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Preface

The "WORKSHOP on Mathematics for Industry 2023 — Basis of Mathematics in nanomedicine
structures and life sensing" convened during September 25-29, 2023, at Warsaw University of
Technology, Poland, under the joint auspices of the Faculty of Mathematics and Information
Science, Warsaw University of Technology; Center for Advanced Studies, Warsaw University of
Technology; and Institute of Mathematics for Industry, Kyushu University, with the support of
the Excellence Initiative: Research University Programme at the Warsaw University of Technol-
ogy. With the participation of approximately 70 attendees, including researchers, students, and
PhD candidates, the workshop served as a nexus for interdisciplinary dialogue and collaboration
between the realms of mathematics and applied sciences.

The workshop program encompassed 25 individual talks and 5 mini-courses, each compris-
ing 3 lectures, spanning a spectrum of topics such as topological data analysis, medical imaging
methods, human genome models, big data, machine learning, cryptography, information ge-
ometry, convex optimization, physical models of elastic/plastic bodies and fluids and material
engineering. Delivered by experts from Polish and Japanese institutions, the presentations il-
luminated the symbiotic relationship between abstract mathematical constructs and real-world
engineering challenges, thereby fostering innovation and knowledge exchange. The accompa-
nying booklet contains comprehensive materials from the workshop prepared by the speakers,
including detailed summaries, presentation slides and references, providing a valuable resource
for continued study of the concepts presented during the event, with hope that it will not only
facilitate the exploration of novel research directions, but also catalyze the establishment of
international collaborations between academic environments in Poland and Japan with the goal
of leveraging mathematical methodologies to address pressing industrial concerns and societal
needs.

This work was supported by Institute of Mathematics for Industry, Joint Usage/Research
Center in Kyushu University (FY2023 Workshop(I) "WORKSHOP on Mathematics for Industry

2023 — Basis of Mathematics in nanomedicine structures and life sensing" (2023b004)).

February 2024
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Introduction to Topological Data Analysis

Pawetl Diotko
Dioscuri Centre in Topological Data Analysis, IMPAN, Poland

In this mini-course we will explore both theoretical and practical foundations of Topo-
logical Data Analysis (TDA) — a field with a number of applications in physical,
natural and social sciences in the intersection between algebraic topology, computa-
tional geometry and computational methods. We will cover the basic tools of TDA
including discretization of spaces (in the form of various point cloud-based simplicial,
cubical and general CW-complexes), algorithms to compute homology and persistent
homology and applications of those. We will also explore TDA tools of visualization,
like mapper and ball mapper algorithms. Moreover we will present new tools of Eu-
ler Characteristic curves and profiles and show how they can be applied to standard
statistics. All the concepts will be illustrated with real examples. You will also be
required to perform computations on a number of toy and real-world datasets.

REFERENCES

(1] Edelsbrunner, Harrer (2011), Computational Topology: An Introduction
[2] P. Dlotko, Computational and applied topology, tutorial, https://arxiv.org/abs/1807.08607



Introduction to Topological
Data Analysis

Pawet Dtotko, Dioscuri Centre in TDA, IMPAN,
WORKSHOP on Mathematics for Industry 2023

Politechnika Warszawska, MINI, 25-27 September 2023

Topological Data Analysis

Persistent homology,

Conventional mapper,

Ball mapper,

Discrete Morse theory (if time permits),
TopoTests (alternative option),

On a very intuitive level,

vVVvVvYvYyVvYVvYYyvyy

with a number of practical examples.

The credo

Data have shape,
shape has meaning,
meaning brings value.




We all know this story
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It is not possible to adjust an algebraic model to any possible
shape of the data — over-fitting.
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Topology and statistics, together

P Statistics provide a vast collection of tools to summarize
properties of point clouds.

» However, there are numerous examples (line Anscombe’s
quartet and Datasaurus dataset presented below) of point
clouds with the same descriptive statistics, but very different
shape.

» This is why, in statistics, we should always visualize the
considered dataset.

» It is however not possible to visualize high dimensional data.

P That is where the tools from topology came into rescue —
topological tools we discuss in this tutorial allow us to
estimate if two datasets have similar shape.




Anscombe’'s Quartet
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Anscombe’s Quartet; Same statistics, different shapes
A be, " Graphs in Statistical Analysis", A g Statistici: 1973.

Datasaurus Dataset

Datazaurus Dozen, Alberto Cairo,
http://www.thefunctionalart.com/2016/08/
download-datasaurus-never-trust-summary.html
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TDA pipeline
_.',' cee Topological
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Point cloud
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Simplicial complexes
» K is an abstract simplicial complex iff for every A € K and

BCA Bek.

P Each abstract simplicial complex has its geometrical
realization built from simplices.

» In this case, simplices consist of points in a general position.

d
e A
a a h
Dim 2 Dim 3

Dim 0 Dim 1

Sample simplicial complexes

AR
e 2
e %=

S

Source: Wikipedia, typical use FEM-like methods.

o -] = =
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Let the data tell you the story

Topological data analysis:
» Persistent homology — point-cloud based homology.
» Accurate network models to examine landscapes of data,
| Stable.
Il No black boxes.
Il We do not enforce any models of data.




What do you see?

What do you see?

v

We may say that we see a circle,

» But we really see is 19 points...

» ...that may be sampled from a probability distribution
supported at a circle.

P Persistent homology is a tool to make this observation precise.

» To do so, we need to construct a filtered complex of the point
cloud.

» The filtered complex is a nested sequence of subcomplexes - a

way of building a model by adding a sequence of simplices in

a number of steps.

What do you see?




What do you see?

What do you see?

What do you see?




Simplicial complexes built from point clouds

» P ={p1,...,pn}, a finite point cloud with a metric d.
» We need a finite, combinatorial representation of the union of
balls.
» Rips complex at level € consists of simplices supported in
po, - - Pn if B(pi, 5)N B(pj, 5) # 0 for every i,j € {0,...,n}.
» Cech complex at level € consists of simplices supported in
Po, - - - pn iff Mg B(pi, §) # 0.

Filtration of Rips complex

4 vertices

Filtration of Rips complex

4 vertices, 1 edge




Filtration of Rips complex

4 vertices, 3 edges, 1 triangle

Filtration of Rips complex

4 vertices, 4 edges, 1 triangle

Filtration of Rips complex

4 vertices, 5 edges, 2 triangles

5 =




Filtration of Rips complex

4 vertices, 6 edges, 4 triangles, 1 tetrahedra
‘o @ o«

Rips vs Cech
Rips vs Cech

10




Rips vs Cech

In this case Rips complex is a triangle with a boundary, the Cech
complex is the boundary of a triangle L

Cech complex is topologically accurate

> UpeP B(p, 5) is topologically equivalent to the Cech complex
based on those balls.

» Meaning, there exist a continuous deformation from one into
another.

» No tearing, no gluing.

If all points get connected by edges in the complex, we witness
so-called combinatorial explosion. You will encounter it when using
Rips complexes. a8 = =

11



Rips and Cech complexes can grow large

For N points, (V) vertices, (¥) edges, (¥) triangles, ..
This is why we always limit the level (¢) and the maximal
dimension of simplices in the comple)é.

nl

Alpha complexes

Intersecting B(x, r), for x € X with Voronoi cells of X allows to
build much smaller complexes that preserve homotopy type of

UxeX B(X, r)'

Be careful with distances (in high dimensions)

1. Concentration of measure (1 — 2¢)",

2. Points in dimension d close to be of the same distance % from
each other in /* distance,

3. Manifold hypothesis.

12
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From complexes to parameter dependent homology

R Chains
Simplicial
complex R Cyﬁ:ﬁ . S—» Homology groups
Homology

One connected component, one hole in dimension 1.

Practical exercise 1

» Please go to
https://github.com/dioscuri-tda/tutorials,

» Open PH_intro_to_homology and play with triangulation of a
torus.

» What are the homology groups of this triangulation?

13



Triangulation of a torus

0 3 4 0
1 8 7 1
2 5 6 2
0 3 4 0

Triangulation of a torus

Persistent homology, under the hood

P Let us order simplices according to the minimal e for which
they appear (filtration).

> Algorithm to compute (persistent) homology is a version of
Gaussian elimination.

» If we run it for a prefix of filtration, we will get homology of
the complex composed by simplices in that prefix (a
subcomplex of the final complex).

» Analyzing the structure of zero and non-zero columns in the
reduced matrix allows us to find generators that are created
and which become trivial as we move along the filtration.

14




Persistence matrix algorithm

Persistence matrix algorithm

ab | ac | bc | cd abc
aj1|1
bl 1 1
C 171111
d 1
ab| 1
ac 1
bc 1
ab|ac |bc|cd abc
all1] 1
bll1) 1
c 17111
d 1
ab| 1
ac 1
bc 1
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Persistence matrix algorithm

ab [ ae | bc | cd abc
al1[/1)
b| 1 1
c|l [\
d 1
ab 1
ac 1
bc 1
ab | ac p&\ cd abc
al1]| 1]/ |
bl 1 1
c A E
d 1
ab| 1
ac 1
bc 1
bc+
ab | ac |ac | cd abc
al 1] 1[/1]
b[ 1 |1
c 1[0 |1
d 1
ab) 1
ac 1
bc 1

16




Persistence matrix algorithm

bc+
ac+
ac |ab | cd | bd | abc
1 ‘v" \
1
| ]
1101
1 1
1
1
1
bc+
ac+
ac |ab | cd | bd | abc
1] N
[ ]
1] [l1]
\t/] 1
1
1
1
bc+
ac+
ac |ab | cd | bd | abc
N\
1 / l“.
1)
1 1] |
1|\
1
1
1
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Persistence matrix algorithm

bc+
ac+ bd+
ab|cd | cd | abc
N\
[1]
1 |l
1 ,\/
1
1
1
bc+ bd+
ac+ cd+
ab [ cd | ac | abc
i
1]
11 )
1|V
1
1
1
bd+
bc+ cd+
ac+ ac+
ab | cd | gp | abc
1
1
1
1

18




Interpretation of reduced matrix

1. The reduced matrix gives the persistence intervals.
2. If the column is zero, then it creates a new homology class.

3. If the column is nonzero, then it kills a homology class.

Persistence matrix algorithm

bd+
bc+ cd+
act ac+
a|b|c|d]|ablac|ab]cd]| gp|abc
111
1
1 1

Persistence matrix algorithm

a|b|c|d
4ud a
3 b
C\
c
b d
2
ab
Ta ac
bc

19




Persistence matrix algorithm

alb| cld]lab
4\:|d a 1
3 b 1
¢
c
b d
2
/ ab
1a ac
bc

Persistence matrix algorithm

a|b|c|d]|ab]|ac
4od
a 111
3 b 1
[ 1
6 b d
2
5 ab
1a ac
bc
Persistence matrix algorithm
bc+
ac+
a|b|c|d|ablac]|ab
4ud
a 111
3 b 1
¢ 7 c 1
6 b d
2
5 ab
Ta ac
bc
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Persistence matrix algorithm

bc+
act+
a|b|c|d]ab|ac|ab]cd
a 1)1
b 1
c 1 1
d 1
ab
ac
bc
Persistence matrix algorithm
bd+
bc+ cd+
ac+ ac+
a|b|cld|ablac|ab]|cd]an
a 111
b 1
c 1 1
d 1
ab
ac
bc
Persistence matrix algorithm
bd+
bc+ cd+
act+ ac+
a|b| c|dlablac|ab]ecd] gpn|abc
11
1
1
Dim 0: [2,5], [3,6], [4.8] Dim 1: [7.10]
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Persistence matrix algorithm

bd+
bc+ cd+
act ac+
a|b|c|dlablac|ab]cd] apn|abc
111
1
1

Dim 0: [2,5], [3,6], [4,8], [1,inf]

Dim 1: [7.10], [9,inf]

Invariance

» Persistent homology is a rigorous way of quantifying closed

shapes,

» ... like connected components, cycles, voids and more.

» No matter if they are embedded in two or a million

dimensional space,

» No matter if they are rotated, stretched or transformed in any

other way.
| 4
>

Lots of B, or a single A?

22




Lots of small circles, or a large one?

Multiscale

» Persistent homology is a rigorous way of quantifying closed
shapes,
» ... like connected components, cycles, voids and more.

» No matter if they are embedded in two or a million
dimensional space,
» No matter if they are rotated, stretched or transformed in any

other way.
» Multi-scale,
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Robustness

» Persistent homology is a rigorous way of quantifying closed
shapes,

» ... like connected components, cycles, voids and more.

» No matter if they are embedded in two or a million
dimensional space,

» No matter if they are rotated, stretched or transformed in any
other way.

» Multi-scale,

» Robust.

Distances between diagrams
A

Optimal matchings between points of two persistence diagrams
allow us to define standard distances between them — bottleneck
(length of the longest edge in the matching) and p-Wasserstein

(sum of lengths of matching lines to the power g) to the power %.

Practical exercise 2

» Let us go back to our jupyter-notebooks exercises.
» Open PH_persistence_simple_point_cloud,

» Compute persistent homology of a point cloud sampled from
a circle (without and with a considerable amount of noise).

24




Warning, outliers!

Outlayers can be a problem, filtration weighted by a distance to
measure estimators

Warning, outliers!

outliers can be a problem, filtration weighted by a distance to
measure estimators

Warning, outlayers!

outliers can be a problem, filtration weighted by a distance to
measure estimators

25




Not only point clouds....

» If you work with:

» Pixel / voxel / cubical data,

> Time series,

» Correlation and similarity measures,
>

» you may still use similar ideas and track connected
components and holes emerging and disappearing.

Apply to digital images

Left — osteoporotic, right — normal bone (vertebrae).
Not only density, but mostly structure is responsible for
osteoporotic fractures.

What is a cubical persistence?

» Sub-level sets of a function.
» Cubes enter from lower to highest function/filtration value.
» We track changes in homology of sub-level sets.

ro.l n u .
@) 4) 15)

(Y] @)

(c)
a B B
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Practical exercise 3

» Digital images are partially-constant discretization of
functions.

» Let us go back to our exercises.

v

Open PH_distance_from_circle,

» In this exercise we will construct a cubical approximation of a
function f : [-2,2]> = R. f(x,y) is a distance from (x, y) to
a unit circle x> + y? = 1.

» Let us visualize it as an image, and let us compute persistent

homology of the corresponding cubical complex.

Persistence for time series analysis

S&P-500 and crashes

'sps00_normalized ——
‘no_normalization' t
08 -
06 -
04 |
0.2 - M
0 AMTHI.MNMIIJMMM i MLL

s ik L G
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
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Persistence—based descriptors of nanoporous materials

fsﬁ*‘ H
’., o 126 25 375

Persistent interval (A)

PCODB331112 E—-—-—l
2 |

o 125 25 a7
Persistent interval (A)

Lee, Bathel, Diotko, Mossavit, Smit, Hess, Quantifying similarity of pore-geometry in nanoporous materials,
Nature Communications, 15396

And more...

» We do not have time to cover all this ground.
» But, there are numerous resources for further work:
> https://arxiv.org/abs/1807.08607
> https:
//www.maths.ed.ac.uk/ viranick/papers/edelcomp.pdf
» https://gudhi.inria.fr/tutorials/
» and many more...

Persistent homology

» We have robust,

» multi scale,

» coordinate—free,

» compressed,

» tool to detect connected components, cycles, voids and their
generalizations.

» |t can be interfaced in various ways with standard stat. and
ML tools.

28




Persistent homology, the output

» Muti set of points in R2.

» Variable size, not ideal representation to interface with ML/Al
and statistics — persistence representations, embeddings, ...

» We need to embed persistence diagrams into a Hilbert space
(vectorize them).

» That makes topological/statistical inference - hypothesis
testing, confidence intervals,... possible.

Homology and persistent homology, biased collection of
resources

» Edelsbrunner and Harer, Computational Topology, An
Introduction, AMS.

» Kaczynski, Mischaikow, Mrozek, Computational Topology,
Springer 2003.

» Dtotko, Applied and Computational Topology, Tutorial
» Multiple youtube videos.

Persistence is nice, but, what about flares?

Persistence homology of those two point clouds will be very
similar, as they both have one connected component and one hole.

29




But, what about flares?
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But, oftentimes the information in the flares may be important (it
may for instance carry information about anomalies).

Reeb graph

source: Wikipedia

Reeb graph, formally

» Input: M, f : M = R.
» We define an equivalence relation x R y iff:

> f(x) =f(y),
» x and y belong to the same connected component of f~*(x).
» M/g.
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Conventional Mapper algorithm

Conventional mapper graph is an attempt to define Reeb graph for
discrete point cloud instead of a manifold.

&5 = =

Mapper algorithm, idea

» Input: finite collection of points sampled from M, f : M — R.
» We define a relation x R y iff:

» f(x) is close to f(y),

» x and y belong to the same cluster ...

Conventional Mapper algorithm
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Conventional Mapper algorithm

Mapper algorithm, formally

Input: finite collection of points sampled from M, f : M — R.
Cover of the range of f with overlapping boxes.
Fix a clustering algorithm
We define a relation x R y iff:
» f(x)and f(y) belong to the same element / of a cover of the

range of f,
» x and y belong to the same cluster in f ~1(/).

vvyYyy

» Vertices of Mapper graph corresponds to the clusters,

» An edge is placed between two vertices if the corresponding
clusters have nonempty intersection.

Mapper algorithm, coloring

» Vertices of the Mapper graph may be colored by an average
value of an objective function on points covered by clusters.

» Fix a point cloud X and an objective function f : X — R.

» Each vertex of the Mapper graph correspond a subset
(cluster) of points from X.

» Typically the value of the vertex will be an average value of f
on the corresponding cluster.
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Mapper is the most well known tool of TDA

ER-- sequence

FILTER COLOR SCALE | "
Basal-like

sparse data

detached tumor bins
very sparse data

ormal-Like / e
& Normal T

Nicolau, Levine, Carlsson, Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent
survival, PNAS 2011.

Practical exercise 1

» Let us play with Mapper algorithm!

v

Go to https://github.com/dioscuri-tda/tutorials

> Let us start from something simple — open
Mapper_concentric_circles

» In this exercise we will generate two concentric circles in a
plane.
» We will use projection to the y coordinate as a lens function,

» And a DBSCAN with certain parameters as a clustering
algorithm.

» What is the Mapper graph we obtain?

Practical exercise 2

» Let us play with something more advanced, let us consider
standard Boston property dataset.

» Please open Mapper_boston_dataset

» |t contains 13 variables, we want to understand its relation to
prices of properties in Boston area (in '1970).

» Here we will use t-distributed stochastic neighbor embedding
as a filtering function.

» We will be able to experiment with numerous clustering
methods as well.

» Obtained mapper graphs will be colored by the average price
of a property in a given cluster.

» This is not the last time we see Boston Property Dataset!
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Ball Mapper algorithm

P As the last part of our schedule, we will play with Ball Mapper
algorithm.

» As you might have noticed, it is not always trivial to choose
the lens function as well as clustering algorithm in standard
Mapper construction.

» The idea of Ball Mapper is intuitively explained in the
following slides.

Ball Mapper algorithm
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Take a point cloud X

Ball Mapper algorithm
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Given € > 0, select subset of points N C X such that for every
x € X there exists n € N such that d(x,n) < e (we call N an
e-net)
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Ball Mapper algorithm

Take one dimensional nerve of that cover (an abstract graph whose
vertices correspond to B(n, €), and edges to nonempty
intersections of balls)

o <8 = = =

Ball Mapper algorithm

This way we obtain a Ball Mapper graph of X with radius e.
Vertices of the graph can be colored analogously to those of
standard Mapper graph.

=] =] s = =
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Network based landscapes of data

Meet the Lucky Cat

Network based landscapes of data

128 x 128 = 16384 dimensional space

From a gray scale image to a point

N.*-w
(PPl v (PPl Y (PPl Y

(% Plegsa) (P, Plege) (P°.-- Plszea)

Gray scale images converted to vectors in high dimensional space
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Network based landscapes of data

128 x 128 = 16384 dimensional space

Practical exercise 1

» Please open BM_basic_circle.

» In this proof-of-concept example we will generate a collection
of points sampled from a unit circle x> + y? = 1.

» And built a Ball Mapper graph based on it.

» Do we see what we expected to see?

Practical exercise 2

» In our second example we will re-visit already known Boston
Property Dataset.

» Please open BM_Boston_property

» This time we will use Ball Mapper to examine the structure of
the 13 dimensional point cloud, and the distribution of the
explanatory variable (price of properties) on the top of it.

» We will use tools from the Ball Mapper implementations to
recognize which coordinates makes most statistical differences
between the regions of the graph.
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Basic stats

Topology and hypotehesis testing

Basic stats

» One-sample problem: We are given a data sample
X = {x1,%0,...,%n},x; € R and cumulative distribution
function F : R? — [0,1]. Does the data X follow the
distribution F: X ~ F?

Hy: X ~F vs. HH: X > F

» Two-sample problem: We are given two samples X3 ~ F;
and X> ~ F, and want to test hypothesis that X; and X were
drawn from the same (unknown) distribution

H02F1:F2 VS. H1:F]_75F2

Testing, for one-sample problem
Available methods depends on the data dimension

» 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov,
Cramer-von Mises, Andersond€ "Darling, Chi-squared,
Shapiro-Wilks

» 2-D: theoretical results for Kolmogorov-Smirnov and
Cramer-von Mises, some implementations available in python
and R

» d-D: Kolmogorov-Smirnov should work but no
implementation available, critical values of test statistics
unknown, impractical in higher dimensions

Kolmogorov-Smirnov test

Here, K-S will be used as benchmark

» one-sample: D, = sup, |Fn(x) — F(x)]

Cumulative Probabilty

» two-sample:
Dn,m = sup, | F1,n(x) — F2,m(x)]

o

xo
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Testing, for one-sample problem
Available methods depends on the data dimension

» 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov,
Cramer-von Mises, Andersond€ "Darling, Chi-squared,
Shapiro-Wilks

» 2-D: theoretical results for Kolmogorov-Smirnov and
Cramer-von Mises, some implementations available in python
and R

» d-D: Kolmogorov-Smirnov should work but no
implementation available, critical values of test statistics
unknown, impractical in higher dimensions

Kolmogorov-Smirnov test
Here, K-S will be used as benchmark
» one-sample: D, = sup, |Fn(x) — F(x)|

» two-sample:
Dp,m = supy | F1,n(x) — F2,m(x)|

Cumulative Probabilty

TopoTests, one-sample problem, input

We are given a data sample X = {x1,x2,...,%y},x € R? and
cumulative distribution function F : RY — [0, 1].

One sample TopoTests

Input: sample X = {xi,%2,...,X,},% € R? and CDF
F:RY—1[0,1].
Step 1: Ef(x(n,r)), the Blueprint of F
> draw n-element samples X{, X3, ..., X}, from F
» for each sample X! compute its ECC x(C,(X}))
| 4
1
M <
1

M=

X(CF(XI/)) ﬁ} EF(X(”V r))

-
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One sample TopoTests

Input: sample X = {x1,x2,....Xn}.X; € R9 and CDF
F:R9 —[0,1].
Step 2: variation form Eg(x(n.r))
» draw a new set of m-element samples Y{, Yy, ..., Yy from F

> Calculate sup distance between x(C,(Y/)),i=1,...,mand
average ECC

» determine the threshold value t, as a (1 — a)'th quantile of
{d;}™,, where « is required level of statistical significance

TopoTests

Input: sample X = {x3,%,,...,X,},x € R? and CDF
F:RY—10,1].
Step 3: Actual testing
» compute the ECC for sample
data X: x(G/(X))
» compute the [, between
x(G (X)) and Ef(x(n,r))

N=1000, dim=3

— e
e W Wi 210 5
— aaare 1 T3aT2eT3

\ — acame 11 U U 1AAD

!i—n:zn) 2o 20eA13,2)
» reject Hp if D > t,

ol —— —————
» it is possible to get p-value as o
well B O o T T
For the two-sample problem the
procedure is slightly different but the
idea remains.

D = sup [x(C(X))—Er(x(n,r))| .
rcR

TopoTests — properties

Design and goals

» general method: works regardless of the data dimension and
form of probability distribution function we are testing against
computationally feasible in higher dimensions
theoretical results derived (no ML-like approach)
in fact it is framework not one particular test
outperforms baseline methods i.e. Kolmogorov-Smirnov test

vvyvyy
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TopoTests — Translational & rotational invariance

The test is not sensitive to:

change of location parameter

rotation

reflection

components reordering (c.f. A" x [vs. [ x A)

This can be tested using standard moments (after topotest is
done)

vYyYVvYyYY

G
v (walss 1))
5
‘1 ﬂ 10 08
= N ((0‘0)‘ 0.8 m])

2 9 2 4 a
=

Theoretical guarantees

Type Il erorr (false negative, fail to reject Hp when it is false
For fixed significance level «, probability of type Il error goes to 0
exponentially with number of points sampled

n?

P(type Il error) <~ e™™ =0

(Technical details swapped under the rug)

@
I
n

Two-sample problem

» X ~F,Y~G, |X|=n,|Y|=m,
Ho:F=G vs. Hi: F#G

» compute distance D between ECC curves on
X and Y

» data samples are pooled Z = XU Y

» split Z randomly into X(p,) and Y/, of same
sizes

» compute distance d{,) between ECC build on
Xip) and Yp)

» p-value is obtained as

p=3%,!(dp>D)/N
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Simulation results (one-sample)

Test Power: probability that Hy is correctly rejected when Hj is

true
» samples sizes 100-5000 data points
> test power estimated using 1000 MC replications
> power compared with KS (d < 3)
» « on diagonal is expected
» distributions easy to confuse with normal:
» t-Student with v = {3,5,10} DoF

» MVN non-diagonal ¥ matrix
> Cartesian products with N(0,1) marginals

v

» Heavy MC simulations powered by Google.

TopoTests yielded higher power than KS in most of the cases

Simulation results (one-sample)

10
KS 3D n=250 alpha=0.05
Average Power: 0.8087
NOLXNO1xNOL 100 100 100 1.00
Mu tiGauss0.1 100 100 100 1.00
08
Mu tiGauss0.5 100 100 100 1.00 1.00
Mu tiGauss0.9 100 100 100 1.00
NOLXNO1xT5 100 100 100 1.00
5 NO1xXT5xTS 1.00 100 1.00 1.00 06
5
£ T3XT3XT3 100 100 100 092
o TSXTSXTS 100 100 1.00 1.00
w
5
100 100 100 1.00
g TI0XT10xT10 e
LaplacexLaplacexLaplace 100 100 100 1.00
LogisticxLogisticxLogistic 100 100 05
B22xB22xB22 100 100 1.00 100 100
02
UxUXU 100 100 1.00 1.00 1.00
&ML 100 100 1.00 0.89 1.00 100 100 096 100
g 32 2L ELP2L2 820832 ¢%
S o o 2 3 2
£ 3 %% 24884852 88320
i :iERERRES IS o0
S 88825 Ff LK 58
x5z z 3 2 s 8 2 X
2 33 3 ¢ 8 8 & &
s 2 2 2 Fges
S
E
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)
5 3
ALTERNATIVE Distribution
Simulation results (one-sample) w0
TopoTest 3D n=250 alpha=0.05 norm=sup
.9016
No1xno1xNo1 85 1. 00 . 100 100 100 1.00 1.00
MultiGauss0.1 88 1. 00 1. 100 1.00 100 1.00 1.00
08
MultiGauss0.5 100 1.00 100 1.00 1.00
MultiGauss0.9 | 190 1.00 1.00 X 00 100 100 100 1.00 1.00 100 100 100
No1xno1xT5 [ 00 1. .27 R P8 1.00 1.00 100 100 100
g NO1xT5xT5 { 092 0.93 1.00 1.00 100 1.00 1.00 0.6
=
2 T3xT3xT3 100 200 100 1.00 1.00 100 1.00 0.94
a
a T5XT5XTS | 200 1.00 1.00 1.00 1.00 100 1.00 0.99
w
5
100 100 100 1.00 1.00
H TleTleTlo- o0a
LaplacexLaplacexLaplace {100 .00 100 100 100 100 1.00 0.9
LogisticxLogisticxLogistic | 109 100 100 1.00 100 100 1.00 100 1.00 100 100
B22xB22xB22| 190 1.00 1.00 1.00 100 100 1.00 1.00 1.00 1.00 100 100
UxUxU {100 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 100 02
M1 | 100 1.00 100 100 100 1.00 0.98 100 100 098 1.00 100
g Le 2
A & @A 2
55 K 3 00
R
g P e
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NO1xNO1xNOL
MultiGauss0.1
MultiGauss0.5
MultiGauss0.9
NO1xNO1xT5
T10xT10xT10
B22xB22xB22

S LaplacexLaplacexLaplace
LogisticxLogisticxLogistic

ALTERNATIVE Distributi
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Simulation results (one-sample) -
.05 norm=sup

TopoTest 5D n=500 alpha
Average Power: 0.8465

NOLx NOLxN O1xN0 1xN0 1 Rl Loo

MuRG S0l

MG 505

MG 509

TRTITIOINTI

TSTSTSNTSXTS

TRUE Distribution

T106T 1067 10xT 10710

NOLXTSX TEXTSXTS

NOLXNOLXNOLXNO1XTS

~3DM 3D HLIDNLID XD

NO LNO1 3L apod 30 xL3p

N0 1N NG xNO1 xNT1
T10XT10XT10XT10XT10
NOLXT SxTSXTAXTS
NOLN 01N LeNO 1xTS

ALTERNATIVE D stribution

Simulation results (one-sample)

» TopoTests still outperforms
the KS (d = 2, n = 250,
0.765 vs. 0.603)

» very expensive method
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TopoTests, take home message

» There are multiple papers where topological techniques are
used to show differences in distributions

» Usually they work

» \We shown an important case, where it works, is comparable or
better than state of the art in low dimension and have no
competitions in high dimensions

» Not only that, we have theoretical guarantee for that

» Those guarantees does not depend on the fact that we started
from point clouds

» We hope that this meta—observation will open up new
opportunities in applied topology

Every mathematician has a secret weapon. Mine is
Morse theory.

Raoul Bott

Discrete Morse Theory

1. Let us now have a look at a Discrete Morse Theory.

2. K - finite regular CW complex.

3. f: K — R, constant on every cell, is a discrete Morse
function if for every af € K:
3.1 #{BPHL > aP|f(BPHY) < f(aP)} <
32 #7 < 0?lf(P71) > F(0#)} <

4. Simplex is critical if both (1) = 0 and (2) = 0.

5. For any simplex conditions (1) and (2) cannot be both =1
(= define discrete gradient).

1
1
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Which of them is discrete Morse function?

Why it is called discrete Morse Theory

1. Suppose K is a cell complex with a discrete Morse function.
Then K is homotopy equivalent to a CW complex with exactly
one cell of dimension p for each critical simplex of dimension
p (we will construct this complex soon).

2. If there are no critical simplices a with f(a) € (a, b], then
K(b) is homotopy equivalent to K(a). (In fact, K(b) collapses
to K(a)).

3. If there is a single critical simplex a with f(a) € (a, b] then
K(b) is homotopy equivalent to X(a) with a handle of
dimension dim(a) glued.

4. Morse inequities hold.

5. Gradient of a function is more convenient to use then a
function itself.

Discrete Gradient
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How discrete Morse functions are usually constructed?

. We almost never assign the values. Gradient is sufficient.
. It will be represented by arrows.
. Every simplex can be either tail of head of exactly one arrow.

. The vector field is curl-free (i.e. there are no loops).

oA W N =

. Critical cells of Morse functions = cells which are unpaired.

Illustration
| | L N
[ ] [
[ L 3l
Illustration
» » n
| | | |
|, -4 il I

46




Illustration

Illustration

Illustration
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Illustration

Illustration

Illustration
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The Morse complex

» Cells of Morse complex = critical cells of discrete vector field.

» Boundary relation computed by using gradient paths.

» Over Z; — x(A, h) =number of gradient paths from A to h
mod 2.

» Morse complex (over integers) and the initial complex are
homotopically equivalent.

» Homology of a complex and its Morse complex - isomorphic.

» k(A h)=0.

|

B
|

O 4+—C
¥ e+—u«

Iterated Morse Complex

» By iterating construction of a Morse complex we can obtain
both (field) homology and persistence.

P Let us concentrate first on standard homology.

» Homology over a field = pairing between A, B can be made
iff (A, B) # 0 (Dmitry Kozlov).

» Algorithm to construct Morse complex — a functor
M:C—C.

» C category of chain complexes.

» Assumption: if there are some Morse pairings in C, at least
one of them is made in M(C) (vitality).

» E.g. M procedure search for a single possible pairing and do it.

@
I
n

Iterated Morse Complex and homology

» Let us apply M iteratively.

» Homology is preserved, homotopy type is not.

» JpenM(C) = M (C) =... = M>(C) - lterated Morse
complex.

P 5i(C) = #{ cells in M>(C) of dimension i}.

» Generators can be obtained from this procedure.
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The Dounce hat.

First iteration pairings
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M*(K) with Morse pairings on it

Morse complex for persistence

» C - chain complex with filtration g : C — Z.

> st a,BeC, a<B= g(a) < g(B).

» Morse pairing v : C + C is compatible with filtration if
g(a) = g(v(a)) for every paired a.

» Assumption: M constructs only a vector fields compatible
with filtration.

» Persistence of C and M(C) are the same.

Filtered complex

om mi
0 1
oM N1
0 1
] | N1
0 1
o] | M1
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Filtered complex

op—-a —a1
0 1
o] | N1
0 1
o] | N1
0 1
OI—rg ET.1
Filtered complex
ol—a %—-1
0 1
o] | N1
0 1
o] | [ §
0 1
O — il 1
2 2
Filtered complex
o - & m
0 1
0] | N1
0 1
o] | N1
0 1
om E 3 E 1




Filtered complex

Filtered complex

2 2

Iterated Morse Complex for persistence

» Dimension 0 — [0, 00), [1,3].
» Dimension 1 - [4,6], [5,6].
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First iteration

Second iteration

Final iteration




Critical cells

Critical cells

(Y,6) (X,6)

(c4)  dd) (e3)

(a,0) (b,1)

Critical cells

(Y6 (X,6)

| \
M (c,4) (d,5) (e,3)

| NAY

(a,0) (b,1)
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Observations

> Aec M>(C), and By, ..., B, be in boundary of Ain M>(C).

» M°°(C) is the minimal cell complex (w.r.t number of cells)
with the same persistence as C.

Observations

(Y,6) (X,6)

Observations
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Persistent Homology via DMT

» Based on Morse theory one can obtain persistent intervals.

» No need to change representation for one suitable for matrix
algorithm.

» Unlike the simplification phase, cells of different filtration
value are paired and nonzero persistent intervals are reported.

» Pairings between cells of different filtration value — allowed (to
some extent).

Level 0

(¥.,6 (X.6)

*
)
Y \
w (C,4) (d, ) (9,3)
x vl
e

(a,1) (b,1)

Level 3

(Y,6) (X,6)

(c4)  do)
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Level 3

(Y.6) (X.6)

[a - d c4)  @d5)

(CR))

Dim 0:

[1.3]

Level 6

(X8)

(c4)

(CR))

Level 6

(X.6)

[a X (c4)

(CR))

Dim 0:

[1,3] [5.6]
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Level 6

(a,1)
[1,3] [5.6], [4,6]
Level co
]
(a1

Dim 0:

[1,3], [1,) [5,6], [4.6]

@
I
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The story begins here?

1. We have barely scratch the surface,

2. there are many more invariants,

3. and more applications.

4. Hence, | would like to invite you to Topological Data Analysis!
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Medical imaging signatures with topology for
cancer

Hidetaka Arimura

Faculty of Medical Sciences, Kyushu University, Japan

What the author is interested in is the connection between medicine and mathematics.
A human body is equivalent to a tube or donut (without considering holes of nose
and eyes). The central hole is a digestive system. The body is covered by surface
tissue (epithelial cells). The epithelial cells exposed to the outside world might have
gene mutations, thereby resulting in cancer cells. On the other side, the heterogeneity
of pixel values in medical images (computed tomography, magnetic resonance imag-
ing, positron emission tomography, etc) would reflect biological tumor heterogeneity,
which could be related to the degree of malignancy and patients’ prognoses. We have
attempted to develop novel medical imaging signatures, which are defined as sets of
features calculated based on mathematical models from medical images, for prediction
of the degree of malignancy and patients’ prognoses. As results, the author’s group
has shown several data that the topological imaging signatures could be superior to
conventional ones in terms of the prediction. The topological image features are de-
rived from Betti number maps (by, b1, and by) within cancer regions of medical images.
The assumption that the author has thought through (not twisting things around) is
that the by, by, by features may characterize high tumor cell density areas, scattered
dead cell areas (necrotic tissues), cancer blood vessels (angiogenesis), respectively. The
author will present the basics of topological image features and the applications to lung
cancer and head and neck cancer.
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D = i 2
1. Background and radiomics
n%mr-,lfho
umawww

Department of meum%ﬁam

- I am a medical physicist, not a
mathematician

[l overall outline °

v'1st: Background and radiomics
2nd: Medical background for topological radiomics

3rd: Applications of topological radiomics
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. Outline

v Nature of medical physics

v Association in shape between human body and topology

v' What we are doing now (radiomics)

v' Mathematical models beyond conventional radiomics

v Summary (1)

- Nature of medical physics

B what is mathematics?
v Mathematics is the art of giving the same

name to different things (Henri Poincar“e)

v' Mathematics is the structure of abstract

reasoning (Richard Philips Feynman)

Abstract science ?

(S
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. What is physics?

v Basic science that understands and describes
. Concrete science ?
concrete natural phenomena by using

mathematics that can explain them

v' Basically, the natural phenomena could be

5

theoretically predicted in the macroscopic world,

but probabilistically predicted in the microscopic

=

world (quantum mechanics).

. What is medicine?

v Science of uncertainty and an art of Uncertain science ?

probability [William Osler (1849-1919) , '
Sy
Principle and Practice of Medicine] -
v Inherent uncertainty in health care [The (

Lancet 2010; 375: 1666]

Il What is medical physics (my field)?

Concrete, but

. . . Uncertain science?
Applied science that could describe natural phenomena  \itn abstract spice ? ?

related to human bodies with uncertainties (due to

thermal motion or dynamic metabolic activity?) using

X9

mathematics that can be used for diagnosis and therapy

— e
&<
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. What we can get in cancer properties

Big pictures on human body and diseases,
because you can only predict softly
something with uncertainties

“What is essential is visible to the heart.

It is invisible to the eye." (modified from an original

version)

- (By a fox in “The Little Prince”)

“The truth is invisible to the eye.

However, mathematics can reveal and

- express its appearance.”

(By a mathematician in a novel of “The Doctor Loves
Equations” written by Youko Ogawa)
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“The book of the
- universe is written in
mathematics”

(Galileo Galilei)

- Association in shape between human
body and topology

[ What is a human body?

o (O ) W

Anembryo  AQrownsetofcells i ot

an Initial anus
Initial mouth
. .
\wtlalanus
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[l what is a human body basically?

Our bodies are covered by

Mouth surface tissue (epithelial cells).
Initial mouth
A digestive
system
~ ~
‘Anus
Initial anus Epithelial cells oftt::a:gesﬁvee
world
They might be cancerous due to
gene mutations such as colon
cancer,
B Respiration system: a hollow l!
Phenotype
(cancer on CT Image)
Epithelial cells of lung, Metabolite
which may be exposed 3
to the smoke or Protein ’
chemical things. W oh
. Messenger RNA ‘ 4% (cancer on PET image)
They might be lung Genewith St
\.";,_9"'-«'.'..

Madif et oem hep /o o piebousoem

- What we are doing now (radiomics)
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. How are cancer patients treated?

o

/ % 5o *

P_g rnolecular- Novel
Iaueabe (2018), Prof. Honjyo

How to decide each =
treatment approach : NSCLC m"k@ L.

If a patient is operable with a stage JA tumor, Ega’y Surgery
this patient will receive surgery,

but if not, this patient could receive
radiotherapy.

National Cancer Research Center, Cancer
Information Service ’ ( Follov-up

gtk ng

. However, we have an issue: patients with similar profiles
treated by radiotherapy may have different survival times

Issue: "One-size-fits-all"

treatment procedures
could be unsuitable for
some patients.

Female
Histology scc scc
Age 61 68
Overall stage I (T1NOMO) I (TINOMO)

Survival time (day) 1357
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. Outcomes of surgery and radiotherapy are almost
the same, but they are not perfect

Table 3. Comparison of 5-y overall survival rate between

Non-small-cell surgical serics and SBRT

lung cancer

(NSCLC) Japanese Japanese

Stage I Clinical United National Cancer  National
stage States (1) Center (2) Survey (3)  SBRT
1A 61 n 77 76

Orishi, et al. Int ) Radiat B 40 i 60 64

Oucol Biol Prye. 2011 Abbreviation: SBRT = stereotactic body radiotherapy.
Values are percentages.

A treatment method has been effective for some patients, but the method is
not always effective for all patients.

