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Prologue

During 21%-24" November 2022, we were privileged to host the Forum “Math-for-Industry” 2022
(FMf12022), following a long tradition of successful events around the Asia Pacific region, under the
auspices of the Asia Pacific Consortium of Mathematics for Industry (APCM{T). The event was held at the
City Campus of La Trobe University, conveniently located in the heart of Melbourne’s business district.
More broadly, this event was hosted by Australian members of APCM{I. The organising committee included
representatives from Monash University, the University of Adelaide, Griffith University and Kyushu
University, as well as several from La Trobe University.

The chosen theme for FMf12022 was “Mathematics for Public Health and Sustainability”, encompassing two
of the most challenging areas that are faced by humanity. Mathematical modelling in these two areas
involves some common features. Both deal with complex systems of many variables influenced by human
behaviour and environmental influences (earthquakes, volcanism, droughts, floods, storms) that can be
predicted only with a high degree of uncertainty. To some extent, these systems can be modelled by
deterministic dynamics that inform our basic understanding, but with important unpredictable fluctuations of
external forces as well as uncertainty in the values of model parameters. A variety of mathematical tools is
needed, including: forward and inverse problems of differential and integral equations; uncertain parameter
estimation; stochastic equations; discrete agent simulation; operations research and game theory. To this end,
we invited several excellent and influential speakers, all of whom are very busy people that freely committed
their time to this worthy cause. Also, there was a variety of interesting and attractive posters that generated
much discussion. By tradition, FMfI showcases only invited plenary talks plus posters by students and early-
career researchers.

It occurred to the organisers that the modelling of important complex systems requires the use of ‘Statistics
and Mathematical Modelling in Combination’ (SMMC). That combination is easier said than done. The
majority of mathematical scientists devote most of their time to one or the other end of the statistics—
mathematics spectrum. Therefore, we decided to run a workshop SMMC2022 on that combined theme, as
technical background. SMMC2022 was held in the week preceding FMfT from 16"-18" November. This
gave us the opportunity to call for contributed talks as well as inviting several plenary speakers who had
examples of successful research at the interface of mathematical science disciplines.

Both events received very supportive feedback from participants. Thank you to all those who prepared talks
and posters, providing stimulation at a very high standard. Neither event could have run without the generous
support of APCMII, La Trobe University (especially the Australia Branch of IMI-Kyushu-U, La Trobe Asia
and the School of Computing, Engineering and Mathematical Sciences), the Institute of Mathematics for
Industry Kyushu University (for International Program Grant and sponsorship of student prizes), and the
Australian Mathematical Sciences Institute (AMSI) for a workshop grant. We express our gratitude to all
benefactors and supporters. We acknowledge the work of the organising committee and program committee
that met regularly throughout most of the year, reliably coordinated by the tireless administrative officer
Diana Heatherich. Finally, we thank all who attended, either in person or by electronic communications
during a difficult pandemic. We had registrants from Australia, New Zealand, Japan, Malaysia, USA, India,
and the Netherlands.

Due to many competing demands, we have not insisted on full papers being submitted by speakers. They
were given the opportunity to contribute full papers, projected presentation pages, extended abstracts or
original abstracts. Documents from both events have been combined here. They have been categorised by
broad topic: SARS-Corona virus modelling; other public health issues; environmental models; and
combined methods of mathematics/statistics. We hope that there will be something of interest for all readers,
that it might spread the word on who is active in these fields, and that it might encourage people to
participate in FMfI and other APCM{I and IMI events in future.

Editors Philip Broadbridge, Melanie Roberts, Luke Bennetts, and Kenji Kajiwara,
March 2023
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History of the Forums '""Math-for-Industry"

The first of these forums was initiated by the Institute of Mathematics for

Industry (IMI) at Kyushu University in Japan in 2010. As part of its international program,
IMI has continued to support participation throughout the Asia-Pacific region in its
philosophy of relating high-level mathematics to industry needs. In 2014, this outreach was
broadened with the formation of Asia Pacific Consortium of Mathematics for Industry
(APCMH{I), which is now the host organisation, consisting of members from the entire
region, plus some from further afield. Except for one postponement during the height of the
novel coronavirus pandemic, forums have been held annually with great success:

2008 Sep 16-17
Tokyo, Japan
Consortium of Math-for-Industry

2009 Nov 9-13

Fukuoka, Japan

Casimir Force, Casimir Operators and the Riemann Hypothesis
-- Mathematics for Innovation in Industry and Science—

2010 Oct 21-23

Fukuoka, Japan

Information Security, Visualization, and Inverse Problems, on the basis of
Optimization Techniques

2011 Oct 24-28

Honolulu, USA

TSUNAMI - Mathematical Modelling Using Mathematics for Natural
Disaster: Prediction, Recovery and Provision for the Future

2012 Oct 22-26
Fukuoka, Japan
Information Recovery and Discovery

2013 Nov 4-8
Fukuoka, Japan
The Impact of Applications on Mathematics

2014 Oct 27-31

Fukuoka, Japan

Applications + Practical Conceptualization + Mathematics = Fruitful
Innovation

2015 Oct 26-30
Fukuoka, Japan
The Role and Importance of Mathematics in Innovation

2016 Nov 21-23
Brisbane, Australia



Agriculture as a Metaphor for Creativity in all Human Endeavours

2017 Oct 23-26

Honolulu, USA

Responding to the Challenges of Climate Change: Exploiting, Harnessing
and Enhancing the Opportunities of Clean Energy

2018 Nov 17-21
Shanghai, PRC
Big Data Analysis, Al, Fintech, Math in Finance and Economics

2019 Nov 18-21
Auckland, NZ
Mathematics for the Primary Industries and the Environment

2021 Dec 13-16
Hanoi, Vietnam
Mathematics for Digital Economy

2022 Nov 21-24
Melbourne, Australia
Mathematics for Public Health and Sustainability



Forum and Conference Committees

Organising Committee and Programme Committee

* Professor Marcel Jackson, La Trobe University, Chair, Organising Committee
» Emeritus Professor Philip Broadbridge, La Trobe University, Chair, Programme
Committee

* Associate Professor Joel Miller, La Trobe University

* Dr Peter Van Der Kamp, La Trobe University

* Associate Professor Luke Bennetts, University of Adelaide

* Dr Melanie Roberts, Griffith University

* Dr Christopher Lenard, La Trobe University

* Dr Anja Slim, Monash University

* Dr Rebecca Chisholm, La Trobe University

* Associate Professor Winston Sweatman, Massey University, New Zealand

* Professor Luke Prendergast, La Trobe University

* Professor Osamu Saeki, Kyushu University

* Professor Kenji Kajiwara, Kyushu University

» Diana Heatherich, La Trobe University, Secretariat

Advisers: Professors Zainal Bin Abdul Aziz, President APCFMI
Dr Pierluigi Cesana (Poster Competition Organiser)
Dr Shizuo Kaiji, Treasurer APCMfl.

This combined committee met fortnightly throughout most of 2022.



SMMUC Conference Schedule

Wednesday 16 Nov

9:35-10:25 Jukka Corander

Robust and scalable inference for simulator-based models
10:30-10:45 Morning Tea

10:45-11:35 Shizuo Kaji

Modelling preference with hyperplane arrangement

11:40-12:00 Yvonne Stokes
Chemical signalling and tissue response: a moving boundary problem in biology

12:00-12:20 Rahil Valani
Dynamics of inertial particle focusing in curved ducts

12:20-12:40 Soukaina Hadiri
Some results on the mixed bifractional Brownian motion

12:40-2:00 Lunch

2:00-2:50 David Price
Supporting government response to COVID-19 through model-based situational assessment

2:55-3:10 Afternoon Tea

3:10-4:00 Melanie Roberts
MERGE and the role of gully erosion modelling to protect water quality on the Great Barrier Reef

Thursday 17 November

10:45 — 11:35 Oliver Maclaren
Data, Models and Uncertainty: Perspectives and Tools

11:40 — 12:00 Sarah Vollert
A sequential method for efficiently parameterising ensemble ecosystem models

12:00 — 12:20 Jordan Pitt
Model predictions of wave overwash extent into the marginal ice zone

12:20 — 12:40 Adeshina Adekunle
A new mathematical modelling framework for capturing and forecasting Australia COVID-19
waves: transitioning from Delta wave into Omicron wave

12:40 — 2:00 Lunch

2:00 — 2:50 Natalie Thamwattana
Interaction between nanostructures: relation between their atomic distributions and modelling
approaches

2:55 —3:10 Afternoon Tea



3:10 — 4:00 Kei Hirose

Penalized likelihood approach in multivariate regression with missing
values and its application to materials properties prediction

Friday, 18 Nov

10:10-10:30 Chris Drovandi
Likelihood-Free Methods and Model Misspecification

10:30-10:45 Morning Tea

10:45-11:35 iadine Chad’es
Developing Al Decision Tools for Conservation

11:40-12:00 Ton Viet Ta
Fish Schooling

12:00-12:20 Matthew Adams
Analysis of model sloppiness: what can it do, and what’s next?

12:20-12:40 Saddam Abbasi
Identifying state of the process using ML algorithms

12:40-2:00 Lunch

2:00-2:50 Emma McBryde
The application of mathematics to pandemics: some examples of modelling used during
COVID-19

2:55-3:10 Afternoon Tea

3:10-3:30 Komal Singla
Symmetry Analysis and Exact solutions of fractional order (2+1)-dimensional Burgers
system

3:30-3:50 Manoj Kumar
Analysis of Diffusive Size-Structured Population Model and Optimal Birth Control



FMF12022 Forum Schedule

Monday, 21 November

9:15-10:00

Opening & Acknowledgement of Country

Professor Marcel Jackson

Mr Adam Cuneen, Victoria’s Commissioner to North Asia

Deputy Consul General Mr Shunsuke Saito, Consulate General of Japan
Professor Chris Pakes, Pro Vice Chancellor (Graduate & Global Research)
Professor Zainal Aziz, President of APCMfl

10:00-10:50 Wil Schilders
Mathematics: key enabling technology for scientific machine learning

10:50-11:20 Morning Tea

11:20-12:10 Bhavna Antony
Artificial Intelligence Approaches for Diagnosis and Management of Glaucoma

12:00-2:00 Lunch

2:00-2:50 Emma McBryde
The application of mathematics to pandemics: some examples of modelling used during
COVID-19

2:50-3:10 Afternoon Tea

3:10—4:00 Oliver Maclaren
Identifiability analysis and predictive uncertainty for complex mathematical and simulation
models

4:00-6:00 Free

6:00-7:00 Malay Banerjee
Christie Eliezer Memorial Lecture
Epidemic to immuno-epidemic models of COVID-19



Tuesday, 22 November

9:15-10:05 Jukka Corander
Advances in likelihood-free inference with applications to evolutionary epidemiology

10:15-10:30 Morning Tea

10:30-11:20

Natalie Thamwattana
Modelling clogging in granular assembly when treating acidic groundwater

11:20-12:10 Luke Bennetts
Modelling flexural strains at the outer margins of Antarctic ice shelves caused by ocean
waves

12:10-2:00 Lunch

2:00-2:50 Masayo Hirose
An Assessment of Prediction Error under Area Level Model with Arc-Sin Transformation

2:50-3:10 Afternoon Tea
3:10—4:00

Luke Prendergast
Some considerations for measuring and interpreting heterogeneity in meta-analysis

Wednesday, 23 November

9:15-10:05 Andrea Bertozzi
Energy minimizing surfaces for nanovial technology

10:15-10:30 Morning Tea

10:30-11:20 David Price
Evaluation of a pharmacokinetic-pharmacodynamic model for predicting parasitological outcomes
in Phase 2 studies of new antimalarial drugs

11:20 — 12:10 Stephen Taylor
Mathematical Modelling of nitrogen management on dairy farms

12:10 - 2:00 Lunch

2:00 — 2:50 Shizuo Kaji
Homological features of 3D medical images

3:10 — 5:00 Poster Session (Hybrid)
5:00 — 6:00 Free

6:00 Forum Dinner

Thursday, 24 November

9:15-10:05 Hugh Possingham
Decision science thinking applied to nature conservation



10:15-10:30 Morning Tea

10:30-11:20 iadine Chad’es
Challenges of developing decision tools to guide conservation decisions

11:20-12:10 Melanie Roberts
The effect of sediment heterogeneity on sediment yield during gully erosion

12:10-2:00 Lunch

2:00-2:50 Freya Shearer and Gerard Ryan
Modelling through the crisis: developing methods to support decision-making in the
COVID-19 pandemic

3:00-3:10 Zainal Aziz and Pierluigi Cesana
Poster prize awards

3:10-3:20 Keniji Kajiwara

Invitation to FMflI2023 Fukuoka

3:20-3:30 Phil Broadbridge
Summing up and Closing.



Abstracts: SARS-Corona epidemics.

Epidemic to immuno-epidemic models of COVID-19
(See also a full report in this volume)

Malay Banerjee, IIT Kanpur, India.

Abstract: A wide range of multi-compartment models is available to study the epidemic
progression of SARS-CoV-2. Variation in the period of infectivity, the time required for
recovery, and days spent at the hospital during the disease severity vary significantly from
one individual to another. These phenomena are the factors behind considering multiple
compartments to study the epidemic progression due to COVID-19. The main objective of
this talk is to discuss a new modeling approach for the COVID-19 epidemic, which involves
distributed recovery and death rates and the variable infectivity based upon the immunity
level of the individuals. The infection transmissibility rate depends upon the immune
response’s strength and antibody level due to vaccination and acquired immunity. The
proposed model helps to evaluate the COVID-19 epidemic situation in some countries.

The application of mathematics to pandemics: some examples of
modelling used during COVID-19

Emma McBryde, James Cook University, Australia.

Abstract: Mathematical models have been applied to explain infectious diseases outbreaks
for over a century, but have never been taken so seriously as during the recent COVID-19
pandemic, during which they were used to synthesize evidence and inform public health
action. This talk will discuss some of the models used at state level, national level and
globally. It will discuss limitations and future directions for modelling.

When Australia closed its borders it did so on advice based on layered transmission and
mobility models. This work suggested that by February 2020, several countries had
already had cases of SARS CoV-2, without knowing it. Flight mobility suggested where the
likely epidemic would spread and correctly identified changes in epicentre to Europe and
later South America. | will discuss some of the modelling results that suggested this, and
the importance of the early international travel restrictions. One of the first pieces of
available evidence about COVID-19 was its very specifically age-based effects, with
children both less likely to acquire COVID and less likely to spread it. We used this
information — along with age-specific contact matrices — to assess the potential risks and
benefits of school closure. We also used age-based matrices to investigate optimal
vaccine distribution at a time when vaccines were scarce. Results show that prioritising the
most vulnerable (older age) was almost always a better strategy than prioritising the
highest transmitters (20—30 year olds). | will finish by discussing model refinements that
are being made currently and a vision for open-science in the modelling emerging
infectious diseases space.



Modeling the Covid-19 Pandemic

Andrea Bertozzi, University of California Los Angeles, USA.

Abstract: The COVID-19 pandemic placed epidemic modeling at the forefront of worldwide
public policy making. Modeling and forecasting COVID-19 has been challenge. In my talk,
| will describe several regional-scale models for forecasting and assessing the course of
the pandemic. We used parsimonious models for early-time data, and developed an
accessible framework for generating policy-relevant insights into the disease. We also look
at the role of network structure and on the dynamics of opinion spread and optimal policies
under real-world conditions.

Modelling through the crisis: developing methods to support decision-making in
the COVID-19 pandemic

Freya Shearer and Gerard Ryan, University of Melbourne, Australia.

Abstract: Here we will talk about a range of modelling and data-analytics work conducted on a
regular and ad hoc basis since 2020 to provide government health decision-makers with information
to manage the COVID-19 pandemic. We will first discuss the novel metric of “Transmission
Potential” (TP), which is the average potential for transmission in the community. TP can be
combined with case data in a semi-mechanistic framework to calculate a continuous risk metric. In
times of ongoing transmission, this metric is equivalent to the effective reproduction number of a
virus, while in times of low or no transmission, the metric reverts to TP — providing decision-
makers with a tool that is applicable at all stages of outbreak and suppression.

We describe the incorporation of changes to adapt the framework to novel variants and the rollout
of the vaccination programme, and the downstream uses of this work in case and clinical
forecasting, and contributions to the “National Plan to Reopening”. We will discuss both the
technical developments and policy implications of the work.

10



Data, Models and Uncertainty: Perspectives and Tools

Oliver Maclaren, University of Auckland, New Zealand.

Abstract: Complex mathematical and simulation models are central to science, engineering, and
policymaking. However, model sophistication frequently outpaces available data while
interpretational issues can make drawing causal conclusions difficult. This talk will cover my
research interests in methods for bridging the gap between data and complex mathematical models
representing scientific and engineering understanding. I will illustrate with examples such as my
work on COVID-19 modelling for policymakers, parameterisation of cell, tissue, and population
dynamics models in biology, and large-scale uncertainty quantification for geothermal reservoir
simulation models. I will discuss the challenges of model development, model interpretation,
parameter identifiability, prediction vs. parameter estimation and mechanistic understanding, and
how new and old statistical uncertainty quantification methods can help us use complex mechanistic
models more effectively. I will highlight high-level conceptual issues and promising, practical,
computationally efficient methods. A key theme throughout will be the interplay between
traditional applied mathematical modelling, statistics, and newer areas such as causal inference.

A key element of epidemic decision-making is situational awareness — that is, knowing the current
and potential future status of the epidemic. Outputs from mathematical and statistical models have
provided enhanced situational awareness to governments throughout the course of the COVID-19
pandemic. Key analyses include estimation of the effective reproduction number (Refr), forecasting
of epidemic activity, and forecasts of ward- and ICU-bed demand. Accurate and timely estimation
of Refr enables the tracking and planning of progress towards the control of outbreaks. Short-term
forecasts of daily case incidence and hospital bed occupancy provide information on future health
system requirements, which supports both clinical and public health planning.

In this talk, I will describe Australia’s situational awareness modelling program for COVID-
19 through 2020-21. I will provide an overview of the modelling outputs reported to key
government decision-making committees on (at least) a weekly basis since April 2020, and
highlight some challenges with providing near-real-time analytic support.

11



A new mathematical modelling framework for capturing and forecasting
Australia COVID-19 waves: transitioning from Delta wave into Omicron
wave.

Adeshina I. Adekunle'*, Mingmei Teo!, August Hao?, Gerard Ryan?, Nick Golding?, Rob Moss?
and Peter Dawson'*

* speaker

+ corresponding author

! Dept. of Defence, Australia
2 University of Melbourne, Australia.

Abstract: Covid-19 pandemic may be subsiding, but the damage caused by the SARS-CoV?2 virus
will take long time to amend. Many governments adopted series of public health control measures
to reduce the burden of this disease during different SARS-CoV2 strain specific waves. These
measures include lockdown, isolations, quarantine, and facemask wearing. To proffer these
measures in Australia, the Australian Government relied on forecasting outputs from the National
Situational Assessment Team. In the work, we provide particle filter forecasts for the Delta and
Omicron strain waves in Australia using an auto stochastic compartmental model. The reliability of
the forecasting approach is demonstrated.

12



Abstracts: General Public Health

Homological features of 3D medical images
(see also, the projected presentation, in this volume)

Shizuo Kaji, Institute of Mathematics for Industry, Kyushu University, Japan.

Abstract: Modern medical imaging techniques have enabled access to the interior of the human
body in the form of not only 2D images but also 3D volumes. It is, however, not easy to utilise the
3D information and analysis is often limited to a slice-by-slice investigation. We need a set of
features for volumetric data to take full advantage of the 3D measurements. On the one hand,
radiomic features have been proposed to capture the textural characteristics of a volume. They are
computed from small patches of a volume and encode only local properties. On the other hand,
persistent homology (PH) provides computational machinery to extract the global structure of a
volume. In this talk, we present our software, Cubical Ripser [1], for efficient computation of
persistent homology of volumetric data. Then, we define a few types of invariants of a volumetric
image based on PH and demonstrate their clinical relevance to abnormality quantification and
detection in lung CT [2].

References
[1] S. Kaji, T. Sudo, and K. Ahara, Cubical Ripser: Software for computing persistent homology of
image and volume data, arXiv:2005.12692

[2] N. Tanabe, S. Kaji, et al., A homological approach to a mathematical definition of pulmonary
fibrosis and emphysema on computed tomography, J Appl Physiol, vol 131-2, 2021

Energy minimizing surfaces for nanovial technology

Andrea Bertozzi, University of California Los Angeles, USA.

