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Epidemic to immuno-epidemic models of COVID-19

Malay Banerjeea,1, Samiran Ghosha, Vitaly Volpertb,c

a Department of Mathematics & Statistics, IIT Kanpur, Kanpur - 208016, India
b Peoples Friendship University of Russia (RUDN University)

6 Miklukho-Maklaya St, 117198 Moscow, Russia
c Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1

69622 Villeurbanne, France

1 Motivation and developments of mathematical modelling in
epidemiology

Mathematical models in epidemiology have played a crucial role in understanding and predicting
the spread of various infectious diseases. The models have evolved over time and have become more
complex to capture the various factors that influence the spread of diseases. During the COVID-19
pandemic, mathematical models have played a crucial role in understanding the progression of the
disease, predicting the impact of interventions, and informing policy decisions.

One of the earliest models was developed by Daniel Bernoulli in the XVIII century. In the early
20th century, Kermack and McKendrick developed a set of differential equations that described
the spread of infectious diseases in a closed population [1, 2, 3]. More recent developments in
mathematical epidemiology include multi-compartmental models [4, 5], which divide the population
into different groups based on their disease status, such as susceptible, infected, and recovered etc.
These models can also include factors such as age, gender, and geographic location. Nonlinear
transmission rate models account for the fact that the rate of transmission of a disease may change as
the number of infected individuals increases [6]. Multi-patch models take into account the fact that
infectious diseases can spread across different geographic regions, each with their own population
and transmission dynamics [7, 8]. Agent-based models simulate the behavior of individual agents,
such as people, and how they interact with each other and their environment [9]. Network models
describe the spread of diseases on networks, such as social networks or transportation networks
[10, 11]. Overall, mathematical models in epidemiology have provided valuable insights into the
spread of infectious diseases and have helped inform public health policies and interventions.

2 Multi-compartmental epidemic model

Compartmental epidemic models are the most commonly used mathematical models to describe the
spread of an epidemic disease. The use of a compartmental model can help in understanding the

1Corresponding author.

1

35



complex dynamics of the epidemic, as well as the effectiveness of different intervention strategies
in controlling the spread of the disease. It can also be used to predict the future trajectory of
the epidemic and inform policy decisions on the optimal interventions to use. The very basic
nature of an epidemic can be captured by the well known classical SIR-type models, which is
mainly based upon three compartments, susceptible (S), infected (I) and removed (R). But, to
understand the epidemic progression in more details, more compartments need to be incorporated
in the modelling. There are many developments towards the multi compartmental epidemic models
[4, 5]. In the context of the COVID-19, the progression of epidemic was not easy to track, and it was
necessary to consider all possible compartments that take into account all the complexities of the
infection including all stages of the infection, as well as the complexities in the social restrictions
(e.g., quarantine, lock downs etc.). In [12], we considered multiple compartments based on the
different stages of the disease and the different interventions used to control the spread of the virus.
Specifically, we used the following compartments: susceptible (S(t)), exposed population who are at
the beginning of the incubation period and cannot spread the disease (E1(t)), exposed population
who are at the end of the incubation period and can spread the disease (E2(t)), symptomatic (Is(t)),
asymptomatic (Ia(t)), quarantined (Q(t)), hospitalized (J(t)), recovered (R(t)). Each compartment
is connected to others through a set of ordinary differential equations that describe the flow of
individuals between the compartments. The model is depicted in the flow chart Fig. 1 and is given
in the system (2.1).

dS

dt
= −βS

N
(Is + p1Ia + p2E2 + p3Q+ p4J), (2.1a)

dE1

dt
=

βS

N
(Is + p1Ia + p2E2 + p3Q+ p4J)− µE1, (2.1b)

dE2

dt
= µE1 − δE2, (2.1c)

dIa
dt

= (1− σ)δE2 − ηIa, (2.1d)

dIs
dt

= σδE2 − (ρ1 + ζ1 + ζ2 + ζ3)Is, (2.1e)

dQ

dt
= ζ1Is − (ξ1 + ξ2)Q, (2.1f)

dJ

dt
= ζ3Is + ξ1Q− (ρ2 + ν)J (2.1g)

dR

dt
= ηIa + ζ2Is + ξ2Q+ νJ, (2.1h)

subjected to non-negative initial conditions S(0), E1(0), E2(0), Ia(0), Is(0), Q(0), J(0), R(0) ≥ 0,
and the interpretation of the are given in the paper [12]. The basic reproduction number and
controlled reproduction number for the model (2.1), are respectively given by (details are in [12]):

R0 = β

[
p2
δ

+
(1− σ)p1

η
+

σ

ρ1 + ζ2

]
, (2.2)

and
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Rc = β

[
p2
δ

+
p1(1− σ)

η
+

σ

ρ1 + ζ1 + ζ2 + ζ3
+

p3ζ1σ

(ρ1 + ζ1 + ζ2 + ζ3)(ξ1 + ξ2)

+
p4σζ3

(ρ1 + ζ1 + ζ2 + ζ3)(ρ2 + ν)
+

p4σξ1ζ1
(ρ1 + ζ1 + ζ2 + ζ3)(ξ1 + ξ2)(ρ2 + ν)

]
. (2.3)

During this work, social restriction was the only control measure for COVID-19 worldwide, and
the social interactions were completely monitored by the government time to time. For that reason
we considered the transmission rate as time dependent and we considered two different choice of
transmission rate as shown in Fig. 2 and the corresponding model fitting with the data of Germany
is shown in Fig. 3. The fitted parameter values are available in the paper [12]. Interestingly, in
Fig. 3 the data are fitted well in the case of continuous β(t) as compared to the discontinuous choice
of β(t). The same model is fitted with data from other countries [12].

Figure 1: Schematic diagram for the progression of disease described by the model (2.1). Solid
arrows represent the transfer from one compartment to another while the dotted line with arrow
denote the compartments responsible for disease transmission. Associated rates are mentioned
accordingly.

Then we extend our proposed model to a two-group model. We divide the whole population
into two groups and this may be a group following the protocols and the other group not following
the protocols; or, the grouping can be made by the age of individuals, etc. The extended two group
model is given by (details of the variables and parameters are given in [12]):

dS1

dt
= −S1

N
[β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ+ βJJ ] , (2.4a)

dS2

dt
= −S2

N
[β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ+ βJJ ] , (2.4b)

3
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(a) (b)

Figure 2: The values of β changing with time t and used in (a) blue curve in Fig. 3 and (b) magenta
curve in Fig. 3 respectively.

(a) (b)

Figure 3: Blue curves indicate the model simulation and the red dotted curves indicate the reported
data for cumulative infected population. Simulation results are obtained for two different forms of
β(t), (a) with β(t) as shown in Fig. 2a; (b) with β(t) as shown in Fig. 2b.

dE11

dt
=

S1

N
[β11(Is1 + p11Ia1 + p12E12) + β12(Is2 + p21Ia2 + p22E22) + βQQ+ βJJ ]− µ1E11,

(2.4c)

dE21

dt
=

S2

N
[β21(Is1 + p31Ia1 + p32E12) + β22(Is2 + p41Ia2 + p42E22) + βQQ+ βJJ ]− µ2E21,

(2.4d)

4
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dE12

dt
= µ1E11 − δ1E12, (2.4e)

dE22

dt
= µ2E21 − δ2E22, (2.4f)

dIa1
dt

= (1− σ1)δ1E12 − η1Ia1 , (2.4g)

dIa2
dt

= (1− σ2)δ2E22 − η2Ia2 , (2.4h)

dIs1
dt

= σ1δ1E12 − (ρ11 + ζ11 + ζ12 + ζ13)Is1 , (2.4i)

dIs2
dt

= σ2δ2E22 − (ρ21 + ζ21 + ζ22 + ζ23)Is2 , (2.4j)

dQ

dt
= ζ11Is1 + ζ21Is2 − (ξ1 + ξ2)Q, (2.4k)

dJ

dt
= ζ12Is1 + ζ22Is2 + ξ1Q− (ρ2 + ν)J, (2.4l)

dR

dt
= η1Ia1 + η2Ia2 + ζ13Is1 + ζ23Is2 + ξ2Q+ νJ. (2.4m)

Now considering one group for the people who follow protocols and the other group for people
who do not follow protocols, we define the quantity K (coefficient of social interaction) by K =
S1/N, where, N is the total population and S1 is the total population in the first group. Numerically
we observed that K is very sensitive and a very small increment in K can lead to a larger epidemic
outbreak (see Fig. 4). Using the model (2.4), we fit the trend of larger second wave in Spain in
Fig. 5 (the estimated parameter values are given in the paper [13]).

(a) (b)

Figure 4: Time evolution of E1, E2, Ia and Is obtained from the numerical simulation of the two
models (2.1) and (2.4) from 15th February to 30th November 2020 as described in the text. Two
different values of K are used for the duration 1st September to 30th November, (a) K = 0.1 and
(b) K = 0.15.

5
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Figure 5: Fitting of the model (2.4) with the data for Spain. The fitted parameter values are
available in the paper [13].

3 Model with distributed recovery and death rates

While multi-compartmental classical epidemiological models have been successful in predicting and
controlling the spread of infectious diseases, there are still limitations and assumptions that need
to be taken into account. More advanced models that incorporate more complex and realistic
assumptions about the transmission dynamics of diseases can provide more accurate predictions
and help in designing effective control strategies. Classical epidemiological models, such as SIR,
are systems of ordinary differential equations for the number of susceptible people (S), infected
(I) and recovered (R). These models are based on two main assumptions: the first assumption is
that the number of new infections is proportional to the number of susceptible and the number of
infected (i.e., their product). This assumption, although empirical, can be justified under certain
circumstances. The second assumption of the classical epidemiological models, which states that
the number of recoveries and deaths are proportional to the total number of infections at a given
time, is based on the idea that the duration of infectiousness is fixed and independent of the number
of infected individuals. However, this assumption may not hold true in all cases.

Suppose, for definiteness, that the disease lasts, on average, two weeks and the probability of
recovery is 95%. Then at time t, 0.95J(t− t0) will recover and 0.05J(t− t0) will die, where t0 = 14
days, J(t− t0) is the number of people who fell ill two weeks ago. Thus, the number of recovered
people at time t is determined by the number of cases at time t− t0, and not by the total number
of infected people at time t. These two values can be very different, especially during periods of
exponential growth or decline in the epidemic. Therefore, instead of the usual SIR model, we get
a model with a delay, and the magnitude of the delay is determined by the duration of the disease
[14]. In [14], we developed the delay model (which is entirely determined by the daily number of
new cases J(t)), given by:

6
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dS(t)

dt
= −J(t), (3.5a)

dI(t)

dt
= J(t)− J(t− τ), (3.5b)

dR(t)

dt
= r0J(t− τ), (3.5c)

dD(t)

dt
= d0J(t− τ). (3.5d)

Here J(t) = β S(t)
N I(t) and J(t) = 0 for all t < 0.

Determination of disease duration from data: Using the model (3.5), we can determine the
disease duration τ from the the epidemiological data for daily number of infected J(t) and the
number of infected individuals I(t), using the equation

dI(t)

dt
= J(t)− J(t− τ).

Let I(t) have maximum at t = tm. Set I(tm) = Im. Then J(tm) = J(tm− τ), i.e., the daily number
of infected is same at two different time points t = tm and t = tm − τ . From the real data of the
active infected individuals I(t), we can find the day on which the daily number of active cases is
maximal and it determines tm. From the data of daily reported cases J(t), we can observe that J(t)
crosses its maximum at some time before tm. Now we have to find the value of J(t) such that J(tm)
will be equal to J(tm − τ), which in turn determines the disease duration τ . Hence considering the
delay model, using the real data of daily new cases J(t) and active cases I(t) around a peak, we
can find the disease duration τ .

We illustrate this method using the data of J(t) and I(t), taken from Worldometer for COVID-
19 in Italy. We have collected the daily new reported data J(t) and active case data I(t) for Italy
from February 21, 2020 to May 31, 2021 (which captures the first three peaks in Italy). To have
smoother data, we use 7-days’ moving average, the data on j-th day replaced by the average data
from (j− 3)th day to (j+3)th day. As the concerned method is focused on the peaks, the error at
the beginning and end of the time interval is immaterial. In Italy, during the first peak (in April
2020), the peak of I(t) is attained at tm = 51 (Fig. 6(a)) and the peak of J(t) is attained before
on t = 51 which is less than tm (Fig. 6(b)). First we find that J(tm = 51) = 4.17 × 103 and then
find J(32) = 4.15 × 103 ≈ J(tm = 51). This implies J(tm − τ) = J(32) and consequently, we can
calculate τ = 19 as the disease duration during the first peak. Similarly, during the second peak
(in November 2020) and third peak (in March 2021), we have estimated the disease duration as
τ = 20 days and τ = 14 days, respectively. Similarly, the value of τ is estimated for some other
countries which are available in the paper [14].

Distributed recovery and death rates: For instance, if the disease has different levels of
severity or if there are differences in treatment availability, the duration of the disease may vary
among infected individuals. In such cases, the assumption of a fixed duration of the disease may
not be appropriate, and more complex models may be required to account for these factors. It is
necessary to take into account not only the average duration of the disease, but also the probability
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(a) (b)

Figure 6: Estimation of the disease duration τ using the data around different peaks of COVID-19
in Italy. Time t = 0 corresponds to February 21, 2020. The obtained value of τ is 19 days for the
first peak, 20 days for the second peak and 14 days for the last peak.

of recovery (or death) depending on the time elapsed after infection. Such data are available in the
literature and they allow us to formulate and study a model with distributed parameters [13]. Let
r(t− η) and d(t− η) be the recovery and death rates depending on the time-since-infection t− η.
Then the number of new recovery and death at time t are respectively given by:

∫ t

0
r(t− η)J(η)dη,

∫ t

0
d(t− η)J(η)dη.

