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Preface 
 
Joint Research Workshop of Institute of Mathematics for Industry (IMI), 
Kyushu University  

“Multiscale Mathematics: Hierarchy of Collective Phenomena and 
Interrelations between Hierarchical Structures” 

was held at Ito Campus, Kyushu University, Fukuoka, from 9th through 
11th, December 2011. This activity was organized also as one of 
Collaborative Workshops of Mathematics and Mathematical Sciences with 
Various Sciences and Industrial Technologies supported by the Ministry of 
Education, Culture, Sports, Science & Technology in Japan (MEXT). This 
volume collects the papers of all the talks presented at the workshop. 
  
The workshop was built around an interdisciplinary subject "multiscale 
phenomenon".  The difficulty of various problems in the modern world, such 
as climate change, global economy crisis, syndrome of sever accidents in 
high-tech systems, etc., is rooted in their fundamental complexity caused by 
intricate combinations, over various scales, of multiple elements. Many 
attempts to explore "complex systems," creating a variety of interdisciplinary 
collaborations encompassing natural sciences, various technologies, 
economics and social sciences, still fall short to present a satisfactory 
discourse on "complexity". 
 
At the core of complexity, we find commonly a collective phenomenon, on 
various scale hierarchy, of involved elements, which exhibits complicated 
and diverse behavior. A macro-scale system necessarily correlates with 
underlying micro- or meso- (=intermediate) scale structures. By nonlinear 
couplings among different hierarchies, a single hierarchy does not allow a 
closed mathematical modeling, without having to include other hierarchies. 
If we assume the complicated movement in a micro-scale world to be random, 
whereby we build a mathematical modeling merely by statistical averages 
and dispersions, we neglect enriched diversity of the collective phenomena 
and are led to an inappropriate evaluation which hides the hierarchical 
correlation between sub-systems of different scales. In reality, many of 
high-performance numerical simulations rely on uncertain parameters and 
ad-hoc models, and have left aside the most important features of collective 



phenomena, by simply calling them "an anomalous something". Among the 
topics left unsolved over many years are "turbulent viscosity", "anomalous 
resistance" and properties of various materials associated with fracture and 
sudden symptoms. It is our challenge to understand the multi-scale 
structure of dynamics of a macroscopic system constituted by a number of 
micro-scale elements, and then to build a mathematical model which is 
capable of prediction as well as evaluation, in order to reduce uncertainty 
and to raise the accuracy of description, for instance, of the internal state of 
the earth consisting of heterogeneous substances, of meteorology influenced 
by coupling of atmosphere with ocean and with space as well, and for design 
and control large-scale artificial matters with some complexities. To develop 
such an innovative model of complex systems, we will need a solid 
mathematical basis that is different from conventional mathematics directed 
primarily to simplicity.  
 
The aim of this collaboration is to develop new mathematical methods for 
analyzing the nonlinearity of a collective system with a hierarchical 
structure from micro- to macro scales, and consider the possibility of 
controlling the phenomena in specific ways. As an ultimate goal, 
establishment of multi-scale mathematics is in our view.  
 
The presentations were invited from the fields of plasma science, solid earth 
science, meteorology, fluids, simulation science, material science, economy 
(monetary models and market system). This workshop was successful, 
collecting 40 participants. They sought issues jointly tackled by 
mathematicians and mathematical scientists, and also the way for 
collaboration between simulation science and mathematics. We are grateful 
to all the speakers and the participants who made fruitful discussions. The 
support by the staff of the MEXT and by Ms. Junko Yanagihara of the IMI is 
also gratefully acknowledged. 
 

Organizers 

Yasuhide Fukumoto (Institute of Mathematics for Industry, Kyushu University) 

Zensho Yoshida (Graduate School of Frontier Sciences, University of Tokyo) 
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Mathematical Modeling for Soil Contamination: Creating an 
Interdisciplinary Platform for Taking Aim at Mathematical Innovation  

Junichi Nakagawa  

 Advanced Technology Research Laboratories, Nippon Steel Corporation, 20-1 
Shintomi, Futtsu-City, Chiba, 293-8511, JAPAN 

E-mail address: nakagawa.junichi@nsc.co.jp 

Abstract  
Nippon Steel knows that mathematics is a very powerful language that can 

describe the essence of problems and has been creating an interdisciplinary 
platform for taking aim at technological innovation based on mathematics. For this 
platform, mathematicians and engineers have come together, contemplating social 
problems and taking voluntary actions. 

The scientific topic is the issue of anomalous diffusion in soil. The approach 
is highly diverse, with a boundary that encompasses mathematics, engineering, and 
industry. The ultimate objective is to determine the microstructure of soil through 
averaged spatial data analysis, such as contaminant concentration, and to predict 
the progress of soil contamination.  

It is often the case with mass diffusion in a porous medium such as soil that 
the numerical simulations using traditional advection diffusion equations fail to 
predict the observation results of a real phenomenon observed in the field or in 
laboratory tests. The numerical experiments using CTRW says that the mean 
squared displacement of particles grows in proportion to the fractional power of 
time.  

The CTRW is linked with the fractional order PDE in terms of time. This 
means that anomalous diffusion depends on the degree of history to be retained 
from the initial time to the current time. The smaller alpha is, the more history will 
be retained. We can combine the physical meaning of alpha (that stems from 
possible obstacles that delay the particle’s jump) with the mathematical reasoning.  

Thus, how do we combine the microstructure with the mechanism for 
determining the value? What are the geometric invariants? How do we combine 
the geometric invariants with the PDE in a mathematical framework? These are 
our next targets. The current progress of our discussion will be presented using the 
following methods. 

. 
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Introduction  
The steel making process requires control of a diverse range of phenomena 

involving mathematical applications for problem solving and modeling. 
“Mathematics for industry” is aimed at extracting universal fundamental 

principles behind various natural phenomena and engineering problems, and 
crystallizing them into mathematical structures, and is essential for applying 
mathematics for industrial technology. 

A methodology based on the mathematical thinking enables us to construct 
mathematical models that describe the essence of a phenomenon selectively. Such 
mathematical models serve as important basis for understanding and controlling a 
phenomenon. When a mathematical model describes the essence of a phenomenon 
as simply and comprehensibly as possible (a minimum necessary model), it 
becomes easier for engineers and researchers from a variety of technical fields to 
study, and it becomes easier to conceive ideas that can lead to innovations. 

Nippon Steel has globally collaborated with mathematicians for decades and 
resolved industrial problems by enhancing practical insights with mathematical 
reasoning. Engineers in Nippon Steel have learnt how to understand the 
phenomena in the steel-making process only by the rules of pure logic, not by a 
posteriori ad hoc ways. On the other hand, mathematicians in universities have 
learnt how to link mathematics with the physical reality of the phenomena.    

As a result, the collaborative research is playing a major role in mathematical 
innovation to broaden the diverse range of applications in mathematics and 
cultivation in both industry and the field of mathematics. 

 
Collaboration Style 

Figure 1 shows our style of collaboration with engineers and mathematicians in 
the case of Nippon Steel and the University of Tokyo. We formed international 
task force teams made up of faculty members, post-doctoral fellows and doctor 
course students. Team members are selected flexibly to create a task force 
according to the characteristics of the task. Our collaboration is composed of six 
indispensable phases.  

The first is “intuition and expertise” from industry. Intuition and expertise can 
be carried out exclusively by insight based on observation of phenomena in the 
manufacturing process. The insight should be enhanced by mathematical reasoning. 
The second is “communication.” Communication is bilateral translations: the 
translation of phenomena to mathematics and the translation of mathematics to 
phenomena. Engineers in industry need to understand real problems on site, 
express them in the language of physics, and offer possible model equations to 
mathematicians. Mathematicians explore the underlying mathematics to the model 



3 
 

equations. This forum for communication through the interpretation of phenomena 
is extremely important in order that engineers and mathematicians may reach a 
common understanding of the nature of the problem and the mathematical 
components. The third is “logical path.” This corresponds to the extraction of 
mathematical principles from phenomena. Better communication can create a more   
logical path. The fourth is “analysis of data.” This means reasonable and 
quantitative interpretation of observations carried out on site. This enables us to 
extract the essence of phenomena. The fifth is “manufacturing theory.” This means 
the integration of logical paths from viewpoints of operation and economic 
rationality on site. The last is “activation to mathematics.” Motivation for 
mathematicians has launched new mathematical research fields. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Collaboration with engineers and mathematicians in the case of Nippon Steel 
and the University of Tokyo     
 

We, engineers in industry, have been eager to free ourselves from restrictions 
in our conventional thinking by making full use of mathematical reasoning that is 
free from specific industrial fields, through wider borderless collaborations.  We 
have examined various conjectures by mathematicians and gained better practical 
solutions and further utilized analysis results. By repeating such phases of 
collaboration many times, we are able to pursue economic rationality, and 
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mathematicians are able to find new results and describe them as theorem for 
future wider uses.  It is important that mathematicians work not only for 
mathematical interests but also for the economic rationality through teamwork with 
engineers from a long-term point of view. 
     The cultivating interface between mathematics and industry has come into being 
as a forum for communication with the mathematicians mentioned above. 
Communication between the team members who are engineers in industry, and 
faculty members, post-doctoral fellows and doctor course students in university 
mathematical departments, has enhanced their communication skills day by day. 
As a result, several new themes have been launched. 
 
