- Then (X, Y) solves system of SDE

$$
\begin{aligned}
& \mathrm{d} X(t)=G X(t) \mathrm{d} t+\sum_{\mathcal{I} \in \mathrm{Pa}_{G}} \int_{E_{\mathcal{I}}} \psi_{\mathcal{I}}\left(t, z_{\mathcal{I}}\right) N_{\mathcal{I}}^{\mathrm{id}}\left(\mathrm{~d} t, \mathrm{~d} z_{\mathcal{I}}\right) \\
& \mathrm{d} Y(t)=H Y(t) \mathrm{d} t+\sum_{\mathcal{I} \in \mathbb{M}} \int_{\mathbb{R}} \mathrm{c}_{\mathcal{I}} \otimes \bar{\phi}_{\mathcal{I}}(t, x) M_{\mathcal{I}}(\mathrm{d} t, \mathrm{~d} x)
\end{aligned}
$$

- where $\mathrm{Pa}_{G}=\{\mathcal{I} \in \mathbb{V}: \operatorname{An}(\mathcal{I}) \neq \emptyset\}$ and

$$
\psi_{\mathcal{I}}\left(t, z_{\mathcal{I}}\right)=\sum_{\mathcal{J} \in \operatorname{An}_{G}(\mathcal{I})} c_{\mathcal{I}, \mathcal{J}} \otimes \bar{\psi}_{\mathcal{I}, \mathcal{J}}\left(0, t, z_{\mathcal{I}}\right)
$$

- and

$$
\begin{aligned}
G & :=\sum_{(\mathcal{I}, \mathcal{J}) \in \mathbb{A}} c_{\mathcal{I}, \mathcal{J}} \otimes{c_{\mathcal{I}, \mathcal{J}}^{\prime}} \otimes G_{\mathcal{I}, \mathcal{J}} \\
H & :=\sum_{\mathcal{I} \in \mathbb{M}} c_{\mathcal{I}} \otimes \mathrm{c}_{\mathcal{I}}^{\prime} \otimes H_{\mathcal{I}} .
\end{aligned}
$$

Theorem
Then, the process (X, Y) is a markovianization of a \mathbb{G}-doubly stochastic Hawkes process N directed by (η, f) i.e. it holds that

$$
\begin{aligned}
\tilde{\eta}_{\mathcal{I}}(t) & =\mu_{\mathcal{I}}(t)+\beta_{\mathcal{I}}(t) Y^{\mathbf{i}(\mathcal{I}, 2)}(t-), \quad t \geq 0 . \\
\lambda_{\mathcal{I}, \mathcal{J}}(t) & =\alpha_{\mathcal{I}, \mathcal{J}}(t) X^{\mathfrak{i}(\mathcal{I}, \mathcal{J}, 2)}(t-)
\end{aligned}
$$

The generator of (X, Y) is given by

$$
\begin{aligned}
& \mathcal{A} v(t, x, y) \\
& =\frac{\partial v}{\partial t}+\sum_{j=1}^{|A|(n+1)}\left(\sum_{k=1}^{|\mathcal{A}|(n+1)} G^{j, k} x^{k}\right) \frac{\partial v}{\partial x^{j}}+\sum_{i=1}^{\mid \mathbb{M | |}(m+1)}\left(\sum_{j=1}^{|\mathbb{M}|(m+1)} H^{i, j} y^{j}\right) \frac{\partial v}{\partial y^{i}} \\
& +\sum_{\mathcal{I} \in \mathbb{M}}\left(\mu_{\mathcal{I}}(t)+\beta_{\mathcal{I}}(t) y^{\mathrm{i}(\mathcal{I}, 2)}\right) \int_{E_{\mathcal{I}}}\left(v\left(t, x+\psi_{\mathcal{I}}\left(t, z_{\mathcal{I}}\right), y\right)-v(t, x, y)\right) Q_{\mathcal{I}}\left(\mathrm{d} z_{\mathcal{I}}\right) \\
& +\sum_{(\mathcal{K}, \mathcal{I}) \in \mathbb{A}} x^{\mathfrak{j}(\mathcal{K}, \mathcal{I}, 2)} \alpha_{\mathcal{K}, \mathcal{I}}(t) \int_{E_{\mathcal{I}}}\left(v\left(t, x+\psi_{\mathcal{I}}\left(t, z_{\mathcal{I}}\right), y\right)-v(t, x, y)\right) R_{\mathcal{K}, \mathcal{I}}\left(\mathrm{d} z_{\mathcal{I}}\right) \\
& +\sum_{\mathcal{I} \in \mathbb{M}} \theta_{\mathcal{I}} \int_{\mathbb{R}}\left(v\left(t, x, y+c_{\mathcal{I}} \otimes \bar{\phi}_{\mathcal{I}}(t, z)\right)-v(t, x, y)\right) P_{\mathcal{I}}(\mathrm{d} z)
\end{aligned}
$$

Extending \bar{X}

- Let us consider

$$
\begin{aligned}
& n(t)=n(0)+\sum_{\mathcal{I}} \int_{0}^{t} \int_{E_{\mathcal{I}}} e_{\mathcal{I}} N_{\mathrm{id}}^{\mathcal{I}}\left(\mathrm{d} t, \mathrm{~d} z_{\mathcal{I}}\right) \\
& L(t)=L(0)+\sum_{\mathcal{I}} \int_{0}^{t} \int_{E_{\mathcal{I}}} \xi^{\mathcal{I}}\left(z_{\mathcal{I}}\right) N_{\mathrm{id}}^{\mathcal{I}}\left(\mathrm{d} t, \mathrm{~d} z_{\mathcal{I}}\right),
\end{aligned}
$$

where $\mathrm{e}_{\mathcal{I}} \in \mathbb{R}_{d}$ are vectors defined by

$$
\left(\mathrm{e}_{\mathcal{I}}\right)_{i}= \begin{cases}1 & \text { if } i \in \mathcal{I} \\ 0 & \text { otherwise }\end{cases}
$$

and where $\xi^{\mathcal{I}}: E_{\mathcal{I}} \rightarrow \mathbb{R}_{d}$.

- The process N^{i} is the counting process of i-th coordinate.
- (X, Y, N, L) is also a Markov process under generalized exponential assumption.

Theorem

Joint Laplace transform of $X(T), Y(T), n(T)-n(t), L(T)-L(t)$ is given by

$$
\begin{aligned}
& \mathbb{E}\left(e^{-(u, X(T))-(v, Y(T))-(w, n(T)-n(t))-(z, L(T)-L(t))} \mid \mathcal{F}_{t}\right) \\
& =e^{A(t, T)-(B(t, T), X(t))-(C(t, T), Y(t))} \\
& \quad u \in \mathbb{R}_{|\mathbb{A}|(n+1)}, v \in \mathbb{R}_{|\mathbb{M}|(m+1)}, w \in \mathbb{R}_{d}, z \in \mathbb{R}_{d} .
\end{aligned}
$$

where A, B, C solve following system of $O D E$'s:

$$
\begin{array}{rlr}
\partial_{t} C(t, T)=-H^{\prime} C(t, T)+r(t, B(t, T), w, z), & C(T, T)=v, \\
\partial_{t} B(t, T)=-G^{\prime} B(t, T)+q(t, B(t, T), w, z), & B(T, T)=u, \\
\partial_{t} A(t, T)=- & \sum_{\mathcal{I} \in \mathbb{M}}\left\{\theta_{\mathcal{I}}\left(L_{P_{\mathcal{I}}}\left(\widehat{K}_{\mathcal{I}} C(t, T)\right)-1\right)\right. & \\
& \left.+\mu_{\mathcal{I}}(t)\left[e^{-\sum_{i \in \mathcal{I}} w_{i}} L_{Q_{\mathcal{I}}}\left(t, K_{\mathcal{I}} B(t, T)\right)-1\right]\right\}, & A(T, T)=0 .
\end{array}
$$

with

$$
\begin{aligned}
& q(t, x, w, z)=\sum_{(\mathcal{K}, \mathcal{I}) \in \mathbb{A}} c_{\mathcal{K}, \mathcal{I}} \otimes \mathrm{e}_{2, n+1} \cdot \alpha_{\mathcal{K}, \mathcal{I}}(t)\left(e^{-\sum_{i \in \mathcal{I}} w_{i}} L_{R_{\mathcal{K}, \mathcal{I}}}\left(t, K_{\mathcal{I} x} x, z\right)-1\right) \\
& r(t, x, w, z)=\sum_{\mathcal{I} \in \mathbb{M}} \mathrm{c}_{\mathcal{I}} \otimes \mathrm{e}_{2, m+1} \cdot \beta_{\mathcal{I}}(t)\left(e^{-\sum_{i \in \mathcal{I}} w_{i}} L_{Q_{\mathcal{I}}}\left(t, K_{\mathcal{I} X}, z\right)-1\right), \\
& L_{Q_{\mathcal{I}}}(t, v, z)=\int_{E_{\mathcal{I}}} e^{-\left(v, \sum_{\mathcal{J} \in \operatorname{An}(\mathcal{I})} \text { a } \mathcal{I}, \mathcal{J} \otimes \bar{\psi}_{\mathcal{I}, \mathcal{J}}\left(t, z_{\mathcal{I}}\right)\right)-\left(z, \xi_{\mathcal{I}}\left(z_{\mathcal{I}}\right)\right)} Q_{\mathcal{I}}\left(\mathrm{d} z_{\mathcal{I}}\right), \quad v \in \mathbb{R} \\
& L_{R_{\mathcal{K}, \mathcal{I}}}(t, v, z)=\int_{E_{\mathcal{I}}} e^{-\left(v, \sum_{\mathcal{J} \in \operatorname{An}(\mathcal{I})} \mathrm{a}_{\mathcal{I}, \mathcal{J}} \otimes \bar{\psi}_{\mathcal{T}, \mathcal{J}}\left(t, z_{\mathcal{I}}\right)\right)-\left(z, \xi_{\mathcal{I}}\left(z_{\mathcal{I}}\right)\right)} R_{\mathcal{K}, \mathcal{I}}\left(\mathrm{d} z_{\mathcal{I}}\right), \\
& L_{P_{\mathcal{I}}}(t, u)=\int_{\mathbb{R}} e^{-\left(u, \bar{\phi}_{\mathcal{I}}(t, z)\right)} P_{\mathcal{I}}(\mathrm{d} z), \quad u \in \mathbb{R}_{n} .
\end{aligned}
$$

Bibliography
(B. Bessy-Roland, A. Boumezoued, and C. Hillairet.