Then the model looks like:

dS

dt
= −J(t), (3.6a)

dI

dt
= J(t)−

∫ t

0
r(t− η)J(η)dη −

∫ t

0
d(t− η)J(η)dη, (3.6b)

dR

dt
=

∫ t

0
r(t− η)J(η)dη, (3.6c)

dD

dt
=

∫ t

0
d(t− η)J(η)dη, (3.6d)

where, J(η) = βS(t)I(t)/N , with the initial condition S(0) = N , I(0) = I0 > 0, R(0) = 0,
D(0) = 0 and J(t) = 0 for t ≤ 0.

Reduction to classical SIR model and delay model: Our proposed model (3.6a)-(3.6d) can
be reduced to some simpler models for some particular and simpler choices of the recovery and
death distributions. If we choose:

r(t− η) =

{
r0 , t− τ < η ≤ t
0 , η < t− τ

, d(t− η) =

{
d0 , t− τ < η ≤ t
0 , η < t− τ

, (3.7)

8
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where τ > 0 is disease duration, r0 and d0 are some constants, then the model (3.6a)-(3.6d) reduces
to the following classical SIR model

dS

dt
= −β

S

N
I, (3.8a)

dI

dt
= β

S

N
I − (r0 + d0)I, (3.8b)

dR

dt
= r0I,

dD

dt
= d0I. (3.8c)

On the other hand, if we choose r(t− η) = r0δ(t− η− τ), d(t− η) = d0δ(t− η− τ), where r0, d0
are constants, r0 + d0 = 1, and δ is the Dirac delta-function, then the model (3.6a)-(3.6d) reduces
to the delay model (3.5) discussed earlier.

Estimation of recovery and death distributions: It is common to use gamma distribution
to model the time it takes for an individual to recover or die from an infectious disease. To estimate
the recovery rate function r(t) and death rate function d(t) for the COVID-19 epidemic, we fit a
gamma distribution to the data for 120 recovered patients and 31 dead individuals in China (see
[13] for details).

The gamma distributions fitted to the recovery and death data are respectively given by (see
Fig. 7a, Fig. 7b respectively):

f1(t) =
1

ba11 Γ(a1)
ta1−1e

− t
b1 , f2(t) =

1

ba22 Γ(a2)
ta2−1e

− t
b2 ,

with a1 = 8.06275, b1 = 2.21407, a2 = 6.00014 and b2 = 2.19887.
Let p0 represents the survival probability, which is estimated to be 0.97 for COVID-19. Then

the distributed rate functions r(t) and d(t) are given by:

r(t) = p0f1(t), d(t) = (1− p0)f2(t).

Model validation: To validate our model with distributed recovery and death rates, we compare
the output (i.e., the sum of daily recoveries and deaths) of the model with the actual data on infected
individuals, recoveries, and deaths. Using the estimated functions for r(t− η), d(t− η), and taking
the number J(t) of real data on daily infection, we find the sum of daily recoveries and deaths by
the expression (as per the model (3.6a)-(3.6d)):

Σ(t) =

∫ t

0
r(t− η)J(η)dη +

∫ t

0
d(t− η)J(η)dη. (3.9)

This Σ(t) is compared with the real data of sum of recoveries and deaths. Fig. 8 shows the
result of such comparison for China from 23rd January, 2020 to 15th April, 2020 with the data
from Worldometer (7-day moving average). Recoveries and deaths can also be determined as a
proportion of active cases (as per the SIR model)

σ(t) = (r0 + d0)I(t).
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(a) (b)

Figure 7: Probability distribution for recovery (a) and death (b) as a function of days-post-infection.

Here I(t) is taken from the data and r0 + d0 = 1/16. It can be observed from Fig. 8 that the SIR
model overestimates the sum of recovered and dead, whereas the model with distributed recovery
and death rates fits the real data much better. Validation for other countries are also performed
and are is given in the paper [13], and in all the cases it is observed that the classical SIR model
overestimates the total recovery and death, whereas, our proposed model with distributed recovery
and death rates can fit the total recovery and death quite well.

(a) (b)

Figure 8: In the left panel, the blue curve shows the number Σ(t) of recovered and dead in the
distributed model, the magenta curve corresponds to σ(t) in the SIR model, and the black dots
correspond to the 7-day moving average of daily recoveries and death in China. The right panel
shows the corresponding cumulative recovery and death.
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4 Immuno-epidemic model

The dynamics of within-host interactions between the pathogen and the host immune system play
a crucial role in the spread of infectious diseases in populations. Understanding the complex
interactions between pathogens and the immune system is essential for predicting the course of an
outbreak, developing effective treatments and vaccines, and designing public health strategies to
control the spread of the disease. The contagiousness of an infection depends on the time after
infection and can be assessed through the viral load within the body of an infected individual. Thus,
an immune-epidemiological model is obtained, which is a system of integrodifferential equations and
most efficiently and adequately describes the interaction of the development of the disease at the
individual and population levels. The model proposed in [15] looks like:

dS

dt
= − S

N

∫ t

0
β(t− η)J(η)dη, (4.10)

dI

dt
=

S

N

∫ t

0
β(t− η)J(η)dη −

∫ t

0
r(t− η)J(η)dη −

∫ t

0
d(t− η)J(η)dη, (4.11)

where β(t − η) is the disease transmission rate depending on the time since infection t − η. Here
we assume that β(t− η) is proportional to the total viral load P (t− η) inside the body at the time
since infection t− η.

In addition, taking into account vaccination, as well as the gradual decrease in immunity over
time, we obtain more detailed model given by:

S(t) = N − (I(t) +D(t) +m(t)N). (4.12)

dI

dt
=

S

N

∫ t

0
β(t− η)J(η)dη −

∫ t

0
r(t− η)J(η)dη −

∫ t

0
d(t− η)J(η)dη, (4.13)

dR

dt
=

∫ t

0
r(t− η)J(η)dη,

dD

dt
=

∫ t

0
d(t− η)J(η)dη, (4.14)

where m(t) is the level of immunity in the system at time t that takes into account the immunity
waning. The relation of the immunity level m(t) with the immunity due to vaccination and the
acquired immunity can be defined by:

m(t) =
1

N

(∫ t

0
φ(t− η)V ′(η)dη +

∫ t

0
ψ(t− η)R′(η)dη

)
, (4.15)

where V (t) is the number of vaccinated individuals at time t, and V ′(t) is the rate of vaccination,
R′(t) is the rate of recovery, φ(t) describes how immunity changes with time, and ψ(t) describes
how acquired immunity changes in time. More detailed explanations of the variable m(t) that
captures the effect of multiple vaccine doses and the effectiveness against new emerging strains, are
given in the paper [15].

The model (4.12)-(4.14) allows an accurate prediction of the further development of the epidemic
(see Fig. 9).
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(a)

Figure 9: Prediction of daily cases in France. The cyan curve is the real data and magenta curve
is the model prediction.

5 Age-dependent immuno-epidemic model

The immunological condition of an individual can play a significant role in the progression of a
disease. The immune system of varies from person to person, and various factors such as age,
genetics, underlying health conditions, and lifestyle choices can influence the immune response to
an infection. As a result, the susceptibility to a particular disease and its severity can vary signif-
icantly among individuals and populations. For example, in case of malaria, although anyone can
get infected with malaria, young children are particularly vulnerable due to their underdeveloped
immune systems. Similarly, HIV attacks the immune system, and the risk of infection is highest in
individuals between the ages of 20− 45 years who are sexually active and may engage in high-risk
behaviors. The recent coronavirus disease (COVID-19) is also an example of how the age group can
affect the severity of a disease. According to studies, older adults and individuals with underlying
health conditions such as diabetes, hypertension, and cardiovascular disease are more likely to de-
velop severe illness and have a higher mortality rate than younger, healthier individuals. Overall,
understanding the immunological condition of individuals and populations is crucial for developing
effective prevention and treatment strategies for various infectious diseases.

To take into account these aspects, as a possible extension of the previous models, we consider
the age-dependent infectivity, recovery and chance of death due to severe infection. Individual’s
immune strength plays a crucial role behind the replication of virus particles within the body,
development of symptom and also responsible for the time required for recovery. This immunological
factors also vary with the age group and as a result the rate of infectivity and the time of recovery
varies from one age group to another. In the paper [16], we proposed and analyzed an age-dependent
immuno-epidemic model with time dependent recovery and death rates.

Let J(x, t) denote the number of newly infected individuals of age x at time t, while S(x, t),
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I(x, t), R(x, t), and D(x, t) represent the numbers of susceptible, infected, recovered and dead
individuals. Suppose, W (x) is the total viral load inside an infected individual of age x. Then we
obtain the following age-dependent model:

∂S(x, t)

∂t
= −α(x)S(x, t)

∫ ∞

0
W (y)I(y, t)dy (≡ −J(x, t)), (5.16a)

∂I(x, t)

∂t
= α(x)S(x, t)

∫ ∞

0
W (y)I(y, t)dy −

∫ t

0
r(x, t− η)J(x, η)dη

−
∫ t

0
d(x, t− η)J(x, η)dη, (5.16b)

∂R(x, t)

∂t
=

∫ t

0
r(x, t− η)J(x, η)dη, (5.16c)

∂D(x, t)

∂t
=

∫ t

0
d(x, t− η)J(x, η)dη, (5.16d)

where α(x) is the susceptibility function, r(x, t−η) and d(x, t−η) are the recovery and death rates
for individuals of age x, depending on the time-since-infection t− η. The initial conditions are:

S(x, 0) = S0(x) > 0, I(x, 0) = I0(x) > 0, R(x, 0) = 0 and D(x, 0) = 0. (5.17)

In the context of COVID-19 in New Zealand, we estimated all the age-dependent parameters
involved in the model (5.16). The details of the estimated parameters are available in the paper
[16]. Using these estimated parameters, the model fitting with the data of Omicron in New Zealand
is shown in Fig. 10. Black dots in Fig. 10 represent the real data on daily new cases of Omicron
in New Zealand, and the blue curve is the simulation result of the model (5.16). We can observe

Figure 10: Comparison of new daily cases in modelling and data: model fitting (green), model
validation (blue). The black dots are the real data for Omicron in New Zealand. The magenta
curve corresponds to modelling with the increased disease transmission rate due to the emergence
of new strain in April, 2022.

that modelling results fit quite well the real data up to the end of April, 2022. From the end of
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April 2022, new daily cases have some increase instead of further decreasing predicted by the model
(Fig. 10). A possible explanation of this discrepancy is related to the emergence of new strain BA.2
(instead of the previous BA.1) for which vaccination can be less efficient due to immune escape
or which can have a slightly larger transmission rate. In order to describe this effect, we slightly
change the susceptibility function α(x), in the beginning of May, 2022. The corresponding result
is shown by the magenta curve in Fig. 10, which shows a larger number of daily cases More details
about the fitting are given in [16].

Also, the age-dependent model (5.16) is able to capture the influence the effect of initial age
distribution of the susceptible population S0(x), on the epidemic progression. We consider three
hypothetical functions representing the age-dependent initial susceptible population distribution
S0(x), as shown in Fig. 11(a) by different colors. These cases differ by the proportion of younger
age groups with the same total population (integral). Then we perform the numerical simulation of
system (5.16a)-(5.16d) and characterize infection progression by the total number of newly infected
individuals for all age groups:

J̄(t) =

∫ 100

0
J(x, t)dx

(Fig. 11(b)). We observe that the maximum number of infected and the time to maximum can
change significantly depending on the initial age-dependent distribution of the susceptible popula-
tion. If proportion of the young age groups increases (green curves), then the maximal number of
newly infected individuals also increases while the time to maximum decreases. This is related to
higher infection transmission by younger population (see Fig. 1 (b) in [16]). In the case of a smaller
proportion of these age groups (red curves), the maximal number of new infections decreases and
the time to maximum increases. Though it can be difficult to justify this conclusion with the data
from different countries because of the influence of numerous other factors (climate, economy, social
restrictions) and different methods of data collection, if we restrict this comparison to some neigh-
boring European countries, for which these differences can be less essential, then some tendency
can be observed (Fig. 12).

(a) (b)

Figure 11: (a) Different age structures S0(x)/N of the initial susceptible population with the same
total population. (b) Epidemic progression for the three cases in the left panel is shown with the
same color.
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Figure 12: Percentage of the age group 0-14 years (https://donnees.banquemondiale.org/
indicator/SP.POP.0014.TO.ZS) versus the total number of infection cases from the beginning
of epidemic till August 21, 2022 with respect to 1000 people (https://www.worldometers.info/
coronavirus/#countries).

6 Conclusions

Mathematical modelling has played a crucial role in predicting and controlling epidemics, and
compartmental models are one of the most commonly used models for this purpose. These models
divide the population into different compartments based on their disease status, such as susceptible,
infected, and recovered. The models assume that the rate functions, such as the transmission and
recovery rates, are constant over time.

However, our observation is that a compartmental model developed entirely in terms of daily
new cases, with distributed rate functions depending upon the time since infection, can describe the
epidemic progression more effectively, which is an exciting finding. This type of model considers
the heterogeneity of immune response in the population and the initial demographic structure of a
population, which can significantly influence the epidemic progression. One challenge in developing
these models with distributed rate functions is that they require detailed immunological data for a
particular infection, which may need to be more readily available. However, as we mentioned, this
type of data is available for some countries, which can make it possible to develop more detailed
and accurate models.

