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The "WORKSHOP on Mathematics for Industry 2023 – Basis of Mathematics in nanomedicine

structures and life sensing" convened during September 25–29, 2023, at Warsaw University of

Technology, Poland, under the joint auspices of the Faculty of Mathematics and Information

Science, Warsaw University of Technology; Center for Advanced Studies, Warsaw University of

Technology; and Institute of Mathematics for Industry, Kyushu University, with the support of

the Excellence Initiative: Research University Programme at the Warsaw University of Technol-

ogy. With the participation of approximately 70 attendees, including researchers, students, and

PhD candidates, the workshop served as a nexus for interdisciplinary dialogue and collaboration

between the realms of mathematics and applied sciences.

The workshop program encompassed 25 individual talks and 5 mini-courses, each compris-

ing 3 lectures, spanning a spectrum of topics such as topological data analysis, medical imaging

methods, human genome models, big data, machine learning, cryptography, information ge-

ometry, convex optimization, physical models of elastic/plastic bodies and fluids and material

engineering. Delivered by experts from Polish and Japanese institutions, the presentations il-

luminated the symbiotic relationship between abstract mathematical constructs and real-world

engineering challenges, thereby fostering innovation and knowledge exchange. The accompa-

nying booklet contains comprehensive materials from the workshop prepared by the speakers,

including detailed summaries, presentation slides and references, providing a valuable resource

for continued study of the concepts presented during the event, with hope that it will not only

facilitate the exploration of novel research directions, but also catalyze the establishment of

international collaborations between academic environments in Poland and Japan with the goal

of leveraging mathematical methodologies to address pressing industrial concerns and societal

needs.

This work was supported by Institute of Mathematics for Industry, Joint Usage/Research

Center in Kyushu University (FY2023 Workshop(I) "WORKSHOP on Mathematics for Industry

2023 – Basis of Mathematics in nanomedicine structures and life sensing" (2023b004)).
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Introduction to Topological Data Analysis

Pawe
l D
lotko

Dioscuri Centre in Topological Data Analysis, IMPAN, Poland

In this mini-course we will explore both theoretical and practical foundations of Topo-
logical Data Analysis (TDA) — a field with a number of applications in physical,
natural and social sciences in the intersection between algebraic topology, computa-
tional geometry and computational methods. We will cover the basic tools of TDA
including discretization of spaces (in the form of various point cloud-based simplicial,
cubical and general CW-complexes), algorithms to compute homology and persistent
homology and applications of those. We will also explore TDA tools of visualization,
like mapper and ball mapper algorithms. Moreover we will present new tools of Eu-
ler Characteristic curves and profiles and show how they can be applied to standard
statistics. All the concepts will be illustrated with real examples. You will also be
required to perform computations on a number of toy and real-world datasets.

References

[1] Edelsbrunner, Harrer (2011), Computational Topology: An Introduction
[2] P. D	lotko, Computational and applied topology, tutorial, https://arxiv.org/abs/1807.08607
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The credo

Data have shape,
shape has meaning,
meaning brings value.

Topological Data Analysis

▶ Persistent homology,
▶ Conventional mapper,
▶ Ball mapper,
▶ Discrete Morse theory (if time permits),
▶ TopoTests (alternative option),
▶ On a very intuitive level,
▶ with a number of practical examples.

Introduction to Topological
Data Analysis

Paweł Dłotko, Dioscuri Centre in TDA, IMPAN,

WORKSHOP on Mathematics for Industry 2023

Politechnika Warszawska, MINI, 25-27 September 2023
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Filtration of Rips complex

4 vertices, 1 edge

Filtration of Rips complex

4 vertices

Simplicial complexes built from point clouds

▶ P = {p1, . . . , pn}, a finite point cloud with a metric d .
▶ We need a finite, combinatorial representation of the union of
balls.

▶ Rips complex at level ϵ consists of simplices supported in
p0, . . . , pn if B(pi , ϵ

2)∩B(pj ,
ϵ
2) ̸= ∅ for every i , j ∈ {0, . . . , n}.

▶ Čech complex at level ϵ consists of simplices supported in
p0, . . . , pn iff

⋂n
i=0 B(pi ,

ϵ
2) ̸= ∅.
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Persistence matrix algorithm
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Interpretation of reduced matrix

1. The reduced matrix gives the persistence intervals.

2. If the column is zero, then it creates a new homology class.

3. If the column is nonzero, then it kills a homology class.
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Persistence matrix algorithm
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Persistence matrix algorithm
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Dim 0: [2,5], [3,6], [4,8]  Dim 1: [7.10] 
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Lots of B, or a single A?

B B

B B

B B

B B

B B

B B

B B B B B B B B

B B

B B

B B

B B
BB

B B

B B

BB
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B BB
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B B

B B

B B

B B

Invariance

▶ Persistent homology is a rigorous way of quantifying closed
shapes,

▶ ... like connected components, cycles, voids and more.
▶ No matter if they are embedded in two or a million
dimensional space,

▶ No matter if they are rotated, stretched or transformed in any
other way.

▶

▶

Persistence matrix algorithm
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Dim 0: [2,5], [3,6], [4,8], [1,inf]  Dim 1: [7.10], [9,inf] 
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Practical exercise 2

▶ Let us go back to our jupyter-notebooks exercises.
▶ Open PH persistence simple point cloud,
▶ Compute persistent homology of a point cloud sampled from
a circle (without and with a considerable amount of noise).

Distances between diagrams

Optimal matchings between points of two persistence diagrams
allow us to define standard distances between them – bottleneck
(length of the longest edge in the matching) and p-Wasserstein
(sum of lengths of matching lines to the power q) to the power 1q .

Robustness

▶ Persistent homology is a rigorous way of quantifying closed
shapes,

▶ ... like connected components, cycles, voids and more.
▶ No matter if they are embedded in two or a million
dimensional space,

▶ No matter if they are rotated, stretched or transformed in any
other way.

▶ Multi-scale,
▶ Robust.

24



Warning, outlayers!

outliers can be a problem, filtration weighted by a distance to
measure estimators

Warning, outliers!

outliers can be a problem, filtration weighted by a distance to
measure estimators

Warning, outliers!

Outlayers can be a problem, filtration weighted by a distance to
measure estimators
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S&P-500 and crashes

Persistence for time series analysis

Practical exercise 3

▶ Digital images are partially-constant discretization of
functions.

▶ Let us go back to our exercises.
▶ Open PH distance from circle,
▶ In this exercise we will construct a cubical approximation of a
function f : [−2, 2]2 → R. f (x , y) is a distance from (x , y) to
a unit circle x2 + y2 = 1.

▶ Let us visualize it as an image, and let us compute persistent
homology of the corresponding cubical complex.

27



Persistent homology

▶ We have robust,
▶ multi scale,
▶ coordinate–free,
▶ compressed,
▶ tool to detect connected components, cycles, voids and their
generalizations.

▶ It can be interfaced in various ways with standard stat. and
ML tools.

And more...

▶ We do not have time to cover all this ground.
▶ But, there are numerous resources for further work:

▶ https://arxiv.org/abs/1807.08607
▶ https:
//www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf

▶ https://gudhi.inria.fr/tutorials/
▶ and many more...

Persistence–based descriptors of nanoporous materials

Lee, Bathel, Dłotko, Mossavit, Smit, Hess, Quantifying similarity of pore-geometry in nanoporous materials,
Nature Communications, 15396

28



Persistence is nice, but, what about flares?

=

Persistence homology of those two point clouds will be very
similar, as they both have one connected component and one hole.

Homology and persistent homology, biased collection of
resources

▶ Edelsbrunner and Harer, Computational Topology, An
Introduction, AMS.

▶ Kaczynski, Mischaikow, Mrozek, Computational Topology,
Springer 2003.

▶ Dłotko, Applied and Computational Topology, Tutorial
▶ Multiple youtube videos.

Persistent homology, the output
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▶ Muti set of points in R2.
▶ Variable size, not ideal representation to interface with ML/AI
and statistics → persistence representations, embeddings, ...

▶ We need to embed persistence diagrams into a Hilbert space
(vectorize them).

▶ That makes topological/statistical inference - hypothesis
testing, confidence intervals,... possible.
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Practical exercise 2

▶ Let us play with something more advanced, let us consider
standard Boston property dataset.

▶ Please open Mapper boston dataset
▶ It contains 13 variables, we want to understand its relation to
prices of properties in Boston area (in ’1970).

▶ Here we will use t-distributed stochastic neighbor embedding
as a filtering function.

▶ We will be able to experiment with numerous clustering
methods as well.

▶ Obtained mapper graphs will be colored by the average price
of a property in a given cluster.

▶ This is not the last time we see Boston Property Dataset!

Practical exercise 1

▶ Let us play with Mapper algorithm!
▶ Go to https://github.com/dioscuri-tda/tutorials
▶ Let us start from something simple – open
Mapper concentric circles

▶ In this exercise we will generate two concentric circles in a
plane.

▶ We will use projection to the y coordinate as a lens function,
▶ And a DBSCAN with certain parameters as a clustering
algorithm.

▶ What is the Mapper graph we obtain?

Mapper is the most well known tool of TDA

Nicolau, Levine, Carlsson, Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent

survival, PNAS 2011.
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From a gray scale image to a point

(p1,…,p1        )
16384

(p2,…,p2        )
16384

(p3,…,p3        )
16384

(p4,…,p4        )
16384

(p6,…,p6        )
16384

(p5,…,p5        )
16384

Gray scale images converted to vectors in high dimensional space

Network based landscapes of data

128× 128 = 16384 dimensional space

Network based landscapes of data

Meet the Lucky Cat
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Practical exercise 2

▶ In our second example we will re-visit already known Boston
Property Dataset.

▶ Please open BM Boston property
▶ This time we will use Ball Mapper to examine the structure of
the 13 dimensional point cloud, and the distribution of the
explanatory variable (price of properties) on the top of it.

▶ We will use tools from the Ball Mapper implementations to
recognize which coordinates makes most statistical differences
between the regions of the graph.

Practical exercise 1

▶ Please open BM basic circle.
▶ In this proof-of-concept example we will generate a collection
of points sampled from a unit circle x2 + y2 = 1.

▶ And built a Ball Mapper graph based on it.
▶ Do we see what we expected to see?

Network based landscapes of data

128× 128 = 16384 dimensional space
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Testing, for one-sample problem
Available methods depends on the data dimension
▶ 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov,
Cramer-von Mises, Andersonâ€“Darling, Chi-squared,
Shapiro-Wilks

▶ 2-D: theoretical results for Kolmogorov-Smirnov and
Cramer-von Mises, some implementations available in python
and R

▶ d-D: Kolmogorov-Smirnov should work but no
implementation available, critical values of test statistics
unknown, impractical in higher dimensions

Kolmogorov-Smirnov test

Here, K-S will be used as benchmark
▶ one-sample: Dn = supx |Fn(x)− F (x)|
▶ two-sample:

Dn,m = supx |F1,n(x)− F2,m(x)|

Basic stats

▶ One-sample problem: We are given a data sample
X = {x1, x2, . . . , xn}, xi ∈ Rd and cumulative distribution
function F : Rd → [0, 1]. Does the data X follow the
distribution F : X ∼ F?