Multivariate hawkes process for cyber insurance.
Annals of Actuarial Science, 15(1):14-39, 2021.
(R. R. Bielecki, J. Jakubowski, and M. Nieweglowski.

Construction and Simulation of Generalized Multivariate Hawkes
Processes
Methodology and Computing in Applied Probability, 2022.
(A. Boumezoued.
Population viewpoint on Hawkes processes.
Advances in Applied Probability, 48(2), 463-480, (2016).
E. P. Brémaud and L. Massoulié.

Stability of nonlinear Hawkes processes.
Ann. Probab., 24(3):1563-1588, 1996.

Bibliography

Ti. L. Cui, A. Hawkes, H. Yi
An elementary derivation of moments of Hawkes processes.
Advances in Applied Probability, 52(1), 102--137, (2020).

- T.J. Liniger.

Multivariate hawkes processes.
PhD thesis, ETH Zurich, 2009.

Thank you for your attention !!!

On envelopes created by circle families in the plane

Takashi Nishimura

Faculty of Environment and Information Sciences,
Yokohama National University, Japan
(joint work with Yongqiao Wang)

Envelopes of planar curve families have fascinated many pioneers since the dawn of differential analysis. In most typical cases, straight line families have been studied. However, even for envelopes created by straight line falimies, to our surprize, there were several unsolved problems until very recently. In my talk at WAAS, recently discovered answers to these problems were explained.

On the other hand, circle families in the plane are non-negligible families because the envelopes of them have already had important applications to Industry. In this talk, firstly, as one of important applications of envelopes of circle families to Industry, the so-called "Mohr failure envelope" is introduced. After that, a general theory for envelopes of circle families shall be explained.

On envelopes created by circle families in the plane (a joint work with Yongqiao Wang)

Takashi Nishimura (Yokohama National University)

Reference

[WN] Yongqiao Wang and T.N., Envelopes created by circle families in the plane, preprint.
(available at https://arxiv.org/abs/2301.04478)

1

§1. Soil Mechanics

Circle families in the plane are non-negligible families because the envelopes of them have already had important applications. As one of application of circle family in the plane, Let me first explain the so-called Mohr failure envelope in the field "Soil Mechanics".

In analysis of the stability of soil masses, the shear strength τ_{f} of a soil at a point on a particular plane is expressed as a linear function of the effective normal stress σ_{f} at failure:

$$
\tau_{f}=\sigma_{f} \tan \varphi+c
$$

where φ and c are the angle of shearing resistance and cohesion intercept respectively. A method using Mohr circles to obtain the shear strength parameters φ and c can be found (for instance) in "R.F. Craig, Craig's soil mechanics, Seventh edition, Taylor and Francis Group Press, New York, 2004. ISBN: 9780415332941". A brief description of this method is given as follows.

The stress state of a soil can be represented by a Mohr circle which is defined by the effective principal stresses σ_{1} and σ_{2}. The center and the radii of the Mohr circle are $\left(\frac{\sigma_{1}+\sigma_{2}}{2}, 0\right)$ and $\frac{\sigma_{1}-\sigma_{2}}{2}$, respectively. By experiments, one can obtain some values of effective principal stresses σ_{1} and σ_{2} at failure. The Mohr circles in terms of effective principal stress are drawn in Figure 1.

Figure 1

The envelope created by Mohr circles is called the Mohr failure envelope which may be a slightly curved curve. Then the shear strength parameters φ and c can be obtained by approximating the curved envelope to a straight line, namely the slope of the straight line equals $\tan \varphi$ and the intercept of straight line on the vertical axis is c (see Figure 2).

6

Figure 2

7

The so-called "Iiquefaction phenomenon" is one of contemporary important problems especially in the country where people can not avoid large-scale earthquakes. Therefore, Mohr failure envelope is a significant notion for industry.

In order to understand the mechanism of "liquefaction phenomenon" well and in order to find an effective measure against real liquefaction phenomena, it seems important to construct a general theory of the envelopes created by circle families.

§2. Envelopes of circle families

For a point P of \mathbb{R}^{2} and a positive number λ, the circle $C_{(P, \lambda)}$ centered at P with radius λ is naturally defined as follows, where the dot in the center stands for the standard scalar product.
$C_{(P, \lambda)}=\left\{(X, Y) \in \mathbb{R}^{2} \mid((X, Y)-P) \cdot((X, Y)-P)=\lambda^{2}\right\}$.
For a curve $\gamma: I \rightarrow \mathbb{R}^{2}$ and a positive function $\lambda: I \rightarrow$
\mathbb{R}_{+}, the circle family $\mathcal{C}_{(\gamma, \lambda)}$ is naturally defined as follows. Here, \mathbb{R}_{+}stands for the set consisting of positive real numbers.

$$
\mathcal{C}_{(\gamma, \lambda)}=\left\{C_{(\gamma(t), \lambda(t))}\right\}_{t \in I} .
$$

It is reasonable to assume that at each point $\gamma(t)$ the normal vector to the curve γ is well-defined. Thus, we easily reach the following definition.

Definition 1 A curve $\gamma: I \rightarrow \mathbb{R}^{2}$ is called a frontal if there exists a mapping $\nu: I \rightarrow S^{1}$ such that the following identity holds for each $t \in I$, where S^{1} is the unit circle in \mathbb{R}^{2}.

$$
\frac{d \gamma}{d t}(t) \cdot \nu(t)=0
$$

For a frontal γ, the mapping $\nu: I \rightarrow S^{1}$ given above is called the Gauss mapping of γ.

Hereafter, the curve $\gamma: I \rightarrow \mathbb{R}^{2}$ for a circle family $\mathcal{C}_{(\gamma, \lambda)}$ is assumed to be a frontal.

In this talk, the following is adopted as the definition of an envelope created by a circle family.

Definition 2 Let $\mathcal{C}_{(\gamma, \lambda)}$ be a circle family. A mapping $f: I \rightarrow \mathbb{R}^{2}$ is called an envelope created by $\mathcal{C}_{(\gamma, \lambda)}$ if the following two hold for any $t \in I$.
(1) $\frac{d f}{d t}(t) \cdot(f(t)-\gamma(t))=0$.
(2) $f(t) \in C_{(\gamma(t), \lambda(t))}$.

Problem 1 Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a frontal with Gauss mapping $\nu: I \rightarrow S^{1}$ and let $\lambda: I \rightarrow \mathbb{R}_{+}$be a positve function.
(1) Find a necessary and sufficient condition for the circle family $\mathcal{C}_{(\gamma, \lambda)}$ to create an envelope in terms of γ, ν and λ.
(2) Suppose that the circle family $\mathcal{C}_{(\gamma, \lambda)}$ creates an envelope. Then, find a parametrization of the envelope created by $\mathcal{C}_{(\gamma, \lambda)}$ in terms of γ, ν and λ.

Example 1 Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the mapping defined by $\gamma(t)=\left(t^{3}, t^{6}\right)$. Set $\nu(t)=\frac{1}{\sqrt{4 t^{6}+1}}\left(-2 t^{3}, 1\right)$. It is clear that the mapping γ is a frontal with Gauss mapping $\nu: \mathbb{R} \rightarrow S^{1}$. Let $\lambda: \mathbb{R} \rightarrow \mathbb{R}_{+}$be the constant function defined by $\lambda(t)=1$. Then, it seems that the circle family $\mathcal{C}_{(\gamma, \lambda)}$ creates envelopes. Thus, we can expect that the created envelopes can be obtained by the wellknown method.

13

Set $F(x, y, t)=\left(x-t^{3}\right)^{2}+\left(y-t^{6}\right)^{2}-1$. Then, we have the following.

$$
\begin{aligned}
& \left\{(x, y) \in \mathbb{R}^{2} \mid \exists t \text { s.t. } F(x, y, t)=\frac{\partial F}{\partial t}(x, y, t)=0\right\} \\
= & \left\{(x, y) \in \mathbb{R}^{2} \mid \exists t \text { s.t. }\left(x-t^{3}\right)^{2}+\left(y-t^{6}\right)^{2}-1=-6 t^{2}\left(x-t^{3}\right)-12 t^{5}\left(y-t^{6}\right)=0\right\} \\
= & \left\{(x, y) \in \mathbb{R}^{2} \mid \exists t \text { s.t. }\left(x-t^{3}\right)^{2}+\left(y-t^{6}\right)^{2}-1=t^{2}\left(\left(x-t^{3}\right)+2 t^{3}\left(y-t^{6}\right)\right)=0\right\} \\
= & \left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \\
= & \left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \\
& \bigcup\left\{(x, y) \in \mathbb{R}^{2} \mid\left(x-t^{3}\right)^{2}+\left(y-t^{6}\right)^{2}-1=0, x=t^{3}-2 t^{3}\left(y-t^{6}\right)\right\} \\
= & \left\{(x, y) \in \mathbb{R}^{2} \mid\left(-2 t^{3}\left(y-t^{6}\right)\right)^{2}+\left(y-t^{6}\right)^{2}=1, x=t^{3}\left(1-2 y+2 t^{6}\right)\right\} \\
& \bigcup\left\{\left.\left(t^{3} \mp \frac{2 t^{3}}{\sqrt{4 t^{6}+1}}, t^{6} \pm \frac{1}{\sqrt{4 t^{6}+1}}\right) \in \mathbb{R}^{2} \right\rvert\, t \in \mathbb{R}\right\} .
\end{aligned}
$$