Our study highlights the importance of considering the heterogeneity of immune response and
demographic factors when developing mathematical models to predict and control epidemics. These
findings can help public health officials make more informed decisions and take appropriate actions
to mitigate the spread of infectious diseases.
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Measurement Reconstruction
Feature 

Extraction 

Nuclear physics
Inverse problem

Scientific ML

Clinical Data
Topological Invariants

Machine learning
Biomarkers
Simulation

Diagnosis
Prognosis

A collaborative project on various aspects of medical imaging

Evaluation
Developing clinically useful methods often leads to theoretically interesting questions

Topic Today

Kyoto U. hospital & Tokyo U. hospital & Kyushu U. IMI

Figures from J. Appl Physiol, vol 131-2, 2021

Image from Wikipedia

!
Medicine

Physics
Applied-Applied
Mathematics

HOMOLOGICAL FEATURES OF
3D MEDICAL IMAGES

Forum "Math-for-Industry" 2022
-Mathematics of Public Health and Sustainability-

16 November 2022, La Trobe University
Shizuo KAJI (IMI, Kyushu U.)

Applied
Maths

Pure
Maths

Application

Application Moebius Kaleidocycle, 2018
S. Kaji, J. Schoenke, E. Fried, M. Grunwald
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Medical Image Features

Radiomics

Convolutional 
Neural Network

Attention-based 
Neural Network

Persistent 
Homology

local

global

Requires a large dataset for training
High computational cost for 3D

Usually 2D

High computational cost for 3D

Is not “universal” but complements 
neural-network-based methods

Deep-learning based

Deep Learning
vs

Topology
(Image are taken from Wikipedia unless otherwise stated)
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Deep Neural Nets are shortsighted

Explaining and Harnessing Adversarial Examples, Goodfellow et al. 2014

Deep Nets are too sensitive to local information.
Why? Because convolution is a local operation.

=> Use Topology to capture global characteristic

Deep Neural Nets are shortsighted

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Geirhos et al. 2019
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Background
• DL achieves high performance but has some weakness
• TDA has been proven effective in capturing data 

features that conventional techniques have missed

DL is good at
• Precise observation
• Memorising/imitating examples
• Processing huge data
• Accurate operation

Human is good at
• Rough estimation
• Panoramic view
• Discovering rules/invariance

from a small number of  examples
• Explaining the reason Deep Learning

(DL)
Data-driven

local
Topological Data Analysis 

(TDA)
Maths-based

global comp
lemen

tary

They look similar locally,
but we see a clear difference if  we zoom out

c.f. Manifolds are locally all Euclidean and homology distinguishes the global topology of  them.
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Tools from Topology

Homology

Notable applications of  TDA (outside image analysis)

M. Nicholau et al. PNAS 2011
Topology based data analysis identifies a 
subgroup of  breast cancers with a unique 
mutational profile and excellent survival.

Gene expression data of  cells

Liquid-Amorphous-Crystalline states of  silica

Topological clustering of  multilayer networks

M. Yuvaraj et al. PNAS 2021
Home insurance patterns are detected.

Y. Hiraoka et al. PNAS 2016
Hierarchical structures of  amorphous solids are characterised by 
persistent homology.
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Ex. Euler’s polyhedral theorem
Number of  F:faces−E:edges＋V:vertices＝２

All are topologically a sphere

Topological Invariants of  a space

Topological Invariants: Space è “Number”
encode features into “numbers”

stay unchanged under continuous perturbation

are computable

0

1

It can mean some algebraic structure
such as group and vector space
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Homology is a generalisation of  Euler characteristic  

b0
connected component

b1
hole

b2
cavity

１ １ １ １ １

０ ０ ０１ ２

０ ０ ０ １ １

１

２

１

Euler characteristic
b0-b1+b2

１ １ ０ ０ ０ ２

F−E＋V is a topological invariant 
called the Euler characteristic

Sphere ２

Sphere with a hole１

Doughnuts０

Sphere vs Doughnuts
Topological Invariants of  a space
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Topological Features
of Image

b0(X)=1
(connected)

b1(X)=7
(there are 8 loops)

b2(X)=0
no cavity (not watertight)

X: bunny

bi: i-th betti number

Example: is the bunny watertight?

(Stanford bunny)
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Image processing = Operation on functions
image image

Example of  a kernel:Example: 
Convolution

Image = Function on a square or a cube

wikipedia
A colour image is represented by a 
triple of  real-valued functions (R,G,B)

We focus on a monochrome image
𝑓𝑓: 𝑋𝑋 → 𝑅𝑅 (𝑋𝑋 ⊂ 𝑅𝑅!, 𝑛𝑛 = 2,3)

An image processing/analysis method is 
an operation on the space of  functions
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Function è Space è “Numbers”
For each threshold a, we have a space 

X(f,a) := {x | f(x)<a}

Q: How to choose a threshold?

A: We do not choose. Use them all!

We can compute topological invariants 
of  X(f,a) to obtain image features

Topological Image Analysis
Function è Space è “Numbers”

Each threshold value 
gives rise to 

the sub-level set
{x | f(x)<a}

topological space X
function 𝑓𝑓: 𝑋𝑋 → 𝑅𝑅
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Persistent homology (formal definition)

Under review as a conference paper at ICLR 2023

parameters of the image generation. Several different formuli are tested and an iterated function
system, which generates fractal images, is found to be effective. A wider variety of image generation
methods have been tested since then (Baradad et al., 2021; Kataoka et al., 2022). To see how synthetic
images are helpful in acquiring image features is interesting also in terms of cognitive science.

In this paper, we also use synthetic images, which are not very meaningful for human eyes, and
try to learn topological features from them. One technical difference from the Formula-driven
Supervised Learning is how the labels are generated. Instead of fixed labels associated with the image
generation model parameters, we generate labels by a mathematical formula computed directly from
the images, which has advantage of being applicable to any image generation model. The labels
encode topological features (persistent homology, in our paper) and the model is encouraged to learn
image features that are relevant to approximate the topological features.

2.3 PERSISTENT HOMOLOGY FOR IMAGE ANALYSIS

Persistent homology has an unusual input and output when it is seen as a feature extractor. PH takes
a series of nested topological spaces and outputs a multiset of intervals of the real numbers. We view
an image as a function f : X ! R defined over a rectangular domain X , and we obtain a series of
nested spaces

; ⇢ Xt1 ⇢ Xt2 ⇢ · · · ⇢ Xtm = X, Xti = {(x, y) 2 X | f(x, y)  ti},

where tm = max(f). Applying the homology functor Hd(−) with the coefficients in the
field F2 with two elements, we obtain the corresponding sequence of F2 vector spaces,
and this sequence is by definition the persistent homology PHd(X, f) of the pair (X, f).
PHd(X, f) can be written as the direct sum of so-called the interval module having the form

0 · · · 0 F2 · · · F2 0 · · · 0

Hd(;) · · · Hd(Xti�1) Hd(Xti) · · · Hd(Xtj�1) Hd(Xtj ) · · · Hd(X).

= ⇢ ⇢ ⇢ ⇢ ⇢

We denote the summand by the interval [ti, tj). When d = 0, it may happen that j − 1 = m, in
which case we represent the summand by [ti,1). See Fig. 1 for an example of PH of an image.
To sum up, PH takes a function f : X ! R and outputs a multiset of intervals. The alien output
as multiset can be transformed into a fixed-length vector using vectorisation techniques (Adams
et al., 2017; Bubenik, 2015; Chung & Lawson, 2021) so that it fits in the standard machine learning
pipeline.

CNNs tend to be biased towards texture when trained with a classification task of natural im-
ages (Geirhos et al., 2019). In contrast, human perception relies much on the global shape of the
image content. Therefore, it would be beneficial for a model to learn global topological features
as well as local features. This is supported by an experiment in which combining PH with other
descriptors results in an increased performance in object recognition (Li et al., 2014), showing that
PH provides a shape feature that is complementary to conventional ones. There are previous studies to
assimilate PH into deep learning. To deal with PH with neural networks, a parametric representation
of persistence homology with learnable parameters is introduced in Hofer et al. (2017) so that a
task-optimal vectorisation is obtained in a data-driven manner. Dedicated architectures of CNNs are
designed in Som et al. (2020) for computing vectorised PH of time-series and point clouds in the
form of the persistence image. The topological autoencoder (Moor et al., 2020) learns a latent space
of a point cloud that preserves the topological structure in terms of persistent homology. Our idea is
based on the fact that one has to acquire a certain high-level image representation that encodes global
topological features in order to compute PH, and this makes a good pretext task for training a neural
network.

3 METHOD

Our proposed scheme can be viewed as a type of SSL in which desired image features are learned by
solving a pretext task. The pretext task does not require any natural images, but synthesised images
(Sec. 3.1) are used. The model learns the input-output relation (regression) for the image and the
corresponding image feature vector computed through persistent homology (Sec. 3.2). The model is
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parameters of the image generation. Several different formuli are tested and an iterated function
system, which generates fractal images, is found to be effective. A wider variety of image generation
methods have been tested since then (Baradad et al., 2021; Kataoka et al., 2022). To see how synthetic
images are helpful in acquiring image features is interesting also in terms of cognitive science.

In this paper, we also use synthetic images, which are not very meaningful for human eyes, and
try to learn topological features from them. One technical difference from the Formula-driven
Supervised Learning is how the labels are generated. Instead of fixed labels associated with the image
generation model parameters, we generate labels by a mathematical formula computed directly from
the images, which has advantage of being applicable to any image generation model. The labels
encode topological features (persistent homology, in our paper) and the model is encouraged to learn
image features that are relevant to approximate the topological features.

2.3 PERSISTENT HOMOLOGY FOR IMAGE ANALYSIS

Persistent homology has an unusual input and output when it is seen as a feature extractor. PH takes
a series of nested topological spaces and outputs a multiset of intervals of the real numbers. We view
an image as a function f : X ! R defined over a rectangular domain X , and we obtain a series of
nested spaces

; ⇢ Xt1 ⇢ Xt2 ⇢ · · · ⇢ Xtm = X, Xti = {(x, y) 2 X | f(x, y)  ti},

where tm = max(f). Applying the homology functor Hd(−) with the coefficients in the
field F2 with two elements, we obtain the corresponding sequence of F2 vector spaces,
and this sequence is by definition the persistent homology PHd(X, f) of the pair (X, f).
PHd(X, f) can be written as the direct sum of so-called the interval module having the form

0 · · · 0 F2 · · · F2 0 · · · 0

Hd(;) · · · Hd(Xti�1) Hd(Xti) · · · Hd(Xtj�1) Hd(Xtj ) · · · Hd(X).

= ⇢ ⇢ ⇢ ⇢ ⇢

We denote the summand by the interval [ti, tj). When d = 0, it may happen that j − 1 = m, in
which case we represent the summand by [ti,1). See Fig. 1 for an example of PH of an image.
To sum up, PH takes a function f : X ! R and outputs a multiset of intervals. The alien output
as multiset can be transformed into a fixed-length vector using vectorisation techniques (Adams
et al., 2017; Bubenik, 2015; Chung & Lawson, 2021) so that it fits in the standard machine learning
pipeline.

CNNs tend to be biased towards texture when trained with a classification task of natural im-
ages (Geirhos et al., 2019). In contrast, human perception relies much on the global shape of the
image content. Therefore, it would be beneficial for a model to learn global topological features
as well as local features. This is supported by an experiment in which combining PH with other
descriptors results in an increased performance in object recognition (Li et al., 2014), showing that
PH provides a shape feature that is complementary to conventional ones. There are previous studies to
assimilate PH into deep learning. To deal with PH with neural networks, a parametric representation
of persistence homology with learnable parameters is introduced in Hofer et al. (2017) so that a
task-optimal vectorisation is obtained in a data-driven manner. Dedicated architectures of CNNs are
designed in Som et al. (2020) for computing vectorised PH of time-series and point clouds in the
form of the persistence image. The topological autoencoder (Moor et al., 2020) learns a latent space
of a point cloud that preserves the topological structure in terms of persistent homology. Our idea is
based on the fact that one has to acquire a certain high-level image representation that encodes global
topological features in order to compute PH, and this makes a good pretext task for training a neural
network.

3 METHOD

Our proposed scheme can be viewed as a type of SSL in which desired image features are learned by
solving a pretext task. The pretext task does not require any natural images, but synthesised images
(Sec. 3.1) are used. The model learns the input-output relation (regression) for the image and the
corresponding image feature vector computed through persistent homology (Sec. 3.2). The model is
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Increasing sequence of  spaces

Apply the homology functor
(with coefficients in F2)

PH is by definition the sequence of  F2-vector spaces (for each dimension d)
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parameters of the image generation. Several different formuli are tested and an iterated function
system, which generates fractal images, is found to be effective. A wider variety of image generation
methods have been tested since then (Baradad et al., 2021; Kataoka et al., 2022). To see how synthetic
images are helpful in acquiring image features is interesting also in terms of cognitive science.

In this paper, we also use synthetic images, which are not very meaningful for human eyes, and
try to learn topological features from them. One technical difference from the Formula-driven
Supervised Learning is how the labels are generated. Instead of fixed labels associated with the image
generation model parameters, we generate labels by a mathematical formula computed directly from
the images, which has advantage of being applicable to any image generation model. The labels
encode topological features (persistent homology, in our paper) and the model is encouraged to learn
image features that are relevant to approximate the topological features.

2.3 PERSISTENT HOMOLOGY FOR IMAGE ANALYSIS

Persistent homology has an unusual input and output when it is seen as a feature extractor. PH takes
a series of nested topological spaces and outputs a multiset of intervals of the real numbers. We view
an image as a function f : X ! R defined over a rectangular domain X , and we obtain a series of
nested spaces

; ⇢ Xt1 ⇢ Xt2 ⇢ · · · ⇢ Xtm = X, Xti = {(x, y) 2 X | f(x, y)  ti},

where tm = max(f). Applying the homology functor Hd(−) with the coefficients in the
field F2 with two elements, we obtain the corresponding sequence of F2 vector spaces,
and this sequence is by definition the persistent homology PHd(X, f) of the pair (X, f).
PHd(X, f) can be written as the direct sum of so-called the interval module having the form

0 · · · 0 F2 · · · F2 0 · · · 0

Hd(;) · · · Hd(Xti�1) Hd(Xti) · · · Hd(Xtj�1) Hd(Xtj ) · · · Hd(X).