Abstract: For nearly 40 years, drugmakers have used genetically engineered cells as tiny drug
factories. Such cells can be programmed to secrete compounds that yield drugs used to treat cancer
and autoimmune conditions such as arthritis. I will talk about recent work from UCLA to

design tiny containers that can be used to sort and to select cells based on what type they are, and
which compounds — and how much of those compounds — they secrete. The methodology
involves templating droplets using amphiphilic microparticles. These particles are observed to hold
nearly equal volumes of aqueous liquid when dispersed in an oil-water mixture. I will discuss
mathematical theory to rigorously prove that through random interactions, a system of such
particles achieves this state. I will also discuss efficient numerical methods for computing low
energy states for various microparticle shapes and show some examples of how these particles can
be used to study single cell secretion.

13



Evaluation of a pharmacokinetic-pharmacodynamic model for predicting
parasitological outcomes in Phase 2 studies of new antimalarial drugs

David Price, Doherty Institute for Infection and Immunity, University of Melbourne and Royal
Melbourne Hospital, and Centre for Epidemiology and Biostatistics, Melbourne School of
Population and Global Health, University of Melbourne, Australia.

Abstract: The unrelenting rise of multidrug resistant malaria demands the continuous development
of novel antimalarial compounds from preclinical studies in human volunteers to Phase 3 clinical
trials in patients. Mechanistic pharmacokinetic-pharmacodynamic (PK-PD) models, fit in a
Bayesian hierarchical framework, are routinely used to predict parasite-time profiles in the presence
of a drug to evaluate the potential of these new treatments and explore optimal dosing regimens.
But, how well do these models estimate the biological characteristics of the drug and parasites?

In the context of a Phase 2 study of a new antimalarial drug, cipargamin, we performed a
simulation-estimation study to evaluate the performance of this modelling and estimation
framework to recover the characteristics of the treatment and parasite dynamics. We simulated
cipargamin concentration and parasitaemia profiles that reproduce the observed profiles for 8
volunteers enrolled in a Phase 2 study. Cipargamin was administered on day 7 following
inoculation of malaria parasites. The pre- and post-treatment parasitaemia profiles were simulated
using our biologically informed PD model, which captures the life cycle of the parasite in the red
blood cell. Estimation of the PK-PD parameters was performed using a Bayesian hierarchical model
with STAN.

The population PK model parameters describing the absorption, distribution, and clearance of
cipargamin were estimated with minimal bias and the posterior predictive checks captured the
simulated PK profiles. The PD model was fitted to the parasitaemia profiles of each simulated
dataset using the estimated PK parameters. The posterior predictive checks demonstrate that our
PK-PD model successfully captures the central trend and variability of both the pre- and post-
treatment simulated parasitaemia profiles.

14



Advances in likelihood-free inference with applications to evolutionary
epidemiology

Jukka Corander, University of Oslo, Norway and University of Helsinki, Finland.

Abstract: Likelihood-free inference has evolved from a seminal idea to a powerful tool for
advanced statistical and mathematical modeling in roughly 20 years. Currently both
computational statistics and machine learning communities are actively contributing to
development of new methods for calibrating simulator-based models in the light of data or
other constraints. We discuss some of the recent advances in such inference methods and
illustrate them with models for epidemics and pathogen population evolution.

Interaction between nanostructures: relation between their atomic
distributions and modelling approaches

Natalie Thamwattana, University of Newcastle, Australia.

Abstract: Applications of nanomaterials are found in many areas, including renewable energy,
electronics, textiles, food technology, environment, health care and medicine. Understanding
mechanics of these materials is important as it can help to optimise their performances. In this talk,
we consider structures of nanomaterials, the role that molecular structures play in determining an
approach for modelling intermolecular interactions and their applications.

15



Abstracts: Environmental Modelling

A Geometrical Structure for Predator-Avoidance Fish Schooling
(See also a full report in this volume)

Aditya Dewanto Hartono, Ton Viet Ta*! and Linh Thi Hoai Nguyen?

! Mathematical Modeling Laboratory, Department of Agro-environmental Sciences, Kyushu
University, Japan

* Corresponding author

2 Institute of Mathematics for Industry, Kyushu University, Japan.

Abstract: In this talk, we introduce our mathematical models of stochastic differential equations for
fish schooling. Structural stability of models against noise is then studied numerically. Patterns
obtained from the models which are consistent with real observations are presented.

Mathematical modelling of nitrogen management on dairy farms
(See also the projected presentation, in this volume)

Stephen Taylor, Graecme Wake and Tony Pleasants
University of Auckland, New Zealand.

Abstract: New Zealand’s climate allows for full year outdoor grazing of dairy cows and a very
efficient dairy industry. One downside is the nitrogen-containing chemicals that get deposited on
fields through fertilising or cows "urine, because these chemicals end up in fresh water streams. In
order to understand how to mitigate this, we model this nitrogen deposition and its dynamics on a
dairy farm.

16



MERGE and the role of gully erosion modelling to protect water quality
on the Great Barrier Reef
(See also the full report, in this volume)

Melanie Roberts, Griffith University, Australia.

Abstract: Gully erosion is the majority source of fine sediment that reaches the Great
Barrier Reef (GBR), degrading water quality and contributing to poor outcomes including
coral death. Consequently, gully remediation is a significant focus of activities to improve
GBR water quality. The MERGE gully erosion model was developed in partnership with
Queensland Government and the Queensland Water Modelling Network to provide a
process-based model to inform gully rehabilitation actions at specific sites. In this talk, |
introduce the MERGE model and share the outcomes of a pilot study to explore the on-
ground application of the model.

Melanie Roberts, Griffith University, Australia.

Abstract: Gully erosion is the majority source of fine sediment that ultimately reaches the
Great Barrier Reef (GBR), while also contributing to the pool of bioavailable nutrients in the
lagoon. Particulate nitrogen is transported with sediment to the GBR, degrading water
quality and contributing to poor outcomes including algal blooms, and potentially crown-of-
thorns starfish outbreaks. Quantifying the surface area of eroded sediment is important to
estimate the particulate nitrogen load, and thereby prioritise interventions. The MERGE
gully erosion model was developed in partnership with Queensland Government and the
Queensland Water Modelling Network to provide a process-based model to inform gully
rehabilitation actions at specific sites. In this talk | introduce MERGE-D, which extends
MERGE to account for heterogeneities in sediment properties, providing an improved
estimate of sediment surface area, and hence particulate nitrogen loads.

Modelling clogqging in granular assembly when treating acidic groundwater

Natalie Thamwattana, University of Newcastle, Australia.

Abstract: Acid sulphate soils (ASS) are naturally occurring sediments occupying over 200,000 km?
of land in Australia. Acidic groundwater resulting from the oxidation of pyrite (FeS2) in ASS is a
major environmental concern particularly in the coastal regions. When exposed to air during flood
mitigation drainage or upon excavation (e.g. coal mining), FeS2 can rapidly oxidise to form
sulphuric acid, leading to contamination of the groundwater and causing acid drainage in
underground coal mines. To treat acidic groundwater, permeable reactive barriers (PRBs) are
introduced to neutralize acidity induced by pyrite oxidation in ASS terrain. PRBs (alkaline
materials, e.g. crushed recycled concrete, ash, blast-furnace slag and calcitic limestone CaCO3) are
used as an underground filter to eradicate the contaminants through chemical and/or biological
processes. However, this clogging can reduce the porosity of PRBs which in turn reduces their
longevity and functionality. In this talk, we discuss modelling clogging in PRBs which is due to the
accumulation of bacteria and reactive aggregates becoming coated with chemical precipitates, and
the effect of the clogging on the porosity of PRBs over time.
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Modelling flexural strains at the outer marqgins of Antarctic ice shelves
caused by ocean waves

Luke Bennetts, University of Adelaide, Australia.

Abstract: The extent of Antarctic sea ice is hitting record lows in response to climate
change. This is exposing the Antarctic coastline to the most energetic waves on the planet
that exist in the Southern Ocean. In particular, ocean waves are increasingly able to reach
ice shelves that fringe about half the Antarctic coastline, which has implications for future
global sea level rise. Energetic waves bend and flex the outer margins of the ice shelves,
and the flexural strains imposed can propagate fractures, cause icequakes, initiate iceberg
calving, and even trigger disintegration events, particularly when the ice shelf is already
weakened by warming temperatures. | will present a mathematical model of ocean wave
transfer to ice shelf flexure, and a series of approximations that generate predictions over
a spectrum of wave frequencies and for realistic ice shelf and seabed geometries. | will
discuss results for Antarctica’s largest ice shelf, the Ross Ice Shelf.

Model predictions of wave overwash extent into the marginal ice zone

Jordan Pitt* and Luke Bennetts, University of Adelaide, Australia.
* speaker

Abstract: Overwash is an important aspect of the dynamics in the marginal ice zone where sea ice
and ocean waves interact. Overwash dissipates wave energy, and the presence of water on top of
sea ice can drive growth or melting, depending on the local thermodynamic conditions. The
presence of water on floes is also important for biologic and chemical processes. While overwash
has been observed and investigated under experimental conditions, it has not yet been studied in the
marginal ice zone. One reason for this lack of in-situ measurements and observations is due to the
marginal ice zone being highly dynamic, and the onset of overwash only occurring under specific
and sensitive conditions. To facilitate future observations we have produced a stochastic model of
the extent of overwash into fields of sea ice by combining a new model of the onset of overwash
and a standard transmission model. This combined transmission

and overwash model is validated against experimental observations and is used to provide the
extent of overwash for various realistic ice field and wave field conditions.
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Decision science thinking applied to nature conservation

Hugh Possingham, University of Queensland, Australia.

Abstract: Ecology has always had a lot of mathematical theory, which blossomed in the
1960s—1980s. One of the applied branches of ecology is nature conservation (the others
are pest management and harvesting). Mathematical theory for nature conservation in the
late part of the last century was naive — ignoring important issues such as finances,
efficiency and risk. Over the past 30 years our group has created a range of approaches
for making conservation decisions using applied mathematics and economics — such as
where to place protected areas, which threatened species to invest in, how much to spend
on monitoring and whether to restore or protect habitat. | will discuss the basic maths that
underpins these approaches.

Challenges of developing decision tools to guide conservation decisions

iadine Chad’es, CSIRO, Australia.

Abstract: Over the last 10 years, we have developed decision tools to help make informed decisions
to help protect biodiversity in the face of limited resources. Developing decision tools for the
conservation of biodiversity poses unique challenges to researchers, e.g. poor data context, urgent
decision-making and human operated systems to cite a few. I will summarise these challenges and
lessons learned from our experience developing the Integrated Spatial Prioritisation (ISP) tool and
testing Artificial Intelligence decision tools in the context of adaptively managing species and their
associated threats for the Saving our Species Program (NSW). While the ISP is used to guide
current investment as a conservation planning tool, more needs to be done to make Al decision
tools relevant to managers in areas such as interpretability and trust.
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Effect of slow-fast time scale on spatio-temporal pattern formation

Malay Banerjee, I[IT Kanpur, India.

Abstract: Spatiotemporal pattern formation in interacting population models is an interesting field
of study as it can capture the stationary as well as dynamic patchy distribution of population within
their habitat. Introduction of nonlocal interaction in the spatiotemporal model can produce
stationary pattern by a spatiotemporal model with Rosenzweig-MacArthur reaction kinetics
[MBVV]. On the other hand, it is evident that growth of various prey and their predators take place
at different rates when measured with respect to a fixed time scale. This fact is incorporated into the
mathematical model by introducing different time-scales into the growth equations. The resulting
models (with temporal reaction kinetics only), in general, exhibit two different types of oscillatory
behavior, namely, canard oscillation and relaxation oscillation [PRCSPMB]. The main objective of
this talk is to describe a spatiotemporal model for interacting population with nonlocal interaction
term and slow-fast time scale, and discuss various scenarios of stationary and non-stationary pattern
formation.

References

[MBVV] Banerjee, M., Volpert, V. (2017). Spatio-temporal pattern formation in Rosenzweig-
MacArthur model: Effect of nonlocal interactions. Ecological Complexity 30: 2—10.
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Analysis of Diffusive Size-Structured Population Model and Optimal Birth
Control

Manoj Kumar, IIT Mandi, India.

Abstract: This work addresses the optimal birth control problem for invasive species in a spatial
environment. We apply the method of semigroups to qualitatively analyze a size-structured
population model in which individuals occupy a position in a spatial environment. With insect
population in mind, we study the optimal control problem which takes fertility rate as a control
variable. With the help of adjoint system, we derive optimality conditions. We obtain the optimality
conditions by fixing the birth rate on three different sets. Using Ekeland’s variational principle, the
existence, and uniqueness of optimal birth controller to the given population model which
minimizes a given cost functional is shown. A concrete example is also given to see the behaviour
of population density.
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A sequential method for efficiently parameterising ensemble ecosystem
models

Sarah Vollert*, Chris Drovandi, and Matthew Adams, Queensland University of Technology,
Australia.
* speaker

Abstract: Ensemble ecosystem models are valuable decision-making tools for understanding the
effects of conservation actions and human impacts on threatened species. Models parameterised
with dynamic systems constraints help us understand ecosystems with limited data availability.
However existing methods are computationally inefficient, preventing larger networks from being
studied. Using Bayesian approaches, we build on current methods to overcome this technical
obstacle. Compared with the existing method, we find that using a sequential Monte Carlo approach
yields similar parameter inferences and model predictions while being significantly faster.
Consequently, we can study larger and more realistic networks, improving ecosystem modelling
capabilities.
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Abstracts: Mathematical/Statistical Methods

Mathematics: key enabling technology for scientific machine learning
(See also the projected presentation, in this volume)

Wil Schilders, Eindhoven University of Technology & TU Munich Institute of Advanced Studies,
The Netherlands.

Abstract: Artificial Intelligence (AI) will strongly determine our future prosperity and well-being,
also in the area of public health and sustainability. Due to its generic nature, AI will have an impact
on all sciences and business sectors, our private lives and society as a whole. Al is pre-eminently a
multidisciplinary technology that connects scientists from a wide variety of research areas, from
behavioural science and ethics to mathematics and computer science. Without downplaying the
importance of that variety, it is apparent that mathematics can and should play an active role. All
the more so as, alongside the successes of Al, also critical voices are increasingly heard. As Robbert
Dijkgraaf (former director of the Princeton IAS, now our minister of science and education)
observed in May 2019: “Artificial intelligence is in its adolescent phase, characterised by trial and
error, self-aggrandisement, credulity and lack of systematic understanding.” Mathematics can
contribute to the much-needed systematic understanding of Al for example, greatly improving
reliability and robustness of Al algorithms, understanding the operation and

sensitivity of networks, reducing the need for abundant data sets, or incorporating physical
properties into neural networks needed for superfast and accurate simulations in the context of
digital twinning. Mathematicians absolutely recognise the potential of artificial intelligence,
machine learning and (deep) neural networks for future developments in science, technology and
industry. At the same time, a sound mathematical treatment is essential for all aspects of artificial
intelligence, including imaging, speech recognition, analysis of texts or autonomous driving,
implying it is essential to involve mathematicians in all these areas. In this talk, we highlight the
role of mathematics as a key enabling technology within the emerging field of scientific machine
learning. And we will end with the important adage: “Real intelligence is needed to make artificial
intelligence work.”
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Some considerations for measuring and interpreting heterogeneity in
meta-analysis (extended abstract)

Luke A. Prendergast, Department of Mathematical and Physical Sciences La Trobe
University, Australia.

Abstract: Used to combine summary statistics from several studies, the huge increase in
available data over the last few decades has seen a rapid increase in the usage of meta-analytic
methods. Meta-analysis can guide researchers in determining new hypotheses to test, alert
policy and other decision makers of previously undetected associations between important
variables and interventions, and provide at least a starting point for evidence-based debate.

Heterogeneity in meta-analysis refers to the variation in study characteristics (e.g., differences
in cohorts, intervention strategies etc.) that leads to variation in outcomes across studies.
While many perceive heterogeneity to be a nuisance since it increases estimator variance, the
presence of heterogeneity can itself be very insightful. In this talk we will discuss
heterogeneity, consider a variety of heterogeneity measures (including some that should be
used more often) and highlight why the most common heterogeneity measure, I? is often
misinterpreted [1]. We also provide some examples of how heterogeneity can offer valuable
insight and along the way see the consequences of not appropriately acknowledging the
presence of heterogeneity. Differences in cohort and subpopulation demographics, variations
of treatment regimes, etc. means that heterogeneity in the effect of interest almost always
needs to be assumed present. For example, it may be reasonable to assume that age and
gender are associated with severity and treatment of COVID-19 and in the context of meta-
analysis this means assuming that effects vary depending on such characteristics. With this in
mind, prediction intervals (e.g., [3]), underused in the context of meta-analysis, can be used as
an estimate of a range in which most (e.g., 95%) effects fall, including those for missing
studies and future studies.

Another measure that can be useful is the coefficient of variation (CV, [5]) which measures
the heterogeneity standard deviation relative the magnitude of the effect. This can be useful
since variation among large effects may not be clinically meaningful, whereas variation
between small effects can indicate differences in effects that can have very different
implications depending on cohort demographics, treatment conditions, etc. Given that very
large values of the CV can result due to small effects, we provide transformations of the CV
on the scale [0, 1] that may be preferable for interpretation and which also have reliable
confidence intervals [2].

An analysis of heterogeneity may also be useful in addition to reporting findings regarding
the effect of interest. For example, the standardised mean difference (SMD), assumes that
within each study, the population variances in each of two treatment arms are equal. Whether
this assumption seems reasonable overall can be tested using a meta-analysis of ratio of
variances [4]. Here, while a meta-analysis may indicate that, on average, the assumption
may approximately hold (e.g., a mean ratio of variances close to one), heterogeneity can
reveal that there can be violations to this assumption for at least some studies. Finally, we
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briefly look at how a meta-regression analysis (see [6]) can useful to both explore potential
sources of heterogeneity and to better understand the consequences of heterogeneity for the
research question at hand. Throughout we consider several data example and use
visualisations to highlight why it is important to appropriately acknowledge the presence of
heterogeneity.
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Likelihood-Free Methods and Model Misspecification

Chris Drovandi, Queensland University of Technology, Australia.

Abstract: Statistical approaches for likelihood-free inference such as approximate
Bayesian computation (ABC) and Bayesian synthetic likelihood (BSL) are now widely
adopted in many scientific disciplines for calibrating complex statistical models with
intractable likelihood functions. In this talk, | will discuss the behaviour of ABC and BSL
under the commonly encountered problem of model misspecification. ABC has some
inherent robustness while BSL can exhibit some strange behaviour under
misspecification. However, | show how BSL can be extended to make it robust to
misspecification, and to identify which features of the data it cannot match.

An Assessment of Prediction Error under Area Level Model with Arc-Sin
Transformation

Masayo Y. Hirose"', Malay Ghosh? and Tamal Ghosh?

"Institute of Mathematics for Industry, Kyushu University, Japan,
University of Florida, USA.

* speaker

Abstract: An empirical best linear unbiased predictor can contribute to more efficiency, especially
when the sample size within each area is not large enough to make reliable direct estimates. However,
the natural back transformation could produce a bias with the arc-sin transformed data, especially
when the sample size within an area is not large enough. In this study, we find explicit empirical
Bayes estimators that correct biases asymptotically. Moreover, assessing its mean squared prediction
error is also essential. We, therefore, explicitly obtain the second-order unbiased estimators of these
mean squared prediction errors, maintaining strict positivity. The data analysis result will be shown
in conclusion to apply the proposed method to the positive rate in PCR testing for COVID-19.

25



Penalized likelihood approach in multivariate regression with missing
values and its application to materials properties prediction

Kei Hirose, Institute of Mathematics for Industry, Kyushu University, Japan.

Abstract: In the field of materials science and engineering, statistical analysis has recently
been used to predict multiple material properties from an experimental design. These
material properties correspond to response variables in the multivariate regression model.
We conduct a penalised maximum likelihood procedure to estimate model parameters. In
some cases, there may be a relatively large number of missing values in the response
variables, owing to the difficulty of collecting data on material properties. We, therefore,
propose a method based on the expectation-maximisation (EM) algorithm to incorporate
a correlation structure among the response variables into a statistical model.

Identifiability analysis and predictive uncertainty for complex mathematical and
simulation models

Oliver Maclaren, University of Auckland, New Zealand.