Example of interdisciplinary collaboration 

Figure 2 shows a challenge faced by Dr. Yuko Hatano. She is an associate 
professor affiliated with the University of Tsukuba whose major is Risk 
Engineering, and she had already collaborated with Nippon Steel on another 
subject. 

 The objective is to predict the progress of soil contamination. It is often the 
case with mass diffusion in a porous medium such as soil that numerical 
simulations using traditional advection diffusion equations fail to predict 
observation results of a real phenomenon observed in the field or laboratory tests. 
For instance, there are cases where actually the concentration is beyond the 
environmental standard as shown in Fig.3, even when a simulation indicates that 
the concentration of the pollutant is below the relevant environmental standard and 
the danger of soil pollution is unlikely. Diffusion not following the prediction 
based on such a simulation is called anomalous diffusion, in contrast to the 
traditional diffusion equations, and is often observed in different manners with 
various substances in the soil or atmosphere in the real environment. 

The above is the kind of problem that we encounter when numerically 
simulating a soil system in which voids are distributed unevenly between particles, 
using a grid for calculation larger than the voids. This type of problem will not 
occur when the grid spacing is smaller than the voids between soil particles, for 
instance, about 0.1 mm. However, since several kilometers or more is the normal 
scale for environmental studies, in view of computer load the use of such a fine 
grid for a three-dimensional case is extremely difficult, and is practically 
unsuitable for on-line field analysis.  Moreover, whereas a model test covers a time 
scale of as short as minutes to days, the prediction of a real environmental problem 
must deal with a time scale as large as a few years to tens of years. 

 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Prediction of soil contamination in large scale and long term 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 Fig.3 Comparison between model prediction and results of field tests 
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 Although we have to treat widely varied sizes of data obtained through   
physical and numerical tests based upon different scales of space and time, the 
scaling law allows us to combine those data together in accordance with principles 
of phenomena. 

Large-scale numerical simulation is the principal method for the dynamic 
analysis of substances in any environmental medium: air, water or soil. Many 
detailed chemical and biochemical reactions are incorporated in the program codes 
for environmental simulation, and as a result, simulation programs seem to be 
becoming increasingly complicated these days. While a great number of numerical 
simulations are conducted on environmental issues, it is often difficult to tell 
whether each of such simulation results is valid, which fact is most serious for the 
problems. 

Therefore the present study aims at dynamic prediction of environmental 
phenomena not totally depending on conventional numerical simulations but also 
employing mathematical methods typically such as scaling law. Toward this end, it 
is desirable to create a new field of environmental study involving mathematicians. 
 

Launch of new research field in mathematics 
A stochastic method employing random walk in consideration of the 

distribution of the waiting time of particles is used for describing mass transfer in 
soil. The stochastic method is called as CTRW that stands for Continuous Random 
Walk). The CTRW method has been effective when applied to the small space 
dealt with in laboratory tests, but the limitation on the number of particles is a 
bottleneck due to the limit of computer capacity, and thus the method cannot 
respond effectively to more pragmatic requirements of calculation in a larger 
volume of space. 

On the other hand, some fields of physics and engineering employ numerical 
simulation based on a diffusion equation that includes a fractional-order derivative 
in time. While the concept of a fractional-order derivative can be traced back to as 
long ago as Leibniz (see [2]), a theory of partial differential equation that is 
applicable to such numerical simulation has not yet been established, and the 
application of such a method has so far been limited to very special cases where 
the space has only one dimension. It is reported in the literature [3] that, according 
to the scaling law to the effect that the root mean square of the displacement of 
particles is in proportion to time raised to the kth power (tk), the stochastic method 
using the random walk mentioned earlier is closely related to the Fokker-Planck 
equation, which leads to a fractional-order derivative: 

(∂/∂t)k u(x, t) = ∇･(κ∇u(x, t)) – μ･∇u(x, t), 



 

7 
 

where u(x, t), κ and μ are the probability density function of particles, their 
diffusion coefficient, and mobility acting on them, respectively. It is expected that 
a scaling law combines stochastic methods such as the random-walk model for 
anomalous diffusion with the theory of partial differential equation including a 
fractional-order derivative to form a new field of research for mathematical 
concept and methodology.  In [1], we discuss a related topic with such a theory. 

Besides the above, Hatano et al. found that a formula empirically derived from 
two short-term atmospheric pollution cases (emission of inert gas Kr-85 from a 
nuclear plant in U.S.A. and the data of aerosol collected by an international team 
on global warming in the Arctic Ocean region) can describe the behavior of the 
pollutant of a long-term atmospheric pollution case (the accident of the Chernobyl 
Nuclear Power Plant) reasonably well [4], [5]. The formula is also written as a  
scaling law, but it is not yet been fully clarified why the formula has such a form.    

Fig. 4 shows that CTRW is linked with the fractional order PDE in terms of 
time [6]. This means that anomalous diffusion depends on the degree of history to 
be retained from the initial time to the current time. The smaller α is, the more 
history will be retained. We can combine the physical meaning of alpha (that stems 
from possible obstacles that delay the particle’s jump) with the mathematical 
reasoning.  

Thus, how do we combine the microstructure with the mechanism for 
determining the value? What are the geometric invariants? How do we combine 
the geometric invariants with the PDE in a mathematical framework? These are 
our next targets. The current progress of our discussion will be presented using the 
following methods. 
 
1. Analytical description for mathematically explaining the facts 

discovered by the experiments (a macro-scale viewpoint) 
2. Characterization of the geometric features of the specimens of a 3D 

CT-image (a micro-scale viewpoint) 
3. Deductive reasoning to derive a fractional differential equation using 

the homogenization method (a multi-scale viewpoint) 
 
Thus, through the collaboration of mathematicians and engineers from both 

academic and industrial fields, the present study establishes the fundamental 
logical structure that lies behind the scaling law observed in the behavior of 
pollutants in different environmental media such as soil and atmosphere, and thus 
clarifying the universal characteristics of scaling law. 
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Fig. 4 Analytical descriptions for explaining mathematically the facts discovered 
by experiments 
 

Future Plan 
In industrial practice, a reduced-scale model is constructed to analyze a 

phenomenon that takes place in real-size equipment, significant physical values for 
the phenomenon in question are described by dimensionless numbers, and the 
dimensionless numbers obtained from the model analysis are made to match with 
those of real-size equipment. This matching operation secures the similarity of the 
dynamic physical values between the model and real-size equipment. This 
similarity refers also to the scaling law. It has been found from the above 
viewpoint of scaling law that, in addition to the physical values such as time and 
length which have been conventionally used for scaling up, the fractional powers 
in the differentiation of time and space are essential. This means that mathematics 
is expected to present a new “angle of view” for the scaling law that deals with 
inhomogeneous media. Practically, environmental analysis deals with a scale of 
several kilometers or more in size. In this relation, establishment of scaling laws 
including an a priori choice of an exponent will make it possible to appropriately 
use results obtained through reduced-scale tests and clarify a real phenomenon 
across a large space. 

By establishing scaling laws and developing mathematical methods based 
thereon, we can significantly reduce costs for producing high-quality products as 
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well as energy consumption and CO2 emission by improving production efficiency 
in various problems of manufacturing industries such as monitoring of sintering 
processes, reactions in a blast furnace, and other metallurgical reactions in steel-
making processes as shown in Fig.5.  

Scaling laws and mathematical methods are applicable also to a wide variety of 
fields such as chemical engineering, mechanical engineering, geotechnical 
engineering, biotechnology, etc., and therefore, the establishment of such scaling 
laws is expected to be useful in remarkably accelerating the development of 
science and technology through the solution of important industrial problems. 

Furthermore, the concept of scaling law combining micro- and macroscopic 
aspects is closely related to that of multi-scale modeling, the application of which 
is rapidly expanding in material science, chemistry, and other widely varied fields. 
The present study is expected to lead to proposals of new mathematical concepts 
and methodologies for multi-scale modeling, bringing about new problem 
recognition and methodology to mathematics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 “Mathematics for indutry” will be the key for combining mathematics with 

industrial technology. Mathematical science can be understood as mathematics for 
phenomena; it is aimed at extracting fundamental principles behind different 

Fig.5 Example of inhomogeneous media in iron making and steel making process 

焼結鉱

コークス
（カーボン源）

Hot 
Air Molten iron

Molten iron contains
4% carbon 

Oxygen Jet

Iron-making & Steel-making
Blast Furnace

Continuous Casting

Basic Oxygen Furnace

Water cooling 
mold

Ladle

Raw materials

Coke

FeO+CO

→Fe+CO2

Ｆe2O3＋ＣＯ

→2ＦｅＯ＋ＣＯ2

Sintered ore

from brochure of Nippon Steel

Flow of 
molten steel

Slab 250mm
2000mm

C+O2→２CO

Size and quality    
of raw materials

Quality        
of material



 

10 
 

natural phenomena and engineering problems, and crystallizing them into 
mathematical structures. 

Beyond the simple numerical operation of physical model equations, a 
methodology based on the principles and rules of mathematics makes it possible to 
construct mathematical models that describe the essence of a phenomenon 
selectively. Such mathematical models serve as important basis for understanding 
and controlling a phenomenon. When a mathematical model describes the essence 
of a phenomenon as simply and comprehensibly as possible (a minimum necessary 
model), it becomes easier for engineers and researchers from a variety of technical 
fields to study, and it becomes easier to conceive ideas that can lead to innovations. 