= ⇢ ⇢ ⇢ ⇢ ⇢

We denote the summand by the interval [ti, tj). When d = 0, it may happen that j − 1 = m, in
which case we represent the summand by [ti,1). See Fig. 1 for an example of PH of an image.
To sum up, PH takes a function f : X ! R and outputs a multiset of intervals. The alien output
as multiset can be transformed into a fixed-length vector using vectorisation techniques (Adams
et al., 2017; Bubenik, 2015; Chung & Lawson, 2021) so that it fits in the standard machine learning
pipeline.

CNNs tend to be biased towards texture when trained with a classification task of natural im-
ages (Geirhos et al., 2019). In contrast, human perception relies much on the global shape of the
image content. Therefore, it would be beneficial for a model to learn global topological features
as well as local features. This is supported by an experiment in which combining PH with other
descriptors results in an increased performance in object recognition (Li et al., 2014), showing that
PH provides a shape feature that is complementary to conventional ones. There are previous studies to
assimilate PH into deep learning. To deal with PH with neural networks, a parametric representation
of persistence homology with learnable parameters is introduced in Hofer et al. (2017) so that a
task-optimal vectorisation is obtained in a data-driven manner. Dedicated architectures of CNNs are
designed in Som et al. (2020) for computing vectorised PH of time-series and point clouds in the
form of the persistence image. The topological autoencoder (Moor et al., 2020) learns a latent space
of a point cloud that preserves the topological structure in terms of persistent homology. Our idea is
based on the fact that one has to acquire a certain high-level image representation that encodes global
topological features in order to compute PH, and this makes a good pretext task for training a neural
network.

3 METHOD

Our proposed scheme can be viewed as a type of SSL in which desired image features are learned by
solving a pretext task. The pretext task does not require any natural images, but synthesised images
(Sec. 3.1) are used. The model learns the input-output relation (regression) for the image and the
corresponding image feature vector computed through persistent homology (Sec. 3.2). The model is
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The sequence decomposes into the direct sum of  “intervals” having the form

which correspond to cycles 
(= generators = topological features)

represented by 𝑡𝑡", 𝑡𝑡# ∈ ℝ$

Id Id

Persistent homology (PH)
◦Extension of  homology defined for 
functions over topological spaces

◦For each topological feature(cycle), the 
threshold values with which it was born 
and destroyed are recorded

Remark:
We can also view PH as a “continuous relaxation” of  homology.

Homology is a discrete quantity that is sometimes problematic.
(e.g., homology can change abruptly with small variation in the input)
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Software for Persistent Homology computation for 
image and volumetric data
◦Cubical Ripser (K-Sudo-Ahara, 2021)

◦ Open-source (MIT license), Available at my github repository
https://github.com/shizuo-kaji/CubicalRipser_3dim/

◦ Capable of  computing persistent homology of  time-series, image, volumetric data
◦ One of  the fastest program for computing persistent homology of  cubical complexes
◦ The only program which can handle two major constructions of  cubical complexes
◦ Python binding that works nicely with Numpy (including DICOM converters)

2D or 3D image
Persistent 
homology

Sublevel sets by sweeping thresholds

2D Example

Figure 1: A greyscale image, considered as a function f on a rectangular grid, defines a growing
sequence of spaces by its sublevel sets. The shaded regions indicate the sublevel set Xt = {(x, y) |
f(x, y) < t} for a threshold t. The degree 0 persistent homology is the (multi)set of intervals
{[0, 1], [0, 2]}. For example, the interval [0, 1] corresponds to the connected component (“born” at
t = 0) consisting of the single pixel at the bottom-left corner in the left-most image, which disappears
in the central image (“killed” at t = 1). The degree 1 persistent homology is {[1, 2]} whose element
represents the hole surrounding the two pixels with the value 2 in the centre image. This hole
disappears in the right-most image. Since the space is two-dimensional, persistent homology is
non-trivial only at degrees 0 and 1. In this way, given a growing sequence of spaces indexed by real
numbers, persistent homology records the topological features, islands and holes, with the indices in
which the features emerge and disappear.

and its variants learn a compression-expansion task; in other words, it aims at obtaining a complete90

low-dimensional feature of an image that can recover the image. Since knowledge in general means91

a simple and compressed description of a target object, compression-expansion can be considered92

as a fundamental task in learning, and the learned features are useful for many downstream tasks.93

Another popular framework of SSL is the contrastive learning (see [15] for a survey). In this scheme,94

a low-dimensional embedding of images is learned so that the original image and its perturbation are95

placed nearby whereas different images are placed far apart in terms of a certain metric defined on the96

representation space. Contrastive learning tasks are mostly based on human perception; for example,97

what images should be regarded “similar” is defined by restricting the class of image perturbation.98

2.3 Learning with synthetic images99

Even though SSL saves the annotation costs, the preparation of training data is still a vexing problem.100

For practical conveniences, there are ready-to-use models which are pretrained with large-scale101

datasets. However, there is a concern on how the pretrained model is obtained, which is often out of102

our control. The dataset and its labels used for the pretraining may have been low-quality, subject103

to bias, and violated usage rights and privacy. For example, ImageNet, one of the most popular104

large-scale datasets, suffers from fairness issues [16], and there have been a growing interest in the105

fairness of machine learning [17]. For providers of pretrained models, adversarial actions such as the106

model inversion attack [18] are also problematic, which would reveal sensitive information in the data107

used for pretraining. No matter how much care is paid for data collection, it is impossible to be free108

from all kinds of these issues as long as real images are used. Using generative adversarial networks109

(GANs) to generate image datasets for training is a popular and successful strategy ([19]) to mitigate110

the situation, but GANs are also trained with natural images and cannot avoid above-mentioned111

problems. A promising approach is to use algorithmically synthesised images. Formula-driven112

Supervised Learning introduced in [20] considers pretraining with synthetic images generated by a113

mathematical formula. The labels are assigned according to the parameters of the image generation.114

Several different formuli are tested and an iterated function system, which generates fractal images, is115

found to be effective. A wider variety of image generation methods are tested in [21]. Using synthetic116

images to acquire image features is interesting also in terms of cognitive science.117

In this paper, we also use synthetic images, which are not very meaningful for human eyes, and try118

to learn topological features from them. The main difference from the Formula-driven Supervised119

Learning is how the labels are generated. Instead of fixed labels associated with the image generation120

model parameters, we generate labels by a mathematical formula computed directly from the121

3

PH0 = {(0,1], (0,∞)}  (islands)
PH1 = {(1,2]}           (holes)

A cycle of  the form (a,b] is represented 
by a point 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅$
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PH annotated image
For each pixel, assign a histogram of  birth and 
lifetime of  cycles which are born at the pixel.
We obtain an image with additional channels 
which carries PH information

Image Image
Input Output

PH

PH processes the original image so that 
local and global topological features are encoded as pixel values. 

PH annotated images can be fed to/digested by conventional ML techniques!

Standard image processing/ML

global information is encoded 
as the “colour” of  pixels

PH as a feature
Input: Function (over a topological space)

Output：Persistence Diagram
(finite points in R2)

Hard to deal with by ML techniques
=> Convert PH into an additional 

channel to the original image

1D

2D, 3D

Red: PH0 cycles
Blue: PH1 cycles
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How to cook PH features?

Performance

Interpretability

Data-driven
(use DL)

Feature engineering
using domain knowledge

If  your priority is in

Pipeline of  TDA image analysis

2D/3D image

Sequence of  spaces

Features

Topological invariants

Results+Interpretation
Domain knowledge + ML

Sub-level sets
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Reduced MNIST classification results
( : Image only,   Blue: Image+PH)

Top 1 accuracy

Class-wise accuracy

Top 2 accuracy

55

70

60

100%

75%

50%

Boxplots of  20 runs with different training data

Codes: https://github.com/shizuo-kaji/HomologyCNN

25%

Those figures with holes (0,4,8,9)
see a larger increase in the accuracy

Example I : MNIST Digit classification

The MNIST Dataset
60k(train)+10k(test) images
10 classes (0,1,…,9)
28x28 black-and-white images
Accuracy of  SoTA is over 99.8%

We use “Reduced MNIST”
Only 10 training images
(one image per class,

“small data!”)

Too easy as a benchmark

Green dots are 1-cycles of  PH annotation

Technical remark:
We apply the distance transform before computing PH so that cycles in the image need 
not be perfectly closed. Also, in this way the size of  the loop is encoded as the lifetime.
We can do various pre-processing to the original image before taking the sub-level sets.
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Synthetic Image

Pretraining Neural 
Network

Real Image

Finetuning

Label

Persistent 
homology

Human 
annotation

Mathematical 
formula

Validation accuracy on CIFAR100

from top
to bottom

ImageNet

FDB-10k
Ours

MoCo-v2
Scratch

Example III: Training DL models without real data
(with Y. Watanabe)

Neural Networks can learn to see from 
totally synthetic data by solving a maths problem! 

codes: https://github.com/shizuo-kaji/PretrainCNNwithNoData

Difficulty
1. No big data (data acquisition is costly)
2. False Negative (overlook) is critical

FP FNcorrect

Example II: Sinkhole detection in ground penetrating radar image
(with S. Choi, T. Kim)

We achieved a comparable performance with human 
experts with only 40 labelled volumes

Collapse in Hakata 
(Nov. 2016 Asahi digital)
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Goal: diagnose COPD and IPF from CT
and identify their lesion

Healthy COPD IPF

(images from Wikipedia)

COPD: Chronic obstructive pulmonary disease is the third leading cause of  death (WHO 2019)
IPF: Idiopathic pulmonary fibrosis is a progressive and irreversible disease

Application
CT analysis of  lung disease

joint with N. Tanabe (Kyoto University Hospital) et al.
(all figures are from J. Appl Physiol, vol 131-2, 2021 (CC-BY 4.0) unless indicated otherwise) 
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Preliminary test：Is PH a suitable choice?

YES!

Let’s visualise PH features in 
an unsupervised manner
just using CT volumes.

Clear separation of  colours even without using the labels

A point corresponds to a patient

We have defined an image feature based on PH. 
But is it relevant to our current problem?

Labels are given by the medical doctors
CPFE = IPF+COPD, Control = Healthy

More concretely

Healthy

IPF

Given a CT volume, 
classify the subject into 
Healthy, IPF, COPD.
Moreover, explain the 
decision by localising
lesions that are responsible 
for the condition.

Available data for each subject
• CT volume
• Label by a medical doctor
n=45 (training) + 90 (validation)

(images from Wikipedia)
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PH0 PH2

normal

fibrosis (IPF) 

emphysema (COPD)

Extract doctors’ knowledge
in terms of  ROI selection

(ROI = Region of  Interest)

Medical doctors select patches 
typical to the disease and we use 
them as “training data”

ROIs provide more fine-grained and 
localised information than the label by 
telling “what to look at”

How can we incorporate the experts’ knowledge?

Healthy IPF

COPD

How can we find these red boxes
objectively and automatically?

Incorporate physicians’ 
knowledge into the algorithm

Difference in PH among conditions

PH0

PH2
PH0

PH2

PH2
PH0

These show PH0 and PH2 of  three representative subjects.
We can see the three can be distinguished by looking 
at the number of  dots in the red boxes
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The characteristic cycles are interpretable

Physicians work in the image domain. Mathematicians work in the PH domain.
Physicians have strong sense with visuals while mathematicians are more comfortable with “numbers”.

So it is a good idea to go back and forth frequently between these two domains.

Learning shallow decision trees from selected ROIs

Domain knowledgeML algorithm

The characteristic cycles (red boxes) in 
the previous slide are determined by the 
classification accuracy of  the ROIs.

Visual cue
(physician friendly)

Numerical 
features in terms 

of  PH
(computer friendly)

Note: we need only four 
parameters to define a box!
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PH-fibrosis%

High PH-fibrosis%

p=0.006
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Low PH-fibrosis%

0 1500500 1000 2000

Segmentation agreement with medical doctors

Prognosis

Correlation with lung function

Clinical merit

Original CT Persistent homology (PH) Deep Learning (DL) Thresholding by HU
(HAA/LAA)

IPF

IPF+COPD

Comparison of  different segmentation methods

Red: Fibrosis, responsible for IPF   Blue: Emphysema, responsible for COPD
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FAQ on Topological Data Analysis (TDA)

TDA techniques

Persistent homology

Mapper

TFDA

• Performance?
è It depends on the problems as with other tools.

• Computational cost?
è Computing PH of  a 512x512x512 volume takes 5-10 mins.

• Amount of  data necessary?
è Usually much smaller than DL

• Easy to use?
è There are many ‘meta hyper-parameters’ to choose. 

Also, input and outputs are not vectors.
• Explainability?

è If  you can interpret homology in the target domain

To sum up: TDA is in many ways different from conventional techniques.
It is a good idea to keep it in your toolbox.

Path signature

Reeb graph

Dimensionality 
reduction

TDA Tutorial with Google Colab:
https://github.com/shizuo-kaji/TutorialTopologicalDataAnalysis

Interactive demo on various techniques of  Topological Data Analysis (TDA) including persistent homology

Summary
Topology (persistent homology) provides a way to extract image/volume 
features that are not easy to obtain by conventional method

Global and invariant features encoded by persistent homology (PH) 
complement those (mainly local) features obtained by deep learning (DL) 
and can be used in conjunction to boost performance

PH-based image analysis has some advantages:

robust and easily transferable (ó DL needs re-training)

interpretable (ó DL is often a blackbox)

3D (ó many conventional analyses are 2D slice-based)
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Abstract

This paper conducts a numerical study of a geometrical structure
called ε-school for predator-avoidance fish schools, based on our previ-
ous mathematical model. Our results show that during a predator attack,
the number of ε-school increases from one to a certain value. After the at-
tack, the number of ε-school decreases in the first two predator-avoidance
patterns, but continues to increase in the third pattern. A constant value
for the number of ε-school is observed in the last pattern. These findings
suggest that when the predator is approaching, each individual in the
school focuses more on avoiding the predator, rather than on interacting
with its schoolmates. Such a trait is in agreement with real-life behavior
in the natural ecosystem.