Abstract: Complex mathematical and simulation models are increasingly central in
science, engineering, industry, and policy-making. COVID-19 modelling is a notable
example: the New Zealand government heavily used modelling to inform its policy and
received praise for an effective, science-informed approach to managing the pandemic. In
addition, numerous less visible but still impactful examples of modelling work play a
significant role in modern society and industry. These examples range from managing
natural resources like geothermal reservoirs using numerical simulation models to
elaborate theoretical mathematical models designed to understand wound healing and
tumorigenesis in epithelia. However, constructinga complex simulation model is only the
first step in realising its potential value: we next need to reliably connect it to empirical data
to ensure its relevance to the real world. A key barrier to connecting models and data is
the lack of identifiability of complex models and parameters. Identifiability refers to the
ability to uniquely determine model parameters from ideal data, while practical
identifiability refers to reliably estimating parameters from imperfect data. While
identifiability is closely related to mechanistic understanding and is the traditional goal of
scientific studies, in some applications, we may care more about model predictions than
identifiability. However, the relationship between identifiability analysis and the
construction of reliable predictive uncertainty bands needs more study for complex
mechanistic models. In this talk, | will discuss likelihood-based frequentist tools for
diagnosing parameter identifiability and constructing model predictions and the trade-offs
and relationships between the two goals.
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Robust and scalable inference for simulator-based models

Jukka Corander, University of Oslo, Norway and University of Helsinki, Finland.

Abstract: Simulator-based models are becoming increasingly popular in many research domains
across academia and industry. Calibration of such models in the light of data and quantification of
uncertainty about model parameters are key challenges for practical applications and the topic has
received accelerating attention during the past decade. We will discuss various inference techniques
for simulator-based models that improve computational feasibility by adopting techniques from
machine learning to build surrogate models for the approximate likelihood or posterior. Several of
these approaches are available in the open-source software platform Engine for Likelihood-Free
Inference (ELFI): elfi.ai.

Modelling preference with hyperplane arrangement

Shizuo Kaji, Institute of Mathematics for Industry, Kyushu University, Japan.

Abstract: A person’s preference on a set of options, such as political parties and film genres, can be
modelled by a (partial) order on the set. Modelling preference data collected from many individuals
with various tastes is a subject of preference learning. There are two major approaches to modelling
preference data; based on the distance on orders and based on a utility function defined over the set
of options. These approaches lack flexibility (or are biased) since too much structure is forced on
the preference data to be modelled by the mathematical structure that the models utilise. Instead, we
rely on a geometric entity, hyperplane arrangement, to model preference data. The geometric and
combinatorial structure of hyperplane arrangement provides a good balance of flexibility and
regularisation.
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Identifying state of the process using ML algorithms

Saddam Akber Abbasi'*, Mohammed Ahmed', and Adegoke Nurudeen?
! Qatar University, Qatar.

* Speaker

2 The University of Sydney, Australia.

Abstract: A process working under the random cause of variation is considered in-control whereas
if special cause variations are in effect, the process is considered to be out-of-control. To identify
the state of the process, control charts are widely used as a tool of the Statistical Process Control
tool-kit. Control chart functionality mostly depends on a set of assumptions that may not be valid
for many real-life processes. In this study, we will be applying a set of ML algorithms to identify
the state of the process. The process begins by providing a number of examples (in-control and out-
of-control) for training the ML models. Once the models are trained, their performance will be
assessed and compared using the probability of correct detection. This study will provide an
alternative to the control charts for efficient and robust process monitoring.

Analysis of model sloppiness: what can it do, and what’s next?

Matthew Adams*, Gloria Monsalvo-Bravo, Sarah Vollert, Imke Botha, and Christopher Drovandi,
Queensland University of Technology, Australia.
* speaker

Abstract: When performing statistical fitting of deterministic models to data, using either frequentist
or Bayesian approaches, uncertainty in model parameters is often estimated. However, this
uncertainty can have a complex, non-linear structure which has implications for how best to
interpret and/or improve the model. This talk discusses “analysis of model sloppiness”, a tool for
unveiling this parameter uncertainty structure. Applications of this analysis include: (1) uncovering
controlling mechanisms underlying the system being modelled, (2) informing which parameter
measurements need to be prioritised in future experiments, (3) guiding strategic model reduction,
and (4) diagnostically comparing the accuracy of different model-data fitting algorithms.
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Some results on the mixed bifractional Brownian motion

Soukaina Hadiri, University IBN Zohr, Morocco.

Abstract: In this work, firstly, we introduce a new Gaussian process as an extension of the well-
known bifractional Brownian motion as a linear combination of a finite number of independent
bifractional Brownian motions. We have chosen to call this process the mixed bifractional
Brownian motion. Secondly, we study some stochastic properties and characteristics of this process:
The Holder continuity, the self-similarity, the quadratic variation, the Markov property and the
differentiability of the trajectories, the long-range dependence, the stationarity of the increments
and the behavior of the noise generated by the increments of this process. We believe that our
process can be a possible candidate for models which involve self-similarity, long range
dependence and non-stationarity of increments.

Dynamics of inertial particle focusing in curved ducts

Rahil Valani, University of Adelaide, Australia.

Abstract: Particles suspended in fluid flow through a curved duct can focus to stable
equilibrium positions in the duct cross-section due to the balance of two dominant forces
— inertial lift force and secondary drag force. Such particle focusing is exploited in various
medical and industrial technologies aimed at separating particles by size. In this talk, | will
present results of our numerical investigation of the dynamics of neutrally buoyant particles
in fluid flow through curved ducts with rectangular cross-sections. | will show that rich
bifurcations take place in the particle equilibria as a function of the duct bend radius. | will
also offer insights on how these bifurcations in combination with particle dynamics can be
exploited to separate particles of different sizes in circular and spiral ducts.
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Poster abstracts

Since its inception, FMfl has conducted an exhibition of posters displaying the research of
current and recent students. There are sessions when exhibitors can casually discuss their
work with forum registrants. A special session is allocated in the main presentation room
where each poster exhibitor can project and discuss their poster for 5 minutes.

Non-student registrants are given a voting slip to choose their top three posters in order.
This helps to inform a poster committee consisting of the organisers and the APCMfl
executive. One first prize and a small number of excellent posters are chosen. The values
of prizes are limited by donations but we have had generous support from IMI-Kyushu
University.

**Quantitative Stochastic Homogenization of Parabolic Equations with Lower
Order Terms

Man YANG, Kyushu University

Abstract: | am a doctoral student at Kyushu University. | received my master’s degree in
mathematics from Kyushu University in 2022 and my bachelor’s degree in Mathematics
from Shanghai University in 2019. My research area is probability theory and more
precisely, | study the stochastic homogenization theory currently. | am also interested in
the relationship between stochastic differential equations and homogenization theory.

**The critical points of the elastic enerqgy among curves pinned at endpoints

Kensuke YOSHIZAWA, Kyushu University

Abstract: | am a postdoctoral researcher at Institute of Mathematics for Industry in Kyushu
University. | got my Ph.D. at Tohoku University in 2022 under the supervision of Prof.
Shinya Okabe. My poster is devoted to the presentation of optimal shapes of ideal elastic
rods whose endpoints are fixed (up to zeroth order), thorough the mathematical analysis of
the corresponding variational problem.

Expected number of zeros of Gaussian analytic function with finitely dependent
Gaussian coefficients

Kohei NODA, Kyushu University

Abstract: I’m a doctoral student in Graduate School of Mathematics for Innovation, Kyushu
University. My research area is probability theory and complex analysis related to
statistical mechanics of Coulomb systems. In particular, I’m studying zeros process of
Gaussian analytic function and random matrix theory under supervisor Professor
Tomoyuki Shirai in my doctoral course. Also, I’'m supported by WISE program (MEXT) at
Kyushu University. This is joint work with Tomoyuki SHIRAI, Kyushu University
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Study on recurrences of random walks on growing k-ary trees

Shuma Kumamoto

Abstract: Shuma Kumamoto received his B.S. degree in physics and M.S. degree in informatics
from Kyushu University in 2020 and 2022, respectively. He is currently a Ph.D. student in
mathematics at Kyushu University. His research interest includes random walk.

This is joint work with Shuji Kijima, Shiga University and Tomoyuki Shirai, Kyushu University.

Embedding spherical quandles in pin groups

Kentaro YONEMURA, Kyushu University

Abstract: [ am a student in Japan and am interested in knot theory and the quandle, an algebraic
system related to knot theory. These days, the quandle class with a manifold structure, called
smooth quandle, is my hot topic. I am looking forward to talking with you and discussing the future
of mathematics.

Lyapunov Regularity for Planar Piecewise Expanding Maps

Kodai YAMAMOTO, Kyushu University

Abstract: I am a master course student at Joint Graduate School of Mathematics for Innovation,
Kyushu University. My supervisor is Prof. Masato Tsujii at Kyushu University. I mainly study
dynamical systems, especially structural stability and hyperbolicity. Recently, I am interested in
Lyapunov regularity and have been researching this since I was an undergraduate student.

This is joint work with Yushi NAKANO, Tokai University and Teruhiko SOMA, Tokyo
Metropolitan University.
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Model Selection in Statistical Learning Theory

Naoki NAKAMURA, Kyushu University

Abstract: According to Occam’s Razor, we should not assume too much when explaining things. In
the context of Statistical learning theory, this means that we should adopt the simplest model. In
general, the optimization problem for finding sparse simpler accurate model is NP-hard. Thus,
practitioners don’t try searching for simpler models. Currently, this problem is abandoned in
machine learning. So, it is important that we answer the following practical questions: Can we show
that an accurate and simpler model exists?

Multiple Zeta Values and Euler’s reflection formula for the Gamma function

Karin Ikeda, Kyushu University

Abstract: I am Karin Ikeda, a first year master course student at Kyushu University. My supervisor
is Professor Masanobu Kaneko. I am currently studying “multiple zeta values”. In particular, I have
been able to give a purely algebraic proof of an identity which is closely related to Euler’s reflection
formula for the gamma function. For more details, please see my slides of the talk. Thank you!

This is joint work with Mika Sakata, Osaka University of Health and Sport Sciences.

***Parameterising movement parameters in an onchocerciasis transmission model
with a population genetic data

Himal SHRESTHA, La Trobe University

Abstract: Himal Shrestha is a PhD student at Nematode and Vector Genomics lab at La Trobe
University, Australia. He uses genetic, environmental and epidemiological data to model
transmission of a neglected tropical disease called river blindness. Himal is interested in spatial
modelling and landscape genetics.

This is joint work with Shannon M. Hedtke, La Trobe University, Karen McCulloch, La Trobe
University, Warwick N. Grant, La Trobe University and Rebecca Chisholm, La Trobe University.

***Best Poster Award.
**Excellent Poster Award.
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Papers and Presentations

Speakers were given the option of publishing abstracts, extended abstracts, projected presentations,
or written research papers.

Appended from hereon, are the released presentations and research papers. These have been
reviewed under the direction of the editors. We are particularly grateful to the authors.
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Epidemic to immuno-epidemic models of COVID-19

Malay Banerjee®!, Samiran Ghosh?, Vitaly Volpert®®

@ Department of Mathematics & Statistics, IIT Kanpur, Kanpur - 208016, India
b Peoples Friendship University of Russia (RUDN University)
6 Miklukho-Maklaya St, 117198 Moscow, Russia
¢ Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1
69622 Villeurbanne, France

1 DMotivation and developments of mathematical modelling in
epidemiology

Mathematical models in epidemiology have played a crucial role in understanding and predicting
the spread of various infectious diseases. The models have evolved over time and have become more
complex to capture the various factors that influence the spread of diseases. During the COVID-19
pandemic, mathematical models have played a crucial role in understanding the progression of the
disease, predicting the impact of interventions, and informing policy decisions.

One of the earliest models was developed by Daniel Bernoulli in the XVIII century. In the early
20th century, Kermack and McKendrick developed a set of differential equations that described
the spread of infectious diseases in a closed population [1, 2, 3]. More recent developments in
mathematical epidemiology include multi-compartmental models [4, 5], which divide the population
into different groups based on their disease status, such as susceptible, infected, and recovered etc.
These models can also include factors such as age, gender, and geographic location. Nonlinear
transmission rate models account for the fact that the rate of transmission of a disease may change as
the number of infected individuals increases [6]. Multi-patch models take into account the fact that
infectious diseases can spread across different geographic regions, each with their own population
and transmission dynamics [7, 8]. Agent-based models simulate the behavior of individual agents,
such as people, and how they interact with each other and their environment [9]. Network models
describe the spread of diseases on networks, such as social networks or transportation networks
[10, 11]. Overall, mathematical models in epidemiology have provided valuable insights into the
spread of infectious diseases and have helped inform public health policies and interventions.

2 Multi-compartmental epidemic model

Compartmental epidemic models are the most commonly used mathematical models to describe the
spread of an epidemic disease. The use of a compartmental model can help in understanding the

!Corresponding author.
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complex dynamics of the epidemic, as well as the effectiveness of different intervention strategies
in controlling the spread of the disease. It can also be used to predict the future trajectory of
the epidemic and inform policy decisions on the optimal interventions to use. The very basic
nature of an epidemic can be captured by the well known classical SIR-type models, which is
mainly based upon three compartments, susceptible (5), infected (I) and removed (R). But, to
understand the epidemic progression in more details, more compartments need to be incorporated
in the modelling. There are many developments towards the multi compartmental epidemic models
[4, 5]. In the context of the COVID-19, the progression of epidemic was not easy to track, and it was
necessary to consider all possible compartments that take into account all the complexities of the
infection including all stages of the infection, as well as the complexities in the social restrictions
(e.g., quarantine, lock downs etc.). In [12], we considered multiple compartments based on the
different stages of the disease and the different interventions used to control the spread of the virus.
Specifically, we used the following compartments: susceptible (S(t)), exposed population who are at
the beginning of the incubation period and cannot spread the disease (F1(t)), exposed population
who are at the end of the incubation period and can spread the disease (E»(t)), symptomatic (I,(t)),
asymptomatic (I,(t)), quarantined (Q(t)), hospitalized (J(t)), recovered (R(t)). Each compartment
is connected to others through a set of ordinary differential equations that describe the flow of
individuals between the compartments. The model is depicted in the flow chart Fig. 1 and is given
in the system (2.1).

dS S

Pl 7%(13 +p1la + p2E2 + p3Q + paJ), (2.1a)
dE S
7; = %(IS +p1—[a +p2E2 +p3Q +p4']) _/'LElv (21b)
By
o = nEi— 0B, (2.1c)

I

% = (1-0)0Ey —nly, (2.1d)
dl

pra 06Fy — (p1+ ¢+ G + G) s, (2.1e)
d

7? = Gl — (& +6)0, (2.1f)
dJ

P GIL,+6Q— (p2+v)J (2.1g)
dR

o = MatQL+eQ+v], (2.1h)

subjected to non-negative initial conditions S(0), E1(0), E2(0), I,(0), I5(0), Q(0), J(0), R(0) > 0,
and the interpretation of the are given in the paper [12]. The basic reproduction number and
controlled reproduction number for the model (2.1), are respectively given by (details are in [12]):

p2  (1—o);m o
=+ + :
d n p1+ G2

Ro = B (2.2)

and
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During this work, social restriction was the only control measure for COVID-19 worldwide, and
the social interactions were completely monitored by the government time to time. For that reason
we considered the transmission rate as time dependent and we considered two different choice of
transmission rate as shown in Fig. 2 and the corresponding model fitting with the data of Germany
is shown in Fig. 3. The fitted parameter values are available in the paper [12]. Interestingly, in
Fig. 3 the data are fitted well in the case of continuous 3(t) as compared to the discontinuous choice
of B(t). The same model is fitted with data from other countries [12].

(2.3)

+

+

¥

Figure 1: Schematic diagram for the progression of disease described by the model (2.1). Solid
arrows represent the transfer from one compartment to another while the dotted line with arrow
denote the compartments responsible for disease transmission. Associated rates are mentioned
accordingly.

Then we extend our proposed model to a two-group model. We divide the whole population
into two groups and this may be a group following the protocols and the other group not following
the protocols; or, the grouping can be made by the age of individuals, etc. The extended two group
model is given by (details of the variables and parameters are given in [12]):

ds S
7; = —Nl (B11(Ts, + pr1lay + p12Fr2) + Bi2(Lsy + p21la, + p22Fo2) + oQ + 7],  (2.4a)
dS: S
de - 7N2 [B21(Ls, + psila; + p32Eh2) + Ba2(Lsy + parla, + pa2Er2) + BoQ + BsJ],  (2.4b)
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Figure 2: The values of 5 changing with time ¢ and used in (a) blue curve in Fig. 3 and (b) magenta
curve in Fig. 3 respectively.

(a) (b)
Figure 3: Blue curves indicate the model simulation and the red dotted curves indicate the reported

data for cumulative infected population. Simulation results are obtained for two different forms of
B(t), (a) with B(t) as shown in Fig. 2a; (b) with §(¢) as shown in Fig. 2b.

dE11 S

n Nl (B11(Is, + p11lay + p12Fi2) + Br2(Ls, + p21lay, + p22Fo2) + BoQ + B1J] — pi B,
(2.4¢)
dE9 Sa
i - N [B21(Is, + p31lay + p32Fr2) + Boz2(Lsy + parla, + pazFoz) + BoQ + B1J] — paFo,

(2.4d)
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= Ey — 0 FE 2.4
i M1l — 01812, (2.4e)
dE
dtm = p2Eb — 2B, (2.4f)
dl,
dtl = (1—o01)01E12 — il (2.4g)
dl,
p 2 = (1-02)02E2 — nala,, (2.4h)
t
dlg .
dtl = 0101E12 — (p11 + Cu1 + G2 + C13) sy (2.4i)
dI .
dt2 = 0202F9 — (pa1 + (o1 + (o2 + (23) s, (2.4)
dq
o = Sula t Gl — (G4 £)Q, (2.4k)
dJ
= Gela Gl +6Q — (2 + 1), (2.41)
dR
2 = Matmle + sl + Gsls, +6Q + v (2.4m)

Now considering one group for the people who follow protocols and the other group for people
who do not follow protocols, we define the quantity K (coefficient of social interaction) by K =
S1/N, where, N is the total population and S is the total population in the first group. Numerically
we observed that K is very sensitive and a very small increment in K can lead to a larger epidemic
outbreak (see Fig. 4). Using the model (2.4), we fit the trend of larger second wave in Spain in
Fig. 5 (the estimated parameter values are given in the paper [13]).
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(a) (b)

Figure 4: Time evolution of E;, Es, I, and I obtained from the numerical simulation of the two
models (2.1) and (2.4) from 15th February to 30th November 2020 as described in the text. Two
different values of K are used for the duration 1st September to 30th November, (a) K = 0.1 and
(b) K = 0.15.
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Figure 5: Fitting of the model (2.4) with the data for Spain. The fitted parameter values are
available in the paper [13].

3 Model with distributed recovery and death rates

While multi-compartmental classical epidemiological models have been successful in predicting and
controlling the spread of infectious diseases, there are still limitations and assumptions that need
to be taken into account. More advanced models that incorporate more complex and realistic
assumptions about the transmission dynamics of diseases can provide more accurate predictions
and help in designing effective control strategies. Classical epidemiological models, such as SIR,
are systems of ordinary differential equations for the number of susceptible people (S), infected
(I) and recovered (R). These models are based on two main assumptions: the first assumption is
that the number of new infections is proportional to the number of susceptible and the number of
infected (i.e., their product). This assumption, although empirical, can be justified under certain
circumstances. The second assumption of the classical epidemiological models, which states that
the number of recoveries and deaths are proportional to the total number of infections at a given
time, is based on the idea that the duration of infectiousness is fixed and independent of the number
of infected individuals. However, this assumption may not hold true in all cases.

Suppose, for definiteness, that the disease lasts, on average, two weeks and the probability of
recovery is 95%. Then at time ¢, 0.95J (¢ — to) will recover and 0.05.J(t — to) will die, where t; = 14
days, J(t — tg) is the number of people who fell ill two weeks ago. Thus, the number of recovered
people at time ¢ is determined by the number of cases at time t — tg, and not by the total number
of infected people at time t. These two values can be very different, especially during periods of
exponential growth or decline in the epidemic. Therefore, instead of the usual SIR model, we get
a model with a delay, and the magnitude of the delay is determined by the duration of the disease
[14]. In [14], we developed the delay model (which is entirely determined by the daily number of
new cases J(t)), given by:
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= I, (3.5a)
MO gy a0, (3.5b)
%l(f) = roJ(t—T), (3.5¢)
%Et) = doJ(t—1). (3.5d)

Here J(t) = 82U I(t) and J(t) = 0 for all t < 0.

Determination of disease duration from data: Using the model (3.5), we can determine the
disease duration 7 from the the epidemiological data for daily number of infected J(¢) and the
number of infected individuals I(t), using the equation
dI(t)
a0 J(t)—J(t—T).