In order to construct such a minimum necessary mathematical model that 
describes the essence of a phenomenon efficiently, a framework is required for the 
joint work of mathematicians and engineers from academic and industrial fields 
where they can thoroughly discuss subject phenomena and define suitable targets 
and milestones for different study stages. In addition, it is indispensable to 
mutually confirm work progress. At present, however, applied mathematics in 
Japan, compared with other developed countries, seems to lack such teamwork 
experience that helps to combine a phenomenon with mathematical methodology.  
In order to solve a problem as promptly as required in industry, it is too late to 
begin studying methodology after posing of the problem.  It is necessary to 
continue to improve the skill to combine a phenomenon with mathematical 
methodology for its prompt application, and in this respect, each individual must 
improve their qualification to be “the right person” who can meet the above 
conditions and the role. 

It is desirable that both mathematics and industry foster people capable of 
working jointly with each other from the viewpoint of “mathematics for 
phenomena” through academic-industrial collaboration. Towards this end, it is 
necessary to create a new framework independent of the structure of present 
industry and academic organizations. We must reinterpret and reconstruct the 
fundamental concept of manufacturing based on field practice, which constitutes 
the competitive edge in developed countries, from the standpoint of mathematical 
methodology while learning about interdisciplinary collaboration from abroad. By 
so doing, we will be able to command the most advanced industrial technology of 
the world. 
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Existence of phase transition of percolation
on fractal lattices

Masato SHINODA∗

Faculty of science, Nara Women’s University

Abstract

We study several bond percolation models on Sierpinski carpet lattices, which is
a class of graphs corresponding to generalized Sierpinski carpets. In this paper we
give some sufficient conditions for the existence of phase transition of percolation
on the lattices.

1 Introduction

Percolation is studied as a very important subject in statistical mechanics be-
cause this is one of the simplest models which contains phase transitions of dis-
ordered media. Percolation has close relations to disordered electrical networks,
ferromagnetism, epidemic models and so on. Percolation models were proposed by
Broadbent-Hammersley [BH57], and have been well studied in the last forty years.
See Grimmett [G99] to view the whole of this field.

We consider percolation on fractal lattices. Fractal lattices are graphs which
correspond to fractals. All of them have a kind of self-similarity, but most of them
have no translation invariances. Especially we study bond percolation, oriented
percolation and stiff percolation on Sierpinski carpet lattices. In percolation model
each bond is open with probability p and closed otherwise, independently of all
other bonds. We think of open bonds as connections of vertices. The Sierpinski
carpet lattice (that is a typical example of Sierpinski carpet lattices) and a sample
configuration is shown in Figure 1. As for percolation on the Sierpinski carpet
lattice, the following facts are known.

• There exists a phase transition of percolation. [K97]

• There exists no phase transition of oriented percolation. [S03]

In this paper we give a brief review about the existence of phase transition of
percolation on fractal lattices. In Section 2 we define bond percolation on generalized
Sierpinski carpet lattices and we show some sufficient conditions for the existence of
phase transition. We also give an improved upper bound of the critical probability of

∗e-mail:shinoda@cc.nara-wu.ac.jp
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Figure 1: Bond percolation on the Sierpinski carpet lattice

bond percolation on the Sierpinski carpet lattice. In Section 3 we consider oriented
percolation and stiff percolation. In these percolation models, going to certain
directions are prohibited. We show sufficient conditions for the non-existence of
phase transition. In section 4 we give proofs of some theorems.

2 Bond percolation on Sierpinski carpet lat-

tices

We explain two well-known examples of fractals, the Sierpinski gasket and the Sier-
pinski carpet. The former is a finite ramified fractal (that is, it can be disconnected
by removing a finite number of points) and the latter is an infinite ramified fractal.
See Mandelbrot [M82] for details of fractals. In [S96] we analysed percolation on
the Sierpinski gasket lattice, which has no phase transition. The non-existence of
phase transition is induced by the character of finite ramified fractals.

Now we focus on Sierpinski carpet lattices. We define the Sierpinski carpet and
generalized Sierpinski carpets on R

2 as follows. Set L ≥ 2 to be an integer and set
TL = {0, 1, . . . , L− 1}2. For (i, j) ∈ TL, we set an affine map Ψ(i,j) from [0, 1]2 to
[i/L, (i + 1)/L] × [j/L, (j + 1)/L] which preserves the directions. For a nonempty
subset T ⊂ TL, it is well-known (see Falconer [F85], for example) that there exists
a unique nonempty compact set KT ⊂ [0, 1]2 which satisfies the equation

KT =
⋃
t∈T

Ψt(KT ).

We call these KT ’s generalized Sierpinski carpets. The Sierpinski carpet is an ele-
ment of generalized Sierpinski carpets.

Example 2.1 Set L = 3 and T = T3 \ {(1, 1)}. KT is the Sierpinski carpet.

We remark that the Sierpinski gasket is also an element of generalized Sierpinski
carpets.
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Example 2.2 Set L = 2 and T = T2 \ {(1, 1)}. KT is the Sierpinski gasket.

Let us define the graph corresponding to KT . Set

Fn
T =

⋃
t1,t2,··· ,tn∈T

Ψt1 ◦ Ψt2 ◦ · · · ◦ Ψtn([0, 1]2).

KT can be constructed as the limit of Fn
T . Set a graph Gn

T = (V (Gn
T ), E(Gn

T )) where
V (Gn

T ) = Z
2 ∩ LnFn

T and E(Gn
T ) = {〈u, v〉 : u, v ∈ V (Gn

T ), |u − v|1 = 1}. Here we
write 〈u, v〉 as a bond with endvertices u and v. From now on we assume through
this paper that KT is connected and

(0, 0) ∈ T. (1)

Under these assumptions we set GT =
⋃∞

n=1G
n
T . That is, V (GT ) =

⋃∞
n=1 V (Gn

T )
and E(GT ) =

⋃∞
n=1E(Gn

T ). Note that V (Gn
T ) and E(Gn

T ) are increasing sequences
with respect to n under (1). We call the family of GT corresponding KT ’s gener-
alized Sierpinski carpet lattices. The Sierpinski carpet lattice given in Figure 1 is
an example of generalized Sierpinski carpet lattices, and we sometimes denote the
graph by S.C..

We consider bond percolation on GT . Set 0 ≤ p ≤ 1. Each e ∈ E(GT ) is declared
to be open with probability p and closed with probability 1 − p independently.
We denote the product measure by Pp. Let us consider a sequence of vertices
π = (v0, v1, · · · , vm) where vi ∈ V (GT ) for 0 ≤ i ≤ m. We say π is a path when
〈vi−1, vi〉 ∈ E(GT ) for 1 ≤ i ≤ m and vi �= vj for i �= j. We write u↔ v if and only if
there exists a path π with v0 = u, vm = v and 〈vi−1, vi〉 are open for 1 ≤ i ≤ m. We
write C(v) = {u ∈ V (GT )|v ↔ u}. We define θ(p) = Pp(|C(o)| = ∞) where o is the
origin and |C(o)| is the number of vertices in C(o). Let pc(GT ) = inf{p : θ(p) > 0}.
We study the problem of finding necessary and sufficient conditions for pc(GT ) < 1.
Häggström [H00] showed that if the maximum degree of the vertices is finite then
the existence of phase transitions of bond percolation, site percolation and the Ising
model are equivalent. So we can consider the critical phenomena of bond, site
percolation or the Ising model on Sierpinski carpet lattices simultaneously.

The difficulty of this problem is that we can not apply Peierl’s argument (see
[G99], for example) because the ratio of the holes of GT tends to 1. In the case of
L = 2, we can completely answer the problem; Pc(GT ) < 1 if and only if T = T2.
Hereafter we assume L ≥ 3. In [K97] Kumagai obtained a sufficient condition for
this problem. Set ∂intT = {(0, j) : 0 ≤ j ≤ L − 1} ∪ {(L − 1, j) : 0 ≤ j ≤
L− 1} ∪ {(i, 0) : 0 ≤ i ≤ L− 1} ∪ {(i, L − 1) : 0 ≤ i ≤ L− 1}.
Theorem 2.3 ([K97]) If ∂intT ⊂ T , then pc(GT ) < 1.

In [S02] we gave a weaker condition than the theorem above. We write Tl = {j :
(0, j) ∈ T}, Tr = {j : (L− 1, j) ∈ T}, Td = {i : (i, 0) ∈ T} and Tu = {i : (i, L− 1) ∈
T}. We say T is connected if for any t, t′ ∈ T there exists a sequence t1 = t, t2, . . .,
tn = t′ which satisfies ti ∈ T and |ti − ti+1|1 = 1 for 1 ≤ i ≤ n− 1.

Theorem 2.4 ([S02]) Assume

T \ {t} is connected for any t ∈ T (2)

3
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Sn

Figure 2: GT for T = T5 \ {(1, 3), (1, 4), (2, 1), (2, 3), (3, 0), (3, 1)}

and
|Tl ∩ Tr| ≥ 2 and |Td ∩ Tu| ≥ 2. (3)

Then pc(GT ) < 1.

A proof of this theorem was given in [S02]. ∂intT satisfies (2) and (3), so this
theorem contains Theorem 2.3. There are some examples to which Theorem 2.4 is
applicable and Theorem 2.3 is not.