In order to solve Problem 1, we prepare several terminologies which can be derived from a frontal $\gamma: I \rightarrow \mathbb{R}^{2}$ with Gauss mapping $\nu: I \rightarrow S^{1}$ and a positive function $\lambda: I \rightarrow \mathbb{R}_{+}$. For a frontal $\gamma: I \rightarrow \mathbb{R}^{2}$ with Gauss mapping $\nu: I \rightarrow S^{1}$, following "T. Fukunaga and M. Takahashi, Existence and uniqueness for Legendre curves, Journal of Geometry, 104 (2013), 297-307", set

$$
\mu(t)=J(\nu(t))
$$

where J is the anti-clockwise rotation by $\pi / 2$. Then we have a moving frame $\{\mu(t), \nu(t)\}_{t \in I}$ along the frontal γ . Set

$$
\ell(t)=\frac{d \nu}{d t}(t) \cdot \mu(t), \quad \beta(t)=\frac{d \gamma}{d t}(t) \cdot \mu(t)
$$

The following definition is the key of this talk.
Definition 3 ([WN], KEY DEFINITION) Let $\gamma: I \rightarrow$ $\mathbb{R}^{2}, \lambda: I \rightarrow \mathbb{R}_{+}$be a frontal with Gauss mapping $\nu: I \rightarrow$ S^{1} and a positive function respectively. Then, the circle family $\mathcal{C}_{(\gamma, \lambda)}$ is said to be creative if there exists $\widetilde{\nu}: I \rightarrow S^{1}$ such that the following identity holds for any $t \in I$.

$$
\frac{d \lambda}{d t}(t)=-\beta(t)(\widetilde{\nu}(t) \cdot \mu(t))
$$

By definition, any family of concentric circles with smoothly expanding radii is not creative, and it is clear that such the circle family does not create an envelope.

Theorem 1 ([WN]) Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a frontal with Gauss mapping $\nu: I \rightarrow S^{1}$ and let $\lambda: I \rightarrow \mathbb{R}_{+}$be a positive function. Then, the following hold.
(1) The circle family $\mathcal{C}_{(\gamma, \lambda)}$ creates an envelope if and only if $\mathcal{C}_{(\gamma, \lambda)}$ is creative.
(2) Suppose that the circle family $\mathcal{C}_{(\gamma, \lambda)}$ creates an envelope $f: I \rightarrow \mathbb{R}^{2}$. Then, the created envelope f is represented as follows.

$$
f(t)=\gamma(t)+\lambda(t) \widetilde{\nu}(t)
$$

18

Example 2 We examine Example 1 by applying Theorem 1. In Example 1, $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is given by $\gamma(t)=$ $\left(t^{3}, t^{6}\right)$. Thus, we can say that $\nu: \mathbb{R} \rightarrow S^{1}$ and $\mu: \mathbb{R} \rightarrow$ S^{1} are given by $\nu(t)=\frac{1}{\sqrt{4 t^{6}+1}}\left(-2 t^{3}, 1\right)$ and $\mu(t)=$ $\frac{1}{\sqrt{4 t^{6}+1}}\left(-1,-2 t^{3}\right)$ respectively. Moreover, the radius function $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ is the constant function defined by $\lambda(t)=1$. Thus,

$$
\frac{d \lambda}{d t}(t)=0
$$

By calculation, we have

$$
\beta(t)=\frac{d \gamma}{d t}(t) \cdot \mu(t)=\frac{-3 t^{2}\left(1+4 t^{6}\right)}{\sqrt{4 t^{6}+1}}
$$

Therefore, the unit vector $\widetilde{\nu}(t) \in S^{1}$ satisfying

$$
\frac{d \lambda}{d t}(t)=-\beta(t)(\widetilde{\nu}(t) \cdot \mu(t))
$$

exists and it must have the form

$$
\widetilde{\nu}(t)= \pm \nu(t)=\frac{ \pm 1}{\sqrt{4 t^{6}+1}}\left(-2 t^{3}, 1\right) .
$$

Hence, by the assertion (1) of Theorem 1, the circle family $\mathcal{C}_{(\gamma, \lambda)}$ creates an envelope $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$.

By the assertion (2) of Theorem 1, f is parametrized as follows.

$$
\begin{aligned}
f(t) & =\gamma(t)+\lambda(t) \tilde{\nu}(t) \\
& =\left(t^{3}, t^{6}\right) \pm \frac{1}{\sqrt{4 t^{6}+1}}\left(-2 t^{3}, 1\right) \\
& =\left(t^{3} \mp \frac{2 t^{3}}{\sqrt{4 t^{6}+1}}, t^{6} \pm \frac{1}{\sqrt{4 t^{6}+1}}\right) .
\end{aligned}
$$

Calcium waves sustained by calcium influx through mechanically activated channels in the cell membrane

Zbigniew Peradzyński
Military Technological University and Institute of Fundamental Technological Research PAS, Poland
(joint work with Bodan Kaźmierczak and Sławomir Białecki)

The work is devoted to the mathematical modeling of fast calcium waves propagating in some cells. According to the suggestion of biologists, this type of waves exists due to the complicated mechanisms of the influx of calcium from the extracellular space through mechanically operated calcium channels placed in the cell membrane. A change in the concentration of calcium in the cell causes the reorganization of the network composed of actin-myosin filaments. Under the influence of local forces exerted by these fibers, ion channels in the cell membrane are opened. At the same time, excess calcium is pumped out of the cell by several types of pumps located in the cell membrane. All this together leads to the possibility of wave propagation in the form of homoclinic pulses of calcium concentration. We start from the construction of the model in 3-D. Then we derive 1-D nonlocal approximation, which as it turns out, can be still approximated by a FitzHugh Nagumo type of system. The theoretical model will also be supported by numerical calculations.

Calcium waves sustained by calcium influx through mechanically activated channels in the cell membrane

Zbigniew Peradzyński * ,Bogdan Kaźmierczak**, Sławomir Białecki**,

* Warsaw Military University of Technology (earlier in

Faculty of Mathematics, Informatics and Mechanics, University of
**Institute of Fundamental Technological Research.
Workshop on Mathematics for Industry 2023, Warsaw

Provocative question:

Can plants be aware of the danger?
Please see the video:
https://www.youtube.com/watch?app=desktop\&\&v=7-3yFcZSyvo
,"Supplying glutamate directly to the tip of one leaf creates a strong wave of calcium across the entire plant, visualized by fluorescent light. This video is part of research by UW-Madison botany professor Simon Gilroy that shows how waves of calcium crisscrossing a plant help it respond to attacks by preparing for future threats. The work was published in Science in September of 2018".

It turns out that plants or their parts can communicate with each other (e.g by sending sigals calcium waves), preparing thus for unpleasant consequences

By waves we mean travelling waves, special solutions: $\boldsymbol{u}=\boldsymbol{U}(x-c t)$ to Reaction-Diff. equations (c-const)

- Waves are usually associated with the wave equation or with hyperbolic systems. However hyperbolic equations are almost nonexisting in biology. One predominantly encounters parabolic equations or semilinear parabolic systems - Reaction-Diffsion Systems.
- The travelling waves in R-D eqs are appearing as an interplay between the diffusion and nonlinearity.

Single reaction-diffusion equation

$$
\frac{\partial}{\partial t} u=D \Delta u+F(u)
$$

If $\mathrm{u}(\mathrm{t}, \mathrm{x})$ - density of individuals, $\mathrm{F}(\mathrm{u})=\mathrm{ru}(1-\mathrm{u} / \mathrm{K})$, then one can speak of a simple model in population dynamics. The diffusive term reflects the fact that individuals are moving erratically. The reaction term $\mathrm{F}(\mathrm{u})$ is responsible for the birth and death processes.
Here travelling wave solutions are heteroclinic fronts. As F is monostable, because $u=0$ is unstable equilibrim, there are solutions for an arbitrary speed $\geq c_{0}$.

Bistable case; the wave speed is uniquely determined!
$\mathrm{F}(\mathrm{u})$ has two stable: u_{1}, u_{3} and one unstable (u_{2}) equilibrium.

Fig. An example of a bistable source function
$F(u)=-A\left(u-u_{1}\right)\left(u-u_{2}\right)\left(u-u_{3}\right)$

An example of a travelling front

The following bistable reaction diffusion equation with a cubic (bistable) source term

$$
\frac{\partial}{\partial t} u=D \frac{\partial^{2}}{\partial x^{2}} u-A u(u-a)(u-1)
$$

has ($D=1, A=1$) following travelling front solutions

$$
u=\frac{1}{1+\exp \left(\frac{ \pm x-v t}{\sqrt{2}}\right)}
$$

where $v=\sqrt{2}\left(\frac{1}{2}-a\right)$ defines the propagation speed.

Monostable reaction term - waves can propagate with an arbitrary speed grater then some v_{0}. The minimal speed makes physical sense)

> The case of $F(u)=r u(1-u / K)$ is a good example of a monostable reaction term. It has two zeros:
> Unstable state $u=0$ and stable state $u=K$

Theory based on single reaction diffusion equation predicts travelling waves in the form of heteroclinic fronts, joining two stable (in the bistable case) equilibria of the source term, whereas observed experimentally calcium waves are of homoclinic type. Thus, such simplified theory describes properly only the front part of the wave. To obtain the shape of a homoclinic, the additional equation for "recovery variable" is usually added.
In the proposed here theory for CICl waves this additional equation appears in a natural way.

Ecology, Population dynamics

Reaction Diffusion System (interacting species)

$$
\begin{aligned}
& \frac{\partial}{\partial t} u_{1}=D_{1} \frac{\partial^{2}}{\partial x^{2}} u_{1}+r u_{1}\left(1-A_{1} \cdot u\right) \\
& \frac{\partial}{\partial t} u_{2}=D_{2} \frac{\partial^{2}}{\partial x^{2}} u_{2}+r u_{2}\left(1-A_{2} \cdot u\right) \\
& \frac{\partial}{\partial t} u_{n}=D_{n} \frac{\partial^{2}}{\partial x^{2}} u_{n}+r u_{n}\left(1-A_{n} \cdot u\right)
\end{aligned}
$$

The matrix $A=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ describes the interactions between the species. If the entries are positive we have the case of species competing for food.