Let I(t) have maximum at t = t,,. Set I(t,,) = L. Then J(t,,) = J(tm —7), i.e., the daily number
of infected is same at two different time points t = ¢,,, and t = t,, — 7. From the real data of the
active infected individuals I(t), we can find the day on which the daily number of active cases is
maximal and it determines t,,. From the data of daily reported cases J(t), we can observe that J(t)
crosses its maximum at some time before ¢,,,. Now we have to find the value of J(¢) such that J(t;,)
will be equal to J (¢, — 7), which in turn determines the disease duration 7. Hence considering the
delay model, using the real data of daily new cases J(t) and active cases I(t) around a peak, we
can find the disease duration 7.

We illustrate this method using the data of J(t) and I(t), taken from Worldometer for COVID-
19 in Italy. We have collected the daily new reported data J(t) and active case data I(t) for Italy
from February 21, 2020 to May 31, 2021 (which captures the first three peaks in Italy). To have
smoother data, we use 7-days’ moving average, the data on j-th day replaced by the average data
from (j — 3)th day to (j + 3)th day. As the concerned method is focused on the peaks, the error at
the beginning and end of the time interval is immaterial. In Italy, during the first peak (in April
2020), the peak of I(t) is attained at t,, = 51 (Fig. 6(a)) and the peak of J(t) is attained before
on t = 51 which is less than t,, (Fig. 6(b)). First we find that J(t,, = 51) = 4.17 x 10> and then
find J(32) = 4.15 x 10% ~ J(t,, = 51). This implies J(t,, — 7) = J(32) and consequently, we can
calculate 7 = 19 as the disease duration during the first peak. Similarly, during the second peak
(in November 2020) and third peak (in March 2021), we have estimated the disease duration as
7 = 20 days and 7 = 14 days, respectively. Similarly, the value of 7 is estimated for some other
countries which are available in the paper [14].

Distributed recovery and death rates: For instance, if the disease has different levels of
severity or if there are differences in treatment availability, the duration of the disease may vary
among infected individuals. In such cases, the assumption of a fixed duration of the disease may
not be appropriate, and more complex models may be required to account for these factors. It is
necessary to take into account not only the average duration of the disease, but also the probability
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Figure 6: Estimation of the disease duration 7 using the data around different peaks of COVID-19

in Italy. Time t = 0 corresponds to February 21, 2020. The obtained value of 7 is 19 days for the
first peak, 20 days for the second peak and 14 days for the last peak.

of recovery (or death) depending on the time elapsed after infection. Such data are available in the
literature and they allow us to formulate and study a model with distributed parameters [13]. Let
r(t —n) and d(t — n) be the recovery and death rates depending on the time-since-infection ¢ — 7.
Then the number of new recovery and death at time ¢ are respectively given by:

/ru—mﬂmm,/lw—nNWMn
0 0

Then the model looks like:

% = 70 (3.6a)
% = J(t)_/OtW—U)J(n)dn—/Otd(t—n)J(n)dn, (3.6b)
% = /Otr(t—n)J(n)dm (3.6¢)
% = /Otd(t—n)J(n)dn, (3.6d)

where, J(n) = BS(t)I(t)/N, with the initial condition S(0) = N, I(0) = Iy > 0, R(0) = 0,
D(0)=0and J(t) =0 for t <0.

Reduction to classical SIR model and delay model: Our proposed model (3.6a)-(3.6d) can
be reduced to some simpler models for some particular and simpler choices of the recovery and
death distributions. If we choose:

rg , t—17<n<t dy , t—7<n<t
e-m={ 0 IR e ={ 0 TS e
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where 7 > 0 is disease duration, ro and dp are some constants, then the model (3.6a)-(3.6d) reduces
to the following classical SIR model

as S

dI S

dR dD

o rol, i dol. (3.8¢)

On the other hand, if we choose r(t —n) = rod(t —n—7), d(t —n) = dod(t —n — 7), where 7, dg
are constants, 1o + do = 1, and ¢ is the Dirac delta-function, then the model (3.6a)-(3.6d) reduces
to the delay model (3.5) discussed earlier.

Estimation of recovery and death distributions: It is common to use gamma distribution
to model the time it takes for an individual to recover or die from an infectious disease. To estimate
the recovery rate function r(t) and death rate function d(t) for the COVID-19 epidemic, we fit a
gamma distribution to the data for 120 recovered patients and 31 dead individuals in China (see
[13] for details).

The gamma distributions fitted to the recovery and death data are respectively given by (see
Fig. 7a, Fig. 7b respectively):

1 t 1

—— gmlghy -
MO =gy e RO Sy

with a1 = 8.06275, by = 2.21407, as = 6.00014 and by = 2.19887.
Let po represents the survival probability, which is estimated to be 0.97 for COVID-19. Then
the distributed rate functions r(t) and d(t) are given by:

r(t) = pofi(t),d(t) = (1 = po) fa(t).

_t
taz—le by ,

Model validation: To validate our model with distributed recovery and death rates, we compare
the output (i.e., the sum of daily recoveries and deaths) of the model with the actual data on infected
individuals, recoveries, and deaths. Using the estimated functions for (¢t — 1), d(t — n), and taking
the number J(t) of real data on daily infection, we find the sum of daily recoveries and deaths by
the expression (as per the model (3.6a)-(3.6d)):

t

E(t)=/0 7”(t—n)J(n)dnJr/O d(t —n)J(n)dn. (3.9)

This (t) is compared with the real data of sum of recoveries and deaths. Fig. 8 shows the
result of such comparison for China from 23rd January, 2020 to 15th April, 2020 with the data
from Worldometer (7-day moving average). Recoveries and deaths can also be determined as a
proportion of active cases (as per the SIR model)

o(t) = (ro+do)I(?).
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Figure 7: Probability distribution for recovery (a) and death (b) as a function of days-post-infection.

Here I(t) is taken from the data and rg + dg = 1/16. It can be observed from Fig. 8 that the SIR
model overestimates the sum of recovered and dead, whereas the model with distributed recovery
and death rates fits the real data much better. Validation for other countries are also performed
and are is given in the paper [13], and in all the cases it is observed that the classical SIR model
overestimates the total recovery and death, whereas, our proposed model with distributed recovery
and death rates can fit the total recovery and death quite well.
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distributed model, the magenta curve corresponds to o(t) in the SIR model, and the black dots
correspond to the 7-day moving average of daily recoveries and death in China. The right panel
shows the corresponding cumulative recovery and death.



4 Immuno-epidemic model

The dynamics of within-host interactions between the pathogen and the host immune system play
a crucial role in the spread of infectious diseases in populations. Understanding the complex
interactions between pathogens and the immune system is essential for predicting the course of an
outbreak, developing effective treatments and vaccines, and designing public health strategies to
control the spread of the disease. The contagiousness of an infection depends on the time after
infection and can be assessed through the viral load within the body of an infected individual. Thus,
an immune-epidemiological model is obtained, which is a system of integrodifferential equations and
most efficiently and adequately describes the interaction of the development of the disease at the
individual and population levels. The model proposed in [15] looks like:

dt / Bt —n)J(n)dn, (4.10)

= [ se=main— [ re—nioi- [ de-nimin )

where (t — n) is the disease transmission rate depending on the time since infection ¢ — n. Here
we assume that (¢t —n) is proportional to the total viral load P(t — ) inside the body at the time
since infection ¢ — 7).

In addition, taking into account vaccination, as well as the gradual decrease in immunity over
time, we obtain more detailed model given by:

S(t) = N — (I(t) + D(t) + m(t)N). (4.12)

= [ s wrwan [ - mionin - / dt—nImdn,  (@13)

dt—/o r(t = )T (n)dn, 2 / (t — n)J(n)dn, (4.14)

where m(t) is the level of immunity in the system at time ¢ that takes into account the immunity
waning. The relation of the immunity level m(t) with the immunity due to vaccination and the
acquired immunity can be defined by:

m(t)—}v( [ ot =nvman+ | d}(t—n)R’(n)dn), (4.15)

where V (¢) is the number of vaccinated individuals at time ¢, and V'(¢) is the rate of vaccination,
R'(t) is the rate of recovery, ¢(t) describes how immunity changes with time, and (t) describes
how acquired immunity changes in time. More detailed explanations of the variable m(t) that
captures the effect of multiple vaccine doses and the effectiveness against new emerging strains, are
given in the paper [15].

The model (4.12)-(4.14) allows an accurate prediction of the further development of the epidemic
(see Fig. 9).
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(a)

Figure 9: Prediction of daily cases in France. The cyan curve is the real data and magenta curve
is the model prediction.

5 Age-dependent immuno-epidemic model

The immunological condition of an individual can play a significant role in the progression of a
disease. The immune system of varies from person to person, and various factors such as age,
genetics, underlying health conditions, and lifestyle choices can influence the immune response to
an infection. As a result, the susceptibility to a particular disease and its severity can vary signif-
icantly among individuals and populations. For example, in case of malaria, although anyone can
get infected with malaria, young children are particularly vulnerable due to their underdeveloped
immune systems. Similarly, HIV attacks the immune system, and the risk of infection is highest in
individuals between the ages of 20 — 45 years who are sexually active and may engage in high-risk
behaviors. The recent coronavirus disease (COVID-19) is also an example of how the age group can
affect the severity of a disease. According to studies, older adults and individuals with underlying
health conditions such as diabetes, hypertension, and cardiovascular disease are more likely to de-
velop severe illness and have a higher mortality rate than younger, healthier individuals. Overall,
understanding the immunological condition of individuals and populations is crucial for developing
effective prevention and treatment strategies for various infectious diseases.

To take into account these aspects, as a possible extension of the previous models, we consider
the age-dependent infectivity, recovery and chance of death due to severe infection. Individual’s
immune strength plays a crucial role behind the replication of virus particles within the body,
development of symptom and also responsible for the time required for recovery. This immunological
factors also vary with the age group and as a result the rate of infectivity and the time of recovery
varies from one age group to another. In the paper [16], we proposed and analyzed an age-dependent
immuno-epidemic model with time dependent recovery and death rates.

Let J(z,t) denote the number of newly infected individuals of age = at time ¢, while S(z,),
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I(z,t), R(z,t), and D(x,t) represent the numbers of susceptible, infected, recovered and dead
individuals. Suppose, W (x) is the total viral load inside an infected individual of age x. Then we
obtain the following age-dependent model:

w — xt/ W(y)I(y,t)dy (= —J(z,1)), (5.16a)
At _ ws xt/ W (y)1(y, t)dy — /Otr(x,tn)J(m)dn

- [ttt = matenyin, (5-16b)
2D~ [ et = patemin (5-16¢)
% _ /Otd(x,t—n)J(x,n)dm (5.16d)

where a(z) is the susceptibility function, r(z, ¢t —n) and d(x,t —n) are the recovery and death rates
for individuals of age x, depending on the time-since-infection ¢ — 7. The initial conditions are:

S(z,0) = So(xz) >0, I(z,0)=Iy(z) >0, R(z,0)=0 and D(z,0) =0. (5.17)

In the context of COVID-19 in New Zealand, we estimated all the age-dependent parameters
involved in the model (5.16). The details of the estimated parameters are available in the paper
[16]. Using these estimated parameters, the model fitting with the data of Omicron in New Zealand
is shown in Fig. 10. Black dots in Fig. 10 represent the real data on daily new cases of Omicron
in New Zealand, and the blue curve is the simulation result of the model (5.16). We can observe

Daily cases J(t) —

0.5

— 1
0e
1/1/2022 28/2/2022 271412022 25/6/2022
Days —

Figure 10: Comparison of new daily cases in modelling and data: model fitting (green), model
validation (blue). The black dots are the real data for Omicron in New Zealand. The magenta
curve corresponds to modelling with the increased disease transmission rate due to the emergence
of new strain in April, 2022.

that modelling results fit quite well the real data up to the end of April, 2022. From the end of
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April 2022, new daily cases have some increase instead of further decreasing predicted by the model
(Fig. 10). A possible explanation of this discrepancy is related to the emergence of new strain BA.2
(instead of the previous BA.1) for which vaccination can be less efficient due to immune escape
or which can have a slightly larger transmission rate. In order to describe this effect, we slightly
change the susceptibility function «(z), in the beginning of May, 2022. The corresponding result
is shown by the magenta curve in Fig. 10, which shows a larger number of daily cases More details
about the fitting are given in [16].

Also, the age-dependent model (5.16) is able to capture the influence the effect of initial age
distribution of the susceptible population Sy(z), on the epidemic progression. We consider three
hypothetical functions representing the age-dependent initial susceptible population distribution
So(x), as shown in Fig. 11(a) by different colors. These cases differ by the proportion of younger
age groups with the same total population (integral). Then we perform the numerical simulation of
system (5.16a)-(5.16d) and characterize infection progression by the total number of newly infected
individuals for all age groups:

100
J(t) = /0 J(z,t)dx

(Fig. 11(b)). We observe that the maximum number of infected and the time to maximum can
change significantly depending on the initial age-dependent distribution of the susceptible popula-
tion. If proportion of the young age groups increases (green curves), then the maximal number of
newly infected individuals also increases while the time to maximum decreases. This is related to
higher infection transmission by younger population (see Fig. 1 (b) in [16]). In the case of a smaller
proportion of these age groups (red curves), the maximal number of new infections decreases and
the time to maximum increases. Though it can be difficult to justify this conclusion with the data
from different countries because of the influence of numerous other factors (climate, economy, social
restrictions) and different methods of data collection, if we restrict this comparison to some neigh-
boring European countries, for which these differences can be less essential, then some tendency
can be observed (Fig. 12).
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Figure 11: (a) Different age structures So(x)/N of the initial susceptible population with the same

total population. (b) Epidemic progression for the three cases in the left panel is shown with the
same color.
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Figure 12: Percentage of the age group 0-14 years (https://donnees.banquemondiale.org/
indicator/SP.POP.0014.T0.ZS) versus the total number of infection cases from the beginning
of epidemic till August 21, 2022 with respect to 1000 people (https://www.worldometers.info/
coronavirus/#countries).

6 Conclusions

Mathematical modelling has played a crucial role in predicting and controlling epidemics, and
compartmental models are one of the most commonly used models for this purpose. These models
divide the population into different compartments based on their disease status, such as susceptible,
infected, and recovered. The models assume that the rate functions, such as the transmission and
recovery rates, are constant over time.

However, our observation is that a compartmental model developed entirely in terms of daily
new cases, with distributed rate functions depending upon the time since infection, can describe the
epidemic progression more effectively, which is an exciting finding. This type of model considers
the heterogeneity of immune response in the population and the initial demographic structure of a
population, which can significantly influence the epidemic progression. One challenge in developing
these models with distributed rate functions is that they require detailed immunological data for a
particular infection, which may need to be more readily available. However, as we mentioned, this
type of data is available for some countries, which can make it possible to develop more detailed
and accurate models.

Our study highlights the importance of considering the heterogeneity of immune response and
demographic factors when developing mathematical models to predict and control epidemics. These
findings can help public health officials make more informed decisions and take appropriate actions
to mitigate the spread of infectious diseases.
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HOMOLOGICAL FEATURES OF
3D MEDICAL IMAGES

Forum "Math-for-Industry" 2022
-Mathematics of Public Health and Sustainability-
16 November 2022, La Trobe University
Shizuo KAJI (IMI, Kyushu U.) . .
, Applied-Applied
Physics Mathematics
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Pure Applied
Maths Maths

Mﬂfﬁ

Moebius Kaleidocycle, 2018
Fried, M. Grunwal

App”COﬁOﬂ S. Kaji, J. Schoenke, E. Fried, M. Grunwald

Kyoto U. hospital & Tokyo U. hospital & Kyushu U. IMI

A collaborative project on various aspects of medical imaging

Developing clinically useful methods often leads to theoretically interesting questions
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VS

Topology

Deep Learning

(Image are taken from Wikipedia unless otherwise stated)

Medical Image Features

Radiomics

Convolutional
Neural Network

Attention-based
Neural Network

Persistent
Homology

_

Usually 2D

High computational cost for 3D ‘

[ Deep-learning based ]

Requires a large dataset for training

High computational cost for 3D

Is not “universal” but complements

neural-network-based methods

global




Deep Neural Nets are shortsighted

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Geirhos et al. 2019

Deep Neural Nets are shortsighted

. D T+
sign (V{823 esign(VJ(60,2,7))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Explaining and Harnessing Adversarial Examples, Goodfellow et al. 2014

Deep Nets are too sensitive to local information.
Why? Because convolution is a local operation.
=> Use Topology to capture global characteristic
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They look similar locally,

but we see a clear difference if we zoom out
c.f. Manifolds are locally all Euclidean and homology distinguishes the global topology of them.

DL is good at
Precise observation

/ Human is good at
* Rough estimation

o * Memorising/imitating examples
* Panoramic view

_ _ . . Processing huge data
* Discovering rules/invariance

Accurate operation
from a small number of examples

Deep Learning
DL

Data-driven

K‘Explaining the reason

Background

* DL achieves high performance but has some weakness

* TDA has been proven effective in capturing data
features that conventional techniques have missed
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Notable app]ications of TDA (outside image analysis)

Liquid-Amorphous-Crystalline states of silica

Y. Hiraoka et al. PNAS 2016
Hierarchical structures of amorphous solids are characterised by
persistent homology.

Gene expression data of cells

M. Nicholau et al. PNAS 2011

Topology based data analysis identifies a
subgroup of breast cancers with a unique
mutational profile and excellent survival.

Topological clusteting of multilayer networks

M. Yuvaraj et al. PNAS 2021
Home insurance patterns are detected.

Tools from Topology

Homology
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Topological Invariants: Space = “Numbet”

encode features into ‘“numbers”

TV

It can mean some algebraic structure
such as group and vector space

stay unchanged under continuous perturbation

are computable

‘/\o

Topological Invariants of a space
Ex. Euler’s polyhedral theorem

Number of F:faces—E:edges 1 Vivertices= 2

All are topologically a sphere




Topological Invariants of a space

Sphere vs Doughnuts

F—E+V is a topological invariant
called the Euler characteristic

Sphere 2
Sphere with a hole 1
Doughnuts O @ @

Homology is a generalisation of Euler characteristic

by

connected component
by

hole

b,

cavity

Euler characteristic
by-bytb,
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Example: is the bunny watertight?

X: bunny
bi: i-th betti number

bo(X)=1
(connected)
b1(X)=7
(there are 8 loops)
b2(X)=0
no cavity (not watertight)
(Stanford bunny)

L

Topological Features
of Image
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Image = Function on a square or a cube

wikipedia
A colour image is represented by a
triple of real-valued functions (R,G,B)

We focus on a monochrome image

fi:X>R (XcRYn=23)

An image processing/analysis method is

an operation on the space of functions

Image processing = Operation on functions

image image.

Example of a kernel;

22 2
h(z,y) = cexp <* <ﬁ + ?)>
5 y

h*f(:c,y)://h(x—s,y—t)f(s,t)dsdt
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Topological Image Analysis
Function =2 Space = “Numbers”

topological space X
function f: X = R
- — — — Each threshold value

gives rise to
the sub-level set

x| f(x)<aj

Function =2 Space = “Numbers”

For each threshold a, we have a space

X(fa) := {x | f(x)<a}

- We can compute topological invariants

of X(f,a) to obtain image features

- — — — Q: How to choose a threshold?

A: We do not choose. Use them all!




Persistent homology (PH)

o Extension of homology defined for 7Y
functions over topological spaces

°For each topological feature(cycle), the
threshold values with which it was born T
and destroyed are recorded ﬁ

Remark:
We can also view PH as a “continuous relaxation” of homology.
Homology is a discrete quantity that is sometimes problematic.
(e.g., homology can change abruptly with small variation in the input)

Persistent homology (formal definition)

Increasing sequence of spaces 0 C Xy, CXyy C---C Xy, =X

PH is by definition the sequence of F,-vector spaces (for each dimension d)
Hq®) = -+ = Ha(Xy,_,) = Ha(Xy,) = -+ = Hy(Xy;_,) = Ha(Xy;) = -+ = Hg(X)

The sequence decomposes into the direct sum of “intervals” having the form

0 0 F, Md,... 4, p 0 0
which correspond to cycles
(= generators = topological features)

represented by (ti, tj) € R?
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2D Example

PH, = {(0’1]’ (0,00)} (islands) A cycle of the form (a,b] is tepresented
PH, = {(1,2]} (holes) by poin (@, b) € R°

Software for Persistent Homology computation for
image and volumetric data

© Cubical Ripser (K-Sudo-Ahara, 2021)

o Open-source (MIT license), Available at my github repository
https://github.com/shizuo-kaji/CubicalRipser 3dim

o Capable of computing persistent homology of time-series, image, volumetric data
° One of the fastest program for computing persistent homology of cubical complexes
© The only program which can handle two major constructions of cubical complexes

° Python binding that works nicely with Numpy (including DICOM converters)

Sublevel sets by sweeping thresholds

EEEEE—
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PH as a feature Output : Persistence Diagram
. ..
Iﬁput: Function (over a topological space) <ﬁmte pOIntS in R )

1D

Red: PHj cycles
Blue: PH; cycles

Hard to deal with by ML techniques
=> Convert PH into an additional

2D, 3D C
channel to the original image

PH annotated image

——
For each pixel, assign a histogram of birth and
lifetime of cycles which are born at the pixel.
We obtain an image with additional channels
which carries PH information [ !
E—

|::> Standard image processing/ML
Image Image

global information is encoded
as the “colour” of pixels

PH processes the original image so that
local and global topological featutes are encoded as pixel values.
PH annotated images can be fed to/digested by conventional ML techniques!
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Pipeline of TDA image analysis

: Sub-level sets
2D/3D image ——
— , Sequence of spaces
Topological invariants ‘ I

Features

- Domain knowled,qe +

Results+Interpretation

( How to cook PH features? 1

| If your priority is in l

S —
use
. Feature engineering
I li
- using domain knowledge
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Example I : MNIST Digit classification

Green dots are 1-cycles of PH annotation

The MNIST Dataset
00k(train)+10k(test) images

10 classes (0,1,...,9)

28x28 black-and-white images
Accuracy of SoTA is over 99.8%

We use “Reduced MNIST”

Only 10 training images

(one image per class,
“small datal”)

Technical remark:
We apply the distance transform before computing PH so that cycles in the image need
not be perfectly closed. Also, in this way the size of the loop is encoded as the lifetime.
We can do vatious pre-processing to the original image before taking the sub-level sets.