Example 2.5 Set L ≥ 3 and T = {(i, j) ∈ TL : i ∈ {0, 1} or j ∈ {0, 1}}. Theorem
2.3 is not applicable to this graph. We see pc(GT ) < 1 from (2) and (3).

We note the existence of phase transition on general graphs. For a general
connected graph G, we define isoperimetric dimension Dim(G) by

Dim(G) = sup
{
D > 0 : inf

|∂S|
|S|D−1

D

> 0
}

where S is a finite connected subset of the bonds of G and ∂S is the outer boundary
of S. For example Dim(Zd) = d, and Dim(S.C.) = 3/2 (See [Os90]). We hope to
clarify the relation between Dim(G) and pc(G). In [BS96], Benjamini and Schramm
proposed the problem of whether Dim(G) > 1 implies pc(G) < 1. We check this
problem in the case of Sierpinski carpet lattices. Now we can say only that it seems
that Dim(GT ) > 1 implies pc(GT ) < 1, but we do not yet have the proof, and
Dim(GT ) = 1 does not imply pc(GT ) = 1.

Example 2.6 Set L = 5 and T = T5 \ {(1, 3), (1, 4), (2, 1), (2, 3), (3, 0), (3, 1)}. In
this case Dim(GT ) = 1 because we can take {Sn} as in Figure 2 to satisfy |∂Sn| = 2.
On this graph pc(GT ) < 1. In this example the component corresponding to (2, 0)
seems a dangling subgraph, but if we delete (2, 0) from T then pc(GT ) = 1.

As for the Sierpinski gasket lattice, we showed that pc(S.C.) < 0.9224 in [S02].
pc(S.C.) ∼ 0.56 is suggested by numerical simulations ([Ot12]). In this paper we
show the following estimate.
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Theorem 2.7
pc(S.C.) < 0.7.

We will give a proof of this estimate in Section 4.

3 Oriented percolation on the Sierpinski car-

pet lattice

In this section we study oriented percolation and stiff percolation on the Sierpinski
carpet lattice. We give a partial order on Z

2 such that (x1, x2) ≤ (y1, y2) if and
only if x1 ≤ y1 and x2 ≤ y2. We say π = (v0, v1, . . . , vm) is an oriented path when
π is a path and vi−1 ≤ vi for 1 ≤ i ≤ m. We write u→ v if and only if there exists
an oriented path π with v0 = u, vm = v and 〈vi−1, vi〉 are open for 1 ≤ i ≤ m. We
define

−→
C (v) = {u ∈ V (GT )| v → u}, −→θ (p) and −→pc(GT ) as before.

Oriented percolation is also significant as a model of disordered media because
it has close relations to media of semiconductors, contact processes and so on. On
Z

2 we may regard this model as a one-dimensional contact process in discrete time.
See Durrett [D84] and [G99] for details. On Z

d (d ≥ 2), it is well-known that the
critical probability pc(Zd) of percolation and that −→pc(Zd) of oriented percolation are
strictly less than 1. In particular, pc(Z2) = 1/2 has been shown by Kesten [K97] and−→pc(Z2) ≤ 2/3 has been shown by Liggett [L95]. We devote to determine the critical
probability of oriented percolation on the Sierpinski carpet lattice. By definition
pc(S.C.) ≤ −→pc(S.C.) is clear.

Let a and b be positive integers. We write L = 2a+ b. Set

Ta,b = TL\
{

(x1, x2) ∈ {0, 1, . . . , L−1}2
∣∣∣ a ≤ x1 ≤ a+b−1 and a ≤ x2 ≤ a+b−1

}
.

Generalized Sierpinski carpet lattice GTa,b
is determined by Ta,b in the same way as

in Section 2. We write abbreviately Ga,b instead of GTa,b
. We remark that G1,1 is

the Sierpinski carpet lattice. We showed the following theorem.

Theorem 3.1 ([S03]) If a ≤ b, then −→pc(Ga,b) = 1. In particular, −→pc(S.C.) = 1.

A proof of Theorem 3.1 was shown in [S03]. This result is interesting because it
shows a remarkable difference between the Sierpinski carpet lattice and Z

2 lattice.
This theorem says that there exists no phase transition of oriented percolation on the
Sierpinski carpet lattice, in spite of the existence of phase transition of percolation
on the graph. It says also that the contact process will die out if p < 1 on the
Sierpinski carpet lattice. We do not know whether −→pc(Ga,b) = 1 for all a and b.
This is a significant open problem.

As an intermediate probabilistic model between percolation and oriented perco-
lation, we introduce stiff percolation. For (x1, x2) and (y1, y2) we write (x1, x2) �
(y1, y2) if and only if x1 ≤ y1. We say π = (v0, v1, . . . , vm) is an stiff path when π is
a path and vi−1 � vi for 1 ≤ i ≤ m. We write u � v if and only if there exists an
stiff path π with v0 = u, vm = v and 〈vi−1, vi〉 are open for 1 ≤ i ≤ m. We define
θ̃(p) and p̃c(GT ) as usual. We prove the following theorem.
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Figure 3: The event Cn

Theorem 3.2 If L ≥ 4, then p̃c(G1,L−2) = 1.

This theorem says that there is no phase transition of stiff percolation on Sier-
pinski carpet lattices if the ratio of its hole is large enough. We shall give a proof
of this theorem in the next section.

4 Proof of theorems

In the beginning of this section we give a proof of Theorem 2.7. Here we consider
bond percolation on the Sierpinski carpet lattice, and we set T = T3 \ {(1, 1)}. For
a rectangle R ⊂ R

2, we say left-right crossing (respectively bottom-top crossing) of
R exists if u ↔ v in R for some u on the left (respectively lower) side of R and
some v on the right (respectvely upper) side of R. We denote this event by LR(R)
(respectively BT (R)). This event depends only on the bonds in R. For a positive
integer k, we write ψn

k (p) = Pp(LR([0, k · 3n] × [0, 3n])). Note that

ψn
k1+k2

(p) ≤ ψn
k1

(p)ψn
k2

(p) (4)

for any k1, k2. For the proof of Theorem 2.7, we use the following lemma.

Lemma 4.1 Let f(x) = 1 − (1 − x5)2 + 2x
19
3 (1 − x)2. Then

ψn+1
3 (p) ≥ f(ψn

3 (p)). (5)

Proof of Lemma 4.1. We define the following events.

An = LR([0, 3n+1] × [0, 3n−1]),
Bn = LR([0, 3n+1] × [2 · 3n−1, 3n]),
Cn = LR([0, 4 · 3n−1] × [0, 3n−1]) ∩BT ([3n, 4 · 3n−1] × [0, 3n])

∩ LR([3n, 3n+1] × [2 · 3n−1, 3n]) ∩ LR([0, 3n] × [2 · 3n−1, 3n])c

∩ LR([2 · 3n, 3n+1] × [0, 3n−1])c,
Dn = LR([0, 4 · 3n−1] × [2 · 3n−1, 3n]) ∩BT ([3n, 4 · 3n−1] × [0, 3n])

∩ LR([3n, 3n+1] × [0, 3n−1]) ∩ LR([0, 3n] × [0, 3n−1])c

∩ LR([2 · 3n, 3n+1] × [2 · 3n−1, 3n])c.
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See Figure 3 for the event Cn. Then we have

Pp(An) ≥ Pp

(
LR([0, 3n] × [0, 3n−1]) ∩ LR([2 · 3n−1, 5 · 3n−1] × [0, 3n−1])

∩ LR([4 · 3n−1, 7 · 3n−1] × [0, 3n−1]) ∩ LR([2 · 3n, 3n+1] × [0, 3n−1])
∩ BT ([2 · 3n−1, 3n] × [0, 3n−1]) ∩BT ([4 · 3n−1, 5 · 3n−1] × [0, 3n−1])
∩ BT ([2 · 3n, 7 · 3n−1] × [0, 3n−1])

)
≥ {ψn

3 (p)}4{ψn
1 (p)}3

≥ {ψn
3 (p)}5

and

Pp(Cn) ≥ Pp

(
LR([0, 3n] × [0, 3n−1]) ∩ LR([2 · 3n−1, 4 · 3n−1] × [0, 3n−1])

∩ BT ([2 · 3n−1, 3n] × [0, 3n−1]) ∩BT ([3n, 4 · 3n−1] × [0, 3n])
∩ LR([3n, 2 · 3n] × [2 · 3n−1, 3n]) ∩ LR([5 · 3n−1, 7 · 3n−1] × [2 · 3n−1, 3n])
∩ LR([2 · 3n, 3n+1] × [2 · 3n−1, 3n]) ∩BT ([5 · 3n−1, 2 · 3n] × [2 · 3n−1, 3n])
∩ BT ([2 · 3n, 7 · 3n−1] × [2 · 3n−1, 3n]) ∩ LR([0, 3n] × [2 · 3n−1, 3n])c

∩ LR([2 · 3n, 3n+1] × [0, 3n−1])c
)

≥ {ψn
3 (p)}4{ψn

2 (p)}2{ψn
1 (p)}3{1 − ψn

3 (p)}2

≥ {ψn
3 (p)} 19

3 {1 − ψn
3 (p)}2

by (4) and FKG inequality. We note that An ∪ Bn, Cn,Dn are mutually exclusive
events. Combining

Pp(LR([0, 3n+1] × [0, 3n]) ≥ Pp(An ∪Bn) + Pp(Cn) + Pp(Dn)

and Pp(Cn) = Pp(Dn), we obtain (5). �

The equation f(x) = x has a solution α = 0.94679 · · · , and f is an increasing
function with respect to x. If we can find N which satisfies ψN

3 (p) > α, then
ψn+1

3 (p) > ψn
3 (p) for any n ≥ N and we obtain limn→∞ ψn

3 (p) = 1. We shall show
ψ2

3(7/10) > α. We consider stiff percolation in Rn = [0, 3n+1] × [0, 3n]. Let

ψ̃n(p) = Pp(there exists an open stiff left-right crossing of Rn).