[l My definition of radiomics

Radiomics: one of omics research fields where a set of medical inﬂgefeatursrelatmtqpabeqs'pmgmssae

considered “radiome” like genome, transcriptome, pf to improve and
prognosis
Application: Selection of patients for a more appropriate treatment strategy by prediction of of patients’
p btained from pr medical images (except molecularly targeted drugs for tumors with gene
mutations)
Collection of pre- Feature Bullding of Patient Survival
treatment images ~ ysis for

surgery

[l Workflow of radiomics with AI

Patient stratification  Evaluation

Collection of pre- Feature Building of using simple
treatment images with ~ , models or machine
target prognosis® that | Manuel semi or |
you want to predict outomated Feature
‘segrmentation po— 1r
Histogram (o tost retest } -

+LASSO or [
Coxnet)

Signatures

~
AN
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Prediction of cancer prognosis* (expected outcome)
after treatment from medical images

- - 5 b N /" N
P ¢

\
/

| " { 0\
WAL NS

Prediction: progression (left to right) and partial response (right to left)

*Prognosis: expected outcome or outlook related to a medical condition or treatment

Mathematical models beyond conventional
radiomics

. There are disadvantages in conventional radiomics and
deep learning

Radiomics features, y leamed of
(hand crafted) using deep (o)
il i ™~ v Interscanner variability
/ Histogram p b(sw) ¥ Vulnerability for various imaging
protocols
Te re Shape . Disadvantage of DL:
. :;5 » ¥ Necessity of huge number of data
o
Wavelet Automated feature
rety 0t (Histogram extraction

\ + Texture) /
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. What are requirements of better features in radiomics
from medical point of view?

v Image features should reflect
one or some of cancer
phenotypes

v Image features should be
mathematically invariant

FLOS ONE 2016;13(7): 60157416, dol:10.1371/Josrswl. po.015 7416 n

What are requirements of better features in radiomics from AI
(pattern recognition) point of view?

v Features should be similar to those for objects in a same ca ry, but they should be
different from those for objects in different categories [Duda 2000].

v Features should be invariant to irrelevant transformations of the inputs such as translation,
rotation, and scale.

Original _ N\, Translated
and rotated
Good features Bad features ‘ i *"3 . /{”«%‘*.\ .
\ [~ lv\.', Vs
'F;T 0% o SRR N/
o 0 hd Uy
[Zs P —
o . N >
Z
X x g
—— = 0 =F
'F}
I

Duda, RLO.; Hart, PE.; Stork, D.G. Pattern dassification, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2000.

[l Topology is one of theories that we want
Topologists can eat a coffee cup with trying to drink coffee from donut!

G, o o
e .

They can not differentiate
a coffee cup and donut.
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. Hypothesis: Classification of cancer patterns into several categories
depending on Betti numbers

Q Mathematical classification of objects by simplifying connectivity

6. Rote inc B Comput. Geom. Corves Surfaces 2006 277-312)
Q Bettinumber Invariant value

b1 Number of holes deformation

Cancer

pattern C

Cancer Qbo=1
pattern A Qbi=1

Cancer patterns with prognostic information could be classified into several
categories based on Betti numbers with intrinsic geometrical patterns

{bO Number of conn  components Betti numbers after continuous

[l computational topology

Decomposition of a shape: a set of simplices (many triangles)
= Vertices (Points) + Edges (Lines) + Faces

e oo '4 ‘

| 1
Vertex ide A= !
(point) (line) ! N~ N\
N, Y ‘4 P
-
—

. Computational topology

Decomposition of a shape: a set of simplices (many triangles)
= Vertices (Points)+ Edges (Lines)+ Faces

® o o

Homology group: Hn(X) = %
+

e n = rank (H,.(X))
( Ny (AN = rank (kerd,) rank (imd,,,)
L.y y rank (kerd,): n-dimensional cycles

rank (imd,,,): n-dimensional boundaries
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B summary (1)

v We try to find significant image features to characterize intrinsic
cancer geometry

v We assume that the significant image features may be
mathematically invariant.

v We believe that the image features could be calculated from
topology

Any question or
comments ?
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Medical imaging signatures
with topology for cancer

el

2. Medical background for topologica
radiomics
Midetaka Arimura,
Department of umdmaﬁ'm:f
Kyushu University

[l overall outline °

1st: Background and radiomics
v 2nd: Medical background for topological radiomics

3rd: Applications of topological radiomics

[l outline °

v'Are there relationships among cancer properties, cancer
geometry and prognosis?
v'Hole analysis (topological radiomics) as an explainable Al

vSummary (2)
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- Hole analysis (topological
radiomics) as an explainable AI

- Association between biological components of cancer °
and topology Y
Medical targets Biological components in Topological components in

histological images CT images
v Human body v Cells ¥ Connected [ ]
v Cancer v Necrosis components
v Gland duct ¥ Holes o
(tubes)

¥ Vessel

7 Cavities O
a

. Definition of connected components and background o

within a kernel v
[l Center pixel for 3 connected component in 8 neighborhood

[ Neighborng pixel for a cannected component in 8 neighborhocd

[ Center pixel for background in 4 neighbarhcod

pixel for in4

Binary image obtained by Defin tion of connected
a threshold value of 3 companents (white) and

background (black) n
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Definitions of connected components and holes
within a kernel

Number of connected Number of holes =
components (white) (Number of all connected background)
with a pixel of 1, b0 = 7 = (Number of connected background contacting with edges)

Loca ROI

Detecting holes in
4 neighbors

s wp
A total of 256 Betti
number maps

O Comvolutional computation
peocedure

O xs: kernel size

O sP: shifting pixel

Bets rumber (b1)

L eveed

Loce ROl wi
Prasecaptp 0 edpe

Ninomiya K, Arimura K, et al., Phys Med. 2020; 69 90-100

Number of all connected Number of connected
background (black): 3 background contacting
with edges: 2
b0=7 b1=3-2=1
,A.
[l 2D Betti maps °
Y
Detecting connected v Cells
v Necrosis
v Vessel

Bet tnmber (1451

. Purpose

To develop a novel image features based on topologically
invariant Betti numbers for prognosis prediction of non-small
cell lung cancer patients

el

i

Homology MR“adiomics
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. Patients’ information ®

Y

Number of patients 205 QO All the patients received radiotherapy or

Age (yrs) 43-91 {medizn €9} chemo-radiotherapy

Follow-up 135

Q Free-breathing PET-CT

Censored 70
Gender Gross tumor volume

Male 147 CT image (GTV)

Female 58
Stage

1 38(18.5%)

] 22(10.7%)

A 52(25.4%)

me 92 (44.9%)

I o Bacien
e n & RCIINTEA IS S |

Unavailable 1{0.5%) n

A

- Overall scheme: computation of image features "'.f 5

Inputs CT image and gross tumor volume

(GTV)
Re-quantizing the CT image into 8 bits gray-
F} levels Iﬂ
Thresholding 8 bits CT images with values Wavelet-decomposition and
from0to 255 down-sampling GTV
~ -
Computing radiomic features from the
Calculating Betti maps wavelet decomposed
within down-sampled GTV
3
Computing radiomic features from
Betti maps within GTV n

. Betti number (BN)-based features calculation ®

0 13,824 BN-based features were obtained by applying 54 calculation methods
based on histogram and texture features to 256 Betti maps

QO 14 histogram-, 9 gray level co-occurrence matrix (GLCM)-, 13 gray level run-length

matrix (GLRLM)-, 13 gray level size-zone matrix (GLSZM)-, and 4 neighborhood
gray-tone difference matrix (NGTDM)-based features

Histogram GLCM GLRLM GLSZM NGTDM

-,

e s o
an
wgovons gy ke srues

e 1Y Ot gt e o ) (S n
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A
. Wavelet decomposition and feature calculation %

O A total of 216 features were calculated from 4 wavelet-decomposed images

QO Coifletl mother let was applied for the let decomposition
Scaling o . Calculation of radiomic features e.g.
ion; L 4 images histogram-based

8 bits image

’ .(,‘._-_--vx ecE

. Construction of radiomic signatures and Cox proportional
hazard model (CPHM) Y

Radiomic signature was constructed from features up to 13
Radiomic scores (rad-scores) were produced using CPHM

All the features Signature (B # 0)
= i CPHM with the
" B argmanll(p) - Re(B)) signature
% : —— h(t]x) = ho(t)exp(B"x)
& Elastic-net regularized cox Rad-score
proportional hazard model
_Fe;!ure
B:Parameter vector 1()dog partial ikelihood P ():Elastic-net regularization term
B:Optimum parameter vector A( ):CPHM r:Survival time
PO :Zero vector ho( ):Baseline hazard (Kaplan-Meier curve) x-Feature vector

Simon et al Journal of Statistical Software Vol. 39(S) 113 2011; Sen et al Statistica Sinica. 24 14331459 2014 n

Optimization of parameters in Cox proportional hazard

model
- - Y

B arx;ﬂﬂ[kl(ﬂ) = AP(B)]

Parameter
o 8
)
\
|
|
;

R(B)  alBll +—ZIBIE

Cross-validation error CE(A) of s-
fold cross-validation

CEQ) -=Xi {(BY) - 1{(BY)}

Cross-validation
emor CE(A)

k:scaling factor
l()fho MII'IMMG e ot M
A:lagrange mubiplier Lambda 2
# ():Penalty term
n: Number of patients in a training dataset
11 41 noem > 6 fold cross va idation test based on random numbers
11542 noem > 00 ¥mes repetition
£ {)0g partial Bkelihood calculated from a dataset without the > Significant features selected by maore than 60 times
h

#a-Parameter vector optimized from a dataset without the th
patient Friedman J, ctal J Stat Softw 20 0:33 22
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A
B Equation of partial likelihood °
2
4= e ey

subject to our constraint: a 3 (3] + (1 - a) 3737 € . Maximizing the partial likelihood &
to maximizing & scaked log: partial klibood,

£ (37|

o fictor of 2/n for convenimer, Heoce, If we consickr the Lageangian formulation,

)) AP .,] m

) =2 ("3—: 4+ (01 -a) Z'f)

in failure/censocing time. We wish to find 7 which masimises

I.U)-l:[‘_

-l Lk,

2m=2
n "

? = argmasy

(e

whern,

AP,

mixt

f the £y (Lo aned fy (ridin g

Ther Lo el 1906) tennds 1o chooss anly & fiw sonzero cooflicients.
Wil ofhen desrabie, this s st bt It preieoe e ey orseato, he s
will yick one aud entirdy ignone the other, — n

B Evaluation method °
r 1
| Training cases (n = 135) | | Validation cases (n = 70) |
Canstructian of Cox propartional hazard model
(CPHM) with the signature
Calculation of radiomic scores. (rad-scores) Calculation of rad-scores based on coefficients
based on coefficients of a CPHM of a CPHM from 2 training
I
I Caloulation of median of |
rad-scores
|
I Patient stratification using medians based on training dataset |
|
I Production of Kaplan-Meler curves and calculation of p-values (log-rank test) | n

A
B Results: constituent features in the signatures \%

Betti number (BN Wavelet-decomposition (WD)
GLSZM_SZLGE_62 GLRLM_LRE_HL
GLSZM_SZE_28 Hist_Mean_HL
GLSZM_SZE_108 GLRLM_LRHGE_LL
GLRLM_SRHGE_4 GLSZM_ZP_LL
GLSZM_SZHGE_95 GLSZM_LZE_LL
GLRLM_SRHGE_94 GLSZM_LZLGE_LL

GLRLM_SRHGE_111
GLSZM_SZHGE_100
GLSZM_SZHGE_102

GLSZM_LZHGE_95
GLSZM: Gray level size zone matrix Hist: Histogram
GLRUM: Gray leved run length matrix LRE: Long run emphasis
SZLGE: Small 200e low gray level emphasis LRHGE: Long run high gray level emphasis
SZE: Small 20me emphasis ZP: Zone percentage
SRHGE: Short run high gray level emphasis LZE: Lange 20ne emphasis
SZHGE: Small 20ne high gray level emphasis LZLGE: Large 200 low gray level emphasis n
LZHGE: Large zone high gray level emphasis
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B Results: rad-scores and survival time °

Betti number-based features (BN) Wavelet-based features (WF)
:;ESWE v
A
B Results: p-values of Kaplan-Meier curves °
N Wavelet-based features (WFs)
Betti number-based features (BN) (Conventi features)
100 ——low-isk  ——Training
g onsl - - = Validation
osob
I I T e E
fost
1 2 3 4
Survival time (yrs)
p-value
(hazard ratio, 95% confidence interval)
Training (n 135) Validation (n 70)
BN 6.7 % 10°6(0.41, 0.26-0.65) 3.4x10°5(0.32, 0.16-0.62)
WF 5.9 10 (0.57, 0.37-0.88) 6.7 x 107 (0.88, 0.48-1.60) n
A

. Relapse predictability of topological signature on pretreatment @
planning CT images of stage I non-small cell lung cancer patients

before treatment with stereotactic ablative radiotherapy
(Kodama T, Arimura H, et al. Thorac Cancer. 2022)

Takumi Kodama!, Hidetaka 2, Yuko St 3
Kenta Ninomiya*, Tadamasa YoshitakeS, Yoshiyuki Shioyama®

Oupat @ tofitmt Sce om Gad o Sc 0o ofNedcn Scu oms Ky 8 U waty
Vvee ciMedca Qa1 Sce or Dapat @ 1ol Mt Sce Cm Fac tyofMesca Sce i Ky & U sty
Neto 8 Heep O 2o Ky s CaceCot
‘e 0d8 & Peyiiedcs Oscowyl st
Oapat @ 10/C on Mudoogy Gad e Sc oo of Nedcon Sce om Ky & U wesy

\\w& KYUSHU 1 Bua  eayOst SACAMNA Fo dwo
Pl

S
e~ UNIVERSITY n
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. Background

QSurgery Is a first treatment option for patients with stage | non-
small cell lung cancer (NSCLC), and stereotactic ablative

py (SABR) Is for inoperabie patient:
QOutcomes of surgery and SABR for stage | NSCLC patients
were comparable??

QProbabilities of locoregional recurrence (LRR) after surgery
and SABR were also comparable??

Prediction of the cancer relapse before treatment is
important to select a more

pprop therapy

1 LA IN 1Compe C Mot 24 1% 8 538
;:o:umcnﬁxum-ff "
. M

B Inverted Betti number maps
Original

1. Metcher A, THaghus Usiersty Poess; 2005

A
. Purpose

\
This study aimed to explore the predictability of topological signatures linked to the
locoregional relapse (LRR) and distant metastasis (DM) on pretreatment planning
computed tomography images of stage | non-small cell lung cancer (NSCLC)

patients before treatment with stereotactic ablative radiotherapy (SABR).
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. Clinical information ®

@ 6) TaE &) pm Y
Age (e, min - max (mediam)) €@-91(79) 0-89(%)  0386(Ums)
Ml “ 46 .
0359 (chi-seqeam)

Planning computed s::'" a » ¢ )
tomography images of 125 E g ; 0:365 (chi )
stage I NSCLC patients Hissalogy

Adsencarcinom 41 36
treated with SABR at Somamons coll caciacma 2 5 0348 (chi-sqpars)
K u Universi ital Large caell carcinoma 3 1

yusht ity Hospi .

were employed Salid 2 “

Past salid 7 n 0335 (chi-sqeas)

GGo 6 4

1484 - 57374 (8841) 1015 - 45444 (9201)  0.698 (U tas)

(o))
LER 15 16

1RR fise P “ 1.00 (chi-squars)
pes ‘;""‘-"’“"‘ 36-122(27) S53-1582(95) 0886(Ums)

A

. Imaging feature calculation

~ Heterogeneity enhancement

WFs Wavelet decomposition
BFs Original BN mapping
p— Original & imverted
BN mapping
BWFs Combiration (WFs BFs) 41958
iBWFs Combination (WFs iBFs) 83430 n
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. Betti number (BN) and inverted BN

Binary innage
he 20

<o )

(Zth:l, <80 g 110 rmap v Cells
v Necosis

v Vessel

Conventional
BN

In binary
Image

gl CT imwge

B B10 map

s marer
0 Thanhaleg e

Kodama T, Arimura M, et al. Thorac Cancer. 2022 Aug;13(15):2117-2126 n

Patients with relapse and relapse free linked to significant features of
inverted BN map feature (iBF) for LRR and DM

LRR: Locoregional relapse

: Distant metastasis
oM nt Ty : St

Yo
Hinpudebogr - AC

m
g
\ il \
= I l I
Kodama T, Ar mura M, ot o
Thorae Cancer. 2022
- I I [} i I A 1%(15):2117-2126

Cquiheas e Hisogran Fasrgy 00 0013 Wiswpsen Mo Avcharlvs i 118 1) n

vt CT b

Tevesad vy iewpe

. Predictability of 5 signatures for locoregional relapse (LRR) and
distant metastasis (DM)

<o )

Locoregional relapse (LRR) Distant metastasis (DM)
a LRK g p i) wnd mbon ) b M s ad coaden)
2 1
) 0s
;_s‘ dog o(0 05) log «(0 05)
i
. o
01 :
o - I ) o | - .l 8
we e ¥ BWF Wy WF 8F iBF BWF IBWF
Seloguipreii) BOidx s ®-loguip-vabie) # Candex

r——
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A
Prognostic power of inverted BN: Kaplan-Meier curves of time to
locoregional relapse (LRR) and distant metastasis (DM) °
Bett! number features Inverted Bettl number features i

i Wavelet features .ommm + wavelet features
. W w1
L\ o, "SR L
e [N
Ll 5. e
§ [ e i peasr |3 PRETIE
— e

[ [ A N—
oM ] i,
il peoiy | E | prame | £ | pedex 1o
Kodama T, Arimura M, et al. nm-:c::;"mzz Am;uus):znrz:;“ o n
. A
Summary (2) ®
Y

v'Heterogeneous intensities within cancer could come
from cancer properties (cell density, necrosis,
angiogenesis, gland ducts, etc)

v'Hole analysis (topological radiomics) can be an
explainable Al

Any question or
comments ?
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res o e saesion Medical imaging signatures
2 with topology for cancer

Mgk
3. Applications of topological radiomics

Midetaka Arimura, PhD
Department of MM‘M#&‘W
Kyushu University
A
[l overall outline °
Y
1st: Background and radiomics
2nd: Medical background for topological radiomics
v 3rd: Applications of topological radiomics
A
[l outline °

¥ Robust radiogenomics approach to identification of EGFR mutations among patients with NSCLC from
three different countries using topologically invariant Betti numbers (Ninomiya K, Arimura H, PLOS
ONE 2021)

v Three-di 2 topological radi ics of epé growth factor receptor Del19 and L858R
i on ¢ images of lung cancer patients (Ninomiya K, Arimura H,
Comput Methods Programs Biomed. 2023)

v Topology-based radiomic features for prediction of parotid gland cancer malignancy grade in
magnetic resonance images (Tkushima K, Arimura H, et al. Magnetic Resonance Materials in Physics,
Biology and Medicine 2023)

v Can Persistent Homology Features Capture More Intrinsic Information about Tumors from 18F-

F 0ose Positron Emissi Images of Head and Neck
Cancer Patients? (Le QC, Arimura H, et al. Metabolites 2022)

v Summary (3)
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Hospital

. Robust radiogenomics approach to identification
of EGFR mutations among patients with NSCLC
from three different countries

using topologically invariant Betti numbers
(Ninomiya K, Arimura H, PLOS ONE 2021)

A
o

Y
\# ERSITY
L2 g
K

AR ONIVERSTY

Ninomiya K, Arimura H, PLOS ONE 2021

UNIVERSITI MALAYSIA

SARAWAK

Asian Caucasian

A

. High prevalence rate of EGFR mutations in NSCLC among Asian ¢

EGFR: epidermal growth factor

NSCQLC: non-small cell lung
cancer

Diagnosis for detection
0519‘ of EGFR is performed
23% \ by “wet” biopsy, i.e.,
HER2 1% needle biopsy (tissue
“V sx  test) o liquid biopsy
oa” sk “m \ / \ e (blood test)
fuson - K 23% pax R o
fusion Effectrvely treated with | BRAF g, fusion o
molecularly targeted
drugs; tyrosine
kinase S [ 1K Onco. Rep.. 37 {2017) 1347-1358. -

[l Precision medicine

¥ Predsion medicine: a form of medicine that
uses information about a person’s own genes
or proteins to prevent, diagnose, or treat
diseases

v Patients with tumors that share a same gene
mutation can receive a same drug that targets
that mutation, no matter the type of cancer

(https://www cancer.gov/publications/dictionarie
s/cancer-terms/def/predsion-medicine)
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. Issues on "wet" biopsy for cancer treatment o

» Some patients may refuse the invasive needle biopsy due to concems Invasive needle biopsy Y
about pneumothorax [refusing rate: around 30-40% (Fukui T, Thoradc
Cancer 2019;10:501-7)]

» Liquid biopsy (circulating tumour DNA: ¢tDNA) has not shown high
sensitivities [sensitivity: around 50% (Uchida ), Clin Chem
2015;61(9):1191-1196 )]

» A single biopsy of heterogeneous tumors could lead to under- or over-

imation of omics i jon [Gerlinger M, et al. N Engl ) Med
2012;366:883-92)

» Normal tissue should not be sampled

uwuopsvi

[l 1maging biopsy or "dry" biopsy

» Non-invasive virtual biopsy that Non-invasive
extracts what are equivalent to gy“’“‘u"fo b";f:ée biopsy
information obtained from pa
conventional invasive  "wet"
biopsies, from medical images for I
cancer treatment - -
» Computational processes to = .
characterize tumors as well as m”
normal tissues by extracting intrinsic
information from medical images Ugnéd biopey E
A
[l What do I assume in radiomics? °
o Y
v Since the medical images could be terminals of Phenotype

cascades from our genes, the images may {cancer 0n CT lmage)

include genetic and protein information.

v Genetic and protein information are considered Metabolite
as including prognostic information, and thus 30
medical images may also include them. Protein ’ St n
P Phenotype
Messenger RNA ‘ x ,,%, (cancer on PET image)
Gene with ¢

mutation

o&eT

Front Immunol. 2016 Feb 29,7:44. dok:
103389/fimmu.2016.00044.

n
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A
. ®
Nano- or micro-order Y
information might be
obtained from medical
images -

A
. Characteristics of EGFR mutated NSCLC °
< Promoted cellular proliferation, differentiation, and migration of non-small
cell lung cancer (NSCLC)
% Intra-tumor heterogeneity on contrast enhanced (CE) CT images?
% Presence of ground-glass opacity (GGO) causing low intensity cavitation!-
(30X L, Rad ology. 290 (2006) 273-200. (2] K. Dhang, int. & CI o, Oncel. 24 (J039) 649630, (3] 1 Os, Lung Cance . 98 (2016} 23-28. n
A
. Our assumption ®
Y
Image foarures CT image
» Robust Mu,;:unnm
5 intrvsic of EGFR mutaed NSCLC

> Hlaroganaty
P > Cavtation

Batt numbers
I > Conrecied comporsnts (b0)
> Holes (01)

topalogically invariant
phmnotypic chirachristcs
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. q-bit images generated from CT images

Bit depths after re-quantization
5 6 7 8

q-bit images generated from CT
images using four ranges of
Hounsfield units (HU) of CT images (-
1000 to 1500 HU, -1350 to 150 HU
[lung range window], and -150 to
250 HU [mediastinal range window])
with four bit-depths after re-
quantization (5, 6, 7, and 8 bits).

Range of original CT values

. Representative images of CT images, binary images, and Betti

number maps \!,
(a) CT image (b) Binary images \i
4 ] [ / DY 7 o

Representative images of

(a) computed tomography (CT)
images,

(b) binary images, and
(c) Betti number (BN) maps

b0 maps

b1 maps

b1/b0 maps

. Receiver operating characteristic (ROC) curves for identification of.

epidermal growth factor receptor mutants 2 s

1.00 1.00 Receiver operating
characteristic (ROC) curves for

identification of epidermal

.7 .7
2 075 £ 078 growth factor receptor
® ° mutants using Betti number
2 2
% 0.50 AUC % 050 AUC | ®N)-, original image (01)-
o =3
3 BN 0.86 3 BN 0.77 and wavelet decomposition
o o '

2 —— 0Ol 0.69 ] (WD)-based models with area
F o025 F 025 Ol 0.54 der the ROC (AUC)
. A . under the ROC curves
WD 0.65 WD 0.71

_ in (a) the validation and (b)
(a) Validation (b) Test | e test procedures
000 025 050 075 1.00 000 025 050 075 1.00
False positive rate False positive rate
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. Three-dimensional topological radiogenomics of
epidermal growth factor receptor Del19 and L858R 7
mutation subtypes on computed tomography images

of lung cancer patients
(Ninomiya K, Arimura H, Comput Methods Programs Biomed. 2023)
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A
. Relationship between medical evidences and topology ®
v Qutputs of the Al should be explainable
v Inputs to Al should be based on medical evidences
Medical targets Bi comp pological comp in
histological images CT images
+ Human body 7 Cells ¢ ?‘ A v Islands
v Cancer v Necrosis ¥ ¥ Holes
 Gland duct (tubes)
v Vessel v Cavities

. 3D topological analysis
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. Topology-based radiomic features for prediction of
parotid gland cancer malignancy grade
in magnetic resonance images

Kojiro Ikushima!2, Hidetaka Arimura®, Ryuji Yasumatsu*,
Hidemi S, Kenta Ninomiya®

100t o tofitmat Sce ces Gad nBc co ofMedon Sco ome Ky & U weaty 311 Mades Hges Fooat2es2
20wt o tefMatocgen wc ooy Ye sgc U veaiytompts 111M 8 e e agc 35855 we
30vee ofQat Madwto Sce o Depat o tofiemt Sce om Fac yofMedcn Sce om Ky & U vealy 311 Made Mges
Fooat2sem s
Dwpat & 1000 ony googy Mesta dNec S goy Fuc yofMesc o K GaU a3 200 gin Swm # Omash 1 sm
SOsat o tefftmiooges o oogy Pac HoIF CAMMICE o Oogy ® JOU way 822Mm o O W F oat®sss we
B8adB & PetymMescn Dscoweyliattte 191 Not o P saflond La o CARZ S USA
¥y, xYusHu

= UNIVERSITY

(Ikushima K, Arimura H, et al. Magnetic Resonance Materials in Physics, Biology and Medicine 2023)

A
o

B Parotid gland salivary

¥ The three major salivary glands are the parotid
gland, gland, and subl glands.

v Salivary glands produce saliva, and the gland
ducts (tunnels) function as conduits for delivering
the saliva to the oral cavity.?

v Parotid gland cancer (PGC) is a rare form of cancer,
accounting for approximately 5% of all head and
neck cancers.?

1 Amano O, et sl Acta H stoches Cytechem 2012
2 Chang JW, e al Haad Meck Surg 2015
3 MoK, ot ol Head & Nock 2011

[l Parotid gland cancer (PGC)

¥ The overall survival was significantly worse in
patients with high grade cancer than in
patients with low to intermediate grade
cancer?,

v The treatment approaches for parotid cancer
depend on the malignancy grade of PGC2.

¥ The malignancy grade is determined by using
an invasive fine-needle aspiration cytology
(FNAC).

v Therefore, quantitative and noninvasive

approaches such as radiomics are preferable
for assessing PGC malignancy.

*Honda K et al. Am J Otolaryngol 20 8 391) €570
*Nishikado A et al. Int / O Oncol 23(4) 615624 2018
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A
. Can Persistent Homology Features Capture More °
Intrinsic Information about Tumors from 18F- Y
Fluorodeoxyglucose Positron Emission
Tomography/Computed Tomography Images of Head
and Neck Cancer Patients?

(Le QC, Arimura H, et al. Metabolites 2022)

Quoc Cueng LE *, Hidetaka ARTMURA ?, Takumi KODAMA ?, Yutaro KABATA ¢
1 Ho Chi Minh City Oncology Hospital, Ho Chi Minh Cify, Vietnam
2 Faculty of Medical Sciences, Kynshn University, Japan
> Graduate school of Medical Sciences, Kyushu University, Japzn
4 School of Information and Data Sciences, Nagasali University, Japan

von 20 100 i
“lmm»o»cmu 2% KYUSHU UNIVERSITY

A

B pPurpose °
2

This study investigated the feasibility of using PH features for prognostic
prediction of patients with HN cancer by using PET/CT images.

This is the first study to examine the potential of PH features on
PET/CT images for prognostic prediction of patients with HN cancer.

A
B Persistent homology with considering size °
Birth of a hole §
h°]
- §
E: Persistent diagram
Threshold b
value = a
Death of 3 hale i
a Threshold value
at birth
What PH can capture:
Threshald topologically intrinsic properties associated with
value = b tumor heterogeneity with respect to number of
connected components and holes, and size .
3
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Let B(b, d,) bea PH diagram in the birth-death coordinates (b, d,) ke{ 2 N} where N denotes the mumber of pairs. 8(b, d,)
was mapped into B(by pr =dyx by in the birth-persistence coordinates. Next, B(b px) was transformed into PH images, pa (x ¥).

~
pxy)= Z Wp(Pa) Gagp, oy (* )

The Gaussian di 9 be cod 25

2 2
G-u...,uﬁ-waw[ SRS, [

‘where o denotes the SD, and x and y are the row and colurm of a pixel on the PH image., respectively.

Alinzar weighting function that can adjust the i of pairs in dif - ‘be expressed as:
o nh<0
() = % 0<m<P
nzP

whese P is the depth of the quantized CT or PET images (e, P 255 if the images were 8-bit depth).

s-gan

A

. PH images from PH diagrams o

- Persistent homology images

Fileration of b0 PH-CT images
bisary inages SO-1 SD=10"! _SD=-10-2

0 b0 PHCT diagrass .
» l |»

Cropped
CT image

r 2
3
B |-
—I 3 Su=107 spe10t
ol E bl PH-CT images
s " H "J‘ E SD =1 SD-10-' =10
emmeck 0 2ot b1 PH-CT dingrams
components: white 1y < e
Tregions , -
¥ Holes: black

L 2

2

= LT

SD=10%  SD-10°*

Lo QC. Avimura B ot sl Motsboltins (3033)

. Overall workflow

Training cohoet (n = 134) Test cobort (0 = 73)

M 5o 3 stance homalogy WPV humas pep foma v us CT compated tomog aphy PET pos t o6 em 13 on fomag aghy adaco e adome
0@ thegeenc e #p esents g ons teme wolama.

g ) i it
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F——Te— [ et )
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T Models” coeMeions -{ Caesk a ]
l Caleslwson of rad-soocos l 1
m of rd-scores Evalataon of prodicton edes g,
T e i bt i )
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. b0 PH-CT and PH-PET images for long- and short-
survival patients %/

Long survival Short survival

CcT b0 PH-CT
Long survival Short survival
PET b0 PH-PET PET b0 PH-PET

. Kaplan-Meier curves obtained from three types of signatures

Clinical signature PH-PET signature

PH-PET: persistent
homology-positron emission
tomography

[ J
Investigation of repeatability of persistent homology |
features for patients with lung cancer based on
computed tomography images

(Le QC, Arimura H, et al. Metabolites 2022)

Quoc Cuong LE !, Hidetaka ARIMURA 2, Takumi KODAMA 3, Yutaro KABATA 4

1 Ho Chi Minh City Oncology Hospital, Ho Chi Minh City, Vietnam
2 Faculty of Medical Sciences, Kyushu University, Japan
3 Graduate school of Medical Sciences, Kyushu University, Japan
4 School of Information and Data Sciences, Nagasaki University, Japan
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. Materials and methods
Materials

—
+ Same patients

+ Same imaging protocols
+ 15 minutes apart

Methods
Intradass correlation coeffidents** (ICCs) of image features between two scans:

+ A measure of repeatability
+ Reflection of both degree of correlation and agr between

0.5 0.75 0.9
| | |
" Moderate ' !

ICCs

Low Excellent

* Zhao B, James L.P, Moskowkz, et al . Radiology 2009
** Koo TK, U M.Y. 1 Chirepv: Med. 2016

. Mean ICCs of image features between two scans for different
quantization levels

FeatureType —+ b0_1 ~+ bi_1 -+ Convensonsl

075

MeanlCCs

0865

6k it o
QuantizationLevel

. Comparison of ICCs among three signatures

Mann-Whitney test
FeatureType E Conventionsl 62t Betti 6bit_b0_1 £ Beti6bit_b1_1
* Sigmificant difference
15 . Z0se-107 .
89381
1.15e-10*
10
————
a
O 05
| |
00 : i
.
05 s

Conventional Bbit  Batti Bbit_b0_ 1 Betti 6bit_b1_1
FeatureType
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. Evidences of usefulness of topology to °
characterize cancer and adverse events

1. Egashira M, Arimura H, Kobayashi K, Morlyama K, Kodama T, Tokuda T, Ninomiya K, Okamoto H, Igaid H. Magnetic Resonan: Imaging
Biopsy with Signatures Inc ucing Topological Betti Number Features for Predict on of Primary Bra n Metastatic Sites. Pys Eng Sc Med. 2023
(accepted on July 21, 2023)

2. Daushima K, Arimura H, Yasumatss R, Kamezawa H, Ninomiya K. Topology-based radiomic features for prediction of parot d gland cans
malgnancy grade n magnet ¢ rescrance mages. MAGMA. 2023 Ape 20. 80 : 10.1007/510334-023-01084-0. Epub ahead of print. PID: 37079154,

3. Nnom ya K, Arimera H, mmx,ounwv Kabeta X M 3wmo 3. Gowda M, Yeahup KA, Uen ClmCS.haKn Three-cimens onal topological

el grovd of lung cancer patients.
ot Methods rograms TR08S o 236107540 G0 - 1040167y g BUES 10744 Epdb 2039 Ape 15, PIID: 3714856,
4. Le QC, Arimura H, Ninomiya K, Kodama T, Mor yama T. Can Persistent Homelogy Features Capture More Intrinsic Information about Tumers from
18F- Positron Emission Tomography/Computed Tomograghy Images of Head and Neck Cancer Patients? Metabolites. 2022 Oct
14;12(10):972. doi: 10.3390/metabo12100972. PMID: 36295874; PMCID: PMCIE10853.

5. Nnom ya K, Arimura H, Chan WY, et al. Robust T«mwmmcmuna(mummumm mong patients with NSCLC from
throe d Merént countries Using Eopologica ly warant BetH mambers. PLGS One. 2021:16(1)-e0244354. doi: 10.1371/J0urmal pore 0244354,

6. umyu( Arimura H, Yoshitake T, et memmd. topologica ly invariant imaging s gnature and a biomariker for the
prediction of symptomatic radiation pneumonitis before stereotactic ablative radiotherapy for Ung cancer: A retrospective anatys s. PLOS o 2022

) e03395%. o 10437 1 pourmal pone 0263393,

7. Kouuur,lumu S rakawa ¥, Ninoeiya K, Yosh take T, Shicyama Y. nwmmlwunwmlwnmnmmm ning

CT mages of stage I nan-small ce | lung cancer patients before treatment Thoeac Cancer. 2022
Aug;13(15):2117-2426.
. % nomiya K, Atimurs H. Homological radiom cs anapyss for peugnostic predkct on 1 ung cancer patients. Phys Med. 2020 Jan;69:90-100. dol:
10.1016/).6§mp.2019.11.026. Epub 2019 Dec 16. PMID: 31 3
e n

Feasibility for Prediction of Primary Cancer Sites of Brain
Metastases Based on Hessian Index Images

(Moriyama K, Arimura H, Medical Imaging and Information
Sciences 2022, in Japanese)

Physical examinations, such as invasive needle biopsy,
biochemical examinations, and medical imaging (e.g., MRA,
CT) to identify primary sites

. Issues of current invasive examinations for brain ®
metastases Y

v Invasive biopsy may not always identify primary
sites owing to different cells in brain metastases
from those in primary sites, and there could be a
risk of tract recurrence after stereotactic needle
biopsy of brain metastases

v Approximately 15% of brain metastases remain
unidentified

v Invasive biopsy can impose a large burden on
patients; in particular, it is unsuitable for patients
in poor condition
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Necessary of noninvasive technologies that aid the current invasive examinations or
alternative approaches to overcome the issues

Producion of Hessian index Y
CE-T1 images

Prediction
model for I
Calculation of radiomics features.
primary lowvwmmu lr-de:t eomunmkm
cancer sites | . .. '[.
[ Conetructon of signatures from radiomics features. ]
Indax, combination)
[ Creation of prediction models I
[ Evalsation of prediction models

]
W g e n

. What is the Hessian index to characterize tumor heterogeneity?
[Le Q, Arimura H, Sci Rep 2020] V.f
The Hessian matrix of each voxel of a 3D image I(x, ,z) can be given by

Iex(%,9,2,0) Iy(x,5,2,0) Ia(x,y,2,0)
H=(',m(’c.y.z.a) Ly(x.y.2,0) ly,(:r.y,z,a)).
where Ix(,5,2,0) Ity(x,y,2,0) I(x,y,2,0)
2 2
Ietyrp(x, ,2,0) Wai,a;lﬂc(x 2+ 2] W:ﬁﬁﬁc(x‘ .!)]'l(x. \2),

L, KEN; E+j+k=2,G (xy 2) is the Gaussian filter with a SD o, and * denotes convolution

A.A,anu (A.:A.an first, second, and third of &, each of which of a tumor
Hessian index (number of negative eigenvalues of ¥)
Hessian index, iy, 0 (Concave) 1 and 2 (Saddle) 3 (Convex)
»
Approximation of each \/
point within a tamor
A
B Results and conclusion £309 patients (610 T1-weighted @
contrast-enhanced magnetic
resonance images) who have BM were
chosen for calculating image features
and constructing a light gradient
boosting machine model for
l\, l identification of primary cancer sites.
wh Lapsanct & & I The proposed model achieved higher
m— {C i “feu. AUCsof 0 77 and 0.66 in a training
! ' \ ;‘ .'_ and test, respectively
Indes images ater 2 .

megmo 3 NP R 1 A vThe proposed approach could have a

T T L) r:;:';.-:; 23 rvve  potential for identifying primary cancer
sites, but it has already been improved.
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B summary (3)

v We believe that the ability of topology for
characterizing cancer geometry was found.

v The ability is extended to prediction of patients’
progranoses

Any question or
comments ?
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Singularity theory and its applications to strongly
convex multiobjective optimization problems

Shunsuke Ichiki

Department of Mathematical and Computing Science, School of Computing, Tokyo
Institute of Technology, Japan

A multiobjective optimization problem is a problem to optimize multiple objectives,
such as cost, quality, safety and environmental impact in the industrial world. In this
mini-course, I would like to introduce theoretical applications of “singularity theory of
differentiable mappings”, which is a branch of geometry, to strongly convex multiob-
jective optimization problems.

For this purpose, we first introduce some of basic notions of singularity theory. We
also discuss a result called a “parametric transversality theorem”, which is an important
and fundamental tool in singularity theory for investigating generic mappings. Then,
as an application, we give a transversality theorem on linear perturbations. Next, we
explain some basic notions of multiobjective optimization and introduce a property of
the Pareto set (i.e. the set of optimal solutions) of a strongly convex multiobjective
optimization problem from the viewpoint of topology. Finally, based on them, we in-
troduce theoretical applications of singularity theory to strongly convex multiobjective
optimization problems.
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Singularity theory and its applications to

strongly convex multiobjective optimization problems

Shunsuke Ichiki

Tokyo Institute of Technology

WORKSHOP on Mathematics for Industry
Warsaw 25-29 September, 2023

Multiobjective optimization

o X : aset
o f=(f,...,f0) : X = R : a mapping
o L={1,...,4}

o z € X : a Pareto solution of f
4 there does not exist another point y € X such that
fily) < fi(z) for all i € M and f;(y) < fj(x) for at least one

index j € M.
& for any o’ € X, either (a) or (b) holds.

(a) Vie L, fi(z) = fi(z').
(b) I e Ls. t. fi(z) < fi(z').

o X*(f)={z € X |z : aPareto solution of f} : the Pareto
set of f

o The set f(X*(f)) is called the Pareto front of f.

Multiobjective optimization

o f=(f1,- -, fo): X >R, L={1,...,¢}
The problem of determining X*(f) is called the problem of
minimizing f.
For a non-empty subset I = {41,...,ix } of L (i1 < -+ <1g),
set

fI = (fila"',fik)'

The problem of determining X*(f7) is called a subproblem of
the problem of minimizing f.

AR = { (w1, ..., wy) c R

£
Zwizl, wiZO}.

=1

o We also denote a face of A1 for a non-empty subset I of L
by

AIZ{(wl,...,w[)GAZ*I|wi:0(i¢1)}'
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Multiobjective optimization

Definition 1 (Simplicial problems, Weakly simplicial problems)
f:X—>REXCR™), L={1,...,0},r €Zsgor 7 =00
@ The problem of minimizing f is C" simplicial
W3p. A1 X*(f) CR™ : a C" mapping
s. t. VI C L (I # 0), both
¢|AI : A] — X*(f]) and
Flacsy + X*(fr) = F(X*(f1))

are C" diffeomorphisms.

o The problem of minimizing f is C" wealkly simplicial

& 36 : A= = X*(f) C R™ : a C" mapping

s. t. VI C L (I#0), o(Ar) = X*(f1)-

X : a convex set of R™
@ f: X = R: astrongly convex function

&3>0 st Vz,y € X, Vt € [0, 1],

flte+ 1 =t)y) <tf(x)+ 1 -1)f(y) - %at(l =)yl

where ||z|| is the Euclidean norm of z € R™.
(a : a convexity parameter of f.)

Q f=(fr,-,fo): X — R? : a strongly convex mapping
& fi is strongly convex for any i € L.

strongly convex = strictly convex == convex

Proposition 3

[ is strongly convex with a convexity parameter o > 0
< 3J9:X > R:convex sit. f(z) = g(z)+ 2 ||z

\,

. . . . 2
i.e. (a strongly convex function with o > 0) = (a convex function) +$ |||

Some results on strongly convex multiobjective optimization problems

Theorem 4

o f=(f,...,fe) : R™ = R : a strongly convex C" mapping,
where 1 < r < oo
Then, we have the following:
@ The problem of minimizing f is C*~* weakly simplicial.
@ Moreover, if rank dfy =€ —1 (Yz € X*(f)), then this
problem is C"~" simplicial. J

@ The case 2 <7 < oo : N. Hamada, K. Hayano, S. Ichiki, Y. Kabata
and H. Teramoto, Topology of Pareto sets of strongly convex
problems, SIAM Journal on Optimization, 30 (2020), no. 3,
2659-2686.