Too easy as a benchmark

Reduced MNIST classification results
(Red: Image only, : Image+PH)

100% o .
( ) | Boxplots of 20 runs with different training data
70
75%
50%
60
25% 55

{ ) |

Codes: https://github.com/shizuo-kaji/ HomologyCNN

% %/
Those figures with holes (0,4,8,9)

see a larger increase in the accuracy
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Example II: Sinkhole detection in ground penetrating radar image
(with S. Choi, T. Kim)

Difficulty
1. No big data (data acquisition is costly)
2. TFalse Negative (overlook) is critical

Collapse in Hakata
(Now. 2016 Asahi digital)

We achieved a comparable performance with human

experts with only 40 labelled volumes

Example I1I: Training DI models without real data
(with Y. Watanabe)

/ Mathematical f
formula rom top
Pretraining to bottom
) ImageNet
Persistent
@ homology

Synthetic Imagc . Ours
FDB-10k
@ g . MoCo-v2
Seratch
Finetunin;
£ Validation accuracy on CIFAR100
Human ’

Real Image annotation

Neural Networks can learn to see from
totally synthetic data by solving a maths problem!

codes: https://github.com/shizuo-kaji/PretrainCNNwithNoData
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L

Application
CT analysis of lung disease

joint with N. Tanabe (Kyoto University Hospital) et al.
(all figures are from J. Appl Physiol, vol 131-2, 2021 (CC-BY 4.0) unless indicated otherwise)

Goal: diagnose COPD and IPF from CT
and 1dentify their lesion

(images from Wikipedia)

N

Healthy _COPD_

COPD: Chronic obstructive pulmonary disease is the third leading cause of death (WHO 2019)
IPF: Idiopathic pulmonary fibrosis is a progressive and irreversible disease
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(images from Wikipedia)
More concretely
Given a CT volume,
classify the subject into
Healthy, IPE, COPD.
Moreover, explain the

decision by localising :]

lesions that are responsible

for the condition. r 2 g N N

Available data for each subject
¢ CT volume

¢ Label by a medical doctor \
n=45 (training) + 90 (validation) <

Preliminary test : Is PH a suitable choice?

We have defined an image feature based on PH.
But is it relevant to our current problem?

A pOiIlt corresponds to a patient 2 Labels are given by the medical doctors

Let’s visualise PH features in CPFE = IPF+COPD, Control = Healthy

an unsupervised manner
just using CT volumes.

Clear separation of colours even without using the labels
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Death

Death

Difference in PH among conditions

1000 1000 1000

500

i
i
i
i
500 1. :
i
i
i

'
!

1 L, %00
:
i
!

o 0 o

-500 -500 -500

-1000

-1000 1000 {,

1500

PH, | -1

PH,

000 -500 0 500 1000 ~2000 -1500 -1000 -500 -1000 -500 0 500 1000
Birth Birth Birth

~2000 1,/ 2000 4%

~2000 -1500 -1000 -500 O
Birth

These show PH and PH, of three representative subjects.
We can see the three can be distinguished by looking
at the number of dots in the red boxes

‘ How can we find these red boxes ‘

£ o objectively and automatically?
-1500 //" PH -1500 // ..
1 2 % PH, Incorporate physicians’
gt e w5 s mw knowledge into the algorithm
Birth Birth

PH, PH,

How can we incorporate the experts’ knowledge?

Extract doctors’ knowledge

in terms of ROI selection
(ROI = Region of Interest)

normal

AN

Medical doctors select patches
typical to the disease and we use
them as “training data” fiorosis (IPF)

ROIs provide more fine-grained and
localised information than the label by
telling “what to look at”

emphysema (COPD)
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Learning shallow decision trees from selected ROIs

ML algorithm + Domain knowledge
Note: we need only four
parameters to define a box!

The characteristic cycles (red boxes) in
the previous slide are determined by the
classification accuracy of the ROls.

Numerical
Visual cue features in terms

(physician friendly) of PH

(computer friendly)

The characteristic cycles are interpretable

Physicians work in the image domain. Mathematicians work in the PH domain.
Physicians have strong sense with visuals while mathematicians are more comfortable with “numbers”.
So it is a good idea to go back and forth frequently between these two domains.
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Comparison of different segmentation methods

Thresholding by HU

Original CT Persistent homology (PH) Deep Learning (DL) (HAA/LAA)

Red: Fibrosis, responsible for IPF  Blue: Emphysema, responsible for COPD

Segmentation agreement with medical doctors

Fibrosis(red) Emphysema(blue)
— %k
; [
Q
(5]
(2]
w
Q
a
®CPFE °IPF °*COPD °®CPFE °IPF &
=-0.54* Low PH-fibrosis%
75
o
i )
° T
=0.006
- 8 50 x P
& 2 2
I < High PH-fibrosis%
o 3
S 25 @
=070 ©
0 10 20 30 40 0 500 1000 1500 2000
PH-fibrosis% PH-fibrosis% + PH-emphysema% Follow-up days

Correlation with lung function

73



Summary

Topology (petsistent homology) provides a way to extract image/volume
features that are not easy to obtain by conventional method

Global and invariant features encoded by persistent homology (PH)
complement those (mainly local) features obtained by deep learning (DL)
and can be used in conjunction to boost performance

PH-based image analysis has some advantages:
robust and easily transferable (<> DL needs re-training)
interpretable (<> DL is often a blackbox)

3D (<> many conventional analyses are 2D slice-based)

FAQ on Topological Data Analysis (TDA)

¢ Performance?
=> It depends on the problems as with other tools.
¢ Computational cost?
= Computing PH of a 512x512x512 volume takes 5-10 mins.
* Amount of data necessary?
Persistent homology => Usually much smaller than DL

Mapper Reeb graph * FHasy touse?
=> There are many ‘meta hyper-parameters’ to choose.
Also, input and outputs ate not vectots.
* Explainability?
=> If you can interpret homology in the target domain

TFDA Path signature
Dimensionality
reduction

A is in many ways different from conventional techniques.

It is a good idea to keep it in y oolbox.

TDA Tutorial with Google Colab:

https://github.com/shizuo-kaji/Tutorial TopologicalDataAnalysis

Interactive demo on various techniques of Topological Data Analysis (TDA) including persistent homology
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Abstract

This paper conducts a numerical study of a geometrical structure
called e-school for predator-avoidance fish schools, based on our previ-
ous mathematical model. Our results show that during a predator attack,
the number of e-school increases from one to a certain value. After the at-
tack, the number of e-school decreases in the first two predator-avoidance
patterns, but continues to increase in the third pattern. A constant value
for the number of e-school is observed in the last pattern. These findings
suggest that when the predator is approaching, each individual in the
school focuses more on avoiding the predator, rather than on interacting
with its schoolmates. Such a trait is in agreement with real-life behavior
in the natural ecosystem.

Keywords: e-school, Stochastic Differential Equations, Predator-Prey System, Fish
Schooling, Predator-Avoidance Patterns

1 Introduction

Fish schooling is a remarkable phenomenon in the aquatic world that has captivated
many researchers. The synchronized movement of hundreds or even thousands of fish
in a school is a complex and highly organized trait. Such unique swarm behavior has
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been the subject of numerous studies in various disciplines, including biology, physics,
and mathematics.' ®

Studying fish schooling from a mathematical point of view is important. We can
gain insights into the rules governing the behavior of individuals and have a deeper
understanding of the underlying patterns and dynamics of collective behavior in an-
imal groups. Mathematical models can make predictions and analyze the effects of
various factors on the behavior of a school of fish, such as the interaction between indi-
vidual fish, environmental conditions, and external stimuli. This information can have
important implications for fields such as fisheries management, wildlife conservation,
and aquatic ecology. It can also have practical applications, such as in the design of
swarm robotics to accomplish tasks that would be difficult or impossible for a single
robot to accomplish on its own, and the design of software for autonomous vehicles
(e.g. self-driving cars) that use collision-avoidance rule of fish.

We have studied fish schooling from the mathematical point of view for more than
a decade. In Ref. 7, we constructed a stochastic differential equation (SDE) model for
fish schooling, which is based on the biological interaction rules outlined by Camazine
et al.> A geometrical analysis of such a model is then presented in Ref. 8. In Ref. 9, we
investigated the obstacle-avoiding patterns of fish schools by incorporating an obstacle-
avoidance rule into our original model of Ref. 7. Therein, for the first time, we were
able to quantify the cohesiveness of fish schools.

In Ref. 10, we developed a mathematical model for the foraging behavior of fish
schools. Our results revealed that when fish form a unitary formation in terms of
school, they are able to locate the food more effectively: such a trait is one of the
benefits of constituting a school that is consistent with real-life situation in the natural
ecosystem. !t 14

In Ref. 15, we proposed a model of SDEs to describe predator-avoidance behavior
of a prey fish school. Therein, two different hunting tactics of the predator were
integrated into the general SDE model. On the basis of the model, we discovered four
anti-predation maneuvers of the prey fish school (hereinafter, we also label them as the
predator-avoiding patterns) which are consistent with the behavior in the real aquatic
ecosystem. Moreover, we also successfully demonstrated the benefit of constituting a
large school of prey fish in better escaping the predator’s attack.

Our previous work'® was mainly focused on demonstrating the capability of the
proposed SDE model in recovering simulated predator-avoidance patterns of the school-
ing prey fish that fit the real patterns. As a consequence, there remains another crucial
issue of the anti-predation behavior of the prey fish school that is still not addressed
in our earlier study, namely to what extent does the schooling prey fish alter the
structural integrity of its school formation as a response to avoid the predator’s at-
tack. This study, therefore, aims to investigate the transformation of the structural
formation of the schooling prey fish during a predator’s attack. To do so, we introduce
the so-called e-school as a mathematical representation of the geometrical structure of
the schooling prey’s formation. Here, the notion of e-school is integrated in our SDE
model of Ref. 15. Based on this framework, we undertake numerical simulations to
elucidate the transformation of e-school in all the observed four predator-avoidance
patterns.
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Our SDE model is as follows:!®

dmz(t): vidt + o;dw;(t), (i=1,2,...,N),

N P rd
dUl(t) = l_a Z (||mi7wj\|p o ‘|xi7mj‘|q)

Jj=1,57#1
X (ZIJZ — Z‘j)

> S T T
) A\ Mz —=z; P llzi—x ;2

X (vi —v;) + H(zi, y) | dt,

(i=1,2,...,N),
dy(t) = wvdt+ odws,
dv(t) = F (zi,vi,y,v)dt,

In (1), N is the size of (prey) fish school; z;(t) and v;(t) (¢ = 1,2,..., N) respec-
tively denote the position and velocity in R? (d = 2,3) of the i-th prey fish at time
t; y(t) and v(t) correspondingly represent the position and velocity of the predator at
time ¢; and || - || designates the Euclidean norm of a vector.

The first term in Eq. (1) is an SDE for the unknown x;(t), where o;dw; (i =
1,2...N) denotes a stochastic differentiation of d-dimensional independent Brownian
motion defined in a filtered probability space.” The second expression is a deterministic
equation for the unknown v;(t). Parameters 1 < p < ¢ < oo are fixed exponents; «
and S designate positive coefficients of attraction and velocity matching among the
individual prey, respectively; and r > 0 depicts the critical distance between two
individuals in the school.

The third expression of Eq. (1) is again a stochastic equation for the unknown y(¢)
in which w(t) is a d-dimensional Brownian motion in the same filtered probability space
which is independent of w;(t),i = 1,2,..., N. The last term of Eq. (1) is deterministic.

In this study, we include a condition of “being eaten” into the proposed model
(1). Such a condition manifests a situation where a particular prey fish is captured
by the predator during its attack. Here, the “being eaten” condition applies when
the i-th prey fish is within a distance r from the approaching predator such that
lly —x:]| < r. Consequently, when a prey fish satisfies the “being eaten” condition, the
system described by the model changes from N : 1 (N prey, 1 predator) to (N —1) : 1.

The function H(x;,y) represents the mechanism adopted by an individual prey
fish to avoid the predator. It takes the following remark:

R}
H(xi,y):éw(m—y), (2)
where R1 > 7, §, and 0, are positive constants.

On the other hand, the function F' (x;, vi, y,v) manifests the hunting strategy of the
predator. Here, we devised two hunting tactics of the predator, namely (i) the predator
attacks the center of the schooling prey (hunting tactic I), and (ii) the predator focuses
its attack on the nearest prey (hunting tactic II). The mathematical expressions for
each of the prescribed predator’s hunting strategies are respectively defined as follows:

Ry
- X
ly — zc||® (3)
[ —20) + 772 (0 =) |

F (lEi,Ui,y,”U) =
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R
F (3] (3] b -
(wi,vi,y,v NZ ||y—m]||92 )

[71 (Y —zj) + 1172 (v — ’Uj)]

In Eq. (3), 2. and v, respectively denote the center position and velocity of the
schooling prey; we defined them as the average value of the positions and velocities of
all the individual prey constituting the school:

1 & 1 &

Parameters Ry > 7, 02, 71, and 2 are positive constants. Meanwhile, in Eq. (4), z;
designates the position of each individual prey fish.

The organization of this paper is as follows. In the following section, we provide
detailed explanation regarding the notion of e-school and outline the initial conditions
for our simulation based on the model (1). In Section 3, we present the results of the
numerical simulations. Lastly, in Section 4, we pose some concluding remarks of the
current study.

2 Preliminary

In this section, we introduce the concept of e-school and establish initial conditions
for our simulations based on the model (1). The notion of e-school is akin to that of
a connected component in an e-graph, as seen in graph theory.'®

At each time step ¢, we define an e-graph G(V (¢), E(t)) where the set of vertices

V(t) ={z1(t), z2(t),...,zn(t)}

represents the positions of individuals, and the set of edges

E(t) = {(zi(t),z; (1)) if [[2:(t) —z; ()| <e,
i,j=1,2,...,N}

connects any two individuals whose distance does not exceed e.
We refer to each connected component of G(V(t), E(t)) as an e-school. Further-
more, we denote by N.(t) the number of e-schools in the graph G(V (), E(t)).

Remark 1. In Ref. 8, we introduced a new definition of €, 0-schooling. The definition
states that once the €,0-schooling structure has been formed, it will be maintained
indefinitely, as long as there are no external factors, such as a predator, that disrupt
it. Howewver, in the current paper, the structure changes over time as a result of
predator attacks. Therefore, the definition of €, 0-schooling is not applicable here.

In this study, we investigate the transformation of the number of e-school struc-
ture of the schooling prey fish due to the predator’s attack in both two-and three-
dimensional spaces (d = 2, 3) for the observed four predator-avoidance patterns in our
earlier work.'® In all of the simulations, we employ the model (1) with the hunting tac-
tic chosen among Eq. (3) and Eq. (4), correspondingly. In all of the cases, the number
of prey fish is fixed at N = 40, and the intensity of noise 0; = 0 =0.01 (¢ = 1,2,..., N),
while other parameters may vary and are specified as necessary. Here, we specifically
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choose a moderate value of N = 40 so as to include a reasonable number of individuals
in the schooling prey fish to properly illustrate the transformation of the geometrical
structure of such a school formation due to a predator’s attack. Meanwhile, the values
of the magnitude of the white noise for the schooling prey fish and the predator are
determined as 0.001 < o; < 0.01 and 0.001 < o < 0.01, respectively, thereby allow-
ing a sufficient magnitude of the white noise to invoke stochasticity in our system;
a large value of o should be avoided to prevent a system with an excessively strong
stochasticity.”®

The maximum simulation time is prescribed at tmax = 3,500, during which the
solitary predator attacks the schooling prey only once. At the beginning of the sim-
ulation (¢t = 0), all prey fish are in an e-school formation, while the predator fish is
positioned relatively far from the school.

In the following section, we present the results of the numerical simulations for all
the observed four predator-avoidance patterns.

3 Results

As outlined in the Introduction, our aim in the present study is to elucidate the trans-
formation of the structural formation of the schooling prey fish during the predator’s
attack. To do so, we integrate the concept of e-school described in the Preliminary
section into the general model (1).

From our previous work,'® we obtained four predator-avoidance patterns. We label
them as: (i) Pattern I: Split and Reunion, (ii) Pattern II: Split and Separate into Two
Groups, (iii) Pattern III: Scattered, and (iv) Pattern IV: Maintain Formation and
Distance. In this section, we present the simulation results of each of the observed
patterns for two- and three-dimensional simulations, respectively. Let us begin by
discussing the simulation results of the two-dimensional cases.

3.1 Two-dimensional space

For the two-dimensional case, the simulations are carried out with a fixed value of
€ = 0.7. The values of other parameters of the model to obtain each of the predator-
avoiding patterns are outlined in Table 1, correspondingly. Therein, the associated
hunting tactic of the predator for each of the four predator-avoidance patterns is
listed in the second column of the table.

Table 1. Parameter settings for two-dimensional simulations of predator-
avoidance fish schooling.

Hunti
Pattern Tl‘lanc tlilég B 6 p 601 62 Y1
I I 15 056 1 4 1 0.5 0.08 0.1
II I 1 05 1 4 5 1 0.1 0.1
111 II 1 05 5 2 1 2 1 0.1
v I 2 05 01 2 1 1 5 10

Fig. 1 illustrates the results of the simulation for Pattern I (Split and Reunion),
displaying the condition of e-school as simulation time progresses from the early stage
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1 - Split and Reunion 2D.jpg

Figure 1. The results of 2D simulation for Pattern I: Split and Reunion. The
images demonstrate the behavior of the schooling prey and the predator, as well
as the associated condition of e-school at: (a) t = 0.2tax, (b) t = 0.46 4%, (€)
t = 0.48tmax, (d) t = 0.5tmax, (€) t = 0.55tmax, and (f) t = tmax, respectively.

until the end of the simulation (¢max). Therein, the small black dots manifest the
schooling prey, while the large red dot designates the predator. The arrow linked to
each of the units denotes the direction of movement of that particular unit at the
corresponding time. The individuals constituting an e-school (at the corresponding
time) are connected to each other through a solid line. Similar configurations apply
to the simulation results of other patterns.

As can be seen in Fig 1, as the predator arrives in the vicinity of the prey, the
schooling prey reacts accordingly to avoid the predator. Such a maneuver generates
a vacuole-form of the schooling prey where each of the individuals tries to get away
from the predator (see Fig. 1(b)). At this stage, the associated prey still maintains
the unitary school formation, as is depicted by the solid lines connecting each of the
individuals.

As the predator progresses along its path, a total number of 11 prey fish is eaten
by it. At this stage, all the other “survived” prey responses accordingly by decom-
posing the unitary formation of the school and temporarily constitutes two smaller
groups; each of the groups expands at the right angles away from the direction of the
predator’s attack. Evidence for this can be seen in Fig. 1(c), where two number of
e-schools prevail. As the predator moves away from the “survived” prey, the latter en-
tities recombined to form a unitary school formation behind the predator (Fig. 1(f)),
resulting in the recuperation of the number of e-school into one.