Trivially ψ̃n(p) ≤ ψn
3 (p). For 0 ≤ i ≤ 3n+1 and 0 ≤ j ≤ 3n we define a random

variableXj
i ∈ {0, 1} such thatXj

i = 1 if and only if v � (i, j) in Rn for some v on the
left side of Rn. We write Xi = (X0

i ,X
1
i , . . . ,X

3n

i ), and we regard {Xi}0≤i≤3n+1 as a
Markov chain on the state space {0, 1}{0,1,...,3n}, which starts from X0 = (1, 1, . . . , 1).
Then we see

ψ̃n(p) = Pp (X3n+1 �= (0, 0, . . . , 0)) .

We can obtain ψ̃3(7/10) > α by direct calculations, by using of the transition matrix
of Xi. �
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Next we give a proof of Theorem 3.2 in the case of L = 4. Set T = T4 \
{(1, 1), (1, 2), (2, 1), (2, 2)}. Let Gn,a,b

T be the union of a× b copies of Gn
T . We write

x̃n,a,b(p) = Pp( there exists an open stiff left-right crossing of Gn,a,b
T ),

ỹn,a,b(p) = Pp( there exists an open stiff bottom-top crossing of Gn,a,b
T ).

We shall show limn→∞ x̃n,1,1(p) = 0 and limn→∞ ỹn,1,1(p) = 0 for any p < 1. We
use the following lemmas to prove.

Lemma 4.2 For any p < 1 there exists ϕ = ϕ(p) > 0 such that

ỹn,1,1(p) ≤ e−4nϕ.

Lemma 4.3 Set zn(p) = x̃n,2,1(p) and assume m ≥ 1. Then we have

zn+m(p) ≤ 2m{zn(p)}2m
+ 2 · 12mỹn,2,2(p). (6)

Proof of Lemma 4.2. For any p < 1, we can pick k0 = k0(p) > 0 and ϕ̂ = ϕ̂(p) > 0
such that

ỹn,1,k0(p) < e−4nϕ̂

(See Lemma 2.1 of [S03]). We denote the event that there exists an open stiff
bottom-top crossing of R by B̃T (R). In stiff percolation model, if B̃T (R) occurs,
then u � v or v � u for some u on the lower side of R and some v on the upper
side of R. We can see

ỹn,1,2k+1(p) ≤ Pp(B̃T ([0, 4n−1] × [0, (4k + 3) · 4n−1]))
+Pp(B̃T ([3 · 4n−1, 4n] × [(4k + 1) · 4n−1, (2k + 1) · 4n]))
+Pp(B̃T ([0, 4n−1] × [(4k + 1) · 4n−1, (2k + 1) · 4n]))
+Pp(B̃T ([3 · 4n−1, 4n] × [0, (4k + 3) · 4n−1]))

≤ 4yn−1,1,4k+3(p)

for k ≥ 0. So there exists l > 0 such that

ỹn+l,1,1(p) ≤ 4ỹn+l−1,1,3(p) ≤ · · · ≤ 4lỹn,1,k0(p) < 4le−4nϕ̂,

thus we have proved the lemma. �

Proof of Lemma 4.3. For m ≥ 1 we define

Im =

{
1 +

m−1∑
k=1

ik · 4k

∣∣∣∣ ik ∈ {1, 2}
}
, Jm =

{
m−1∑
k=0

jk · 4k

∣∣∣∣ jk ∈ {0, 3}
}
,

and

Rn,m =
{
R = [(4i − 1) · 4n, (4i+ 1) · 4n]

×[(4j + 1) · 4n, (4j + 3) · 4n]
0 ≤ i, j ≤ 4m−1, R ∩Gn+m

T �= ∅
}
.

If there exists an open stiff left-right crossing of [0, 4n+m] × [0, 4n+m], then
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for some j ∈ Jm, there exist open stiff left-right crossings of [i · 4n, (i +
2) · 4n] × [j · 4n, (j + 1) · 4n] for all i ∈ Im,

or

there exists an open stiff bottom-top crossing of R for some R ∈ Rn,m.

So we have (6) because zn+m(p) ≤ xn+m,1,1(p) and |Rn,m| ≤ 2 · 12m−1. �

Proof of Theorem 3.2. Combining Lemma 4.2 and Lemma 4.3, we have

zn+m(p) ≤ 2m{zn(p)}2m
+ 2 · 12me−4nϕ.

Set m = 3n. Clearly the second term of the right hand side goes to 0 as n → ∞.
For the first term we note that zn(p) ≤ 1 − (1 − p)2

n+1 by definition. We have

lim
n→∞ 23n{1 − (1 − p)2

n+1}23n

= 0,

thus we have finished the proof. �
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MACROSCOPIC CORROSION FRONT COMPUTATIONS OF SULFATE

ATTACK IN SEWER PIPES BASED ON A MICRO-MACRO

REACTION-DIFFUSION MODEL

VLADIMÍR CHALUPECKÝ, TASNIM FATIMA, JENS KRUSCHWITZ, AND ADRIAN MUNTEAN

Abstract. We consider a two-scale reaction diffusion system able to capture the corrosion

of concrete with sulfates. Our aim here is to define and compute two macroscopic corrosion
indicators: typical pH drop and gypsum profiles. Mathematically, the system is coupled,

endowed with micro-macro transmission conditions, and posed on two different spatially-

separated scales: one microscopic (pore scale) and one macroscopic (sewer pipe scale). We
use a logarithmic expression to compute values of pH from the volume averaged concentration

of sulfuric acid which is obtained by resolving numerically the two-scale system (microscopic

equations with direct feedback with the macroscopic diffusion of one of the reactants). Further-
more, we also evaluate the content of the main sulfatation reaction (corrosion) product—the

gypsum—and point out numerically a persistent kink in gypsum’s concentration profile. Fi-
nally, we illustrate numerically the position of the free boundary separating corroded from

not-yet-corroded regions.

1. Introduction

1.1. Background on sulfate corrosion. Often in service-life predictions of concrete structures
(e.g., sewer systems), the effects of chemical and biological corrosion processes are fairly neglected.
In sewer systems and wastewater treatment facilities, where high concentrations of hydrogen
sulfide, moisture, and oxygen are present in the atmosphere, the deterioration of concrete is
caused mainly by biogenic acids. The so-called microbially-induced concrete corrosion in sewer
systems has been a serious unsolved problem1 for long time. The presence of microorganisms
such as fungi, algae or bacteria can induce formation of aggressive biofilms on concrete surfaces.
Particularly, the sulfuric acid that causes corrosion of sewer crowns is generated by such a complex
microbial ecosystem especially in hot environments. The precise role of microorganisms in the
context of sulfates attack on concrete (here we focus on sewer pipes) is quite complex and is
therefore less understood from both experimental and theoretical points of view; see, e.g., the
experimental studies [4] (optimum pH and growth kinetics of four relevant bacterial strains),
[11] (characteristics of the crown microbial system), [12] (microbiologically influenced corrosion
of natural sandstone), [16] (succession of sulfur-oxidizing bacteria in the bacterial community
on corroding concrete), [17] (isolation of Thiobacillus thiooxidans), [21] (Hamburg sewers),[24]
(air-water transfer of hydrogen sulfide). As a consequence of this, an accurate large-time forecast
of the penetration of the sulfate corrosion front is very difficult to obtain.

Key words and phrases. Reaction-diffusion system, sulfate corrosion, pH, free boundary, micro-macro trans-
mission condition, multiscale numerical methods.

1There are a lot of financial implications if you want to change the network of pipes in a city like Fukuoka.
Our statement here is that questions like Why changing the pipes if corrosion is not so strong yet and therefore

the mechanics structure of the network can/could still hold for 5 more years? can be addressed in a rigorous

mathematical multiscale framework. Such an approach would allow a good understanding and prediction at least
of extreme situations.

1
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We want to stress the fact that concrete, in spite of its strong heterogeneity, is mechanically
a well-understood material with known composition. Also, the cement (paste) chemistry is well
understood. However, all cement-based materials (including concrete) involve a combination
of “heterogeneous multi-phase material”, “multiscale chemistry”, “multiscale transport” (flow,
diffusion, ionic fluxes, etc.), and “multiscale” mechanics. Having in view this complexity, such
materials are sensu stricto very difficult to describe, to analyze mathematically, and last but not
least, to deal with numerically. We expect that only after the multiscale aspects of such materials
are handled properly, good predictions of the large-time behavior may be obtained. This is our
path to addressing this corrosion scenario that is often referred to as the sulfatation problem.