MONOTONE SYSTEMS

Definition. The system
$\frac{\partial}{\partial t} u_{i}=D_{i} \frac{\partial^{2}}{\partial x^{2}} u_{i}+F_{i}\left(u_{1}, \ldots, u_{n}\right), i=1, \ldots, n$
is called monotone if $\quad \frac{\partial F_{i}}{\partial u_{j}}>0$ for $\quad \boldsymbol{i} \neq \boldsymbol{j}, \quad \boldsymbol{i}, \boldsymbol{j}=\mathbf{1}, \ldots, \boldsymbol{n}$
is satisfied for all u. Such systems arise in numerous application in chemical kinetics and populations dynamics.

The maximum principle appears to be valid for monotone systems. Its applicability allows us to formulate the results on wave existence, stability and velocity similar to those for the scalar equation.

Comments on a multistable case

Fig. 2. Bistable nonlincarity with a stable intermediate zero wo (left). System of two waves, the specd c_{2} of the lower wave is greater than the specd c_{1} of the upper one (right).

Calcium waves were discovered in 1977 on medaka fish egg.

John C. Gilkey, Lionel f. Jaffe, Ellis B. Ridgway, and George T. Reynolds „A FREE CALCIUM wave traverses the activating egg of THE MEDAKA, ORYZIAS LA TIPES", Journ. Cell Biology" Vol. 76, 1978

Figure 1 Diagram of unfertilized medaka egg (1.2mm diameter). A sperm will cross the chorion (Ch) via the micropyle (M), enter the cytoplasm (Cy) and initiate a wave of cortical vesicle secretion. Vesicles are indicated by small circles. The bulk of the egg is occupied by a membrane-bounded yolk compartment (Y). The cyto menamic thickness $(0,03 \mathrm{~mm}$) is exagerated, and droplets are omitted for clarity.

- Signals can be transmitted by various means - calcium concentration waves among the others. After the fertilization of an egg the wave sprading on its surface is generated, which changes the status of an egg. The second sperm can not enter the egg.

The calcium wave through moving amoebae. Speed $15 \mu \mathrm{~m} / \mathrm{s}$. (L. Jaffe)

Calcium waves (first seen on the fertilizing medaka egg) turned out to be quite common. They can propagate both in individual cells and in tissues. The range of their speed: $1 \mathrm{~nm} / \mathrm{s}-30 \mathrm{~cm} / \mathrm{s}$ (nearly a billion fold) falling into four speed -based groups (after L. Jaffe)

In our lecture we will be interestet in ClCl fast waves (see diagram below).

CICI WAVES

The mechanism of propagation of CICR waves is based on autocatalytic release of calcium from the internal stores (e.g. endoplasmic reticulum) located in the cells.

CICI waves. According to L. Jaffe this cannot explain the speed of the second group of „fast waves". Their speed can be by two orders higher. Such waves are also observed in cells not having internal stores of calcium. Thus: Stretch-activated ion channels in the membrane are responsible for the calcium delivery from the extracellular space.

CELL is extremally complex! (Nobel Prize 2013).

The cell membrane is equipped with

a) ion channels (MECHANICALLY, chemically or electrically controlled)
through which ions are admitted into the cell interior.
b) There are pumps in the membrane - at least two types:

- ATP type - efficient at low Ca^{++}concentrations
- sodium-calcium exchangers; very efficient at high Ca^{++}concentrations.

Thanks to them, balance in the cell can be restored.
Mechanically operated ion channels (stretch activated) are opened when the membrane is stretched.

Inside the cel we have

1. Cytoplasm
2. Actin filaments
3. Internal stores of calcium (endoplasic reticulum)
4. Other important ingredients as: ion channels and ion pumps located in the cell membrane.

- As the Ca concentration increases, the filaments are increasingly connected by myosin bridges and the filament network contracts.
- The filaments also serve as routes along which various materials in bags (vesicles) are transported by appropriate motors. ($\mathrm{F}=2.7 \mathrm{pN}$). See for example : https://learn.genetics.utah.edu/content/cells/vesicles/

Model of a cell

(from the lecture by Kizyivova)

There are already well known and well researched CICR waves i.e. "Calcium Induced Calcium Released" waves (L. Jaffe) . The simplest theoretical description is based on single reaction diffusion equation with a bistable source term. For a small excess of calcium above the equilibrium concentration, calcium is absorbed into internal stores. After exceeding a certain threshold value (the second zero of the source function) calcium is
 released from the internal stores of the cell in an autocathalitic reaction, untill its concentration reaches the next equilibrium value (the third zero of source function).

Lionel Jaffe Hypothesis

According to L. Jaffe, the CICR mechanism cannot be responsible for high speed of ClCl waves (see diagram). It is known that:
Stretching the membrane activates the ion channels and calcium can enter the cell from the extracellular space.
Hypothesis: when the calcium concentration grows the actinmyosin network is reorganized - the filament network contracts. Consequently, filaments are pulling the membrane. Mechanically stimulated channels are opened and calcium enters the cell. This mechanism (calcium induced calcium influx) supports the wave propagation.

Hypothetios CICl Miewes -
 the subject of our modelling

- Accorfing to \mathbf{L}. Jaffe in this case calcium from the extracellular space enters the cell through mechanicaly activated ion channels located in the cell membrane. In the extracellular space Ca^{++}concentration is by two orders higher than in the cell internal stores. The channels are opened when the membrane is stretched.

Calcium pumps

Calcium pumps are ion transporters found in the cell membrane. They are responsible for active transport of calcium out of the cell, keeping the intracellular calcium concentration 10000 times lower than the extracellular. The plasma membrane Ca^{2+} ATPase and sodium-calcium calcium exchanger are the main regulators of intracellular Ca^{2+} concentration. The first type is efficient at low Ca concentration, whereas the second type is extremely efficient at higher concentrations.
They also seem to play the crucial role in supporting the CICl Waves!

Assumptions.

1. The contraction of the actomyosin network results in appearing of so called "traction forces". However, the effect of contraction following the increase of calcium concentration appears with some delay -relaxation time is needed to form the myosin bridges
2. The calcium can enter from the intercellular space through the mechanically stimulated ion channels located in the cell membrane
3. The mechanical stimulation of the membrane is caused by the actomyosin network - cortex. The fibers of the cortex as well as the rest of actomyosin network in the cell are subject to the contraction whenever the calcium concentration in the cell cytoplasm increases.

As the calcium concentration increases, the myosin filaments become more and more connected through the increasing number of myosin Bridges. This leads to the contraction of the filament network.
This contraction influences the shape of the cell. If we imagine the ideal cell of a cylindrical shape, then the cell radius will be reduced. Therefore, at first glance, we should not expect any stretching of the cell membrane.
This is however macroscopic view. Microscopically the membrane will be very unsmooth. Funnel-shaped depressions will appear under the influence of pulling forces, in places where the filaments are anchored. So in spite of this that the average radiuce gets smaller we will have the membrane stretching as its shape becames more complex.

When the wave passes, the cell radius shrinks. So how can we have stretching ? locally we expect the following picture

Suppose, the ion channels are openned whenever the membrane is streched. Then permanent stretch :

High calcium concentration over a long period of time would lead to the cell death. Therefore, a permanent state of stretch should not result in a continuous influx of calcium.

Experiment: oscillatory stretching leads to Ca^{++}influx proportional to the amplitude and oscillations frequency.

This suggests that the calcium influx should rather be related to the speed of membrane stretching!
H.1. Therefore, if \mathbf{n} is an internal unit vector normal to the cell membrane and \mathbf{F} is the force acting on unit membrane area, then the calcium influx (flux per unit area) is proportional to the positive part of the time derivative of the force acting on the unit surface.

$$
\text { Ca }{ }^{++} \text {influx } \sim\left[\frac{\partial}{\partial t}(\boldsymbol{n} \cdot \boldsymbol{F})\right]_{+}
$$

Positive part, because only stretching counts. One can show that otherwise the Ca concentration may become negative !

Taking into account the pumps p(c)

This is the boundary condition for the Ca diffusion equation.

Now we arrived at the MECHANICAL PROBLEM:
Determine the forces acting on the membrane ; i.e. forces resulting from the actin filaments attached to it.
In principle two approaches seem to be possible:
a) Calculate the distribution of forces on each filament of the contracting network due to the appearance of myosin bridges. In particular those anchored in the membrane. Then find the shape of deformed membrane.

This seems hopelessly difficult !

Continuum mechanical approach ?

b) In mathematical biology (Murray, Mathematical Biology), the cell is often treated as an elastic (or viscoelastic) body, and the forces associated with the contraction (traction forces) are expressed by the traction tensor. This description is very similar to termo-elasticity. Ca^{++}concentration plays the role of the temperature (in fact $-T$).
Applying this idea, we arrive at a system of three equations.

The system consists of

1. The equation of motion of the viscoelastic body, i.e cytoplasm with the filament network. The equation of motion (linear approximation) for the displacement vector $\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$ must be equipped with proper boundary conditions. Under the influence of traction forces the membrane is deflected. So basically, we should know the elasticity of the membrane. However, to estimate the forces acting on the membrane, one can assume that the membrane is stiff and not deformed. In such a case we have simple b-dry condition: $u(R)=0$
Let us remind that if the initial position of a material point is x and it position changes to $\tilde{\boldsymbol{x}}$ then $\boldsymbol{u}(\boldsymbol{x})=\tilde{\boldsymbol{x}}-\boldsymbol{x}$.
2. Relaxation equation for the traction tensor $\widehat{\boldsymbol{T}}$ with a given equilibrium form $\widehat{\boldsymbol{T}}^{*}(c)$. We have $\widehat{\boldsymbol{T}}(t, \boldsymbol{x})=\widehat{\boldsymbol{T}}^{*}(\boldsymbol{c}(t, \boldsymbol{x}))$ for very slow changes of the concentration $\boldsymbol{c}(\boldsymbol{t}, \boldsymbol{x})$.
3. The diffusion equation for calcium concentration $c(t, x)$ and nonlinear boundary condition expressing the influx of calcium (by ion channels and ion pumps) caused by positive part of time derivative of traction forces acting on the membrane.
In fact, the diffusion of calcium in the cell is quite a complicated process because of the buffers - proteins that can attach and release calcium ions. This can be described by a system of equations for the diffusion reaction. If we use one equation as here, D should be treated as the effective diffusion coefficient.