Keywords: ε-school, Stochastic Differential Equations, Predator-Prey System, Fish
Schooling, Predator-Avoidance Patterns

1 Introduction

Fish schooling is a remarkable phenomenon in the aquatic world that has captivated
many researchers. The synchronized movement of hundreds or even thousands of fish
in a school is a complex and highly organized trait. Such unique swarm behavior has

1
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been the subject of numerous studies in various disciplines, including biology, physics,
and mathematics.1–6

Studying fish schooling from a mathematical point of view is important. We can
gain insights into the rules governing the behavior of individuals and have a deeper
understanding of the underlying patterns and dynamics of collective behavior in an-
imal groups. Mathematical models can make predictions and analyze the effects of
various factors on the behavior of a school of fish, such as the interaction between indi-
vidual fish, environmental conditions, and external stimuli. This information can have
important implications for fields such as fisheries management, wildlife conservation,
and aquatic ecology. It can also have practical applications, such as in the design of
swarm robotics to accomplish tasks that would be difficult or impossible for a single
robot to accomplish on its own, and the design of software for autonomous vehicles
(e.g. self-driving cars) that use collision-avoidance rule of fish.

We have studied fish schooling from the mathematical point of view for more than
a decade. In Ref. 7, we constructed a stochastic differential equation (SDE) model for
fish schooling, which is based on the biological interaction rules outlined by Camazine
et al.2 A geometrical analysis of such a model is then presented in Ref. 8. In Ref. 9, we
investigated the obstacle-avoiding patterns of fish schools by incorporating an obstacle-
avoidance rule into our original model of Ref. 7. Therein, for the first time, we were
able to quantify the cohesiveness of fish schools.

In Ref. 10, we developed a mathematical model for the foraging behavior of fish
schools. Our results revealed that when fish form a unitary formation in terms of
school, they are able to locate the food more effectively: such a trait is one of the
benefits of constituting a school that is consistent with real-life situation in the natural
ecosystem.11–14

In Ref. 15, we proposed a model of SDEs to describe predator-avoidance behavior
of a prey fish school. Therein, two different hunting tactics of the predator were
integrated into the general SDE model. On the basis of the model, we discovered four
anti-predation maneuvers of the prey fish school (hereinafter, we also label them as the
predator-avoiding patterns) which are consistent with the behavior in the real aquatic
ecosystem. Moreover, we also successfully demonstrated the benefit of constituting a
large school of prey fish in better escaping the predator’s attack.

Our previous work15 was mainly focused on demonstrating the capability of the
proposed SDEmodel in recovering simulated predator-avoidance patterns of the school-
ing prey fish that fit the real patterns. As a consequence, there remains another crucial
issue of the anti-predation behavior of the prey fish school that is still not addressed
in our earlier study, namely to what extent does the schooling prey fish alter the
structural integrity of its school formation as a response to avoid the predator’s at-
tack. This study, therefore, aims to investigate the transformation of the structural
formation of the schooling prey fish during a predator’s attack. To do so, we introduce
the so-called ε-school as a mathematical representation of the geometrical structure of
the schooling prey’s formation. Here, the notion of ε-school is integrated in our SDE
model of Ref. 15. Based on this framework, we undertake numerical simulations to
elucidate the transformation of ε-school in all the observed four predator-avoidance
patterns.
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Our SDE model is as follows:15




dxi(t) = vidt+ σidwi(t), (i = 1, 2, . . . , N),

dvi(t) =

[
− α

N∑
j=1,j �=i

(
rp

‖xi−xj‖p
− rq

‖xi−xj‖q

)

× (xi − xj)

−β
N∑

j=1,j �=i

(
rp

‖xi−xj‖p
+ rq

‖xi−xj‖q

)

× (vi − vj) +H(xi, y)

]
dt,

(i = 1, 2, . . . , N),

dy(t) = vdt+ σdwt,

dv(t) = F (xi, vi, y, v) dt,

(1)

In (1), N is the size of (prey) fish school; xi(t) and vi(t) (i = 1, 2, . . . , N) respec-
tively denote the position and velocity in Rd (d = 2, 3) of the i-th prey fish at time
t; y(t) and v(t) correspondingly represent the position and velocity of the predator at
time t; and ‖ · ‖ designates the Euclidean norm of a vector.

The first term in Eq. (1) is an SDE for the unknown xi(t), where σidwi (i =
1, 2 . . . N) denotes a stochastic differentiation of d-dimensional independent Brownian
motion defined in a filtered probability space.7 The second expression is a deterministic
equation for the unknown vi(t). Parameters 1 < p < q < ∞ are fixed exponents; α
and β designate positive coefficients of attraction and velocity matching among the
individual prey, respectively; and r > 0 depicts the critical distance between two
individuals in the school.

The third expression of Eq. (1) is again a stochastic equation for the unknown y(t)
in which w(t) is a d-dimensional Brownian motion in the same filtered probability space
which is independent of wi(t), i = 1, 2, . . . , N . The last term of Eq. (1) is deterministic.

In this study, we include a condition of “being eaten” into the proposed model
(1). Such a condition manifests a situation where a particular prey fish is captured
by the predator during its attack. Here, the “being eaten” condition applies when
the i-th prey fish is within a distance r from the approaching predator such that
‖y−xi‖ < r. Consequently, when a prey fish satisfies the “being eaten” condition, the
system described by the model changes from N : 1 (N prey, 1 predator) to (N −1) : 1.

The function H(xi, y) represents the mechanism adopted by an individual prey
fish to avoid the predator. It takes the following remark:

H(xi, y) = δ
Rθ1

1

‖xi − y‖θ1 (xi − y) , (2)

where R1 > r, δ, and θ1 are positive constants.
On the other hand, the function F (xi, vi, y, v) manifests the hunting strategy of the

predator. Here, we devised two hunting tactics of the predator, namely (i) the predator
attacks the center of the schooling prey (hunting tactic I), and (ii) the predator focuses
its attack on the nearest prey (hunting tactic II). The mathematical expressions for
each of the prescribed predator’s hunting strategies are respectively defined as follows:

F (xi, vi, y, v) =− Rθ2
2

‖y − xc‖θ2
×

[
γ1 (y − xc) + γ1γ2 (v − vc)

]
,

(3)
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F (xi, vi, y, v) =− 1

N

N∑
j=1

Rθ2
2

‖y − xj‖θ2
×

[
γ1 (y − xj) + γ1γ2 (v − vj)

]
.

(4)

In Eq. (3), xc and vc respectively denote the center position and velocity of the
schooling prey; we defined them as the average value of the positions and velocities of
all the individual prey constituting the school:

xc =
1

N

N∑
i=1

xi, vc =
1

N

N∑
i=1

vi. (5)

Parameters R2 > r, θ2, γ1, and γ2 are positive constants. Meanwhile, in Eq. (4), xj

designates the position of each individual prey fish.
The organization of this paper is as follows. In the following section, we provide

detailed explanation regarding the notion of ε-school and outline the initial conditions
for our simulation based on the model (1). In Section 3, we present the results of the
numerical simulations. Lastly, in Section 4, we pose some concluding remarks of the
current study.

2 Preliminary

In this section, we introduce the concept of ε-school and establish initial conditions
for our simulations based on the model (1). The notion of ε-school is akin to that of
a connected component in an ε-graph, as seen in graph theory.16

At each time step t, we define an ε-graph G(V (t), E(t)) where the set of vertices

V (t) = {x1(t), x2(t), . . . , xN (t)}

represents the positions of individuals, and the set of edges

E(t) = {(xi(t), xj(t)) if ‖xi(t)− xj(t)‖ ≤ ε,

i, j = 1, 2, . . . , N}

connects any two individuals whose distance does not exceed ε.
We refer to each connected component of G(V (t), E(t)) as an ε-school. Further-

more, we denote by Nε(t) the number of ε-schools in the graph G(V (t), E(t)).

Remark 1. In Ref. 8, we introduced a new definition of ε, θ-schooling. The definition
states that once the ε, θ-schooling structure has been formed, it will be maintained
indefinitely, as long as there are no external factors, such as a predator, that disrupt
it. However, in the current paper, the structure changes over time as a result of
predator attacks. Therefore, the definition of ε, θ-schooling is not applicable here.

In this study, we investigate the transformation of the number of ε-school struc-
ture of the schooling prey fish due to the predator’s attack in both two-and three-
dimensional spaces (d = 2, 3) for the observed four predator-avoidance patterns in our
earlier work.15 In all of the simulations, we employ the model (1) with the hunting tac-
tic chosen among Eq. (3) and Eq. (4), correspondingly. In all of the cases, the number
of prey fish is fixed atN = 40, and the intensity of noise σi = σ = 0.01 (i = 1, 2, . . . , N),
while other parameters may vary and are specified as necessary. Here, we specifically
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choose a moderate value of N = 40 so as to include a reasonable number of individuals
in the schooling prey fish to properly illustrate the transformation of the geometrical
structure of such a school formation due to a predator’s attack. Meanwhile, the values
of the magnitude of the white noise for the schooling prey fish and the predator are
determined as 0.001 ≤ σi ≤ 0.01 and 0.001 ≤ σ ≤ 0.01, respectively, thereby allow-
ing a sufficient magnitude of the white noise to invoke stochasticity in our system;
a large value of σ should be avoided to prevent a system with an excessively strong
stochasticity.7,8

The maximum simulation time is prescribed at tmax = 3, 500, during which the
solitary predator attacks the schooling prey only once. At the beginning of the sim-
ulation (t = 0), all prey fish are in an ε-school formation, while the predator fish is
positioned relatively far from the school.

In the following section, we present the results of the numerical simulations for all
the observed four predator-avoidance patterns.

3 Results

As outlined in the Introduction, our aim in the present study is to elucidate the trans-
formation of the structural formation of the schooling prey fish during the predator’s
attack. To do so, we integrate the concept of ε-school described in the Preliminary
section into the general model (1).

From our previous work,15 we obtained four predator-avoidance patterns. We label
them as: (i) Pattern I: Split and Reunion, (ii) Pattern II: Split and Separate into Two
Groups, (iii) Pattern III: Scattered, and (iv) Pattern IV: Maintain Formation and
Distance. In this section, we present the simulation results of each of the observed
patterns for two- and three-dimensional simulations, respectively. Let us begin by
discussing the simulation results of the two-dimensional cases.

3.1 Two-dimensional space

For the two-dimensional case, the simulations are carried out with a fixed value of
ε = 0.7. The values of other parameters of the model to obtain each of the predator-
avoiding patterns are outlined in Table 1, correspondingly. Therein, the associated
hunting tactic of the predator for each of the four predator-avoidance patterns is
listed in the second column of the table.

Table 1. Parameter settings for two-dimensional simulations of predator-
avoidance fish schooling.

Pattern
Hunting

α β δ p θ1 θ2 γ1 γ2Tactic

I II 15 0.5 1 4 1 0.5 0.08 0.1
II I 1 0.5 1 4 5 1 0.1 0.1
III II 1 0.5 5 2 1 2 1 0.1
IV I 2 0.5 0.1 2 1 1 5 10

Fig. 1 illustrates the results of the simulation for Pattern I (Split and Reunion),
displaying the condition of ε-school as simulation time progresses from the early stage
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1 - Split and Reunion 2D.jpg

Figure 1. The results of 2D simulation for Pattern I: Split and Reunion. The
images demonstrate the behavior of the schooling prey and the predator, as well
as the associated condition of ε-school at: (a) t = 0.2tmax, (b) t = 0.46tmax, (c)
t = 0.48tmax, (d) t = 0.5tmax, (e) t = 0.55tmax, and (f) t = tmax, respectively.

until the end of the simulation (tmax). Therein, the small black dots manifest the
schooling prey, while the large red dot designates the predator. The arrow linked to
each of the units denotes the direction of movement of that particular unit at the
corresponding time. The individuals constituting an ε-school (at the corresponding
time) are connected to each other through a solid line. Similar configurations apply
to the simulation results of other patterns.

As can be seen in Fig 1, as the predator arrives in the vicinity of the prey, the
schooling prey reacts accordingly to avoid the predator. Such a maneuver generates
a vacuole-form of the schooling prey where each of the individuals tries to get away
from the predator (see Fig. 1(b)). At this stage, the associated prey still maintains
the unitary school formation, as is depicted by the solid lines connecting each of the
individuals.

As the predator progresses along its path, a total number of 11 prey fish is eaten
by it. At this stage, all the other “survived” prey responses accordingly by decom-
posing the unitary formation of the school and temporarily constitutes two smaller
groups; each of the groups expands at the right angles away from the direction of the
predator’s attack. Evidence for this can be seen in Fig. 1(c), where two number of
ε-schools prevail. As the predator moves away from the “survived” prey, the latter en-
tities recombined to form a unitary school formation behind the predator (Fig. 1(f)),
resulting in the recuperation of the number of ε-school into one.

Now, let us turn our attention to the next Pattern. Fig. 2 displays the correspond-
ing simulation results for Pattern II (Split and Separate into Two Groups). As can
be seen in the figure, the behavior of the schooling prey in Pattern II exhibits similar
characteristics with Pattern I during the progression periods of the predator’s attack
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2 - Split and Separate into Two Groups 2D.jpg

Figure 2. The results of 2D simulation for Pattern II: Split and Separate into
Two Groups. The images demonstrate the behavior of the schooling prey and
the predator, as well as the associated condition of ε-school at: (a) t = 0.2tmax,
(b) t = 0.45tmax, (c) t = 0.48tmax, (d) t = 0.55tmax, (e) t = 0.7tmax, and (f)
t = tmax, respectively.