H0 : X ∼ F vs. H1 : X ≁ F

▶ Two-sample problem: We are given two samples X1 ∼ F1
and X2 ∼ F2 and want to test hypothesis that X1 and X2 were
drawn from the same (unknown) distribution

H0 : F1 = F2 vs. H1 : F1 ̸= F2

Basic stats

Topology and hypotehesis testing
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One sample TopoTests

Input: sample X = {x1, x2, . . . , xn}, xi ∈ Rd and CDF
F : Rd → [0, 1].
Step 1: EF (χ(n, r)), the Blueprint of F
▶ draw n-element samples X ′

1,X
′
2, . . . ,X

′
M from F

▶ for each sample X ′
i compute its ECC χ(Cr (X

′
i ))

▶

1
M

M∑

i=1

χ(Cr (X
′
i ))

a.s.−−−−→
M→∞

EF (χ(n, r))

TopoTests, one-sample problem, input

We are given a data sample X = {x1, x2, . . . , xn}, xi ∈ Rd and
cumulative distribution function F : Rd → [0, 1].

Testing, for one-sample problem
Available methods depends on the data dimension
▶ 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov,
Cramer-von Mises, Andersonâ€“Darling, Chi-squared,
Shapiro-Wilks

▶ 2-D: theoretical results for Kolmogorov-Smirnov and
Cramer-von Mises, some implementations available in python
and R

▶ d-D: Kolmogorov-Smirnov should work but no
implementation available, critical values of test statistics
unknown, impractical in higher dimensions

Kolmogorov-Smirnov test

Here, K-S will be used as benchmark
▶ one-sample: Dn = supx |Fn(x)− F (x)|
▶ two-sample:

Dn,m = supx |F1,n(x)− F2,m(x)|
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Simulation results (one-sample)
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Simulation results (one-sample)

Test Power: probability that H0 is correctly rejected when H1 is
true
▶ samples sizes 100–5000 data points
▶ test power estimated using 1000 MC replications
▶ power compared with KS (d ≤ 3)
▶ α on diagonal is expected
▶ distributions easy to confuse with normal:

▶ t-Student with ν = {3, 5, 10} DoF
▶ MVN non-diagonal Σ matrix
▶ Cartesian products with N (0, 1) marginals

▶ TopoTests yielded higher power than KS in most of the cases
▶ Heavy MC simulations powered by Google.
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Discrete Morse Theory

1. Let us now have a look at a Discrete Morse Theory.

2. K - finite regular CW complex.
3. f : K → R, constant on every cell, is a discrete Morse
function if for every αp ∈ K:
3.1 #{βp+1 > αp|f (βp+1) ≤ f (αp)} ≤ 1
3.2 #{γp−1 < αp|f (γp−1) ≥ f (αp)} ≤ 1

4. Simplex is critical if both (1) = 0 and (2) = 0.

5. For any simplex conditions (1) and (2) cannot be both = 1
(=⇒ define discrete gradient).

Every mathematician has a secret weapon. Mine is
Morse theory.

Raoul Bott

TopoTests, take home message

▶ There are multiple papers where topological techniques are
used to show differences in distributions

▶ Usually they work
▶ We shown an important case, where it works, is comparable or
better than state of the art in low dimension and have no
competitions in high dimensions

▶ Not only that, we have theoretical guarantee for that
▶ Those guarantees does not depend on the fact that we started
from point clouds

▶ We hope that this meta–observation will open up new
opportunities in applied topology
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Illustration

Illustration

How discrete Morse functions are usually constructed?

1. We almost never assign the values. Gradient is sufficient.

2. It will be represented by arrows.

3. Every simplex can be either tail of head of exactly one arrow.

4. The vector field is curl-free (i.e. there are no loops).

5. Critical cells of Morse functions = cells which are unpaired.
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Illustration

Illustration

Illustration
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Illustration

Illustration

Illustration
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Observations

Dim 1:
[4,6]
[5,6]

(a,1) (b,1)

(d,5)

(Y,6) (X,6)

(c,4) (e,3)
Dim 0:
[1,3]
[1,∞)

Observations

(a,1) (b,1)

(d,5)

(Y,6) (X,6)

(c,4) (e,3)
Dim 0:
[1,3]
[1,∞)

Observations

▶ A ∈ M∞(C ), and B1, . . . ,Bn be in boundary of A in M∞(C ).
▶ g(A) > g(B1), . . . , g(Bn).
▶ M∞(C ) is the minimal cell complex (w.r.t number of cells)
with the same persistence as C .
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Thank you for your time!

Dioscuri Centre in Topological Data Analysis
@Facebook

Paweł Dłotko
pdlotko @ impan.pl
pdlotko @ gmail
pawel dlotko @ skype
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Medical imaging signatures with topology for
cancer

Hidetaka Arimura

Faculty of Medical Sciences, Kyushu University, Japan

What the author is interested in is the connection between medicine and mathematics.
A human body is equivalent to a tube or donut (without considering holes of nose
and eyes). The central hole is a digestive system. The body is covered by surface
tissue (epithelial cells). The epithelial cells exposed to the outside world might have
gene mutations, thereby resulting in cancer cells. On the other side, the heterogeneity
of pixel values in medical images (computed tomography, magnetic resonance imag-
ing, positron emission tomography, etc) would reflect biological tumor heterogeneity,
which could be related to the degree of malignancy and patients’ prognoses. We have
attempted to develop novel medical imaging signatures, which are defined as sets of
features calculated based on mathematical models from medical images, for prediction
of the degree of malignancy and patients’ prognoses. As results, the author’s group
has shown several data that the topological imaging signatures could be superior to
conventional ones in terms of the prediction. The topological image features are de-
rived from Betti number maps (b0, b1, and b2) within cancer regions of medical images.
The assumption that the author has thought through (not twisting things around) is
that the b0, b1, b2 features may characterize high tumor cell density areas, scattered
dead cell areas (necrotic tissues), cancer blood vessels (angiogenesis), respectively. The
author will present the basics of topological image features and the applications to lung
cancer and head and neck cancer.
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What is mathematics?

ü Mathematics is the art of giving the same 
name to different things (Henri Poincar´e)

ü Mathematics is the structure of abstract 
reasoning (Richard Philips Feynman)

6

Abstract science︖

Nature of medical physics 

5

4

Outline

ü Nature of medical physics 

ü Association in shape between human body and topology

ü What we are doing now (radiomics)

ü Mathematical models beyond conventional radiomics

ü Summary (1) 

65



What is medical physics (my field)?

9

Applied science that could describe natural phenomena 

related to human bodies with uncertainties (due to 

thermal motion or dynamic metabolic activity?) using 

mathematics that can be used for diagnosis and therapy 

Concrete, but 
Uncertain science? 
with abstract spice︖?

What is medicine?

ü Science of uncertainty and an art of 

probability [William Osler (1849-1919) , 

Principle and Practice of Medicine]

ü Inherent uncertainty in health care [The 

Lancet 2010; 375: 1666]

8

Uncertain science︖

What is physics?

ü Basic science that understands and describes 

concrete natural phenomena by using 
mathematics that can explain them

ü Basically, the natural phenomena could be 

theoretically predicted in the macroscopic world, 

but probabilistically predicted in the microscopic 

world (quantum mechanics).

7

Concrete science︖
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“The truth is invisible to the eye. 
However, mathematics can reveal and 

express its appearance.”

(By a mathematician in a novel of “The Doctor Loves 
Equations” written by Youko Ogawa)

12

“What is essential is visible to the heart.
It is invisible to the eye.” (modified from an original 

version)

(By a fox in “The Little Prince”)

11

What we can get in cancer properties

Big pictures on human body and diseases, 
because you can only predict softly 
something with uncertainties

フッターを追加 10
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Singularity theory and its applications to strongly
convex multiobjective optimization problems

Shunsuke Ichiki

Department of Mathematical and Computing Science, School of Computing, Tokyo
Institute of Technology, Japan

A multiobjective optimization problem is a problem to optimize multiple objectives,
such as cost, quality, safety and environmental impact in the industrial world. In this
mini-course, I would like to introduce theoretical applications of “singularity theory of
differentiable mappings”, which is a branch of geometry, to strongly convex multiob-
jective optimization problems.

For this purpose, we first introduce some of basic notions of singularity theory. We
also discuss a result called a “parametric transversality theorem”, which is an important
and fundamental tool in singularity theory for investigating generic mappings. Then,
as an application, we give a transversality theorem on linear perturbations. Next, we
explain some basic notions of multiobjective optimization and introduce a property of
the Pareto set (i.e. the set of optimal solutions) of a strongly convex multiobjective
optimization problem from the viewpoint of topology. Finally, based on them, we in-
troduce theoretical applications of singularity theory to strongly convex multiobjective
optimization problems.
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Explanatory Model Analysis

Przemyslaw Biecek

MI2 Data Lab, Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

Shapley values currently stand as the most widely employed technique for conducting
Explanatory Model Analysis (EMA) and achieving Explainable Artificial Intelligence
(XAI). Ongoing efforts are focused on crafting modifications and extensions to adapt
this method to address the diverse challenges posed by a wide array of applications.
In this presentation, I will illustrate instances where Shapley values, and by extension,
techniques utilized in explainable artificial intelligence, prove effective in distinguishing
models exhibiting distinct behaviors, even if their performance appears identical at
first glance. Subsequently, I will present a proposal for an iterative model analysis
process utilizing Shapley values. Drawing inspiration from Rashomon perspectives, this
approach, termed Shapley Lenses, provides a more nuanced perspective on predictive
models. The insights derived from predictive models can then be leveraged to construct
subsequent iterations of models with enhanced interpretability.
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Linear instability of Prandtl spirals

Tomasz Cieślak

Institute of Mathematics, Polish Academy of Sciences, Poland

We review a recent result with P.Kokocki and W.Ożański stating that the union of
three or more uniformly distributed Prandtl spirals is linearly unstable as a solution to
the Birkhoff-Rott equation. First, a linearization of the Birkhoff-Rott equation around
the Prandtl spirals is found. Next, a perturbation leading to the instability is shown.
Notice that, unlike for the flat sheet, the unstable modes grow only algebraically in
time. In our talk we partially answer the question of Helmholtz from his famous 1868
paper on discontinuous flows.
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Pseudospheres from singularity theory view-point
with a classification of 2-soliton surfaces

Toshizumi Fukui

Department of Mathematics, Saitama University, Japan

(joint work with Yutaro Kabata)

We discuss pseudospheres in the Euclidean 3-space with taking care about their singu-
larity types and Backlünd transformations. We investigate a classification of 2-soliton
surfaces by noting how the ridge lines appear.
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Formation of nanostructured functional particles
with the spray-drying method

Leon Gradoń

Faculty of Chemical and Process Engineering,
Warsaw University of Technology, Poland

The structure of matter, on both an atomic and macroscopic scale, is a result of the
interplay between the requirements of the physical forces operating between the indi-
vidual parts and the mathematical requirements of space-filling. Nanoparticles with
well-defined chemical composition can act as a building block for the construction of
functional structures, such as highly ordered aggregates, as well as porous and hollow
aggregates. A spray drying technique is used for the production of crystal-like struc-
tures with nanoparticle building blocks. When spray-drying uniform spherical particles
tightly packed aggregates with either simple or broken symmetry were formed using
polystyrene particles with varied zeta potential as templates, it is also possible to form
highly ordered porous and hollow aggregates from inorganic colloidal particles poten-
tially useful for controlled drug delivery and catalysis. The process by which organized
mesoporous silica particles are formed by the spray-drying method was examined using
elementary laws of topology.
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On comparing distributions with imprecise data

Przemys
law Grzegorzewski

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

One of the most fundamental problems in mathematical statistics is the comparison
of two or more distributions that characterize the underlying populations. Classical
tests applied there are constructed with pretty specific assumptions concerning the
distributions, like normality, exponentiality, etc. However, in reality, these assumptions
are often not met. The problem becomes much more difficult when the output of an
experiment consists of data that are imprecise, or vague. There we need a model that
allows us to grasp both aspects of uncertainty that appear in such data: randomness,
associated with the data generation mechanism, and fuzziness, connected with data
imprecision. To cope with this problem Puri and Ralescu (1986) introduced a fuzzy
random variable.