@ The case 7 =1 : N. Hamada, S. Ichiki, Simpliciality of strongly
convex problems, Journal of the Mathematical Society of Japan, 73
(2021), no. 3, 965-982.
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zation problems

Some results on ly convex multiobjective op

Without differentiability, on C° weak simpliciality, the following
result is obtained.

o f=(fi,...,fe) : R™ = R : a strongly convex mapping
Then, the problem of minimizing f is C° weakly simplicial.

@ Y. Mizota, N. Hamada and S. Ichiki, All unconstrained strongly
convex problems are weakly simplicial, available from
arXiv:2106.12704.

The result has recently been applied to engineering, and the
application was introduced by the following talk:

Naoki Hamada, Brief Introduction to Topology for Multi-objective
Optimization |

pping the rank assumption of the theorem

For the proof, we use the mapping z* : A1 — X*(f) defined by

[
z*(w) = arg I‘é‘];i(?n (Z w; fi (z)) .

o f=(fi,fo) :R =R (fi(z) = fa(z) = 2*)
Then, we have the following.

o f : astrongly convex mapping of class C*°
o Since rankdfo = 0 and X*(f) = {0}, f does not satisfy the
assumption of the theorem.

Since X*(f) = {0}, f is not C? simplicial.

A theoretical cation of Singularity Theory to mult

Proposition 6 (1)
@ f:R™ - R (m>4): aC? mapping
o ¥ ={mecL®R™ R |Iz€R™ s t rankd(f+7)s <L—2}

Ifm —20+4 >0, then ¥ has Lebesgue measure zero.

@ f:R™ — R’ : a strongly convex mapping
Then, Vrr € L(R™,RY), f +m : R™ — R is also strongly convex.

Theorem 8 (Hamada, Hayano, Kabata, Teramoto, I)

@ f:R™ =R’ (m>¢) : astrongly convex C" mapping,
where 2 < r < o0

@ Let X be the set defined by

{7 € L(R™,R") | The problem of minimizing f + 7 is not C*~* simplicial’} .

Ifm — 20+ 4 >0, then ¥ has Lebesgue measure zero.
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Proposition 9 (1)

o f:R™ =R (m >4) : aC? mapping.

o X ={meL®R™ R |Iz€R™ s t rankd(f+7). <L—2}
If m — 2+ 4 > 0, then for any non-negative real number s
satisfying

s>ml— (m—20+4),

it follows that H*(X) = 0, and thus,

Y=g ife=1,
dimg X <ml—(m—20+4) ifl>2.

@ S. Ichiki, A refined version of parametric transversality theorems,
Journal of Geometric Analysis, 32 (2022), no. 9, Paper No. 234, 14

k=)
°

Theorem 10 (1)

@ f:R™ — R’ (m > {) : a strongly convex C" mapping (2 < 7 < o0)
@ Let X be the set defined by

{m e LR™, ]Re) | The problem of minimizing f + m is not C™~* simplicial’}
Ifm —20+4 >0, then

=0 ifL=1,
dimg X <ml—(m—20+4) ifl>2.

Example 11
@ f:R% = R? f(z1,32) = (3 + 23, 2% + x2) + C°° strongly convex

@ Let X be the set defined by
{7 € L(R?,R?) | The problem of minimizing f + 7 is not C* simplicial }
By the above theorem, dimpy 3 < 2.
By a direct calculation, ¥ = {7 = (m1,m2) € L(R?,R?) | m1 = m2 }.
Since dimpy ¥ = 2, we cannot improve the evaluation “< 2".

@ S. Ichiki, A refined version of parametric transversality theorems, Journal
of Geometric Analysis, 32 (2022), no. 9, Paper No. 234, 14 pp.
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Explanatory Model Analysis

Przemystaw Biecek

MI? Data Lab, Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

Shapley values currently stand as the most widely employed technique for conducting
Explanatory Model Analysis (EMA) and achieving Explainable Artificial Intelligence
(XAI). Ongoing efforts are focused on crafting modifications and extensions to adapt
this method to address the diverse challenges posed by a wide array of applications.
In this presentation, I will illustrate instances where Shapley values, and by extension,
techniques utilized in explainable artificial intelligence, prove effective in distinguishing
models exhibiting distinct behaviors, even if their performance appears identical at
first glance. Subsequently, I will present a proposal for an iterative model analysis
process utilizing Shapley values. Drawing inspiration from Rashomon perspectives, this
approach, termed Shapley Lenses, provides a more nuanced perspective on predictive
models. The insights derived from predictive models can then be leveraged to construct
subsequent iterations of models with enhanced interpretability.
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Explanatory Model
Analysis

aka Explainable Al

Przemystaw Biecek
/'pse.mek/

'WORKSHOP on Mathematics for Industry 2023 Przemyslaw Biecek September 25, 2023

Hype for Al is growing @REDTEAM

The
Economist

&
Al is the new
electricity.
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ANCICENT DATARASE

.,..c,):.,. Subeme Welcome to the
Al Incident Database

Q oscons ircioenes
o Spotisl e n [o—
BB ot view

B s

[} —

Driverless Taxis Blocked Ambulance in Fatal Accident, San
Fire Dept. Says

14 word covete

© siemtinert epors
Y ssmision Lesderscart

L=

hitps://incidentdatabase.al/

but Al is brok @REDTEAM

Image Question Answer

Doces this person value marriage? No

Does this person like algebra? No
e

H Does this person enjoy sculpture? Yes

Table 2: Example of stereotypical question-image pairs.

but Al is b Two Shoplifting Arrests

Question

Doces this person V)

Does this persor

TAMES RIVELLI ROBERT CANNON

Does this person e}
RISK: 3 RISK: 6

Table 2: Example of stereotypical question-image pairs.
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Two Shoplifting Arrests

98.7% 68.6% 100% 92.9%

-§Ege

DARKER DARKER LIGHTER LIGHTER
MALES FEMALES MALES FEMALES

ROBERT CANNON

Amazon Rekognttion Performancs on Gender C

RISK: 6

Table 2: Example of stereotypical question-image pairs.

a_tha_new_oiiCl ve

\ WEAPUNS 0F B6%  100% 92.9%

\MATH HESTRUEIIIIN I 1n

'ARKER LIGHTER LIGHTER
LES MALES FEMALES

NOW HIE BATA INCALASES INEGUALITY ROBERT CANNON

1 Performance on Gender Classification

ANE THAEATENE BEMBENAGTY

~ CATRY O'NEIL S ——— 3T msce
7

2: Example of stereotypical question-image pairs.

8_the_new_ciiClve

9o ekogy y .

so, we are here to fix Al @REDTEAM

We develop methods, tools and processes
for responsible machine learning.
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Shapley values @REDTEAM

Problem A:

Set S with n players cooperating in a game can earn a reward v(S).

How to divide this reward fairly among the players?

Shapley values @REDTEAM

A VALUE FOR n-PERSON GAMES
L. S. Shapley

18 March 1952

THEGEN. A Wiwe wlue fmction ¢ exieto satisfying Axsoms 1 - 3, for

et Vith finfte rviare; 4t fa given by the fommale Shapley values
SIICIPL = IS] = 1)!
fto) o 5 e (8 - vien]  au sew, # = IS1!1 Ilpll'ﬁl 1) S U )= Sy
s !

vhere B 44 ey fintte cerrier of v .
Breat. (13} follova frem (A1), (12), end Lecna 1. Wo mote tht (13}, like
{35), doea wot Gapemd om 1da pariicslar finite carrier K ) the ¢ of the theore
is Cheefore well ceined. 2y 1ia derivetica % 4 clesrdy the omly velue fwctlin
Whio) oonl? eatiafy the axiocs. That 1¢ does In faot satiely the axiooe fe essily
Shapley, Lioyd S. A Value for n-Person Games. Princeton University Press. 1952
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Shapley values @REDTEAM

« Efficiency: all contributions sum up to the final reward

24.,. =P
1

* Sy y: if players § and j contri inthe same way to each coabition then they get the same
reward
YsHS U i) = WSU LD = ¢ = oy Shapley values
* Dummy: if player { does not contribute then its reward is 0 ISP =18 = 1) . .
] 1 121! ] MSU D =vS)
VWS UL =S = ¢y =0 s )

* Additivity: reward In sum of games vy and 12 Is sum of rewards

VswS) = v (S) +12(5) = & = ¢hy + i

Shapley, Lioyd S. A Value for n-Person Games. Princeton University Press. 1952

Shapley values for ML models @REDTEAM

Problem B:

In machine learning, we train a function f(x) : RP-R that
calculates predictions based on p variables.

How to quantify the effect of each variable on the final
prediction?

Shapley values for ML models @REDTEAM

Explaining instance classifications with interactions
of subsets of feature values
E. Strumbelj ", I. Kononenko, M. Rabnik Sikonja - \
University of (uQana, Foouty of Compuser and nformarioe Scheace, Trdedha ceste 25, 1000 Jadlena, Slovenio
al

Theorem 1 For the game (N, v} there exists a unique solution ¢. which satisfies axioms 1 to 4 and
it is the Shapley value:

—s=1)Is!
Shy(v) = wmsu {H-vS), i=1lyn
STV (1) 5= a
Proof For a detailed proof of this theorem refer to Shapley's paper (1953). |

Erik Strumbelj, Igor Kononenko, Marko Robnik-Sikonja. Explaining instance classifications with

interactions of subsets of feature values. Data & Knowledge Engineering, 2009
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Shapley values for ML models @REDTEAM

Example:

We have a complex predictive model
f(x) that predicts the probability of
surviving the Titanic disaster.

How do we calculate contributions of
individual variables to the prediction
for a single passenger.

Here: an eight-year-old boy travelling
st class.

Explanatory Model Analysis. Przemyslaw Biecek, Tomasz Burzykowski. 2021. CRC. hitps://ema.drwhy.ai

Shapley values for ML models @REDTEAM

Example: sl data
We have a complex predictive model R =6
f(x) that predicts the probability of class = 15t
surviving the Titanic disaster. -
How do we calculate contributions of gonder =iy
individual variables to the prediction  rurked = Soumamaion
for a single passenger. .
Here: an eight-year-old boy travelling parcn =0
1st class. 000 025 05 075 1.00

Explanatory Model Analysis. Przemyslaw Biecek, Tomasz Burzykowski. 2021. CRC. hitps://ema.drwhy.ai

Shapley values for ML models @REDTEAM

Example:

al data @ o2

We have a complex predictive model ap et ® 0505
f(x) that predicts the probability of class = 1t ® 050
surviving the Titanic disaster. .

are = 72 ® 0534
How do we calculate contributions of gender = mal @ 0461
individual variables to the prediction  cirked - soumamsion ® o458
forasingle passenger. sibep =0 ® oas2
Here: an eight-year-old boy travelling parch =0 ® 0422
1st class. 000 025 0% 075 1.00

Explanatory Model Analysis. Przemyslaw Biecek, Tomasz Burzykowski. 2021. CRC. hitps://ema.drwhy.ai
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Shapley values for ML models @REDTEAM

Example:
Imercept 0235
We have a complex predictive model aa=8
f(x) that predicts the probability of class « 181
surviving the Titanic disaster. PU—

How do we calculate contributions of P
individual variables to the prediction

embarked « Southamplon

for a single passenger. bt = 0
parch =0

Here: an eight-year-old boy travelling prociction

1st class. 000 025 020 075 100

Explanatory Model Analysis. Przemyslaw Biecek, Tomasz Burzykowski. 2021. CRC. hitps://ema.drwhy.ai

SHAP as an unification of LIME, DeepLIFT,
N o ! REDTEAM
Layer-Wise Relevance Propagation @l
A Unified Approach to Interpreting Model
Predictions

Seatt M.
Paal G Allen Schocl of Commpuber Scimce  Trsl G. Alkn School of Compater Science

Urivenity of Wanhrgaos Deparinest of Genoms Scisces
Sertle, WA IK103 Unaeney of Wenhisgica
alusdtBes. vaahington . odu Seatta, WA WI0S

oeinleedes, vashisgton ofu

Definition 1 Additive feature attribution methods have an explanation model that is a linear
Sfunction of binary variables:

o
glz) = g0+ Y izl [}

wihere ' € {0, 1}, M is the number of simplified input features, and ; € R.

Lundberg, Scott M, Su-In Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS. 2017

TreeSHAP as quick SHAP for Tree Ensembles @REDTEAM

Consistent Individualized Feature Attribution for Tree
Ensembles
Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee

University of Washingto
{shnd),erion svinlecltuw edn

SHAP vahe (mpact on medel sutpst)

Lundberg, Scott M,Gabriel G. Erion, Su-In Lee. Consistent Individualized Feature Attribution

for Tree Ensembles. NeurlPS. 2019
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SurvSHAP(t) for survival models @REDTEAM

Problem C:

In survival modelling, the model output is
a survival function S(t).

How to quantify the effect of each variable on the final
prediction (which is a function)?

SurvSHARP(t) for survival models

N oo
SurvSHAP(t): Time-dependent

explanations of machine learning survival i
models tocal accuracy

Ste) [
cbsorvation of insrast survival furcticn prodiction SurvENAY
X,

=

Rooregsted SRR
tocal variable Importance
Mateusz Krzyzifeki, Mikolaj Spytek, Hubert Baniecki, Przemystaw Biecek.

SurvSHAP(Y): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023

How to calculate SurvSHAP(t) values @ REDTEAM

Contribution of variable d in time pointt for the patient x:

on (X,. (1 H Z :’i{‘""‘“r"[)u{‘” e (,:’-’;f;ow(r.tl]
| e
ebr. = E[S(t,x)[xP = xD)
Local variable importance of variable d for the patient x:

tman
P(x.,d) = / [y (%, d)| daor(t)
0

Mateusz Krzyzirieki, Mikolaj Spytek, Hubert Baniecki, Przemystaw Biecek.

SurvSHAP(Y: Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023
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Normaized
SurvSHAP(H) value

Random Survival Forest Model Cax Proportional Hazards Model

SurvEHAS() valwe

SurvSHAP(t) can detect time-dependent
variable effects

@REDTEAM

h(t) = ho(t) - exp{[—0.9 + 0.1¢ + 0.9]()g(l)].r“'|
+0.52% — 0229 + 0.1z 4 10702}

Mateusz Krzyzirieki, Mikolaj Spytek, Hubert Baniecki, Przemystaw Biecek.
SurvSHAP(): Time-dependent explanations of machine learning survival modeis. Knowledge-Based Systems. 2023

SurvSHAP(t) show global variable importance @ REDTEAM

ajection N pep—
fraction iy M
serum -
creatinine e
age .o . Ve, * T W™ aC el
e seum . . o
£ codum o SR
2 platelets e
craatinine . V.
phosphokinase *
sex »
smoking -
0.3 02 0. 0.0

Aggregated SurvSHAP(t) values summary

1
Agaregated SunSHAP(t) value

Variable value

Surv

of variable attributions on its values

SurvSHAP(Y): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023

Aggregated SuvSHAR(Y) valus

o
a

=)

o
1

-03

) shows the dependence @REDTEAM

Aggregated SurvSHAP(1) profile

20 40 &0 8
ejecsion fraction value

age value
405060709090

Mateusz Krzyzirieki, Mikolaj Spytek, Hubert Baniecki, Przemystaw Biecek.
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SurvSHAP(t) can be analyzed using
nctional data analysis technique
o SurvSHAP(1) curves for platelets variable

0.c0

-004

SurvSHAP(L) value

-008

ILLLLRLI DL U L L DL L LR L] LUB RS ot
0 100 ) 200

Mateusz Krzyzi

SurvSHAP(Y:

Application of SurvSHAP(t)

—

Hospital Length of Stay Prediction Based on
Multi-modal Data towards Trustworthy
H AI Collat ion in Radiomi

Pracosysluw Bowmbissk®*, Pac
Promysboy Bisesd! 2190

[T14] Human annctates the radiology regort
m £ Al aairacss famturas rom the image

A . .
2 . 20 RETLCLLL:
.l.=" . Longth of stay prodiction "_ »ﬁo»
(ve) [T1) Xoray (72 Bnd. duath | discharge

Application of SurvSHAP(t)

Hospital Length of Stay Prediction Based on
Multi-modal Data towards Trustworthy

H AI Collaboration in Radi
SurvSHAP(t) for a selected patient Whatf analysis for a selected patient
Top € o impcrtart fastires for 1k paEiEn Fac e eaiacnd amsgucut faxiee
—g Dl O A Fawnrornd pmiounen « Ovins Vi of Praral effsos At B Vepte ccows Bl Ovoms
o vl s At — Py e At — P B o ey oy

Przemysiaw Bom ki, Patryk Sz
towards Trustworthy Human-Al Collabor;
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survex: open software for XAl+surv

survex: an R package for explaining machine learning

survival models

Mikotaj Spytek.! Mateusz Krzyziviski.! Sophie Hanma Langbein,**
Hubert Baniecki,* Marvin N. Wright*3* and Przemystow Biecek**

NI AL, Wanw Ushwrsty of Tachasios Palasd “Ladeis bein
Eystemvangy - BIFS. Germin. Foaaly of Muthorwtics
Garrary, ‘NI2 AL Uniwarsity of Warsaw, Polind 206 *
Uninarsty of Copaenages, Deamank

*Comexponging msher. preewyslen biecehOpm ede ol

LOCAL EXPLANATIONS

i
“Sactien of Wiosutiaticr,

ace 491 0w oo
AN csarmecn

for Provertion Rusarch 304
sovce. Uity of Brerwen,
Duparmant of Pubic Heakh

GLOBAL EXPLANATIONS

L o

Rashomon set

Statistical Modeling: The Two Cultures

Leo Breiman
8. RASHMOMON AND THE MULTIPLICITY
OF GCOD MODELS

Rasheawon is a weoderful Japaness movie in
which four pecple, from different vantage peints,
witness an incident in which one person dies and
nother is supposedly raped When they come to
tatify in court, they all report the same facts, but
their stories of what bappened are very different
What T eall the Rasheason Effect is that there
15 often & multitude of different deseriptians. (oqua-
tions f(x)) n 0 elags of fanctions giving about the
same minireum errar rate. The most easily usder-
51000 example = subset selection in linear regres-
wian. Suppoes there are 30 variables and wo want to
find the beet five varisble linear regressions. There
are sbout 140,000 fivo-variable subsets in competi-
tian. Usually we pick the ce with the lowerd ruid
ual sum.of-squares (RSS), ar, If thare is & test set,

Picture 1
¥ =214 381, ~0.6x, + 8321,
217 + 3.2xy;,
Picture 2
y = =89 4 4,65, + 0015 + 1208,
+ 178y + 0245,
Picture 3
¥ = =78.7+0.3x, + 22.0x, - 13.2r,
+ 3%, + T 2%

Which ane i better? The problem i that each one
tells o different story about which variables are
important.

Leo Breiman. Statistical Modeling: The Two Cultures. Statistical Science. 2001
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Rashomon quartet

Fifty years ago, Anscombe presented the construction of four
datasets covering different relationships but with identical RMSE.

22 years ago, Breiman discussed the concept of the Rashomon set
- models with the same fit to the data but different relationships
between the predictor variables with the target variable.

Linear - All models R2: 0729, RMSE: 0.354
» 1 ;
" £ | rushomen i ’_/ -
3 / pecspeirees as 4 -
. ¢ =
~—a & —
Decision Trees 90 r —— e
! 05 —~
H =
whssen Random e
., Forests B o nodes

Explanatory Model Analysis

Wwhat is the model prediction How good is the model?

for the selected instance? ROC curve
g M LIFT, Gain charts

R Chapter 10
m@ variables contribute to
selected weﬁmlﬂ
s g
SHAP, LME

Chapters 7, 8,9, %0

How does a variable
affect the prediction? -
— - —— )

Cetens Panibus - - Partial Dependence Profile

Chapters 11, 2 s Accumelsted Local Effects
Chapters 18, 19

Does the model | Does the model

fitwell around fitwellin

the prediction? general?

Chapter B

The process of explanatory model analysis

ﬁanﬁparency, auditability, and explainability of
machine learning models in credit scoring

Nichael Scker 8 O, Garn Snepancek O, Abgs Gosewska © & Prowmysiaw Bieosk

Gomnsane @y

Who? Stakeholders When? Model lifetime What?  specific needs How? XAl pyramice
towmrer vieatn o~ st -
. pev - insemal - m0g A batter thas B? 5 merric ‘s
% madel auditor - intersal or ectecsal  — - O EEm hich varisbie is most important? > parts 5 G
E credt oftcer -imemal > TITLHTEEE g3 whata customer candomimprovee —»  proale
Bank customes - exemal >,

S 1111111111 S

o mswong <>

Michael Bicker, Gero Szepannek, Alicja Gosiewska, Przemysiaw Biecek. Transparency, Auditabl

of Machine Led g Models in Credit Scor Ji of the Operational Research Soc:
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EMA process validated with user-studies

.

dabeens -0

The grammar of interactive explanatory
model analysis

ona ager

pruhition

tive explanatory model analy:

EMA process validated with user-studies @ REDTEAM

Q4: Which of the following aspects had the greatest impact on your decision making
in the presented patien: case?

Answer Frequency
Break-down explanation (1st screen) 16.7%
Ceteris Paribus “What-if 7" explanation (2nd screen) 27.5%
Shapley Values explanation orfand an additional Ceteris Paribus 35.3%
“What-if?" explanation (3rd screen)

Comparison of the local explanations with the global explanations 19.2%
My answer was random, I ran out of information to make a decision 0.5%
Other (three descriptive answers in total: a Permutational Importance 0.8%

explanation, both Ceteris Paribus explanations, a high residual value)

Table 5§ Frequency of answers for O averaged across 12 cases times 30 participants.

zemyslaw Biecek. The grammar of ints tive explanatory model analysis.
Data Mini ind Knowle Discovery. 2023
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MI2.Al is here to fix Al

Software

5 fairmodels
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Linear instability of Prandtl spirals

Tomasz Cieslak

Institute of Mathematics, Polish Academy of Sciences, Poland

We review a recent result with P.Kokocki and W.Ozanski stating that the union of
three or more uniformly distributed Prandtl spirals is linearly unstable as a solution to
the Birkhoff-Rott equation. First, a linearization of the Birkhoff-Rott equation around
the Prandtl spirals is found. Next, a perturbation leading to the instability is shown.
Notice that, unlike for the flat sheet, the unstable modes grow only algebraically in
time. In our talk we partially answer the question of Helmholtz from his famous 1868
paper on discontinuous flows.
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Pseudospheres from singularity theory view-point
with a classification of 2-soliton surfaces

Toshizumi Fukui
Department of Mathematics, Saitama University, Japan

(joint work with Yutaro Kabata)

We discuss pseudospheres in the Euclidean 3-space with taking care about their singu-
larity types and Backliind transformations. We investigate a classification of 2-soliton
surfaces by noting how the ridge lines appear.
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Pseudospheres £rom
singularity theory view point
with a classification

of 2-soliton surfaces
()/w with Yutaro Kaeata)

Toshi Fukui (Saitama University)
4SS, 26 Septemeer, 2023

\Workshop £or Mathmatics £or Industry
25-29 Septemeer, 2023
Warsaw University of Technoloay

Surfaces in R?
p:R2 — M= o(R?) C R3, C=

E = (pupa)s F = (0uov), G= (putn

G = (pv.v)
L= (punw)s M= (pumv), N = (ow.v)

where v is a8 unit normal.
The first fundamental £orm

| = E dv? + 2F dudv + G dv?
The second fundamenttal £orm

Il = L du?+ 2M du dv + N dv?

Chegyshev' net

A ps Osphere is 8 surface with constant
neaative Gauss curvatures. We can assuwe that
they have Gauss curvature —1 up to similarity
transformations.

For a surface with K = —1, we can take the
asyvptotic coordi (u, v) with the followina
fundamental forms:

| =du? 4
Il =2sin ¢ du dv

where ¢ is the asywptotic anale.
Gauss Coddazi equation Becomes sine Go
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Curvature coordinate

rdinate is Given Ry

The principal curvatures

R.idae and flecnodal

Let v; denote a principal vector of a surface and
let x; dencote the corresponding principal
curvature Of a surface.

A point P on a surface is v; ri

odal if there is a
line with at leas t with the
surface at P.

1. The level sets of ¢, Ky and Ky cOntaning P are
equal.

2. The differentials of the principal curvatures
are aiven as follows:

Qy

(/ ol = =——————
“ 1+ coso

1+ cos¢’
(@)

(3),\4’""2 = 7‘\(. e e B W S e g4
—1+coso —1+cos@
So (resp. ) is aiven By
(resp. D. (A level of ¢ has a (or

D) tangent)
Flecnodal point on pseudosphere is Given sy

0. (ie, A level of ¢ has a diaconal (or
anti diagonal) tangent.)
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BackliNnd transformation

ClIoN 03 ) I.P
ll)

where A =tanf/2 £ is in the next sheet.
I$ ¢ is a solution of sine Gordon equation, sO is ¢

{sol. of sine Gordon} LA {sol. of sine Gordon}

Geometric BT

We say _
M—M, p—p,
is @emetric BT, i
e The line ppis in ToM and also in TsM.
e d(p,p) is constant (= .

e the unit normals v, and 75 has a constart
anale 6, that is (vp, p) = cosf.

Geometric BT retween K = —1 surfaces is aiven
By

and it preserves Cheryshev's nets.

Bianchi’'s permutarility

& ¢; (i =1,2) satisties

((,‘J,‘ + (,‘1) \/si Qi — @
= AjSIn -
2 Ju 2
and o satisfies

\2 — A1) tan ——
4
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Soliton

0 soliton ﬂ»1 soliton BT 2 soliton

o=0

&= Nu+ A1

Singular locus of ¢

Let ¢ :R?2 - R3 ge a Chevyshev net for a
pseudosphere with K = —1 Let ¢ denote the
asywmptotic anale. Then

| =du? + 2 cos ¢ du dv + dv?
Il =2sin ¢ du dv

R.emark that the sinaular locus of ¢ is defined By
2:sing=0, ie,

For 2 soliton surface, we have k= 0,41

Criteria of singularities

Let C denote the curvature line throuah P whose
principal direction is null direction at P.
1. Assume that ¢ is nonsinaular at P, ie, the
sinaular [ocus Of ¢ is nonsinaular at P.
1.1 ¢ is cuspidal edze at P if and only if ¥ and C
intersect transversely at P.
@ is swallowtail at Pif and only if X has
2-point contact with C at P.
2. Assume that ¢ has a8 Morse sinaularity at P.
2.1 ¢ is cuspidal Beaks at P if and only if the
Hessian of ¢ is positive.
2.2 ¢ is cuspidal lips at P if and only if the Hessian
of ¢ is neaative.

1.2
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Flecnodal and ridae on a
72 -soliton surface

On pseudospheres, we have
)y, $leenodal line (¢, = 0),
d, fleoenodal line (r,‘)v = 0\
(& =0),
(), = 0)
and, on 2 soliton surfaces, they are
cosh &

= , respectively.
cosh &

Here &= f\ill'f‘ V,"’;\,‘, i=12

lim &y x
where £ = u+Av +cand 5 = \u— A"tw
The 3, fleenodal, d, £leenodal, and
are defined Ry

ntanhé =1, —1, . , respectively.

Classification of 2-soliton

The resutt in this section should compare the
classification of 2 soliton surfaces (Popov). They
show four types £or @eneric 2 soliton surfaces.
The correspondence Between their dassification
and our resutts is summarized as follows:

Type /\1/\2
not exist

not exists Not exist Nnot exist
not exists not exist

H
+
_+_

= (,\f — 1)(,\§ —1).
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Breather surfaces

For A € C, with ReA #0, Im\ # 0, we have

/ sinIm &

&, s = — 4tan> (cotarg A - el 8
e \ : coshRe &/
where £ = Au+v/A\

The 9, flecnodal, d, flecnodal, and

are defined By

(tanhRe&)(tanIm§)

tanarg A

respectively.
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Formation of nanostructured functional particles
with the spray-drying method

Leon Gradon

Faculty of Chemical and Process Engineering,
Warsaw University of Technology, Poland

The structure of matter, on both an atomic and macroscopic scale, is a result of the
interplay between the requirements of the physical forces operating between the indi-
vidual parts and the mathematical requirements of space-filling. Nanoparticles with
well-defined chemical composition can act as a building block for the construction of
functional structures, such as highly ordered aggregates, as well as porous and hollow
aggregates. A spray drying technique is used for the production of crystal-like struc-
tures with nanoparticle building blocks. When spray-drying uniform spherical particles
tightly packed aggregates with either simple or broken symmetry were formed using
polystyrene particles with varied zeta potential as templates, it is also possible to form
highly ordered porous and hollow aggregates from inorganic colloidal particles poten-
tially useful for controlled drug delivery and catalysis. The process by which organized
mesoporous silica particles are formed by the spray-drying method was examined using
elementary laws of topology.

139



WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Chemical and Process Engineeri

Formation of nanostructured functional
particles with the spray-drying method
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Introduction

Principles of self-assembly

Shapes of the structures

Examples of nanostructures applications

Principle of spray-drying process

Examples of produced templates

Topographical structures for challenging aspects of nanocatalysis

00 1 O W B L e

Conclusions

“There is plenty of room at the bottom™

Richard P. Feynman

(there is a room for great development even in the microscopic world)
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The structure of matter, on both an atomic and macroscopic scale, is a
result of the interplay between the requirements of the physical forces
operating between the individual parts and the mathematical
requirements of space filling.

Self-assembly

T

R fori in self-
1) Humans are attracted by the appearance of order from disorder.

2) Living cells self- ble = stimulation for the design of non-living systems.

3) Sclf-assembly 1s one of the few practical strategics for making ensembles of
nanostructures.

| It will therefore be an | part of hnology . ]

4) Manufacturing and robotics will benefit from applications of self-assembly.
5) Self-assembly is common to many dynamic and multicomponent sy stems:
- smart materials
- self-healing structures

- netted sensors

- computer networks

Static self-assembly (S)

S — involves systems that are at global or local

Tk

ium and do not dissipate energy

Examples of static self-assembly

(A) Crystal structure of a ribosome

(B) Self-assembled peptideamphiphile nanofibers

(C) An array of millimetersized polymeric plates
assembled at a water/perfluorodecalin interface by
capillary interactions

(D) Thin film of a nematic liquid crystal on an isotropic
substrate

(E) Mi ized metallic polyhedra folded from planar g
substrates

(F) A three-dimensional aggregate of micrometer plates
assembled by capillary forces
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Dynamic self-assembly (D)

D-i i sponsible for the fi ion of structures or pattern between components only occur if the
system is dissipating energy

Examples of dynamic self-assembly

(A) An optical micrograph of a cell with
fluorescently labeled cytoskeleton and nucleus;
microtubules (~24 nm in diameter) are colored red
(B) Reaction-diffusion waves in a Belousov-Zabatinski
reaction in a 3 5-inch Petri dish
(C) A simple aggregate of three mullimeter-sized, rotating,
magnetized disks mteracting with one another via
vortex-vortex interactions
(D) A school of fish
(E) Concentric rings formed by charged metallic beads
1 mm in diameter rolling in circular paths on a
dielectric support
(F) Convection cells formed above a micropatterned
metallic support
The distance between the centers of the cells is ~2 mm

Self-assembly reflects information coded as: shape. surface properties. charge.
polaribility, etc.

The design of components that organize themselves into desired patterns and function
is the key to application of self-assembly.

The components must be able to move with respect to one another, Their steady-state
positions balance attraction and repulsion.

Self-assembly requires that the components are mobile. It takes place in fluid phases
or on the smooth surfaces.

Molecular self-assembly involves: non-covalent or weak covalent interactions,
i.e. van der Waals, electrostatic, hydrophobic, hydrogen and coordinative bonds.

Self-assembly of meso- or macroscopic objects: interactions are selected and tailored
include gravity, external electromagnetic fields. capillary. entropic interactions.

Using shape for self-assembly

Major milestones towards the goal of self-assembly:

1) Making the building blocks

2) Understanding and lling the i

3) Predicting the ¢ | of many comp ts interacting in a prescribed
environment

4) Identify components and interactions that will organize to form a desired
product (reverse self-assembly)

5) Knowing how to use self-assembly
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What is “shape”?

- The idea of the shape is used for the purpose of understanding its effect
on self-assembly.

- It defines the shape of an object as the ensemble of the geometries of all
interactions clicited by that object.

- By this definition an object could have multiple shapes, depending on
the particular interaction of interest.

- Challenge of self-assembly is thus to understand how these different
shapes of the same objects contribute to its assembly.

Templates
A brute force approach to create nearly arbitral shapes uses templates

Template is a sacrificial mold in which material is grown or deposited, e g
micelles, membrane, colloid crystals, zeolites, and block copolymers

Instabilities

This approach aims to create a highly symmetric yet metastable structure
(spherical colloid coated with a metal)

Under the stimulus the structure “relaxes” toward one of its ground states by
breaking its own symmetry, e g stimulus heat, shell devotes leading to the
formation of a lower symmetry, stimulus-stretch metastable conformation fold
into functional shape (proteins)

The reciprocity in material technology

means A— goal
pr ing PIOPerties wmp performance
—————,

cause and effect
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Principle of spray-drying process

Low temp High temp
process process
(200°C) (600°C)
un
nebulizer Precursor

Principles of spheres arrangements
in the spray-drying process

Electric tubular furnace
Silica 2
particle \
'. ; \
Water .
phase ==
Micron sized Solvent Aggregated
droplet evaporation particle
Low temp. zone
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Close-packing of spheres in Euclidean space:
{s}= {(S]:Pr“(smpﬂ)}
Two spheres (S;, p;) and (S}, p)) of radius r are in contact, i.e.:
dist (p; p) = 2r

Cluster of spheres is weakly tetrahedral, T, if for each sphere
(S;p» p;y) there exist three spheres (S, p;5), (Siz Pi3) and (S Piy)-

Such the distance dist (S, py) =2r if 1Sk.1<4

Tetrahedral nano-cluster
(cluster which consists of tetrahedrals)

For every two tetrahedra T; .T, there exist an ordered chain: {T,, }1=1 |
That T;,T,  have common face,n=1... k-1

» Tetrahedron is a basic unit of the tight packing by equal spheres.

» Distortion associated with tetrahedral packing.
» 13 spheres icosahedron have small distortion.

= 12 spheres arranged symmetrically around one sphere are not
packed in perfectly way.

» Distance a between spheres: a > 2r
» Elementary property of icosahedron gives a relation:

a=8r/(10+ 2\/3)”2
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Compact packing of spheres

e

‘;D' " a

MFC Pump

Cooling
System
[—]

Ny

Ultrasonic Nebulizer

Organization of spheres in the droplet

Sample a d] A n
n three four five six
Silica
particle
Model

H¥e
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Organization of spheres in the droplet

Poraus particle

P Y N

'
' ' v .
1 ’ >
R ”
N > h L4

Drying Evaporating

Low temp. zone High temp. zone

. Silica particle (Nepative zeta polential)

\ 7
'
' H e
. ’ B
N l' o

A

\ 7
PSL (Positive zeta potential) ) Hollow partce
Low temp. zone High temp. zane

Examples of produced templates
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particle

Model

Porous
pariicle

Model

Hollow
particle

Model

n=13 [ n>14 n>3% |

150 nm

Global competition squared distance
function:
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Conflict sets arrangements and the intercells patterns

System of competition organizing centers

P={P.P,...P} = {(P.£), Py, 5) ... B, )}

Cells corresponding to the svstem
CP,= {xeR?: ¥, , fi(x) d2(x) < fi(x) d’(x)}

) Interface curve (generalized Voroni diagram

./ VP={xeR:3;S that V,£d(x,p) =
L n & p) = d(x, p) < £, d(x, py)}
._I’ N assumption: f=1,i=1,...N

STRUCTURE INCLUDES

Vertices -V
Edpes - E
Faces ¥
Cells <

Coordination number Z » number o edzes
Joined to a gives vertes
Topologically stable stractuncs «
wopologlcal properties e wnchanged by seall deformaticn

Implication  Z = 3 for Dy = 2

2= 3forly =2
F-E+V&«X 12D,)
~C+F-E+VTL (30)

X, §integer of ceder 1

Ex: X = 2 for sphere
X = 1 foeplane
X = 0 for doughest (lors)

Elementary processes by which structune
might change with ime (maintain Z =3)

T2~ vanishing of  cell

o

13 - cell divion
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PL-1 (16.1 nm) : PL-7 (115 nm)
Weight ratio 05:1 1:1 201 3:1
—_Number ratio 256:1 512:1 1024 : 1 1536 1
SEM
images
Number of
particles on surface 39
e Weight ratio
S|  Measured of small particle
8 i .
sE g Trend line
R Particle
£ES 3 morphology
2 g 20 °
g 10 i Surface Rough  Smooth
iy
o Lewsioesi o S0, Large particle
0 1 2 3 4 5 Many Few
Weight ratio of small particle [-] on surface

Hierarchical organization of particles of different diameters
on the surface of sphere

Self organization pattern for the selected samples

Mass ratio of silica particles 16 nm : 115 nm : 360 nm

152 1:6:6

500 nm

SiO, Nanostructuration using Ultrasonic SD

Two components

Gas flow: 1.0 L/min, My,5,c is the mass ratio of 115/16 nm SiO, particles
M 15146 = 4

contact with each other
When the mass ratio of silica particles (Myy545) was increased:

® the number of small particles layer decreases
® the particles surface changed from smooth to rough
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SiO, Nanostructuration using Ultrasonic SD

Three components

Mass ratio of SiO, particles 16 nm : 115 nm : 360 nm

® 360 nm particles were surrounded by 115 nm particles

® When the mass ratio of large particles was increased,
surface morphology changed from smooth to concave-convex

Conclusions

* The aerosol assisted spray-drying process is an useful method for production of developed
and desired space-forms made of nanoparticles

*  Mesop d particles were produced using PSL particles as a template
material for organizing nanoparticles around them

* The composition of the cells on the surface of sphere is described using the concept of
conflict set arrangement

+ Stationary state of cell configuration on the sphere has equal infinitesimal of cell
boundaries in real vortex and they are equal 27/3

* The signs of zeta potential of the template particles and colloid particles used in the spray
drying process define the structure of the final product, which could be either hollow or
porous

Thank you for your attention
©
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On comparing distributions with imprecise data

Przemystaw Grzegorzewski

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

One of the most fundamental problems in mathematical statistics is the comparison
of two or more distributions that characterize the underlying populations. Classical
tests applied there are constructed with pretty specific assumptions concerning the
distributions, like normality, exponentiality, etc. However, in reality, these assumptions
are often not met. The problem becomes much more difficult when the output of an
experiment consists of data that are imprecise, or vague. There we need a model that
allows us to grasp both aspects of uncertainty that appear in such data: randomness,
associated with the data generation mechanism, and fuzziness, connected with data
imprecision. To cope with this problem Puri and Ralescu (1986) introduced a fuzzy
random variable.

On the other hand, in analyzing fuzzy data from the statistical perspective we
immediately come upon some key obstacles, like the nonlinearity associated with the
fuzzy number arithmetic, the lack of a universally accepted total ranking, the lack of
suitable probability distribution models, or no limit theorems for random mechanisms
producing fuzzy data which could be directly applied in statistical inference. Therefore,
statistical tests with imprecise data usually cannot be generalized straightforwardly
from their classical prototypes.

We show that some of the aforementioned difficulties in test construction can be
overcome by using permutation-based nonparametric procedures. Combining these
with a distance-based approach or a dominance credibility index gives us some inter-
esting goodness-of-fit and location tests, respectively.
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On comparing distributions
with imprecise data

Przemystaw Grzegorzewski

Faculty of Mathematics and Information Science,
Warsaw University of Technology

Warsaw, September 27, 2023

Workshop on Mathematics for Industry (@D
&

Motivations

Hj : no treatment effect
Hi : new treatment effect

Xl,...,Xn iid. N(/,Ll,dl) and Yl,...,Ym iid. N(/,LQ,UQ)

Hy :pyp = p2 or Ho:py = p2
Hy :py # po Hy:pp > p2

Here we can use the well-known parametric tests.

X1,..., Xpiid. F=?and Yi,..., Y, iid. G =7

Hy:F=G Hy: F =G,
r S
H :F#G mH:x2y

Here we can use some nonparametric tests.
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Example

The Gamonedo cheese is a kind of a blue cheese produced in Asturias.
In quality control experts (tasters) express their perceptions about

» visual parameters (shape, rind, appearance),
> texture parameters (hardness and crumbliness),

» olfactory-gustatory parameters (smell intensity, smell quality,
flavour intensity, flavour quality and aftertaste),

» an overall impression of the cheese.

(Ramos-Guajardo A.B., et al., 2019)

Uncertainty

/\

Randomness Imprecision

Outline:

» How do we model imprecise data?
o fuzzy numbers
e fuzzy random variables

e pro and cons

» How do we compare distributions with imprecise data?

e distance-based goodness-of-fit permutation tests

o tests based on the credibility degree of dominance
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Fuzzy numbers

A fuzzy number is identified by a mapping A4 : R — [0, 1], called
a membership function, such that its a-cuts

i {zeR:A(x) 2o} ifae(0,1],
T \edf{zeR: Alz) >0} ifa=0,

are nonempty compact intervals for each o € [0, 1], where ¢l denotes
the closure operator.

A fuzzy number is completely characterized by its membership function
A(z) or by a family of its a-cuts {Aq}acpo,1-

Let F(R) denote the family of all fuzzy numbers.

Each a-cut of a fuzzy number is a closed interval Aq.

Ay = supp(g) is called the support and A = corc(g) is known as the
core of fuzzy number A, respectively.

Arithmetic in F(R)

(A+ E)a = [inf Ay + inf Ba, sup Ay + sup Ea], Ya € [0,1]
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(0-4), = Va € [0,1]

[Hsupga, Oinfga] ifo<0’

~ {[ﬂinfg07 Gsupg(,] ifo>0

Note (F(R),+, ) has not linear but semilinear structure since
A+ (=1-A4) # 1.