Treating (idealized) cell as an Infinite cylinder we could try to solve:
(1) $\rho \frac{\partial^{2}}{\partial t^{2}} u-v_{2} \Delta \dot{u}+\left(v_{1}+v_{2}\right) \nabla \operatorname{div} \dot{u}=\mu \Delta u+(\mu+\lambda) \nabla \operatorname{div} u+\operatorname{div} \widehat{T}(c)$ with b-dry condition: $\boldsymbol{u}(t, R)=0$
(2) $\frac{\partial}{\partial t} \widehat{\boldsymbol{T}}=\beta\left[\widehat{\boldsymbol{T}}^{*}(\boldsymbol{c})-\widehat{\boldsymbol{T}}\right], \quad$ where $\widehat{\boldsymbol{T}}^{*}(\boldsymbol{c})$-known (e.g. linear)
(3) $\frac{\partial}{\partial t} c=D \Delta c \quad$ inside the cell

$$
D \frac{\partial}{\partial r} c(t, R, z)=Q\left[\frac{d}{d t} \sigma_{r r}(t, R, z)\right]^{+}-p(u) \quad \text { on the b-dry }
$$

suplied by initial conditions for u, T, c.

Comment. The first equation, the equation of motion can be simplified by omitting the dynamical term $\rho \frac{\partial^{2}}{\partial t^{2}} u$ and possibly the viscouse terms $\boldsymbol{v}_{2} \Delta \dot{\boldsymbol{u}}+\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right) \boldsymbol{\nabla}$ diviv.
Then one obtains an eliptic system for the displacement $\boldsymbol{u}(t, x)$.

In principle it is possible to solve the above system numerically. For reasons discussed below, we decided on a slightly roundabout but simpler route.

In presented here equations we assumed the medium to be isotropic. However, the anisotropy, can be important as it can greatly influence the speed of waves. Indeed, the network structure - the way the filaments are connected, affects the transfer of forces acting on the membrane through the interconnected fibers.
Depending on the way the filament network is interconnected, calcium channels may be opened in places more or less distant from the front of the wave of increased calcium concentration. Thus, we should solve systems with different degree of anisotropy.
To avoid all these complications, we chose a slightly different modeling route.

Intermediate way, Here $\widehat{\boldsymbol{T}}=\tau \mathrm{I}$

Instead, we chose the intermediate solution. By solving the equations of mechanical equilibrium,

$$
\mu \Delta u+(\mu+\lambda) \nabla \operatorname{div} u+\operatorname{div} \widehat{T}(c)=0
$$

assuming that the solution is independent of the axial variable, and for isotropic traction tensor $\widehat{\boldsymbol{T}}=\boldsymbol{\tau} \mathbf{I}$ we can estimate the forces acting on the membrane as

$$
\sigma_{r r}(t, R)=\frac{1}{\pi R^{2}} \int_{0}^{R} \tau(t, r) 2 \pi r d r
$$

Since the Ca influx is proportional to time derivative of $\sigma_{r r}$

$$
\frac{\partial}{\partial t} \sigma_{r r}(t, R)=\frac{1}{\pi R^{2}} \int_{0}^{R} \frac{\partial}{\partial t} \tau(t, r) 2 \pi r d r
$$

we have $\quad \frac{\partial}{\partial t} \tau=\beta\left[\tau_{R}^{*}(c)-\tau\right]$, so

$$
\frac{\partial}{\partial t} \sigma_{r r}(t, R)=\frac{\beta}{\pi R^{2}} \int_{0}^{K}\left[\tau^{*}(c)-\tau\right] 2 \pi r d r
$$

Smearing the force (interconnected filaments)

The previous step do not include transmition of force from one point to another by interconnected filaments. To take this into account we introduce a kind of smearing out of forces acting on the membrane through an averaging integral operator (convolution wit K_{σ})

$$
D \frac{\partial}{\partial r} c(t, R \cdot z)=A\left\{K_{\sigma} *\left[\frac{2}{R^{2}} \int_{0}^{R}\left(\tau^{*}(c(t, r, z))-\tau(t, r, z)\right) r d r\right]^{+}-p(c)\right\}
$$

where in numerical simmulations we took $K_{\sigma}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2 \sigma^{2}}\right)$.
This non-local mechanism embodies the idea of L. Jaffe
Schematic view of simplest model of actin fibers network in 2 D .
When Ca concentration increases the fibers contract pulling
the membrane. This arrangment of fibers corresponds to completely anisotropic case (no myosin bridges between filaments). The force is not transfered between filaments - local mechanism.

$$
K \sim \delta(x)
$$

Numerical computations

All numerical computations were done for the diffusion coefficient $\mathrm{D}=1$.
The source term:
$\left[\boldsymbol{K}\left(\mathbf{0}, 25 \boldsymbol{u}+\mathbf{0 . 1} \boldsymbol{u}^{2}-\boldsymbol{\tau}\right)\right]_{+}-\boldsymbol{p}(\boldsymbol{u})$ where
$p(u)=u\left(u^{2}-1.15 u+0.5\right)$
For $\mathrm{K}=\mathrm{id}$ and $\tau \equiv 0$ the source term takes form
$u(u-0,25)(u-1)$
Eq. $\frac{\partial}{\partial t} u=\frac{\partial^{2}}{\partial x^{2}} u-u(u-0,25)(u-1)$ has heteroclinic solutions (travelling fronts) of the form

Source term for $\tau=0$
For $\tau=0$ we must have bistable case!

3D NUMERICAL SIMMULATIONSI

Assuming cylindical symmetry we solved numerically the system :

$$
\begin{aligned}
\frac{\partial}{\partial t} \boldsymbol{c} & =\boldsymbol{D} \Delta \boldsymbol{c} \text { in } \Omega \\
\boldsymbol{D} \boldsymbol{n} \cdot \boldsymbol{\nabla} \mathbf{c} & =\boldsymbol{A}\left\{\left[\boldsymbol{K}_{\boldsymbol{\sigma}} \frac{\boldsymbol{\partial}}{\partial \mathrm{t}} \boldsymbol{\tau}\right]_{+}-\boldsymbol{p}(\boldsymbol{c})\right\} \quad \text { on } \partial \Omega, \\
\frac{\partial}{\partial t} \boldsymbol{\tau} & =\boldsymbol{\beta}\left[\boldsymbol{\tau}^{*}(\mathbf{c})-\boldsymbol{\tau}\right] \quad \text { in } \Omega
\end{aligned}
$$

Numerically determined travelling homoclinic waves (moving to the right) Ca^{++}concentration (for different σ)

Numerical computations

All numerical computations were done for the diffusion coefficient $\mathbf{D = 1}$. The source term:
$\left[\boldsymbol{K}\left(\mathbf{0}, 25 \boldsymbol{u}+\mathbf{0 . 1} \boldsymbol{u}^{2}-\boldsymbol{\tau}\right)\right]_{+}-\boldsymbol{p}(\boldsymbol{u})$ where
$\boldsymbol{p}(\boldsymbol{u})=\boldsymbol{u}\left(\boldsymbol{u}^{2}-1.15 u+0.5\right)$
For K=id and $\tau \equiv 0$ the source term takes form

$$
u(u-0,25)(u-1)
$$

Eq. $\quad \frac{\partial}{\partial t} u=\frac{\partial^{2}}{\partial x^{2}} u-u(u-0,25)(u-1)$ has heteroclinic solutions (travelling fronts) of the form

ONE DIMENSIONAL APPROXIMATION

Averaging our diffusion equation with respect to r : and similarly, the equation for the traction, we arrive at the one dimensional problem

$$
\begin{gathered}
\frac{\partial}{\partial t} u=D \frac{\partial^{2}}{\partial x^{2}} u+\frac{2 A}{R} \beta \mathbf{K}_{2} *\left[\tau^{*}(\mathbf{u})-\tau\right]-\boldsymbol{p}(\boldsymbol{u}) \\
\frac{\partial}{\partial t} \tau=\beta\left[\tau^{*}(\mathbf{u})-\tau\right]
\end{gathered}
$$

where

$$
u(t, x)=\frac{1}{\pi R^{2}} \int_{0}^{R} 2 \pi r c(t, x, r) d r
$$

Waves profiles at $\mathrm{r}=\mathrm{R},(\mathrm{R}=2)$ for different β : (a) $\beta=0,1 \beta_{0}$, (b) $\beta=0,2 \beta_{0}$, (c) $\beta=0,3 \beta_{0}$ etc. where the reference β is $\beta_{0}=0,01205$. On the left for $\sigma=10$. On the right for $\sigma=20$.

On the left: wave profiles and wave velocities in 1-D simulations for $A=1$, and (a) $\sigma=40$, (b) $\sigma=20$, (c) $\sigma=10$, (d) $\sigma=0$ and for $\beta=0.001205\left(=0.1 \beta_{0}\right)$. On the right: 3D simulations for $A=1, R=2$, and $\beta=0,001205$ and the same values of σ. Propagation velocities with respect to the heteroclinic case ($\nu_{0}=\sqrt{2} / 4$) are: (a) 13.7,(b) 6.96, (c) 3.63 , (d) 0.978

Fitzhugh -Nagumo type of approximation

The influence of the variance σ of K_{σ} on the wave velocity. Expanding :
$\mathbf{K}_{\mathbf{2}} * \boldsymbol{\tau}^{*}(\mathbf{u})$ we arrive to easier, local system of equations

$$
\begin{gathered}
\frac{\partial}{\partial t} w=\frac{\partial^{2}}{\partial z^{2}}\left(D w+\frac{A}{R} \sigma^{2} \tau^{*}(w)\right)+\frac{2 A}{R}\left\{\left[\tau^{*}(w)-\tau\right]^{+}-p(w)\right\} \\
\frac{\partial}{\partial t} \tau=\beta\left[\tau^{*}(w)-\tau\right]
\end{gathered}
$$

with larger diffusivity. The wave velocity is $\sim \sqrt{\text { diffusivity }}$

F-N model is simple and gives good wave speed.