On the other hand, in analyzing fuzzy data from the statistical perspective we
immediately come upon some key obstacles, like the nonlinearity associated with the
fuzzy number arithmetic, the lack of a universally accepted total ranking, the lack of
suitable probability distribution models, or no limit theorems for random mechanisms
producing fuzzy data which could be directly applied in statistical inference. Therefore,
statistical tests with imprecise data usually cannot be generalized straightforwardly
from their classical prototypes.

We show that some of the aforementioned difficulties in test construction can be
overcome by using permutation-based nonparametric procedures. Combining these
with a distance-based approach or a dominance credibility index gives us some inter-
esting goodness-of-fit and location tests, respectively.
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Brief Introduction to Topology for Multi-objective
Optimization

Naoki Hamada

Machine Learning Group, KLab Inc.

A broad range of scientific and engineering tasks, including data analysis, product
design, modeling, planning, and management, can be formulated in multi-objective
optimization problems. Recent developments in convex analysis and data science us-
ing topology have brought a new paradigm for solving and analyzing multi-objective
optimization problems. In this talk, several applications of topology to multi-objective
optimization will be presented. We will show how the topology of convex analysis can
be applied to a sparse modeling task, generalizing the regularization path of the elas-
tic net and efficiently tuning its two hyper-parameters simultaneously. To extend this
idea beyond the convexity assumption, we introduce a statistical test using persistent
homology and the Poincaré conjecture whether the hyper-parameter tuning method
works.
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Persistent Homology and Machine Learning

Yuichi Ike

Institute of Mathematics for Industry, Kyushu University, Japan

Persistent homology is a central tool in topological data analysis. It encodes the topo-
logical features of given data into persistence diagrams, which are multisets in the
two-dimensional space. In connection with machine learning, persistence diagrams
have been used as an input of machine learning algorithms as feature vectors and are
effectively applied in material science and medical science. Recently, many techniques
have been developed to incorporate persistence diagrams into loss functions for control-
ling the topology of parameters. In this talk, I will start with the basics of persistent
homology and some applications. Then I would like to discuss several recent develop-
ments in optimizing TDA-based loss functions and their applications in dimensionality
reduction or visualization.
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Exotic shapes of nano-spherical structures - new
DNA coding

Stanislaw Janeczko

Center for Advanced Studies,
Warsaw University of Technology, Poland

(joint work with Hassan Babiker)

The simplest naturally ordered tetrahedral packing consists of an ordered sequence of
regular tetrahedra glued together face to face as with the linear packing of a tetrahedral
helix.Such tetrahedral structures are called tetrahedral chains.

Any tetrahedral chain consists of the three types of simplest configurations of four
consecutive tetrahedra called tetrahedral units. Two of these types are left and right
tetrahedral short spirals, U,D, and the third type, F, is a flat configuration of four
tetrahedra. The structure of a tetrahedral chain in D,F, U elementary units is written
as a word like UUDFUD....

The three strands of the left or right oriented tetrahedral helix form a spiral with
irrational slope. This is the reason for the effective density of tetrahedral chains and
nonexistence of closed tetrahedral chains in Euclidean space.

Let us assume that the gluing process of tetrahedra is ordered along a chain and each
step of this process is realized by reflection in a particular face of adjacent tetrahedron.
To each tetrahedron we assign four reflections Ri, i = 1, . . . , 4, in the configurational
three dimensional space V. Reflections Ri in V are represented by four corresponding
reflect-morphisms R̄i, i = 1, . . . , 4, acting in the space of regular tetrahedra T through
a reflectional transformation of their vertices. In V, dimV = n, any tetrahedral chain
of length n + 1 is uniquely represented by an initial tetrahedron T and an ordered
sequence of n reflect-morphisms

R̄i1 , . . . , R̄in , ik ̸= ik+1, k = 1, . . . , n− 1.

The fact that a tetrahedral chain is so rigid in 3-space and regular tetrahedra can not
tile the space gives rise to several questions. The main question we consider is the
recognition of combinatorial and algebraic structures of tetrahedral chains. We want
to investigate their geometric properties and determine what kind of information is
contained in the chain invariants of orthogonal transformations and re-numberings. We
use the parametrization of the chains by sequences of ordered reflections in barycentric
coordinates and find their combinatorial structure. Periodicity along a chain is based on
the structure of sequences of admissible triplets of integers and their cycling properties.
The corresponding numerical invariants and an indexing role of a binary tetrahedral
group defines the complete coding properties in dimension three.
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- Barrow boy’s packing, cell is a rhombic dodecahe-

dron
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Sphere packings

- Square packing, face-centered cubic packing
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Sphere packing
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Sphere packing
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- Hexagonal packing, the third layer sits exactly above

the first layer.
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Tetrahedral chains
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Icosahedron
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Sphere packing
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Tetrahedral chains
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Tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 11

Tetrahedral chains

H. Steinhaus, 1957; J.H. Mason, 1972
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Tetrahedra in barycentric coordinates

T ≡ {p1, p2, p3, p4}, {(S1, p1), . . . , (S4, p4)}

T −regular tetrahedra, ‖ pi−pj ‖=‖ pk−pl ‖, i �= j, k �= l

T ⊂ V ⊗ U∗, U ≡ R4

V - configurational affine space, dimV = 3

U - barycentric coordinates (α1, . . . , α4) ∈ U

H = {∑4
i=1αi = 1} - canonical affine hyperplane
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Dual tetrahedral chains
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Almost closed tetrahedral chains
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Generation of tetrahedral chain

si center of Si, si =
1
3(

∑4
j=1 pj − pi)

Four orthogonal reflections by Si

Ri(p) = p− 2
(p− si|si − pi)

(si − pi|si − pi)
(si − pi)

Ri(pj) = pj +2δij(
1

3

∑

k �=i
pk − pj), j = 1, . . . ,4

{T (i)}ni=0 tetrahedral chain
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M is defined uniquely by the commuting diagram

T(M(•)) = F (T(•))

F (pi) =
∑4
j=1αjipj in barycentric coordinates αji.

Then

4∑

i=1

4∑

j=1
αjipj⊗e∗i =

4∑

j=1
pj⊗(

4∑

i=1
αjie

∗
i ) =

4∑

j=1
pj⊗M∗(e∗j).
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T ∈ T , T =
∑4
i=1 pi ⊗ e∗i

Barycentric coordinate map T : H → V :

T(α) =
∑4
i=1 pi ⊗ e∗i (α) =

∑4
i=1αipi,

α =
∑4
i=1αiei ∈ H, and geometrically

T = T(H ∩ {αi ≥ 0})
F : V → V affine mapping.

F lifts to a linear mapping

M : (U,H) → (U,H)

preserving the hyperplane H

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 16
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R̄i is represented by transpose of Mi

EXAMPLE

R1(
4∑

i=1
pi ⊗ e∗i ) =

4∑

i=1
p
(1)1
i ⊗ e∗i ,

where



p
(1)1
1

p
(1)1
2

p
(1)1
3

p
(1)1
4




=




−1 2
3

2
3

2
3

0 1 0 0
0 0 1 0
0 0 0 1







p1
p2
p3
p4




,

T
(n)
i1...in

= R̄in . . . R̄i1T.
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Representation in barycentric coordinates

R̄i : T → T , R̄i(v ⊗ u∗) = v ⊗M∗
i u

∗

M1 =




−1 2
3

2
3

2
3

0 1 0 0
0 0 1 0
0 0 0 1




T

,M2 =




1 0 0 0
2
3 −1 2

3
2
3

0 0 1 0
0 0 0 1




T

,

M3 =




1 0 0 0
0 1 0 0
2
3

2
3 −1 2

3
0 0 0 1




T

,M4 =




1 0 0 0
0 1 0 0
0 0 1 0
2
3

2
3

2
3 −1




T

.
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T (0) = T,

T
(1)
i1

= R̄i1T,

T
(2)
i1i2

= R̄i2Ri1T, i1 �= i2,

. . . . . . . . .

T
(n)
i1i2...in

= R̄in . . . R̄i2R̄i1T, ik+1 �= ik, k = 1, . . . , n− 1.

R̄i : T → T twist morphisms, defined by Ri.
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Basic units

Tetrahedral chains: DDUF . . . UDFFD.
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Shape orientation

c

c

(2)
c

(3)

(1)

c

(0)

x
1

x

x2

3
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Coding in triplets of consecutive steps

T
(r+1)
k = R̄kT

(r)

T
(r+2)
kj = R̄jR̄kT

(r)

T
(r+3)
kji = R̄iR̄jR̄kT

(r).

U,D, F : T
(r+3)
kji = R̄iR̄jRkT

(r)

F : T (r+3); det(xr+1, xr+2, xr+3) = 0

U : T (r+3); det(xr+1, xr+2, xr+3) > 0

D : T (r+3); det(xr+1, xr+2, xr+3) < 0
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UUUUUUUUUUFFUUUUUUUUUUFUFUUUUUUUUUUFFUUUUUUUUUUFF
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Combinatorial codes for U, D, F

Admissible triplets parametrizing U D F:

(k, i, j),1 ≤ i, j, k ≤ 4, k �= j �= i

EXAMPLE

UUDFD

(3,4,2) → (4,2,1) → (2,1,4) → (1,4,1) → (4,1,3).