A+ (—-1-A4)

b

Moreover, the Minkowski difference d~oes not sgtisfy,Nin gegeral, the
addition/subtraction property that (A+ (—1)B) + B = A.

Let A denote a normalized measure associated with a continuous
distribution with support in [0, 1] and let v > 0.

Then for any A, B € F(R) we define a metric D;‘ as follows

~ o~ 1 ~ ~ ~ ~
D)(A,B) = \//0 [(mid Aq — mid By)? 4 v(spr A — spr By )?]dA\(e),

where mid Za = %(inf ,Za + sup Za) spr ga = %(sup Za — inf Za)
(Gil et al., 2002; Trutschnig et al., 2009)

Whatever (), ) is chosen D:\/ is invariant to translations and rotations.
Moreover, (F(R), D;‘) is a separable metric space and for each fixed A
all metrics ny‘ are topologically equivalent.
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Imprecise data

/\

Epistemic Ontic

Fuzzy random variables

Fuzzy random variables (random fuzzy numbers) integrate randomness
(associated with data generation) and fuzziness (associated with data
nature).

Definition (Puri M.L., Ralescu D., 1986)

Let (22, A, P) be a probability space. A mapping X:0- F(R) is a
fuzzy random variable (random fuzzy number) if for all a € [0, 1]
the a-level function is a compact random interval.

In other words, X is a fuzzy random variable if and only if X is a Borel
measurable function w.r.t. the Borel o-field generated by the topology
induced by D,)Y‘.

The Aumann-type mean of a fuzzy random variable X is the fuzzy

number E(X) € F(R) such that for each a € [0, 1] the a-cut (E(X))a
is equal to the Aumann integral of )?a, ie.

(B(X)), = [E(mid Xo) — E(spr Xa), E(mid Xo) + E(spr Xa)]-

The D)-Fréchet-type variance V(X) is a non-negative real number
such that

V(%) =E([D)(X, B(X))*)

1 - 1 ~
:/ Var(mian)d)\(oz)Jr'y/ Var(spr Xq)dA ().
0 0
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Given a fuzzy sample X = ()?1, . ,Xn) we can determine its various
characteristics, like the average X € F(R) defined by its a-cuts

= 1~ .~ 1 & ~
X, = [E ;mld (Xi)a — - Xl:spr (Xi)as
1= 1=
1 i~ 1 =
- Z mid (X;)a + - Z spr (Xi)a],
i=1 i=1
or the sample variance S? € R given by

1 n -
§8 = — S DX X)%.
i=1

Note

In contrast to the statistical analysis of numerical data one should be
aware of the following problems typical for fuzzy data:

» problems with subtraction and division of fuzzy numbers;

» the lack of universally accepted total ranking between fuzzy
numbers;

> there are not yet realistic suitable models for the distribution of
random fuzzy numbers;

» there are not yet Central Limit Theorems for random fuzzy
numbers that can be directly applied for making inference.

Conclusion

No straightforward generalizations of the classical statistical tests for
fuzzy data exist.

Permutation ANOVA for r.f.n.

Suppose, we observe independently p > 2 fuzzy random samples
drawn from populations with unknown distributions, i.e.

X=Xy os Xiny)

Xp = (Xpty- -5 Xiny)-

We want to verify the null hypothesis that all p samples come from the
same distribution, i.e.

d

H()Zglg‘.. Xp

against the alternative hypothesis Hy : = Hj that at least two population
distributions differ.
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Let V = Xl W...4 Xp, where W stands for vector concatenation,

so that the p samples are pooled into one, i.e. 17, = )N(h- if 1 <1< n,
Vi = Xo; if n1 + 1 < i < n1 +no and so on until V; = Np,i—{n1+..,np,1)
ifn1+...np,1 +1<i<N.

Now, let V* denote a permutation of the initial dataset \2
Then

ni

32’1‘ = (X'flw"v)?fnl) — (‘71*7'”:‘7* )
X; = (X;h see -/X;nz) — <Vn*1+11 .. -vVT;Jrnz)

X*:(N* ~,'~~)5(:* )(7 (‘713—77,,)+1}"'7‘7X/)'

pnyp

If Hy holds we expect that all p sample means would not differ to much
from the overall sample mean.

Thus to decide whether the distance between the observed sample
means is large enough to conclude as significant we consider the
following test statistic

P P
T(V*) =Y ni-Dy(X;, X)?,
i=1

where
— 1 ni+...+n; _
— *
Xi=m > Vi
Jj=n1+..4n;_1+1
= P = N . = ~
Obviously, X* = % Y Xr=4> V=X forany V*.

1 i=1

i

(Grzegorzewski P., 2020)

For a given realization of a fuzzy sample ¥ = X; & ... ¥ X, we compute
the observed test statistic

k —
to=T(%) = n-Dp(F,7)"
i=1

The p-value of our test is defined as the proportion of cases when the
test statistic values are greater or equal to the observed experimental
value tg = T'(v).

We repeat the whole procedure, i.e. we draw a permutation and
compute a value of the test statistic T'(v*) B times (usually about
1000). Then the approximate p-value of our test is given by

ST UTE) > to).

p-value ~ —
B
B=1
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Example (cont.)

So far, the experts provide an ordinal number ranging from 1 to 7 to
describe their perceptions about different cheese characteristics.
Recently, the tasters were proposed to express their subjective
perceptions about the quality of the Gamonedo cheese by using fuzzy

numbers.

P IR A SN ‘
nMirn 10% 20% 30% A40%

H L o S
50% 60% 70% B80% 90% Max

Opinion of a taster expressed by means of a trapezoidal fuzzy set

(Ramos-Guajardo A.B., et al., 2019)

I S |
0 10 2 30 4 5 6 70 & 9% 100

70 R 100

Flavour quality

— Taster 1
08 |—Taster2
Taster 3
06f |- Tasters
o= Taster 5
04] Taster 6
Taster 7

Overall impression

We consider some data given in Ramos-Guajardo A.B. et al.(2019) to

compare the opinions of the three experts about the overall impression of
the Gamonedo cheese. We have three independent fuzzy samples of sizes
ny = 40, no = 38 and n3 = 42, coming from the unknown distributions.

Opinion Expert 1 Expert 2 Expert 3
1 (65,75,85,85) (50,50,63,75) (60,63,67,72)
2 (35,37,44,50) (39,47,52,60) (53,58,63,68)
3 (66,70,75,80) (60,70,85,90) (43,47,54, 58)
4 (70,74,80,84) (50,56,64,74) (70,76,83,86)
5 (65,70,75,80) (39,45,53,57) (54,60,65,70)
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Our problem is to check whether there is a general agreement between
these experts.

To reach the goal we verify the following null hypothesis
HU:}E] igzgg&

stating there is no significant difference between experts’ opinions,
against Hy : =Hj that their opinions on the cheese quality differ.

Substituting data into formula for 7' we obtain tg = 2259.436.

Then, after generating M = 10000 random permutations we have
obtained the p-value of 0.0011. Hence, we may conclude that there is
no general agreement between experts’ opinion on the overal impression
of the Gamonedo cheese.

Other tests based on distances

» Energy distance test (Grzegorzewski P., Gadomska O., 2022)

nm 2
T(’TI(XY)777L+m %22 Xi,Y5)
DRI IRES Wl
i=1 j=1 i=1 j=1
» Nearest neighbor test (Grzegorzewski P., Gadomska O., 2022)

L

Tnn (X Y

uMz

where V= X WY and

I (‘7) )L if V; and NNk(lN/l-) belong to the same sample,
R 0, if V; and NNk(lN/i) belong to different samples,

The generalized Mann-Whitney test for fuzzy data

Let X = (X1,...,Xp) and Y = (Y3, ...,Y},) denote independent
samples from two populations F' and G, respectively.

We consider the following testing problem

H()ZF:G,
H:x2y

The Mann-Whitney test statistic is given by

-3

i=1j

Ms

1(X; > Yj).

Il
A

Our goal: to generalize the Mann-Whitney test for fuzzy data.
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Consider the possibility and necessity measures (Dubous & Prade, 1983)
for ranking fuzzy numbers A and B:

Pos(A = B) = supmin{A(xz), B(y)},

x>y

Nes(A = B) = 1 — Pos(A < B)
=1—sup min{g(ﬂﬁ), E(y)}

Ty
Obviously, Nes(A = B) > 0 implies that Pos(4 > B) = 1.
Following Liu (2004) we aggregate both measures by the following index

Cr(A - B) = Pos(A > B)«;Nes(A - B)7

to obtain the credibility degree that A is larger than B.

Lemma 1

For any trapezoidal fuzzy numbers A= Tra(a1,az, a3, as) and
B= Tra(by, b, b3, ba) the credibility degree that A is larger than B is
given by the following formula

O, ag < by and az < bQ,
N B 7(142(7;;(33’31))1), as > by and az < bz,
Cr(A &= B) = %, > bo,aq = by oras < bg,a; < by,
1—%, a1<b4 and as > b3,
1, by < ay and as > b3,
where
asbo — biag
h b)) = —F—F"—
L((L4, 1) by — by + a4 — a3’
b4a2 — (llb‘g
h b —
(ah 4) by — b3 +as —ay’
Lemma 2

For any triangular fuzzy numbers A= (la,ca,74) and B= (IB,cB,TB)
the credibility degree that A is larger than B is given by the following
formula

0, ra <lp andcy #cp,
h(ralp)—
7(;(’;25“, ca<cpandry>lp,
CF(A>-B): ;7 cq = cCB,
h(la, l
17%, ca>cpandly <rg,
1, rp <la and cs # cp,
where
racg — lpcy
h(ra,lp) = —————————
(Aa B) CB_lB_(CA_TA)’
lacg —rBCA
h(lA,’V'B) =

cg—rp— (ca—1la)
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Example
Consider triangular fuzzy numbers A = (3,5,7) and B = (1,2,4).

1.0

h(la, r8)

0.0

l : : J : : ;
S h(la,r5) — La 35-3 7
A»B)=1- —1- _

Cr(4 - B) 2(ca — 1a) 2.2 8

Let X = (X1,...,X,) and Y = (Y4,...,Y,,) denote independent
samples, each consisting of i.i.d. random fuzzy numbers.

We want to verify
> d

Using the credibility index for each pair of observations from both
samples we obtain the following test statistic

m

Ucr(X,Y) :XH:ZCT - Y;).

i=1 j=1

To decide whether to reject or not the null hypothesis Hj we design
a permutation test.

(Grzegorzewski P. and Zacharczuk M., 2023)

Algorithm 1: The generalized Mann-Whitney test for fuzzy data

Data: Fuzzy samples X = (Z1,...,Z,) and ¥ = (91, -+, Um)

begin

g <— Y0y 25k, Or(@i = 4)

Pool the data: w =xWy ;

for b=1to B do
Take a permutation W* = (@f,..., W), ,,) of W ;
= (e 8) e @)
Y= Um) — (Whigs o Wiy yn)
Ucr +— >imy Z;L Cr(@} = y5)

end

p-value +— % Z,)B  L(Uor(%5,57) = wo)-

end
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Power comparison for the increasing difference in location.

The p-sample (p > 2) location problem

More generally, we observe p > 2 independent samples

Xi =Xy X)) ~ By

Xp = (Xph s szmp) ~ Fp.
We want to verify the hypotheses

H():F]:...:Fp
H1:F<F2<...<Fp,

where at least one inequality is strict.

The generalized Jonkheere-Terpstra test for fuzzy data

More generally, we observe p > 2 independent fuzzy samples:
Xi =X X))y, Xp = (Xp1s -5 Xy )-
We want to verify

H()I)}lgj;vgz .i)?p,
H1:)~(1>)~(2>. .>)?p.

The generalized Jonkheere-Terpstra test statistic:

Jor=Y_Y Ucr(X;,X;)
1<i<j<p
ng M

=D 202> (X - Xjs).

1<i<j<p r=1 s=1

(Grzegorzewski P. and Zacharczuk M., 2023)
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Conclusions and further research

» Due to certain difficulties with fuzzy modeling statistical tests with
imprecise data usually cannot be generalized straightforwardly from
their classical prototypes.

» Some of those difficulties in test constructions might be solved by
applying nonparametric tests based of permutations.

» Permutation tests require extremely limited assumptions, i.e.
exchangeability (we can exchange the labels of the observations
under Hy without affecting the results).

» The credibility index might appear useful for some test
constructions, especially for situations connected with the
dominance relation.

and this is the end

Thank you for your attention :)
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Brief Introduction to Topology for Multi-objective
Optimization

Naoki Hamada
Machine Learning Group, KLab Inc.

A broad range of scientific and engineering tasks, including data analysis, product
design, modeling, planning, and management, can be formulated in multi-objective
optimization problems. Recent developments in convex analysis and data science us-
ing topology have brought a new paradigm for solving and analyzing multi-objective
optimization problems. In this talk, several applications of topology to multi-objective
optimization will be presented. We will show how the topology of convex analysis can
be applied to a sparse modeling task, generalizing the regularization path of the elas-
tic net and efficiently tuning its two hyper-parameters simultaneously. To extend this
idea beyond the convexity assumption, we introduce a statistical test using persistent
homology and the Poincaré conjecture whether the hyper-parameter tuning method
works.
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Neoki Hameda (KLeb Inc.)

Copyright (<) KLab Inc. All Rights Reserved.

m the viewpoint of an industrial researcher...

[ will talk about
o How cutting-edge techs are applied to game products
o Why mobile games are matter for mathematics

® optimizaiton and sparse modsling

o A new math theory developed in collaboration with academia

o An application to mobile games

Mobile Game Industry ‘
and Mathematics
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mpany Overview

KLab bo.

Augest 1, 2000

5457.9 mi lien yen (February 2023)

Tokyo Stock Exchangs Prime Market (3658)

Hidekatsu Morits (President and CEO)
Yosuks Igarashi (Vioe Crairman)

¢ KLab

Headauarters (Tokyo, Roppeng Hils Mori Tower)
Ousiea OF iow, Fubss ba OF ke, 8 nd | Of ica

Giobal Gear Inc.

KLab China Ina.

541 (Fuli-time empioyees as of December 2022)

App Store Top Seles Rankings

%0ata comp bed by KL b using resear h from Agp Asrie sta s ios v [l ble & m esch game’ s relesss dute 1o Sept rbac, 2021

Mobils games ars a good tast bad for

[deal conditions for science
data
o Millions of active users = TB-scale data / day

o Sensors on phones: touch, mic, camera, GPS, gyro, ...

o Applications: Game Al, Game Dev/Ops/Ads, ...
o Challenges: Real-time ML on edge devices, rapid MLOps, ...

o Res team deploys every week and gets immediate feedback

o Not mission critical: we can do trials-and-errors in products
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Research cutting-edge ML technologies to create
unprecedented gaming experiences

Data
Science

Singularity Theory Machine Leaming Supercomputer Game Dev/Ops
Optimization Data Analysis Cloud Game Al
with IML, Kyushu U. with RIKEN AIP with RIT, Kyushu U. in KLab
| 8 ’ |

Autoplay for Ul testing 3D motion retrieva

(JSAI2022 Award) (B152022) and more

Touch / Gesture
AR agents should cope with 1.‘)
e multimodal inputs/outputs 4 .
e game states Y
e planning el
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|
| |
| Awio | Spach
[ vee |} =
| Gest Gesture
I Recogniti =
/ :
Real-Worid Info Irtual-World info ]
| GPS | | NPC Position |
| Date / Time | I NPC Emotion I
| Weather | | Game State |

Generative Al Routines.

Planner
{XLab 8TRIPE)

Facial Expression
Character Animation

. NPC

Reaction

Real-Worid Info
[ e ]
| Weather | | Game State |

Objeot detestion +
path finding

Navigation to tapped

How do DNNs connect to sym ro

Generative Al Routines

-
Character Animation

Facial Expression

User input Recognition Routines.
| Text I 1' Text iti | o2
[ #de  { aloomson | ]
14
s | J Object Symbolic Al
| Vision | |_Recognition @ Routines.
| E— ] | 53
| it | ., | Planner
G (GPTBTRIPE)
Real-World Info /K Worid info !
®
| GPS | | NPC Position | —
45
I Date / Time | I NPC Emotion I M~ .
| Weather | | Game State | =

Emotional Speech

% NPC

Reaction
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Our epproach

Too many sy
We need fo select truly
meaningful ones.
= Use sparse modeling!

Recognize 1 ' Data

with Recognition Als

\

Human
Intervention
with XAls

g
B

with Generative Als

Topology, Mukiobjective Optimization and ‘
Sparse Modeling

Elastic net and regularization path

Linear regression: y=0x+0xs+ - +0,2, +(
Elastic net: 1 1—a
minimize B(0) = 2| X0— yl[* + A (a|0| + Tuou‘*)

OLS error _ // ln-m"_",',""um o

1 izati f—_
Iness—of L1-regularization ”

(sparseness) L2-regularization
(robustness)
e Optimize with different A ‘s and fixed a '
— Regularization path for a ) )
e To tune two hyper-params (A, a), we need = /

to compute many regularization paths for

different a’s TR
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olastic net problem to weakly simplicial problem

Our strategy

1. Show all multi-objective strongly convex problems are
weakly simplicial

2. Reformulate the elastic net problem to a multi-objective
strongly convex problem

3. Extend the regularization path on that problem and

approximate it by a Bezier simplex

tive optimization problems

Optimize multiple functions: i
1 (X1, %2) = (xp + 1)% + (x + 1)? [132
e il ) = G 17+ G+ 1) i

folxg, x2) = (g = 1)% + (x, — 1)?
subjectto —2<x; <2 (i=1,2)

feasible set
"graqign’ts:‘ ‘o

)
., =2

Goal: find Pareto set (rather than a point) i
Definition: A point x is a Pareto solution if ™
there is no y such that %
. f;(}") = fl(x) for a" il Pareto front
® [ (y) < f;(x) for some j. 1
L el Bl |

Woekly Simplicial Problems [Kobayashi

L1 "\x:“'x 12
FX*f ) SISy D)
vap) X*(f(2,3) condition2
FIX0N | 10X Sy,
_— — p %
-smmbodding 2,
Xty S )
. y X" U
X*(f1,2y) = )
nn XU )
(a) Simplex A%, (b) Pareto set X*(f). (¢) Pareto front f(X*(£)).
'weakly simplicial C -weakly simplicial if two
C -surjective map
a C-embedding
M
where an (M - 1)-simplex is A ! = {m ..... ) €RM | 3 b =1, b ;»u}
mwl
an Fsubsimplexis AJ' ' = {{t1,....ta) € AN [ 4 =0 (m ¢ 1)) foreach 1 C {1..... ] M}
L 4
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Jezier simplox approximates Pereto seot of any weekly simpliciel problem

A Bezier simplex is a
polynomial map of

degree D: ! -
9 Simplex A¥! Hyper-surface in RX
D . M
b(w) = Z 4 w'pa rz»,‘{:{(,;] ,,,,, dyy) € KM ,..,Z:l‘f'":p}

deN}

Theorem 1 Let & : AM =1 — R¥ be a continuous map.
There exists an infinite sequence of Bézier simplices bl
AM=1 5 BE such that

lim sup |@(t) — b'O(t)]| = 0.

100 4 - AM -1

3azier simplex fitting [Tanaka+ 2020]

@q = blt,) + cn l.xhh:" Comparison of asymplotic risks of the all-at-once
vs, the inductive skeketon with the optimal ssbsam-
T
\

jon of the Bézier simplex, D:

Bézier simplex, N: the sumple size). The
winner is shown m bold.
N2 Dwi
o
LO/N
G.0/N
10.0/N
15.0/N
21.0/N
25.0/N
. . . 0N
o®L (D+M -1 (¥
— Y —00)
N D y
o M=
» © - (i)(5) (1) - k
B3 Y u(@xov) x40 Ao Am As
d,.dpehff 1=0 i

3ezior Flow: A Surface~wise Gradient Descent Method [Sennai+ 2022]

femoron . Aub(top)
ArbIEPe)

»

(@) Generate solutions on the (b) Update coch solution with

Bézier simplex N
ARaetiihn 2 Seefocc i Gradeen Devooil Ml
1 Se ko ] and the il ol porrd 4710
> whiked < K 6o
* v R 6 1 i drawn il froes dhe wrisorm distribesinn on A% 1
& Ouafh(n 0N - SR ¥ = 10
& Upchoe (Wi PY
6 U contd o
ke kil
A o whille

o retam PN

Theorem 6.5. Assume that o) & (0, 1] for all € [K).

Then, .-1/_20}'!'1/”"[."/‘( PAC unitormly srable.

et
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Strongly convex mappings

f : R" = R is strongly convex & 3a > 0, Vx,y € R",
vt € [0.1]

o+ (1 £)y) < 6 + (L OF(y) — pat(1— £) x — y?

where ||z|| is the Euclidean norm of z € R". The constant «

is called a convexity parameter of the function f.
A mapping f = (f1,...,fm) : R" — R™ is strongly convex if

all component functions are strongly convex.

Previous work

Previous work shows  that if f is C" strongly convex where
1 < r < oc, then the problem of minimizing f is C"!
weakly simplicial.

references  strongly convex weakly simplicial

[Hamada+ 2020] c> c>
[Homada+ 2020] " Cl(rz2)
[Homada+ 20211 (1 co

Diaraades 3505] M. M smach, K. Haywro, 5. kb4, Y. K bata, mdM. Tor mot, T 5 oy o Purets seta of s¥ 1 by corwes prad ms, SAM J. O bm. 30, o 3, D00-2808.
Diarnacet 3521] K4 eads vl .1 hK, Swphcin Ry of strsngly corves: r Seews, . Ma . S0c.J p . 3o, 3, 968062

If f is C° strongly convex, what happens?

We can define a mapping x* : A™1 — X*(f) for any strongly convex
mapping f : ™ — R” as follows:

m
*(w) = arg mi £(x) ),
*(w) = arg min (Zl w ,<x>)
=
where arg minyern (37, wifi(x)) is the unique minimizer of Y-, w;f;.

Theorem 2
Let f : R" — R™ be a strongly convex mapping. Then, the

mapping x* : A™"1 — X*(f) is surjective and continuous.
Thus, the problem of minimizing f is weakly simplicial.
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From elastic net problem to weekly simplicial problem

Our strategy

1. Show all multi-objective strongly convex problems are
weakly simplicial

2. Reformulate the elastic net problem to a multi-objective
strongly convex problem

3. Extend the regularization path on that problem and

approximate it by a Bezier simplex

Muki~objective slastic net

Single—ohjective strongly convex problem
s _ 1 2 l-a o
minimize E(())—2M||X9 ylI* + A al0] + 5 ||0||)
Multi-ohjective strongly convex problem
mibl’x_ilal'l‘izo f(o):= (f'IGH).fQ(Hi.f_-,[H))

where f;(#) = fi(@) +cfa(f) (i=1.2,3)
strongly convex convex strongly convex

From elastic net problem to weekly simplicial problem

Our strategy

1. Show all multi-objective strongly convex problems are
weakly simplicial

2. Reformulate the elastic net problem to a multi-objective
strongly convex problem

3. Extend the regularization path on that problem and

approximate it by a Bezier simplex
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(@, A) € [0, ®)2 — (wil, w2, w3) € A2
8°(w) = argming wy f; (9) + w2 [2(8) + w3 f3(8)

milnimi e f(8) == (f1(8). f2(). f2(8))
ae

where _l:‘lﬂr = filt) +

G(f)y={(0 f(6) e R | B e X*(f)}

fa(®) (1=1,2,3)

X Wider) &' 5
d Xy XUy} (Er Sy
/ X '
\, / FN*Cea = FIX 17 1) e ione
b
\
T . /
. s h / -1
X"ty 4oL /
xHuay #0 iy 1o
X" G151 1) Wik

Experiments

Attributes

1. For each dataset, train Dataset Predictors Responses Instances
5,151 elastic nets with Blog Feedback® 280 1 60,021
§ ) ) Fertility" (7] 9 1 100
different weights on A Forest Fires® (4] 12 1 517
2. Split a set of trained elastic QSAR Fish Toxicity® [3] 6 1 908
i ining/ Residential Building® [17] 103 2 372
nets into training/test sets gy Localization! [8] 385 2 53500
for Bezier simplex fitting Wine® [1] . 11 1 178
Yacht Hydrodynamics® [16] 6 1 308

3. Train a Bezier simplex with ocht Hydrodynamics” | :

* https i f/archive. 1os. vel edu/nlidat
¥ bttpe: //archive. scx.ucs . sdu/ml /dat: ¥
© httpa://archiv i edujal/datasata/Foreatetiran

“ https: /farchive 1. edu/nl/datasets/QEARL L ahs toniclity

training set and evaluate its

error with test set

za: -dca.uch.aduefa
! hutpei//archive. 1ca uci. odu/al/Sataseta/Relat ive+locationsof +CToslic
% htops | //archive. 108, vcl . edu/ul/datasets/vine

" bttpe:/farchive.

ossorearialearie

)

A Bezier Simplex Converges on the Regularizetion Map as n —

() Traln : Test = 5

it

() Teain : Tost = 257 : 4594 D) Train : Test = 5100 - 51

Ficuse 2. Degreo vorsus MSE on QSAR Fish Tosicity
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TasLe 2. Optimal degree d* and its approximation error {average
+ standard deviation over 10 trials).

Large sample Small sample

Dataset d* Test MSE d* Test MSE
Blog Feedback 30
Fertility 30

I‘.I rest <]
QSAR Fish Toxicity
Residential Building 25

Slice Localization 30 @
Wine 30 6.71E-05 =
Yacht Hydrodynamics 30 6.75E-05 =

3.51E-03

3.62E-04

(A) Ground truth (5151 elastlc net models trained with varying hyper-parameters)

(8} Large sample approximation (A Béxier simplex of d = 25 trained with 5100 date

e approximatica {A Béxier simplex of d = 4 trained with 51 data paints)

(€} Small sam

Generalization
and Poincaré Conjecture
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39

(a) Simplex A%,

condifionl  x*is;,

e S
st B(A)=X"(f7)

[ We focus on 0
. checking it ik

X"

1, We skip it since it
is easy to check . B

X" (f(1,2))

(b) Parcto set X*(f)

flx

() FOXT(S(ay))
" -szmbodding

X*(f4a))

=

condition 2

A" (Fga 5y

I FX* Uy )

(<) Pareto front f{X*(f))

o When the simplicity of the problem is unknown, we need to

estimate it from data

o We statistically test Condition 1 from a sample of Pareto set

and front

checlung n

® Cond 1a: X* (f,) All-1 (Vl)

® Cond 1b ! mtx (f,)mnt

bty 2017 ) Srrg

x*(f) -

{ We skip it since it |
is  easy to check |

L

_¢(Vl]st I¢])

Stability theorem of persistence diagrams:

1/4
P(Wao(P.P) > ) < IP(H(S,,.MI) > r,,) <a+0 G) forn — e

{

a-confidence interval
—* ofnoise

/= epw ]
A {24
4

F fo
. 4 .
. \
1 -
:
T™TT = ™ TT)
Bar Ban

M [ZFHRDT, §,0T—-bARSYT
IZ&D ¢ !’&‘i?%

a0, Statict,
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There is & missing link...

In general,

Topological spaces Homologies

Xand Y "> H/(X)and H(Y)
@~

are homeomorphic are isomorphic

We will seek a condition
where the converse is true.

In a cortain assumption, homology implies homeomo

Theorem 1. Let M be an n-dimensional compact C™ -manifold with boundary ~u(h
that M and OM are both simply connected. If M is h Loy to ann
simplex A", i.e.,

Ho(M) = Hy(A") = { (a=0),
0 (qg#0),

then M is homeomorphic to A"

To show the theorem, we uses the following lemmas

Lemma 1 (Corollary of Hurewicz's theorem). Let M, N be simply connected CW-
complexes and [ : M — N be a continuous mapping. If the homomorphism between
homology f, : H.(M) — H,(N) introduced by f is isomorphism, then f is homolopy
equivalence. 4 n-dimensional Poincaré conjecture

Lemma 2 (h-cobordism theorem). Let M, N be a simply connected n-dimensional
closed C™-manifold. Let W be a simply connected (n + 1)-dimensional compact
C™-manifold such that 8W = M U N (disjoint union). If the inclusion mappings

M—W, N—W

are both homotopy equivalence, then W is homeomorphic to M x [0,1] (see re-

mark 1). This homeomorphism can be the identity map on M x {0}. W is called
the h-cobordism between M and N.

| N

Proof of Theorem 1. Let M be an n-dimensional compact C*-manifold. Let B be
a ("™“-submanifold of M that is homeomorphic to A", Let W be M — intB and
DW= 0OM, 0-W :=0B.

From the assumption of the homology of M, we have

Z (g=n),

H, (M, 00f) = {” o)

It implies Hy(W,8, W) = 0 for all g. Substituting this to the long exact sequence
P Ho (W 0LW) > Hy(0-W) =y Hy(W) = Hy(W.0-W) =+

we see that &, : Ho(0.W) - H (W) is an isomorphism. Since W is compact by
its construction, lemma 1 shows that i : d, W < W is a homotopy equivalence
The same argument repeats for &_W, By lemma 2, W is an h-cobordism between
W and o_W.

Remember we have assumed 9, W and d_W are simply rrmnnfn‘d Thus,
lemma 2 ensures that there exists a homeomorphism & : W < d_W x [0.1] such
that ¢|s_w = id x {0}. Since (¢ Uid) : M — (W U B) is homeomorphism, and
(WuB) is homeomorphic to A" by its construction, M is homeomorphic to A", [J
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Mobile games bridge between math and industry

Data

Science

Singularity Theory Machine Leaming Supercomputer Game Dev/Ops
Optimization Data Analysis Cloud Game Al
with IMI, Kyushu U. with RIKEN AIP with RIT, Kyushu U. in KLab
We al : welcome collaboration with you!

KL

Copyright (<) KLab inc. All Rights Reserved.
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Persistent Homology and Machine Learning

Yuichi Ike

Institute of Mathematics for Industry, Kyushu University, Japan

Persistent homology is a central tool in topological data analysis. It encodes the topo-
logical features of given data into persistence diagrams, which are multisets in the
two-dimensional space. In connection with machine learning, persistence diagrams
have been used as an input of machine learning algorithms as feature vectors and are
effectively applied in material science and medical science. Recently, many techniques
have been developed to incorporate persistence diagrams into loss functions for control-
ling the topology of parameters. In this talk, I will start with the basics of persistent
homology and some applications. Then I would like to discuss several recent develop-
ments in optimizing TDA-based loss functions and their applications in dimensionality
reduction or visualization.
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Persistent Homology and Machine Learning

WORKSHOP on Mathematics for Industry
2023-09-27
Yuichi lke
Institute of Mathematics for Industry, Kyushu University

Joint work with
Mathieu Carriére, Frédéric Chazal, Marc Glisse,
Hariprasad Kannan, Théo Lacombe, Martin Royer, Yuhei Umeda
(Collaboration with Inria and Fujitsu)

1/26

Outline

1. Persistent Homology and Applications
« “Shape” of data and persistence diagrams
- Typical applications of persistent homology

Cipboxyy - ™

2. PH-based Loss Functions
- Differentiability of persistence diagrams
« Applications of PH-based loss functions

Persistent Homology and Applications

« Extracting the shape of data
+ Persistent homology and persistence diagrams (PDs)
+ Some applications

3726
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Idea of persistent homology (PH)

Topological Data Analysis (TDA)
EMethod to extract topological features of data

° °
o _® ° L] e ® ° L] oo
® ° L4 % ®oe
L] P L]
Without hole One hole

Q How to extract the “topology” of a discrete point cloud?

4/26

Idea of persistent homology (PH)

Topological Data Analysis (TDA)
EMethod to extract topological features of data

N g

Without hole

One hole

Q How to extract the “topology” of a discrete point cloud?
HW|deal: Consider the union of balls centered at data points
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Idea of persistent homology (PH)

Topological Data Analysis (TDA)
EMethod to extract topological features of data

.
ofloe0 @ ®"e
o ¢ ‘.oo
Without hole One hole

Q How to extract the “topology” of a discrete point cloud?
Wideal: Consider the union of balls centered at data points

6/26
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Idea of persistent homology (PH)

Topological Data Analysis (TDA)
EMethod to extract topological features of dat

Without hole One hole

Q How to extract the “topology” of a discrete point cloud?
Mideal: Consider the union of balls centered at data points
-> How to adjust the radius value of balls?

/26

Idea of persistent homology (PH)

Topological Data Analysis (TDA)

EMethod t t topoloaical features o

Without hole e

Q How to extract the “topology” of a discrete point cloud?

HW|deal: Consider the union of balls centered at data points
-> How to adjust the radius value of balls?

W|dea2: Consider all radii and track the lution: persi h I
-> Can distinguish noise and essential topological features

27

Filtrations on simplicial complexes

Filtration: increasing family of subcomplexes
mSimplicial complex: collection K c 2Vst.oeK,rco=>1€K
BX = (K,)r. Ky C K filtration of K: © K, c Ks (r <s) and UpKr = K
« Function f:K s Rstoct=f(o) < f(r).K,={c€KI|f(c) =71}

ﬁ / ‘A’A
s L ]
o o 0 1 2

Cech filtration
{xg . xx} € C(P;7) 1= N Blxpr) 0

o Bd®
Y [
Cech

Rips filtration
{xgr Xz} ER(PiT) 1= B(xir) 0 B(zl; r) 0 (Vij)

oo C%)(@)
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PH and persistence diagrams (PDs)

Filtration: increasing family of subcomplexes
ESimplicial complex: collection K c2Vst.oeK,rco=>1€K
BX = (K,.).. K, c K filtration of K: © K, c K; (r < s) and U, K, =K
~ Function f:K - Rstoct=f(o) < f(1). K, ={c€K|f(c) =7}

R Nk

Persistent homology of X = (K,), is the famlly
- —>H, (K,) > H,(K,)) > H,(K,) > (r<s<t)
-»Persistence diagram (PD): encodes the birth and death time of
each homology class 10726

@ Conn comp
@ Loops

Birth time

1

How to use PDs

mPoints far from the diagonal express essential shapes while those
near the diagonal are regarded as noises

®We can analyze which type of shape is represented by a point in PD

Pessistence diagram

Connected
components
. aue - Loops
Big loop O L]
Birth
11/26
How to use PDs
More directly ...
We can distinguish data pomts with different “shapes”
mw««ag-m
. ~ NO hole
: .+ Nohol
. an
et e el iw. i // Connected
. / components
o
. . e mm:’rf/—-—— One hole
° . §: Loops
. . - 159
. . .

12/26
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Analysis with persistent homology

Machine

Filtrations PD
DgmiXx)

Learning

Deaths

Example

« Point clouds generated
by simulation

« Graphs

= Image data image, persistence landscape

13/26

Analysis of silica glass

Kusano, Fukumizu, and Hiraoka: Persistence weighted Gaussian
kernel for topological data analysis, ICML2016
Bcf. Nakamura et al.: Description of medium-range order in amorphous
structures by persistent homology.
MEstimate the temperature that SiO: changes from liquid to glass state

H|dea: Transform point clouds into PDs and analyze them
Liquid .

m w | I
- ¥~ Vectorization of PDs

Glass (They used kernel method)

5 - Figures from K. Fukumizu Persistence Weighted
Gaussian Kernel for Topological Data Analysis
Lot 14/26

Application to graph classification

PH extracts some global structure of graphs,
which can be used for classification

ENeed to find suitable filtrations on graphs . i
e.g., degree function, Heat Kernel Signature | B Y e

PersLay, M. Carriére, F. Chazal, I., T. Lacombe,
M. Royer, Y. Umeda, AISTATS 2020
EWProposed a new architecture for graph classification
MPpersLay (NN vectorization) + one-layer NN

More and more studies to combine PH
and Machine Learning
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PH-based Loss Functions

» Applications of PH-based loss functions
- Differentiability and convergence of PH-based functions
» Applications

16/26

PH-based loss functions

EMany attempts to construct PH-based loss functions
data E %.—» @E ———— £: loss function
N/ N /

[ [+

HBriiel-Gabrielsson et al., A Topology Layer for Machine Learning,
AISTATS2020: deformation of point clouds, topological generative models
EMoor et al., Topological Autoencoders, ICML2020: Topology-preserving AE

17/26

Parametrized filtrations and PDs

Recall: A filtration of a simplicial complex K
—avectorfERFstoct=f, <f,

Fity ={feER¥ loct=f, < f;}
A parametrized filtration: a function F: A - Filtg, where A c R?
WRips filtration  F:(RY)Y - RI®N, F,(x) = 1/, max; jesllx; — ;|

EParameters in ML f;: RY —» R? (8 € 0), P c R%: finite subset
F:0 - RN, F (8) = Y/ymax; jes||fo(x:) — fa()|

The PD is a vector in R¥!: (py, ..., ppm, €1, ..., €), D; € R%,e; ER
= The assignment is viewed as Pers: Filty — R'¥| persistence map

Pers o F: A - R/¥| parametrized PD
18/26
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Optimization of PH-based functions

EmQ, How can we optimize PH-based loss functions?

mA. Usually just apply gradient descent
HFor a differentiable function £: A —» R, A c R4, update the parameter by
Xppy = X — @ VL(xg),
where ay is the learning rate at step k
mToy example: optimize a point set to maximize “# of loops”
WFor the 1st PD D, (P), consider

LR)==) lp-m@lE +a®.C).
PED,(P)

where 7, is the proj

ction to the diagonal and C is the square

Optimize with £

19/26

Differentiability of persistence map

mHow to compute PDs from filtrations?
Death time

0 ; ! @ Loops
Ko LA
A L] | 8irth time

1. Find the pairs of birth and death ﬂmpllces (a,,‘ "dz) (comblnatonal)

eg. \ birth : death
2. Associate the filtration value to each pair {(F(a'b[),F(odl))}
i
eq.(12)

WF is smoothly parametrized => can consider x + [(V,F(a,,‘), V,F(ad‘))}‘
i
in the area where the order of simplices does not change

PH-based functions and subdifferential

Function of PDs: a permutation invariant function E: R¥! > R
E(pa(l). ,pa(m),ep(l), weey ep(n)) = E(pl, vy Ppr €15 ey eﬂ)
EDistance between PDs, '
WPersistence landscape,
HPersistence image, ...

If F and E are in a good class, then so is £ = E o Pers o F: A - R and
it is differentiable a.e.
=> can define the subdifferential

dL(z) = Conv {;:_xpz VL(z;) : L is differentiable at z;

Figures from GUDHI Library webpage
21/26
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Convergence of PH-based functions

We can apply stochastic (sub)gradient descent to optimize
PH-based loss functions using automatic differentiation

data : m @——»ﬁ; ——> £: loss function
N/ Y /

[ [

BHowever, there was no guarantee of convergence
Carriére, Chazal, Glisse, I., Kannan, and Umeda,
Optimizing persistent homology based functions, ICML2021

EmProved the almost surely convergence of stochastic subgradient
descent for a wide class of PH-based loss functions
WThe class includes almost all the PH-based functions in the literature

Convergence result

BTheorem K simplicial compex, F: 4 — R/¥ parametrized family of filtration,
E:RI¥l - R function of PDs, L = EoPerso F:A = R
Assume that F and E are in a good class (definable) and £ is locally Lipschitz.

Consider the sequence obtained by
Xpsy = X — (Ve + &) Vi € 0L(xy).
where ay: learning rate and &: random variable s.t.
1 @20, Tpar=00,Faf <ow;
2. st;p"xk" < oo almost surely;
3. For Fy = a(x;.y;.§;.j < k), there exists a function p: R% - R thatis
bounded on any bounded set s.t. for any k almost surely
E[&IF) = 0. E[l&PIF] < plxi)-
Then (x;); converges to a critical point of £ almost surely.

cf. Davis et al., Stochastic subgradient method converges on tame functions, 2020
23/26

Applications: Filtration learning

Learn filtrations to give PDs for a classification task
BMConsider the toy task to classify the MNIST images with Oth PDs + RF
WFor a linear function f to some direction, consider

) = ZEy,=y,=z a (Dot 12,2001 £))
T Zy=id (Do(li:f), Do(lj;f))
Optimize L(f) to find the best direction.

Baseline | Before  After  Difference  Dataset | Buselioe | Before  After  Difference
0 71 3

} )
T TR BT RS 1o WS W2 A6
994 988 972 16 2.1 W8 %68 oo
L L5 %4 | 8§73 982 +109 9.1 96 W6 478
994 | 868 981  +1IS 998 | %4 w1 A3

9.1 w913 83 99.7 B3 w3 ol

96 S48 9KD  s132 989 ®o s 26

. N
w4 987 9RT on 99.7 ws 92 +47
vs2% 94 806 972 +166 vs19 99.1 8531 %9 +115

Classification accuracy before and after filter optimization 2426
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Applications: Graph Filtration Learning

Hofer et al., Graph Filtration Learning, ICML2020

HLearn a filter function of graphs end-to-end
HRecall that a function on vertices gives a filtration of a graph

1 z|o ° ®
o
|

c c c

1
1 2 3 4

WVectorization of the resulting PDs is used for classification

WParametrized vertex filter function can be implemented by GNN and
learned thanks to the differentiability and the convergence result

25/26

Summary

1. Persistent Homology and Applications
®Extract “topology” of data as persistence diagrams (PDs)
®We can use PD as input of machine learning (ML)
®Applications: material science, graph classification, ...

s,‘?':ﬁ" N [, . o
2. PH-based Loss Functions L o

®Many attempts to combine PH and ML

®prroved the convergence of SSGD for a PH-based loss functions

®Developing thanks to differentiability of PDs Optimize
® Filtration Leaning, Topologically Regularized Embeddings, ... 3

Thank you for your attention! 26726
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Exotic shapes of nano-spherical structures - new
DNA coding

Stanislaw Janeczko

Center for Advanced Studies,
Warsaw University of Technology, Poland

(joint work with Hassan Babiker)

The simplest naturally ordered tetrahedral packing consists of an ordered sequence of
regular tetrahedra glued together face to face as with the linear packing of a tetrahedral
helix.Such tetrahedral structures are called tetrahedral chains.