This F-N model we studied (with J. Napiokowska) for a particular shape of the source term step like $\boldsymbol{\tau}^{*}(\boldsymbol{w})$ and linear $\boldsymbol{p}(\boldsymbol{w})$.

- In this case the existence of homoclinic waves is proven for some range of $\beta<\beta_{0}$,
- For $\beta>\beta_{0}$ there are no homoclinic waves.
- There are two solutions for given $\beta<\beta_{0}$. Narrow one unstable and wider which is stable.

Conclusions

1. It seems that the idea of F. Jaffe works
a) Wave velocity grows as $\sigma . \sigma$ - range of mechanical interactions due to actin-myosin fiber network.
b) The concentration of Ca in extracellular space is 100 times bigger than in endoplasmic reticulum, so flux through ion channel can be quite high. Again, wave velocity grows as $\sqrt{\text { Source }}$
2. 1-D approximation seems to work quite well ! It well reproduces the 3-D simulations.

REFERENCES

[1] L.F. Jaffe, "Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium inux"', Biol. Cell 99, 175\{184 (2007). [2] J.C. Gilkey, L.F. Jaffe, E.B. Ridgway, G.T. Reynolds GT, "A free calcium wave traverses the activating egg of the Medaka, Oryzias latipes", J. Cell Biol. 76, 448466 (1978).
[3]Z. Peradzynski, B. Kaźmierczak, S. Białecki, Modelling fast CICI Waves - to be published.
[4] Murray JD. Mathematical Biology, Springer, Berlin, 2nd edition, 1993.
[5] W.S. Nishitani, Molecular mechanisms involved in cell response to mechanical forces, phd dissertation, University of Illinois at Urbana-Champaign, 2011.
[6] K. Okeyo, et al., "Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells", J. Biomech. 42(15), 2540-8 (2009).
[7] Z. Peradzynski, "Diffusion of calcium in biological tissues and accompanying mechanochemical effects", Arch. Mech. 62, 423-440 (2010).
[8] B. Kaźmierczak, Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, J. Math. Biol., DOI 10.1007/s00285-009-0323-2, 2010.

Thank you for your attention
and
the organizers for the invitation.

Generalization of Reeb spaces and application to data visualization

Osamu Saeki

Institute of Mathematics for Industry, Kyushu University, Japan

In many cases, data sets can be considered to be discrete samples of differentiable maps between manifolds. For a differentiable multivariate function into \mathbb{R}^{p} with $p \geq 2$, its Reeb space is the space of connected components of its fibers. This is a generalization of the notion of Reeb graphs for univariate functions in the case of $p=1$. It has been known that Reeb spaces are often very useful for visualizing the given multivariate function. In this talk, we generalize the Reeb space in such a way that it captures more of the topological features of the fibers, not only their connected components. This theoretical part essentially relies on the global singularity theory of differentiable maps between manifolds developed mainly by the author. Such techniques have been used for efficiently visualize large scale data. If time permits, we will also discuss an application to multi-objective optimization problems.

Generalization of Reeb Spaces and

 Application to Data VisualizationOsamu Saeki
(Institute of Mathematics for Industry,
Kyushu Univ., Japan)

September 29, 2023
WORKSHOP on
Mathematics for Industry Warsaw University of Technology

Who am I?
31 Fiber g2 Peeb Space 33 Case with $n \quad m-2$ and Beyond

Got PhD in Mathematics in 1992.
"On 4-manifolds homotopy equivalent to the 2 -sphere"
Main interest: Singularity Theory, 3- and 4-Dimensional Topology I proposed the Theory of Singular Fibers of Differentiable Maps.

My recent interests include collaboration with computer scientists on enhancing visualization of multi-variate data from the viewpoint of topology or singularity theory.

§1. Fiber

Setting

51 Filter 52 Resb Space 33 Case with $n \quad m-2$ and Beyond
$N^{n}: C^{\infty}$ manifold (e.g. bdd domain in R^{n}), $f: N^{n} \rightarrow \mathrm{R}^{m} C^{\infty}$ map We can write $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ multi-variate data
We assume f is generic (C^{∞} stable, C^{0} stable, finite codimension, etc.)
We are interested in the topology of fibers $f^{-1}(y), y \in \mathrm{R}^{m}$.
Generically, $\operatorname{dim} f^{-1}(y)=n-m$. We usually assume $n \geq m$.

We can grasp global feature of data by chasing fibers (or level sets). We have singular fibers (or critical level sets) where topological transitions of fibers occur.

Singular points and Jacobi set
 31 Filter 92 Resb Space 33 Case with $n \quad m-2$ and Beyond

$f: N^{n} \rightarrow \mathrm{R}^{m}(n \geq m) \quad C^{\infty}$ map
For $p \in N^{n}$, consider the differential $d f_{p}: T_{p} N^{n} \rightarrow T_{f(p)} \mathrm{R}^{m}$.
The set of singular points $J(f)=\left\{p \in N^{n} \mid\right.$ rank $\left.d f_{p}<m\right\}$ is called the
Jacobi set of f. Generically, $\operatorname{dim} J(f)=m-1$.
Jacobi set image $f(J(f))$ divides the range R^{m} into some regions.

Topology of fibers changes along the Jacobi set image.
Singular fiber is a fiber $f^{-1}(y)$ with $y \in f(J(f))$.
It is important to know topological changes of fibers near a singular fiber.

Classification of singular fibers

\$1 Filser 92 Rasb Space 33 Case with $n \quad m-2$ and Beyend
For certain dimensions, we can classify singular fibers of generic maps.
Example 1.1 Classification results for (n, m) with $n-m=1$.
For simplicity, we assume the domain N^{n} is orientable.
We will ignore regular fiber components.

1. $(n, m)=(2,1)$ [Folklore] $\quad \kappa=1$ (codimension)

2. $(n, m)=(3,2)$ [Kushner-Levine-Porto, 1984]

For a C^{∞} map $f: N^{n} \rightarrow \mathrm{R}^{m}, n>m$, the space R_{f} obtained by contracting each connected component of a fiber to a point is called the Reeb space of f [Edelsbrunner-Harer-Patel, 2008]

When $m=1$, it is also called the Reeb graph.

In a certain categorical formulation of a Reeb space, this can be considered to be a functor.

Remark 3.1 This makes sense if each stratum is contractible.

Given a generic map $f: N^{n} \rightarrow \mathbf{R}^{m}$, we can subdivide \mathbf{R}^{m} (or the Reeb space R_{f}) so that each stratum is contractible.
In this case, the monodromy is hidden in the Reeb diagram.

$\pi_{1}\left(B, b_{0}\right) \rightarrow \operatorname{MCG}(S) \rightarrow \operatorname{Aut}\left(H_{*}(S)\right)$
Problem 3.2 Formulate all these, including monodromyl Category theory? How to compute Reeb diagram and/or monodromy?

Possible application

${ }^{31}$ Filas g2 Resb Space 33 Gasw with n m-2 and Byyond
Let us consider a multi-ojective optimization problem.
Such a problem can be formulated in terms of a C^{∞} muti-function $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right): N^{n} \rightarrow \mathbf{R}^{m}$.
For example, given a bench-mark problem of multi-optimization, we can evaluate its complexity or certain characteristics in terms of its Reeb space, or more generally, its Reeb diagram.

Thank you for your attention!

Acknowledgements to collaborators:

Takahiro Yamamoto (Tokyo Gakugei Univ.),
Daisuke Sakurai (Kyushu Univ.),
Shigeo Takahashi (Univ. of Aizu),
Hamish Carr \& David Duke (Univ. of Leeds),
Hsiang-Yun Wu (St. Pölten Univ. of Applied Sciences),
Keisuke Kikuchi

MI レクチャーノートシリーズ刊行にあたり

本レクチャーノートシリーズは，文部科学省 21 世紀 COE プログラム「機能数理学の構築と展開」（H15－19年度）において作成した COE Lecture Notes の続刊であり，文部科学省大学院教育改革支援プログラム「産業界が求める数学博士と新修士養成」（H19－21 年度）および，同グローバルCOE プログラ ム「マス・フォア・インダストリ教育研究拠点」（H20－24 年度）において行わ れた講義の講義録として出版されてきた。平成 23 年 4 月のマス・フォア・イ ンダストリ研究所（IMI）設立と平成 25 年 4 月の IMIの文部科学省共同利用•共同研究拠点として「産業数学の先進的•基礎的共同研究拠点」の認定を受け，今後，レクチャーノートは，マス・フォア・インダストリに関わる国内外の研究者による講義の講義録，会議録等として出版し，マス・フォア・インダ ストリの本格的な展開に資するものとする。

2022年10月
マス・フォア・インダストリ研究所
所長 梶原 健司

International Project Research－Workshop（I）

WORKSHOP on Mathematics for Industry Basis of Mathematics in nanomedicine structures and life sensing

発 行 2024年3月14日
編 集 Osamu Saeki，Wojciech Domitrz，Stanisław Janeczko，Marcin Zubilewicz， Michał Zwierzyński
発 行 九州大学マス・フォア・インダストリ研究所
九州大学大学院数理学府
〒819－0395福岡市西区元岡744
九州大学数理•IMI 事務室
TEL 092－802－4402 FAX 092－802－4405
URL https：／／www．imi kyushu－u．ac．jp／