T
(7)
3421413 = R3R1R4R1R2R4R3T

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 26
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D-chains period
(2,1,4) → (1,4,3) → (4,3,2) → (3,2,1)
(3,1,2) → (1,2,4) → (2,4,3) → (4,3,1)
(4,1,3) → (1,3,2) → (3,2,4) → (2,4,1)
(4,2,1) → (2,1,3) → (1,3,4) → (3,4,2)
(1,2,3) → (2,3,4) → (3,4,1) → (4,1,2)
(2,3,1) → (3,1,4) → (1,4,2) → (4,2,3)
(4,3,2) → (3,2,1) → (2,1,4) → (1,4,3)
(2,4,3) → (4,3,1) → (3,1,2) → (1,2,4)
(3,2,4) → (2,4,1) → (4,1,3) → (1,3,2)
(1,3,4) → (3,4,2) → (4,2,1) → (2,1,3)
(3,4,1) → (4,1,2) → (1,2,3) → (2,3,4)
(1,4,2) → (4,2,3) → (2,3,1) → (3,1,4)
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U-chains period
(3,2,1) → (2,1,4) → (1,4,3) → (4,3,2)
(4,3,1) → (3,1,2) → (1,2,4) → (2,4,3)
(2,4,1) → (4,1,3) → (1,3,2) → (3,2,4)
(3,4,2) → (4,2,1) → (2,1,3) → (1,3,4)
(4,1,2) → (1,2,3) → (2,3,4) → (3,4,1)
(4,2,3) → (2,3,1) → (3,1,4) → (1,4,2)
(1,4,3) → (4,3,2) → (3,2,1) → (2,1,4)
(1,2,4) → (2,4,3) → (4,3,1) → (3,1,2)
(1,3,2) → (3,2,4) → (2,4,1) → (4,1,3)
(2,1,3) → (1,3,4) → (3,4,2) → (4,2,1)
(2,3,4) → (3,4,1) → (4,1,2) → (1,2,3)
(3,1,4) → (1,4,2) → (4,2,3) → (2,3,1)
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Classification of admissible triplets

u d f

det(x1, x2, x3) = 32
√
3/243 det(x1, x2, x3) = −32

√
3/243 det(x1, x2, x3) = 0

(k, j, i) (k, j, i) (k, j, i)
(3,2,1) (4,2,1) (1,2,1)
(4,3,1) (2,3,1) (1,3,1)
(2,4,1) (3,4,1) (1,4,1)
(4,1,2) (3,1,2) (2,1,2)
(1,3,2) (4,3,2) (2,3,2)
(3,4,2) (1,4,2) (2,4,2)
(2,1,3) (4,1,3) (3,1,3)
(4,2,3) (1,2,3) (3,2,3)
(1,4,3) (2,4,3) (3,4,3)
(3,1,4) (2,1,4) (4,1,4)
(1,2,4) (3,2,4) (4,2,4)
(2,3,4) (1,3,4) (4,3,4)

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 29

203



Compositions of L∗−sequences form the indexing

space for tetrahedral chains

The indexing space is a binary tetrahedral subgroup

of S12

generated by three elements Lu, Ld, Lf with the

relations

L3
u = id, L3

d = id, L2
f = id, (LuLd)

2 = id.
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L - sequence for tetrahedral chain

Example

DUUFD −→ LdLfLuLdLd

Any periodic tetrahedral chain is characterized by

cycling composition of a numerical representation of

its period

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 33

Combinatorial structure

I = {(α, β) ∈ ∆×∆ : α �= β}

∆ = {1,2,3,4}

Uniquely defined mappings

Lu, Ld, Lf : I → ∆, #I = 12

and bijections

Lu,Ld,Lf : I → I,

L∗(i1, i2) = (i2, L∗(i1, i2)), ∗ = u, d, f.

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 32
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Zero branching order
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Tetrahelix
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Geometric characteristics

-proper tetrahedral chains

n 3 4 5 6 7 8 9 10 11 12 13

An 1 3 9 26 76 218 628 1802 5146 14670 41734

-branching order 0 ≤ b ≤ 3

-vertex order P (p),
∑
p∈VCn

P (p) = 4n

-clustering function

Cl(Cn) =
∑

p∈VCn

max(0, P (p)− 4)
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Ico-clusters

FFUFFDUDUDFFUFFDU,FFUFFDUDUDUDFFU

UFFDFFUDUDUFFDFFU,UFFDUDFFUFFDUDF

UDFFUFFDUDFFUFFDU,UDFFUFFDUDUDFFU
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Proper chains sharing one common vertex

b\n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 1 2 6 9 19 38 49 69 79 71 34 6
2 0 0 1 4 6 10 24 46 78 113 137 153 132 85 36 6 0
3 2 4 6 9 16 27 38 48 55 56 50 35 22 12 2 0 0

total 2 4 7 13 22 38 64 100 142 188 225 237 223 176 109 40 6
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Smallest unit b = 1
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Big periodic
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Clustering folding
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Clustering folding

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 45

208



Spray technology
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Nano-blood particles

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 49

Mixed clustering folding

H. Babiker, S. Janeczko, Combinatorial representation of tetrahedral

chains, Communications in Information and Sciences, Vol. 15, No. 3, (2015),

331-359
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Porous particles
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Large silica particles
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Silica particles
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Hollow particles

S.Y. Lee, L. Gradon, S. Janeczko, F. Iskandar, K. Okuyama, Formation

of Highly Ordered Nanostructures by drying Micrometer Colloidal

Droplets, ACS Nano Journal, Vol. 4, No. 8, (2010), 4717-4724

L. Gradon, S. Janeczko, M. Abdullah, F. Iskandar, K. Okuyama, Self-

Organization Kinetics of Mesoporous Nanostructured Particles, AIChE

Journal Vol. 50, No. 10, (2004), 2583-2593.
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Porous particles
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Stable porous particles
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A = Adenine, T = Thymine, C = Cytosine, G = Guanine
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Geometrical coding of DNA sequences
IV
{ UDFFUFFDUDFFUFFDU,{ A,C} } ACTATACACTACACTCTAC
{ UDFFUFFDUDFFUFFDU,{ A,T} } ATGAGATATGATATGTGAT
{UDFFUFFDUDFFUFFDU,{A,G} }AGCACAGAGCAGAGCGCAG
{UDFFUFFDUDFFUFFDU,{ C,A} } CAGCGCACAGCACAGAGCA
{ UDFFUFFDUDFFUFFDU,{ C,T} } CTACACTCTACTCTATACT
{UDFFUFFDUDFFUFFDU,{ C,G} } CGTCTCGCGTCGCGTGTCG
{ UDFFUFFDUDFFUFFDU { T,A} } TACTCTATACTATACACTA
{UDFFUFFDUDFFUFFDU,{ T,C} } TCGTGTCTCGTCTCGCGTC
{UDFFUFFDUDFFUFFDU,{ T,G} } TGATATGTGATGTGAGATG
{UDFFUFFDUDFFUFFDU,{G,A} }GATGTGAGATGAGATATGA
{UDFFUFFDUDFFUFFDU,{G,C} }GCAGAGCGCAGCGCACAGC
{UDFFUFFDUDFFUFFDU,{G,T} }GTCGCGTGTCGTGTCTCGT
V
{ UFFDUDFFUFFDUDFFU { A,C} } ACTCTACTCTATACTATAC
{UFFDUDFFUFFDUDFFU,{A,T} }ATGTGATGTGAGATGAGAT
{UFFDUDFFUFFDUDFFU,{A,G} }AGCGCAGCGCACAGCACAG
{UFFDUDFFUFFDUDFFU,{ C,A} } CAGAGCAGAGCGCAGCGCA
{ UFFDUDFFUFFDUDFFU { C,T} } CTATACTATACACTACACT
{UFFDUDFFUFFDUDFFU,{ C,G} } CGTGTCGTGTCTCGTCTCG
{ UFFDUDFFUFFDUDFFU,{ T,A} } TACACTACACTCTACTCTA
{UFFDUDFFUFFDUDFFU,{ T,C} } TCGCGTCGCGTGTCGTGTC
{UFFDUDFFUFFDUDFFU,{ T,G} } TGAGATGAGATATGATATG
{UFFDUDFFUFFDUDFFU,{G,A} }GATATGATATGTGATGTGA
{UFFDUDFFUFFDUDFFU,{G,C} }GCACAGCACAGAGCAGAGC
{UFFDUDFFUFFDUDFFU,{G,T} }GTCTCGTCTCGCGTCGCGT
VI
{ UFFDFFUDUDUFFDFFU { A,C} } ACTCTATACTACTCTATAC
{UFFDFFUDUDUFFDFFU,{A,T} }ATGTGAGATGATGTGAGAT
{UFFDFFUDUDUFFDFFU,{A,G} }AGCGCACAGCAGCGCACAG
{UFFDFFUDUDUFFDFFU,{ C,A} } CAGAGCGCAGCAGAGCGCA
{ UFFDFFUDUDUFFDFFU { C,T} } CTATACACTACTATACACT
{UFFDFFUDUDUFFDFFU,{ C,G} } CGTGTCTCGTCGTGTCTCG
{ UFFDFFUDUDUFFDFFU,{ T,A} } TACACTCTACTACACTCTA
{UFFDFFUDUDUFFDFFU,{ T,C} } TCGCGTGTCGTCGCGTGTC
{UFFDFFUDUDUFFDFFU,{ T,G} } TGAGATATGATGAGATATG
{UFFDFFUDUDUFFDFFU,{G,A} }GATATGTGATGATATGTGA
{UFFDFFUDUDUFFDFFU,{G,C} }GCACAGAGCAGCACAGAGC
{UFFDFFUDUDUFFDFFU,{G,T} }GTCTCGCGTCGTCTCGCGT

1
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Geometrical coding of DNA sequences
I
{ FFUFFDUDUDUDFFUFF,{ A,C} } ACACTCTACTACTATACAC
{ FFUFFDUDUDUDFFUFF,{ A,T} } ATATGTGATGATGAGATAT
{ FFUFFDUDUDUDFFUFF,{A,G} }AGAGCGCAGCAGCACAGAG
{ FFUFFDUDUDUDFFUFF,{ C,A} } CACAGAGCAGCAGCGCACA
{ FFUFFDUDUDUDFFUFF,{ C,T} } CTCTATACTACTACACTCT
{ FFUFFDUDUDUDFFUFF,{ C,G} } CGCGTGTCGTCGTCTCGCG
{ FFUFFDUDUDUDFFUFF { T,A} } TATACACTACTACTCTATA
{ FFUFFDUDUDUDFFUFF,{ T,C} } TCTCGCGTCGTCGTGTCTC
{ FFUFFDUDUDUDFFUFF,{ T,G} } TGTGAGATGATGATATGTG
{ FFUFFDUDUDUDFFUFF,{G,A} }GAGATATGATGATGTGAGA
{ FFUFFDUDUDUDFFUFF,{G,C} }GCGCACAGCAGCAGAGCGC
{ FFUFFDUDUDUDFFUFF,{G,T} }GTGTCTCGTCGTCGCGTGT
II
{ FFUFFDUDUDFFUFFDU,{ A,C} } ACACTCTACTACACTCTAC
{ FFUFFDUDUDFFUFFDU,{ A,T} } ATATGTGATGATATGTGAT
{ FFUFFDUDUDFFUFFDU,{A,G} }AGAGCGCAGCAGAGCGCAG
{ FFUFFDUDUDFFUFFDU,{ C,A} } CACAGAGCAGCACAGAGCA
{ FFUFFDUDUDFFUFFDU { C,T} } CTCTATACTACTCTATACT
{ FFUFFDUDUDFFUFFDU,{ C,G} } CGCGTGTCGTCGCGTGTCG
{ FFUFFDUDUDFFUFFDU { T,A} } TATACACTACTATACACTA
{ FFUFFDUDUDFFUFFDU,{ T,C} } TCTCGCGTCGTCTCGCGTC
{ FFUFFDUDUDFFUFFDU,{ T,G} } TGTGAGATGATGTGAGATG
{ FFUFFDUDUDFFUFFDU,{G,A} }GAGATATGATGAGATATGA
{ FFUFFDUDUDFFUFFDU,{G,C} }GCGCACAGCAGCGCACAGC
{ FFUFFDUDUDFFUFFDU,{G,T} }GTGTCTCGTCGTGTCTCGT
III
{ UDFFUFFDUDUDFFUFF { A,C} } ACTATACACTACTATACAC
{ UDFFUFFDUDUDFFUFF,{ A,T} } ATGAGATATGATGAGATAT
{UDFFUFFDUDUDFFUFF,{A,G} }AGCACAGAGCAGCACAGAG
{UDFFUFFDUDUDFFUFF,{ C,A} } CAGCGCACAGCAGCGCACA
{ UDFFUFFDUDUDFFUFF,{ C,T} } CTACACTCTACTACACTCT
{UDFFUFFDUDUDFFUFF,{ C,G} } CGTCTCGCGTCGTCTCGCG
{ UDFFUFFDUDUDFFUFF { T,A} } TACTCTATACTACTCTATA
{UDFFUFFDUDUDFFUFF,{ T,C} } TCGTGTCTCGTCGTGTCTC
{UDFFUFFDUDUDFFUFF,{ T,G} } TGATATGTGATGATATGTG
{UDFFUFFDUDUDFFUFF,{G,A} }GATGTGAGATGATGTGAGA
{UDFFUFFDUDUDFFUFF,{G,C} }GCAGAGCGCAGCAGAGCGC
{UDFFUFFDUDUDFFUFF,{G,T} }GTCGCGTGTCGTCGCGTGT

1
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How to measure data diversity and why it is
important?