Any tetrahedral chain consists of the three types of simplest configurations of four
consecutive tetrahedra called tetrahedral units. Two of these types are left and right
tetrahedral short spirals, U, D, and the third type, F| is a flat configuration of four
tetrahedra. The structure of a tetrahedral chain in D, F, U elementary units is written
as a word like UUDFUD....

The three strands of the left or right oriented tetrahedral helix form a spiral with
irrational slope. This is the reason for the effective density of tetrahedral chains and
nonexistence of closed tetrahedral chains in Euclidean space.

Let us assume that the gluing process of tetrahedra is ordered along a chain and each
step of this process is realized by reflection in a particular face of adjacent tetrahedron.
To each tetrahedron we assign four reflections R;,7 = 1,...,4, in the configurational
three dimensional space V. Reflections R; in V' are represented by four corresponding
reflect-morphisms R;,i = 1,...,4, acting in the space of regular tetrahedra 7 through
a reflectional transformation of their vertices. In V,dim V' = n, any tetrahedral chain
of length n + 1 is uniquely represented by an initial tetrahedron T" and an ordered
sequence of n reflect-morphisms

Ri17"'7Rin7 ik%ik-ﬁ-hk:lv"'an_]-'

The fact that a tetrahedral chain is so rigid in 3-space and regular tetrahedra can not
tile the space gives rise to several questions. The main question we consider is the
recognition of combinatorial and algebraic structures of tetrahedral chains. We want
to investigate their geometric properties and determine what kind of information is
contained in the chain invariants of orthogonal transformations and re-numberings. We
use the parametrization of the chains by sequences of ordered reflections in barycentric
coordinates and find their combinatorial structure. Periodicity along a chain is based on
the structure of sequences of admissible triplets of integers and their cycling properties.
The corresponding numerical invariants and an indexing role of a binary tetrahedral
group defines the complete coding properties in dimension three.
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Exotic shapes of nano-spherical
structures - new DNA coding

Stanislaw Janeczko

Faculty of Mathematics and Information Sciences, Warsaw University of Technology

Workshop on Mathematics for Industry
Kyushu - Warsaw 25-29 September 2023

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 1

Sphere packings

- Square packing, face-centered cubic packing

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 2

- Barrow boy’s packing, cell is a rhombic dodecahe-

dron
CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 3
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- Hexagonal packing, the third layer sits exactly above
the first layer.

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 4

Sphere packing

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 5

Sphere packing

distorsions

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 6

195




Sphere packing

(1

‘

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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Tetrahedral chains

H. Steinhaus, 1957; J.H. Mason, 1972

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 10

Tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 11

Tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 12
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Almost closed tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 13

Dual tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 14

Tetrahedra in barycentric coordinates

T= {p17p27p37p4}7 {(S17p1)7 C) (S47p4)}
T—regular tetrahedra, || p;—p; |=|l pr—p1 Il,7 # 4,k #1
TCcVeU*, U=R*

V - configurational affine space, dimV = 3
U - barycentric coordinates (aq,...,aq) € U
H = {Ele a; = 1} - canonical affine hyperplane

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 15
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TeT,T=x}1p®e

Barycentric coordinate map T: H — V:
T(a) =i p; ®ef(a) =f g aip;,

a =73}, ae; € H, and geometrically

T =T(H N {o; > 0})

F .V — V affine mapping.

F' lifts to a linear mapping
M (U H)— (U H)

preserving the hyperplane H

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko

16

M is defined uniquely by the commuting diagram
T(M(e)) = F(T(e))

F(p;) = zj}zl ajp; in barycentric coordinates a;.
Then

4 4 ., 4 4 . 4 o
Y Y ajipi®e; = Y pid( X ajief) = 3 pj@M*(e]).
1 =1 =1 =1

i=1j=

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko

17

Generation of tetrahedral chain

s; center of S, s; = 2(S4_ 1 pj — pi)

Four orthogonal reflections by S;

(p — s4lsi — pi) (

i — Pi)
(si—pilsi—pi) " "

Ri(p)=p—-2

1 .
Ri(pj):pj"l‘z‘sij(g Ypp—pj) j=1,...,4
b

{T(D}1_, tetrahedral chain

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko
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7 = T,

1 —_
™™ = .1,
2 5 . .
Ti(lig = Rj,Ry T, 117 i2,
,Tl(fgln = Rin“‘RiQRilTv ik—l—l ;& ik,k‘ = 1,...,7’L— 1.

R;: T — T twist morphisms, defined by R;.

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko

Representation in barycentric coordinates
R :T—T, R(weu")=veMu*

T T
-13%%3% 1000
2 2 2
0 100 2-12%2
My = Mp=|3 "33
0 010 0010
0 001 0001
T T
1000 100 0
01 00 010 0
Mz=1|2 2 2 | »Ma=
22142 001 0
222
00 0 1 22321
CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 20

Ri is represented by transpose of M;
EXAMPLE

Ri(SY p @)= 5 pWiger
1(,21pz®ez) ,lez ®ef,
1= 1=

where

(1)1 2 2 2

D> | 0 100]]|p2

pgl)l 0 010]|p3]’

1
pg )1 0 001)\pa
M) _p >
Tlen =R;,...R;T.

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 21
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Coding in triplets of consecutive steps

&Y = R
Tlg;+2) — RijT(r)

U,D,F: TS = RiR;R 1™

!

703, det(2,41, 240, 2p43) =0

U : T(T+3); d6t($r+17$r—|—27$r—|—3) >0
D T(T+3); det(xT+1,mr+2,xr+3) <0

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 23

Shape orientation

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 24

Basic units

Tetrahedral chains: DDUF ... UDFFD.

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 25
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Combinatorial codes for U, D, F
Admissible triplets parametrizing U D F:

(k,i,5),1 <45,k <4, k#Fj#i

EXAMPLE
UUDFD

(3,4,2) = (4,2,1) > (2,1,4) —» (1,4,1) — (4,1,3).

7
188 413 = RaRy B4Ry RyRaRsT

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 26

JyuyuvvuvvuvvurFFUUUUUUvvuvuvuFUFUUUUUUUUUUFFUUUUUUUUUUFF

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 27

JyuyuvvuvvuuuFFUUUUUUUUUUFUFUUUUUUUUUUFFUUUUUUUUUUFFE

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 28
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Classification of admissible triplets

u d f
det(xy, 20, 73) = 32v/3/243 | det(x1, w0, 23) = —321/3/243 | det(z1,22,73) =0
(k,j,1) (k,j,1) (k,j,1)
(3,2,1) (4,2,1) (1,2,1)
(4,3,1) (2,3,1) (1,3,1)
(2,4,1) (3,4,1) (1,4,1)
(4,1,2) (3,1,2) (2,1,2)
(1,3,2) (4,3,2) (2,3,2)
(3,4,2) (1,4,2) (2,4,2)
(2,1,3) (4,1,3) (3,1,3)
(4,2,3) (1,2,3) (3,2,3)
(1,4,3) (2,4,3) (3,4,3)
(3,1,4) (2,1,4) (4,1,4)
(1,2,4) (3,2,4) (4,2,4)
(2,3,4) (1,3,4) (4,3,4)

CAS-MINI Warsaw 25 - 29 September 2023,

Stanistaw Janeczko

29

U-chains period

(3,2,1) > (2,1,4) —» (1,4,3) — (4,3,2)

(4,3,1) - (3,1,2) —+ (1,2,4) — (2,4,3)

(2,4,1) - (4,1,3) =+ (1,3,2) = (3,2,4)

(3,4,2) - (4,2,1) —» (2,1,3) — (1,3,4)

(4,1,2) - (1,2,3) =+ (2,3,4) — (3,4,1)

(4,2,3) — (2,3,1) - (3,1,4) — (1,4,2)

(1,4,3) = (4,3,2) = (3,2,1) = (2,1,4)

(1,2,4) - (2,4,3) —» (4,3,1) =+ (3,1,2)

(1,3,2) - (3,2,4) —» (2,4,1) — (4,1,3)

(2,1,3) —» (1,3,4) = (3,4,2) = (4,2,1)

(2,3,4) —» (3,4,1) » (4,1,2) —» (1,2,3)

(3,1,4) - (1,4,2) — (4,2,3) =+ (2,3,1)

CAS-MINI Warsaw 25 - 29 September 2023,

Stanistaw Janeczko

30

D-chains period

(2,1,4) - (1,4,3) = (4,3,2) =+ (3,2,1)

(3,1,2) - (1,2,4) —» (2,4,3) — (4,3,1)

(4,1,3) > (1,3,2) =+ (3,2,4) — (2,4, 1)

(4,2,1) - (2,1,3) —» (1,3,4) = (3,4,2)

(1,2,3) -+ (2,3,4) —» (3,4,1) — (4,1,2)

(2,3,1) > (3,1,4) —» (1,4,2) — (4,2,3)

(4,3,2) -+ (3,2,1) » (2,1,4) — (1,4,3)

(2,4,3) - (4,3,1) =+ (3,1,2) = (1,2,4)

(3,2,4) - (2,4,1) —» (4,1,3) —» (1,3,2)

(1,3,4) - (3,4,2) » (4,2,1) =+ (2,1,3)

(3,4,1) —» (4,1,2) —» (1,2,3) — (2,3,4)

(1,4,2) = (4,2,3) » (2,3,1) » (3,1,4)

CAS-MINI Warsaw 25 - 29 September 2023,

Stanistaw Janeczko
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Combinatorial structure

I={(c,8) € Ax A:a# B}
A ={1,2,3,4}
Uniquely defined mappings
Lu,Lg, Ly 1= A, #I=12
and bijections
Loy, Lg, Lp:T—1,

£*(i177f'2) = (i27L*(i17i2))7 * =u,d, f.

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 32

L - sequence for tetrahedral chain

Example
DUUFD — ﬁdﬁfﬁuﬁdﬁd

Any periodic tetrahedral chain is characterized by
cycling composition of a numerical representation of

its period

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 33

Compositions of Li—sequences form the indexing
space for tetrahedral chains

The indexing space is a binary tetrahedral subgroup
of S1o

generated by three elements Ly, Ly, Ef with the

relations

L£3=id, L3=id, LF=1id, (Luly)?=1id.

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 35
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Geometric characteristics
-proper tetrahedral chains

n [3|/4]5/6|7| 8 9 10 11

12 13

An||1]3]9]26|76|218|628|1802|5146

14670 | 41734

-branching order 0 < b <3
-vertex order P(p), Cpevg, P(p) =4n
-clustering function

Cl(Cp) = Y. maxz(0,P(p) —4)
PEVEy,

CAS-MINI Warsaw 25 - 29 September 2023,

Stanistaw Janeczko

36

Tetrahelix

CAS-MINI Warsaw 25 - 29 September 2023,

Stanistaw Janeczko
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Zero branching order

CAS-MINI Warsaw 25 - 29 September 2023,

Stanistaw Janeczko
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Proper chains sharing one common vertex

b\n [4]5]6] 7 [8]9]10] 11 12 13 14 15 16 17 18 |19 |20
1 ojojojJo O 1 2 6 9 19 38 | 49 | 69 79 | 71 34| 6

2 0|0 |14 |6 |10|24] 46 78 | 113137 [ 153|132 | 85 | 36 6 0

3 2|4|6] 9 |16 |27 |38 48 55 56 50 35 | 22 12 2 0 0
total [2]4[7]13[22 38|64 | 100 | 142|188 | 225|237 | 223 | 176|109 |40 ]| 6
CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 39

Ico-clusters

FFUFFDUDUDFFUFFDU,FFUFFDUDUDUDFFU,
UFFDFFUDUDUFFDFFU UFFDUDFFUFFDUDF
UDFFUFFDUDFFUFFDU,UDFFUFFDUDUDFFU

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 40

9O

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 41

206



33
&

/

AR

N

f—

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 42

Smallest unit b=1

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 43
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Clustering folding

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 45
Clustering folding

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 46
Big periodic

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko a7
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Mixed clustering folding

H. Babiker, S. Janeczko, Combinatorial representation of tetrahedral
chains, Communications in Information and Sciences, Vol. 15, No. 3, (2015),

331-359

Stanistaw Janeczko 48

CAS-MINI Warsaw 25 - 29 September 2023,

Nano-blood particles

Furnace

- Exhaust
Low temp High temp
process procoss
(200%) (600°C)
Ultrasonic
nebulizer Precursor

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 49
Spray technology
Silica Porous particle
particle
i
PSL o
Evaporating
Low temp. zone High temp. zone
. Silica parficle (Negative zeta potential)
PSL (Positive zeta potential) Hollow particle.
Low temp. zone High temp. zone
Stanistaw Janeczko 50
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Silica particles

Sample [a] [b] [c] d ] e}

n one two three four five
Silica oD
particle - L,Q)

Model :
el 9

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 51
Large silica particles
n=13 n>14
CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 52
Porous particles
Sample
Aggregated
large silica
particle
Model
b}
particle
CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 53
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Stable porous particles

a) one b) two c) three

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 54

Porous particles

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 55

Hollow particles

S.Y. Lee, L. Gradon, S. Janeczko, F. Iskandar, K. Okuyama, Formation
of Highly Ordered Nanostructures by drying Micrometer Colloidal
Droplets, ACS Nano Journal, Vol. 4, No. 8, (2010), 4717-4724

L. Gradon, S. Janeczko, M. Abdullah, F. Iskandar, K. Okuyama, Self-
Organization Kinetics of Mesoporous Nanostructured Particles, AIChE
Journal Vol. 50, No. 10, (2004), 2583-2593.

CAS-MINI Warsaw 25 - 29 September 2023, Stanistaw Janeczko 56
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1
FFUFFDUDUDUDFFUFF

FFUFFDUDUDFFUFFDU{ G, T} } GTGTCTCGT
1t

Ceometrical rn(lmg of DNA sequences

\CACTCTACTACTATACAC
FFUFFDU \TATGTGATGATGAGATAT
FFUFFDUDUDUDFFUF]

FFUFFDUDUDUDFF
FFUFFDUDUDUDFFUFF {
FFUFFDUDUDUDFFUFF{ G.A
FFUFFDUDUDUDFFUFF.{ G,
(FFUPFDUDUDUDFFUFF,( G

GAGATATGATGATGTGAGA

1Y

S8

}

} GCGCACAGCAGCAGAGCGC
} GTGTCICGTCGTCRCGTCT
+

}
%

FFUFFDUDUDFFUFFDU { A
FFUFFDUDUDFFUFFDU { A
EFUFEDUDUDFFUFFDU(C
FFUFFDI UF ACTACTCTATACT
FRUPFDUDUDFFURFDU .G} CGCGTETOGTCO00TE
FEUFEDUDUDFEVEEDU | TA) ) IXTACACTACTATACACTA
FUFEDUDUDE! } TCTCGCGTCGTCTCGCG
FRURFDUDUDFFUFFDU ( 10) | TGTGACATGATGTGAGATG
FFUFFDUDL umnm {GA} ) GAGATATGATGAGATATGA
EFUFFDUDUDFEUFFDU.{ G0} | GCGOACAG CAGC
TGTCTCGT

CAGAGCAGCACAGAGCA

AGCGC

UDFFUFEDUDUDFEUEE { AC) | ACTATACACTACTATACAC
UDFFUFFDUDUDFFUFF.{ AT} } ATGAGATATGATGAGATAT
U DUDUDFRUEF | &G} | AGCACAGAGCAGCACAGAG

UDFFUFFDUDUDFFUFF { C.A} ) G

UDFUFFDUDUDEFUEE{ T} } CTACACTCTACTACACTCT
STCTCGCGTCGTCTCGOG

b TACTOTATAGTACT

)) TOGTGTCTCGTCGTGTCTC

G} } TGATATGTG

UDFFUFFDUDUDFFUFF{ C

UDFFUFFDUDUDFFUFF

UDFFUFFDUDUDFFUFF.
UFFDUDUDF!
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Geometrical coding of DNA sequences
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The Nucleotides of DNA
L
Ry W e
RS o SR
"

O e A wﬂ e 14,
G & e Lk & ox
Adenine Guanosine Thymine Cytosine

Purines Pyrimidines
Adenine, T = Thymine, C = Cytosine, G = Guanine
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How to measure data diversity and why it is
important?

Pawel Joziak

Faculty of Mathematics and Computer Science,
Warsaw University of Technology, Poland

In Machine Learning we often hear about patterns that algorithms overfit to. To
prevent it, a high quality data, a bunch of data that is curated needs to be prepared.
I will discuss what tools are available, other than manual labor, in order to tell whether
the dataset is diverse, and how we used the knowledge gained through it in order to pre-
pare a highly diverse (and thus highly challenging) Document Understanding Dataset
and FEvaluation (DUDE) in the domain of DocumentAl, a field at the boundary of
Natural Language Processing and Computer Vision. Joint work with Jordy Van Lan-
deghem, Rubén Tito, Lukasz Borchmann, Michal Pietruszka, Rafal Powalski, Dawid
Jurkiewicz, Mickaél Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko,
Sien Moens, Tomasz Stanistawek.
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[1] Jordy Van Landeghem, Rubén Tito, Lukasz Borchmann, Michal Pietruszka, Rafal Powalski,
Dawid Jurkiewicz, Mickaél Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko,
Sien Moens, Tomasz Stanistawek. Document Understanding Dataset and Evaluation (DUDE).
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp.
19528-19540
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Data in Computer Vision

Images have natural representation as quaternionic matrices (CMYK) of

width x height size.

@ Pros: naturality, robust representation.

o Cons: uneven & possibly hight dimensionality.
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Data in Computer Vision

Images have natural representation as quaternionic matrices (CMYK) of

width x height size.

@ Pros: naturality, robust representation.

o Cons: uneven & possibly hight dimensionality.
Scale images to standarized sizes, apply Rol-pooling.

@ uniform dimensionality,

o dimensionality reduction, but makes method prone to small
perturbations.

VGG16 D s
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Data in Natural Language Processing

One-dimensional chain of tokens (words).

o Term frequency Inverse document frequency.
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Data in Natural Language Processing

One-dimensional chain of tokens (words).

o Term frequency Inverse document frequency.
o Contextual embeddings (Word2Vec, Glove)

Dimensionality
reduction of

B
e

from 7Dt 20
—_—

vowses - [oa sl or Fooos [

3
men (08 2[00 05 [ [0[]
e
=
woman ~[57[o2 [o> [ [or Foslon] o
o5,

[ Eo [ o o]
aueen -5 FouTox Fas[os [

houses|
°

cgtk_
Qlitten

[ J
dog

woman

man queen

) —

Word Word

reduction

Pawet

of word
embeddings in 2D

On data diversity measures.

it

Data in Document Understanding

On data diversity measures.

On data diversity measures.

216
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Simpson diversity measure

o Let m: 219 5 [0,1] be a probability distribution on
[d]={1,2,...,d}.
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Simpson diversity measure
o Let m: 2191 5 [0,1] be a probability distribution on
[d]={1,2,....d}.
o Denote \ = Zi—’:l 7(i)? € [%,1] the Fisher concetration.

@ Let x1,...,xy is a sample drawn from 7 and let
nj=[{j € N[ x =i}
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Simpson diversity measure
o Let 7: 2[4 — [0,1] be a probability distribution on
[d1={1,2,...,d}.
o Denote \ = Z;j:l 7(i)? € [%,1] the Fisher concetration.
@ Let x1,...,xy is a sample drawn from 7 and let
nj=[{j €[N [ x =i}
iy mi(ni—1)

= W is an unbiased estimator of A.

>
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Simpson diversity measure
o Let 7: 2[4 — [0,1] be a probability distribution on
[d1={1,2,...,d}.
o Denote \ = Z;j:l 7(i)? € [%,1] the Fisher concetration.

@ Let x1,...,xy is a sample drawn from 7 and let
nj=[{j €[N [ x =i}
5 Siani(n—1)

is an unbiased estimator of A.

N(N -1)
o If now N is random, the above still holds under factorization
assumption
N!
P(ni,m,...,ng) = P(N)———————n(1)"x(2)™ ... 7 (d)"
nilna! ... ng!
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Simpson diversity measure

o Let 7: 2[4 — [0,1] be a probability distribution on
[d1={1,2,...,d}.
Denote A = Z;j:l 7(i)? € [%,1] the Fisher concetration.

@ Let x1,...,xy is a sample drawn from 7 and let
nj=[{j €[N [ x =i}
5 Siani(n—1)

is an unbiased estimator of A.

N(N -1)
o If now N is random, the above still holds under factorization
assumption
P(n1, n ng) = P(N)Lﬁ(l)"lw@)"2 w(d)™
1,025 d) = n'nol. .. ng!
4 9
o Var(}) = N(; 7(i)® = X2) + O(N72)
i=
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PAMI places 1

o Consider (X, X, P) and an embedding function f: X — RY; by abuse
of notation: P = f, o P.
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o Consider (X, X, P) and an embedding function f: X — RY; by abuse
of notation: P = f, o P.

® The sizes n; = |{i : x; = j}| no longer makes sense — we can still ask
if x and x’ look similar (wrt to some similarity function d).
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PAMI places 1

o Consider (X, X, P) and an embedding function f: X — RY; by abuse
of notation: P = f, o P.

® The sizes n; = |{i : x; = j}| no longer makes sense — we can still ask
if x and x’ look similar (wrt to some similarity function d).

o E.g. we can ask if x and x’ look similar, or at least: whether (x, x")
look more similar than (y,y’).

Relative diversity

Diversity of set X relative to set Y:
Divy(X) =1 - P(d(x,x') < d(y,y))
for a similarity function d: (X U Y)2 — (0, ), with x,x’ € X and

y,y €Y.
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PAMI places 2

Diversity of set X relative to set Y:
Divy (X) = 1 - B(d(x,x) < d(y,y"))

for a similarity fn d: (X U Y)2 — (0, 00), with x,x’ € X and y,y’ € Y.
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PAMI places 2

Diversity of set X relative to set Y:
Divy(X) =1 - P(d(x,x") < d(y,y"))
for a similarity fn d: (X U Y)2 — (0, 00), with x,x' € X and y,y’ € Y.

Fisher concentration

d

For 7: 219l — [0, 1] probability distribution define A = ZTF(I)Z € [E, 1]
i=1
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PAMI places 2

Diversity of set X relative to set Y:
Divy(X) =1 - P(d(x,x") < d(y,y"))
for a similarity fn d: (X U Y)2 — (0, 00), with x,x' € X and y,y’ € Y.

Fisher concentration

d
) 1
For m: 2191 — [0, 1] probability distribution define A =" (i) € (5.1
i=1
Let X = Y =[n] and py = d1. Then
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PAMI places 2

Diversity of set X relative to set Y:
Divy(X) =1 - P(d(x,x") < d(y,y"))
for a similarity fn d: (X U Y)2 — (0, 00), with x,x' € X and y,y’ € Y.

Fisher concentration

d
For m: 2191 — [0, 1] probability distribution define A =" (i) € [%, 1]
i=1
Let X = Y =[n] and py = d1. Then
Dx(Y)=1-P(d(y,y") < d(x,x"))

=1-P(x#x)=Px=x)=> px(x)? = Ax.

Pawet Jéziak (MiNI PW, Snowflake) On data diversity measures. Warsaw, 26 1X 2023 10/18

222



PAMI places 3

Relative diversity

Diversity of set X relative to set Y:
Divy(X) =1 - P(d(x,x) < d(y,y))

for a similarity fn d: (X U Y)2 — (0, 00), with x,x' € X and y,y’ € Y.
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PAMI places 3

Relative diversity

Diversity of set X relative to set Y:
Divy(X) = 1-P(d(x,x) < d(y,y))

for a similarity fn d: (X U Y)2 — (0, 00), with x,x’ € X and y,y’ € Y.

Relative diversity

Diversity of set Xj relative to a family of sets X, ..., X;:

DiVXz,.“,Xn(Xl) =1- ]P’(d(xl,x{) < mjn d(X,',X,{))
2<i<n

for a similarity fn d: (U7_; Xi)? — (0, 00), with x;, x! € X;.
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Embeddings

o Use a learnable representation f : X — RY.
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o calculate the cosine similarity: d(x,x’) =1 — arccos(f(x), f(x)).
@ Use uniform distribution on X, calculation easier than with
push-forward to f(X) as a measure on (discrete subset of ) RY.
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Embeddings
o Use a learnable representation f : X — RY.
o calculate the cosine similarity: d(x,x’) =1 — arccos(f(x), f(x)).

@ Use uniform distribution on X, calculation easier than with
push-forward to f(X) as a measure on (discrete subset of ) RY.

o Calculate

Divx,,. x,(X1) =1— p(d(x1,x) < min d(x;,x))
2<i<n
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Embeddings

o Use a learnable representation f : X — RY.
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Embeddings

o Use a learnable representation f : X — RY.

calculate the cosine similarity: d(x,x’) = 1 — arccos(f(x), f(x')).

@ Use uniform distribution on X, calculation easier than with
push-forward to f(X) as a measure on (discrete subset of ) RY.

o Calculate
Divx,,. x,(X1) =1— p(d(x1,x) < min d(x;,x))
2<i<n

2 2 L0 dieng) (dOaxt)) - Lo i) (d(x1.X0))
_ x1,X{€X1  Xn,XhE€Xn
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Results

Natural candidates for these representations
@ Visual: ResNet, VGG etc Neural Networks

o Textual: Tfldf, word2vec etc statistical vectorization techniques

ResNet | Tfldf

DUDE 0.82 0.95
DocVQA 0.76 0.93
VisualMRC 0.83 0.99
InfographicsVQA 0.86 0.94
TAT-DQA 0.73 0.15

Pawet Jéziak (MiNI PW, Snowflake) On data diversity measures. Warsaw, 26 IX 2023 14/18
Plan of the talk
@ Conclusions
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The dataset is challenging.
Model type || ANSL test score | ANLS diagnostic score
Big Bird 26.27 30.67
BERT-large 25.48 32.18
Longformer 27.14 33.45
T5-base 19.65-41.8 25.62-44.95
ChatGPT - 35.07-41.89
GPT3 - 43.95-47.04
T5-2D-base 37.1-42.1 40.5-45.73
T5-2D-large 46.06 48.14
HiVT5 23.06 22.33
LayoutLMv3 20.31 25.27
Human - 74.76
Pawet Jéziak (MiNI PW, Snowflake) On data diversity measures. Warsaw, 26 IX 2023 16/18
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The dataset is challenging.

Model type || ANSL test score | ANLS diagnostic score
Big Bird 26.27 30.67
BERT-large 25.48 32.18
Longformer 27.14 33.45
T5-base 19.65-41.8 25.62-44.95
ChatGPT - 35.07-41.89
GPT3 - 43.95-47.04
T5-2D-base 37.1-421 40.5-45.73
T5-2D-large 46.06 48.14
HiVT5 23.06 22.33
LayoutLMv3 20.31 25.27
Human - 74.76
Dataset H Human score | best models
DocVQA 98.11 87.05-90.16;
TAT-DQA 84.1 70.3-76.8;
InfographicVQA 97.18 52.58-61.2
VisualMRC - 56-57.2

Pawet Jéziak (MiNI PW, Snowflake)

On data diversity measures.

Warsaw, 26 1X 2023

16/18

References

e E. H. Simpson, Measurement of Diversity, Nature 163,
https://doi.org/10.1038%2F163688a0.

@ B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places: A 10
Million Image Database for Scene Recognition, |EEE Transactions on
Pattern Analysis and Machine Intelligence 40,
https://doi.org/10.1109/tpami.2017.2723009.

o J. Van Landeghem, R. Tito, £. Borchmann, M. Pietruszka, P. Jéziak,
R. Powalski, D. Jurkiewicz, M. Coustaty, B. Ackaert, E. Valveny, M.
Blaschko, S. Moens, T. Stanistawek, Document Understanding
Dataset and Evaluation (DUDE), to appear in: International
Conference on Computer Vision 2023,
https://arxiv.org/abs/2305.08455.

Pawet Jéziak (MiNI PW, Snowflake) On data diversity measures. Warsaw, 26 1X 2023 17/18
Pawet Jéziak (MiNI PW, Snowflake) On data diversity measures. Warsaw, 26 1X 2023 18/18

227







WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Cryptographic protocol verification - results of
EPW project

Konstanty Junosza-Szaniawski

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

Cryptographic protocols are fundamental to cybersecurity, necessitating assurance that
these protocols are devoid of flaws. Among the various tools available for the verifi-
cation of cryptographic protocols, ProVerif stands out. ProVerif models protocols
using Horn formulas and verifies the security properties through the satisfiability of
corresponding logical formulas. However, the complexity of modeling protocols and
their properties in ProVerif is time-consuming and requires a high level of knowledge.
To address this, we have developed a translator from the AnB language, which de-
scribes protocols from a global perspective, to ProVerif syntax. This translator sim-
plifies the modeling process, enabling easy verification of key security properties with
ProVerif, such as secrecy, forward secrecy, weak secrecy, indistinguishability, authenti-
cation, non-replay authentication, and key compromise impersonation. Our translator
is a principal outcome of the project ”Experimental Platform for Automatic Valida-
tion of Crypto Algorithms and Verification of Crypto Protocols” (EPW), funded by
The National Centre for Research and Development under the grant CYBERSECI-
DENT/456962/111/NCBR/2020.
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Cryptographic protocol verification

results of EPW project
Andrukiewicz, Daniel
National i of T icati Poland
Tomasz Brengos, Anna Cichocka, K i i, Adam Komorowski,
Agata Pili Hubert Gr i

Warsaw University of Tech nology. Poland

Supported by The National Centre for Research and Development
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brief presentation

Experimental platfotm for automatic validation of cryptoalgorithms and verification
of cryptop Is (i ym: EPW)

» Project financed under the national program sponsored by National Centre of
Research and Development , Cybersecurity and e-ldentity” (CyberSecldent)
> The Consortium consists of 3 R&D Polish entities:
= National Institute of Telecommunications — State Research Institute (Consortium
Leader)
= NASK - State Research Institute
= Warsaw University of Technology, Mathematics and Information Science Faculty
> timeframe: July 2020 — December 2023

m
\ 1/ e

Experimental Validation
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Formal verification of cryptoalgorithms

Equivalence checking (1)3 epw

Equivalence checking' (EC) for two implementations
means that two implementations return the same
output for every input

> First strategy is to perform tests for a random set of inputs and check if the
outputs are the same
» Main drawback - low assurance of the result.

Equivalence checking (2) epw

Equivalence checking’ (EC) for two implementations
means that two implementations return the same
output for every input

> Second strategy is to use a formal approach.

> In general, computational complexity of formal equivalence checking is the
co-NP class.

» For two implementations the CNF (Conjunctive Normal Form) formulas
Fy(X) = Y, 0raz F,(X) = Y, shall be created.

> Next, ¥y @Y, 7 0 constraints shall be added.

> If SAT-solver returns UNSAT it means two implementations are equivalent.
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Equivalence checking - epw

Example:

Task: Encode
X +X,*+X3+X, = 0 (where + denote addition modulu 2)
as CNR formula.

Solution:
[(~ XN ~ XN ~ X3 )=> ~ X, T A XN~ XN~ X3 ) =>X,] A L

(X VXy VX3V~ X)) A~ Xy VX VX3 VX)) AL

8 clauses with 4 literals

Equivalence checkin “
9 9 - epw
~
Example2:
Task: Encode
X HXtx3tx, =0
Xg#X X5 =0 as CNR formula.

Solution: 8 clauses with 4 literals and 4 clauses with 3 literals

Equivalence checkin “h
9 L J— epW
~
Example2:
Task: Encode
X tXtxztx, =0
X3tX+X5=0 as CNR formula.

Solution: 8 clauses with 4 literals and 4 clauses with 3 literals
Adding second equality to the first one we obtain
X +Xo+ Xxs=0
X3HX +X5=0

What gives us 8 clauses with 3 literals

232



= epw

Formal verification of cryptoprotocols

Example of crypto protocol “n

i
Needham-Schroeder protocol e

pkB(Alice,n1)

epw

R ———
| sk(pkB(alice,n1)) |
pkA(n1,n2)
skA(pkA(n1,n2))

pkB(n2)

J— skB(pkB(n2))

Example of crypto protocol A
4

epw

Needham-Schroeder protocol flaw — ~—

man-in-the middle attack

pkO(Alice,n1) pkB(Alice,n1) Bob
——
pkA(n1,n2) pkA(n1,n2)
— —
pkO(n2)
—_—
pkB(n2)
B —
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Modification: —
Needham-Schroeder-Lowe —— epw
-

kO(Alice,n1
pkO(Alice,n1) pkB(Alice,n1)
—_—
pkA(Bob,n1,n2) pkA(Bob,n1,n2)
— | —
pkO(n2)
""""""""" > pkB(n2)
..................................... >

. . —
ProVerif how does it work
= epw

.
Models the protocol and desired properties as Horn formula:
Let att(x) denote formula saying that an information x is known to the attacker:
» att(x) for every public information x (including information sent on public channel)
» att(f) » att(x) => att(f(x)) for any function f and any argument of f.

e.g. att(pkB)ratt(Alice)ratt(n1) => att(pkB(Alice,n1))

» If by protocol agent receives message x and responds with resp(x) then:

e.g. att(x)=> att(resp(x))

If the above formula » ~ att(s) is UNSAT then s is a secret to the attacker.

epw
Applied Pi-Calculus
in ProVerif
Sophisticated tools
Difficult to understand for non-specialists
|

()
L8]
-~




User-friendly automated epw

formal verification <
platform
» Proverif, Tamarin et. al. are complicated tools, y extensive code

written by expert

» Ongoing work on ISO/IEC 29128 (multipart) will require application of
formal methods in crypto protocol verification

Our aim: to simplify the process of protocol writing with forn yof of «

Ali d Bob | g
ice and Bob language epw

Easy to read and write

Building a formal bridge ; epw

Alice and Bob Applied Pi-calculus
Language In ProVerif




Translator from AnB language
with cryptographic primitives to Proverif’s Pi-calculus

P
Ageat, Peer, Server;
Publickey beyPEER, heySERVER;

Nester WA, AN, AUTN, KBF, KOFINPUT, WAL, M2, RES;
Corst Success;

 Kaselecge:
Server: Sarvar, Poer, WAL, A5, MY, K3, IFINUT, MAC, hoySERMER;
Peer: Server, Feer, NI, M2, keyPEER, BES;

Peer -» Server : ph{kePER)
Server > ear : ph{kefSERIER)

Prer -5 Server < | MAI | gt(keySERVER)

Sever -> bear = { RN, AUTY, $DF, KFINRIT, WC | silkepfecs)
Peec <> Server : | BES, MAQ2 | ph{hepSERVER)

Server -> BoAr : SCoais

2 l:l secret of Server, deer
e eean
— T P — —

comparison

Protocol\Language Alice and Bob

Simple Example 15 40

Needham-Schoeder 18 54

Otway-Rees 21 64
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Practical goals ; epw

Translator from AnB language
with cryptographic primitives to Proverif’s Pi-calculus

Formally verified translator

- epw

F. Montesi “Choreographic Programming”
F. Montesi “Introduction to Choreographies”

Properties verified T—
. - ECpwW

Formally verified* AnB to ProVerif translator with automatic checks:

Secrecy

Forward secrecy

Weak secrecy
Indistinguishability
Authentication

No-replay Authentication

Key Compromise Impersonation

VVVVVYVYY

Automatic formal checks handled by dockerized Proverif, available on our Platform
*wark in progress




Challenges*: — epw

» Formally verifiable translations to other protocol languages

» Extended list of security properties

* currently under consideration

- epw

Thank you

238




WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Synergies of medicine, physics, and mathematics in
medical imaging

Shizuo Kaji
Institute of Mathematics for Industry, Kyushu University, Japan

Medical imaging provides detailed visual representations of internal structures and
functions of the human body and plays a pivotal role in diagnosing, monitoring, and
treating various medical conditions. Mathematical disciplines intersect with medical
imaging in multifaceted ways, encompassing:

e Image reconstruction involves the transformation of raw measurements across
diverse modalities such as computed tomography (CT), magnetic resonance
imaging (MRI), and ultrasound into coherent, human-interpretable images.

e Image enhancement and information Extraction aim at refining image
quality while extracting vital information embedded within.

e Quantitative analysis unveils deeper insight into the heterogeneity and pro-
gression of diseases in an objective and reproducible manner.

We will present some of our collaborative endeavours, bridging the expertise of medical
doctors, medical physicists, and the realm of mathematics. Our work showcases appli-
cations of machine learning and topology that fortify and enrich the field of medical
imaging.
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SYNERGIES OF MEDICINE, PHYSICS,
AND MATHEMATICS IN MEDICAL
IMAGING

) ’ Applied-Applied
Physics Mathematics

Application

ates
Mﬂ tﬁs ﬂni’eﬂr £ M Applied

.. - Maths E
Medicine.  —
—~ ‘Appication

oto U. hospital & U. Tokyo hospital & Kyushu U. IMI

A collaborative project on various aspects of medical imaging

. Ciinical Data .
Nuclear physics Topological Invariants Biomarkers
Inverse problem Machine leaming Simulation

Developing clinically useful methods often leads to theoretically interesting questions ‘

They look locally similar,
but we see a clear difference if we zoom out
£ Manifolds aze locally all Euclidean and inguishes the global topology of them.

) 3
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. A N DL is good at N
Hu'lm.n'ls good at * Precise observation
* Rough estimation * Memorising/imitating examples
¢ Panoramic view * Processing huge data

* Discovering rules/invariance + Accurate operation

from a small number of examples

Background
* DL achieves high performance but has some weakness
* TDA has been proven effective in capturing data

Image Feature Extraction

uionic, [

Convolutional
Neural Network

Attention-based
Neural Network
Topological

Invariants

.Remark Deep Learnmg is REALLY powerful

[mwuxmm]

Normal neutrophil D-um‘ |unuks

oh.h,nd Sci Rep, m
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Remark: DL and TDA are NOT competitors but collaborators

E: Sinkhole d in d ing radar image

8x =

@S&itmﬂw

Difficulty
1 No big data (data acquisition is costly)
2 False Negative (overook) is critical

Pipeline :

~ Filtered complex
2D/3D image l ( -
,T looical _ ﬂ Sequence of
opological invariant topological objects

X
Domain knowledge + “j;-?-"s Results+Interpretation

Machine learning
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Image = Function on a metric space

A eo]ouximageistedbyl
teple of real-valued functions (R,G.B)

We focus on a monochrome image
fX>R (XcR%“'n=23)

Image processing = Operation on functions
image [ 2

h*f(z,y)=//h(m—s,y—t)f(s,t)dsdt..

Topological Image Analysis
Function =¥ Space = “Numbers”

topological space X
function f: X = R

Each threshold value
gives rise to

the sub-level set
{x | fx)<a}
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Function = Space = “Numbers”

For each threshold a, we have a space
X(£a) = {x | fm)<a}

We can compute topological invariants
of X(fa) to obtain image features

Persistent homology (PH)

oExtension of homology defined for
functions over topological spaces

oFor each topological feature(cycle), the
threshold values with which it was bom
and destroyed are recorded

Remark:
We can also view PH as 2 i son™ of

Homology is 2 discrete quantity that is sometimes problematic.
(e, bamalogy can change abraptly with small varistion in the inpat)

Persistent homology (formal definition)

Increasing sequence of spaces 0 C X, C Xy, € -CX; =X

B o

-

PH is by definition the sequence of F,-vector spaces (for each dimension d)
Ha(0) = - = Hy(Xy, ) = Ha(Xe) o - = Ha(Xy, ) & Ha(Xy,) & -+ = Ha(X)

The sequence decomposes into the direct sum of “intervals” having the form

(1) =t e s (1) ety Ty e 0 s Ty et (1) b 00— (1)

which correspond to cycles cepreseated by (1;,t;) € R?
(= generators = topological features)




2D Example

0<t=1 1<t=2 2<t

A cycle of the form (a,b] is represented

PH, = {(0:1]’ (O’w)} (islands) by a point (@, b) € R?

PH, = {(1.2]} (holes)

Software for Persistent Homology computation
for image and volumetric data

= Cubical Ripser (K-Sudo-Ahara, 2021)
© Open-soucce (MIT license), Available at my github reposito y

h tps://g thub com/ hizuo- ji/CubicalRipser 3dim/
© Capable of puting persi h logy of time secies, image, volumetric data
© One of the fastest program for computing persi homology of cubical
© The only program which can handle two major ions of cubical compl
© Python binding that works nicely with Numpy (including DICOM

© Tutorial (run on Google Co ab): google “shizuo TDA tutogial”™

; (| subierlses by sweeping thesbeias | Persistent
2D or3Dimage [ —————— % | oy

PH as a feature
 Input: Function e supavg e | [ Output : Persistence Diagram ]

(finite points in R?)

1D
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We cannot uu:l detludtzﬂ hexe .

@5& e

em Aﬂﬁm mm msm.