Now, let us turn our attention to the next Pattern. Fig. 2 displays the correspond-
ing simulation results for Pattern IT (Split and Separate into Two Groups). As can
be seen in the figure, the behavior of the schooling prey in Pattern II exhibits similar
characteristics with Pattern I during the progression periods of the predator’s attack
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2 - Split and Separate into Two Groups 2D.jpg

Figure 2. The results of 2D simulation for Pattern II: Split and Separate into
Two Groups. The images demonstrate the behavior of the schooling prey and
the predator, as well as the associated condition of e-school at: (a) t = 0.2¢1ax,
(b) t = 0.45tmax, (¢) t = 0.48tmax, (d) t = 0.55tmax, (€) t = 0.Ttmax, and (f)
t = tmax, respectively.

(see Figs. 2(a) - (d)). In this case, however, a total number of 5 prey fish is eaten
by the predator. Another conspicuous difference lies in the periods after the attack.
Therein, the two smaller schools of the “survived” prey do not rejoin into a unitary
school formation. Evidence for this is in Figs. 2(e) - (f). In accordance with this,
the number of e-school decreases to two and remains at that level until the end of the
allotted simulation time.

Next, we move on to Pattern IIT (Scattered). Here, another distinctive charac-
teristic of the schooling prey appears: the schooling prey seems to display a panic
condition and permanently break the unitary school formation as the simulation pro-
ceeds. Because the prey breaks the unitary formation, the predator is in favorable
situation to hunt more (available) prey. As a result, the remaining “survived” prey is
actively being hunted by the predator, resulting in a continuing panic condition of the
individual prey. At the end of the allotted simulation time, a total number of 13 prey
fish is eaten by the predator.

As can be seen in Figs. 3(b) - (e), as the predator approaches, the number of e-
school increases from one into numerous e-schools based on the number of “survived”
prey at the particular time. Many of these structures consist of only one individual
prey fish. Such a condition can be identified in Fig. 3(f), where numerous structures
of e-school prevail as the simulation arrives at tmyax.

For the last anti-predation maneuver (namely Pattern IV: Maintain Formation
and Distance), the schooling prey exhibits vigilant behavior to the nearby predator: it
maintains a (relatively) safe distance from the predator during the simulation. Con-
sequently, no prey fish is being eaten by the predator. As shown in Fig. 4, the school
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3 - Scattered 2D.jpg

Figure 3. The results of 2D simulation for Pattern III: Scattered. The images
demonstrate the behavior of the schooling prey and the predator, as well as
the associated condition of e-school at: (a) t = 0.2tpax, (b) t = 0.23tmax, (€)
t = 0.24tmax, (d) t = 0.3tmax, (€) t = 0.42t 0y, and (f) t = tmax, respectively.

of prey fish maintains its unitary e-school until the end of simulation time.

Up until this point, within the context of the four observed predator-avoidance
patterns, it seems that Pattern IV (Maintain Formation and Distance) provides the
best protection mode for the schooling prey, since no single prey is eaten by the
predator. On the other hand, Pattern III (Scattered) provides the least protection for
the schooling prey (13 prey fish is eaten by the predator). Between these two extremes,
Pattern I (Split and Reunion) and Pattern II (Split and Separate into Two Groups)
result in a total number of 11 and 5 eaten prey fish, respectively. It is important to
note, however, that as our model is stochastic, executing the simulation repeatedly
with the same parameters (for the same predator-avoidance pattern) may result in a
different total number of eaten prey by the predator. It is therefore crucial to take such
stochastic behavior into consideration. To do so, we deliberately run the simulation
1,000 times for each of the corresponding predator-avoidance patterns. Fig. 5a presents
the total number of eaten prey for each of the associated patterns. According to
Fig. 5a, it is apparent that Pattern IV (Maintain Formation and Distance) is the
most effective evasive mode for the schooling prey since no single prey is being eaten
throughout the 1,000 simulation runs. On the other hand, the least effective anti-
predation mode is displayed by Pattern III (Scattered), with a median of 13 eaten
prey during the predator’s attack. Such findings are consistent with observations of
diverse fish species in the natural aquatic ecosystem (see, for example, Refs. 17-20).

Fig. 5b shows the average number of e-schools at each time step (N¢(t)), calculated
over 1,000 simulation runs for each pattern, using the same parameters as before. A
careful inspection of Fig. 5b reveals that the number of e-schools increases from one to
a certain value, then decrease to one (for Pattern I) or two (for Pattern IT). In Pattern

82



4 - Maintain Distance 2D.jpg

Figure 4. The results of 2D simulation for Pattern IV: Maintain Formation
and Distance. The images demonstrate the behavior of the schooling prey and
the predator, as well as the associated condition of e-school at: (a) t = 0, (b)
t = 0.2tmax, () t = 0.4tmax, (d) t = 0.6tmax, (€) t = 0.8tmax, and (f) t = tmax,
respectively.

111, the number of e-schools increases as the school becomes more scattered, while in
Pattern IV, it remains at one throughout the allotted simulation time.

V-V Pattern I: Split and Reunion

%8 Pattern I: Split and Separate into Two Groups
00 Pattern III: Scattered

¢—¢ Pattern IV: Maintain Formation and Distance

N W W B
h S - O

Average N,(t)
— N
W (=]

X
XXX

1.0X tpax

(a) 0.0 0.2 0.4 0.6
Simulation Time (t)

(b)

Figure 5. 2D simulation: (a) Total number of eaten prey, (b) Average number
of e-schools (average N(t)) over 1,000 simulation runs.
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3.2 Three-dimensional space

In this subsection, we present the results of the simulation for the four predator-
avoidance patterns alongside their associated e-schools in three-dimensional space.
Here, the value of € is similar to the one employed in the two-dimensional case. Table
2 summarizes the adopted model parameter settings to run the three-dimensional
simulations.

Table 2. Parameter settings for three-dimensional simulations of predator-
avoidance fish schooling.

Huntin
Pattern Tac ticg B8 6 p 01 62 1 72
I 1I 15 05 1 4 1 0.5 0.08 0.1
11 1 036 05 1 4 15 1 0.1 0.1
111 11 1 05 5 2 1 2 1 0.1
18 I 2 0.5 0.1 2 1 1 5 10

Figs. 6 - 9 exhibit the three-dimensional simulation results for Pattern I (Split and
Reunion), Pattern IT (Split and Separate into Two Groups), Pattern III (Scattered),
and Pattern IV (Maintain Formation and Distance), respectively. In general, the main
characteristics of e-schools for all the patterns are similar with the ones observed in
the two-dimensional cases.

1 - Split and Reunion 3D.jpg

Figure 6. The results of 3D simulation for Pattern I: Split and Reunion. The
images demonstrate the behavior of the schooling prey and the predator, as well
as the associated condition of e-school at: (a) t = 0.2tax, (b) t = 0.48tmax, (€)
t = 0.49% max, (d) t = 0.5tmax, (€) t = 0.Ttmax, and (f) t = tmax, respectively.

A distinctive feature with the former two-dimensional cases, however, lies in the
fact that in the three-dimensional spaces, the individual prey has more spatial flexibil-
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2 - Split and Separate into Two Groups 3D.jpg

Figure 7. The results of 3D simulation for Pattern II: Split and Separate into
Two Groups. The images demonstrate the behavior of the schooling prey and
the predator, as well as the associated condition of e-school at: (a) t = 0.2¢1ax,
(b) t = 0.45tmax, (€) t = 0.48t 0y, (d) t = 0.51tmay, (€) t = 0.65tmax, and (f)
t = tmax, respectively.

ity (more degrees of freedom) in its movement to avoid the approaching predator. This
reflects in the fewer prey that is being eaten by the predator for each of the predator-
avoidance patterns than in their corresponding two-dimensional counterparts. Fig. 10a
shows the total number of eaten prey for the four predator-avoidance patterns over
1,000 simulation runs for each of the corresponding patterns. A comparison of Fig. 5a
and Fig. 10a supports the erstwhile exposition: fewer prey is being eaten in the three-
dimensional cases than the corresponding two-dimensional counterparts due to the
higher degrees of freedom in the spatial movements of each individual prey.

Fig. 10b demonstrates the number of e-schools for the three-dimensional cases.
Here again, we can observe that the e-schools structure for all of the associated
predator-avoidance patterns exhibit relatively similar characteristics with their re-
spective two-dimensional cases. Such a consistent result between the two- and three-
dimensional simulations reflects the reliability and robustness of our model (1) in
describing the transformation of geometrical structure of the schooling prey during
predation threat of a solitary predator.

4 Conclusions

As a final remark, this paper extends the study of the SDE model of predator-avoidance
in fish schools as presented in Ref. 15. We propose a concept of e-school as a mathe-
matical representation of the geometrical structure of the schooling prey fish.

By analyzing four different predator-avoidance patterns in both two and three-
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3 - Scattered 3D.jpg

Figure 8. The results of 3D simulation for Pattern III: Scattered. The images
demonstrate the behavior of the schooling prey and the predator, as well as
the associated condition of e-school at: (a) t = 0.2tpax, (b) t = 0.28tmax, (€)
t = 0.3tmax, (d) t = 0.4tmax, (€) t = 0.6tmax, and (f) t = tmax, respectively.

dimensional spaces, we found that the number of e-schools varies dynamically during
the predator’s approach. Generally, in the first two patterns, we observed an initial in-
crease in the number of e-schools followed by a decrease to either one or two structures.
Pattern I11, however, exhibits a distinct characteristic in which the number of e-schools
continued to increase until the end of the simulation. A constant unitary e-school is
found in Pattern IV. These results suggest that when a predator approaches, individ-
ual fish in the school prioritize their attention to the predator rather than maintaining
their formation with other schoolmates. Such a finding is consistent with real-life
behavior of schooling fish in the natural aquatic ecosystem.

The results of this study contribute to a better understanding of the collective
behavior of fish schools and can potentially have implications for the study of animal
behavior and group dynamics in various species. Further research can be conducted
to explore the impact of various parameters, such as the value of ¢, as well as the
intensity of the noise, on the observed patterns.
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4 - Maintain Distance 3D.jpg

Figure 9. The results of 3D simulation for Pattern IV: Maintain Formation
and Distance. The images demonstrate the behavior of the schooling prey and
the predator, as well as the associated condition of e-school at: (a) t = 0, (b)

t = 0.2tmax, () t = 0.4tmax, (d) t = 0.6tmax, (€) t = 0.8tmax, and (f) t = tmax,
respectively.
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Figure 10. 3D simulation: (a) Total number of eaten prey, (b) Average number
of e-schools (average N(t)) over 1,000 simulation runs.
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MERGE and the role of gully erosion modelling to protect water quality
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1 Introduction

Gully erosion is responsible for as much as 40% of the accelerated sediment that ultimately reaches the Great Barrier
Reef (GBR) [3], contributing to poor water quality and adverse outcomes [4]. The Queensland and Australian
Governments are committed to protecting the GBR, with the goal to reduce sediment transported to the reef by
25% by 2025 under the Reef 2050 Water Quality Improvement Plan [1]. As gullies are the majority source of excess
sediments reaching the GBR despite occupying a small percentage of the GBR catchments, land management to slow
or prevent gully erosion is receiving significant attention and investment.

Gully erosion is highly varied, affected by soil type, rainfall, catchment area, vegetation, and grazing and other
land use patterns amongst other factors. The high variability in gully erosion, coupled with limited observations
especially with regard to land management activities, has frustrated efforts to develop portable data-driven models
[11]. Prosser [7], in a report to the Queensland Water Modelling Network, identified the need for process-based
models to support gully management and remediation activities. The MERGE (modelling erosion resistance for
gully erosion) gully erosion model was developed in partnership with Queensland Government and the Queensland
Water Modelling Network in direct response to that call. The process-based foundation of MERGE is supported by
data-driven sub-models where it is infeasible or impractical to adopt a process-based approach.

2 MERGE

MERGE is an event-based model for the erosion and transport of sediment within channel-like gullies. Conservation
of mass for the concentration of sediment suspended in the water column, which is advected through the channel
subject to deposition (sink) and entrainment (source) processes, gives the one-dimensional governing equation

acd  a(CQ)
W T o

=n—0, (1)

where C(z,t) [kg/m3] is the concentration, d(z,t) [m] is the flow depth, @ [m?/s] is the flow, n [kg/ms] is the rate of
entrainment, § [kg/ms] is the rate of deposition, ¢ [s] is time, and x [m] is the distance along the gully (1).

The rate of deposition is § = bCw,s where b > 1 is the ratio of the average concentration C' to that just above the
gully floor (assumed 1 in the absence of further information), and wjy is the settling velocity. The settling velocity is
a function of the particle size and density, and is typically modelled using Stokes’ Equation.

The rate of entrainment 7 is determined by balancing the power required to dislodge sediment and raise it to
the height h [m] against the power available from the flow. The gully is assumed to consist of a series of connected
one-dimensional, homogeneous segments. The segments are classified as either ‘head’ or ‘channel’ segments. Within
channel segments, the power available for entrainment is due to the stream power Q = pgSQ, where p [kg/m3] is the
density of the water, g [m/s?] is gravitational acceleration, S is the slope of the channel, and @ [m®/s] is the flow
through the channel.

Within a head segment the waterfall power must be considered together with the stream power. The waterfall
power is due to the loss of potential energy as the water cascades over the gully head (or an internal step) and walls
of the gully. Assuming the power is equally distributed over the head (or step) length L, [m], the waterfall power is
U = pgQ(D — d)/Ly, where D [m] is the height of the head or step, and d is the depth of the flow within the channel.
To simplify the model, variation in the head height is neglected.

The stream and waterfall power is limited by the power proportion k£ < 1, and the carrying capacity C*, which
represents the power required to maintain the suspended sediment in the flow. The power to entrain sediment at the
rate 1) [kg/ms] consists of three key components: the energy to break the cohesion of a unit mass of soil J [Joule/kg],

*This research was supported by Queensland Government through the Queensland Water Modelling Network
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Figure 1: Geometry of the ideal gully, adapted from Roberts [8, Fig. 1]. The sediment concentration C'(x,t) [kg/m?]
satisfies the conservation of mass equation, which is to be solved within the bounded domain z € [0, L], for time
t > 0. The gully is split into two regions for convenience, the gully head = € [0, Lj,], and the channel z € (L, L], for
time ¢ > 0. The gully is of constant slope. The flow within the gully is of constant flux Q [m?/s] with depth d [m],
and width W [m]. Sediment is entrained from the walls and floor at rate 7, [kg/ms] and e [kg/ms] respectfully,
and re-entrained at the rate 7, [kg/ms]. Sediment is deposited out at the rate § [kg/ms] forming the depositional
layer (shown in red). Within the gully head a depositional layer is not formed, as deposited sediment is immediately
re-entrained. Net entrainment in the gully head is at the rate 7., [kg/ms].

the energy to overcome static friction F' [Ws/kg] (assumed negligible), and the energy to lift the sediment to the height
h [m], namely 8 = (o — p)gh/o, where o [kg/m?®] is the soil density. Thus the power required to entrain sediment at
the rate n is n(J + F + ). Equating the power available, limited by the power proportion and the carrying capacity,
with the power required gives the rate of entrainment

KU +Q) c
"_J+F+ﬁ<1_5>' .

Following Hairsine and Rose [5] MERGE explicitly models the depositional layer, which forms atop the gully floor
when the rate of deposition locally exceeds the rate of entrainment. It is assumed that a depositional layer cannot
form in a head sector due to the higher power of the waterfall. In practice, the length of the gully head is measured as
the length of the plunge pool that forms beneath the waterfall. Although smaller events may show different dynamics,
which would warrant a different treatment of the depositional layer in the head, it is larger events that are the focus
of the remediation modelling. The depositional layer lacks cohesion, and thus while a depositional layer is present,
J = 0 within the entrainment equation on the gully floor.

Under a steady flow through the gully, that is Q(z,t) = @, the concentration profile within the gully will rapidly
approach a steady profile C'(z,t) = C(z). In this case, analytical solutions to the conservation of mass equation are ob-
tained for the head and channel sectors, with and without a depositional layer. These solutions are [8, Egs. 12, 14 & 15]

A C* (o + &) { ( i o o~ o )}
C - - =< =< C . - - 5 ew T b 3
S, <5*+Cew+ér L}> 1—exp C*Q( + Cew + ¢r) (3)

~ AC* — Cpp(A+ BC™) -
= 1-— A+ BC* , 4
Os. e exp g4+ BCY ) | (4)
ass = é + (C* — &> 42— BGo (5)
" B B )| Ay — BCy — B(C* — Co) exp L;fQ (Ay — BC*)]
where Eew = szm Jjﬁ-%—ﬁ’ Z, = Wv_t?dFk—_&% A= %, B = %was, and A; = k,f;fg Here the ~ notation

indicates variables on the translated coordinate system such that the start of the sector corresponds to Z = 0 and the
concentration boundary condition is C'(Z = 0) = 0. Roberts [8] demonstrated that the quasi-steady solution is a good
approximation to the full dynamic solution, even for a non-steady flow Q = Q(¢).

For a complete description of MERGE, and its development, refer to Roberts [8, 9].

3 Representing interventions
Gully erosion interventions, like gully erosion itself, are highly variable in their effectiveness. A review by Bartley et al.
(2] reported intervention effectivenesses between 12 and 94%. Gully management interventions can be classified as

direct and indirect. Examples of direct interventions include re-vegetation, water diversion, rock capping, roughening
of the channel, porous check dams, and compacting and filling a site. Examples of indirect actions include stock
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Figure 2: Case study gully showing (a) proximity to the Fitzroy River, (b) the schematic break up of the gully into
head and channel sections, and photos of the gully viewed (a) from the head, (d) from the toe, and (e) the main head
viewed from the first channel.

Scenario Manning’s roughness Flow Q [m?/s]
coefficient n [s/m'/3]
Bare soil Vegetated

‘Wet season A 0.02 0.045 8
B 0.02 0.045 16
Drv senson, C 002 0.025 1.7
vy "D 0.02 0.025 3.5

Table 1: Case study flow and roughness scenarios

management (intensive stocking, stock reductions, stock exclusions), settling ponds, and wetlands. From a process
perspective, these interventions target one of four actions, reducing flow through the gully (velocity and/or volume),
increasing the erosive resistance of the soils, increasing deposition or off-site capturing of sediment. The first three
actions will also reduce degradation of the site locally, while the fourth can protect receiving waters but will not reduce
local erosion.

Interventions targeting the erosive resistance of the soils are modelled through the soil cohesion parameter .J.
Interventions that reduce the flow entering the gully are modelled through the flow @, while interventions that modify
the flow within the gully are modelled through the Manning’s roughness coefficient n, which relates the flow depth
d (and hence volume) to the flow @ via the data-driven Manning’s Equation. Interventions that target deposition
usually work to slow the flow, and hence are modelled through the Manning’s roughness coefficient to affect Q.

The effects of three interventions, applied individually and in combination, on erosion at a case study gully in the
Fitzroy Basin are shown here.

3.1 Case Study - Fitzroy Basin

The case study gully is located 2km from Rockhampton and discharges directly into the Fitzroy River. It is 21.8m
from its head to mouth and consists of multiple steps (or internal heads) connected by steeply sloping channels. The
gully is seasonally vegetated. In the wet season (Figure 2d) the lower reaches of the gully is vegetated with long grass,
which reduces during the dry season. To apply MERGE to the case study site it was first necessary to segment the
gully into distinct head and channel sections (Figure 2b). As some of the lower steps are low, they are neglected for
the wet season simulations (as the water depth exceeds the step height), but are included in the dry-season simulation.
Refer to Roberts [10] for a complete description of the study site, including the measurements of the various gully
sectors.

Three interventions, applied in isolation and in combination, are considered. Namely roughening of the upper
channel, for example as achieved through increasing ground cover, or through the introduction of branches and logs;
diverting flow away from the gully, for example as achieved by reducing stocking rates in the gully catchment (which
can result in increased infiltration and hence lower flow into the gully) or by building diversion bunds; and rocking
the channel, which forms a protective barrier to the flow. Roughening of the channel is modelled by increasing the
Manning’s roughness coefficient, thereby reducing the flow @) while maintaining the flow depth d. Flow diversion
is modelled by reducing the flow @ by 50%. Rocking the channel is modelled by assuming the entrainment of the
underlying soil matrix is prevented, and therefore the concentration at the end of the rocked segment is that at the
beginning of that segment. Table 1 shows the different flow conditions and Manning’s roughness coefficients, for the
different scenarios. The other parameter values were sediment density o = 1470kg/m?, particle size R = 10 um, soil
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Scenario Interventions applied Sediment flux reduction (%)
relative to baseline

Wet Season Dry Season
A B C D
o Roughening of the up- Roughening of the second 0.0 0.0 0.0 0.0
per channel step and channel
i Rock upper Rock cap the initial head and  41.7 41.6 34.2 34.1
second step
io  Rock and roughen up- Combination of (o) and (i) 41.7 41.6 34.2 34.1
per

ii Rock upper and lower  Rock cap the initial head, sec- 41.7 41.6 43.2 43.3
ond step, and first and second
lower steps
iii ~ Diversion Divert 50% of the runoff from  49.7 50.7 49.5 494
entering the gully
iiio  Diversion & roughen Combination of (o) and (iii) 49.7 50.7 49.5 49.4
iv. Diversion & rock upper Combination of (i) and (iii) 70.6 71.4 66.8 67.4
ivo Diversion & rock and Combination of (o) and (iv) 70.6 71.4 66.8 67.4
roughen upper

Table 2: Relative reduction in the sediment delivery rate [kg/s] for the different combinations of the three interventions.
The sediment delivery rates without any intervention were modelled to be 5.5, 2.8, 0.8, and 0.4m3 /s for scenarios A
to D respectively.

cohesion J = 1700 Ws/kg, boundary concentration Cy = 0 kg/m?, carrying capacity C* = 147 kg/m?, settling velocity
wg = 1.07 x 10~*m/s, power proportion k = 0.005, concentration gradient b = 1, friction term F = 0, and gravity
g=9.81m/s%.