Pawel Józiak

Faculty of Mathematics and Computer Science,
Warsaw University of Technology, Poland

In Machine Learning we often hear about patterns that algorithms overfit to. To
prevent it, a high quality data, a bunch of data that is curated needs to be prepared.
I will discuss what tools are available, other than manual labor, in order to tell whether
the dataset is diverse, and how we used the knowledge gained through it in order to pre-
pare a highly diverse (and thus highly challenging) Document Understanding Dataset
and Evaluation (DUDE) in the domain of DocumentAI, a field at the boundary of
Natural Language Processing and Computer Vision. Joint work with Jordy Van Lan-
deghem, Rubén Tito, Lukasz Borchmann, Michal Pietruszka, Rafal Powalski, Dawid
Jurkiewicz, Mickaël Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko,
Sien Moens, Tomasz Stanislawek.

References

[1] Jordy Van Landeghem, Rubén Tito, Lukasz Borchmann, Michal Pietruszka, Rafal Powalski,
Dawid Jurkiewicz, Mickaël Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko,
Sien Moens, Tomasz Stanislawek. Document Understanding Dataset and Evaluation (DUDE).
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp.
19528-19540
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Cryptographic protocol verification - results of
EPW project

Konstanty Junosza-Szaniawski

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

Cryptographic protocols are fundamental to cybersecurity, necessitating assurance that
these protocols are devoid of flaws. Among the various tools available for the verifi-
cation of cryptographic protocols, ProVerif stands out. ProVerif models protocols
using Horn formulas and verifies the security properties through the satisfiability of
corresponding logical formulas. However, the complexity of modeling protocols and
their properties in ProVerif is time-consuming and requires a high level of knowledge.
To address this, we have developed a translator from the AnB language, which de-
scribes protocols from a global perspective, to ProVerif syntax. This translator sim-
plifies the modeling process, enabling easy verification of key security properties with
ProVerif, such as secrecy, forward secrecy, weak secrecy, indistinguishability, authenti-
cation, non-replay authentication, and key compromise impersonation. Our translator
is a principal outcome of the project ”Experimental Platform for Automatic Valida-
tion of Crypto Algorithms and Verification of Crypto Protocols” (EPW), funded by
The National Centre for Research and Development under the grant CYBERSECI-
DENT/456962/III/NCBR/2020.
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Equivalence checking

Equivalence checking

Equivalence checking
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Thank you

Challenges*:

➢ Formally verifiable translations to other protocol languages

➢ Extended list of security properties

* currently under consideration
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Synergies of medicine, physics, and mathematics in
medical imaging

Shizuo Kaji

Institute of Mathematics for Industry, Kyushu University, Japan

Medical imaging provides detailed visual representations of internal structures and
functions of the human body and plays a pivotal role in diagnosing, monitoring, and
treating various medical conditions. Mathematical disciplines intersect with medical
imaging in multifaceted ways, encompassing:

• Image reconstruction involves the transformation of raw measurements across
diverse modalities such as computed tomography (CT), magnetic resonance
imaging (MRI), and ultrasound into coherent, human-interpretable images.

• Image enhancement and information Extraction aim at refining image
quality while extracting vital information embedded within.

• Quantitative analysis unveils deeper insight into the heterogeneity and pro-
gression of diseases in an objective and reproducible manner.

We will present some of our collaborative endeavours, bridging the expertise of medical
doctors, medical physicists, and the realm of mathematics. Our work showcases appli-
cations of machine learning and topology that fortify and enrich the field of medical
imaging.
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Plasticity – Modeling and mathematical analysis

Konrad Kisiel

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

(joint work with Krzysztof Che�lmiński)

Systems of equations describing an inelastic response of metals, with the fundamental
assumption of small deformations, consist of linear partial differential equations coupled
with nonlinear differential inclusions (or ordinary differential equations) for the vector
of internal variables. The partial differential equations result from general mechanical
laws. The differential inclusions are experimental, and depend on the kind of considered
materials. One of the main assumptions needed in known existence theories is so-called
safe-load condition. This kind of assumption is an indirect assumption on regularity of
data. Our main goal is to present a method to obtaining existence of solutions, where
the safe-load condition can be replaced by an assumption abouth the size of the set of
addmissible stresses.
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3. Safe-load condition

Definition 2 (quasistatic case)

The given data F, gN satisfy the safe-load condition if there exists g∗D such that the
unique solution (u∗, T ∗) of the linear system

divx T
∗(x, t) = −F (x, t)

T ∗(x, t) = Dε(u∗(x, t))

u∗(x)|ΓD = g∗D(x, t) , T ∗(x) · n(x)|ΓN = gN(x, t) .

have the regularity:
u∗ ∈ W1,∞(H1), T ∗ ∈ W1,∞(L2) and there exists δ > 0 such that

{T ∗ + σ : |σ| ≤ δ} ⊂ D(g)

and there exist uniformly bounded in L∞(L2) selections of the sets g(T ∗ + σ).

For the Prandtl-Reuss model with the Hencky flow rule this condition is equivalent
to: there exists δ > 0 such that |dev T ∗| ≤ k − δ .

6

2. Elasto - perfect plasticity (the Prandtl–Reuss model)

εpt (x, t) ∈ ∂IK
(
T (x, t)

)
, K = devK × {c · I : c ∈ R}

where dev T = T − 1/3 (trT ) · I. Moreover, devK is convex with 0 ∈ int (K) .

Hencky flow rule devK = B(0, k) ⇔ ∀ S ∈ K |dev S| ≤ k .

�|εpt |

|dev T |k

�

devK

K

c I

S ∈ ∂IK(T ) ⇔ (S, T − τ ) ≥ 0 ∀ τ ∈ K
∂IK(T ) is monotone and 0 ∈ ∂IK(0)

5

Models of premonotone type

Prof. Dr. Dr. h.c. Hans-Dieter Alber in the monograph Materials with memory
LNM 1998 has defined a very large class of models: models of premonotone type.

Definition 1
A model is called of premonotone type if the inelastic constitutive relation is in the
form

εpt ∈ g
(
− ρ∇εpψ(ε, ε

p)
)

where ψ(ε, εp) = 1
2D(ε− εp) · (ε− εp) is the free energy function and

g : D(g) ⊂ S3 → P(S3) is a given inelastic multifunction satisfying:

∀z ∈ D(g) g(z) · z ≥ 0 (∗)

If we additionally assume that g(0) ∋ 0 (∗) ⇔ monotonicity at the point 0. All
models used in practice are of premonotone type.

Models of monotone type ⇔ g is additionally monotone

4
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Let us recall the definition of the space LD(Ω).

Definition 3

LD (Ω) =
{
u ∈ L1

(
Ω;R3

)
: ε (u) ∈ L1

(
Ω;S3

)}

LD (Ω) is the Banach space equipped with the standard norm

∥u∥LD(Ω) = ∥u∥L1(Ω) + ∥ε (u)∥L1(Ω) .

Theorem 2

Assume that Ω ⊂ R3 is open, bounded and ∂Ω ∈ C1. Then, there exists a bounded
linear operator

γ : LD (Ω) → L1
(
∂Ω;R3

)
,

such that γ (u) = u|∂Ω for every φ ∈ LD (Ω) ∩ C0
(
Ω
)
. Hence

∃CLD > 0 ∀u ∈ LD (Ω) ∥γ (u)∥L1(∂Ω) ⩽ CLD ∥u∥LD(Ω).

Moreover, the following embedding theorem holds,

∃CELD > 0 ∀u ∈ LD (Ω) ∥u∥L3/2(Ω) ⩽ CELD ∥u∥LD(Ω).

9

4. Energy estimates without safe-load condition

Let us consider for simplicity the quasistatic Prandtl-Reuss model .

−divxT = F,

T = D (ε− εp) ,

εpt ∈ ∂IK (T ) ,

Our approach is to modify only the inelastic constitutive equation and consider the
following problem

−divx T
λ =F,

T λ =D
(
ελ − εp,λ

)
,

εp,λt =Mλ
(
Tλ

)
,

where Mλ : S3 → S3 denotes the Yosida approximation of the maximal-monotone
operator ∂IK.

8

Theorem 1
If the given data satisfy the safe-load condition then the sequences {εp,kt } , {εkt } from
a “good enough” approximation are bounded in the space L∞(L1).

Remark 1
Without any additional geometrical conditions for g the strains are weakly relatively
compact in the space L∞(M) where M is the space containing bounded measures.

Remark 2
C. Johnson in 1976 was the first mathematician, which has formulated the safe-load
condition for the Prandtl-Reuss model. The condition of Johnson is a little bit weaker
as presented in this lecture.

The Johnson safe-load condition for the Prandtl-Reuss model

There exists a stress field S∗ such that

−divS∗ = F , S∗·n = gN and ∃ δ > 0 S∗ + B(0, δ) ⊂ K ⇔ |dev S∗| ≤ k − δ .

7
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Literature used in the lecture

• H.-D. Alber – Materials with memory – Lecture Notes in Math. v. 1682, Springer,
Berlin Heidelberg New York, 1998

• C.Johnson – Existence theorems for plasticity problems – J. M. P. Appl. 1976

• R. Temam – A generalized Norton-Hoff model and the Prandtl-Reuss law of
plasticity – ARMA, 1986

• K. Ch. – Coercive approximation of viscoplasticity and plasticity – Asymptotic
Anal., 2001

• K. K., – Dynamical problems in the theory of inelastic deformations – PhD thesis,
2018

• K. K., K. Ch. – On strong solutions of viscoplasticity without safe-load conditions
– J. Diff. Equ., 2020

• K. K, K. Ch. – Prandtl-Reuss dynamical elasto-perfect plasticity without safe-load
conditions – Nonlinear Analysis TMA, 2020

• K. K, K. Ch. – Quasistatic viscoplasticity without safe load conditions – J. Diff.
Equ., 2021

11

Theorem 3 Assume that the data are regular enough and boundary data gN is
admissible or in the quasistatic case gN and F are admissible. Then there exists a
positive constant C, independent of λ, such that in the dynamical case

E
(
uλt , ε

λ, εp,λ
)

,

t∫

0

∫

Ω

εp,λt · Tλ , E
(
uλtt, ε

λ
t , ε

p,λ
t

)
,
∥∥∥εp,λt

∥∥∥
L∞(L1)

≤ C.

where 2E
(
uλt , ε

λ, εp,λ
)
=
∫
Ω(ρ|uλt |2 +D(ελ − εp,λ) · (ελ − εp,λ)) dx

and in the quasistatic case

E
(
ελ, εp,λ

)
,

t∫

0

∫

Ω

εp,λt · Tλ , E
(
ελt , ε

p,λ
t

)
,
∥∥∥εp,λt

∥∥∥
L∞(L1)

≤ C.

where 2E
(
ελ, εp,λ

)
=
∫
ΩD(ελ − εp,λ) · (ελ − εp,λ) dx

10

We observed that in order to obtain proper energy estimates it is enough to assume
the admissibility of the Neumann boundary data and the external force, which means

Definition 4 (Admissibility of forces)

We say that in the dynamical case the Neumann boundary data gN is admissible if

CLD ∥gN∥L∞(0,Te;L∞(ΓN )) < C∗,

where CLD is a positive constant from the trace theorem in the space LD (Ω). The
constant C∗ depends on the maximal monotone inelastic multifunction only (for the
Prandtl-Reuss model with the Hencky flow rule C∗ is equal to the yield constant k.)