印 刷 城島印刷株式会社
〒810－0012福岡市中央区白金2丁目9番6号
TEL 092－531－7102 FAX 092－524－4411

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note	Mitsuhiro T NAKAO Kazuhiro YOKOYAMA	Computer Assisted Proofs－Numeric and Symbolic Approaches－ 199pages	August 22， 2006
COE Lecture Note	M J Shai HARAN	Arithmetical Investigations－Representation theory，Orthogonal polynomials and Quantum interpolations－174pages	August 22， 2006
COE Lecture Note Vol 3	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2005 155pages	October 13， 2006
COE Lecture Note Vol 4	宮田 健治	辺要素有限要素法による磁界解析－機能数理学特別講義 21pages	May 15， 2007
COE Lecture Note Vol 5	Francois APERY	Univariate Elimination Subresultants－Bezout formula，Laurent series and vanishing conditions－89pages	September 25， 2007
COE Lecture Note Vol 6	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2006 209pages	October 12， 2007
COE Lecture Note Vol 7	若山 正人 中尾 充宏	九州大学産業技術数理研究センターキックオフミーティング 138pages	October 15， 2007
COE Lecture Note Vol 8	Alberto PARMEGGIANI	Introduction to the Spectral Theory of Non－Commutative Harmonic Oscillators 233pages	January 31， 2008
COE Lecture Note Vol 9	Michael I TRIBELSKY	Introduction to Mathematical modeling 23pages	February 15， 2008
COE Lecture Note Vol 10	Jacques FARAUT	Infinite Dimensional Spherical Analysis 74pages	March 14， 2008
COE Lecture Note Vol 11	Gerrit van DIJK	Gelfand Pairs And Beyond 60pages	August 25， 2008
COE Lecture Note Vol 12	Faculty of Mathematics， Kyushu University	Consortium＂MATH for INDUSTRY＂First Forum 87pages	September 16， 2008
COE Lecture Note Vol 13	九州大学大学院数理学研究院	プロシーディング「損保数理に現れる確率モデル」 一日新火災•九州大学共同研究2008年11月研究会—82pages	February 6， 2009

Issue	Author／Editor	Title	Published
COE Lecture Note Vol 14	Michal Beneš， Tohru Tsujikawa Shigetoshi Yazaki	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2008 77pages	February 12， 2009
COE Lecture Note Vol 15	Faculty of Mathematics， Kyushu University	International Workshop on Verified Computations and Related Topics 129pages	February 23， 2009
COE Lecture Note Vol 16	Alexander Samokhin	Volume Integral Equation Method in Problems of Mathematical Physics 50pages	February 24， 2009
COE Lecture Note Vol 17	矢嶋 徹 及川 正行 梶原 健司 辻 英一 福本 康秀	非線形波動の数理と物理 66pages	February 27， 2009
COE Lecture Note Vol 18	Tim Hoffmann	Discrete Differential Geometry of Curves and Surfaces 75pages	April 21， 2009
COE Lecture Note Vol 19	Ichiro Suzuki	The Pattern Formation Problem for Autonomous Mobile Robots －Special Lecture in Functional Mathematics－23pages	April 30， 2009
COE Lecture Note Vol 20	Yasuhide Fukumoto Yasunori Maekawa	Math－for－Industry Tutorial：Spectral theories of non－Hermitian operators and their application 184pages	June 19， 2009
COE Lecture Note Vol 21	Faculty of Mathematics， Kyushu University	Forum＂Math－for－Industry＂ Casimir Force，Casimir Operators and the Riemann Hypothesis 95pages	November 9， 2009
COE Lecture Note Vol 22	Masakazu Suzuki Hoon Hong Hirokazu Anai Chee Yap Yousuke Sato Hiroshi Yoshida	The Joint Conference of ASCM 2009 and MACIS 2009： Asian Symposium on Computer Mathematics Mathematical Aspects of Computer and Information Sciences 436pages	December 14， 2009
COE Lecture Note Vol 23	荒川 恒男 金子 昌信	多重ゼータ値入門 111pages	February 15， 2010
COE Lecture Note Vol 24	Fulton B Gonzalez	Notes on Integral Geometry and Harmonic Analysis 125pages	March 12， 2010
COE Lecture Note Vol 25	Wayne Rossman	Discrete Constant Mean Curvature Surfaces via Conserved Quantities 130pages	May 31， 2010
COE Lecture Note Vol 26	Mihai Ciucu	Perfect Matchings and Applications 66pages	July 2， 2010

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol 27	九州大学大学院 数理学研究院	Forum＂Math－for－Industry＂and Study Group Workshop Information security，visualization，and inverse problems，on the basis of optimization techniques 100pages	October 21， 2010
COE Lecture Note Vol 28	ANDREAS LANGER	MODULAR FORMS，ELLIPTIC AND MODULAR CURVES LECTURES AT KYUSHU UNIVERSITY 2010 62pages	November 26， 2010
COE Lecture Note Vol 29	木田 雅成原田 昌晃横山 俊一	Magma で広がる数学の世界 157pages	December 27， 2010
COE Lecture Note Vol 30	$\begin{array}{lr}\text { 原 } & \text { 隆 } \\ \text { 松井 } & \text { 卓 } \\ \text { 廣島 } & \text { 文生 }\end{array}$	Mathematical Quantum Field Theory and Renormalization Theory 201pages	January 31， 2011
COE Lecture Note Vol 31	若山 正人 福本 康秀 高木 剛 山本 昌宏	Study Group Workshop 2010 Lecture \＆Report 128pages	February 8， 2011
COE Lecture Note Vol 32	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2011 ＂TSUNAMI－Mathematical Modelling＂ Using Mathematics for Natural Disaster Prediction，Recovery and Provision for the Future 90pages	September 30， 2011
COE Lecture Note Vol 33	若山 正人 福本 康秀 高木 剛 山本 昌宏	Study Group Workshop 2011 Lecture \＆Report 140pages	October 27， 2011
COE Lecture Note Vol 34	Adrian Muntean Vladimír Chalupecký	Homogenization Method and Multiscale Modeling 72pages	October 28， 2011
COE Lecture Note Vol 35	横山 俊一夫 紀恵林 卓也	計算機代数システムの進展 210pages	November 30， 2011
COE Lecture Note Vol 36	Michal Beneš Masato Kimura Shigetoshi Yazaki	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2010 107pages	January 27， 2012
COE Lecture Note Vol 37	若山 正人高木 剛 Kirill Morozov平岡 裕章木村 正人白井 朋之西井 龍映栄 伸一郎穴井 宏和福本 康秀	平成 23 年度 数学•数理科学と諸科学•産業との連携研究ワーク ショップ 拡がっていく数学～期待される＂見えない力＂～ 154pages	February 20， 2012

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol 38	Fumio Hiroshima Itaru Sasaki Herbert Spohn Akito Suzuki	Enhanced Binding in Quantum Field Theory 204pages	March 12， 2012
COE Lecture Note Vol 39	Institute of Mathematics for Industry， Kyushu University	Multiscale Mathematics：Hierarchy of collective phenomena and interrelations between hierarchical structures 180pages	March 13， 2012
COE Lecture Note Vol 40	井ノ口順一太田 泰広筧 三郎梶原 健司松浦 望	離散可積分系•離散微分幾何チュートリアル2012 152pages	March 15， 2012
COE Lecture Note Vol 41	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2012 ＂Information Recovery and Discovery＂91pages	October 22， 2012
COE Lecture Note Vol 42	佐伯 修 若山 正人 山本 昌宏	Study Group Workshop 2012 Abstract，Lecture \＆Report 178pages	November 19， 2012
COE Lecture Note Vol 43	Institute of Mathematics for Industry， Kyushu University	Combinatorics and Numerical Analysis Joint Workshop 103pages	December 27， 2012
COE Lecture Note Vol 44	萩原 学	モダン符号理論からポストモダン符号理論への展望 107pages	January 30， 2013
COE Lecture Note Vol 45	金山 寛	Joint Research Workshop of Institute of Mathematics for Industry （IMI），Kyushu University ＂Propagation of Ultra－large－scale Computation by the Domain－ decomposition－method for Industrial Problems（PUCDIP 2012）＂ 121pages	February 19， 2013
COE Lecture Note Vol 46	西井 龍映栄 伸一郎岡田 勘三落合 啓之小磯 深幸斎藤 新悟白井 朋之	科学•技術の研究課題への数学アプローチ —数学モデリングの基礎と展開— 325pages	February 28， 2013
COE Lecture Note Vol 47	SOO TECK LEE	BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE COMPLEX CLASSICAL GROUPS 40pages	March 8， 2013
COE Lecture Note Vol 48	溝口 佳寛 脇 隼人 平坂 貢 谷口 哲至 島袋 修	博多ワークショップ「組み合わせとその応用」 124pages	March 28， 2013

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol 49	照井 章 小原 功任 濱田 龍義 横山 俊一 穴井 宏和 横田 博史	マス・フォア・インダストリ研究所 共同利用研究集会 II数式処理研究と産学連携の新たな発展 137pages	August 9， 2013
MI Lecture Note Vol 50	Ken Anjyo Hiroyuki Ochiai Yoshinori Dobashi Yoshihiro Mizoguchi Shizuo Kaji	Symposium MEIS2013： Mathematical Progress in Expressive Image Synthesis 154pages	October 21， 2013
MI Lecture Note Vol 51	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂ 2013 ＂The Impact of Applications on Mathematics＂97pages	October 30， 2013
MI Lecture Note Vol 52	$\begin{array}{ll} \text { 佐伯 } & \text { 修 } \\ \text { 岡田 } & \text { 勘忈 } \\ \text { 高木 } & \text { 剛 } \\ \text { 若山 } & \text { 正 } \\ \text { 山本 } & \text { 昌宏 } \end{array}$	Study Group Workshop 2013 Abstract，Lecture \＆Report 142pages	November 15， 2013
MI Lecture Note Vol 53	四方 義啓 櫻井 幸一 安田 貴徳 Xavier Dahan	平成 25 年度 九州大学マス・フォア・インダストリ研究所共同利用研究集会 安全•安心社会基盤構築のための代数構造 ～サイバー社会の信頼性確保のための数理学～158pages	December 26， 2013
MI Lecture Note Vol 54	Takashi Takiguchi Hiroshi Fujiwara	Inverse problems for practice，the present and the future 93pages	January 30， 2014
MI Lecture Note Vol 55	$\begin{array}{ll} \text { 栄 } & \text { 伸一郎 } \\ \text { 溝口 } & \text { 佳寛 } \\ \text { 脇 } & \text { 隹 } \\ \text { 渋田 } & \text { 敬史 } \end{array}$	Study Group Workshop 2013 数学協働プログラム Lecture \＆Report 98 pages	February 10， 2014
MI Lecture Note Vol 56	Yoshihiro Mizoguchi Hayato Waki Takafumi Shibuta Tetsuji Taniguchi Osamu Shimabukuro Makoto Tagami Hirotake Kurihara Shuya Chiba	Hakata Workshop 2014 \sim Discrete Mathematics and its Applications～141pages	March 28， 2014
MI Lecture Note Vol 57	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂2014： ＂Applications + Practical Conceptualization + Mathematics $=$ fruitful Innovation＂93pages	October 23， 2014
MI Lecture Note Vol 58	安生健一落合啓之	Symposium MEIS2014： Mathematical Progress in Expressive Image Synthesis 135pages	November 12， 2014