4 Results

The reduction in the total sediment delivery rate relative the the baseline (no intervention) under the different scenarios
is shown in Table 2.

5 Discussion and Conclusions

This case study demonstrates that different interventions are variably effective, and that interventions applied in
combination are not additive. These results are consistent with an earlier study applying MERGE in Prentice et al.
[6], which similarly found the benefits of interventions were not additive. For this case study, diverting 50% of the
runoff from entering the gully resulted in reductions in the sediment delivery rate between 49.4% and 50.7%, while
rocking the main head and second step in the upper channel achieved reductions between 34.1% and 41.7%. Applying
these two interventions in combination reduced delivery between 66.8% and 71.4%. This result is similar to the 56-78%
reduction in erosion achieved through rock capping and vegetation in a study at Fernvale gully [6]. However, further
studies in collaboration with Healthy Land and Water (as yet unpublished) demonstrated that not only do different
gullies respond differently to interventions, but that the ordering of the most effective interventions will also vary.

These results highlight the importance of MERGE to explore the expected sediment reduction achieved by applying
specific interventions at a specific site to support land managers. On-ground expertise remains essential for the
practical application of MERGE, as expert knowledge is required to inform the exploration of interventions to ensure
unfeasible options are not considered, for example where diversion would concentrate flow at a new location and
trigger new gullying activity, or where vegetation is unlikely to establish. Future development of MERGE is focussed
on improving guidance on parameter selection, and coupling MERGE with novel data-driven modelling approaches
to provide greater insight for land managers.

Acknowledgements This research is supported by Queensland Government through the Queensland Water Mod-
elling Network. MERGE was developed while I was the Queensland Water Modelling Network Senior Research Fellow.
The case study reported in this article received financial support from the Queensland Water Modelling Network. I
acknowledge the support of the Queensland Water Modelling Network and the collaborations within it. I thank Jenny
Riches, Sarah Stevens and Evan Thomas and colleagues (Queensland Department of Environment and Science) for
their many contributions, which shaped MERGE.

The support of the Fitzroy Basin Association (FBA) was instrumental to the success of the case study reported
in this article. FBA provided essential on-ground knowledge and relationships. I thank Daniel Boshof! for facilitating

94



the study and providing invaluable insights. I also thank the land holders for inviting us to undertake the reported
case study on their land, and their cooperation with the project.

T also thank David Hamilton from the Australian Rivers Institute, Griffith University for many valuable conversa-

tions that shaped this project. I thank Graeme Curwen (Australian Rivers Institute) for GIS assistance.

This case study is also informed by a related case study led by Matthew Prentice (Griffith University) in collabo-

ration with Mark Waud and Samille Loch-Wilkinson from Healthy Land and Water.

References

[1] Australian and Queensland Governments. Reef 2050 Water Quality Improvement Plan 2017-2022, 2018.

[2] Rebecca Bartley, Jean Poesen, Scott Wilkinson, and Matthias Vanmaercke. A review of the magnitude and

10

[11

response times for sediment yield reductions following the rehabilitation of gullied landscapes. FEarth Surface
Processes and Landforms, 45(13):3250-3279, August 2020. doi:10.1002/esp.4963.

Andrew P Brooks, John Spencer, Nicholas Doriean, Tim J Pietsch, and Jorg Hacker. A comparison of methods for
measuring water quality improvements from gully rehabilitation in great barrier reef catchments. In Proceedings
of the 9th Australian Stream Management Conference, pages 1-8, Hobart, Australia, 2018.

Great Barrier Reef Marine Park Authority. Great Barrier Reef Outlook Report 2019, 2019. URL http://hdl.
handle.net/11017/3474.

P B Hairsine and C W Rose. Modeling water erosion due to overland flow using physical principles: 1. Sheet
flow. Water Resources Research, 28:237-243, 1992. doi:10.1029/91WR02380.

M.J. Prentice, M.W. Waud, D. P. Hamilton, and M. E. Roberts. Assessing performance of the MERGE model for
simulating gully interventions. In MODSIM2021, 24th International Congress on Modelling and Simulation. Mod-
elling and Simulation Society of Australia and New Zealand, December 2021. isbn:978-0-9872143-8-6. doi:
10.36334/modsim.2021.L4.prentice. URL https://mssanz.org.au/modsim2021/papers/L4/prentice.pdf.

Tan P Prosser. Improving how gully erosion and river sediment transport processes are repre-
sented in Queensland catchment models, 2018. URL https://www.des.qld.gov.au/science/documents/
qwmn-gully-erosion-processes-report.pdf.

M E Roberts. MERGE: modelling erosion resistance for gully erosion — a process-based model of erosion from
an idealised linear gully. Soil Research, pages 1-16, 2020. doi:10.1071/SR20027. URL https://doi.org/10.
1071/SR20027.

Melanie E Roberts. The erosion of an ideal gully under steady state conditions. In 23rd International Conference
on Modelling and Simulation, Canberra, Australia, 2019. doi:10.36334/modsim.2019.G1.roberts.

Melanie E Roberts. Regional pilot application of MERGE gully erosion model. Technical report, Australian
Rivers Institute, Griffith University, 2022. URL https://tinyurl.com/yrmhcc28. A report to the Queensland
Water Modelling Network.

Melanie E. Roberts, Ryan M. Burrows, Robin N. Thwaites, and David P. Hamilton. Modelling classical gullies
— a review. Geomorphology, 407:108216, June 2022. ISSN 0169-555X. doi:10.1016/j.geomorph.2022.108216.
URL https://www.sciencedirect.com/science/article/pii/S0169555%2200109X.

95



Mathematical Modelling of
nitrogen management on dairy
farms
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Basic problem
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Key points

Patch dynamics

98




SDE approximation

dY = —aYdt + oYdW, Y(0)=1,

1000 simulations

Density function
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The Multi-patch solution

2 n—1 n n+1

Stochastic version
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Density functions

For k£ = 1, the inverses of this transformation are given by the
two branches of the Lambert W function
xo = W(=y1,0) and x; = W(—y1, —1).

b 4 d b A b b L o

7= W(—3..0)

@ = W(—y,-1)

o

0.1 0.2 0.3 0.4
"

Let Ni(y1,t) be the density function of Yi(t).

a =002 day!, o = 0.002 day /2
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Moments
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Back to the farm...

Nitrogen load

frequency

4000

3000

2000

1000+

= 1 patch
= 2 patches

= 3 patches

il e

500

. .
750 1000 1250

nitrogen load (kg/hectare)
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What happens to the nitrogen after deposition?

Coupling nitrogen attenuation with the patch model?
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Need to modify the patch model
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Some features of this system

106




Next steps...

Reference

Details of the first part of this talk are in...

This work is ongoing and is part of a team project partially supported by DairyNZ under the Project # CB1915-2020
Dynamic N Modelling & Agmardt Grant #A21048-2021. DairyNZ is an industry-led organization with head office based in
Hamilton, New Zealand.
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Mathematics: key enabling technology for scientific

machine learning
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Department of Mathematics and Computer Science

TU/e

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

Happy to be at FMI again!

e Great to see that this event is
continuing to be held every year,
in different (and nice!) places in
the Asia-Pacific region

e Fantastic that APCMfl is so
successful — with similar
experiences as ECMI in Europe

* Love to experience more of the
beautiful city of Melbourne

2 Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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FMI 2022: "Mathematics of @ SUSTANABLE (> e A\ | G
Public Health and Sustainability" e ——

e Excellent topic for a conference; b . ul @1
mathematics is indispensable in our — 1 _
complex world with the many challenges v L =S e,
i | &G Qo

we are facing in sustainability, climate,
energy transition and more
¢ In this context, | would like to remind ©
you of the International Year of Basic
Sciences for Sustainable Development
(IYBSSD 2022) that has been initiated by
the ISC
e See www.iybssd2022.org; suggest to
mention FMI 2022 as an event here

16 Gaiee W {7 pancesars
FOR THE GOALS
mslmmnns

susrAlNABLE
& DEVELO PMENT

13 5w 14 B [ 16 68

(‘/5

§i7
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Advertisement

2200+ participants expected
8 renowned invited speakers on a variety of topics

Public event with 5 TED talks, advertising mathematics to
the general public and broadcast world-wide

Hackathon in weekend before conference, with

challenges from 6 major companies like Siemens, ASML
(great for young talented researchers)

https://www.siam.org/conferences/cm/conference/cse23

Registration will open November 26
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Advertisement (2)

e |ICIAM organizes a major
conference on industrial and
applied mathematics every 4
years

* ICIAM 2023 will be held in
Tokyo, August 20-25

* You are all encouraged to
submit proposals for mini-

symposia!
* Hope yo see many of you in

Tokyo
5 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
Contents

e Some opening thoughts

e Artificial Intelligence, Machine Learning and Neural Networks
e Hybrid methods: combining CSE and Al methods

e Example 1: Dynamic neural networks

* Example 2: Geometric concepts and Al

e Conclusion

6 Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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SOME OPENING THOUGHTS

EINDHOVEN
Real and Artificial Intelligence for Science and Engineering — Wil Schilders I U/ UNIVERSITY OF
TECHNOLOGY

A few years ago........

......| was thinking:

. Is numerical mathematics nearly finished?

. Do we see any new research directions, or is all research just an
“epsilon improvement” of existing theories?

e Of course, much research was still carried out on interesting topics

o We worked on model order reduction, the solution of
indefinite linear systems and mimetic methods, with some
new ideas; nice research, but not revolutionary (probably
more evolutionary)

. Also, new application areas required adaptation of existing
methods, and sometimes entirely new techniques

. Computational Science and Engineering meant working in
interdisciplinary teams for mathematicians, adding a new
dimension

8 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

e Numerical methods needed to be made
parallelizable

9 Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

e Numerical methods needed to be made
parallelizable

e ICCG, for example, shows a very bad
performance on current supercomputers

10 Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

e Numerical methods needed to be made
parallelizable

* |ICCG, for example, shows a very bad
performance on current supercomputers

¢ Hence, for the solution of sparse linear systems,
entirely new methods need to be developed

REVOLUTIONARY NEW IDEAS NEEDED!

(NLAFET project of lain Duff and Jack Dongarra)

12 Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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Mathematical method development for HPC

Mathematical method development
must be distinguished from
software and hardware

Mathware researchers must
engage in discussions with
software and hardware colleagues
to achieve optimal results

Example: ease transformations
between 16, 32 and 64 bit
representations (using FPGA?)

13 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e

And there is Mo(o)re

The main engine behind the electronics
industry is Moore’s law: every 2 years the
speed and density of transistors is
doubled (general knowledge!)

TU/e
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Mathematical methods are outperforming hardware
improvements (not general knowledge!)

Mathematical Period (years) Improvement Improvement
method hardware mathware

Solving large 10.000.000 10.000.000
linear systems

Linear 16 1600 3300

programming

Mixed integer 25 6500 870.000 (180 years

programming 2>1
second)

Particle 40 100.000.000 1.000.000.000

simulations

We should aim at a similar development for parallel computing!

TU/e

But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and
quickly became part of the curriculum at
universities

16 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and
quickly became part of the curriculum at
universities

e Itis an emerging discipline on the crossroads of
multiple existing disciplines

e David Donohue (Stanford): “50 years of Data
Science”

REVOLUTIONARY NEW IDEAS NEEDED!

19 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e

But then.......

1. High Performance Computing started
(again) to become important, and in fact
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and
quickly became part of the curriculum at
universities

3. Artificial Intelligence became extremely
popular, with techniques for deep learning,
in combination with big data

MANY NEW CHALLENGES AHEAD!

20 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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Quoting Karen Willcox (Oden,
Texas)

“It is such an exciting time to be a
computational scientist. The field is in
the midst of a tremendous convergence
of technologies that generate
unprecedented system data and enable
automation, algorithms that let users
process massive amounts of data and
run predictive simulations that drive key
decisions, and the computing power that
makes these algorithms feasible at scale
for complex systems and in real-time or
in situ settings.”

21
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We will concentrate on the third

topic:

Combining methods from the fields

of Computational Science and
Engineering (CSE) and Artificial

Intelligence (Al)
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ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND
NEURAL NETWORKS

EINDHOVEN
Real and Artificial Intelligence for Science and Engineering — Wil Schilders I U/ UNIVERSITY OF
TECHNOLOGY

Artificial Intelligence (Al)

e The origins of Al can be traced
back to the desire to build thinking
machines, or electronic brains.

e |n 1958, Frank Rosenblatt created
the first artificial neuron that could
learn by iteratively strengthening
the weights of the most relevant
inputs and decreasing others to
achieve a desired output.

24 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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Brain-inspired Al

e Computation in brains and the creation of intelligent
systems have been studied in a symbiotic fashion for
many decades.

e Europe has become a hotspot of brain-inspired
computing research, the progress being accelerated
by the FET flagship “Human Brain Project”’.

* In technology roadmaps, brain-inspired computing is commonly seen as a
future key enabler for Al on the edge.

e Researchers at INRIA have presented an interdisciplinary approach towards
transferring neuroscientific findings to new models of Al. Quoting them:
“Major algorithms from artificial intelligence (Al) lack higher cognitive
functions such as problem solving and reasoning.”

25 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e

Machine Learning (ML)

e The discipline of machine learning is often conflated
with the general field of Al, but machine learning
specifically is concerned with the question of how to
develop algorithms and program computers to
automatically recognise complex patterns and make
intelligent decisions based on data.

e [tinvolves probability theory, logic, combinatorial
optimization, statistics, reinforcement learning and
control theory.

e Applications are ubiquitous, ranging from vision to
language processing, forecasting, pattern recognition,
games, data mining, expert systems and robotics.

26 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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History of Machine Learning

e Arthur Samuels popularized the term
“machine learning” in 1959; he built a
checkers-playing program alongside
efforts to understand the
computational principles underlying
human learning, in the developing field
of neural networks.

¢ Inthe ‘90s, statistical Al emerged,
formulating machine learning problems
in terms of probability measures.

¢ Since then, the emphasis has vacillated
between statistical and probabilistic
learning and progressively more
competitive neural network
approaches.

27
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Breakthrough in Machine Learning

28

The breakthrough work by Krizhevsky, Sutskever &
Hinton in 2012 has been a catalyst for Al research.
They used a deep neural network trained
exhaustively on GPUs.

Similar advances were then quickly reported for
speech recognition and later for machine
translation and natural language processing.
Companies like Google, Microsoft and Baidu
established large machine learning groups.

Since then, with the combination of big data and
big computers, rapid advances have been
reported, including the use of machine learning for
self-driving cars, and consumer-grade real-time
speech-to-speech translation.

Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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Criticism is growing...

* The much-glorified deep learning approaches all rely on the availability
of massive amounts of data, often needing millions of correctly labelled
examples.

* Many domains, however, including some important areas such as
health care, will never have such massive labelled datasets.

e Similarly, robots cannot be trained for millions of trials, simply because
they wear out long before.

e The question is thus how to learn more with less. Here, statistics and
prior knowledge will likely play a big role.

31 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e

Criticism is growing...

There are serious limitations to current methods, as
well as to our understanding of the success of machine
learning techniques such as deep neural networks.

Professor Robbert Dijkgraaf* compares machine
learning with 16 century alchemy, based on an
accumulation of tricks topped with a good shot of
credulity rather than on a systematic analysis.

He also quotes Ali Rahimi, a well-known researcher at
GOOg|E, who last year accused the SUbjeCt artificial ~ *: Former president of Dutch Royal Academy of Sciences,

intelligence Of magical thinking former director of Princeton Institute of Advanced Studies,
’ since a few months our new minister for Science and Educatior

32 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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Criticism is growing...

The New York Times [12] goes even further, claiming that today’s Al needs to do
something completely different:

* “We need to stop building computer systems that merely get better and better at
detecting statistical patterns in data sets — often using an approach as deep
learning — and start building computer systems that from the moment of their
assembly innately grasp three basic concepts: time, space and causality. Today’s
Al systems know surprisingly little about any of these concepts..... Few people
working in Al are even trying to build such background assumptions into their
machines.”

33 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e

Criticism is growing...

Wall Street Journal, August 4, 2021

34 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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Image recognition

Often you see the example of a deep
neural network trained to distinguish
photos of cats and dogs

The network is constructed by making a long sequence of bits in the image

To me, this sounds as a very bad way of doing things......this is absolutely not the
way humans idenfity whether it is a cat or dog

Much better would be to use some kind of “meshing”’ of the objects in the
photo. In this way, characteristics of the animals are captured much better. And
one avoids the influence of the environment (example dogs and wolves)

35 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e

Conclusion on Al and machine learning

There is a lot of work ahead for mathematicians in the areas of artificial intelligence,
machine learning and artificial neural networks (ANN)

Understanding why methods work or do not work
Understand the actions of the neurons (new ones?)
Understanding on what grounds Al systems take decisions
* Inimage recognition, use is made of the pixels; mathematics can provide much better methods
How to select a good set of training data
Using less data and prior knowledge
Reducing the size and density of neural networks
Predicting the topology of ANN

36 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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HYBRID METHODS: COMBINING CSE AND Al

Real and Artificial Intelligence for Science and Engineering — Wil Schilders

TU/

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

Using Al within CSE

In recent years, researchers in the
field of Computational Science and
Engineering realized that they could
benefit from Al methods.

Much more accurate models and
simulations, needed for example in
the creation of Digital Twins, require
much more detailed models and
coupled simulations.

Neural networks can be used for
accurate models of parameters

38 Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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Going back in time: semiconductor device simulation

39

e Every year new models are
constructed for mobility (and

recombination), based upon many
simulations and measurements,
then using physical insight and

curve-fitting
e Engineers and phycisists

provided their neural networks

e Why not use artificial neural
networks, based upon the

abundantly available measurement

and simulation data?

Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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Problem in this context

40

Mathematicians derived conditions that mobility models must satisfy

Peter Markowich proved that a monotonicity condition, with respect to

the quasi-Fermilevel gradients, must hold

Once the engineers at Philips presented a model that did not satisfy
this condition; simulations failed at some point. They then corrected

the model, satisfying the mathematical constraint

Obviously, models generated with neural networks should also satisfy

the constraint
How can we achieve this???
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Physics Informed Neural Networks (PINNs)

(George Karniadakis, Brown University, USA)

42 Wil Schilders - Mathematics: key enabling technology for scientific machine learning

I am not sure that
loss functions are the
way to go, it leads to

many problems

| believe much more

in hard-coded
physical properties

TU/e
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Combining physics based and data-based science
and engineering

Richard Feynman:
“People who wish to
analyse nature
without using
mathematics must
settle for a reduced

understanding."
43 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
USA is front runner
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Workshop Lorentz Center (Leiden), November 1-5, 2021

e “Computational mathematics and machine

learning”

e Keynote speakers:
e George Karniadakis
e  WeinankE
e Petros Koumoutsakos
e Carola Schonlieb
e Stéphanie Allasonniere
e Karen Willcox
e Stephan Wojtowytsch
e Paris Perdikaris
e Erik Bekkers
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Booklet presented during Lorentz workshop

https://platformwiskunde.nl/wp-

content/uploads/2021/11/Math KET SciML.pdf
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Combining physics based and data-based science
and engineering

e We aim at using so-called
mimetic methods, i.e.
methods that preserve
properties of the
underlying system

¢ How to develop mimetic
neural networks or mimetic
machine learning methods
is an open challenge

e Such methods may need
(much) less data, i.e. also
work in case of “little data”
rather than “big data”
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EXAMPLE 1: DYNAMIC NEURAL NETWORKS

EINDHOVEN

Real and Artificial Intelligence for Science and Engineering — Wil Schilders TU/ UNIVERSITY OF
TECHNOLOGY

Neural networks are often static, and use the following neuron

activation functions

10 sigmoid 10 RelLU
e o-(z) =1+% . R(z) =max(0, 2)

06 6

0a s

02 2

ook — . & %5 = s 5 1o
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For dynamic
situations (ODE,
PDE, DAE), often
recurrent neural

networks are

suggested

At Philips
Research,

we
developed
truly
dynamic
neural
networks
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Dynamic neural networks

* We were able to show that there is a 1-1 relation to state space
models of the form

* Using this relation, the topology of the network can be defined (using
the MOESP algorithm):

¢ Number of hidden layers related to multiplicity of eigenvalues of A
¢ Number of neurons related to number of complex eigenvalues

¢ Real eigenvalue = neuron with 1%t order ODE

e Complex eigenvalue(s) = neuron with 2" order ODE

¢ Methodology involves V\%I\éc%fdeQrSRMghaeggl§:-)<se$grmﬁngtteadl'ﬁgggl;t‘!g!n’ solving Sylvester equations

. 55
scientific machine learning

Dynamic neural network idea
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Potential of dynamic neural networks

e We were able to predict the topology of dynamic neural networks (#
hidden layers, # neurons per layer) by establishing a 1-1
correspondence with state space models

e This correspondence also opens up the way to methods for model
order reduction of neural networks, translating MOR concepts for state
space models

e We are currently also investigating “pruning of neural networks”, which
is related to model order reduction

* Neuron action in these dynamic neural networks can be viewed as so-
called high pass or low pass filters in electronics, implying that we are
using electronic concepts for the construction of the networks
mimicking true behaviour

63 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e

EXAMPLE 2: GEOMETRIC CONCEPTS AND Al
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Remco Duits (joint work with Bart Smets & Erik Bekkers & Jim Portegies)

% ’/“, : \ N : 4‘ ‘f-‘an.*

EINDHOVEN
Applied Differential Geometry — Dep. of Mathematics and Computer Science TU/e UNIVERSITY OF

TECHNOLOGY

Current image analysis methods fall short

Costly user-input to correct

-Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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Original Problem Solution

O ?!

O

PDE-based geometric learning

-Wil Schilders - Mathematics: key enabling technology for scientific machine learning

New Dimensions

-Wil Schilders - Mathematics: key enabling technology for scientific machine learning -
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Merge geometry and machine learning

Geometric Image Analysis

Limited performance
Limited scope
Hand-crafting

Low computational load
Few parameters
Little training-data

k111

Geometric Interpretation by PDEs

Deep Learning

High performance

Wide scope

Automatic

No geometric interpretation
High computational load
Too many parameters

Huge training-data

(R L L

-Wil Schilders - Mathematics: key enabling technology for scientific machine learning

Geometric PDE-Based neural networks

Reduce neural network by
employing symmetry

Learn geometry by PDEs to
improve classification

-Wil Schilders - Mathematics: key enabling technology for scientific machine learning
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Equivariant Deep Learning via PDEs

e An exciting area of research, improving the performance of
convolutional neural networks (CNN) with geometric concepts, leading
to the so-called G-CNN networks

e Remco Duits has obtained a very prestigious NWO Vici grant (2.5
MEuro) to carry out this research

e For more information: https://www.win.tue.nl/~rduits/

71 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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Conclusion

* These are exciting times for researchers in the mathematical sciences,
with the advent of high-performance computing, data science and
artificial intelligence

e Combining “traditional’”” methods in Computational Science and
Engineering with methods from Artificial Intelligence, Machine Learning
and Neural Networks is the way forward to increase accuracy of
models, as required by e.g. Digital Twinning

e Using prior knowledge will be key to improve the performance of
neural networks

* Increased accuracy, less data, more robustness

III

73 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e

Conclusion

e Expertise from numerical linear algebra and model order reduction can
be used to “prune’” neural networks: reducing them in size, and
improving the sparsity

e Mathematics may aid in predicting the topology of neural networks,
avoiding the currently employed guesswork

e The mathematical sciences are indispensable in the new
multidisciplinary field of scientific machine learning, combining model-
and data-based methods

Real intelligence is needed to

(you may quote
me on this)

make artificial intelligence work

74 Wil Schilders - Mathematics: key enabling technology for scientific machine learning TU/e
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Expected number of zeros for Gaussian analytic function
with finitely dependent Gaussian coefficients

Kohei Noda?,

Tomoyuki Shirai?

IGraduate School of Mathematics and Joint Graduate School of Mathematics for Innovation, Kyushu University. e-mail:noda.kohei.721@s.kyushu-u.ac.jp
?Institute of Mathematics for Industry, Kyushu University.

Introduction

® How do the random coefficients of a power series affects its zeros?

® The history of random power series could be traced back to the studies of
Paley, Zygmund and Wiener. It is still a hot topic in probability theory.

® Peres and Virag [3] studied the zeros of random power series

Z "

n=(0
where {(, },, is independent, identically distributed (i.i.d.) complex Gaussian
random variables.
 In our work [1], we replace {(,}, with finitely dependent stationary Gaussian
coefficients {&;}1, and then, we show that the degeneracy of zeros of spectral
density of {&}, sensitively affects zeros of f(z) := Y% & 2* from the point
of view of the expected number of zeros of f(z).

fev(z

Gaussian analytic function (GAF): Examples and properties

e Gaussian analytic function is a holomorphic function-valued Gaussian process
on a domain contained in C.

e One of the key quantities for zeros process of GAFs is the number of zeros:
Nir)=#{z€C: f(z ).

. Peres and Virag showed that zeros process of ‘fpv(~) is the determinantal
point process. In particular, ENy, (1) = ‘7;,.

There are well-known three invariant Gaussian analytic functions:
o Entire GAF: For L > 0, fE"(2) = 30 [\ /51¢.2"

T
nl

Z:tn
Zn 0

o Hyperbolic GAF: For L > 0, f1*°(z) =

(6"

o Spherical GAF: For L € N, f5™(z2)

Figura 1 - Entire GAF.
Main results [1]
Consider GAF f(z

Figura 2 — Hyperbolic GAF.  Figura 3 — Spherical GAF.

=2 nsz

GAF with finitely dependent stationary Gaussian process

coefficients and our methods

o Let {&,}, be mean 0, variance 1, and complex finitely dependent stationary
Gaussian processes with the covariance function (k) = [E,,E,, K-
® Our model is f(z ZA &t
Our key quantlty is () (rz) =Y ez
asymptotic behavior of zeros of f(z
e 2-dependent case: f, (2 ZL “5L~ with 2-dependent Gaussian process
{&}n with the covariance functlon
Yank) = S0 + adp41 + 1)5; 1o, O(m2) =1+4ar(z+ 27 + b2 (22 + 272).
® n-dependent case: f,(z) = Y7 “&~ with n-dependent Gaussian process
{&:}n with covariance functlon
on\ !
. n “

2n ) (2n\ 1 .
k) = {(,;n(,,) (K =012...m),
o Key tool is the Edelman-Kostlan formula in the case of dependent coefficients:

0 else,
r G’(r:
s ()( ;. ;'} ’I

(k)rH2 whose zeros determine the

/r(:+l)l/r.

ENy(r) =
5(r) 27'rl
o Our strategies are:
1. Residue calculus and asymptotic behavior of zeros of O(r,z
2. Newton polygon method (n-dependent model).

)asr — 1.

Figura 5 — Superposition of
zeros of Peres-Virag GAF
(Red) and fy(z) (Blue)

Figura 4 — The left figure is the region of positive
definiteness of 7, ;(k), and the right two figures are the
behaviors of zeros z(r) of O(r,z) = 0 as 7 — 1. Plots for
a=1/4b=—1/4 (middle) and a = 2/3,b = 1/6 (right).
The multiplicity of zeros affects on zeros of f,(z).

® The spectral den5|ty of finitely dependent stationary Gaussian process = = {&}i, O(1,2) = 1 Y( )2" of = has zeros 6 of multiplicity 2k; for j = 1
o Put a = (2k — 1)/(2k) with k = max, <<, kj; a = 0 otherwise.
Then, 3C= > 0 s.t. B
EN¢(r) = ﬁ*(';(l —17) ”vu((l —17) ”). asr — 1.

In general, EN /(D) < IEN (D) for GAF f with stationary Gaussian process coefficients and a domain of ID. Hence, a negative term of slower growth appears.

& 2-dependent case: On each region (1), (I1), (1), and (IV), as r — 1,

() EN() = o). (NENLG) = -3
() ENp () = —— s O, (V) ENy,, () = —— = C(a.b) + O(1 — %), where C(a,b) > 0
& n-dependent case:
) 2 _— 1 {(2(71 - 1)>}ﬁ
ENs(r)=——=—=D,(1—=7°)" 5% +0((1 =7°)"%), asr—1, where D, = ——— .
1—r? 2nsing; n—1
Conclusions References

1. If we consider the fractional Gaussian noise {¢/},, with

Bl ] =3k + 1T+ 4k — 1] — [k [2], then O(r,z) becomes the infinite
series. Hence, we need to develop a new tool to let information of zeros of infinite
series with covariance function coefficients.

2. We would like to establish a variance formula of N(r) for GAF with dependent
Gaussian coefficients and develop an algorithm as we have done in the case of the
expected number of zeros.

1] Kohei, N. and Tomoyuki, S.: Expected number of zeros of random power series with finitely dependent Gaussian
coefficients, to appear in Journal of Theoretical Probability.

[2] Mukeru, S., Mulaudzi, M. P., Nzabanita, J., and Mpanda, M. M.: Zeros of Gaussian power series with dependent
random variables. lllinois J. Math. 64, no. 4 (2020), 569-582

3] Peres, Y. and Virag, B.: Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta
Math. 194, no. 1 (2005), 1-35.
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Study on recurrences of random walks on growing k-ary trees

Shuma Kumamoto?, Shuji Kijima?
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Background

Kijima et al. investigated the number of vertices unvisited by a random walk on a
growing network, which is interesting in network science/engineering [2].

Random walk is also important in machine learning [4].

Dembo et al. investigated the condition that the origin becomes recurrent[transmn

Theorem
3% ig:‘,;’;ﬁ = +oo then v, is recurrent.
(ii) Otherwise (if ¥35 %ﬁ?xz = constant then) v,, is transient.

by a random walk on a growing region in lattice [1].

8-

There is a lot of variants of random walks on growing regions, nevertheless, a little is
known about it.

Recurrent/Transient

Avertex v is called
recurrent/transient if the following
equation holds:

It is known that the random walk on infinite
k-ary tree (fig 1) is transient at the root [5].
This work investigates conditions that a
random walk on a growing k-ary tree (fig 2)
becomes recurrent/transient.

Y=o Poy(2n) = +oo/constant.

Preliminary
Growing k-ary tree (see figure 2
TREE Vs, Es) :Tree of depth 2(h+s)
TREE® := TREE,, TREE,, ..., TREE,
f(s) = %duration of TREES — TREES*!
TREE:= lim TREE; (Figure 1)

s

Probabilities
Qxy(21; f; TREES™):probability of going 2n steps from x to y on TREES™
Pxy(2n; TREE;):probability of going 2n steps from x to y on TREEs

depth oo
V—A—V
@)
(@)
Yo e
(@)
length 2f (s
) gth 2 (s)
Figure 1:infinite k (k=2)-ary Tree (TREE) ¢
1 1 1 [ 5
. e P
! ! | | 1
0 2f(0) 2f(0) +2f(1) 2%iof(D i)
depth‘ZH depth‘ZH +2 depth 2(H + s)
[ \ r 1
(o} 8 5}
vp Q@ vy vy “Q
.9 .Q o
(@} @) 5)

Figure 2:Growing k(k=2)-ary Tree (TREES)

Sketch of proof (i) (proof (ii) is similar)

depth Z(H +s) depth 2(H+s)+2
r \ \

@ (@]

Vp O eee O 3
O .0
O Q@

depth 2(H +s)

(—}\—\

depth2(H +s) +2

/—}\—\

1 k 1 k
k+1 k+1 k+1 k+1
depth 2(H + 5)
( |
PATH, '1_ T
1 ko range of 2n < 2 377, f(i)
1 1 | e | L 3 !
; t U I !
2F(1) 2f(1) +2f(2) 255, f() 253 £(D)

0
s
PATH® gepth 2H depth 2(H + 1) depth 2(H + 5)

— — —_— — —
1k 1k ok
k+1 k+1 k+1 k+1 k+1 k+1

4v,v,(21; f; PATH) 2 p,, , (2n; PATH;)

> 350 @y, v, (20 f; PATH) 2 52, ¥4 p,,  , (20; PATH,)

Future work
Random Walk on TREE®

Walk on Growing general Network

depth 2H depth 2H + 2 depth 2(H +5)
5] @ )
. “@ Ty, - @ e, -0 Vp
I8_.0 3\8__0 3\8___0 Qg
5) 5] )

o 3o 3

“ego | Mwe ol

00 - @0
o0 - @@

@
—sY

Apply to various fields such a machine learning.
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Lyapunov Regularity for Planar Piecewise Expanding Maps
Kodai Yamamoto

Joint Graduate School of Mathematics for Innovation, Kyushu University,
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Introduction

Dynamical systems is a field of mathematics that
describes time evolution according to

certain rules.

Here we consider iterations of maps with some
smoothness as dynamical systems.

Lyapunov exponents are one of important
characteristics in analyzing dynamical systems.

Let D C R? be an open rectangle and

f D — D be a differentiable map.

We write D f"(x) : R* — R? for the derivative
of n iterate of f with respect to x and T,.D the
tangent space.

A point z € D is said to be Lyapunov
regular if there exists

Az, v) = limy o0 £ log || D f"(z)v]| for some
non-zero vector v € T, D.

A(z,v) is called the Lyapunov exponent.

The Lyapunov exponent is an important
characteristics of a smooth dynamical systems
that measure how much the vector v is expanded

in average.

If the Lyapunov exponent is positive, that is one
indicator of chaos.

Figure: Chaos

A map f: D — D is said to be a piecewise C"
expanding map if there exists a constant A > 1 and
regions D; C D, 1 < i < k with the following conditions:
(i) Each region D;, 1 < i < k, has piecewise C"
boundary and Lﬂle D;=D.

(ii) The restriction f|p, is extended to a neighborhood of
D; as a C" diffeomorphism f; : N'(D;) — R? such that

| Dfi(z)v|| > X||v|| for any z € N'(D;) and tangent
vector v € TN (D).

Introduction

We are interested in whether most of the points
with respect to Lebesgue measure are Lyapunov

regular or not.

In the case of an expanging map, almost every
point is Lyapunov regular from Oseledets’s
theorem.

Figure: Piecewise expanding map

Question: What happens in the case of a
piecewise expanding map?

Main Result

(i) Let F : D — D be a 2-dimensional piecewise
real analytic expanding map. Then almost every
point is Lyapunov regular.

(ii) For any integer r with 1 < r < oo, there
exists a one-parameter family F,(0 < o < 1) of
2-dimensional piecewise C" expanding maps such
that almost every point is not Lyapunov regular.

This result shows that the piecewise expanding
map may cause different behavior.

Also, in (i), the Lyapunov regular set has positive

Lebesgue measure.
In (ii), the Lebesgue measure is zero.

More details can be seen at Y. Nakano, T. Soma
and K. Yamamoto, Observable Lyapunov irregular
sets for planar piecewise expanding maps, under
review. https://arxiv.org/abs/2206.09508
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1 Rashomon Effect

Rashomon is a movie with several different explanations for the crime.
[2] used the Rashomon to characterize this problem because the same
phenomenon occurs in machine learning. Strictly speaking, for the
same data, there exists many different accurate machine learning mod-
els. This phenomenon is called Rashomon effect.

Figure 1: Rashomon Effect

2 Introduction

The following is the flow that engineers consider when modeling (see

Figure 2). From 4, the practitioner does not try for searching simpler

models. Therefore, we want to answer the following question: can we

show an accurate-simpler model exists without the running machine

learning algorithms?

1.Occam’s Razor: We should not assume too much when explaining
things.

2. Accurate-Simplest Model: Accurate model with the smallest num-
ber of parameters

3. How difficult search accurate-simpler model?

4.NP-hard: In general, the optimization problem for finding sparse
simpler accurate model is NP-hard.

5. Accurate-Complex Model: Accurate model with a lot of parame-
ters.

Figure 2: Practitioners don’t try searching simpler models

3 Rashomon Ratio

If the Rashomon ratio is large means that there are many simple-
accurate models in the Rashomon set.

167

Rashomon set:

Ry(F0,0) = {f € Fo: L(f) £ L(f) + 0}
where fea.rgminfE]:L(Af) :
Rashomon parameter.

Rashomon ratio: Assume that p*(F,) < oo (Fy C F).

The empirical risk minimizer, 0 :

, p(df)
ReilF0)= [ 1,
ratio\/ 0 Jier, /th‘ﬁ\ﬁ.mp(]:[])
where p* is prior distribution, p(df) = /’:—:%“‘, p(F) = —g‘(;‘]‘

Figure 3: Rashomon Ratio

4 Existence of accurate-simpler model

Setting

« Fi is lower-complexity space than > , and approximating set for the
Fo. (i.e. Fi C Fo).

*Complexity of F; and F; is decided by covering number or VC di-
mension.
In [1], we answer the following questions.

1.1s there a guarantee that a model using the simpler function class F;
will have test performance similar to the best model in F>?

Answer:

1f5) — o[ IFRIC ) < i) v e

where f] € (],"g”’l/ltTl//‘Ef‘L(?f])} f5 € argming,er,L(f2).
2. When the Rashomon set is large?
Answer:
For simple data such as binary classification, an appropriate hypoth-
esis space J can be set up. In this case, we can check empirically.

logl/e
2n

5 Future Research

For complex data such as image data, the size of the Rashomon set

cannot be generally understood because the configuration of the ap-

propriate hypothesis space 7 is not known.

1. Given complex data and F, (complex neural network), can we con-
struct F; (simple neural network)?

2.Can we completely enumerate the Rashomon set for F; (simple neu-
ral network)?

References
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Multiple Zeta Values and Euler’s reflection
formula for the Gamma function
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Background

é Gamma Function h é Multiple Zeta Value
_ . _ @
M+ =@ (22,2 = g
I‘(z)F(l —z) = | (A +x)e™) =1+ 32 ,(—DkS(k)xk
4 A

sin z

o ®© This equation

D D@2 = (14 ) (DR | x [ 1+ ) st is correct !!
=2

n=0 n k=2

Problem

We want to show the equality

Z(—1)"z(2, 2xt =1+ Z(—l)ksac)xk 1+ ZS(l)xl
S &
n=0 n k=2 =2
purely algebraically

S(k) = Xpyetby=k (17 H,T:l U 1) {(kq, k3, ..., k) * : Harmonic Product
r>1,vk;=2

Preparation Strategy
© Multiple Zeta Value © In the case of depth1
‘[ Definition | . ) Coefficients of {(k)
Let, ky, ..., k,. are positive integers and k,. > 1. LHS (-3
The multiple zeta value (M2V) {(ky, .., k,) is defined by RHS 1x (1)1 52200 + 1 CDM-D 20

k=2

_ 1 Y S e =
C(ky, . Ky) = oy } . = m)
O<m i, T Thus, We will show this equation
k-2
Depth: r  Weight: k; + -+ k. wm=1D(k—m-1Dk! k-1_(-1 k=2
! " Z<(_1) m! (k—m)! k! >_(1+(_1)k) k! 7{0 k>3
fres

1 11111
@y=

———3 = gt omtoat s torg o 2
m?m,? 1223 T 1233 T 27233 T 1243 T 27243 m-1—m-1) k-1
o< <my ‘ Z (- 1)"'( )710 1+ (1D 7~ fork=3

m=2
® Harmonic Product © General case

[What is the harmonic product | A , Coefficients of {(ky..... k,)

The harmonic product is a rule for expressing the product of

' For example, we consider the coefficient of {(k;, ..., k) when

multiple zeta values as a sum using a series representation.

calculating {(my, ..., m, k) * {(ky —my, ..., k; — my, kiyq, ..., Kj_1).
k=2 k=2

. — 1) (my = 1)k — 1
@@ m, (=1 Z Z {(—ymarmetk g (— gkt »krlfmr“fmx]%
- mi=2 m=2
-y 5 Z - s G = D by Db~ 1)y = D bk
0<my 1 2 & (ky —my)! - ( M)l k! kig! kgt k!
1 4
= + + — ~ k,,—
<0<r;:mz o<ibrimy  o<ibgimg )Wh"Mz” :; <y | = CDH{DR (DRt R x H1+( D} x l_[
={p+q+{p.q9 +i@qp ™y *. Doing this in all cases completes the proof
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