We say that in the quasi-static case the Neumann boundary data gN and the external
force F are admissible if

CELD∥F∥L∞(0,Te;L3(Ω)) + CLD ∥gN∥L∞(0,Te;L∞(ΓN )) < C∗,

where the constant CELD is from the embedding theorem for the space LD(Ω) and
the constant C∗ is the same as in the dynamical case.

10
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Developable surfaces with curved folds and
applications

Miyuki Koiso

Institute of Mathematics for Industry, Kyushu University, Japan

A developable surface is a surface which is isometric to a planar region, that is, there ex-
ists a continuous bijective mapping from the surface to a planar region which preserves
the length of every curve. If the considered surface is smooth, then it is developable
if and only if its Gaussian curvature vanishes everywhere. Moreover, in this case, the
surface can be continuously and isometrically deformed until the planar region. In this
talk, we discuss developable surfaces with curved folds, which are naturally appear
as origami works and have many applications in manufacturing objects. We discuss
intrinsic and extrinsic singular points (such as vertices and points in edges), curvatures
at each singular point, and the existence and nonexistence of continuous isometric de-
formations from such a surface to a planar region. We also discuss applications and
discretization of these objects.
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 We gave the definition of developable surfaces.
 We gave the existence, uniqueness, and representation formula 

of the optimal pillow box. 
 We gave a continuous isometric deformation (concretely) from a 

planar region to a pillow box.
 We mentioned an application to architecture and discretization 

in the talk in the workshop. Because this work is in progress, its 
details are not included in this article. 

Summary
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Learning Permutation Symmetry of a Gaussian
Vector

Bartosz Ko	lodziejek

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

The study of hidden structures in data presents challenges in modern statistics and
machine learning. We introduce a Bayesian model selection approach, which allows to
identify permutation subgroup symmetries in Gaussian vectors. In other words, given a
finite iid sample of a p-dimensional Gaussian vector Z = (Z1, . . . , Zp)

�, we are looking
for a permutation subgroup Γ acting on {1, . . . , p} such that

(Zi)
p
i=1 and (Zσ(i))

p
i=1 have the same distributions

for any σ ∈ Γ. We also find the maximum likelihood estimate of the covariance matrix
in a Gaussian model obeying such symmetry restrictions. The talk is based on [1] and
[2].

References

[1] Graczyk, P., Ishi, H., Ko�lodziejek, B. and Massam, H. (2022) Model selection in the space of
Gaussian models invariant by symmetry. Ann. Statist. 50, no. 3, pp. 1747-1774.

[2] Graczyk, P., Ishi, H. and Ko�lodziejek, B. (2022) Graphical Gaussian models associated to a
homogeneous graph with permutation symmetries, Physical Sciences Forum, 5(1), 20, pp. 1-9.
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Supercoiled structure of DNA and hyperelliptic
functions

Shigeki Matsutani

Institute of Science and Engineering, Kanazawa University, Japan

The geometry of DNA has a helical structure as well as a more global supercoiled
structure. The geometry of this supercoiled structure is dominated by weak elastic
forces, but its geometry has not yet been mathematically described. Geometric models
that minimize its elastic energy, known as elasticae (elastic curves), cannot describe
the shape of DNA, even if three-dimensional effects are considered. Since 1997, the
speaker has been working to mathematically represent this shape by considering finite
temperature effects [1]. It is known from elementary considerations that the shape of
elastic curves under a finite temperature can be described by the hyperelliptic solution
of the modified KdV equation, which is a nonlinear integrable equation, in the two-
dimensional plane, and of the nonlinear Schrodinger equation in the three-dimensional
space. However, Abelian function theory, including hyperelliptic function theory, had
not reached the level where hyperelliptic function solutions could be specifically de-
scribed and concretely treated at all as of 1997. Therefore, the speaker, together with
late Emma Previato since 2003, has restructured the Abelian function theory to the
level of elliptic function theory, and has also developed related theories [2]. With Pre-
viato, he obtained certain shapes in 2022, albeit incomplete [3]. Although incomplete
means that it does not fully satisfy the reality condition, we were able to produce
mathematically shapes that have some features of the supercoiled structure of DNA,
albeit tentatively. This talk will describe the results obtained in 2022 and the process
that led to them.

The speaker has been studied novel devies and materials mathematically in research
and development of devices and materials for 27 years in Canon Inc. The usefulness
of mathematics, including the theory of singularity, in modern society will be briefly
discussed.

References

[1] S. Matsutani, Statistical mechanics of elastica on a plane: origin of the MKdV hierarchy ,
J. Phys. A: Math. & Gen., 31 (1998) 2705-2725.

[2] S. Matsutani, E. Previato, The Weierstrass sigma function in higher genus and applications to
integrable equations, (in preparation).

[3] S. Matsutani, E. Previato, An algebro-geometric model for the shape of supercoiled DNA Physica
D 430 (2022) 133073
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Information geometry of positive measures

Naomichi Nakajima

Faculty of Science and Engineering, Waseda University, Japan

Information geometry brings a united geometric insight into various aspects of statisti-
cal science, machine learning and so on by regarding the parameter space of a statistical
model as a Riemannian manifold equipped with the Fisher-Rao metric. The dually flat
structure on a Riemannian manifold introduced by Amari-Nagaoka takes a central role
in information geometry. It is known that the space of probability distributions on a fi-
nite set naturally has the dually flat structure. For this space, Amari has characterized
the dually flat structure from the viewpoint of statistics through defining the space of
positive measures simply by removing the normalization condition. On the other hand,
we have developed the counterpart for the space of transition probabilities of a given
Markov chain, which may provide a new geometric insight into Markov chains. In this
presentation, I would like to talk about Amari’s theory and our theory for Markov
chains.
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Summary of my talk

• On the other hand, information geometry of Markov chains has been studied by

Nagaoka and others using the dually flat structure of the space of transition

probabilities.

• In comparison with information geometry of P(S), roughly speaking, the studies

above are on information geometry of the space of conditional probabilities.

▶ Main topic of my talk.

We will investigate the counterpart for a Markov chain of Amari’s theory of positive

measures. This study does not only investigate information geometry of the specific

model, a Markov chain, but also suggests a new direction of statistics of conditional

probabilities.

3 / 23

Summary of my talk

• Information geometry brings a united geometric insight on various fields such as

statistics, machine learning, optimization theory and so on. In information geometry,

a statistical model is regarded as a Riemannian manifold endowed with the

Fisher-Rao metric and two kinds of affine connections satisfying
�
a

��������
certain

��������
duality,

called a statistical manifold.

• A dually flat manifold is a statistical mfd with flat connections, that takes a

central role in information geometry, introduced by Amari-Nagaoka.

• Regarding dually flat structures, there is a well established theory of positive

measures on a finite set S due to Amari. It investigates dually flat structures of the

space P(S) of probability distributions on S in terms of some “asymmetric distance

function” on P(S), called a divergence.
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Information geometry of positive measures
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Example: the space of discrete distributions

• S = {0, 1, · · · , n}: a finite set

• P(S) = {(p0, p1, · · · , pn) ∈ Rn+1 | pi > 0 and
∑n

i=0 pi = 1}
We call P(S) the space of discrete distributions on S. Take a system of coordinates

(p1, · · · , pn) (p0 = 1− p1 − · · · pn). We regard it as flat coordinates (∇, η = (ηi)
n
i=1):

ηi := pi (the expectation parameters).

Then

ϕ(η) =
∑n

i=1 pi log pi

is a convex function, known as the negative entropy in statistics.

Hence the metric h is defined by

h( ∂
∂ηi

, ∂
∂ηj

) = ∂2ϕ
∂ηi∂ηj

.

Therefore, (P(S), h, (∇, η),ϕ(η)) is a dually flat mfd (Hessian mfd). 9 / 23

Statistical manifolds, dually flat manifolds and divergences

A dually flat mfd (M,h,∇,∇∗) has the canonical contrast function D : M ×M → R,
called the Bregman divergence:

D(p, q) = f(θ(p))− f(θ(q)) +
∂f

∂θ
(θ(q))T (θ(q)− θ(p)) (p, q ∈ M),

where f(θ) is a potential function of M . (strictly speaking, D is defined on an open

neighborhood of the diagonal set of M)

Remark:

• The definition of D is independent of the choice of (θ, f(θ)).

• D restores the dually flat structure (h,∇,∇∗), i.e.,{
h(X,Y ) = D[X|Y ],

h(∇XY, Z) = −D[XY |Z], h(∇∗
XY, Z) = −D[Z|XY ].

8 / 23

Statistical manifolds, dually flat manifolds and divergences

For a statistical mfd (M,h,∇), ∇ is flat ⇐⇒ its dual connection ∇∗ is flat.

Definition (Amari-Nagaoka [3, 4])

A statistical mfd (M,h,∇,∇∗) is a dually flat mfd if ∇ is flat. Then we also call

(h,∇,∇∗) the dually flat structure of M .

We write θ = (θ1, · · · , θn) for ∇-affine coords. Put ∂i :=
∂
∂θi

. Then there exists a

potential function f(θ) on θ s.t.

1. the metric h is locally given by the Hessian matrix of f(θ): h(∂i, ∂j) = ∂i∂jf ,

2. the gradient map η = (η1, · · · , ηn) (ηi :=
∂f
∂θi

) gives ∇∗-affine coordinates, called

the dual coordinates of θ,

Another definition (Hessian structure [Shima]):

Given a (M,h, (∇, θ), f(θ)) with h = ∂i∂jf

� define the dual flat connection and the dual coord (∇∗, η = (ηi)) by ηi :=
∂f
∂θi 7 / 23
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The space of positive measures on a finite set and F -divergences

• S = {0, 1, · · · , n}: a finite set

• P̄(S) = {(p0, p1, · · · , pn) ∈ Rn+1 | pi > 0} ⊃ P(S) = {pi > 0 and
∑n

i=0 pi = 1}

We call P̄(S) the space of positive measures on S.

Given a strictly convex function F : (0,∞) → R with

F (1) = F ′(1) = 0 and F ′′(1) = 1,

called a standard convex function [Amari], the function DF : P̄(S)× P̄(S) → R
defined by

DF (p, q) =
n∑

i=0

piF

(
qi
pi

)

is called the F -divergence on P̄(S), where p = (p0, · · · , pn), q = (q0, · · · , qn).

12 / 23

The space of positive measures on a finite set

• Amari has introduced the space P̄(S) of positive measures on S as an extended

space of P(S) and investigated the problem above by finding the Bregman and

F -divergence on P̄(S) suitably.