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol 59	西井 龍映岡田 勘三梶原 健司高木 剛若山 正人脇 隼人山本 昌宏	Study Group Workshop 2014 数学協働プログラム Abstract，Lecture \＆Report 196pages	November 14， 2014
MI Lecture Note Vol 60	西浦 博	平成26年度九州大学 IMI 共同利用研究•研究集会（I）感染症数理モデルの実用化と産業及び政策での活用のための新 たな展開 120pages	November 28， 2014
MI Lecture Note Vol 61	溝口 佳寛 Jacques Garrigue 萩原 学 Reynald Affeldt	研究集会 高信頼な理論と実装のための定理証明および定理証明器 Theorem proving and provers for reliable theory and implementations （TPP2014）138pages	February 26， 2015
MI Lecture Note Vol 62	白井 朋之	Workshop on＂β－transformation and related topics＂59pages	March 10， 2015
MI Lecture Note Vol 63	白井 朋之	Workshop on＂Probabilistic models with determinantal structure＂ 107pages	August 20， 2015
MI Lecture Note Vol 64	落合 啓之 土橋 宜典	Symposium MEIS2015： Mathematical Progress in Expressive Image Synthesis 124pages	September 18， 2015
MI Lecture Note Vol 65	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂ 2015 ＂The Role and Importance of Mathematics in Innovation＂74pages	October 23， 2015
MI Lecture Note Vol 66	岡田 勘三 藤澤 克己 白井 朋之 若山 正人 脇 隼人 Philip Broadbridge 山本 昌宏	Study Group Workshop 2015 Abstract，Lecture \＆Report 156pages	November 5， 2015
MI Lecture Note Vol 67	Institute of Mathematics for Industry，Kyushu University	IMI－La Trobe Joint Conference ＂Mathematics for Materials Science and Processing＂ 66pages	February 5， 2016
MI Lecture Note Vol 68	古庄 英和 小谷 久寿 新甫 洋史	結び目と Grothendieck－Teichmüller 群 116pages	February 22， 2016
MI Lecture Note Vol 69	土橋 宜典鍛治 静雄	Symposium MEIS2016： Mathematical Progress in Expressive Image Synthesis 82pages	October 24， 2016
MI Lecture Note Vol 70	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2016 ＂Agriculture as a metaphor for creativity in all human endeavors＂ 98pages	November 2， 2016
MI Lecture Note Vol 71	小磯 深幸 二宮 嘉行 山本 昌宏	Study Group Workshop 2016 Abstract，Lecture \＆Report 143pages	November 21， 2016

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol 72	新井 朝雄 小嶋 泉 廣島 文生	Mathematical quantum field theory and related topics 133pages	January 27， 2017
MI Lecture Note Vol 73	穴田 啓晃 Kirill Morozov 須賀 祐治 奥村 伸也 櫻井 幸一	Secret Sharing for Dependability，Usability and Security of Network Storage and Its Mathematical Modeling 211pages	March 15， 2017
MI Lecture Note Vol 74	QUISPEL，G Reinout W BADER，Philipp MCLAREN，David I TAGAMI，Daisuke	IMI－La Trobe Joint Conference Geometric Numerical Integration and its Applications 71pages	March 31， 2017
MI Lecture Note Vol 75	手塚 集 田上 大助 山本 昌宏	Study Group Workshop 2017 Abstract，Lecture \＆Report 118pages	October 20， 2017
MI Lecture Note Vol 76	宇田川誠一	Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論 —Tzitzéica 方程式の楕円関数解を出発点として— 68pages	August 4， 2017
MI Lecture Note Vol 77	松谷 茂樹 佐伯 修 中川 淳一 田上 大助 上坂 正晃 Pierluigi Cesana 濱田 裕康	平成29年度 九州大学マス・フォア・インダストリ研究所共同利用研究集会（I） 結晶の界面，転位，構造の数理 148pages	December 20， 2017
MI Lecture Note Vol 78	瀧澤 重志 小林 和博 佐藤憲一郎 斎藤 努 清水 正明 間瀬 正啓 藤澤 克樹 神山 直之	平成29年度 九州大学マス・フォア・インダストリ研究所 プロジェクト研究 研究集会（I） 防災•避難計画の数理モデルの高度化と社会実装へ向けて 136pages	February 26， 2018
MI Lecture Note Vol 79	神山 直之 畔上 秀幸	平成29年度 AIMaPチュートリアル最適化理論の基礎と応用 96pages	February 28， 2018
MI Lecture Note Vol 80	Kirill Morozov Hiroaki Anada Yuji Suga	IMI Workshop of the Joint Research Projects Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling 116pages	March 30， 2018
MI Lecture Note Vol 81	Tsuyoshi Takagi Masato Wakayama Keisuke Tanaka Noboru Kunihiro Kazufumi Kimoto Yasuhiko Ikematsu	IMI Workshop of the Joint Research Projects International Symposium on Mathematics，Quantum Theory， and Cryptography 246pages	September 25， 2019
MI Lecture Note Vol 82	池森 俊文	令和 2 年度 AIMaPチュートリアル 新型コロナウイルス感染症にかかわる諸問題の数理 145pages	March 22， 2021

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol 83	早川健太郎軸丸 芳揮横須賀洋平可香谷 隆林 和希堺 雄亮	シェル理論•膜理論への微分幾何学からのアプローチと その建築曲面設計への応用 49pages	July 28， 2021
MI Lecture Note Vol 84	Taketoshi Kawabe Yoshihiro Mizoguchi Junichi Kako Masakazu Mukai Yuji Yasui	SICE－JSAE－AIMaP Tutorial Advanced Automotive Control and Mathematics 110pages	December 27， 2021
MI Lecture Note Vol 85	Hiroaki Anada Yasuhiko Ikematsu Koji Nuida Satsuya Ohata Yuntao Wang	IMI Workshop of the Joint Usage Research Projects Exploring Mathematical and Practical Principles of Secure Computation and Secret Sharing 114pages	February 9， 2022
MI Lecture Note Vol 86	濱田 直希 穴井 宏和 梅田 裕平 千葉 一永 佐藤 宽之 能島 裕介 加葉田雄太朗 一木 俊助 早野 健太 佐伯 修	2020年度採択分 九州大学マス・フォア・インダストリ研究所共同利用研究集会 進化計算の数理 135pages	February 22， 2022
MI Lecture Note Vol 87	Osamu Saeki， Ho Tu Bao， Shizuo Kaji， Kenji Kajiwara， Nguyen Ha Nam， Ta Hai Tung， Melanie Roberts， Masato Wakayama， Le Minh Ha， Philip Broadbridge	Proceedings of Forum＂Math－for－Industry＂ 2021 －Mathematics for Digital Economy－122pages	March 28， 2022
MI Lecture Note Vol 88	Daniel PACKWOOD Pierluigi CESANA， Shigenori FUJIKAWA， Yasuhide FUKUMOTO， Petros SOFRONIS， Alex STAYKOV	Perspectives on Artificial Intelligence and Machine Learning in Materials Science，February 4－6， 2022 74pages	November 8， 2022

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol 89	松谷 茂樹落合 啓之井上 和俊小磯 深幸佐伯 修白井 朋之垂水 竜一内藤 久資中川 淳一實田 裕康松江 要加葉田雄太朗	2022年度採択分 九州大学マス・フォア・インダストリ研究所共同利用研究集会 材料科学における幾何と代数 III 356pages	December 7， 2022
MI Lecture Note Vol 90	中山 尚子 谷川 拓司 品野 勇治 近藤 正章 石原 亨 鍛冶 静雄 藤澤 克樹	2022年度採択分九州大学マス・フォア・インダストリ研究所共同利用研究集会 データ格付けサービス実現のための数理基盤の構築 58pages	December 12， 2022
MI Lecture Note Vol 91	Katsuki Fujisawa Shizuo Kaji Toru Ishihara Masaaki Kondo Yuji Shinano Takuji Tanigawa Naoko Nakayama	IMI Workshop of the Joint Usage Research Projects Construction of Mathematical Basis for Realizing Data Rating Service 610pages	December 27， 2022
MI Lecture Note Vol 92	$\begin{array}{cc} \text { 丹田 } & \text { 聡 } \\ \text { 三宮 } & \text { 俊 } \\ \text { 廣島 } & \text { 文生 } \end{array}$	2022年度採択分 九州大学マス・フォア・インダストリ研究所共同利用研究集会 時間•量子測定•準古典近似の理論と実験 ～古典論と量子論の境界～150pages	Janualy 6， 2023
MI Lecture Note Vol 93	Philip Broadbridge Luke Bennetts Melanie Roberts Kenji Kajiwara	Proceedings of Forum＂Math－for－Industry＂ 2022 －Mathematics of Public Health and Sustainability－170pages	June 19， 2023
MI Lecture Note Vol 94	國廣 昇 池松 泰彦 伊豆 哲也 穴田 啓晃 縫田 光司	2023年度採択分 九州大学マス・フォア・インダストリ研究所共同利用研究集会 現代暗号に対する安全性解析•攻撃の数理 260pages	Janualy 11， 2024

Institute of Mathematics for Industry Kyushu University

[^0]: MI Lecture Note Vol.95, Institute of Mathematics for Industry, Kyushu University

[^1]: - Calculate