(see Figs. 2(a) - (d)). In this case, however, a total number of 5 prey fish is eaten
by the predator. Another conspicuous difference lies in the periods after the attack.
Therein, the two smaller schools of the “survived” prey do not rejoin into a unitary
school formation. Evidence for this is in Figs. 2(e) - (f). In accordance with this,
the number of ε-school decreases to two and remains at that level until the end of the
allotted simulation time.

Next, we move on to Pattern III (Scattered). Here, another distinctive charac-
teristic of the schooling prey appears: the schooling prey seems to display a panic
condition and permanently break the unitary school formation as the simulation pro-
ceeds. Because the prey breaks the unitary formation, the predator is in favorable
situation to hunt more (available) prey. As a result, the remaining “survived” prey is
actively being hunted by the predator, resulting in a continuing panic condition of the
individual prey. At the end of the allotted simulation time, a total number of 13 prey
fish is eaten by the predator.

As can be seen in Figs. 3(b) - (e), as the predator approaches, the number of ε-
school increases from one into numerous ε-schools based on the number of “survived”
prey at the particular time. Many of these structures consist of only one individual
prey fish. Such a condition can be identified in Fig. 3(f), where numerous structures
of ε-school prevail as the simulation arrives at tmax.

For the last anti-predation maneuver (namely Pattern IV: Maintain Formation
and Distance), the schooling prey exhibits vigilant behavior to the nearby predator: it
maintains a (relatively) safe distance from the predator during the simulation. Con-
sequently, no prey fish is being eaten by the predator. As shown in Fig. 4, the school
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3 - Scattered 2D.jpg

Figure 3. The results of 2D simulation for Pattern III: Scattered. The images
demonstrate the behavior of the schooling prey and the predator, as well as
the associated condition of ε-school at: (a) t = 0.2tmax, (b) t = 0.23tmax, (c)
t = 0.24tmax, (d) t = 0.3tmax, (e) t = 0.42tmax, and (f) t = tmax, respectively.

of prey fish maintains its unitary ε-school until the end of simulation time.
Up until this point, within the context of the four observed predator-avoidance

patterns, it seems that Pattern IV (Maintain Formation and Distance) provides the
best protection mode for the schooling prey, since no single prey is eaten by the
predator. On the other hand, Pattern III (Scattered) provides the least protection for
the schooling prey (13 prey fish is eaten by the predator). Between these two extremes,
Pattern I (Split and Reunion) and Pattern II (Split and Separate into Two Groups)
result in a total number of 11 and 5 eaten prey fish, respectively. It is important to
note, however, that as our model is stochastic, executing the simulation repeatedly
with the same parameters (for the same predator-avoidance pattern) may result in a
different total number of eaten prey by the predator. It is therefore crucial to take such
stochastic behavior into consideration. To do so, we deliberately run the simulation
1,000 times for each of the corresponding predator-avoidance patterns. Fig. 5a presents
the total number of eaten prey for each of the associated patterns. According to
Fig. 5a, it is apparent that Pattern IV (Maintain Formation and Distance) is the
most effective evasive mode for the schooling prey since no single prey is being eaten
throughout the 1,000 simulation runs. On the other hand, the least effective anti-
predation mode is displayed by Pattern III (Scattered), with a median of 13 eaten
prey during the predator’s attack. Such findings are consistent with observations of
diverse fish species in the natural aquatic ecosystem (see, for example, Refs. 17–20).

Fig. 5b shows the average number of ε-schools at each time step (Nε(t)), calculated
over 1,000 simulation runs for each pattern, using the same parameters as before. A
careful inspection of Fig. 5b reveals that the number of ε-schools increases from one to
a certain value, then decrease to one (for Pattern I) or two (for Pattern II). In Pattern
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4 - Maintain Distance 2D.jpg

Figure 4. The results of 2D simulation for Pattern IV: Maintain Formation
and Distance. The images demonstrate the behavior of the schooling prey and
the predator, as well as the associated condition of ε-school at: (a) t = 0, (b)
t = 0.2tmax, (c) t = 0.4tmax, (d) t = 0.6tmax, (e) t = 0.8tmax, and (f) t = tmax,
respectively.

III, the number of ε-schools increases as the school becomes more scattered, while in
Pattern IV, it remains at one throughout the allotted simulation time.

(a)

(b)

Figure 5. 2D simulation: (a) Total number of eaten prey, (b) Average number
of ε-schools (average Nε(t)) over 1,000 simulation runs.
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3.2 Three-dimensional space

In this subsection, we present the results of the simulation for the four predator-
avoidance patterns alongside their associated ε-schools in three-dimensional space.
Here, the value of ε is similar to the one employed in the two-dimensional case. Table
2 summarizes the adopted model parameter settings to run the three-dimensional
simulations.

Table 2. Parameter settings for three-dimensional simulations of predator-
avoidance fish schooling.

Pattern
Hunting

α β δ p θ1 θ2 γ1 γ2Tactic

I II 15 0.5 1 4 1 0.5 0.08 0.1
II I 0.36 0.5 1 4 15 1 0.1 0.1
III II 1 0.5 5 2 1 2 1 0.1
IV I 2 0.5 0.1 2 1 1 5 10

Figs. 6 - 9 exhibit the three-dimensional simulation results for Pattern I (Split and
Reunion), Pattern II (Split and Separate into Two Groups), Pattern III (Scattered),
and Pattern IV (Maintain Formation and Distance), respectively. In general, the main
characteristics of ε-schools for all the patterns are similar with the ones observed in
the two-dimensional cases.

1 - Split and Reunion 3D.jpg

Figure 6. The results of 3D simulation for Pattern I: Split and Reunion. The
images demonstrate the behavior of the schooling prey and the predator, as well
as the associated condition of ε-school at: (a) t = 0.2tmax, (b) t = 0.48tmax, (c)
t = 0.49tmax, (d) t = 0.5tmax, (e) t = 0.7tmax, and (f) t = tmax, respectively.

A distinctive feature with the former two-dimensional cases, however, lies in the
fact that in the three-dimensional spaces, the individual prey has more spatial flexibil-
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2 - Split and Separate into Two Groups 3D.jpg

Figure 7. The results of 3D simulation for Pattern II: Split and Separate into
Two Groups. The images demonstrate the behavior of the schooling prey and
the predator, as well as the associated condition of ε-school at: (a) t = 0.2tmax,
(b) t = 0.45tmax, (c) t = 0.48tmax, (d) t = 0.51tmax, (e) t = 0.65tmax, and (f)
t = tmax, respectively.

ity (more degrees of freedom) in its movement to avoid the approaching predator. This
reflects in the fewer prey that is being eaten by the predator for each of the predator-
avoidance patterns than in their corresponding two-dimensional counterparts. Fig. 10a
shows the total number of eaten prey for the four predator-avoidance patterns over
1,000 simulation runs for each of the corresponding patterns. A comparison of Fig. 5a
and Fig. 10a supports the erstwhile exposition: fewer prey is being eaten in the three-
dimensional cases than the corresponding two-dimensional counterparts due to the
higher degrees of freedom in the spatial movements of each individual prey.

Fig. 10b demonstrates the number of ε-schools for the three-dimensional cases.
Here again, we can observe that the ε-schools structure for all of the associated
predator-avoidance patterns exhibit relatively similar characteristics with their re-
spective two-dimensional cases. Such a consistent result between the two- and three-
dimensional simulations reflects the reliability and robustness of our model (1) in
describing the transformation of geometrical structure of the schooling prey during
predation threat of a solitary predator.

4 Conclusions

As a final remark, this paper extends the study of the SDE model of predator-avoidance
in fish schools as presented in Ref. 15. We propose a concept of ε-school as a mathe-
matical representation of the geometrical structure of the schooling prey fish.

By analyzing four different predator-avoidance patterns in both two and three-

11
85



3 - Scattered 3D.jpg

Figure 8. The results of 3D simulation for Pattern III: Scattered. The images
demonstrate the behavior of the schooling prey and the predator, as well as
the associated condition of ε-school at: (a) t = 0.2tmax, (b) t = 0.28tmax, (c)
t = 0.3tmax, (d) t = 0.4tmax, (e) t = 0.6tmax, and (f) t = tmax, respectively.

dimensional spaces, we found that the number of ε-schools varies dynamically during
the predator’s approach. Generally, in the first two patterns, we observed an initial in-
crease in the number of ε-schools followed by a decrease to either one or two structures.
Pattern III, however, exhibits a distinct characteristic in which the number of ε-schools
continued to increase until the end of the simulation. A constant unitary ε-school is
found in Pattern IV. These results suggest that when a predator approaches, individ-
ual fish in the school prioritize their attention to the predator rather than maintaining
their formation with other schoolmates. Such a finding is consistent with real-life
behavior of schooling fish in the natural aquatic ecosystem.

The results of this study contribute to a better understanding of the collective
behavior of fish schools and can potentially have implications for the study of animal
behavior and group dynamics in various species. Further research can be conducted
to explore the impact of various parameters, such as the value of ε, as well as the
intensity of the noise, on the observed patterns.
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4 - Maintain Distance 3D.jpg

Figure 9. The results of 3D simulation for Pattern IV: Maintain Formation
and Distance. The images demonstrate the behavior of the schooling prey and
the predator, as well as the associated condition of ε-school at: (a) t = 0, (b)
t = 0.2tmax, (c) t = 0.4tmax, (d) t = 0.6tmax, (e) t = 0.8tmax, and (f) t = tmax,
respectively.

(a)

(b)

Figure 10. 3D simulation: (a) Total number of eaten prey, (b) Average number
of ε-schools (average Nε(t)) over 1,000 simulation runs.
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Figure 8: Histogram of the Nit rogen-load (kg per hectare) over the contaminated propor-
t ion of the Þeld, after a short t ime. Note there is no uncontaminated region shown here
as these frequencies are too small to see. The respect ive areas of these three dist ribut ions
are an indication of the total load from one, two and three patches.
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Coupling nitrogen attenuation with the patch model?

What happens to the nitrogen after deposition?
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Conservation law

Need to modify the patch model
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Some features of this system
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Happy to be at FMI again!

• Great to see that this event is 
continuing to be held every year, 
in different (and nice!) places in 
the Asia-Pacific region

• Fantastic that APCMfI is so 
successful – with similar 
experiences as ECMI in Europe

• Love to experience more of the 
beautiful city of Melbourne
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Wil Schilders, TU Eindhoven & Hans Fischer senior fellow TUM-IAS
President-elect ICIAM
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https://www.siam.org/conferences/cm/conference/cse23

Registration will open November 26

AAddvveerrttiisseemmeenntt

2200+ participants expected

8 renowned invited speakers on a variety of topics

Public event with 5 TED talks, advertising mathematics to 
the general public and broadcast world-wide

Hackathon in weekend before conference, with 
challenges from 6 major companies like Siemens, ASML 
(great for young talented researchers)

FMI 2022: "Mathematics of 
Public Health and Sustainability"
• Excellent topic for a conference; 

mathematics is indispensable in our 
complex world with the many challenges 
we are facing in sustainability, climate, 
energy transition and more

• In this context, I would like to remind 
you of the International Year of Basic 
Sciences for Sustainable Development 
(IYBSSD 2022) that has been initiated by 
the ISC

• See www.iybssd2022.org; suggest to 
mention FMI 2022 as an event here
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• Some opening thoughts
• Artificial Intelligence, Machine Learning and Neural Networks
• Hybrid methods: combining CSE and AI methods
• Example 1: Dynamic neural networks
• Example 2: Geometric concepts and AI
• Conclusion
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Advertisement (2)

• ICIAM organizes a major 
conference on industrial and 
applied mathematics every 4 
years

• ICIAM 2023 will be held in 
Tokyo, August 20-25

• You are all encouraged to 
submit proposals for mini-
symposia!

• Hope yo see many of you in 
Tokyo
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A few years ago……..
…….I was thinking:

• Is numerical mathematics nearly finished?
• Do we see any new research directions, or is all research just an 

‘’epsilon improvement’’ of existing theories?
• Of course, much research was still carried out on interesting topics

• We worked on model order reduction, the solution of 
indefinite linear systems and mimetic methods, with some 
new ideas; nice research, but not revolutionary (probably 
more evolutionary)

• Also, new application areas required adaptation of existing 
methods, and sometimes entirely new techniques

• Computational Science and Engineering meant working in 
interdisciplinary teams for mathematicians, adding a new 
dimension
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SOME OPENING THOUGHTS

Real and Artificial Intelligence for Science and Engineering – Wil Schilders
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But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

• Numerical methods needed to be made 
parallelizable

• ICCG, for example, shows a very bad 
performance on current supercomputers
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But then…….
1. High Performance Computing started 

(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

• Numerical methods needed to be made 
parallelizable

• ICCG, for example, shows a very bad 
performance on current supercomputers

• Hence, for the solution of sparse linear systems, 
entirely new methods need to be developed

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 12

REVOLUTIONARY NEW IDEAS NEEDED!

(NLAFET project of Iain Duff and Jack Dongarra)

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 11
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And there is Mo(o)re
The main engine behind the electronics 
industry is Moore’s law: every 2 years the
speed and density of  transistors is 
doubled (general knowledge!)

Mathematical method development for HPC

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 13

• Mathematical method development 
must be distinguished from 
software and hardware

• Mathware researchers must 
engage in discussions with 
software and hardware colleagues 
to achieve optimal results

• Example: ease transformations 
between 16, 32 and 64 bit 
representations (using FPGA?)
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But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and 
quickly became part of the curriculum at 
universities

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 16

Mathematical methods are outperforming hardware 
improvements (not general knowledge!)