• An F -divergence DF on P̄(S) is a contrast function, and it is known that the

statistical manifold structure induced by DF of P̄(S) satisfies statistical invariance.

• In [Amari], Amari has shown that the KL-divergence DKL on P̄(S) is the only

contrast function such that

– it is both a Bregman divergence and an F -divergence,

– it and its restriction to P(S) induce the dually flat structures of P̄(S) and P(S),

respectively.

11 / 23

Example: the space of discrete distributions

Importantly, the Bregman divergence D : P(S)× P(S) → R induced by ϕ is the

KL-divergence on P(S), i.e.,

D(p, q) =
n∑

i=0

pi log
pi
qi

=: KL[p, q],

where p = (p0, · · · , pn), q = (q0, · · · , qn) ∈ P(S).

• We consider the following problem: are there any other contrast functions to derive

a dually flat structure of P(S)?

• Of course, for example, we consider a quadratic function as a potential function, and

then it derives another dually flat structure of P(S).

• We are interested in the dually flat structure with “statistical invariance”, which is a

certain condition required from statistics.

10 / 23
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Positive transition measures on W (our work)

Definition ([N])

Let F : (0,∞) → R be a strictly convex function with F (1) = F ′(1) = 0 and F ′′(1).

We define the F -divergence on F+ as DF : F+ × F+ → R,
DF (f, g) =

∑
(x,y)∈E µf (x)f(x, y)F

(
g(x,y)
r(g)

/
f(x,y)
r(f)

)
.

Proposition ([N])

The F -divergence DF has the following properties:

1. DF (f, g) ≥ 0.

2. DF (f, g) = 0 if and only if g = af for some a > 0.

3. DF is a weak contrast function on F+. Let hF denote the symmetric (0, 2)-tensor

on F+ induced by DF .

4. The null space of hF at f ∈ F+ is the tangent space of the halfline

{af | a > 0} ⊂ F+.
18 / 23

Positive transition measures on W (our work)

▶ Aim: We construct the counterpart of Amari’s picture in (P(S), P̄(S)) for W .
▶ Main results:

• We extend W to the bigger space F+.

• We define an F -divergence on F+ and a diffeomorphism T̄ between F+ and M .

• We give a divergence that is both a Bregman divergence and an F -divergence.

• Actually, the potential function ϕ̄ has a 1-dimensional kernel of its Hessian matrix at

every point of M , thus we take a hyperplane section M̃ in M so that a genuine dually

flat structure is defined on it. That induces a hypersurface W̃ in F+.

F+

⋃
T

∼ �� M
⋃ ϕ̄

��
W̃

�

T |W

∼ �� M̃

�

ϕ̄|M
�� R

W
T

∼ �� M ϕ
�� R 17 / 23

Information geometry of the space of transition probabilities

We consider the following two spaces:

M = {η = (ηxy)(x,y)∈E ∈ R|E| | ηxy > 0},
M = {η = (ηxy)(x,y)∈E ∈ M | ∑

(x,y)∈E ηxy = 1 and∑
y:(x,y)∈E ηxy =

∑
y:(y,x)∈E ηyx for any x ∈ X}.

In [Nagaoka], it is shown that W is a dually flat manifold, and its expectation

parameter space is M .

Theorem ([Nagaoka])

1. The mapping T : W → M , w �→ (µw(x)w(x, y))(x,y)∈E is a diffeomorphism.

2. There exists a convex function ϕ : M → R; the Bregman divergence

D : W ×W → R induced by ϕ is

D(w1, w2) =
∑

(x,y)∈E

µw1(x)w1(x, y) log
w1(x, y)

w2(x, y)
.

16 / 23
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Thank you for your attention!

23 / 23

Summary and future plans

• We have defined the class of F -divergences on F+ and given a divergence which is

both a Bregman divergence and an F -divergence. Moreover, we have given a dually

flat manifold W̃ which is an extension of W by analyzing the kernels of the potential

function ϕ̄ on M .

• In order to completely establish the counterpart of Amari’s theory for the pair

(W , W̃), we need some discussions from the view point of statistics.

• In the first place, the “statistical invariance” for conditional probabilities must be

discussed.

• Then, F -divergences should be characterized by the statistical invariance above.

• Besides, a divergence on W̃ which is both a Bregman divergence and an

F -divergence may be uniquely determined under certain conditions.

23 / 23

Positive transition measures on W (our work)

Theorem ([N])

The hypersurface W̃ has the dually flat structure induced by the potential function

ϕ̃ := ϕ̄|M̃ on M̃ ; the restriction of this dually flat structure to W restores the dually

flat structure of [Nagaoka]. We call W̃ the space of positive transition measures.

Moreover F -divergences on W̃ are written as

DF (f, g) =
∑

(x,y)∈E µf (x)f(x, y)F
(

g(x,y)
f(x,y)

)
(f, g ∈ W̃).

F+

⋃
T

∼ � M
⋃ ϕ̄

��
W̃

�

T |W

∼ � M̃

�

ϕ̄|M
� R

W
T

∼ � M ϕ
� R

22 / 23
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Multivariate Hawkes processes with graphs

Mariusz Nieweg�lowski

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

A very interesting and important class of stochastic processes was introduced by Alan
Hawkes in [1]. These processes, called now Hawkes processes, are meant to model
self-exciting and mutually-exciting random phenomena that evolve in time. The self-
exciting phenomena are modeled as univariate Hawkes processes, and the mutually-
exciting phenomena are modeled as multivariate Hawkes processes. The Hawkes pro-
cesses have been applied to modeling in meany areas of science, including: insurance,
finance, seismology and neurology. In this talk we provide some results on marko-
vianity of the Generalized Multivariate Hawkes Processes (GMHP) introduced in our
earlier papers. GMHP are multivariate marked point processes that add an important
feature to the family of the (classical) multivariate Hawkes processes: they allow for ex-
plicit modelling of simultaneous occurrence of excitation events coming from different
sources, i.e. caused by different coordinates of the multivariate process. We propose
that this structure of mutual excitations is specified in terms of the excitation graph.
We provide results which show that under some conditions on its kernels the intensities
of GMHP’s are functions of a Markov processes. Moreover we show that it is possible
to compute their Laplace transform by means of system of ODE’s. The talk is based
on [4].

References

[1] A.G. Hawkes, ”Spectra of Some Self-Exciting and Mutually Exciting Point Processes”, Biometrika
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On envelopes created by circle families in the plane

Takashi Nishimura

Faculty of Environment and Information Sciences,
Yokohama National University, Japan

(joint work with Yongqiao Wang)

Envelopes of planar curve families have fascinated many pioneers since the dawn of
differential analysis. In most typical cases, straight line families have been studied.
However, even for envelopes created by straight line falimies, to our surprize, there
were several unsolved problems until very recently. In my talk at WAAS, recently
discovered answers to these problems were explained.

On the other hand, circle families in the plane are non-negligible families because
the envelopes of them have already had important applications to Industry. In this
talk, firstly, as one of important applications of envelopes of circle families to Industry,
the so-called “Mohr failure envelope” is introduced. After that, a general theory for
envelopes of circle families shall be explained.
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§1. Soil Mechanics

Circle families in the plane are non-negligible families

because the envelopes of them have already had im-

portant applications. As one of application of circle

family in the plane, Let me first explain the so-called

Mohr failure envelope in the field “Soil Mechanics”.

2

Reference

[WN] Yongqiao Wang and T.N., Envelopes created by

circle families in the plane, preprint.

(available at https://arxiv.org/abs/2301.04478)

1

On envelopes created by circle families in the

plane (a joint work with Yongqiao Wang)

Takashi Nishimura

(Yokohama National University)
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Figure 1

5

The stress state of a soil can be represented by a Mohr

circle which is defined by the effective principal stresses

σ1 and σ2. The center and the radii of the Mohr cir-

cle are (σ1+σ2
2 ,0) and σ1−σ2

2 , respectively. By experi-

ments, one can obtain some values of effective principal

stresses σ1 and σ2 at failure. The Mohr circles in terms

of effective principal stress are drawn in Figure 1.

4

In analysis of the stability of soil masses, the shear

strength τf of a soil at a point on a particular plane

is expressed as a linear function of the effective normal

stress σf at failure:

τf = σf tanφ+ c,

where φ and c are the angle of shearing resistance and

cohesion intercept respectively. A method using Mohr

circles to obtain the shear strength parameters φ and c

can be found (for instance) in “R.F. Craig, Craig’s soil

mechanics, Seventh edition, Taylor and Francis Group

Press, New York, 2004. ISBN: 9780415332941”. A

brief description of this method is given as follows.

3
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The so-called ”liquefaction phenomenon” is one of con-

temporary important problems especially in the coun-

try where people can not avoid large-scale earthquakes.

Therefore, Mohr failure envelope is a significant notion

for industry.

In order to understand the mechanism of ”liquefaction

phenomenon” well and in order to find an effective mea-

sure against real liquefaction phenomena, it seems im-

portant to construct a general theory of the envelopes

created by circle families.

8

Figure 2

7

The envelope created by Mohr circles is called the Mohr

failure envelope which may be a slightly curved curve.

Then the shear strength parameters φ and c can be

obtained by approximating the curved envelope to a

straight line, namely the slope of the straight line equals

tanφ and the intercept of straight line on the vertical

axis is c (see Figure 2).

6
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In this talk, the following is adopted as the definition

of an envelope created by a circle family.

Definition 2 Let C(γ,λ) be a circle family. A mapping

f : I → R2 is called an envelope created by C(γ,λ) if the

following two hold for any t ∈ I.

(1) df
dt(t) · (f(t)− γ(t)) = 0.

(2) f(t) ∈ C(γ(t),λ(t)).

11

It is reasonable to assume that at each point γ(t) the

normal vector to the curve γ is well-defined. Thus, we

easily reach the following definition.

Definition 1 A curve γ : I → R2 is called a frontal

if there exists a mapping ν : I → S1 such that the

following identity holds for each t ∈ I, where S1 is the

unit circle in R2.

dγ

dt
(t) · ν(t) = 0.

For a frontal γ, the mapping ν : I → S1 given above is

called the Gauss mapping of γ.

Hereafter, the curve γ : I → R2 for a circle family C(γ,λ)
is assumed to be a frontal.

10

§2. Envelopes of circle families

For a point P of R2 and a positive number λ, the circle

C(P,λ) centered at P with radius λ is naturally defined

as follows, where the dot in the center stands for the

standard scalar product.

C(P,λ) =
{
(X,Y ) ∈ R2

∣∣∣ ((X,Y )− P ) · ((X,Y )− P ) = λ2
}
.

For a curve γ : I → R2 and a positive function λ : I →
R+, the circle family C(γ,λ) is naturally defined as fol-

lows. Here, R+ stands for the set consisting of positive

real numbers.

C(γ,λ) =
{
C(γ(t),λ(t))

}
t∈I

.