Before closing these background notes, let us add some remarks [20] on a closely-related topic
of acid sulphate soils2, which might attract the attention of the multiscale research in the near
future. Acid sulphate soils are an important class of soils worldwide. Particularly in coastal
areas, sediments often contain a large amount of iron sulfide (FeS and/or FeS2). When by
drainage the sediment is exposed to air, this iron sulfide will oxidize to iron sulphate (FeSO4).
As long as the sediment still contains calcium carbonate (CaCO3), the FeS will react with it,
resulting in gypsum (CaSO4) and iron oxide (Fe2O3). Gypsum, being much more soluble than
calcium carbonate, will tend to leach to the ground- and surface-waters. If the FeSO4 is no longer
removed by reactions with CaCO3 or other materials, it will tend to accumulate, resulting in a
drop of the pH below 4. The problematic acid sulphate soil then will have become a reality. Acid
sulphate soils were first described in 1886 by the Dutch Chemist Jacob Maarten van Bemmelen,
in connection with problems arising in the Haarlemmermeer Polder. Much of the work in this
direction is/was done in the tropics, including Indonesia, Vietnam, and Australia; see, e.g., [13].

1.2. Objectives and structure of the paper. In order to be able to tackle the biophysics
of the problem at a later stage, eventually coupled with the mechanics of the concrete and the
actual capturing of the macroscopic fracture initiation, we focus here on a much simpler setting
modeling the multiscale transport and reaction of the active chemical species involved in the
sulfatation process. Therefore, the approach and results reported here are only preliminary.

Our main objective is twofold: using a multiscale reaction-diffusion system for concrete cor-
rosion (that allows for feedback between micro and macro scales),

• calculate pH profiles and detect the eventual presence of “sudden” pH drops;
• extract from gypsum concentration profiles the approximate position of macroscopic

corrosion fronts.

In Section 2, we present the reaction mechanisms taking place in sewer pipes. In Section 3, we
give a mathematical description of the problem and we set a two-scale PDE-ODE system. We
briefly comment on a few mathematical properties of the model. In Section 4, we approximate a
macroscopic pH numerically using a multiscale FD scheme and comment briefly on the numerical
results.

2. A few notes on the involved chemistry

Our model includes two important features:

• continuous transfer of H2S from water to air phase and vice versa;
• fast production of gypsum at solid-water interface.

We incorporate the Henry’s law to model the transfer of H2S from the water to the air phase
and vice versa [2, 24]. The production of gypsum at the solid-water interface is modeled by a
non-linear reaction rate, given by (15).

2Compared to concrete, soils are much easier to handle. Their mechanics is simpler and their chemistry is
often rudimentary, if any.
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H2S

unit cell Y

Γwa

Γsw
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Figure 1. Left: Cross-section of a sewer pipe. Middle: Mesoscopic periodic
approximation of a REV. Right: Our concept of pore geometry (microstructure).

There are many variants of severe attack to concrete in sewer pipes which influence the per-
formance of concrete structure depending on the intensity of the reactions, the environment, and
the turbulence of the wastewater [23]. We focus here on the most aggressive one, namely we
consider the following reaction mechanisms causing sulfatation, viz.

10 H+ + SO2−
4 + org. matter→ H2S(aq) + 4 H2O + oxidized matter(1)

H2S(aq) + 2 O2 → 2H+ + SO2−
4(2)

H2S(aq) 
 H2S(g)(3)

2 H2O + H+ + SO2−
4 + CaCO3 → CaSO4 · 2 H2O + HCO3−(4)

Reaction (3) is typically a surface reaction taking place as soon as water and air phases meet
together. It plays an important role in transferring the H2S from the air phase to the liquid phase
where the corrosion actually takes place. For modeling details such as a Henry-like “reaction”
mechanism, we refer the reader to [9, 5] and references cited therein.

3. Multiscale description of the sulfatation problem

We assume that the geometry of our concrete sample (porous medium) consists of a system
of pores periodically distributed inside a three-dimensional cube Ω := [a, b]3 with a, b ∈ R and
b > a. The exterior boundary of Ω consists of two disjoint, sufficiently smooth parts: the
Neumann boundary ΓN and the Dirichlet boundary ΓD. We assume that the pores in concrete
are made of stationary water film, air and solid parts in different ratios depending on the local
porosity. The reference pore, say Y := [0, 1]3, has three pair-wise disjoint domains Y s, Y w and
Y a with smooth boundaries Γsw and Γwa as shown in Fig. 1 such that

Y = Ȳ s ∪ Ȳ w ∪ Ȳ a.

We refer the reader to [9, 6] for more description of the multiscale geometry of the porous
material. For a single scale (macroscopic) approach of a sulfatation scenario, we refer the reader
to [1], e.g.

We consider a two-scale system of PDEs and one ODE for unknown functions u1 : Ω×(0, T )→
R, uk : Ω× Y w × (0, T )→ R, k ∈ {2, 3}, and u4 : Ω× Γsw × (0, T )→ R where (0, T ) is the time
interval. The model under consideration is derived by formal homogenization using different
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scalings of the diffusion coefficients in [9] (see also [14]) and is given by

∂tu1 − d1∆u1 = −B
(
Hu1 −

∫
Γwa

u2 dγy

)
, in Ω× (0, T ),(5a)

β2∂tu2 − β2d2∆yu2 = −Φ2k2u2 + Φ3k3u3, in Ω× Y w × (0, T ),(5b)

β3∂tu3 − β3d3∆yu3 = Φ2k2u2 − Φ3k3u3, in Ω× Y w × (0, T ),(5c)

β4∂tu4 = Φ4k4η(u3, u4), in Ω× Γsw × (0, T ),(5d)

where u1 denotes the concentration for H2S gaseous species, u2 for H2S aqueous species, u3

for H2SO4, and u4 for gypsum at Γsw. The water film is taken here to be stationary. A
detailed modeling of the role of water is still open, see, e.g., [19, 3, 22]. ∆ without subscript
denotes the Laplace operator with respect to macroscopic variable x and ∆y with respect to
microscopic variable y. dγy represents the differential over the surface Γwa. βk > 0, k ∈
{2, 3, 4}, represents the ratio of the maximum concentration of the k-th species to the maximum
concentration of H2SO4, di > 0, i ∈ {1, 2, 3}, are the diffusion coefficients, B is a dimensionless
Biot number which gives the mass transfer rate between water and air phases, and kj : Y →
R, j ∈ {2, 3, 4}, are functions modeling the reaction rate “constants”. Φk (k ∈ {2, 3, 4}) are
Damköhler numbers corresponding to three distinct chemical mechanisms (reactions). They are
dimensionless numbers comparing the characteristic time of the fastest transport mechanism
(here, the diffusion of H2S in the gas phase) to the characteristic timescale of the k-th chemical
reaction.

The system (5) is supplemented with initial and boundary conditions, which read as

u1(x, 0) = u0
1(x), on Ω× (0, T ),(6)

uk(x, y, 0) = u0
k(x, y), on Ω× Y w × (0, T ), k ∈ {2, 3},(7)

u4(x, y, 0) = u0
4(x, y), on Ω× Γsw × (0, T ),(8)

u1 = uD1 , on ΓD × (0, T ),(9)

nN · (d1∇u1) = 0, on ΓN × (0, T ),(10)

nwa · (d2∇yu2) = B

(
Hu1 −

∫
Γwa

u2 dγy

)
, on Ω× Γwa × (0, T ),(11)

nsw · (d2∇yu2) = 0, on Ω× Γsw × (0, T ),(12)

nwa · (d3∇yu3) = 0, on Ω× Γwa × (0, T ),(13)

nsw · (d3∇yu3) = −Φ3η(u3, u4), on Ω× Γsw × (0, T ),(14)

where nN denotes the outward unit normal vector to ∂Ω along ΓN , and nwa and nsw denote the
outward unit normal vectors to Y w along Γwa and Γsw, respectively. Note that the “information”
at the micro-scale is connected to the macro-scale situation via the right-hand side of (5a) and via
the micro-macro boundary condition (11). It is also worth noticing that all involved parameters
(except for H, d3 and B) contain microscopic information. The coefficients d3 and B are effective
ones (see [9, 8] for a way of calculating them), while H can be read off from existing macroscopic
experimental data.

We consider the following form of the reaction rate η at the interface Γsw

(15) η(α, β) =

{
αp(β̄ − β)q, if α ≥ 0, β ≥ 0,

0, otherwise,

where β̄ is a known maximum concentration of gypsum at Γsw and p ≥ 1, q ≥ 1 are partial
orders of reaction. For more modeling possibilities of choosing η, see [10]. It is worth noting that



COMPUTATIONS OF CORROSION FRONT IN SEWER PIPES 5

production terms like

B

(
Hu1(t, x)−

∫
Γwa

u2(t, x, y) dγy

)
are usually referred in the literature as Henry’s or Raoult’s law, where H > 0 is known Henry’s
constant.

We refer the reader to [6, Theorem 3] for statements regarding the global existence and
uniqueness a weak solution to problem (5)–(14) (see also [15] for the analysis on a closely related
problem).

4. Simulation at a macroscopic pH scale. Capturing free boundaries

In this section the model (5) is applied to the simulation of the acid corrosion due to a
microbiotical layer on a cement specimen. We focus on extracting the position of the corrosion
front and on the acid reaction, which we use to obtain macro-scale profiles of pH. Both of these
results can be compared to experimental data published, e.g., in [11, 16].
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Figure 2. Time evolution of u1 (concentration of H2S(g)) shown at t ∈
{2000, 4000, 8000, 12000, 16000, 20000} in left-right and top-bottom order.
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Figure 3. Time evolution of u4 (gypsum) shown at t ∈
{2000, 4000, 8000, 12000, 16000, 20000} in left-right and top-bottom order.