Mathematical 
method

Period (years) Improvement 
hardware

Improvement 
mathware

Solving large 
linear systems

35 10.000.000 10.000.000

Linear 
programming

16 1600 3300

Mixed integer 
programming

25 6500 870.000

Particle 
simulations

40 100.000.000 1.000.000.000

(180 years 
 1 

second)

We should aim at a similar development for parallel computing!
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But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and 
quickly became part of the curriculum at 
universities

3. Artificial Intelligence became extremely 
popular, with techniques for deep learning, 
in combination with big data

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 20

MANY NEW CHALLENGES AHEAD!

But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and 
quickly became part of the curriculum at 
universities

• It is an emerging discipline on the crossroads of 
multiple existing disciplines

• David Donohue (Stanford): ‘’50 years of Data 
Science’’

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 19

REVOLUTIONARY NEW IDEAS NEEDED!
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We will concentrate on the third 
topic: 

Combining methods from the fields 
of Computational Science and 
Engineering (CSE) and Artificial 
Intelligence (AI)

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 22

Quoting Karen Willcox (Oden, 
Texas)
‘’It is such an exciting time to be a 
computational scientist. The field is in 
the midst of a tremendous convergence 
of technologies that generate 
unprecedented system data and enable 
automation, algorithms that let users 
process massive amounts of data and 
run predictive simulations that drive key 
decisions, and the computing power that 
makes these algorithms feasible at scale 
for complex systems and in real-time or 
in situ settings.’’

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 21
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Artificial Intelligence (AI)

• The origins of AI can be traced 
back to the desire to build thinking 
machines, or electronic brains.

• In 1958, Frank Rosenblatt created 
the first artificial neuron that could 
learn by iteratively strengthening 
the weights of the most relevant 
inputs and decreasing others to 
achieve a desired output. 

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 24

ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND 
NEURAL NETWORKS

Real and Artificial Intelligence for Science and Engineering – Wil Schilders
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Machine Learning (ML)

• The discipline of machine learning is often conflated 
with the general field of AI, but machine learning 
specifically is concerned with the question of how to 
develop algorithms and program computers to 
automatically recognise complex patterns and make 
intelligent decisions based on data.

• It involves probability theory, logic, combinatorial 
optimization, statistics, reinforcement learning and 
control theory.

• Applications are ubiquitous, ranging from vision to 
language processing, forecasting, pattern recognition, 
games, data mining, expert systems and robotics.

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 26

Brain-inspired AI
• Computation in brains and the creation of intelligent 

systems have been studied in a symbiotic fashion for 
many decades.

• Europe has become a hotspot of brain-inspired 
computing research,  the progress being accelerated 
by the FET flagship ‘’Human Brain Project’’.

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 25

• In technology roadmaps, brain-inspired computing is commonly seen as a 
future key enabler for AI on the edge.

• Researchers at INRIA have presented an interdisciplinary approach towards 
transferring neuroscientific findings to new models of AI. Quoting them: 
“Major algorithms from artificial intelligence (AI) lack higher cognitive 
functions such as problem solving and reasoning.’’
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Breakthrough in Machine Learning
• The breakthrough work by Krizhevsky, Sutskever & 

Hinton in 2012 has been a catalyst for AI research. 
They used a deep neural network trained 
exhaustively on GPUs.

• Similar advances were then quickly reported for 
speech recognition and later for machine 
translation and natural language processing.

• Companies like Google, Microsoft and Baidu 
established large machine learning groups.

• Since then, with the combination of big data and 
big computers, rapid advances have been 
reported, including the use of machine learning for 
self-driving cars, and consumer-grade real-time 
speech-to-speech translation.

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 28

History of Machine Learning
• Arthur Samuels popularized the term 

‘’machine learning’’ in 1959; he built a 
checkers-playing program alongside 
efforts to understand the 
computational principles underlying 
human learning, in the developing field 
of neural networks.

• In the ‘90s, statistical AI emerged, 
formulating machine learning problems 
in terms of probability measures. 

• Since then, the emphasis has vacillated 
between statistical and probabilistic 
learning and progressively more 
competitive neural network 
approaches.

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 27
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Criticism is growing…

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 32

There are serious limitations to current methods, as 
well as to our understanding of the success of machine 
learning techniques such as deep neural networks.
Professor Robbert Dijkgraaf* compares machine 
learning with 16th century alchemy, based on an 
accumulation of tricks topped with a good shot of 
credulity rather than on a systematic analysis.
He also quotes Ali Rahimi, a well-known researcher at 
Google, who last year accused the subject artificial 
intelligence of magical thinking.

*: Former president of Dutch Royal Academy of Sciences, 

former director of Princeton Institute of Advanced Studies, 
since a few months our new minister for Science and Education

Criticism is growing…

• The much-glorified deep learning approaches all rely on the availability 
of massive amounts of data, often needing millions of correctly labelled 
examples. 

• Many domains, however, including some important areas such as 
health care, will never have such massive labelled datasets. 

• Similarly, robots cannot be trained for millions of trials, simply because 
they wear out long before. 

• The question is thus how to learn more with less. Here, statistics and 
prior knowledge will likely play a big role. 

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 31
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Criticism is growing…

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 34

Wall Street Journal, August 4, 2021

Criticism is growing…
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The New York Times [12] goes even further, claiming that today’s AI needs to do 
something completely different: 

• “We need to stop building computer systems that merely get better and better at 
detecting statistical patterns in data sets – often using an approach as deep 
learning – and start building computer systems that from the moment of their 
assembly innately grasp three basic concepts: time, space and causality. Today’s 
AI systems know surprisingly little about any of these concepts….. Few people 
working in AI are even trying to build such background assumptions into their 
machines.”
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Conclusion on AI and machine learning

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 36

There is a lot of work ahead for mathematicians in the areas of artificial intelligence, 
machine learning and artificial neural networks (ANN)
• Understanding why methods work or do not work
• Understand the actions of the neurons (new ones?)
• Understanding on what grounds AI systems take decisions

• In image recognition, use is made of the pixels; mathematics can provide much better methods

• How to select a good set of training data
• Using less data and prior knowledge
• Reducing the size and density of neural networks
• Predicting the topology of ANN
• ………

Image recognition
Often you see the example of a deep 
neural network trained to distinguish 
photos of cats and dogs

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 35

The network is constructed by making a long sequence of bits in the image

To me, this sounds as a very bad way of doing things……this is absolutely not the 
way humans idenfity whether it is a cat or dog

Much better would be to use some kind of ‘’meshing’’ of the objects in the 
photo. In this way, characteristics of the animals are captured much better. And 
one avoids the influence of the environment (example dogs and wolves)
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Using AI within CSE

• In recent years, researchers in the 
field of Computational Science and 
Engineering realized that they could 
benefit from AI methods.

• Much more accurate models and 
simulations, needed for example in 
the creation of Digital Twins, require 
much more detailed models and 
coupled simulations.

• Neural networks can be used for 
accurate models of parameters

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 38

HYBRID METHODS: COMBINING CSE AND AI

Real and Artificial Intelligence for Science and Engineering – Wil Schilders
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Problem in this context

• Mathematicians derived conditions that mobility models must satisfy
• Peter Markowich proved that a monotonicity condition, with respect to 

the quasi-Fermilevel gradients, must hold
• Once the engineers at Philips presented a model that did not satisfy 

this condition; simulations failed at some point. They then corrected 
the model, satisfying the mathematical constraint

• Obviously, models generated with neural networks should also satisfy 
the constraint

• How can we achieve this???

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 40

Going back in time: semiconductor device simulation

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 39

• Every year new models are 
constructed for mobility (and 
recombination), based upon many 
simulations and measurements, 
then using physical insight and 
curve-fitting
• Engineers and phycisists

provided their neural networks
• Why not use artificial neural 

networks, based upon the 
abundantly available measurement 
and simulation data?
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Physics Informed Neural Networks (PINNs)

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 42

(George Karniadakis, Brown University, USA)

I am not sure that 
loss functions are the 
way to go, it leads to 

many problems

I believe much more 
in hard-coded 

physical properties

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 41
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USA is front runner

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 44

Combining physics based and data-based science 
and engineering

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 43

Richard Feynman: 
‘’People who wish to 

analyse nature 
without using 

mathematics must 
settle for a reduced 

understanding." 
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Booklet presented during Lorentz workshop

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 46

https://platformwiskunde.nl/wp-
content/uploads/2021/11/Math_KET_SciML.pdf

Workshop Lorentz Center (Leiden), November 1-5, 2021

• ‘’Computational mathematics and machine 
learning’’

• Keynote speakers:
• George Karniadakis
• Weinan E
• Petros Koumoutsakos
• Carola Schönlieb
• Stéphanie Allasonnière
• Karen Willcox
• Stephan Wojtowytsch
• Paris Perdikaris
• Erik Bekkers

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 45
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Combining physics based and data-based science 
and engineering

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 48

• We aim at using so-called 
mimetic methods, i.e. 
methods that preserve 
properties of the 
underlying system

• How to develop mimetic 
neural networks or mimetic 
machine learning methods 
is an open challenge

• Such methods may need 
(much) less data, i.e. also 
work in case of ‘’little data’’ 
rather than ‘’big data’’

NWO XL Project UNRAVEL

Wil Schilders - Mathematics: key enabling technology for scientific machine learning PAGE 
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Neural networks are often static, and use the following neuron 
activation functions

EXAMPLE 1: DYNAMIC NEURAL NETWORKS

Real and Artificial Intelligence for Science and Engineering – Wil Schilders
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At Philips 
Research, 
we 
developed 
truly 
dynamic 
neural 
networks

For dynamic 
situations (ODE, 
PDE, DAE), often 
recurrent neural 

networks are 
suggested
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Mimetic numerical methods
Lecture 22

Dynamic neural network idea

DDyynnaammiicc  nneeuurraall  nneettwwoorrkkss

• We were able to show that there is a 1-1 relation to state space 
models of the form

• Using this relation, the topology of the network can be defined (using 
the MOESP algorithm):

• Number of hidden layers related to multiplicity of eigenvalues of A
• Number of neurons related to number of complex eigenvalues
• Real eigenvalue  neuron with 1st order ODE
• Complex eigenvalue(s)  neuron with 2nd order ODE
• Methodology involves SVD, QR, Bartels-Stewart algorithm, solving Sylvester equations

Wil Schilders - Mathematics: key enabling technology for 
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Mimetic numerical methods
Lecture 22

Mimetic numerical methods
Lecture 22
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Mimetic numerical methods
Lecture 22

Mimetic numerical methods
Lecture 22
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Mimetic numerical methods
Lecture 22
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EXAMPLE 2: GEOMETRIC CONCEPTS AND AI

Real and Artificial Intelligence for Science and Engineering – Wil Schilders

Potential of dynamic neural networks
• We were able to predict the topology of dynamic neural networks (# 

hidden layers, # neurons per layer) by establishing a 1-1 
correspondence with state space models

• This correspondence also opens up the way to methods for model 
order reduction of neural networks, translating MOR concepts for state 
space models

• We are currently also investigating ‘’pruning of neural networks’’, which 
is related to model order reduction

• Neuron action in these dynamic neural networks can be viewed as so-
called high pass or low pass filters in electronics, implying that we are 
using electronic concepts for the construction of the networks 
mimicking true behaviour

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 63
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Current image analysis methods fall short

Costly user-input to correct

2Wil Schilders - Mathematics: key enabling technology for scientific machine learning 

Applied Differential Geometry – Dep. of Mathematics and Computer Science

Equivariant Deep Learning via PDEs
Remco Duits (joint work with Bart Smets & Erik Bekkers & Jim Portegies)
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4

𝜃𝜃𝜃𝜃

New Dimensions

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 

Problem Solution

3

?!

PDE-based geometric learning

Original

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 
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Geometric PDE-Based neural networks

Reduce neural network by 
employing symmetry

Learn geometry by PDEs to 
improve classification

7Wil Schilders - Mathematics: key enabling technology for scientific machine learning 

Geometric Image Analysis

Limited performance
Limited scope
Hand-crafting
Geometric Interpretation by PDEs
Low computational load
Few parameters
Little training-data

High performance
Wide scope
Automatic
No geometric interpretation
High computational load
Too many parameters
Huge training-data

Deep Learning

Merge geometry and machine learning

5

Merge geometry and machine learning

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 
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CONCLUSION

Real and Artificial Intelligence for Science and Engineering – Wil Schilders

Equivariant Deep Learning via PDEs

• An exciting area of research, improving the performance of 
convolutional neural networks (CNN) with geometric concepts, leading 
to the so-called G-CNN networks

• Remco Duits has obtained a very prestigious NWO Vici grant (2.5 
MEuro) to carry out this research

• For more information: https://www.win.tue.nl/~rduits/

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 71
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Conclusion
• Expertise from numerical linear algebra and model order reduction can 

be used to ‘’prune’’ neural networks: reducing them in size, and 
improving the sparsity

• Mathematics may aid in predicting the topology of neural networks, 
avoiding the currently employed guesswork

• The mathematical sciences are indispensable in the new 
multidisciplinary field of scientific machine learning, combining model-
and data-based methods

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 74

Real intelligence is needed to 
make artificial intelligence work

(you may quote 
me on this)

Conclusion
• These are exciting times for researchers in the mathematical sciences, 

with the advent of high-performance computing, data science and 
artificial intelligence

• Combining ‘’traditional’’ methods in Computational Science and 
Engineering with methods from Artificial Intelligence, Machine Learning 
and Neural Networks is the way forward to increase accuracy of 
models, as required by e.g. Digital Twinning

• Using prior knowledge will be key to improve the performance of 
neural networks

• Increased accuracy, less data, more robustness

Wil Schilders - Mathematics: key enabling technology for scientific machine learning 73
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Introduction
• How do the random coefficients of a power series affects its zeros?
• The history of random power series could be traced back to the studies of

Paley, Zygmund and Wiener. It is still a hot topic in probability theory.
• Peres and Virág [3] studied the zeros of random power series

fPV(z) =
∞∑

n=0
ζnzn

where {ζn}n is independent, identically distributed (i.i.d.) complex Gaussian
random variables.