@m

Applications
to CT analysis

A

T

=

%1\
ok

R

Summary

o Topology (persistent homology) provides a way to extract image,/vol
features that are not easy to obtain by conventional method

o Global and invariaat f ded by pesisteat homology (PH)
complement those (maialy local) featues obtained by deep leacning (DL)
and can be used in conjunction to boost performance

o PH-based image analysis has some advantages:
o robust and easily transferable (& DL needs re-training)
o interpretable (¢ DL is often a blackbox)

o 3D (¥ many conventional analyses are 2D slice-based)
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Plasticity — Modeling and mathematical analysis

Konrad Kisiel

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

(joint work with Krzysztof Chelminski)

Systems of equations describing an inelastic response of metals, with the fundamental
assumption of small deformations, consist of linear partial differential equations coupled
with nonlinear differential inclusions (or ordinary differential equations) for the vector
of internal variables. The partial differential equations result from general mechanical
laws. The differential inclusions are experimental, and depend on the kind of considered
materials. One of the main assumptions needed in known existence theories is so-called
safe-load condition. This kind of assumption is an indirect assumption on regularity of
data. Our main goal is to present a method to obtaining existence of solutions, where
the safe-load condition can be replaced by an assumption abouth the size of the set of
addmissible stresses.
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Plasticity — Modeling and mathematical Analysis

Krzysztof Chetminski, Konrad Kisiel
Faculty of Mathematics and Information Science

Warsaw University of Technology

Workshop on Mathematics for Industry

Warszawa, 25-20 September, 2023

Table of contents

1. Theory of inelastic deformations - short introduction

2. Elasto-perfect plasticity

3. Safe-load condition

4. Energy estimates without safe-load condition

1. Theory of inelastic deformations - short introduction

Let @ C B3 be a bounded domain with a smooth boundary 99 .
Balance of momentum

pug(z,t) = div, T(z,t)+ F(z,t), puy ~ 0 (quasistatic case)

(u,T): Q x (0,T.) = R x S* - (the displacement vector, the stress tensor)
F:Qx (0,T.) = R® - the given external force, p > 0 — the mass density
Elastic constitutive relation

T(z,t) = D(s(r, t)— EP(r.t))

£ =4(Vu + VTu) - the linearized strain tensor

2 Q% (0,T.) = S® - the plastic strain tensor, D : S* — S° - the elasticity

tensor (symmetric, > 0)
Inelastic constitutive relation

(z,t) € f(:‘(_r‘f),c‘?(r‘t))
f:D(f) C 8% x 8% = P(S%) - a given constitutive multifunction
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Models of premonotone type

Prof. Dr. Dr. h.c. Hans-Dieter Alber in the monograph Materials with memory
LNM 1998 has defined a very large class of models: models of premonotone type.

Definition 1
A model is called of premonotone type if the inelastic constitutive relation is in the
form

el e _(/( - /;V:u'u,'('sa"))

where (e, ") = 1D(e — &7) - (¢ — £?) is the free energy function and

g:D(g) C 8 — P(S?) is a given inelastic multifunction satisfying:
Vze D(g) g(z)-2>0 (%)

If we additionally assume that g(0) 2 0 (%) <> monotonicity at the point 0. All
models used in practice are of premonotone type.

Models of monotone type < g is additionally monotone

4

2. Elasto - perfect plasticity (the Prandtl-Reuss model)
ef(x,t) € KJIK,(T(/I:H) , K=devK x{c-I:ceR}
where devT =T — 1/3(tr T') - I. Moreover, dev K is convex with 0 € int (K) .
Hencky flow rule devK = B(0,k) < VSeK |devS|<k.

deviC

k dev T

Sedlx(T) & (S\,T—7)>0 Vrek
OI(T) is monotone and 0 € dIx(0)

3. Safe-load condition

Definition 2 (quasistatic case)

The given data F, gy satisfy the safe-load condition if there exists g7, such that the
unique solution (u*, T*) of the linear system

div, T*(z,t) = —F(z,1)
T*(z,t) = De(u’(x,1))
uw(x)r, = gpla.t), T (x) n(x)r, = gn(z,t).

have the regularity:
u* € Who(H'), T* € W'*(L?) and there exists § > 0 such that

{T"+0o:|o| <0} € D(g)
and there exist uniformly bounded in L°°(LL?) selections of the sets g(7™* + o).

For the Prandtl-Reuss model with the Hencky flow rule this condition is equivalent
to: there exists § > 0 such that [dev T < & — 4.
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Theorem 1
If the given data satisfy the safe-load condition then the sequences {e/**} , {1} from
a “good enough” approximation are bounded in the space L>°(IL!).

Remark 1
Without any additional geometrical conditions for ¢ the strains are weakly relatively
compact in the space .°°(M) where M is the space containing bounded measures.

Remark 2

C. Johnson in 1976 was the first mathematician, which has formulated the safe-load
condition for the Prandtl-Reuss model. The condition of Johnson is a little bit weaker
as presented in this lecture.

The Johnson safe-load condition for the Prandtl-Reuss model
There exists a stress field S* such that

—divS*=F, S"n=gy and 36 >0 S +B(0,0)C L& |devS|<k—0.

4. Energy estimates without safe-load condition

Let us consider for simplicity the quasistatic Prandtl-Reuss model .

—div, T = F,
T=D(—e",
ey e alx (T),

Our approach is to modify only the inelastic constitutive equation and consider the
following problem

—div, T =F, i
™ D (EA - Sm) ,
pA
et = MM (T,
where M* : S — S denotes the Yosida approximation of the maximal-monotone
operator Ol.

Let us recall the definition of the space LD(S2).

Definition 3
LD (Q) = {u e L' (xR :e(u) e L' (;5%)}
LD (Q) is the Banach space equipped with the standard norm
lullLpy = lullLig) + [l (WllLig -
Theorem 2
Assume that Q C R? is open, bounded and 92 € C''. Then, there exists a bounded
linear operator
y: LD (Q) — L' (0 R?)
such that 7 (u) = wpq for every ¢ € LD ()N C" (Q). Hence
3Cp >0 Yue LD(Q) [y (“)Huum) < Crp |lullLpay-
Moreover, the following embedding theorem holds,

ICpp>0 Yue LD  |ullyeg < Coollullyp)-
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We observed that in order to obtain proper energy estimates it is enough to assume

the admissibility of the Neumann boundary data and the external force, which means

Definition 4 (Admissibility of forces)

We say that in the dynamical case the Neumann boundary data gy is admissible if
Cpllgn ‘LXHLT, Loo(Ty)) < s,

where Cp is a positive constant from the trace theorem in the space LD (2). The
constant C* depends on the maximal monotone inelastic multifunction only (for the
Prandtl-Reuss model with the Hencky flow rule C* is equal to the yield constant k.)

We say that in the quasi-static case the Neumann boundary data gy and the external
force F' are admissible if
(7/5/«/)“1““‘\» (0.7.:1L3(2)) +Crpllgn HL\m.J: Lo(Ty) < c,

where the constant Cgp is from the embedding theorem for the space LD((2) and
the constant C* is the same as in the dynamical case.

10

Theorem 3 Assume that the data are regular enough and boundary data gy is
admissible or in the quasistatic case gy and F' are admissible. Then there exists a
positive constant C, independent of A, such that in the dynamical case

'

A A A pA A A A _pA DA

& (up, et e ‘//5/ -T ,f(u,,,c, & s |lEr
00

L>(Lt) =
where 2 (u), e, eP) = [ (plu}|? + D(e* — eP?) - (* — eP)) da
and in the quasistatic case

£ (e}, e A,/r/sf'A-T*, 5(5 sﬁ’*) «,‘
00

<C.

Loo(Ll) —

~PA
€t

where 2 (£},e) = [, D(e} — &) - (e} — &) dw

Literature used in the lecture

e H.-D. Alber — Materials with memory — Lecture Notes in Math. v. 1682, Springer,
Berlin Heidelberg New York, 1998

o C.Johnson — Existence theorems for plasticity problems — J. M. P. Appl. 1976

e R. Temam — A generalized Norton-Hoff model and the Prandtl-Reuss law of
plasticity — ARMA, 1986

e K. Ch. — Coercive approximation of viscoplasticity and plasticity — Asymptotic
Anal., 2001

o K. K., — Dynamical problems in the theory of inelastic deformations — PhD thesis,
2018

o K. K., K. Ch. — On strong solutions of viscoplasticity without safe-load conditions
- J. Diff. Equ., 2020

o K. K, K. Ch. — Prandtl-Reuss dynamical elasto-perfect plasticity without safe-load
conditions — Nonlinear Analysis TMA, 2020

e K. K, K. Ch. - Quasistatic viscoplasticity without safe load conditions — J. Diff.
Equ., 2021
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Developable surfaces with curved folds and
applications

Miyuki Koiso
Institute of Mathematics for Industry, Kyushu University, Japan

A developable surface is a surface which is isometric to a planar region, that is, there ex-
ists a continuous bijective mapping from the surface to a planar region which preserves
the length of every curve. If the considered surface is smooth, then it is developable
if and only if its Gaussian curvature vanishes everywhere. Moreover, in this case, the
surface can be continuously and isometrically deformed until the planar region. In this
talk, we discuss developable surfaces with curved folds, which are naturally appear
as origami works and have many applications in manufacturing objects. We discuss
intrinsic and extrinsic singular points (such as vertices and points in edges), curvatures
at each singular point, and the existence and nonexistence of continuous isometric de-
formations from such a surface to a planar region. We also discuss applications and
discretization of these objects.
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Developable surfaces with curved folds
and applications®

Miyuki Koiso {Kyushu University, Japan’

Collaborated with:

J. Mitani (information science), T. Homma (architecture),
Y. Yokosuka (architecture), T. Kitahata (physics),

M. Yasumoto (discrete geometry), Y. Jikumaru (geometry)

September 26, 2023, Warsaw University of Technology, Poland

*This work is supported by JST CREST Grant Number JPMJCR1911
and JSPS KAKENHI Grant Number JP20H01801.

Plan of the talk |

We consider oriented piecewise smooth (PW smooth)
surfaces M = ¥; M; in E3. Here M is a 2-dimensional manifold,
each M; is a smooth surface with boundary, and locally the

number of M; is finite.
M/ M
® Developable surfaces D
® A specific class of PW smooth developable Q
surfaces called “pillow boxes”, and a
variational problem for them.

Bend, and
- fold along curves )

A double flat rectangle

A pillow box

® Continuous isometric deformations from pillow boxes to planar
regions

® Application

Developable surfaces

Def. 1. A PW-smooth surface M is said to be
developable if it is isometric to a planar region R (that
is, there exists a continuous bijective mapping F from
M onto R that preserves the length of each curve).

Remark 1. It is well-known that a smooth surface M is
developable if and only if the Gaussian curvature
K (p) of M vanishes at any pointp € M.
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Smooth developable surfaces
(smooth surfaces with 0-Gaussian curvature)

Fact 1. Smooth developable surfaces in E2 are the following:
(1) cylinders, (2) cones, (3) tangent developable surfaces.

2 A xS

cylinder cone tangent developable surface

S nce deve opab e surfaces can be constructed by bend ng
a f at sheet, they are mportant n manufactur ng objects
from sheet meta, cardboard, and p ywood (cons sts of
three or more_ayers of veneer).

A variational problem for developable surfaces
“Find the optimal pillow box ! ”

What is a pillow box?

A double flat rectangle
(topologically, 2-spere §2)
made of paper

Fold
along curves

Pillow box

Def. 2 (Pillow box). A pillow box is a compact PW-smooth surface
without boundary with genus 0 that consists of four parts of
(generalized) cylinders and that is isometric to a double rectangle.

Q: For a given double rectangle, find the pillow box with

7% Q;
A double rectangle

Existence and uniqueness of the optimal pillow box

Theorem 1 (K): For any given double rectangle R(2a, 2b) with
side lengths 2a, 2b (see the picture below) there exists a unique
pillow box M(2a, 2b) (which we call the optimal pillow box) that
encloses the largest volume. It has an explicit representation
using elliptic integrals. It consists of four (generalized) cylinders
(of C®class) of which the base curves (the top and the bottom
half of Iy and two blue curves in the picture below right) are

congruent and they are elastic curves.

R(2a,2b) 2"

Remark 2.

(1) '!i_r’EOM(Za. 2b) =a
right circular cylinder with
radius 2a/m.

(2) ‘}ergo M(2a,2b) = two
parallel rectangles with
width b and infinite length.
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Outline of the proof of Theorem 1 (I) — Step 1—

R(2a,2b) =~ M L
A double = 4
rectangle

Stepl. We observe that, for any pillow box M, the base curves of
the four cylinders of which M consists are all congruent. We denote
one of them by Iy:z = f(x) (—¢c < x < ¢) (see the picture below),
and it is sufficient to study only 1/4 of the pillow box.

b

L ‘V| !
0 T
-a O v a

A rectangle ®Of()  (f@.))  1/4 of a pillow box.

Therefore, our problem becomes a problem for plane curves! |

Outline of the proof of Theorem 1 (2) -— Step 2——

Step2. We consider the following variational problem for plane curves.
For a given surface area, we maximize the enclosed volume of the
pillow box given by a plane curve [):z = f(x) . Using the method of
Lagrange multiplier, we derive the Euler-Lagrange equation for I):z =
£ (x) which gives a critical point of the functional “Area +/.*Volume”.
The result is the following ODE:

3
= 2
A+ =) f-n @
This equation means that the curvature k of [ is a linear function of
the height, which implies that I, is an elastic curve.

~0, ~
- 0w

A rectangle 1/4 of a pillow box.

Outline of the proof of Theorem 1 (3) — Step 3, 4, 5——

Step3. We derive the boundary condition for our ODE:

s 2
a+@ > =E)f-n @
in order that the solution gives a (local) maximum of volume. The
result is: the curve I):z = f(x) must be orthogonal to the xy plane.

Step4. We solve our ODE (1) for the curve Iy:z = f(x) under the
boundary condition that the curve [, is orthogonal to the xy plane.

Step5 (final step). We prove the existence of the (global) maximum of
the volume of pillow boxes for any given double rectangle R(2a, 2b).

1/4 of a pillow box.

256




Representation of the optimal pillow box (1) — base curves—

The base curve I[):z = f(x) of the optimal pillow box is represented as follows.
x= @) +c 0<z<z, (0<x<c)
x=1I(z) ¢ 0Sz<z, ( c<x<0)

where, I,(z) = [ G =d{ > 0,(0<z<b), 2 :=§( , #ul)
1-(w(2-5))

c= Iu(zo) . (< 0)is the curvature of [ at the end points that is determined by
the following.

@)

a=fr—= ®

A rectangle 1/4 of a pillow box.

Representation of the optimal pillow box (11)
—- surface and volume —

Let [):z = f(x) be the base curve of the optimal pillow box given
in the previous slide.

The parts Sy, Sz of the % of the optimal pillow box are represented as

- (4)

S1={(x,f(x),2);—c<x<c,0<z < f(x)}
S ={(xy.f®));—c<x<cf(x)<y<bh)

Hence, the volume V (f) of the optimal pillow box is

v =4[ f@0-f@)ax

o
0, ™~
-a O v a

A rectangle

Continuous isometric (i.e. not expanding,not contracting)
deformation from a planar double rectangle to a pillow box

For application, it is important to obtain the explicit
representation from a planar region to a developable surface.

We can deform the initial double rectangle R to any given pillow
box M which is isometric to R continuously and isometrically.
However, the crease pattern (the red curves in the pictures below)
is changed, which is not good for application.

An isometric deformation from R to M
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Isometric deformation from the single rectangle to 1/2
of the pillow box without changing crease pattern! (1)

The crease T} of a pillow box is represented as (n(s), {(s),{(s)),
(0 < s < L), where s is arc-length parameter of T} . Set

s
o) = [ 1-a+ @ @) as-c
Ce(s) = (9e(5).8(5).8(s)), O0<t<1,
qt(s,7) = Ce(s) + 7+ (0,1,0), 0<7<b—-{(s).
Then, Cy=y1, C1=T}, and g, gives an isometric
deformation from (2, to S, .

€

0, —>

N
0 T
-a Yo

Isometric deformation from the single rectangle to 1/2
of the pillow box without changing crease pattern! (I1)

Next, set p¢(s,7) Ce(s) tB(s),
0<t<1l 0<s<lL, {(s)<t<0,

Where C(s)  (0:(),8(), (), Be(s) (0,5 ).
Then, p, gives an isometric deformation from (1, to S; .
p with g, (in the previous i
page) gives an isometric
deformation from a rectangle| Q2
to 1/4 of the pillow box. Yo

-a v a

By extending the above deformation using the reflection
with respect to the plane {y b}, we obtain an isometric
deformation from a single rectangle to 1/2 of the pillow box.

Future works

® For application, it is important to discuss “good”
discretization of surfaces with curved folds.

® Discuss continuous isometric deformations from a
general developable surface with curved folds to
planar regions.
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Summary

® We gave the definition of developable surfaces.

® We gave the existence, uniqueness, and representation formula
of the optimal pillow box.

® We gave a continuous isometric deformation (concretely) from a
planar region to a pillow box.

® \We mentioned an application to architecture and discretization

in the talk in the workshop. Because this work is in progress, its
details are not included in this article.
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Learning Permutation Symmetry of a Gaussian
Vector

Bartosz Kolodziejek

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

The study of hidden structures in data presents challenges in modern statistics and
machine learning. We introduce a Bayesian model selection approach, which allows to
identify permutation subgroup symmetries in Gaussian vectors. In other words, given a
finite iid sample of a p-dimensional Gaussian vector Z = (Z1, .. ., Zp)T7 we are looking
for a permutation subgroup I' acting on {1,...,p} such that

(Z;)F_ and (Z,;)!_; have the same distributions

for any o € I'. We also find the maximum likelihood estimate of the covariance matrix
in a Gaussian model obeying such symmetry restrictions. The talk is based on [1] and

2].
REFERENCES

[1] Graczyk, P., Ishi, H., Kolodziejek, B. and Massam, H. (2022) Model selection in the space of

Gaussian models invariant by symmetry. Ann. Statist. 50, no. 3, pp. 1747-1774.
[2] Graczyk, P., Ishi, H. and Kolodziejek, B. (2022) Graphical Gaussian models associated to a

homogeneous graph with permutation symmetries, Physical Sciences Forum, 5(1), 20, pp. 1-9.
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Warsaw University of Technology

Workshop on Mathematics for Industry
Warsaw 2023

29.09.2023

Talk is based on

Graczyk, Ishi, K., Massam

Model selection in the space of Gaussian models invariant by symmetry.
Annals of Statistics (2022)

and

Graczyk, Ishi, K.

Graphical Gaussian models associated to a homogeneous graph with
permutation symmetries.

Proceedings of MaxEnt2022 (Physical Sciences Forum (2022))

This is an ongoing project.

R package: gips: Gaussian Model Invariant by Permutation Symmetry
https://cran.r-project.org/package=gips

Chojecki, Morgen, K.
Learning permutation symmetries with gips in R
arXiv:2307.00790

]

@ Colored graphical Gaussian models.

@ Bayesian model selection when the graph is known.
@ Sketch of the main argument.

@ Main theoretical results and main message.

@ Some simulations.
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Gaussian graphical models

o Assume that Z = (Zy, ..., Z,)" follows a Gaussian centered
distribution with covariance matrix .

()

Let K = Y1 be its precision/concentration matrix.

()

Crucial fact: one has for i # j
K,'/' =10) =55 Z; and Z/ given (Zk)k#/‘,j-

o We can define a undirected graph G = (V, E) with V ={1,..., p}
and
{iijte E < Kj#0.

Graph G encodes the conditional independence structure of Z.

()

o Model selection problem: based on a iid sample ZW, .., 70 find
graph G - frequentist (e.g. GLASSO) and Bayesian methods.

o Knowledge about graph G significantly improves the usual estimator
of ¥ and gives a nice interpretation.

()

This is not only a representation of a problem: many algorithms
from graph theory are important in this setting.

Col

d graphical models

()

Colored graphical model is a special type of a graphical model.

()

Apart from the conditional independence structure, symmetry
restrictions are imposed on the concentration or partial correlation
matrices.

@ These symmetries can represented by a colored graph.

Three types of such models (RCON, RCOR, RCOP) were
introduced by Hojsgaard and Lauritzen (JRSSB, 2008) to describe
situations where some entries of concentration or partial correlation
matrices are approximately equal.

()

@ Motivation: Imposing symmetry reduces the number of parameters
to estimate. This is especially useful when parsimony is needed, i.e.
p > n.

Col

d graphical Gaussian models

o Let G = (V, E) be a undirected graph with V ={1,..., p}.
Pe = {K € Sym™(p;R): K; =0 iff i},

Statistical model is {N,(0,K~1): K € Pg}.
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Col

d graphical Gaussian models

o Let G = (V,E) be a undirected graph with V ={1,..., p}.
Pe = {K € Sym™(p;R): K; =0 iff i},

Statistical model is {N,(0,K~1): K € Pg}.

@ For a permutation subgroup I' on V, we define the space of
concentration matrices invariant under I

RCOPG(F) = {K € Pg: K,'j = Kg([)a(j) for all o € F}.
o Clearly, one requires that zeros are preserved, i.e.
i~ = o(i)~o(j) foralloel,

which implies that I C Aut(G).
@ Nice algebraic structure of RCOP and nice interpretation:

Z ~N,(0,%)
T 1eRCOPG(N) = Z2(Z) foralloel.

@ Interpretation: If the distribution of Z is invariant under the
subgroup I and (/,j) € T, then Z; and Z; play a symmetrical role.

o E.g.: some genes may have similar functions or groups of genes may
have similar interactions or regulatory mechanisms.

o Central problem = model selection: given a centered Gaussian iid
sample ZM, ..., Z( find a subgroup I under which the distribution
of Z is most likely (in a Bayesian setting) invariant.

@ There are no other model selection procedures which search among
RCOP models.

@ There is a number of articles dealing with model selection within
RCON models:

o Gehrmann. Symmetry, 2011.

o Gao and Massam. J. Comput. Graph. Statist., 2015.

o Massam, Li and Gao. Biometrika, 2018.

o Li, Gao and Massam. J. Stat. Comput. Simul., 2020.

o Li, Sun, Wang and Gao. Stat. Anal. Data Min., 2021.

o Ranciati, Roverato and Luati. J. R. Stat. Soc. Ser. C. , 2021.
Typically, both the graph G and the coloring C are assumed
unknown.

Methods: both Bayesian and penalized likelihood methods.
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Example (Graphical model)

Vectors Analysis

Algebra

Mechanics Statistics
If K € Pg ={K € Sym"(p;R): K; =0 iff i j}, then

xu1 X1 x31 0 0

X1 X2 X 0 0
K=|x1 X X3 X3 Xs3
0 0 xs3 Xxa4 Xss
0 0 Xx53 Xs4 Xs5

Example (Colored graphical model)

There are 10 subgroups of Aut(G), they correspond to 7 different
colorings.

LetFT=((1 5)(2 4))={id, (1 5)(2 4)}

If K € RCOPg(I) = {K € Ps: Kj = Ko(i)o(j) for all o € T'}, then

a d e 0 O
d b f 0 O
K=]le f ¢ f e
0 0 f b d
0 0 e d a
Vectors Analysis

Bayesian model

Fixed graph G is chordal, i.e. each cycle in G has a chord (there are
no induced cycles of length > 4).

We assume that K = £~! and the subgroup I are random.
Zy,. .., Z, given {K,T} are i.i.d. N,(0, K~1).
I is uniform on (a subfamily of) subgroups of Aut(G).

K| =~ is the Diaconis-Ylvisaker conjugate prior on RCOP¢(7):

1 5— _1 b
fK|r:7(k):WDet(k)( /2 =2 ™M1 6pg () (K).

()

By standard argument, we have the posterior distribution:

10 +nD+Y7 .2 -2Z")
12, D) '
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@ Bayesian paradigm: choose the model with the highest posterior
probability:
1EG+nD+30 727
15(8, D)

[ = arg max
r

o Caution: as we will see, the state space is very big for large p.

@ When p is large, we have to resort to MCMC methods.
We can define a irreducible Markov chain on (a subfamily of)
subgroups of Aut(G).

@ We have to compute Gamma-like integrals over the colored cones:

1
16(3, D) = / Det, (k)72 ¢~ 2 TP M g,
RCOP¢(T)

]

Let G = K3 be the full graph on V = {1,2,3} and let I = ((13)). We

have
a g
RCOP,(IN = B v B :262A+a%y >2a8% + A%y, ay > B2
8 «
and therefore
o [
232 A+02y>2032+ A2y, ay>3?
a B
a B “m|D| B v B
Det®=22| 3 v gle B «
6 «
dadydpd

Such integrals were known only if ' = {id}.

Sketch of the main argum

Let R(0) be a permutation matrix of o € &p,.
R: T — GL(p;R) satisfies

()

R(oo0o’) = R(c) - R(c'), 0,0 €6,

@ In other words, R is a representation of group I'.

@ Observe that for any 0 € G,
1 1
R@)|:]=1:
1 1
o The space Wy = R(1,..., 1)T is a I' invariant subspace for any

subgroup I, that is, Vo €T,
Yw € W R(o)w € W.

o Similarly for Ws- = {x e RP: Y"?_ x; = 0}.
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o Let orthogonal matrix Ur be constructed from a basis of Wy (one
column) and any basis of Wj-. Then,

0
U R(o)Ur = (z *>
@ Define

Zr = {x € Sym(p; R); xj = Xo(iy,0(j) for all o € I'}
={x e Sym(p;R); R(c)-x =x-R(c) foralloc el}.

and recall that RCOPr(G) = P N Zr.
@ Then Ul—TZr Ur coincides with

{y e Sym(pR); [UI R(o)Ur] -y = y - [U] R(o) Ur] } -

o Block decomposition of U R(c)Ur implies block decomposition of
y € Ul:rZr Ur.

of the main a

@ In general, there exist many proper [-invariant subspaces of Wol.
Finding them is a classical problem and is not easy.

o Formally, Zr is the set of symmetric intertwining operators of the
representation (R, RP).
@ This implies the existence of a orthogonal matrix Ur such that
U Zr Ur coincides with
M]Kl(xl)@kl/dl e E———
’ i=12,...,L

,

My, (XL)@kL/dL

where consecutive blocks correspond to irreducible components in a
decomposition of (R, RP).
@ Each block corresponds to a uncolored model.

heoretical results and ain messag

o We have explicit formulas for normalizing constants /& when G is a
decomposable graph.

@ These formulas depend on so-called structure constants.
In principle, we know how to find these constants: "just” find
irreducible representations over reals of I', which is a classical
problem.

However, this is generally computationally impossible for big p.

We therefore identify a good subfamily of subgroups for which we
can find these structure constants efficiently with p-polynomial
complexity.

@ We restrict our search space to models corresponding to that good
subfamily.
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Good subfamily lic subgroups

Cyclic subgroups = groups generated by one permutation.

A distribution is invariant under I if and only if it is invariant under
any cyclic subgroup of I'.

Easy to interpret and seem rich enough.

When G is sparse, then Aut(G) is small and contains mostly cyclic
subgroups.

@ We can use a permutation random walk to travel through cyclic
subgroups: o, = 0,_1 © T, where (7,), are i.i.d. transpositions.

e o

p | #subgroups of 6, #RCOP, () #cyclic groups
1 1 1 1
2 2 2 2
3 6 5 5
4 30 22 17
5 156 93 67
6 1455 739 362
7 11300 4508 2039
18 71018 ? 7-101

he MLE of ¥ in RCOP(

Assume that G is complete:

o We have "“if and only if" condition on n for the MLE to exist.

o Eg:if V={1,...,p}and I =((1,2,..., p)), then the MLE exists
already for n =11

o If the graph is complete, then the MLE (if exists) under RCOPg(I")
model is given by

2 RCoP(r) = 7T (Z) ,

where

o X is the usual empirical covariance matrix,
e 7t is the projection onto the colored matrix space: it averages entries
corresponding to the same color.

@ This results in improved estimation properties.

@ We choose p =10 and n = 20,
o Let X be a symmetric circulant matrix of the form

9876

o We sample 7, ..., Z, from N, (0, Xo).
@ The distribution of Z is invariant under g = ((1,2, ..., p)).

@ We construct a Markov chain on permutations and use it to
travel through cyclic subgroups.

The usual hyperparameters are 6 = 3, D = I,.

We iterate Metropolis-Hastings algorithm 100 000 times.

We do this 100 times to assess variability of the procedure.

268



Tabela: Cyclic subgroups which were chosen by M-H algorithm

generator of a cyclic group #most visited ARI
(1,2,3,4,5,6,7,8,9,10) 25 1.00
(1,3,5,7,9)(2, 4, 6, 810) 13 0.60
(1,2,4,3,5,6, 7,9, 8, 10) 3 0.43
(1,2 ,4,3,5,6,7,8,9, 10) 2 0.46
(1,3,2,4,5,6,8,7,9, 10) 2 0.43
(1,3,5,9 2,6, 8,10, 4, 7) 2 0.43
(1,4,3,52,6,9,8,10,7) 2 0.35
(1, 4,5,7 8)(2,3,6,9, 10) 2 0.24
(1,8, 10, 9)(2, 7)(3, 5, 4, 6) 2 0.19
(1, 2, 10, 3)(4, 9)(5, 8, 6, 7) 2 0.19

o ARI = adjusted Rand index is a similarity measure comparing given
coloring with the true one. ARl€ [—1,1]

o For n = p =10, the results were only slightly worse.

eal data example: p

@ Breast cancer data set: p = 150 genes and n = 58 samples.
o Cardinality of the search space is about 1020,
o We iterate Metropolis-Hastings algorithm 150 000 times.

@ The cyclic subgroup f* with highest estimated posterior probability
(7.1%) is of order 720.

@ We have dim R,COPKP(f) = 844 vs 11325 parameters of
unrestricted model.

@ The MLE for ¥ exists for this model.

The color pattern of the space of p x p matrices from RCOPKp(f).
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Thresholding the partial correlation

Thank you for your attention

Graczyk, Ishi, K., Massam
Model selection in the space of Gaussian models invariant by symmetry.
Annals of Statistics (2022)

Chojecki, Morgen, K.
Learning permutation symmetries with gips in R
arXiv:2307.00790
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Supercoiled structure of DNA and hyperelliptic
functions

Shigeki Matsutani

Institute of Science and Engineering, Kanazawa University, Japan

The geometry of DNA has a helical structure as well as a more global supercoiled
structure. The geometry of this supercoiled structure is dominated by weak elastic
forces, but its geometry has not yet been mathematically described. Geometric models
that minimize its elastic energy, known as elasticae (elastic curves), cannot describe
the shape of DNA, even if three-dimensional effects are considered. Since 1997, the
speaker has been working to mathematically represent this shape by considering finite
temperature effects [1]. It is known from elementary considerations that the shape of
elastic curves under a finite temperature can be described by the hyperelliptic solution
of the modified KdV equation, which is a nonlinear integrable equation, in the two-
dimensional plane, and of the nonlinear Schrodinger equation in the three-dimensional
space. However, Abelian function theory, including hyperelliptic function theory, had
not reached the level where hyperelliptic function solutions could be specifically de-
scribed and concretely treated at all as of 1997. Therefore, the speaker, together with
late Emma Previato since 2003, has restructured the Abelian function theory to the
level of elliptic function theory, and has also developed related theories [2]. With Pre-
viato, he obtained certain shapes in 2022, albeit incomplete [3]. Although incomplete
means that it does not fully satisfy the reality condition, we were able to produce
mathematically shapes that have some features of the supercoiled structure of DNA,
albeit tentatively. This talk will describe the results obtained in 2022 and the process
that led to them.

The speaker has been studied novel devies and materials mathematically in research
and development of devices and materials for 27 years in Canon Inc. The usefulness
of mathematics, including the theory of singularity, in modern society will be briefly
discussed.

REFERENCES

[1] S. Matsutani, Statistical mechanics of elastica on a plane: origin of the MKV hierarchy ,
J. Phys. A: Math. & Gen., 31 (1998) 2705-2725.

[2] S. Matsutani, E. Previato, The Weierstrass sigma function in higher genus and applications to
integrable equations, (in preparation).

[3] S. Matsutani, E. Previato, An algebro-geometric model for the shape of supercoiled DNA Physica
D 430 (2022) 133073
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Supercoiled structure of DNA and
hyperelliptic functions

WORKSHOP on Mathematics for Industry 2023
September 28, (Thursday) 2023 |

Shigeki Matsutani
Kanazawa University

Menu
1. Self Introduction
2. Continuation of Self-Introduction
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new reality by translating the real world into
mathematical language and investigating it.
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Electron emission devices

+ 1. Scatter the conductive part
as a Monte-Carlo computati

problem,
div(y -grad u)=0
numerically,

@conductive particle
[CJhigh resistance matter
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We live in an age in which we can create a
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|

Computational Fluid Dynamics _

Modeling the fluid in the discharge section o@
inkjet printer

2004 M Japan Patent2006-30060

2011 M-Nakano-Shinio

rge section . ) o
*~ Ink-drop Triple phase interface is singular

Triple phases: solid, liquid and gas.
How to model the triple junction?

cas-dron

Watanabe-Shinjo:
BEBRPEE 2012 we regard it as stratification for the modo

4

|

Computational Fluid Dynamics —_

Modeling the fluid in the discharge section o%
inkjet printer

2004 M Japan Patent2006-30060

2011 M-Nakano-Shinjo

*~ Ink-drop oas-drop 4

0} cvic vz

gas- drop
Watanabe-Shinjo: e
BEBREEE 2002 we regard it as stratification for the modeling

Computational Fluid Dynamics —\-—

Observation ! )
'\ ' lid in the discharge section o@
04 M Japan Patent2006-30060
P11 M-Nakano-Shinjo
G/ i up BN EE el Triple phase interface is singular
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Nano-matrials

L

We live in an age in which we can create a
new reality by translating the real world into
mathematical language and investigating it.

Quasi-conf
Conformal

Real World Point Process ( Math World

\_ J

Preparation and Some Properties of a Nanocomposite of
Polyucrylonitrile with Acotylene Black Azjsn Maity and Mukul Biswas
Pelymer Jouwrzal, Vol 36(2004) No.10 pp.812-816

|How ¢o do this?

Nano-matrials

Material design of key components of LBPs
Mathematical modeling using percolation theory.
2015M-Shimosako

How to control the high
resistivity by mixing
conductive carbon
nanoparticles with a high-
resistivity polymer matrix
to preserve its property
for a long time.

300 nm

Preparation and Same Properties of a Nanocomposite of
Polyacrylonitrile with Acetylene Black Agus Maity and Mukul Biswas
Polymer Jourmal Vol 38(2004) No.10 pp.812.816
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Nano-matrials

/Material design of key components of LBPs

Mathematical modeling using percolation theory.
2015M-Shimosako

We live in an age in which we can create a
new reality by translating the real world into
mathematical language and investigating it.

Real World Point Process P Math World

"5 Quasi-conf
Perspectives from industry,
1. Cutting-edge technology
requires cutting-edge mathematics.
2. Some of the mathematics for
technology is so profound.

\_ J L

|How ¢o do this?

3. Supercoiled structure of DNA
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Supercoil in DNA

- Elastica Dt 1%

DNA forms

+double coil structure and
-supercoil structure.

Supercoil structure is
-governed by weak elastic
forces.

*But not an elastic curve

4. Elastic curves
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plane determined by elastic forces.

What is an elastica (elastic curve)"
Elastica is a curve on a (complex)

Z(s)=X(s)+iY(s)
t ¢ ' n

<
B

<

What is an elastica (elastic curve)"
Z : N —C :analytic immersion (1952l =1).
N=S1er=[0,1]

s :arclength z(s) X(s)’lY(S)

2(s)= X(s)+iY(s),
t = asz = e“’.
(@ €C?(NR)) ’

= C0S ¢+ isin¢

k :==3 ¢ ¢: curvature: k = 1,/[curvature

\
What is an elastica (elastic curve)?

Curvature & Frenet-Serret relation
f :=0¢ Z :tangential vector, N:=i Js 7 :normal vector
dst=kn  dsn=-kt (927 =ikdsZ )

k:= Js¢: curvature; £ = 1/[curvature radius].
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\
What is an elastica (elastic curve)?

Curvature & Frenet-Serret relation
t :=0s Z ‘tangential vector, n:=iJsZ :normal vector
dst=kn  dsn=-kt (027 =ikd.Z )

k:= Js¢: curvature: k = 1/[curvature radius].

Elastica Problem (Jacob/Daniel Bernoulli-Euler (1691-1
Determine the shape of the elastic curve
exists on the plane mathematically’

& Find the shape that minimizes the ener

£12] = l) / k(s)?ds | under the iso-arc
-~ ‘\f

\
Infinitesimal isometric deformation

[‘“ﬁm Z.(s:) = Z(s) +ie(s)0:Z
-

0sZ: = (1 — ek(s) +i0s8)0sZ

ds? = dZ.dZ. = (1 — 2ek + O(e?))ds’

—i0s, log 05_ Z.:

ke = k+ (K> + 02)e + O(<?)

—-

Lk?dse = (K + (K* + 2k0?)e + O(£?))ds

\
Infinitesimal isometric deformation

0(2&. —a [y ds:)
de(s)

P
Static modified KdV equation
Lak+%k3+a§.k=0 |

Elastica Problem is to find the shape of the

= k* + 207k + 2ak = 0

urve whose curvature obeys the static
odified KdV equation

It is a prototype of the nonlinear
integrable system,
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Infinitesimal isometric deformati\on

5(2 ds.) ,
(@ —alndse) _ s\ ogeh 4ok =0
65()

P

Cak—i— %k" + 0%k = 0)

.

[(ask;)2 + %l& +ak’+b=0

Infinitesimal isometric deformati\on

Qask;)2 + i/& +ak* +b= (D _

1
x(s) = —d k+ k +ﬁa
y(s) 2—3393
=

Elliptic curve
(VP =@-e)—e)w—e)
/61 = —ia |

6 a*—b=16

1
€2 = Ea+ \/_
€3 = Ea——\/_

a = 2(62+63—261)

K b= — 62—63)

281



\

Elliptic curve

GZ = (z —e1)(z — e2)(z — e3) ]

X,Y are regarded as complex numbers
[ X— X +X'V=1, y— y +y’J=1

\

Meromorphic function
over elliptic curve
=Elliptic function

Elastica is expressed by the elliptic functions!
0sZ(s) = vV —1(p(s +uo) —e1)
Z(s8) =vV—=1—C(s +uo) —e1s) + Zo

Elastica (Elastic curve):
Euler’ s solutions

METHODUS

INVENIENDI
LINEAS CURVAS
Mackes: Msimive propsiens guulea:en,
s$IVE

SOLUTIO

FLOBLEMATIS 1SORERIMETRICI
LATIESING s2¥

.= / X a’dX
) Va' — (a+ BX + 1X?)?
X (a+BX +vX?%)dX

Y =
Va'— (a + BX +1X2)?

dvcTore
LEONHARDO EULERO,
Frafifier Regie, 6 Aeadmis Daperictis Scestion
™ PETR020LITAS S Jain

It is a solution of MKdV equation
from a modern point of view.

NA & GENEVE,
Apad MALCONMICH A LW Bausquas & Suda
UDCCKLLY.

ak+%k3+8fk:0
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Elastica (Elastic curve):

E H C —

\
: b W
LR 1y gy R
Ny )
; Real transcendental curves

3 * g N
?5%¥? ?{ T
.,

Euler’ s sketch by numerical comp. (1744)

990

5. Statistical Mechanics of Elastic Curves

\
Statistical mechanics of elasti

23] = | DZexo(-pe(2))

Mg :={Z:8' = C|Zec¥(ShC),|dZ/ds| =1},
pry i Mgt — M= Mg/ ~, ~ ¢ eulidean move :

The geometric structure of the paramete
space (moduli) of a shape is unknown:

» Find orbits with iso-en
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6. Excited states of elastic curves and the
MKdV equation

Formulation of iso-energetic geo:\ne

/

Z[8] = / Vol(Mpg)e PP dE
0 .

Mg = {Z St C | Analytic, isometric
FE = E[Z]

. £17] = ?{k

» Find orbits with the iso-

Ok + gk28sk + 9%k =0

/Solutnons of the MKdV equation preserve
7] = f k(s)? ds for the time-development

0 1oy o o34 Ly 2).
E‘,/"“)tk ds = /05<8k 2(()5k) )ds

The time t is not physical time but a parameter

in the moduli of the immersion of the curve
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Ok + ngBSk + 9%k =0

/ MKdV equation contains the static MKdV
equation of elastica as t=s.
& It is a natural generalization of elastica

ak—i—%k?’—i—aszo

Y
Statistical mechanics of elasti

Z[8] = /MDZexp(—,Bé’[Z])

Mg :={Z:8'— C|Zec¥(SC),|dZ/ds| =1},
pry : Mgt — M= Mg/ ~, ~ 2 eulidean move :

Find orbits with iso-energy

Find higher-order solutions of the
“ MKdV equation!

Ok + gkzi)sk + k=0

Ok + ngBSk + 9%k =0

1. The MKdV equation has hyperelliptic
function solutions.

2. Due to the higher genus of hyperelliptic
curves (compact Riemann surfaces), the
solutions are expected to express more
complicated (elastic) curves.
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\
Statistical mechanics of elasti

Assign the appropriate topology in the parameter space
of the geometry (moduli),formulate the above integral
in terms of the measures determined from the
Boltzmann weights of the Euler-Bernoulli energy
functional, and perform the integration.

1. Construct hyperelliptic solutions to
the MKdV equation of higher genus.
2. Extract "real"” part of hyperelliptic
Jacobi variety as the moduli of
"real" hyperelliptic curves over C.

M 1997, M-Onishi 2001, M-Previato 2015

\
Statistical mechanics of elasti

Assign the appropriate topology in the parameter space
of the geometry (moduli),formulate the above integral
1. To Construct solutions to the
MKdV equation

If hyperelliptic function theory had the
same level of sophistication and
concreteness as Weierstrass’ elliptic
function theory, this problem would be
solved! but it is not at that level.

Reconstruct the theory of hyperelliptic
(Abelian) functions to have the same level
as the theory of elliptic functions.