For the purpose of the simulation we employ a numerical scheme for a reduced 1D/2D version
of the system (5). The reduction consists in taking Ω := (0, L) and Y w = (0, `) as one-dimensional
intervals, which in effect corresponds to analysing the specimen in a perpendicular direction to its
surface away from edges and to simplifying the micro cell geometry, respectively. The numerical
scheme is based on the method of lines, where in space we use finite difference discretization
and in time we employ an implicit higher-order time integrator for the solution of the non-linear
ODE system. See [6, 7] for further details of the numerical scheme, its analysis with respect
to convergence to the weak solutions and some basic numerical experiments. For details of a
computer implementation of the numerical scheme we refer the reader to [14, Chapter 7].

In Table 1 we summarize values of the model parameters used in the simulations described
below.

4.1. Free boundaries. Figures 2 and 3 show the evolution of u1(x, t) and u4(x, t) in time. The
Dirichlet boundary condition u1(0, t) = uD1 models a constant inflow of H2S(g) at x = 0, i.e.,
at the surface of the specimen. As the gas diffuses through the porous structure, it enters the
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Figure 4. Position of the corrosion front.

d1 d2,3 k2 k3 k4 Φ2,3,4 B H β̄ p q uD1 L `

0.864 0.00864 1.48 0.0084 10 1 86.4 0.3 1 1 1 0.011 30 1

Table 1. Parameter values used in the numerical simulation.

water film in the pores due to the reaction (3), where it undergoes biogenic oxidation to sulfuric
acid. Consequently, its concentration decreases with increasing depth. As the system becomes
saturated and as the sulfatation reaction (4) converts available cement into gypsum, the total
concentration of H2S(g) starts to increase (Fig. 2).

Sulfuric acid that arises from the oxidation of H2S(aq) then reacts at y = ` with the cement
paste and converts it into gypsum (u4) whose concentration profile is shown in Fig. 3. Inter-
estingly, although the behavior of u1 is as expected (i.e., purely diffusive), we notice that a
macroscopic gypsum layer (region where u4 is produced) is formed around t = 1500 and grows
in time. The figure clearly indicates that there are two distinct regions separated by a slowly
moving intermediate layer: the left region—the place where the gypsum production reached sat-
uration (a threshold), and the right region—the place of the ongoing sulfatation reaction (4) (the
gypsum production has not yet reached here the natural threshold).

We use u4 to extract an approximate position of the corrosion front p(t) which we define as
(in our scenario, we expect u4 to be decreasing)

p(t) := {x ∈ (0, L) | u4(x, t) = β̄ − ε},

where ε is a small parameter. Figure 4 shows a graph of p(t) arising from our numerical exper-
iment. We notice that as the corroding front advances further into the concrete specimen, its
rate of growth decreases. This is in agreement with experimental data since the hydrogen sulfide
gas supplied from the outside environment has to be transported (by diffusion) over ever larger
distance. It is important to note that the precise position of the separating layer is a priori
unknown and to capture it simultaneously with the computation of the concentration profile
would require a moving-boundary formulation similar to the one reported in [5].
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Figure 5. Time evolution of macro-scale pH profiles computed from micro-scale
information shown at t ∈ {2000, 4000, 8000, 12000, 16000, 20000} in left-right and
top-bottom order.

4.2. Drop in pH. Emission of hydrogen sulfide from the wastewater to the air space of sewer
pipe is an important process because the problems of hydrogen sulfide in sewer pipes are associ-
ated with gaseous hydrogen sulfide. Hydrogen sulfide is a weak acid with a dissociation constant
of 7.0 (at 20◦C) and only the non-dissociated form is emitted in the air space sewer pipe. The
pH of the wastewater is therefore of importance when evaluating the potential hydrogen sulfide
emission. After the hydrogen sulfide arrives at and diffuses into the concrete, the oxidation of
hydrogen sulfide is biological once the pH of the solid matrix has dropped below approximately
8–9 [18]. This represents the tendency of hydronium ions to interact with other components of
the solution, which affects among other things the electrical potential read using a pH meter.
The concentration of hydrogen ions is expressed as pH scale and pH is defined as a negative
decimal logarithm of the concentration of hydronium ions dissolved in a solution.
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As the model considered in this paper contains information both from micro (pore) scale and
macro-scale, we need a way of computing macro-scale values of pH from the available micro-
scale data. Such information is not readily available in the system (5). However, sulfuric acid
is a diprotic acid with two stages of dissociation, where the first stage occurs fully and the
dissociation in the second stage can be neglected. Therefore, the concentration of hydronium
ions is proportional to the concentration of sulfuric acid, which is represented by u3 in our model.
We extract the macro-scale concentration of sulfuric acid at each x by taking a volume average
of u3 over Y w. Thus, we use the following expression for computing macroscopic pH:

(16) pHmacro(x, t) = − log10

(
ka
|Y w|

∫
Y w

u3(x, y, t) dy

)
,

where ka is the activity of hydronium ions.
The macro-scale pH profile computed using the formula (16) is shown in Figure 5. We can see

that at the beginning of the simulation (first graph) with increasing depth the pH also increases
from acid to more basic values as expected. Once all the available cement is consumed and
converted into gypsum (this happens for the first time at x = 0 between the first and second
graph in Figure 5 around t = 1500), the pH drops rapidly across the corrosion front. This is
due to the fact that behind the corrosion front the sulfuric acid is no longer neutralised by the
sulfatation reaction (4).

Note that our pH profiles are not in the experimental range. We expect the size of the
drop will become comparable to the one seen in experiments as soon as effects of nonlinear
moisture transport and bacteria motility and chemical activity are taken into account in the
model equations. The main message that we want to draw is that we are able to detect and
compute a macroscopic pH drop, once the needed micro-information is available.
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Surfactant effect on the multiscale structure of bubbly flows 
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Abstract 
Small amounts of surfactant can drastically change bubble behavior. For example, a bubble in aqueous 

surfactant solution rises much slower than one in purified water. This phenomenon is explained by the 
so-called Marangoni effect caused by a nonuniform concentration distribution of surfactant along the 
bubble surface. In other words, a tangential shear stress appears on the bubble surface due to the surface 
tension variation caused by the surface concentration distribution, which results in the reduction of the 
rising velocity of the bubble. More interestingly, this Marangoni effect influences not only the rising 
velocity, but also the lateral migration in the presence of mean shear. Furthermore, these phenomena 
influence the multiscale nature of bubbly flows and cause a drastic change in the bubbly flow structure. In 
this article, we review the recent studies related to these interesting behaviors of bubbles caused by the 
surfactant adsorption/desorption on the bubble surface. 

 
Introduction 

Bubbly flows are encountered in many industrial and environmental processes, 
such as chemical reactors, heat exchangers and aeration systems for water purification, 
They are also utilized to reduce the frictional drag of a moving body in water by 
injecting bubbles in the turbulent boundary layer, which has recently attracted much 
attention from many researchers (see Sugiyama et al. 2008 and Ceccio 2010 for a 
comprehensive review). In these bubbly flows, small amounts of surfactant can cause 
dramatic changes in the flow structures through the multiscale effects of the flows. 
Figure 1 represents the idea of the multiscale structure of bubbly flows in aqueous 
surfactant solutions. Small amounts of surfactant dissolved in the water adsorb onto the 
bubble surface, greatly affecting the bubble rising motion. Likewise affected are 
bubble-bubble interactions; the coalescence of small bubbles hardly occurs in the 
presence of surfactant. These factors are coupled and can dramatically change the whole 
bubbly flow structure. For example, because of this structural change of bubbly flow 
and also the influence of the adsorbed surfactant on mass transfer, the total mass transfer 
through a bubbly plume in an aeration tank can be quite different with and without 
surfactant. 
 

 

 

 

 

 

 

 

 

Fig. 1  Multiscale structure of bubbly flows in aqueous surfactant solution 
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Surfactant has at least three well-known influences on bubble motion: the reduction 
of rising velocity, the prevention of coalescence, and the reduction of mass transfer. The 
first of these is explained by the so-called Marangoni effect. As a bubble rises in 
aqueous surfactant solution, surfactant is swept off the front part and accumulates in the 
rear part. This leads to a variation of surface tension along the bubble surface, which 
causes tangential shear stress on the surface. This is known as the Marangoni effect due 
to surfactant adsorption on a bubble surface. This shear stress results in an increase of 
drag, which causes the reduction of the rising velocity. In many cases, the bubble 
surface becomes sufficiently contaminated by a small amount of dissolved surfactant so 
that a nearly no-slip surface is attained (Clift et al. 1978). The rising speed of the 
contaminated bubble decreases with increasing surfactant concentration until the same 
drag coefficient as a rigid sphere is reached. Thus, a fully contaminated bubble is often 
regarded as behaving like a rigid sphere in water.This phenomenological explanation 
was first given by Frumkin & Levich (1947), since which a considerable number of 
studies have been conducted on this subject. Comprehensive review is given in Takagi 
and Matsumoto(2011).  