• In our work [1], we replace {ζn}n with finitely dependent stationary Gaussian
coefficients {ξk}k, and then, we show that the degeneracy of zeros of spectral
density of {ξk}k sensitively affects zeros of f (z) :=

∑∞
k=0 ξkz

k from the point
of view of the expected number of zeros of f(z).

Gaussian analytic function (GAF): Examples and properties
• Gaussian analytic function is a holomorphic function-valued Gaussian process

on a domain contained in C.
• One of the key quantities for zeros process of GAFs is the number of zeros:

Nf(r) = #{z ∈ C : f(z) = 0,|z| ≤ r} for GAF f(z).
• Peres and Virág showed that zeros process of fPV(z) is the determinantal

point process. In particular, ENfPV(r) = r2

1−r2.
There are well-known three invariant Gaussian analytic functions:

• Entire GAF: For L > 0, fEnt
L (z) =

∑∞
n=0

√
Ln

n! ζnzn.

• Hyperbolic GAF: For L > 0, fHyp
L (z) =

∑∞
n=0

√
Γ(L+n)
Γ(L)n! ζnzn.

• Spherical GAF: For L ∈ N, fSph
L (z) =

∑L
n=0

√(
L
n

)
ζnzn.

-2 -1 0 1 2
-2

-1

0

1

2

Figura 1 – Entire GAF.
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Figura 2 – Hyperbolic GAF. Figura 3 – Spherical GAF.

GAF with finitely dependent stationary Gaussian process
coefficients and our methods

• Let {ξn}n be mean 0, variance 1, and complex finitely dependent stationary
Gaussian processes with the covariance function γ(k) = E[ξnξn+k].

• Our model is f(z) :=
∑∞

k=0 ξkz
k.

Our key quantity is Θ(r,z) =
∑

k∈Z γ(k)r|k|zk, whose zeros determine the
asymptotic behavior of zeros of f(z).

• 2-dependent case: fa,b(z) =
∑∞

k=0 ξkz
k with 2-dependent Gaussian process

{ξn}n with the covariance function
γa,b(k) = δk,0 + aδk,±1 + bδk,±2, Θ(r,z) = 1 + ar(z + z−1) + br2(z2 + z−2).

• n-dependent case: fn(z) =
∑∞

k=0 ξkz
k with n-dependent Gaussian process

{ξn}n with covariance function

γn(k) =

{( 2n
n+k

)(2n
n

)−1 (|k| = 0,1,2...,n),
0 else,

, Θ(r,z) =
(

2n

n

)−1
z−n(z+1)2n.

• Key tool is the Edelman-Kostlan formula in the case of dependent coefficients:

ENf(r) = r2

1 − r2 − r

2πi

∮

∂D

G′(rz)
Θ(r,z)

dz, G(z) =
∞∑

n=1
γ(n)zn.

• Our strategies are:
1. Residue calculus and asymptotic behavior of zeros of Θ(r,z) as r → 1.
2. Newton polygon method (n-dependent model).

Figura 4 – The left figure is the region of positive
definiteness of γa,b(k), and the right two figures are the
behaviors of zeros z(r) of Θ(r,z) = 0 as r → 1. Plots for
a = 1/4,b = −1/4 (middle) and a = 2/3,b = 1/6 (right).
The multiplicity of zeros affects on zeros of fa,b(z).

Figura 5 – Superposition of
zeros of Peres-Virág GAF
(Red) and f30(z) (Blue).

Main results [1]
Consider GAF f(z) =

∑∞
k=0 ξkz

k.
• The spectral density of finitely dependent stationary Gaussian process Ξ = {ξk}k, Θ(1,z) =

∑
k∈Z γ(k)zk of Ξ has zeros θj of multiplicity 2kj for j = 1,2,...,p.

• Put α = (2k − 1)/(2k) with k = max1≤j≤p kj; α = 0 otherwise.
Then, ∃CΞ > 0 s.t.

ENf(r) = r2

1 − r2 − CΞ(1 − r2)−α + o
(
(1 − r2)−α

)
, as r → 1.

In general, ENf(D) ≤ ENfHyp
1

(D) for GAF f with stationary Gaussian process coefficients and a domain of D. Hence, a negative term of slower growth appears.
♣ 2-dependent case: On each region (I), (II), (III), and (IV), as r → 1,

(I) ENfa,b
(r) = r2

1 − r2 −
√

2b

6b − 1
1

(1 − r2)1/2 + O(1), (II) ENfa,b
(r) = r2

1 − r2 − 1
2

√
1 − 2b

1 − 6b

1
(1 − r2)1/2 + O(1),

(III) ENfa,b
(r) = r2

1 − r2 − 1
25/4

1
(1 − r2)3/4 + O(1), (IV) ENfa,b

(r) = r2

1 − r2 − C(a.b) + O(1 − r2), where C(a,b) ≥ 0.

♣ n-dependent case:

ENfn
(r) = r2

1 − r2 − Dn(1 − r2)−2n−1
2n + O((1 − r2)−2n−3

2n ), as r → 1, where Dn = 1
2n sin π

2n

{(
2(n − 1)

n − 1

)} 1
2n

.

Conclusions
1. If we consider the fractional Gaussian noise {ξH

n }n with
E[ξH

n ξH
n+k] = 1

2|k + 1|2H + 1
2|k − 1|2H − |k|2H [2], then Θ(r,z) becomes the infinite

series. Hence, we need to develop a new tool to let information of zeros of infinite
series with covariance function coefficients.
2. We would like to establish a variance formula of Nf(r) for GAF with dependent
Gaussian coefficients and develop an algorithm as we have done in the case of the
expected number of zeros.
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Preliminary
GGrroowwiinngg  kk--aarryy ttrreeee  ((sseeee  ffiigguurree  22  ))
𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔 ≔ 𝑉𝑉𝑠𝑠, 𝐸𝐸𝑠𝑠 :Tree of depth 2(h+s)
𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔 ≔ 𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝟎𝟎, 𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝟏𝟏, … , 𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔
𝒇𝒇 𝒔𝒔 ≔ 𝟏𝟏

𝟐𝟐 duration of 𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔 → 𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔+𝟏𝟏

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻≔ lim
𝑠𝑠→∞

𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑠𝑠 (Figure 1)

PPrroobbaabbiilliittiieess
𝒒𝒒𝒙𝒙,𝒚𝒚(𝟐𝟐𝟐𝟐; 𝒇𝒇; 𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔(𝒏𝒏)):probability of going 2n steps from x to y on 𝐓𝐓𝐓𝐓𝐓𝐓𝐄𝐄𝒔𝒔(𝒏𝒏)

𝒑𝒑𝒙𝒙,𝒚𝒚(𝟐𝟐𝟐𝟐; 𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔):probability of going 2n steps from x to y on TREEs

Theorem 
(i) If σ𝒃𝒃=𝟎𝟎

+∞ 𝒇𝒇(𝒉𝒉+𝒃𝒃)
𝒌𝒌𝟐𝟐(𝒉𝒉+𝒃𝒃) = +∞ then 𝒗𝒗𝝆𝝆 is recurrent. 

(ii) Otherwise (if σ𝒃𝒃=𝟎𝟎
+∞ 𝒇𝒇(𝒉𝒉+𝒃𝒃)

𝒌𝒌𝟐𝟐(𝒉𝒉+𝒃𝒃) = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 then) 𝒗𝒗𝝆𝝆 is transient.  

Sketch of proof (i)  (proof (ii) is similar)

⋮
⋮

⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝟐𝟐(𝑯𝑯 + 𝒔𝒔)

⋮
⋮

⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒑𝒑𝒑𝒑𝒑𝒑 𝟐𝟐 𝑯𝑯 + 𝒔𝒔 + 𝟐𝟐

𝒒𝒒𝒗𝒗𝝆𝝆,𝒗𝒗𝝆𝝆 𝟐𝟐𝟐𝟐; 𝒇𝒇; 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 ≥ 𝒑𝒑𝒗𝒗𝝆𝝆 ,𝒗𝒗𝝆𝝆(𝟐𝟐𝟐𝟐; 𝑷𝑷𝑷𝑷𝑷𝑷𝑯𝑯𝒔𝒔)

→ σ𝑛𝑛=0
∞ 𝒒𝒒𝒗𝒗𝝆𝝆,𝒗𝒗𝝆𝝆 𝟐𝟐𝟐𝟐; 𝒇𝒇; 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 ≥ σ𝑠𝑠=0

∞ σ𝑛𝑛=1
𝑓𝑓(𝑠𝑠) 𝒑𝒑𝒗𝒗𝝆𝝆 ,𝒗𝒗𝝆𝝆(𝟐𝟐𝟐𝟐; 𝑷𝑷𝑷𝑷𝑷𝑷𝑯𝑯𝒔𝒔)

𝑷𝑷𝑷𝑷𝑷𝑷𝑯𝑯𝒔𝒔

𝑷𝑷𝑷𝑷𝑷𝑷𝑯𝑯𝒔𝒔

Background
• Kijima et al. investigated the number of vertices unvisited by a random walk on a 

growing network, which is interesting in network science/engineering [2]. 
• Random walk is also important in machine learning [4].
• Dembo et al. investigated the condition that the origin becomes recurrent/transient

by a random walk on a growing region in lattice [1]. 

There is a lot of variants of  random walks on growing regions, nevertheless, a little is 
known about it. 

It is known that the random walk on infinite 
k-ary tree (fig 1) is transient at the root [5].
This work investigates conditions that a 
random walk on a growing k-ary tree (fig 2)
becomes recurrent/transient.

⋮

⋮
⋮

⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝟐𝟐𝟐𝟐

⋮
⋮

⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒑𝒑𝒑𝒑𝒑𝒑 𝟐𝟐𝟐𝟐 + 𝟐𝟐

⋮

⋮
⋮

⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝟐𝟐(𝑯𝑯 + 𝒔𝒔)

⋮

⋮
⋮

⋮
⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 ∞

𝟎𝟎 𝟐𝟐𝟐𝟐(𝟎𝟎)

Figure 2:Growing k(k=2)-ary Tree (𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔)

Figure 1:infinite k (k=2)-ary Tree (TREE)

𝟐𝟐𝒇𝒇 𝟎𝟎 + 𝟐𝟐𝟐𝟐(𝟏𝟏)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2𝑓𝑓(𝑠𝑠)

⋮ ⋮

𝟐𝟐 σ𝒊𝒊=𝟎𝟎
𝒔𝒔 𝒇𝒇(𝒊𝒊) 𝟐𝟐 σ𝒊𝒊=𝟎𝟎

𝒔𝒔+𝟏𝟏 𝒇𝒇(𝒊𝒊)

𝒕𝒕
⋮

𝒕𝒕
𝟎𝟎 𝟐𝟐𝟐𝟐(𝟏𝟏) 𝟐𝟐𝒇𝒇 𝟏𝟏 + 𝟐𝟐𝟐𝟐(𝟐𝟐)

⋮
𝟐𝟐 σ𝒊𝒊=𝟎𝟎

𝒔𝒔 𝒇𝒇(𝒊𝒊) 𝟐𝟐 σ𝒊𝒊=𝟎𝟎
𝒔𝒔+𝟏𝟏 𝒇𝒇(𝒊𝒊)

𝟏𝟏
𝒌𝒌 + 𝟏𝟏

𝑣𝑣𝜌𝜌

𝒌𝒌
𝒌𝒌 + 𝟏𝟏

depth 𝟐𝟐(𝑯𝑯 + 𝒔𝒔)

𝟏𝟏
𝒌𝒌 + 𝟏𝟏

𝑣𝑣𝜌𝜌

𝒌𝒌
𝒌𝒌 + 𝟏𝟏

depth 𝟐𝟐𝟐𝟐

𝟏𝟏
𝒌𝒌 + 𝟏𝟏

𝑣𝑣𝜌𝜌

𝒌𝒌
𝒌𝒌 + 𝟏𝟏

depth 𝟐𝟐(𝑯𝑯 + 𝟏𝟏)

𝟏𝟏
𝒌𝒌 + 𝟏𝟏

𝑣𝑣𝜌𝜌

𝒌𝒌
𝒌𝒌 + 𝟏𝟏

depth 𝟐𝟐(𝑯𝑯 + 𝒔𝒔)

range of 𝟐𝟐𝟐𝟐 ≤ 𝟐𝟐 σ𝒊𝒊=𝟎𝟎
𝒔𝒔 𝒇𝒇(𝒊𝒊)

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝟐𝟐(𝑯𝑯 + 𝒔𝒔)

1
𝑘𝑘 + 1

𝑣𝑣𝜌𝜌

𝑘𝑘
𝑘𝑘 + 1

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝟐𝟐(𝑯𝑯 + 𝒔𝒔) + 𝟐𝟐

1
𝑘𝑘 + 1

𝑣𝑣𝜌𝜌

𝑘𝑘
𝑘𝑘 + 1

⋮

Future work

Apply to various fields such a machine learning.

⋮
⋮

⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝟐𝟐𝟐𝟐

⋮
⋮

⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒑𝒑𝒑𝒑𝒑𝒑 𝟐𝟐𝟐𝟐 + 𝟐𝟐

⋮

⋮
⋮

⋮

𝑣𝑣ρ

⋯

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝟐𝟐(𝑯𝑯 + 𝒔𝒔)

⋮

Random Walk on 𝑻𝑻𝑻𝑻𝑻𝑻𝑬𝑬𝒔𝒔

⋮
⋮

⋮

𝑣𝑣ρ

⋯

⋮
⋮

⋮

𝑣𝑣ρ

⋯

⋮

⋮
⋮

⋮

𝑣𝑣ρ

⋯

⋮

Random Walk on Growing general Network
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Recurrent/Transient 
A vertex 𝑣𝑣 is called
recurrent/transient if the following 
equation holds: 

σ𝑛𝑛=0
∞ 𝑃𝑃𝑣𝑣,𝑣𝑣(2𝑛𝑛) = +∞/constant.
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