The main theme is a reconstruction of
Abelian function theory with E.Previato
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7. MKdV hyperelliptic curve solution for
genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2

\
MKdV solutions of genus two

*Review the genus one case

*Step to genus two

S.M., and Emma Previato,
An algebro-geometric model for the
shape of supercoiled DNA
Physica D, 2022

\

Review the genus one case:
y2 = (r—e1)(z—ex)(T —e3)

@) dao
ds = Rdu uw= / e
o 2y

07 =(x —e1)=e'? |0sZ|=1

g1 e, They satisfy the SMKd
@ D5 + é(ae(b)g + i@f’qﬁ =0
e, A
ak + §k3+ a_fk =0.

287



Review the genus one case:

\
Meromorphic function
over elliptic curve
=Elliptic function

Elastica is expressed by the elliptic functions!
=V —1(p(s + uo) — e1)
Z(s) =vV—1(—C((s +uo) —ei1s) + Zo

[ C(u) = % logo(u),  o(u)=—

Review the genus one case:

y* = (v —e1)(z — e2)(x — e3)

(.y) dr
ds = Rdu U= / —
o 2y

057 =(x —e1)=e'? [0,Z|=1
) = 20 €qpi=€q—€p

s1 e2 k- 2i \4/ €haCea

\‘ a VEba — \/€ca
A du— QA. dyp _
3 1—k?sin” p

\ a=1, b=2,c=3 J

Review the genus one case:

y?> = (x —e1)(x — e2)(x — e3)

@) dy
ds = Rdu uw= / e
00 2y

0sZ = (:L’ - 61) ‘Cb |0 Z|=1INum.Comp.

St €,

o)
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Closed elasticae
a 4=0 :ﬁ
g=1

-

*Step to genus two

S.M., and Emma Previato,
An algebro-geometric model for the
shape of supercoiled DNA
Physica D, 2022
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Genus1 Lﬁ“

Yy (P =@-c)@-ee-e) )

Genus2 7 [y2=(:n—b1 :

A

) (x

bs) J

S = > X
b b, bshv

b

Genus two case: _
/y ZZ? — bl (CU — b5)
(z1.v1) pde (x2.92) ol
da=Rduy o] "5
(z1.91) (x2,y2)
dt=Rduy /4 w= / do / &
\ OsZ=(21= b)) (w2 —br)=€" |0, Z|_

‘st by b4

Genus two case: \?
(9 = (@ —br) (z—bs)

ds=Rdus u.zz/:l’y’)%”’ +/; wz'yz)%r
i Gai=(log(za = b1)) /i

5 k“=\/2m, { (a=12) ¢=2¢
Q u, du ):((Sm pr+ icos ?) dp° Sinmiw)

27K (o3 e

i \/”f(l — k2sin? p)(1 — k2sin? @)
K(p) = e
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Genus two case:
(y? = (x = b)) (z — bs)

(:1?1.'1/1)3,7([.13 Cr?ﬂyg)_ﬂ)dl"
ds=Rdus u2 :/ 2y +/ '
2 o W )2

(z1,y1) dx ((lfg,yz)dar
dt Rd711/4 U= / Zy +/ 2—J

\asZz(azl— )(@a—b1)=e"" [0,Z|=1
7~ MKdV equation/C
(40~ a0, )b+ 5(94,0)* 15,6 =0
N a .= Z?:Q b, — 2b1

Genus two case:

o Meromorphic function over
F =Y hyperelliptic curve

= Hyperelliptic function

Shape of elastica is determined by
hyperelliptic functions

Oy Z = b3 — 9aoby + o1,
\ /= b%?lﬁg + (b1 — 1 + 2o
p

2

d d
Gi(u) == o 108 logo(u), ij(u) = —Wlogo(u)

o

Review the genus one case:

Meromorphic function
over elliptic curve
=Elliptic function

g \
-5

"’/.Elasﬂca is expressed by the elliptic functions!
D.Z(8) = V—=1(p(s + uo) — €1)

. Z(s) = V=1(—¢(s + uo) N2
= O\ Meromorphic function over
| - ‘—“'@' hypereliiptic curve
| L(u) = d—‘l logo (). §ou) — =Hyperelliptic function
— _ Shape of elastica is determined by
hypereliiptic functions
().,_,[ = [)1 ©a0by + o1,
\ Z = b.f'llg + <2b| - C] + Z(;
It is a direct | — )
qenera"sa‘ﬁon, "" Gilu) :—xk)go(u). $jlu): Jud () logo(u)
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Genus two case:

( MKdV equation/C

(400,-00,,)6+ 5 (0u,0)+ 02,6 =0
a —Z: 7() —Qb]

ds=Rduy Or:=R¢
dt=Rdu, /4 Pr=5¢
MKdV equation W|th gauge field/R

(Or — Ads)r + 2( D50 )2+ D2 =0
A.—(J, 3( s¢1) /2

Genus two case: \
MKdV equation with gauge field/R

(at Aa )Cbl 2( s(bl) +83¢1—0
A:=a-3(9:¢1)%/2

i‘s‘dulzi‘s‘dm =0
déi=0 dds¢;=0

( MKdV equation/R ]

\

Genus two case:
MKdV equation with gauge field/R

(01 — AD,) by += (Dsthy)*+ 02, =0
A:=a-3(05¢1)%/2

Sdu=dus =0
d@i =0 dae (,bi =0

( MKdV equation/R |

2

Dim of sol. of
MKdV (t&s) =2

4=Dim. of parameter space L3 conditions

of hyperelliptc curve g=2 )
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Genus two case: \‘

MKdV equation with gauge field/R
(91 = AD)br+5(9s6r)*+ 026 =0
A::a—3(83g‘>i)2/2

Sdu=dus =0

dpi=0 dds¢;=0
[ MKdV equation/R
7

4=Dim. of parameter spac ill-posed Dim of sol. of
of hyperelliptc curve g=2 MKdV (t&s) =2

Genus two case:

%dul =§‘sd‘u‘2 =0

( MKdV equation/R ] (dgbi:O
4=Dim. of parameter spaceﬁ% Dim of sol. of
of hyperelliptc curve g=2 [MKdV (t&s) =2

Need to adjust the parameters (&) of the
curve itself to find the situation where the
conditions are degenerate

= Extremely difficult

(only possible with more than genus 3?)

First, loosen the conditions,
Investigate the properties of g = 2

Genus two case:

( Sduy=Iduy=0

(_MKaV equation/R ] | d¢=0

We conclude that in this stage, the
hyperelliptic curves X with genus two cannot
exhibit the generalized elastica well because
we cannot extract the real parts in both X
and its Jacobi variety J, over C.

(S.M. ,E. Previato, Physica D, 2022)

(only possible with more than genus 3?)

First, loosen the conditions,




Genus two case:

( MKdv equatlon/ C )

))/i

a8 . _ 90:0i) d(t‘)sdn)
[d()soi = 0) (1 D1r + 0@21‘ (](f)Qr = ()

DDy
[ dérr= ( - )<1"I~ dgar=
dPor e

Genus two case: \ ‘
fy (x —by) - (x—bs)

R " /(-’ﬁ.‘lh)mda; _*_/(:':Q'yz)l’dil‘

(/‘\* Lt 2 . Y

- 2y - 2y

B ‘ /(Tl.yl)d:l: +/(;n2.y2)dl.
(l ;/ = 'au | ’U,l: — _,

@SZZ((’IZl—bl)((Ez—bl):ei(p |8QZ|=1
/81 b2 .b4 4

Genus two case:

/y l’—bl (Il?—b;,)

- (;1?1.111)_17([;1; (""'2’3/2)3}(1{17
(/ o — "L (l “‘/‘7 U= 2'1 + 2‘1
- Y J Y

1 Gui=(10g(xa — b))/
po AVEETIen VT =20

832 ‘o vV €241 — e)u "’u
N (sin pat+ i cos p?) dp®  sin @ilp?
(du3, dud)= < - ,——
(gt b 27K (¢ K(99

- \/ﬂ"(l — k}sin® ¢)(1 — k¥ sin® p)
K(p) = .
\

N
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Genus two case: \ ‘
/y $ — bl (:I? — brg)
\ (@1.v1) pdy /(“"2~1‘/2)1’d:1.‘
tau '“-2:/ 5, T 5,
[o%) 29 00 2y
: (z1.91) (o /(.’lfg,yz )
o ulz/ da do
o ). 2y

\ OsZ=(21=b1)(wa—b1) =" |0, Z|=1
‘st by Jbs |

Genus two case: ‘

( N\

U |2y i=etPer 4 b, a=1,2

\ (0
‘!\' 6(’5(11 — “(1() (()(’)b )(5])

A :
58 = Z 01 (1/0(.)(1 ()C)m

2=

“ 2Ya Euler
o §:=5+ 08
S (11 _CD(LI_*_(sCL)a,l
G\ Z:=Z+(x1— b])(.Lz b1)d

0 =< >_>=

They are solutions of MKdV M. Previato
eq Physica D, 2022

Ge ;nrtwome
@ C T————— >
b)) C——=—= — >
O Co=————"—>><">
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Genus two case:

The orbit s on the complex plane

6.0
4.0 c
2.0
& S
0.0 —
0. 10.0 1580
2.0 St
0 Ok + Zk?0.k + 0%k =0
-6.0

M. Previato
Physica D, 2022

g=2

\ S.Matsutani E.Previato, 2021 /

Future tasks:

1. to investigate the cases of g > 3.

2. to evaluate the moduli space of
generalized elastica analytically and
numerically

3. to extend them to a generalized
elasitca in R® by finding the
hyperelliptic solutions of non-linear
Schrodinger equation in our novel
approach with Emma Previato.
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Information geometry of positive measures

Naomichi Nakajima

Faculty of Science and Engineering, Waseda University, Japan

Information geometry brings a united geometric insight into various aspects of statisti-
cal science, machine learning and so on by regarding the parameter space of a statistical
model as a Riemannian manifold equipped with the Fisher-Rao metric. The dually flat
structure on a Riemannian manifold introduced by Amari-Nagaoka takes a central role
in information geometry. It is known that the space of probability distributions on a fi-
nite set naturally has the dually flat structure. For this space, Amari has characterized
the dually flat structure from the viewpoint of statistics through defining the space of
positive measures simply by removing the normalization condition. On the other hand,
we have developed the counterpart for the space of transition probabilities of a given
Markov chain, which may provide a new geometric insight into Markov chains. In this
presentation, I would like to talk about Amari’s theory and our theory for Markov
chains.
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Information geometry of positive measures

Naomichi Nakajima
Waseda University, Japan

Sep. 29th, 2023
WORKSHOP on Mathematics for Industry
@Warsaw University of Technology

supp.: JSPS KAKENHI Grant Number 22KJ0052, 22KK0034
1/23

Summary of my talk

e Information geometry brings a united geometric insight on various fields such as
statistics, machine learning, optimization theory and so on. In information geometry,
a statistical model is regarded as a Riemannian manifold endowed with the
Fisher-Rao metric and two kinds of affine connections satisfying a_certain duality,
called a statistical manifold.

A dually flat manifold is a statistical mfd with flat connections, that takes a
central role in information geometry, introduced by Amari-Nagaoka.

Regarding dually flat structures, there is a well established theory of positive
measures on a finite set S due to Amari. It investigates dually flat structures of the
space P(S) of probability distributions on S in terms of some “asymmetric distance
function” on P(S), called a divergence.

2/23

Summary of my talk

e On the other hand, information geometry of Markov chains has been studied by
Nagaoka and others using the dually flat structure of the space of transition
probabilities.

In comparison with information geometry of P(S), roughly speaking, the studies
above are on information geometry of the space of conditional probabilities.

» Main topic of my talk.
We will investigate the counterpart for a Markov chain of Amari's theory of positive
measures. This study does not only investigate information geometry of the specific
model, a Markov chain, but also suggests a new direction of statistics of conditional
probabilities.

3/23
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e Backgrounds
e Statistical ifolds, dually flat manifolds and di

e Amari's theory of positive measures on a finite set [Amari]

es

o Information geometry of transition probabilities of a given Markov chain [Nagaoka)
« Our theory for transition probabilities [N]

[N] The space of positive transition measures of a Markov model, in preparation.

[Amari] S. Amari, o-divergence is unique, belonging to both f-divergence and Bregman divergence
classes, [EEE Trans. Inform. Theory 55 (2009), 4925-4931.

[Nagaoka] H. Nagaoka, The exponential family of Markov chains and its information geometry,

Proceedings of The 28th Symposium on Information Theory and Its Applications
(SITA2005) (2005).

4/23

Statistical manifolds, dually flat manifolds and divergences

Let (M, k) be a pseudo-Riem. mfd and V a torsion-free affine connection of T'M.

e The triplet (M, h,V) is a statistical mfd if the cubic tensor C' :=Vh is
totally symmetric. Then C is called the Amari-Chentsov tensor [3, 4].

e The dual connection V* of V w.r.t. h is defined by

Xh(Y,Z) = h(VxY, Z) + h(Y, V¥ Z) (X,Y,Z € X(M))

Also, an “asymmetric distance” p: M x M — R induces (h,V,V*) on M as follows.
For vector fields Xj,--+ , X, Y1,- -+ ,Y; on M, define the function

plXi- XilVi---Yi]: M S R,
pIX1 - XY+ Y (r) = (Xa)p -+ (Xi)p(Ya)g - -+ (YD (ol )l =g

5/23

Statistical manifolds, dually flat manifolds and divergences

We call p a contrast function if it satisfies

() pl=I-1(r) = p(r,r) =0,

(i) p[X|-](r) = p[-|X](r) =0,

(i) —p[X|Y] : pseudo-Riemannian metric on M.

We call p a weak contrast function if it satisfies only (i) and (ii) ([N.-Ohmoto2021]).

R(X,Y) == —p[X|Y],
h(VxY,Z) = p|XY|Z], h(VY.Z)=plZ|XY].

1992 (M,h,V, V")
m [Eguchi 1 mn
Contrast . Statistical
Functions multi: 1 Manifolds
W w
Matumoto1993]
3p Matum ] (M, h,V,V")
restores (7, V. V")

6/23
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Statistical manifolds, dually flat manifolds and divergences

For a statistical mfd (M, h,V), Vis flat <= its dual connection V* is flat.
Definition (Amari-Nagaoka [3, 4])

A statistical mfd (M, h, V,V*) is a dually flat mfd if V is flat. Then we also call
(h, V,V*) the dually flat structure of M.

We write § = (6y,- - - ,0,) for V-affine coords. Put d; := ﬁ Then there exists a

potential function f(6) on 0 s.t.
1. the metric h is locally given by the Hessian matrix of f(6): h(d;,0;) = 9,0, [,
2. the gradient map n = (91, -+ ,m,) (9, == %) gives V*-affine coordinates, called

the dual coordinates of 6,
Another definition (Hessian structure [Shima]):
Given a (M, h,(V,0), f(0)) with h = 9,0, f

~ define the dual flat connection and the dual coord (V*,n = (n;)) by ; := % 7/23

Statistical manifolds, dually flat manifolds and divergences

A dually flat mfd (M, h, V,V*) has the canonical contrast function D : M x M — R,
called the Bregman divergence:
. of
D(p.q) = f(0(p)) = f(0(0)) + 55 (0(2))" (0(a) = 0(p) (p,q € M),
where f(f) is a potential function of M. (strictly speaking, D is defined on an open
neighborhood of the diagonal set of M)

Remark:
e The definition of D is independent of the choice of (6, f(0)).
e D restores the dually flat structure (h, V,V*), i.e.,
{ h(X,Y) = D[X|Y],
W(VxY,Z) = —D[XY|Z], h(VyY,Z)=—D[Z|XY].

8/23

Example: the space of discrete distributions

o S={0,1,---,n}: afinite set
o P(S)={(po,p1, + ,pn) ER"™ [ p;>0and 30 p; =1}

We call P(S) the space of discrete distributions on S. Take a system of coordinates
(p1,-++ pn) (po=1—=p1 — -+ p,). We regard it as flat coordinates (V,n = (n;)I,):
n; := p; (the expectation parameters).

Then
o(n) =21 pilogpi
is a convex function, known as the negative entropy in statistics.

Hence the metric h is defined by

0 0y _ %
h(am,’ m,,) = Bniom;

Therefore, (P(S), h, (V.n), (1)) is a dually flat mfd (Hessian mfd). 0/23
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Example: the space of discrete distributions

Importantly, the Bregman divergence D : P(S) x P(S) — R induced by ¢ is the
KL-divergence on P(5), i.e.,

n
D(p,q) = ZP: 10‘5& =: KL[p,q],
i=0 i

where p = (po,- -+ ,pn), ¢= (@0, ) € P(S).

e We consider the following problem: are there any other contrast functions to derive
a dually flat structure of P(S5)?

e Of course, for example, we consider a quadratic function as a potential function, and
then it derives another dually flat structure of P(S).

e We are interested in the dually flat structure with “statistical invariance”, which is a
certain condition required from statistics.

10/23

The space of positive measures on a finite set

o Amari has introduced the space P(.S) of positive measures on S as an extended
space of P(S) and investigated the problem above by finding the Bregman and
F-divergence on P(S) suitably.

o An F-divergence Dy on P(S) is a contrast function, and it is known that the
statistical manifold structure induced by Dy of P(S) satisfies statistical invariance.

o In [Amari], Amari has shown that the KL-divergence Dy, on P(S) is the only
contrast function such that

— it is both a Bregman divergence and an F'-divergence,

— it and its restriction to P(S) induce the dually flat structures of P(S) and P(S),
respectively.

11/23

The space of positive measures on a finite set and F'-divergences

e S=1{0,1,---,n}: afinite set
o P(S) ={(po.p1. - ,pn) ER™ [ p; >0} DP(S) ={p; >0and X7 p; =1}
We call P(S) the space of positive measures on S.
Given a strictly convex function F': (0,00) — R with
F(1)=F'(1)=0and F"(1) =1,

called a standard convex function [Amari], the function Dy : P(S) x P(S) — R
defined by

" .
Dp(p.q) =y piF (*)
=0

pi
is called the F-divergence on P(S), where p = (po, -+ ,u), ¢ = (G0, , Gn)-

12/23
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The space of positive measures on a finite set and F-divergences

In the case where F(t) = —logt+ (t — 1), the F-divergence D is the KL-divergence
on P(S):

Dr(p,q) =Y pilog (%) +Y -y m
=0 ' i=0

=0

e In fact, P(S) has the dually flat structure; its flat coordinates are 5 = (po,- -+ ,pn)
and the potential function (7n) is given by

w(n) = ZP& log p;.

=0
e For p,qg € P(S), it holds that 3""  p: = 3"~ ;¢ = 1, which yields

De(p,0) =3 pilog (’;—) - KLip,q)
=0 *

13/23

Information geometry of the space of transition probabilities

» Setting:

e X ={0,1,--- ,d}: a finite set

e £C X x X: asubset

~+ We regard (X,£) as a direct graph.

o Ft ={f: €= R| f(z,y) >0 forany (z,y) € £}

e W={weF" | ;e w(z.v)=1forany z € £} C F+
We call w € W a transition probability on £ (the word “transition probability” comes
from Markov chains).

flﬁv'l T\(l.l)

Jon 14723

Information geometry of the space of transition probabilities

We assume that £ is strongly connected, that is, for any =,y € X" there exist
(1, %2), (T, g),**+ , (Zy_1,Zy) € E such that z; = z,zy =y (N > 2).
By this assumption, for every f € F*+ we can apply the Perron-Frobenius theorem to
AP = log(Dosissas os(F) = { A

Then we get a unique real value r(f) > 0 and vector pus = (u£(0),- -+ , s (d) y
satisfying

e r(f) is the Perron-Frobenius root, which is an eigenvalue of A(f),

e yuy is a left eigenvector associated with r(f) such that (i) > 0 for any ¢, and

Tlons(i) =1
We call the vector p; the stationary distribution for f.
15/23
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Information geometry of the space of transi

We consider the following two spaces:
1[*{77 (UH/) (z.y) GSERM | T]11/>0}
M ={n = (Ney) @y)cc € M Z(w)gs sy = 1 and
Zy:(,,-,;u)es Nay = Zq (ya)e€ Ty for any = € X'}
In [Nagaoka], it is shown that W is a dually flat manifold, and its expectation
parameter space is M.
Theorem ([Nagaoka])
1. The mapping T : W — M, w — (p1(2)w(2,Yy))(2y)ee is a diffeomorphism.
2. There exists a convex function ¢ : M — R; the Bregman divergence
D:W x W — Rinduced by ¢ is

D(wy, wa) Z o, (@)W1 (2 J)lOgM.
i 2(7,y)
z,y)EE

16/23

Positive transition measures on )V (our work)

» Aim: We construct the counterpart of Amari's picture in (P(S), P(S)) for W.
» Main results:
e We extend W to the bigger space F'.
o We define an F-divergence on F* and a diffeomorphism T between F+ and M.
e \We give a divergence that is both a Bregman divergence and an F-divergence.
o Actually, the potential function ¢ has a 1-dimensional kernel of its Hessian matrix at
every point of M, thus we take a hyperplane section M in M so that a genuine dually
flat structure is defined on it. That induces a hypersurface W in F+.

Fr——=-M
T

U U
W—">M—>R

Ty Pl H

@

W—-M——R 1o

Positive transition measures on )V (our work)

Definition ([N])
Let F': (0,00) — IR be a strictly convex function with F/(1) = F'(1) = 0 and F"(1).
We define the F-divergence on F™ as Dy : F© x FT — R,

Dr(f,9) = Loupee #r(@) f (@, y)F (L2 [ L)

Proposition ([N])
The F-divergence D has the following properties:
1. Dr(f,9) > 0.
2. Dp(f,g) =0 if and only if g = af for some a > 0.
3. Dy is a weak contrast function on F*. Let hy denote the symmetric (0, 2)-tensor
on F' induced by Dp.
4. The null space of hr at f € F* is the tangent space of the halfline

{af |a> 0} C FT. 18/23
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Positive transition measures on WV (our work)

We set
T:F* =M, fe (us(2) f(@,9)@yee-
We also set for 1) = (17zy) g)ce € M

(M) i= D Neye

(z.w)EE

Lemma ([N])
T has the following properties:

1. Tis a diffeomorphism, and T}y =T : W = M.
2. T(af) = aT(f) for f € F* and a > 0.

3. 7(f) = r(n) with T(f) =n.

19/23

Positive transition measures on W (our work)

Theorem ([N])
Let F(t) = —logt+ (¢t —1). Then the F-divergence is the Bregman divergence
given by the following potential function on M:

@m) = Y nylogn., —) n.logr. (1)

(=w)EE z€X

For wy,ws € W we see
D (w1, w2) = Cpeypec o (@r (. )F (2E2)

w1(z,y)
@ (z,9)

=2 (mypee Hon (T) 01 (2, 1) 10g T2 430 e o (2) (wa(z, ) — wi(z,y))
- Z(x yee Mo (z)wy(z,y)log %%3— : the divergence by Nagaoka

20723

Positive transition measures on W (our work)

We see that the Hessian matrix of ¢ at every point 7 € M has the 1-dimensional
kernel spanned by the numerical vector 1 € Rl = T, M.

Therefore, by imposing only tije normalization condition Z(W)Es 7y = 1 on M, we
have the hyperplane section M in M so that ¢ is strictly convex on it:
M= {n=(n) € M| r(n) =1}.
Using the relation r(f) = r(n) with T(f) = n , we get the genuine dually flat manifold
W= {feF"|r(H)=1},

which is an extended space of W as a hypersurface in F.

21/23
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Positive transition measures on )V (our work)

Theorem ([N])

The hypersurface W has the dually flat structure induced by the potential function
@ == @|z on M; the restriction of this dually flat structure to W restores the dually
flat structure of [Nagaoka]. We call W the space of positive transition measures.
Moreover F-divergences on W are written as

Dr(f,9) = Capee @) f (2 )F (528) (.9 € W),

Ft= 7T
T _
u u N
W M R
Ty Plar H
W%"M @ R 22/23

Summary and future plans

e We have defined the class of F-divergences on F* and given a divergence which is
both a Bregman divergence and an F-divergence. Moreover, we have given a dually
flat manifold YW which is an extension of W by analyzing the kernels of the potential
function @ on M.

In order to completely establish the counterpart of Amari's theory for the pair
w, W) we need some discussions from the view point of statistics.

e In the first place, the “statistical invariance” for conditional probabilities must be
discussed.

e Then, F-divergences should be characterized by the statistical invariance above.

Besides, a divergence on W which is both a Bregman divergence and an
F-divergence may be uniquely determined under certain conditions.

23/23

Thank you for your attention!

23/23
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A very interesting and important class of stochastic processes was introduced by Alan
Hawkes in [1]. These processes, called now Hawkes processes, are meant to model
self-exciting and mutually-exciting random phenomena that evolve in time. The self-
exciting phenomena are modeled as univariate Hawkes processes, and the mutually-
exciting phenomena are modeled as multivariate Hawkes processes. The Hawkes pro-
cesses have been applied to modeling in meany areas of science, including: insurance,
finance, seismology and neurology. In this talk we provide some results on marko-
vianity of the Generalized Multivariate Hawkes Processes (GMHP) introduced in our
earlier papers. GMHP are multivariate marked point processes that add an important
feature to the family of the (classical) multivariate Hawkes processes: they allow for ex-
plicit modelling of simultaneous occurrence of excitation events coming from different
sources, i.e. caused by different coordinates of the multivariate process. We propose
that this structure of mutual excitations is specified in terms of the excitation graph.
We provide results which show that under some conditions on its kernels the intensities
of GMHP’s are functions of a Markov processes. Moreover we show that it is possible
to compute their Laplace transform by means of system of ODE’s. The talk is based
on [4].
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Hawkes Processes

o Hawkes processes (self-exciting point process, 1971 Allan Hawkes) one
dimensional point process (counting) N, defined by intensity

- P(Nepae — Ne = 1|FY) /
= | = - N,
A(t) Aim) At n(t) + 0 w(t — s)dNs
=n(t)+ > w(t—T,),
nT,<t

where 7 non-negative function-background intensity, w non-negative
function—impact function.

o Multivariate Hawkes Process: (mutually-exciting point processes),
N = (N, ..., N9) where N, i=1,...,d, is a point process with the
intensity given by

Ai(t) = mi(t) + Z/ wi j(t — s)dNi(s), t >0,

j=17(0:8)
Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.09.2023 2

Trajectory of 2-dimensional Hawkes process
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Introduction

@ Goal: Provide framework for tractable specification of multivariate
Hawkes processes (with common event times).
o What makes model tractable ?
o Statistical methods.
o Explicit formula for some distribution-related quantities.
o Numerical methods for computations of such quantities.
o Markov property.
@ N-univariate Hawkes process is not a Markov process !
o Markovianization Problem: Find a Markov process X, function g such
that A\(t) = g(t, X¢) and (X, N) is a Markov process.

o Let n = const, w(t) = ae™ ",

t
X(t)::/ aefb(t’s)st
0

then (X, N) is a Markov process.
Multivariate Hawkes processes 25.09.2023

]
MPP-Marked Point Process

o Let us consider a filtered probability space (Q, F,F,P).
o Marked Point process N

N = (Tan)nEZ7
where (Tp)nez satisfies
Tn S Tn+17 |Tn| < oo = Tn < Tn+1

and (X,) sequence of random variables, called marks, with values in
(E?,£%) (O - point external to E)

Xn=0<|Ty=00, Xp€E&|T,)<x
@ The explosion time of N, say T, is defined as

Teo := lim T,
n—oo

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.09.2023
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Random measures and MPP

o We associate with the N an integer valued random measure on
(Rx E,B(R)®¢E):

N(dt‘7 dX) = Z 5(T,,,X,,)(dt-, dx)]l{\TnKoo}

neZ
o Filtration FN = (FN, t > 0) generated by N (completed)

FN=G6(N((s,r] xA) : 0<s<r<t Ac&), t>0.

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.09.2023

Multivariate Mark space

o Let (E;, &), i=1,2,...,d, be some non-empty Borel measurable
spaces. We extend (E;, &)

EA =EuUA, &R =0(&,{D)),

where A is a dummy mark.

o Then, we define a multivariate mark space, say E2 by
EA = ER X ER x ... x ER\ (A A, ..., A).
o-field £ on E2,

&8 = {A NEA:Ae ®;’:15,-A}.

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.09.2023
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Motivation for d = 2

Niewegtowski (PW MiNI)

Multivariate Hawkes processes

[ XA xg

P 00:25 | 1234 | A
5 £ 0045 | 1045 | A
88{22% 2 |3 01:30 | 1554 | A
01:30 | 15.54 01:54 | 3.49 01:54 | A [349
555 1164 03:11]5.78 02:25 | 11.64 | A
N —osaioesl w2 _|03:45[43L] , _[03:11[1082 578
0350 | 9.01 i 03:59 | 3.95 | 03:45| A [4.31
e 04:35 | 7.01 03:50 | 9.01 |3.05
o505 170,09 06:15 ] 9.99 04:21| 764 | A
0615 | 12.99 09:05 | 8.74 04:35| A [7.91
09-05 [ 1101 05:05 1009 | A
0615 | 12.09 | 9.99

00:05 | 11.21 | 8.74

25.09.2023

312




|

Multivariate Marked Hawkes process

Definition

Let N° be random measure on (R_ x E2, B(R_) ® £2), G a given filtration and a

pair of kernels 7, f satisfying

© 7 is a finite kernel from (Q x [0,00), P€) to (E2,ER)

@ fis a finite kernel from (2 x Ry x R x EA, PC @ B(R) ® £2) to (EA,ER)
and satisfies f(t,s,x,A) =0 for s > t.

We call MPP N with multivariate mark space E2 a generalized G-doubly stochastic

multivariate Hawkes process (GDSMHP) directed by (7, f) with initial condition N°

if N=N°on (R_ x EA B(R_)® E2) and G V FN-compensator of N on

(Ry x EAB(Ry) ® ), is of the form

v(w, dt, dy) = Ljo 7 r(w; t, dy)dt,

where .
K(t, dy) = n(t,dy) +/ f(t,s,x,dy)N(ds, dx).
(—o0,t)xEA
Multivariate Hawkes processes 25.09.2023 10

Aucxiliary notation

o By 2[9] we denote all non-empty subsets of [d]:= {1,...,d}.
o For generic Z € 2191 we let Z¢ := [d]\ Z and we set

d E; ifieZ,
ET— X A, where Ai={ - "'S%
i=1 {A} otherwise,
o Let (i1,..., /4, ) be the ordered sequence of elements of Z we denote
d
Er = inl Eij?
xz = (Xiy, X, - - -5 Xiy, ) € Ex,

dxz = dx; dx;, . . .dx,-dI,
dpze(dyze) = ®iezcon(dy:)

o ET C EA, EA = UIe2ld] ET.

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.00.2023 1

T-idiosyncratic coordinate

Definition

For a random measure N(du,dx) on (R x E2) and a set Z € 2[9] we
define a random measure Nid(ds, dxz) on (R x Ez) by setting

NE((s,t] x A) = N((s, t] x TE(A)), A€ Er
where I : Er — E7 is a lifting mapping defined by

x; if ieZ,

. ield].
A otherwise,

(M)l = {

We call N%’ - the Z-idiosyncratic coordinate process.

N can be represented in the form
N((s, t] x A) =Y N((s, t] x (ANET)) =D N((s, ] x (I7) (AN ET))
Multivariate Hawkes pracatsct 25.00.2003 1
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[llustration for d = 2

N =
th X,11 x,%
00:25 | 12.34 | A th xh
00:45]10.45| A 00:25 | 12.34
01:30 | 15.54 | A 00:45 | 10.45 '
01:54 | A [3.49 | N9, =[01:30]15.54 N, =
02:25 | 11.64 | A 02:25 | 11.64 2| x| X3
03:11]10.82 | 5.78 04:21| 7.64 | [03:11 | 10.82|5.78
03:45| A [4.31 05:05|10.99 | [03:59 | 9.91 |3.95
03:59 | 9.91 [3.95 06:15 | 12.99 | 9.99
04:21] 764 | A 2 | X2 09:05 | 11.21 | 8.74
04:35] A [791] 4 _|01:54]3.49
05:05[10.99 | A 12} 7 03:45 | 4.31
06:15[12.99 [ 9.99 04:35|7.91
09:05 | 11.21 | 8.74
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Lemma

1. Every kernel 1) from a measurable space (Q x Ry, A) to (E2,E2) can be uniquely
written as

n(t,dy) = > ng(t,dyy) ® Saoe(dyge)
Jeald]

where 07 are kernels from (Q x Ry, A) to (Eg,&7) such that
n7(t,Ag) =n(t,T7(Ag)) for Az € &y.

2. Every kernel f from (2 x Ry x R x EA, A® B(R) ® £A) to (EA,ER) can be
uniquely written as

ft.s,xdy) = D frg(ts,xz, dyg) ® Spae(dyge)Lez(x),
Z,ge2d]

where fz 7 are kernels from (2 x Ry xR x Ez, A® B(R) ® &) to (Ez,E7) such that

fz_](t, S, X1, Aj) = ir(tf7 s, rI(XI)7 rJ(Ay)) for Az € €.

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.00.2023 14

Introducing graph(-ic)

@ Suppose that directing kernels (), ) are defined by means of a given
M c V c 29 A cVxV and families of non-zero kernels
{ng : T eM}, {fz,7 : (Z,T) € A} by following formula

n(t,dy) =Y ng(t,dys) @ daze(dyge),
JeM

f(tvsvxv dy): Z fI,](tvstIvdyJ)®6Ajc(dyjc)ﬂEI(X)'
(Z,7)eA

o We call G =((V,A), M) an excitations graphic.
o We call M set of exogenous sources of excitations.
o For a given J € V we define the parents of J in G

Pag(J)={Z€V:(Z,TJ)€ A},
for a given Z € V we define the set of ancestors of Z in G
Ang(Z) ={J €V :(T,J) € A}.
(M s ({riies prosermeD 25.00.2023 15
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Graphical description

d=3,|A| =49,|M| =8 d=3,|A]=8,|M|=2
Multivariate Hawkes processes 25.00.2023 16

Proposition

The Hawkes intensity kernel of G-DSGMHP N with initial condition N°
directed by such (n, f) is of the form

K(t,dy) = > ng(t,dyy) @ dpse(dyse)
JeM

+ Z fl'yj(tvsvvadyj)®6A~7C(dyJC)Ng(dsvdXI)'
(T.7)eA (—o0,t)x Ez

The G Vv FN-intensity kernel of the random measure NS is given by

rig(t, dyx) =Tt (K)nec(t, dyx)

id
+ Z / &,K(t757XI7dyK)NII (dS, dXI).
TePag(k) ¥ (-oo-t)xEx
Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.09.2023 17

Structural Assumption (1)
Respective components 77 and fz 7 satisfy
@ For every J € M the kernel n7(t,dy) takes form

ng(t,dys) = 1n7(t)Qz(dys),

where (77(t)) is a G-predictable stochastic process, Q7 is a
probability measure on (Ez7,£7)

@ For every (Z,J) € A the kernel f7 7(t, s, xz,dyy) takes form
g (8 ,x2,dyg) = fr.g(t, s, x0)Re.s(dys)

where (?I)"](t,S,XI)) is a G-predictable mapping, Rz, 7 is a probability
measure on (Ez,E7).

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.09.2023 18
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Proposition

Assume that structural assumption holds. Then
© The Hawkes kernel of N has the form

k(t,dy) = D r(t) Qz(dyz) ® dpre (dyze)
IeM

+ Y Ag(DRrs(dys) ® Sa0e(dyge),
(Z,7)eA

where

M0 = [ Fr (8,5, xr)NE(ds, dx).
(—o0,t)xEz

Q FixKe 291, The F-compensator of the random measure N9, say
Kid(t, dyx) dt, is given by

Ii;g(t, dy)g)dt = ]lM(IC)ﬁjc(t)Qjc(dy}C) dt + Z )\IY]C(t)RZ#)C(dy]C) dt.

TePag(K) {
Multivariate Hawkes processes 25.00.2023 19
Proposition

In particular, intensity process of Ni¢ is given by

NL(t) := &id(t, Ex) = Tic(t)+X(t),  where NZ(t) := Z Az ().
ZePag(K)

Definition

We say that a Markov process (X, Y) (possibly time inhomogeneous) with
a state space (5,S8) = (51 X 52,81 ® S2) is a markovianization of
G-doubly stochastic Hawkes process N directed by (n, f) if

iiz(t) = az(t, Y(t-)),  Azxc(t) = Azac(t, X(t-)),

for some measurable functions {7z : R4 x S2 — R4 : Z € M} and
{XI,}C Ry xS =Ry (Z,K) € A}. We call Y the exogenous factor

process if it is G-adapted and X endogenous factor process if it is
FN-adapted. L
Multivariate Hawkes processes 25.00.2023 20

.

Structural Assumption (2)
o ForeveryZe M

nz(t) = pz(t) + Br(t) (/(0 oo é1(t — s, 5,x)Mz(ds, dx),

where (7, iz are non-negative deterministic functions on R, whereas
¢* : Ry x R — Ry, and (Mz)z are independent Poisson r.m. such
that the F-compensator of Mz is Pz(dx)fzdt for 67 > 0,
Pz-probability measure.

o Forevery (Z,J) € A

fr,7(t,s,xz) = az,7(t)r,7(t — s,5,x1)

where a7 7, is a non-negative deterministic function on R, whereas
1/1137:R+ x R x EI—)R+.

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.00.2023 21
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@ The above assumption implies that the 77(t) and Az, 7 can be written
as

n7(t) = pg(t) + B7 () Y7 (t=), Azg(t) =azg(t)Xzg(t—), t=>0

where

Yo () = / 1t — 5,5, x)Mz(ds, dx)
(0,t]xR

Xl"j(t) 1:/(7 1/11“7(1‘—5, S,Xl')Nil‘—:I(dS,dXI)7

oo, t|x Ex

o First step: Provide conditions for Markovian dynamics of these
processes

o Note that the intensity kernel of Nid is given by

K©E(t,dyr) = Ta(Z)iiz(t) Qe(dyz) + > Mez(t)Ric.z(dyz).
KePag(Z)

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.00.2023 22

|

Exponential case generalized

Theorem

Suppose that |1, satisfies linear ODE (in first variable)

P — (0 (1 —1) ,(n—1
W (,5.27) = g7 gD 20y (t,5,2r) +gh U (8 s, zr) v gl D (8,5, 2r)

with initial conditions

O00,5.2) = 07 5(s,20). .., W0 5.21) = V5 5 (s, 2z),

where 1) denotes the derivative of i-th order in first variable. Let 71,\7 be a Rpi1
valued process given by

Xeg(t) = | Tr.y(t — 5. 5.x2) N (ds. dxg),
(—oc,t]xEz

where
- _ (0) (n—1) !
V.t = s,5x0) = [Lul (= 5,5,x0), 0,V = 5,5, x0)
Multivariate Hawkes processes 25.00.2023 23

.

Theorem (cont'd)

Then Xz,7 = (7;7)23 solves SDE on R
d?z_y(t) = GI“7)_<I_‘7(I’) dt + EIJ(O, t, Zz)N?(dt, dzz),

X1.7(0) = / Tz (—s,5,xz) N8 (ds, dx),
(—o0,0]xEz

where Gr,7 € Roi1,011 and Pz 7(t, 1) € Ry are given by

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
617‘7 =
0 0 0 0 1 0
0 0 0 0 0 1
g1y 8y 8y &g &5 &g
Moreover
Mg (t) = az.7 ()X 7).
Multivariate Hawkes processes 25.09.2023 24
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Lemma
Suppose that for every T € M ¢z satisfies linear ODE (in first variable)
A (t,5,x) = bt + W0 (£, 5, %) + b (8, 5,%) + ... + KD (1 s x)
with initial conditions
60(0,5,%) = B3(s.%), ..., SD(0,5,%) = 7 (s, %),

and let
Vi) = [ Brlt—s.s0Mr(ds. ).
(0,t]xR
where

bra(t=sis0) = [Lof (¢ =550, ..ol

Then Y1 is a Markov process which solves SDE
dV(t) = HVa(e) dt + / 32(0, £ x)Mz(dt,dx),  V2(0) = Opis.
R

Moreover )
iz(t) = pz(t) + Bz(t) Yz(t)

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.00.2023
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.

Vectorizations of (71“7)(1,‘7)@&

o We first let o to be a bijection

o and the stacked vector

where ® denotes Kornecker product of vectors.
o We have

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.00.2023
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o A=A ={1,...,|Al]}

o Then, for (Z,J) € A w define vector cz, 7 € Ry by formula
1 ifi=o(Z,7),
C =
(cz.7); 0 otherwise.
X = Z CI¢‘7®YI“7-
(Z,T7)eA
Xy 7 =X@TR where (T, T, k) = (o(Z.T) — 1)(n+1) + k.