9
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Set F (x, y, t) =
(
x− t3

)2
+

(
y − t6

)2
−1 . Then, we have

the following.
{
(x, y) ∈ R2

∣∣∣ ∃t s.t. F (x, y, t) =
∂F

∂t
(x, y, t) = 0

}

=
{
(x, y) ∈ R2

∣∣∣ ∃t s.t.
(
x− t3

)2
+
(
y − t6

)2
− 1 = −6t2

(
x− t3

)
− 12t5

(
y − t6

)
= 0

}

=
{
(x, y) ∈ R2

∣∣∣ ∃t s.t.
(
x− t3

)2
+
(
y − t6

)2
− 1 = t2

((
x− t3

)
+2t3

(
y − t6

))
= 0

}

=
{
(x, y) ∈ R2

∣∣x2 + y2 = 1
}

⋃{
(x, y) ∈ R2

∣∣∣ (x− t3
)2

+
(
y − t6

)2
− 1 = 0, x = t3 − 2t3

(
y − t6

)}

=
{
(x, y) ∈ R2

∣∣x2 + y2 = 1
}

⋃{
(x, y) ∈ R2

∣∣∣ (−2t3
(
y − t6

))2
+
(
y − t6

)2
= 1, x = t3

(
1− 2y +2t6

)}

=
{
(x, y) ∈ R2

∣∣x2 + y2 = 1
}

⋃{(
t3 ∓

2t3√
4t6 + 1

, t6 ±
1√

4t6 + 1

)
∈ R2

∣∣∣∣∣ t ∈ R

}
.

14

Example 1 Let γ : R → R2 be the mapping defined by

γ(t) =
(
t3, t6

)
. Set ν(t) = 1√

4t6+1

(
−2t3,1

)
. It is clear

that the mapping γ is a frontal with Gauss mapping

ν : R → S1. Let λ : R → R+ be the constant function

defined by λ(t) = 1. Then, it seems that the circle

family C(γ,λ) creates envelopes. Thus, we can expect

that the created envelopes can be obtained by the well-

known method.

13

Problem 1 Let γ : I → R2 be a frontal with Gauss

mapping ν : I → S1 and let λ : I → R+ be a positve

function.

(1) Find a necessary and sufficient condition for the

circle family C(γ,λ) to create an envelope in terms

of γ, ν and λ.

(2) Suppose that the circle family C(γ,λ) creates an en-

velope. Then, find a parametrization of the enve-

lope created by C(γ,λ) in terms of γ, ν and λ.

12
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The following definition is the key of this talk.

Definition 3 ([WN], KEY DEFINITION) Let γ : I →
R2, λ : I → R+ be a frontal with Gauss mapping ν : I →
S1 and a positive function respectively. Then, the cir-

cle family C(γ,λ) is said to be creative if there exists

ν̃ : I → S1 such that the following identity holds for any

t ∈ I.

dλ

dt
(t) = −β(t) (ν̃(t) · µ(t)) .

17

In order to solve Problem 1, we prepare several termi-

nologies which can be derived from a frontal γ : I → R2

with Gauss mapping ν : I → S1 and a positive function

λ : I → R+. For a frontal γ : I → R2 with Gauss map-

ping ν : I → S1, following “T. Fukunaga and M. Taka-

hashi, Existence and uniqueness for Legendre curves,

Journal of Geometry, 104 (2013), 297–307”, set

µ(t) = J(ν(t)),

where J is the anti-clockwise rotation by π/2. Then we

have a moving frame {µ(t), ν(t)}t∈I along the frontal γ

. Set

ℓ(t) =
dν

dt
(t) · µ(t), β(t) =

dγ

dt
(t) · µ(t).

16

15
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20

Example 2 We examine Example 1 by applying The-

orem 1. In Example 1, γ : R → R2 is given by γ(t) =(
t3, t6

)
. Thus, we can say that ν : R → S1 and µ : R →

S1 are given by ν(t) = 1√
4t6+1

(
−2t3,1

)
and µ(t) =

1√
4t6+1

(
−1,−2t3

)
respectively. Moreover, the radius

function λ : R → R is the constant function defined by

λ(t) = 1. Thus,

dλ

dt
(t) = 0.

By calculation, we have

β(t) =
dγ

dt
(t) · µ(t) =

−3t2(1 + 4t6)√
4t6 + 1

.

19

By definition, any family of concentric circles with smoothly

expanding radii is not creative, and it is clear that such

the circle family does not create an envelope.

Theorem 1 ([WN]) Let γ : I → R2 be a frontal with

Gauss mapping ν : I → S1 and let λ : I → R+ be a

positive function. Then, the following hold.

(1) The circle family C(γ,λ) creates an envelope if and

only if C(γ,λ) is creative.

(2) Suppose that the circle family C(γ,λ) creates an en-

velope f : I → R2. Then, the created envelope f is

represented as follows.

f(t) = γ(t) + λ(t)ν̃(t).

18
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Thank you for your listening!

23

By the assertion (2) of Theorem 1, f is parametrized

as follows.

f(t) = γ(t) + λ(t)ν̃(t)

=
(
t3, t6

)
±

1√
4t6 + 1

(
−2t3,1

)

=


t3 ∓

2t3√
4t6 + 1

, t6 ±
1√

4t6 + 1


 .

22

Therefore, the unit vector ν̃(t) ∈ S1 satisfying

dλ

dt
(t) = −β(t) (ν̃(t) · µ(t))

exists and it must have the form

ν̃(t) = ±ν(t) =
±1√

4t6 + 1

(
−2t3,1

)
.

Hence, by the assertion (1) of Theorem 1, the circle

family C(γ,λ) creates an envelope f : R → R2.

21
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Calcium waves sustained by calcium influx through
mechanically activated channels in the cell

membrane

Zbigniew Peradzyński

Military Technological University and Institute of Fundamental Technological
Research PAS, Poland

(joint work with Bodan Kaźmierczak and S�lawomir Bia�lecki)

The work is devoted to the mathematical modeling of fast calcium waves propagating in
some cells. According to the suggestion of biologists, this type of waves exists due to the
complicated mechanisms of the influx of calcium from the extracellular space through
mechanically operated calcium channels placed in the cell membrane. A change in the
concentration of calcium in the cell causes the reorganization of the network composed
of actin-myosin filaments. Under the influence of local forces exerted by these fibers,
ion channels in the cell membrane are opened. At the same time, excess calcium is
pumped out of the cell by several types of pumps located in the cell membrane. All this
together leads to the possibility of wave propagation in the form of homoclinic pulses
of calcium concentration. We start from the construction of the model in 3-D. Then
we derive 1-D nonlocal approximation, which as it turns out, can be still approximated
by a FitzHugh Nagumo type of system. The theoretical model will also be supported
by numerical calculations.
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It turns out that plants or their parts can communicate with each other (e.g by 
sending sigals calcium waves), preparing thus for unpleasant consequences 

Provvocativve question:  
Can plants be aware of the danger?

Please see the video:   
https://www.youtube.com/watch?app=desktop&&v=7-3yFcZSyvo

„”Supplying glutamate directly to the tip of one leaf creates a strong wave of calcium 
across the entire plant, visualized by fluorescent light. This video is part of research 
by UW–Madison botany professor Simon Gilroy that shows how waves of calcium 
crisscrossing a plant help it respond to attacks by preparing for future threats. 
The work was published in Science in September of 2018”.

Calcium waves sustained by calcium influx 
through mechanically activated channels

in the cell membrane

Zbigniew Peradzyński * ,Bogdan Kaźmierczak**, Sławomir Białecki**,
* Warsaw Military University of Technology (earlier in

Faculty of Mathematics, Informatics and Mechanics, University of
Warsaw),

**Institute of Fundamental Technological Research.
Workshop on Mathematics for Industry 2023, Warsaw 

334







Comments on a multistable case

MONOTONE SYSTEMS

Ecology, Population dynamics
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The mechanism of propagation of CICR waves is based on
autocatalytic release of calcium from the internal stores (e.g.
endoplasmic reticulum) located in the cells.

CICI waves. According to L. Jaffe this cannot explain the
speed of the  second  group  of „fast waves” . Their speed 
can be by two orders higher. Such waves are also
observed in cells not having internal stores of calcium.
Thus: Stretch-activated ion channels in the membrane are
responsible for the calcium delivery from the extracellular
space.

CICI WAVES

CCaallcciiuumm wwaavveess ((ffiirrsstt sseeeenn oonn tthhee ffeerrttiilliizziinngg mmeeddaakkaa eegggg )) ttuurrnneedd oouutt ttoo bbee qquuiittee ccoommmmoonn..
TThheeyy ccaann pprrooppaaggaattee bbootthh iinn iinnddiivviidduuaall cceellllss aanndd iinn ttiissssuueess.. TThhee rraannggee ooff tthheeiirr ssppeeeedd::
11nnmm//ss –– 3300 ccmm//ss ((nneeaarrllyy aa bbiilllliioonn ffoolldd)) ffaalllliinngg iinnttoo ffoouurr ssppeeeedd ––bbaasseedd ggrroouuppss ((aafftteerr LL.. JJaaffffee))

In our lecture we will be interestet in CICI fast waves (see diagram below).  

From L. Jaffe
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There are already well known and well researched CICR waves i.e.
„Calcium Induced Calcium Released” waves (L. Jaffe) . The simplest
theoretical description is based on single reaction diffusion equation
with a bistable source term. For a small excess of calcium above
the equilibrium concentration,
calcium is absorbed into internal
stores. After exceeding a certain
threshold value (the second zero
of the source function) calcium is
released from the internal stores of the cell in an autocathalitic
reaction, untill its concentration reaches the next equilibrium value (the
third zero of source function).

Coming bacckk too Ca wwavves
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When the wave passes, the cell radius shrinks. So how can 
we have stretching ?  locally we expect the following picture

As the calcium concentration increases, the myosin 
filaments become more and more connected through the 
increasing number of myosin Bridges. This leads to the 
contraction of the filament network. 
This contraction influences the shape of the cell. If we 
imagine the ideal cell of a cylindrical shape, then the cell 
radius will be reduced. Therefore, at first glance, we should 
not expect any stretching of the cell membrane. 
This is however macroscopic view. Microscopically the 
membrane will be very unsmooth. Funnel-shaped 
depressions will appear under the influence of pulling 
forces, in places where the filaments are anchored. So in 
spite of this that the average radiuce gets smaller we will 
have the membrane stretching as its shape becames more 
complex. 
 
     

Assumptions.
1. The contraction of the actomyosin network results in appearing of so
called “traction forces”. However, the effect  of contraction  following the 
increase of calcium concentration appears with some delay –relaxation time
is needed to form the myosin bridges

2.  The calcium can enter from the intercellular space through the
mechanically stimulated ion channels located in the cell membrane

3.  The mechanical stimulation of the membrane is caused by the
actomyosin network - cortex. The fibers of the cortex as well as the rest of
actomyosin network in the cell are subject to the contraction whenever the
calcium concentration in the cell cytoplasm increases.
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Thank you for your attention
and

the organizers for the invitation.
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Generalization of Reeb spaces and application to
data visualization

Osamu Saeki

Institute of Mathematics for Industry, Kyushu University, Japan

In many cases, data sets can be considered to be discrete samples of differentiable maps
between manifolds. For a differentiable multivariate function into Rp with p ≥ 2, its
Reeb space is the space of connected components of its fibers. This is a generalization
of the notion of Reeb graphs for univariate functions in the case of p = 1. It has been
known that Reeb spaces are often very useful for visualizing the given multivariate
function. In this talk, we generalize the Reeb space in such a way that it captures
more of the topological features of the fibers, not only their connected components.
This theoretical part essentially relies on the global singularity theory of differentiable
maps between manifolds developed mainly by the author. Such techniques have been
used for efficiently visualize large scale data. If time permits, we will also discuss an
application to multi-objective optimization problems.
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