27
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Vectorization of (Y7)zem

o We let 7 be a bijection
T M- M =A{1,..., [M[},

o for Z € M let cz be a vector cz € Ry defined by formula

(e2)s = {1 if i = 7(2),

0 otherwise.

o Now the stacked vector Y is defined by

Y = ZCI®VI

IeM
°
A% i(Z,K) ;
Y=Y where (Z,k):=(7(Z)—-1)(m+1)+k,
Multivariate Hawkes processes 25.09.2023 28
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@ Then (X, Y) solves system of SDE

axX(0) = X(de+ Y [ (e, z)NE(de, ),
ZePag Ez

dY(t) = HY(t)dt+ > / cz ® dz(t, x)Mz(dt, dx)
Tem 'R

o where Pag = {Z € V: An(Z) # 0} and

Yr(t,zr) = Y g @z 7(0,t, 21)

JeAnG(T)
e and
— ’
Gi= Y ag®g ;06
(Z, 7)en
/
H:= Z CI®CI®HI.
IeM
Multivariate Hawkes processes 25.09.2023 29
Theorem

Then, the process (X, Y) is a markovianization of a G-doubly stochastic Hawkes process N
directed by (n, f) i.e. it holds that
nz(t) = pz(t) + () YED(t=),  t>0.
Az (t) = az, 7 ())XIET (=)

The generator of (X, Y) is given by

Av(t, x,y)

9 |Al(n+1)  |Al(n+1) [M|(m+1)  |M|(m+1)
\4

v v

_ 727 jik k) 2 gy 22
TR Y o) X (ZHy>ayf
j=1 k=1 i=1 j=1
+ 3 (pz(t) + Bo(t)y ) / (v(t,x +vr(t.zr).y) - v(t-,x,y)) Qz(dzr)
TeM Ez
+ Y Xi(’c’z‘z)afc,z(f)/ (V(fsx + ¢zt 7). y) - V(f,X,Y)) Ry, z(dzz)
(K. T)eh Ez
+ Z f)z/ (v(t,x,y +cr ® dr(t, 2)) — v(t,x,y)) Pz(dz)
zem VR
Multivariate Hawkes processes 25.09.2023 30
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Extending X

o Let us consider

—h ‘ T (dt.dz
n(t) = (o)+§zj/0 /EZeINId(dt,dI)

— ’ T(, \WE 2
L) = L(0)+;/0 /Ezi (2r) NE(dt, dzz),

where ez € Ry are vectors defined by

(er)i = {1 ifiel,

0 otherwise.

and where ¢7 : E7 — Ry.
@ The process N’ is the counting process of i-th coordinate.
e (X,Y,N,L)is also a Markov process under generalized exponential

assumption.
Multivariate Hawkes processes 25.00.2023 31
Theorem

Joint Laplace transform of X(T), Y(T),n(T) — n(t), L(T) — L(t) is given by

E(e*(u,X(T))*(‘AV(T))*(Wm(T)*n(t))*(ZﬁL(T)*L(f)) | F+)
= ALT)=(B(£,T),X(1))—(C(¢.T), Y (1)

u € Rigj(n+1), V € Rpgy(ms1), w € Ry, z € Rg.

where A, B, C solve following system of ODE’s:

C(t, T) = —H'C(t, T) +r(t, B(t, T), w, 2), T, T)=v,
0:B(t, T)=—-G'B(t, T) + q(t, B(t, T),w, z), B(T, T)=u,
QAL T) =~ {9I(LPZ(RIC(t, 7)) - 1)

TeM

+ pz(t)[e Sier g, (¢, KeB(t, T)) — 1] } AT, T)=0.

Niewegtowski (PW MiNI) Multivariate Hawkes processes 25.00.2023 32

with

q(t,x,w,z) = Z T ® e nit - o, z(t) (€7 Zier YiLRe (. Kzx,2) — 1)

(K.D)eh
r(t,x, w, z)= Z cz ® eamy1 - Br(t)(e” Yier "L, (t, Kzx,z) — 1),
TeM
Loy (t,v,2) = / e’(‘/vzaeAn(z) aIA‘7®"EI.J(f,ZI))’(ZféI(ZI))QI(dzI)7 VER
Ez

Lch,z(tv v,z) = / e_(VvZJeAn(z) aI"7®EIY‘7(t’ZI))_(Z’5I(Z1))R}CYI(dZI),
Er

Lp,(t, u):/ef(”@(fvz))Pz(dz), u€ER,.
R
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On envelopes created by circle families in the plane

Takashi Nishimura

Faculty of Environment and Information Sciences,
Yokohama National University, Japan

(joint work with Yonggiao Wang)

Envelopes of planar curve families have fascinated many pioneers since the dawn of
differential analysis. In most typical cases, straight line families have been studied.
However, even for envelopes created by straight line falimies, to our surprize, there
were several unsolved problems until very recently. In my talk at WAAS, recently
discovered answers to these problems were explained.

On the other hand, circle families in the plane are non-negligible families because
the envelopes of them have already had important applications to Industry. In this
talk, firstly, as one of important applications of envelopes of circle families to Industry,
the so-called “Mohr failure envelope” is introduced. After that, a general theory for
envelopes of circle families shall be explained.
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On envelopes created by circle families in the

plane (a joint work with Yonggiao Wang)

Takashi Nishimura

(Yokohama National University)

Reference

[WN] Yonggiao Wang and T.N., Envelopes created by
circle families in the plane, preprint.
(available at https://arxiv.org/abs/2301.04478)

§1. Soil Mechanics

Circle families in the plane are non-negligible families
because the envelopes of them have already had im-
portant applications. As one of application of circle
family in the plane, Let me first explain the so-called
Mohr failure envelope in the field “Soil Mechanics”.
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In analysis of the stability of soil masses, the shear
strength Tf of a soil at a point on a particular plane
is expressed as a linear function of the effective normal
stress oy at failure:

Tr=ostanp+c,

where ¢ and c are the angle of shearing resistance and
cohesion intercept respectively. A method using Mohr
circles to obtain the shear strength parameters ¢ and ¢
can be found (for instance) in “R.F. Craig, Craig’s soil
mechanics, Seventh edition, Taylor and Francis Group
Press, New York, 2004. ISBN: 9780415332941". A
brief description of this method is given as follows.

The stress state of a soil can be represented by a Mohr
circle which is defined by the effective principal stresses
o1 and op. The center and the radii of the Mohr cir-
cle are (”1'5”2,0) and "15”2, respectively. By experi-
ments, one can obtain some values of effective principal
stresses o1 and o5 at failure. The Mohr circles in terms
of effective principal stress are drawn in Figure 1.

oy L T

Figure 1
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The envelope created by Mohr circles is called the Mohr
failure envelope which may be a slightly curved curve.
Then the shear strength parameters ¢ and c¢ can be
obtained by approximating the curved envelope to a
straight line, namely the slope of the straight line equals
tan ¢ and the intercept of straight line on the vertical
axis is ¢ (see Figure 2).

Approximate stright ine

Figure 2

The so-called " liquefaction phenomenon’ is one of con-
temporary important problems especially in the coun-
try where people can not avoid large-scale earthquakes.
Therefore, Mohr failure envelope is a significant notion
for industry.

In order to understand the mechanism of " liquefaction
phenomenon” well and in order to find an effective mea-
sure against real liquefaction phenomena, it seems im-
portant to construct a general theory of the envelopes
created by circle families.
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§2. Envelopes of circle families

For a point P of R2 and a positive number A, the circle
C(p) centered at P with radius A is naturally defined
as follows, where the dot in the center stands for the
standard scalar product.

Cipay = {(X,y) eRZ) (X,Y)=P)-((X,Y)—P) :)\2}.

For a curve v : I — R2? and a positive function A : I —
R4, the circle family C(%A) is naturally defined as fol-
lows. Here, Ry stands for the set consisting of positive
real numbers.

Cm = {CHma) s

It is reasonable to assume that at each point «(t) the
normal vector to the curve « is well-defined. Thus, we
easily reach the following definition.

Definition 1 A curve v : I — R2 is called a frontal
if there exists a mapping v : I — S! such that the
following identity holds for each t € I, where S! is the
unit circle in R2.

dy _
E(t) ~v(t) =0.

For a frontal v, the mapping v : I — s given above is
called the Gauss mapping of ~.

Hereafter, the curve v : I — R? for a circle family Ciyn)
is assumed to be a frontal.

In this talk, the following is adopted as the definition
of an envelope created by a circle family.

Definition 2 Let C(%)\) be a circle family. A mapping
fi1— R2 is called an envelope created by C(,’M if the
following two hold for any t € I.

@ T (s —~@) =o0.

(2) f(®) € Cryiya)-
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Problem 1 Let v : I — R? be a frontal with Gauss
mapping v : I — Sl and let A : I — ]R{+ be a positve
function.

(1) Find a necessary and sufficient condition for the
circle family C(%A) to create an envelope in terms
of v, v and A.

(2) Suppose that the circle family C(W_A) creates an en-
velope. Then, find a parametrization of the enve-
lope created by C(w\) in terms of v, v and \.

Example 1 Let v: R — R2 pe the mapping defined by
¥(t) = (13,18). Set u(t) = ﬁ (—2t3,1). It is clear
that the mapping ~ is a frontal with Gauss mapping
v:R— S LetA:R — R4 be the constant function
defined by \(t) = 1. Then, it seems that the circle
family C(%A) creates envelopes. Thus, we can expect
that the created envelopes can be obtained by the well-

known method.

Set F(z,y,t) = (r - t3)2+(y - t6)271 . Then, we have
the following.
{(1.y)€]R2 Jt s.t. F(J.y,L):?TI:(L,y,L):O}
= {(,,.y)enﬁ 3t st (:r—f3)2+(y—t5)2—1:—6?2(3,—t3)—12t5(y—t6):O}
= {(m‘y)eﬂﬂ)ﬂrst (x—r3)2+(y—t6)2—1:12((143)+21,3(y7r6)):0}
= {@yer?|2+y?=1}

U{@ner

= {@wer?|a2+y?=1}

U{wmer

= {@wer?|24+y2=1}

(;E—L3)2+(!,’7/.6)271:0,1‘:[372(3(75/7?)}

(—22 (y—19))* + (y—19)° =1, a,:t3(1—2y+2t6)}

212 1
2 N R?
U ( ¥1/4L6+1 1/4L6+1> c
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In order to solve Problem 1, we prepare several termi-
nologies which can be derived from a frontal v: I — R2
with Gauss mapping v : I — S1and a positive function
A1 —Ry. For a frontal v : I — R? with Gauss map-
ping v : I — S1, following “T. Fukunaga and M. Taka-
hashi, Existence and uniqueness for Legendre curves,
Journal of Geometry, 104 (2013), 297-307", set

u(t) = J(w(),

where J is the anti-clockwise rotation by 7/2. Then we
have a moving frame {u(t),v(t)},c; along the frontal v
. Set

() =L o, 50O =W u.

The following definition is the key of this talk.

Definition 3 ([WN], KEY DEFINITION) Let~: ] —
]RQ, A1 — Ry bea frontal with Gauss mapping v : I —
Sl and a positive function respectively. Then, the cir-
cle family C, ) is said to be creative if there exists
7 : I — S such that the following identity holds for any
tel.

OEROICORTON
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By definition, any family of concentric circles with smoothly
expanding radii is not creative, and it is clear that such
the circle family does not create an envelope.

Theorem 1 ([WN]) Let v : I — R2 be a frontal with
Gauss mapping v : I — St and let A\ : I — Ry be a
positive function. Then, the following hold.

(1) The circle family C(y,\) Creates an envelope if and
only if C, yy is creative.

(2) Suppose that the circle family C(WA) creates an en-
velope f: 1 — R2. Then, the created envelope f is
represented as follows.

NOERIOE PXOHOP

Example 2 We examine Example 1 by applying The-
orem 1. In Example 1, v : R — R? is given by ~(t) =
<t3,t6). Thus, we can say that v : R — S! and pu: R —

Sl are given by v(t) = ——L <72t3¢ 1) and pu(t) =

Vato41
16 (—1,—2153) respectively. Moreover, the radius
41041
function A : R — R is the constant function defined by
A(t) = 1. Thus,

d\
—(t) = 0.
a®

By calculation, we have

—3t2(1 + 4t5)

50 = 20 () = i

20
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Therefore, the unit vector o(t) € S1 satisfying
dA .
O OICORNTO)
exists and it must have the form

o(t) = +u(t) = \/%ﬁ (72t3, 1) .

Hence, by the assertion (1) of Theorem 1, the circle
family C(%A) creates an envelope f : R — R2.

21

By the assertion (2) of Theorem 1, f is parametrized
as follows.

f(@®

() + A(t)f’(tl)
3.6
(t ot ):l: Py

213 1
3 F 0+ .
NI Va6 1

(—21%,1)

22

Thank you for your listening!

23
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Calcium waves sustained by calcium influx through
mechanically activated channels in the cell
membrane

Zbigniew Peradzynski

Military Technological University and Institute of Fundamental Technological
Research PAS, Poland

(joint work with Bodan Kazmierczak and Stawomir Biatecki)

The work is devoted to the mathematical modeling of fast calcium waves propagating in
some cells. According to the suggestion of biologists, this type of waves exists due to the
complicated mechanisms of the influx of calcium from the extracellular space through
mechanically operated calcium channels placed in the cell membrane. A change in the
concentration of calcium in the cell causes the reorganization of the network composed
of actin-myosin filaments. Under the influence of local forces exerted by these fibers,
ion channels in the cell membrane are opened. At the same time, excess calcium is
pumped out of the cell by several types of pumps located in the cell membrane. All this
together leads to the possibility of wave propagation in the form of homoclinic pulses
of calcium concentration. We start from the construction of the model in 3-D. Then
we derive 1-D nonlocal approximation, which as it turns out, can be still approximated
by a FitzHugh Nagumo type of system. The theoretical model will also be supported
by numerical calculations.
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Calcium waves sustained by calcium influx
through mechanically activated channels
in the cell membrane

Zbigniew Peradzynski * ,Bogdan Kazmierczak**, Stawomir Biatecki**,

* Warsaw Military University of Technology (earlier in
Faculty of Mathematics, Informatics and Mechanics, University of
Warsaw),

**Institute of Fundamental Technological Research.

Workshop on Mathematics for Industry 2023, Warsaw

Provocative question:
Can plants be aware of the danger?

Please see the video:
https://www.youtube.com/watch?app=desktop&&v=7-3yFcZSyvo

,,""Supplying glutamate directly to the tip of one leaf creates a strong wave of calcium
across the entire plant, visualized by fluorescent light. This video is part of research
by UW—-Madison botany professor Simon Gilroy that shows how waves of calcium
crisscrossing a plant help it respond to attacks by preparing for future threats.

The work was published in Science in September of 2018”.

It turns out that plants or their parts can communicate with each other (e.g by
sending sigals calcium waves), preparing thus for unpleasant consequences

100 mM Glu
"

»
i3]
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By waves we mean travelling waves,
special solutions: u = U(x — ct) to
Reaction-Diff. equations (c-const)

* Waves are usually associated with the wave equation or
with hyperbolic systems. However hyperbolic equations
are almost nonexisting in biology. One predominantly
encounters parabolic equations or semilinear parabolic
systems — Reaction-Diffsion Systems.

* The travelling waves in R-D eqs are appearing as an
interplay between the diffusion and nonlinearity.

Single reaction —diffusion equation

]
Frih DAu + F(u)

If u(t,x) — density of individuals, F(u) = ru(1-u/K), then one can
speak of a simple model in population dynamics. The
diffusive term reflects the fact that individuals are moving
erratically. The reaction term F(u) is responsible for the birth
and death processes.

Here travelling wave solutions are heteroclinic fronts. As F is

monostable, because u=0 is unstable equilibrim, there are
solutions for an arbitrary speed = ¢, .

Bistable case; the wave speed is uniquely determined!

F(u) has two stable: u,, u; and one unstable (u,) equilibrium.
Flu)

) / \ .
NG \

Fig. An example of a bistable source function
Fu) = A —u)(u— up)(u —u3)
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An example of a travelling front

The following bistable reaction diffusion equation with
a cubic (bistable) source term

a _ 2
7U=Dizu —Au(u—a)(u—1)

has (D=1, A=1) following travelling front solutions
1

1+exp (%)

u=

where v=+2 (% —a) defines the propagation speed.

Monostable reaction term — waves can propagate with an arbitrary
speed grater then some vg. The minimal speed makes physical sense)
The case of Fu)=ru(1-u/K) is a good example of a
monostable reaction term. It has two zeros:
Unstable state u=0 and stable state u=K

F{u)
Justlookat u' = ru(l—K/ju)

Theory based on single reaction diffusion equation predicts
travelling waves in the form of heteroclinic fronts, joining two
stable (in the bistable case) equilibria of the source term, whereas
observed experimentally calcium waves are of homoclinic type.
Thus, such simplified theory describes properly only the front part
of the wave. To obtain the shape of a homoclinic, the additional
equation for “recovery variable” is usually added.

In the proposed here theory for CICI waves this additional equation
appears in a natural way.
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Ecology, Population dynamics

Reaction Diffusion System (interacting species)

d a?

Em = D1a—xzu, +rug(1-A4A )
a a*

Euz =Dzﬁu2+ruz(1—Az~u)
il

aZ
Ftn = Duggin t 1t (1= 4y 1)
The matrix A = (3,4, ..., Ay,) describes the interactions between the
species. If the entrigs are positive we have the case of species competing for
food.

MONQOTONE SYSTEMS

Definition. The system

9 92

Ui = Diﬁ u;+Fi(uyg, ..., u,), i=1,..,n

n

. . F . PR
is called monotone if % >0for i#j ij=1..
i

is satisfied for all u. Such systems arise in numerous application in
chemical kinetics and populations dynamics.
The maximum principle appears to be valid for monotone systems. Its

applicability allows us to formulate the results on wave existence, stability
and velocity similar to those for the scalar equation.

Comments on a multistable case

F(u) u(xt)
W_
/N
\ \
S\ / W
. i \ / Ly 0
LA / Wo \ ) / w

~ - w

Fig. 2. Bistable nonlincarity with a stable intermediatc zcro wp (Ieft). System of two waves, the speed ¢ of the lower wave is greater than the specd
¢y of the upper one (right).
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John C. Gilkey, Lionel f. Jaffe, Ellis B. Ridgway,
and George T. Reynolds ,A FREE CALCIUM
WAVE TRAVERSES THE ACTIVATING EGG OF
THE MEDAKA, ORYZIAS LA TIPES”,, Journ. Cell
Biology™ Vol. 76, 1978

Ficuze 1 Diagram of unfertilized medaka egg (1.2-
mm diameter). A sperm will cross the chorion (Ch) via
the micropyle (M), enter the cytoplasm (Cy) and initiate
a wave of cortical vesicle secretion. Vesicles are indicated
by small circles. The bulk of the egg is occupied by a

b bounded yolk P (Y). The cyto-
plasmic thickness (0.03 mm) is exaggerated, and oil
droplets are omitted for clarity,

* Signals can be transmitted by various means — calcium concentration
waves among the others. After the fertilization of an egg the wave
sprading on its surface is generated, which changes the status of an
egg. The second sperm can not enter the egg.

The calcium wave through moving amoebae.
Speed 15 um/s. (L. Jaffe)

0Btd /S0P
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Deformation accompanying calcium waves on the surface of

fertilized egg

3~

. e :
(5 \.__j‘h..,\ Lf"’*_«'\
..

~ /
e, ™,
v -~ 1 .
3oum

—A
25 ,
1—

2

From L. Jaffe

Calcium waves (first seen on the fertilizing medaka egg ) turned out to be quite common.
They can propagate both in individual cells and in tissues. The range of their speed:
1nm/s—30 cm/s (nearly a billion fold) falling into four speed —based groups (after L. Jaffe)

In our lecture we will be interestet in CICI fast waves (see diagram below).

ultraslow slow fast ultrafast
— o am S -
CICR CiCi

r L Ll t ] Ll Ll ]

4 3 2 10 1 2 3 4 5 6

CICI WAVES

The mechanism of propagation of CICR waves is based on
autocatalytic release of calcium from the internal stores (e.g.
endoplasmic reticulum) located in the cells.

CICI waves. According to L. Jaffe this cannot explain the
speed of the second group of ,fast waves” . Their speed
can be by two orders higher. Such waves are also
observed in cells not having internal stores of calcium.

Thus: Stretch-activated ion channels in the membrane are
responsible for the calcium delivery from the extracellular
space.
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CELL is extremally complex! (Nobel Prize 2013).
The cell membrane is equipped with

a) ion channels (MECHANICALLY, chemically or electrically controlled)
through which ions are admitted into the cell interior.

b) There are pumps in the membrane - at least two types:

o ATP type - efficient at low Ca** concentrations

® sodium-calcium exchangers; very efficient at high Ca** concentrations.

Thanks to them, balance in the cell can be restored.
Mechanically operated ion channels (stretch activated)
are opened when the membrane is stretched.

Inside the cel we have

Cytoplasm
Actin filaments
Internal stores of calcium (endoplasic reticulum)

Other important ingredients as: ion channels and ion pumps located in
the cell membrane.

PwnNPE

* As the Ca concentration increases, the filaments are increasingly
connected by myosin bridges and the filament network contracts.

* The filaments also serve as routes along which various materials in bags
(vesicles) are transported by appropriate motors. ( F=2.7 pN). See for

example : https://learn.genetics.utah.edu/content/cells/vesicles/

Model of a cell

Enaay
rot

Plasma (cell)

Plasma (con) membrane

(from the lecture by Kizylvova)
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Fioure 1 Actin filaments (dark and thin) and microtubules (briaht and thick)

Coming back to Ca waves

There are already well known and well researched CICR waves i.e.
»Calcium Induced Calcium Released” waves (L. Jaffe) . The simplest
theoretical description is based on single reaction diffusion equation
with a bistable source term. For a small excess of calcium above

the equilibrium concentration,
calcium is absorbed into internal
stores. After exceeding a certain
threshold value (the second zero
of the source function) calcium is
released from the internal stores of the cell in an autocathalitic
reaction, untill its concentration reaches the next equilibrium value (the
third zero of source function).
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Lionel Jaffe Hypothesis

According to L. Jaffe, the CICR mechanism cannot be responsible
for high speed of CICI waves (see diagram).

It is known that:

Stretching the membrane activates the ion channels and calcium
can enter the cell from the extracellular space.

Hypothesis: when the calcium concentration grows the actin-
myosin network is reorganized — the filament network contracts.
Consequently, filaments are pulling the membrane. Mechanically
stimulated channels are opened and calcium enters the cell. This
mechanism (calcium induced calcium influx) supports the wave
propagation.

Hypothatics! CIC! Weves —
the subject of our modalling

* Accorfing to L. Jaffe in this case

Icium from the extracellular space dntbed ediviied im hanachs
enters the cell through mechanicaly [ o/ St ton husps
activated ion channels located in the y jﬁ. A remp
cell membrane. In the extracellul Y 3L ol '\[, —
space Catt concentration is by two "T AN\ ”f‘ i
orders higher than in the cell internal (4 Cytepleanm (
stores. The channels are opened when ! » _
the membrane is stretched. ‘-K k 1(—__7§ 3 _} (—f)f i

o (P ot [

Ll

Calcium pumps

Calcium pumps are ion transporters found in the cell
membrane. They are responsible for active transport
of calcium out of the cell, keeping the intracellular
calcium concentration 10 000 times lower than the
extracellular. The plasma membrane Ca2+ ATPase
and sodium-calcium calcium exchanger are the main
regulators of intracellular Ca?* concentration. The
first type is efficient at low Ca concentration, whereas
the second type is extremely efficient at higher
concentrations.

They also seem to play the crucial role in supporting
the CICI Waves!
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Assumptions.

1. The contraction of the actomyosin network results in appearing of so
called “traction forces”. However, the effect of contraction following the
increase of calcium concentration appears with some delay —relaxation time
is needed to form the myosin bridges

2. The calcium can enter from the intercellular space through the
mechanically stimulated ion channels located in the cell membrane

3. The mechanical stimulation of the membrane is caused by the
actomyosin network - cortex. The fibers of the cortex as well as the rest of
actomyosin network in the cell are subject to the contraction whenever the
calcium concentration in the cell cytoplasm increases.

As the calcium concentration increases, the myosin
filaments become more and more connected through the
increasing number of myosin Bridges. This leads tothe
contraction of the filament network.

This contraction influences the shape of the cell. If we
imagine the ideal cell of a cylindrical shape, then the cell
radius will be reduced. Therefore, at first 9lance, we should
not expect any stretching of the cell membrane.

This is however macroscopic view. Microscopically the
membrane will be very unsmooth. Funnel-shape
depressions will apﬁear under the influence of pulling
forces, in places where the filaments are anchored. So in
spite of this that the average radiuce gets smaller we will
have the membrane stretching as its shape becames more
complex.

When the wave passes, the cell radius shrinks. So how can
we have stretching ? locally we expect the following picture

cell membrane.

Pressure of
the cytosol

actin fiber pulling the membrane
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Suppose, the ion channels are openned whenever the
membrane is streched. Then permanent stretch :

High calcium concentration over a long period of time would
lead to the cell death. Therefore, a permanent state of stretch
should not result in a continuous influx of calcium.

Experiment: oscillatory stretching leads to Ca** influx
proportional to the amplitude and oscillations frequency.

This suggests that the calcium influx should rather be related to
the speed of membrane stretching !

H.1. Therefore, if nis an internal unit vector normal to the cell
membrane and F is the force acting on unit membrane area,
then the calcium influx (flux per unit area) is proportional to
the positive part of the time derivative of the force acting on
the unit surface.

3]
Ca**influx ~ [5 (n- F)]
+

Positive part, because only stretching counts. One can show
that otherwise the Ca concentration may become negative !

Taking into account the pumps p(c)
t e /
ple): | o St enii
++ 9
total Ca™™ influx ~ [—(n . F)] —p(u) -
at +

This is the boundary condition for the Ca diffusion equation.

344



Now we arrived at the MECHANICAL PROBLEM:

Determine the forces acting on the membrane ; i.e. forces
resulting from the actin filaments attached to it.

In principle two approaches seem to be possible:

a) Calculate the distribution of forces on each filament of the
contracting network due to the appearance of myosin
bridges. In particular those anchored in the membrane. Then
find the shape of deformed membrane.

This seems hopelessly difficult !

Continuum mechanical approach ?

b) In mathematical biology (Murray, Mathematical Biology) ,
the cell is often treated as an elastic (or viscoelastic) body, and
the forces associated with the contraction (traction forces) are
expressed by the traction tensor. This description is very
similar to termo-elasticity. Ca**concentration plays the role
of the temperature (in fact —T).

Applying this idea, we arrive at a system of three equations.

The system consists of

1. The equation of motion of the viscoelastic body, i.e cytoplasm with
the filament network. The equation of motion (linear approximation) for
the displacement vector u(t, x) must be equipped with proper
boundary conditions. Under the influence of traction forces the
membrane is deflected. So basically, we should know the elasticity of
the membrane. However, to estimate the forces acting on the
membrane, one can assume that the membrane is stiff and not
deformed. In such a case we have simple b-dry condition: u(R)= 0

Let us remind that if the initial position of a material point is x and it
position changes to ¥ then u(x) =X — x.
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2. Relaxation equation for the traction tensor T with agiven  equilibrium
form T*(c). We have T(t,x) = T*(c(t, x)) for very slow changes of the
concentration c¢(t, x).

3. The diffusion equation for calcium concentration ¢(t, x) and nonlinear
boundary condition expressing the influx of calcium (by ion channels and ion
pumps) caused by positive part of time derivative of traction forces acting on
the membrane.

In fact, the diffusion of calcium in the cell is quite a complicated process
because of the buffers - proteins that can attach and release calcium ions. This
can be described by a system of equations for the diffusion reaction. If we use
one equation as here, D should be treated as the effective diffusion
coefficient.

Treating (idealized) cell as an Infinite cylinder we could try to solve:

2 .
(1) paa7u — vyAit+ (vy + v,)Vdivit =p Au + (u + A)Vdivu + div T(c)
with b-dry condition: u(t,R) =0

(2) %T = B[f'*(c) i T‘], where T*(c) - known (e.g. linear)

(3) % ¢ = DAc inside the cell

a d +
D;c(t, R,z)=Q [;a,., (t,R, z)] —p(w) ontheb-dry

suplied by initial conditions foru, T, c.

Comment. The first equation, the equation of motion can be

a2
simplified by omitting the dynamical term Pzl and possibly the
viscouse terms VA it + (vq + v3)Vdivit.

Then one obtains an eliptic system for the displacement u(t, x).

In principle it is possible to solve the above system numerically. For
reasons discussed below, we decided on a slightly roundabout but
simpler route.
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In presented here equations we assumed the medium to be isotropic.

However, the anisotropy, can be important as it can greatly influence the
d of . Indeed, the network structure - the way the filaments are

eonnected affects the transfer of forces acting on the membrane through

the interconnected fibers.

Depending on the way the filament network is interconnected, calcium
channels may be opened in places more or less distant from the front of the
wave of increased calcium concentration. Thus, we should solve systems
with different degree of anisotropy.

To avoid all these complications, we a slightly different modeling

{ '’

route.

Intermediate way, Here T = 7l

Instead, we chose the intermediate solution. By solving the equations
of mechanical equilibrium,

pAu+ (p+ Dvdivu + divT(c) =0

assuming that the solution is independent of the axial variable, and for
isotropic traction tensor T = 7l we can estimate the forces acting on
the membrane as

R

o (t,R) = T(t,r)2nrdr

1
Rz

Since the Ca influx is proportional to time derivative of g,.,
25 (t,R) = — f —1(t,r)2nrdr
at TN 7Rz Jo 3t
a *
we have —t=B[t*(c)—1] ,so
at R

:t o (t,R) = izf [t*(c) — 7] 2mrdr
0
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Smearing the force (interconnected filaments)

The previous step do not include transmition of force from one point to
another by interconnected filaments. To take this into account we introduce a
kind of smearing out of forces actirI\g on the membrane through an averaging
integral operator (convolution wit K ;)

R +

2
= f(‘r‘(c(t, r,2)) —1(t.,r,z))rdr| —p(c)

o

a
Dac(t,R.z) =A{K; =

1 z2
7= exP(—72)-

where in numerical simmulations we took K, =
(-2

This non-local mechanism embodies the idea of L. Jaffe

membrane

actin network
Lo

Schematic view of simplest model of actin fibers network in 2D.

When Ca ion i the fibers pulling

the . This of fibers cor ds to
anisotropic case ( no myosin bridges between filaments). The force is not
transfered between filaments — local mechanism.

K~ 6(x)

* This mechanizm is nonlocal. The filaments
are interconnected by myosin bridges.
Their number grows with Ca concentration.

* The force that appears in one place is

Nonlocal transferred by the tangled fibers to other

mechanism of neighboring ones. Thus the channels are
i openned ahead of the propagating wave of

propagat[on Ca** concentration. This accelerates the

wave propagation.
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Numerical computations

All numerical computations were done for the diffusion coefficient D=1.
The source term:

[K(0,25u + 0.1u? — 7)), —p(u) where

p(w) = u(u?® — 1.15u +0.5)

For K=id and 7 = 0 the source term takes form
u(u—0,25)(u—1)

Eq. iu = a_ u — u(u — 0,25)(u — 1) has heteroclinic solutions

3x?
(travelllng fronts) of the form

Source term for T = 0
For T = 0 we must have bistable case!

Source term for tau=0

3D NUMERICAL SIMMULATIONS |
Assuming cylindical symmetry we solved numerically the system :
Zc=DAc inQ,
at
Dn-Vc= A{[K,%‘t] —p(c)} onaq,

—‘t— B[t"(c) — 1] inQ
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Numerically determined travelling homoclinic waves (moving to the right)

Ca™* concentration (for different o)

W W w0 w0 W W

Numerical computations

All numerical computations were done for the diffusion coefficient D=1.
The source term:
[K(0,25u + 0. 1u% — 7)]. —p(u) where
p(w) = u(u? — 1.15u + 0.5)
For K=id and 7 = 0 the source term takes form
u(u—0,25)(u—1)
Eq. iu = a— u — u(u — 0,25)(u — 1) has heteroclinic solutions
(travelllng fronts) of the form

ONE DIMENSIONAL APPROXIMATION

Averaging our diffusion equation with respecttor:
and similarly, the equation for the traction, we arrive at
the one dimensional problem

3

U= Da > u + = BK, + [t'(0) — 1] —p(w)
21 = Bl (u) — ]
where

u(t,x) = # foR 2nr c(t, x,r)dr
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Waves profiles at r=R, (R=2) for different B: (a) B=0,18, (b) B=0,28,, (c) B=0,38,
etc. where the reference g is fo = 0,01205. On the left for 6=10. On the right

for 0=20.
Profiles on the boundary R =2,0 = 10 Profiles on the boundary R=2,0 =20
PR ——— g =0 —
08 08
06 06
04 04
02 02
400 -300 -200 100 0 600 400 200 0 200

On the left: wave profiles and wave velocities in 1-D simulations for A=1, and (a) 6=40, (b) =20, (c)
=10, (d) =0 and for §=0.001205 (=0.1 ;). On the right: 3D simulations for A=1, R=2, and $=0,001205
and the same values of 6. Propagation velocities with respect to the heteroclinic case [ vg = \/5/4) are:
(a)13.7,(b) 6.96, (c) 3.63, (d) 0.978

One dimensional case R =2, §=0.13, Profiles an the boundary R = 2, § =014
—— —
iiq-0,0IZDS &1 = oot
g
an 08
" g b @ ©
as B
e Rl
03]
2
A N N

Fitzhugh —Nagumo type of approximation

The influence of the variance ¢ of K; on the wave velocity.

Expanding :

K, = t"(u) we arrive to easier, local system of equations

%w = :—:2 (Dw +%62 'r*(w)) +%{[‘t*(w) —1]* —pw)}

21 = Blr' (W) — 7]

with larger diffusivity. The wave velocity is ~/dif fusivity
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F-N model is simple and gives good wave speed.

This F-N model we studied (with J. Napiokowska) for a particular shape
of the source term step like z*(w) and linear p(w).

* In this case the existence of homoclinic waves is proven for some
range of B < fBy,

* For B > fB, there are no homoclinic waves.

* There are two solutions for given 8 < 8. Narrow one unstable and
wider which is stable.

Conclusions

1. It seems that the idea of F. Jaffe works

a) Wave velocity grows as o . o — range of mechanical
interactions due to actin-myosin fiber network.

b) The concentration of Ca in extracellular space is
100 times bigger than in endoplasmic reticulum, so
flux through ion channel can be quite high. Again,
wave velocity grows as VSource

2. 1-D approximation seems to work quite well ! It
well reproduces the 3-D simulations.
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Thank you for your attention
and
the organizers for the invitation.
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WORKSHOP ON MATHEMATICS FOR INDUSTRY 2023

September 25-29, 2023, Warsaw, Poland

Generalization of Reeb spaces and application to
data visualization

Osamu Saeki

Institute of Mathematics for Industry, Kyushu University, Japan

In many cases, data sets can be considered to be discrete samples of differentiable maps
between manifolds. For a differentiable multivariate function into R? with p > 2, its
Reeb space is the space of connected components of its fibers. This is a generalization
of the notion of Reeb graphs for univariate functions in the case of p = 1. It has been
known that Reeb spaces are often very useful for visualizing the given multivariate
function. In this talk, we generalize the Reeb space in such a way that it captures
more of the topological features of the fibers, not only their connected components.
This theoretical part essentially relies on the global singularity theory of differentiable
maps between manifolds developed mainly by the author. Such techniques have been
used for efficiently visualize large scale data. If time permits, we will also discuss an
application to multi-objective optimization problems.
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Generalization of Reeb Spaces and

Application to Data Visualization

Osamu Saeki
(Institute of Mathematics for Industry,

Got PhD in Mathematics in 1992.
"On 4-manifolds homotopy equivalent to the 2-sphere”

Main interest: Singularity Theory, 3- and 4-Dimensional Topology
| proposed the Theory of Singular Fibers of Differentiable Maps.
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I .
My recent interests include collaboration with computer scientists on

enhancing visualization of multi-variate data from the viewpoint of
topology or singularity theory.

§1. Fiber
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Setting
§1 Fibsr

N™ : C* manifold (e.g. bdd domain in R?), f: N® - R™ C* map
We can write f = (fy, f2,..., frm) multi-variate data

We assume f is generic (C* stable, C° stable, finite codimension, etc.)
We are interested in the topology of fibers f~(y), y € R™.

Generically, dim f~(y) = n — m. We usually assume n > m.

R

We can grasp global feature of data by chasing fibers (or level sets).
We have singular fibers (or critical level sets) where topological

4z

Singular points and Jacobi set
§1 Fiber

f:N*5R™ (n>m) C* map

For p € N, consider the differential df, : T,N™ — Ty R™.

The set of singular points J(f) = {p € N"| rank df, < m} is called the
Jacobi set of f. Generically, dim J(f) =m — 1.

Jacobi set image f(J(f)) divides the range R™ into some regions.

|

Topology of fibers changes along the Jacobi set image.
Singular fiber is a fiber f=(y) with y € f(J(f)).
It is important to know topological changes of fibers near a singular fiber.

5/

Classification of singular fibers
§1 Fibsr

For certain dimensions, we can classify singular fibers of generic maps.

Example 1.1 Classification results for (n,m) withn —m = 1.
For simplicity, we assume the domain N™ is orientable.
We will ignore regular fiber components.

1. (n,m) = (2,1) [Folklore] & =1 (codimension)
e

2. (n,m) = (3,2) [Kushner-Levine-Porto, 1984]

k=1

. oo

—

k=2 e .ooggg @ C

6/2
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Singular fibers for (n,m) = (4,3)

§1 Fibsr

3. (n,m) = (4,3) [S]

"=1I . oo

n=2l .. .« O

8886
&| o

>
-8

Go
CcO

AREE

oc- |=< (888]°)

Q8 | oo |83°] 88

4. (n,m) = (5,4) [Yamamoto-S.]

723
§2 Rasb Spacs

§2. Reeb Space

Reeb space
§2 Resb Space

Fora C* map f: N® — R™, n > m, the space Ry obtained by contracting
each connected component of a fiber to a point is called the Reeb space of
f [Edelsbrunner—Harer—Patel, 2008].

N R™
_ 5
N
Ry

When m = 1, it is also called the Reeb graph.
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Local structures of Reeb spaces

§2 Resb Spacs

Classification of fibers
= Characterization of local structures of Reeb spaces

Example 2.1 1. (n,m) = (2,1)
&1t R-A
2. (n,m) = (3,2) [Kushner-Levine-Porto, 1984]
= & Gy (=
. oo @ (000} O

3. (n,m) = (4,3) [Hiratuka, 2001]

10723

Applications

§2 Rssb Spacs

An example of an application of Reeb graphs:
[Takahashi—Takeshima—Fujishiro, 2004] Topological Volume
Skeletonization and its Application to Transfer Function Design
See Fig. 4 of [STSWKCDY].

Explicit example: Atom collision
See Fig. 5 of [STSWKCDY].

Application of singular fibers: Hurricane Isabel data
See Fig. 15 of [STSWKCDY].

Reference:

[STSWKCDY] O. Saeki, S. Takahashi, D. Sakurai, Hsiang-Yun Wu,

K. Kikuchi, H. Carr, D. Duke, and T. Yamamoto, Visualizing multivariate
data using singularity theory, The Impact of Applications on Mathematics,
Proceedings of Forum "Math-for-Industry”" 2013, pp.51-65, Springer, 2014.

1n;2

User interface

—eE e

. S 5 L 11 | s )|
= ) —_ e

0 flxyg) = (@2 +2 +2)

Implemented by Daisuke Sakurai (Kyushu Univ.)

12;2
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§3 Gsswithn m = 2 and Bayond

§3. Case with n —m =2 and
Beyond

Regular fibers for n — m =2

§3 Casswithn m =2 and Beyend

How about the case n —m =27
We assume the domain N™ is orientable, compact, and w/o boundary.
Regular fibers are closed orientable surfaces.

X, : closed orientable surface of genus g

14,2

Reeb graph for (n,m) = (3,1)

§3 Gsswithn m = 2 and Bayond

Case with (n,m) = (3,1).

Fo i
S

\_-‘__/

91 92

15/23
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Reeb space for (n,m) = (-

§3 Gsswithn m = 2 and Bayond

Each regular “stratum” has its own label (genus of the corresponding regular
fiber component). [Furuya, 1986]

7 i it

- 93
91=9g2+93
9+2 @ 93 9
g+1 o+1 | \G/ v .
g 91%G2 H g gs,
A 0 +1
91 =92+G3 g1=g2+93 91T 9
92 = g3+ G4
9=01+92
/QE -~ § ;a+1
. 16/23

0-th Homology
§3 Casewithn  m =2 and Beyend

Reeb space describes the connected components of fibers and their
"adjacencies”.

Ze1Z Hy(f~'(y)) Z

|

Z

17/

Reeb diagram
§3 Gsswithn m = 2 and Bayond

This idea can be extended to homology groups of any dimension (or
homotopy groups, if you want).

Hi(f~ (1)) — Hi(f 7' () « Hi(F 7 (1))
—_——

a b c d
— e
2
Hi(p)
Hy(a)=— Hi(e) —= H(0)$ 3 H(e)+—Hi(8)—= Hi(d)

Hm~"

= Notion of Reeb diagram.
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Categorical formulation
§3 Gsswithn m = 2 and Bayond

Kl\
~
i 1 H1\
K, _"\ G - Ky
R
3\1 / 4
K
/ 2
2N
< Kg — G — Kl
\:\ 4
H
In a certain categorical formulation of a Reeb space, this can be considered
to be a functor.
Remark 3.1 This makes sense if each stratum is contractible.
10/
Monodromy
§3 Casawithn  m = 2 and Beyend
If a stratum is not contractible, we need to consider monodromy.
Suppose 7 : E — B is a C* fiber bundle with fiber S.
MCG(S) = mo(Diff 1 (S)) mapping class group
Associated to 7 is the monodromy m1(B,by) — MCG(S).
This measures the "twist” of the fibers along a loop in the base B.
] E
m
B
20/

Monodromy in Reeb diagram
§3 Gsswithn m = 2 and Bayond

Given a generic map f : N* — R™, we can subdivide R™ (or the Reeb space

Ry) so that each stratum is contractible.
In this case, the monodromy is hidden in the Reeb diagram.

e i

my(B,by) = MCG(S) — Aut(H,(S))

Problem 3.2 Formulate all these, including monodromy! Category theory?
How to compute Reeb diagram and/or monodromy?

21,2
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Possible application

§3 Gsswithn m = 2 and Bayond

Let us consider a multi-ojective optimization problem.

Such a problem can be formulated in terms of a C*° muti-function

.f= (fh.fza-“y.fm) :N® _)Rm.

For example, given a bench-mark problem of multi-optimization, we can

evaluate its complexity or certain characteristics in terms of its Reeb space,
or more generally, its Reeb diagram.

2/2

Ending

§3 Casswithn m =2 and Beyend

Thank you for your attention!
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