The early studies on the measurement of bubbly flows were conducted by Serizawa 
et al. (1975) and Theofanous and Sullivan (1982), in which local measurements of 
turbulent flow structure in pipe were made using a hot-film anemometer and Laser 
Doppler Anemometer (LDA or LDV), respectively. Following these studies, Wang et al. 
(1987), Lance and Bataille (1991), Serizawa et al. (1991) and Liu and Bankoff (1993a, 
1993b) provided experimental information on: the local void fraction profile and its 
dependence on bubble size; the effect of initial bubble size and the bubble-induced 
turbulence. However, there is a dearth of information about the effect of surfactant on 
the global structure of bubbly flow. 

In our previous studies on upward bubbly channel flow, bubbles strongly migrate 
toward the wall and form the crescent-like shape bubble cluster near the wall (So et al. 
(2002)). The factor of this bubble migration is thought to be a shear-induced lift force. 
Recently, there are some numerical approaches about the shear-induced lift force on 
clean bubble and rigid sphere (Legendre and Magnaudet (1998), Kurose and Komori  
(1999), Bagchi and Balachandar (2002)). Through the comparison of their studies, it is 
shown that there are large discrepancy between the case of clean bubble and that of 
rigid sphere. From this result, it is suggested that the contamination of water will 
influence bubble migration. In this study, the motion of bubbles in upward turbulent 
channel flow is observed. Especially, bubble clustering phenomenon near the wall is 
analysed. Furthermore, surfactant effect on the spatial distribution of the bubbles is 
investigated by changing the concentration and the species of surfactant. 

 
Nomenclature 

G Gravitational constant (ms-1) 
P pressure (Nm-2) 
A Bubble radius 
C Concentration of surfactant, Coefficient 
D Diffusion coefficient 
F Force 
U Velocity 
U Rising velocity of a bubble 



Ma Marangoni number 
La Langmuir number 
Pe Pecret Number 
Ha Hatta number 
K dimensionless adsorption length 
K rate constant 
RG Gas constant 
Sr dimensionless shear rate 
T absolute temperature 
Greek letters 
 shear rate 
  Viscosity 
  kinematic viscosity 

  Density 
  surface tension 
  surface concentration 

c  cap angle 
Subsripts 
S Surface 
  Value in the far-field 
Max maximum or saturated velue 
D Drag 
L Lift 
P Pressure contribution 
V Viscous contribution 
Ad Adsorption 
Des Desorption 

 
Experimental Setup 
Experimental Apparatus 
   The experimental apparatus is shown in Fig.2. The experiments were conducted in a 
vertical circulating water tunnel, which was operated in the upward direction in the test 
section. The height of 1600mm (x-direction) from the bubble generator to the test 
section is large enough for the void fraction profiles to be sufficiently developed in the 
case of bubbly flow and for single-phase turbulent channel flow to be fully developed. 
The test section has a thickness of 40mm (y-direction) and a width of 400mm 
(z-direction) with an aspect ratio of 10. The channel width is chosen in such a way that 
the flow in the centre of the channel is nearly two-dimensional. 
   The bubble generator was constructed with 474 stainless steel pipes of 0.07mm 
inner diameter and 24mm length. It is installed above the inlet nozzle of the channel, 
which is located at x/H=80 downward from the test section. The coordinate x denotes 
the stream-wise direction; y the perpendicular direction from the wall and z span-wise 
direction. The bubble-clustering phenomena were analysed using image-processing 
technique. For recording the image of bubbles accumulating near the wall, we use 
high-speed digital camera (Motion Pro 10000, Redlake MASD, Inc.) with 1,280 x 1,024 
pixels and 8-bit resolution. 

  



 
 

Fig. 2  Schematic of experimental apparatus 
 
Experimental Conditions 

The bulk Reynolds numbers (Reb=Ub·2H/ν), based on the characteristic length of the 
channel width (2H=40mm) and the mean bulk velocity of liquid phase (Ub), are 8200 
for the present results.. Here, the bulk velocity of the liquid phase can be estimated in 
two different ways. One method is from the locally measured velocity profile by 
integrating the profiles across half of the channel and dividing by half of the channel 
width. The other method is from the globally measured liquid volumetric flux and 
dividing it by the cross-sectional area. There is a small difference of less than a few 
percentages between the values estimated using these two methods. This difference is 
caused by several factors, such as the effect of the sidewall, the accuracy of the 
measurement, two-dimensionality at the test section etc. In the present study, we 
employed the method using the locally measured velocity profile, because the bulk 
velocity calculated from the liquid volumetric flux is not very reliable due to the effect 
of the sidewall. Two types of surfactant, 3-Pentanol and Triton-X100 are used. The bulk 
concentration of 3-Pentanol and Triton-X100 are from 20ppm to 120ppm and 2ppm, 
respectively. 
 
 
 
 
 
 
 
 

 
(a) without surfactant,           (b) with 3-Pentanol (20ppm) 

 
Fig.3  Photographs of bubbly flow. Reb=8200, fg=0.6% 



Surfactant Effect 
   Fig.3 shows the typical snapshots of bubbly channel flow at the bulk Reynolds 
number (Reb) of 8200 and the average void fraction (fg) of 0.6%. We can prevent 
bubbles from coalescing by the addition of small amount of surfactant into the liquid 
phase (see next section ‘Bubble size profiles’). 3-pentanol and Triton-X100 are used for  
surfactant. It is clearly observed that the bubble size and the size distribution are 
drastically changed by the addition of surfactant. In fig.3 (a), “without surfactant”, there 
are larger deformed bubbles. These bubbles rise with a zigzag leaping motion against 
the perpendicular wall and are distributed throughout the cross section of the channel. It 
is also observed that this kind of leaping motion of a bubble enhances the mixing of the 
fluid and seems to produce the large fluctuations in the flow. Furthermore, once the 
small amount of surfactant is added, the whole aspect of the flow field is changed. The 
bubbles start accumulating near the wall and sliding along it. It is also interesting to see 
that the accumulated bubbles in the vicinity of the wall formed horizontal bubble 
clusters of 10-40mm length in some cases with 3-Pntanol, that rise and oscillate like 
moving waves as shown in Fig.3 (b). These changes produce a dramatic change in the 
whole bubbly flow structure (So et al., 2002). 

There are two well-known methods to avoid bubble coalescence. One is the addition 
of surfactant, and the other is that of salt. Zenit et al. (2001) added salt to the liquid 
phase to avoid the coalescence. In their study, in order to compare the experimental 
results with potential flow theories applied for bubble suspension (Sanagni and 
Didwania(1993), Smereka(1993)), they use salt which does not give Marangoni effects. 
They are trying to capture the horizontal bubble clustering which was predicted by the 
theory. On the other hand, in the present experiment, the liquid phase is upward flow 
which has a strong shear and it is also a slightly contaminated by surfactant to obtain 
mono-dispersed spherical bubbles by preventing the bubble coalescence. Under this 
condition with surfactant, the tangential stress at the gas-liquid interface resulted from 
Marangoni effect is not negligible and the boundary condition on the interface can be 
treated like intermediate state between rigid particle and clean bubble. This effect gives 
the smaller rising velocity and end up with more spherical shape even if the bubble size 
is nearly the same as that of clean bubble. Therefore, there are differences between our 
experiment and experiment conducted by Zenit et al. and our experimental system will 
not be used for the comparison with the potential flow theory. 

To investigate the effect of added 3-pentanol on the fully developed turbulent 
channel flow, the streamwise mean velocity and turbulent fluctuations were measured 
for the single-phase flow by the LDV system. The mean velocity profiles in 
single-phase flow at Reτ=147, which corresponds to Reb=4100, both with and without 
20ppm of 3-pentanol are compared. The results are also compared with the law of the 
wall and that of DNS (Direct Numerical Simulation) at nearly the same Reynolds 
number based on the wall friction velocity, which is Reτ=150 (Kasagi  et al., 1992). 
Regardless of the addition of 3-pentanol, the present results show an excellent 
agreement with the law of the wall and the DNS result. The turbulent fluctuations 
normalized by the wall friction velocity are also in good agreement with DNS result in 
both x- and y-directions, regardless of the addition of 3-pentanol. Thus, the comparison 
with DNS data confirms that the measuring system is reliable. And through the 
comparison of the results with and without 3-pentanol, the effect of the added 
3-pentanol to the single phase turbulence flow is negligibly small. 



 
Numerical Method 

Numrerical simulations were also conducted to investigate the effect of adsorption / 
desorption kinetics of surfactant to the lift force acting on bubbles.  
    The physical model is the same as Cuenot et al.(2005). Their simulations are for 
axisymmetric flow. We have employed the same model for the three dimensional flows, 
which is the flow around a spherical bubble in a simple shear flow. Governing equations 
are given as follows. 
Equation of continuity for incompressible Newtonian fluid, 

    0 u ,              (1) 
The incompressible Navier-Stokes equations, 

21
p 


     u u u                         (2) 

The concentration balance equation in liquid phase, 
2c D c  u ,                            (3) 

and that on bubble surface, 

   2
s s s s

D D c       u n ,              (4) 

where, n represents the normal unit vector on surface. The second term of the right-hand 
side of equation (4) represents the mass flux from the liquid phase to surface. When the 
ad/desorption kinetics is assumed to obey the Langmuir-Hinshelwood (L-H) kinetics 
(Chang, & Franses 1995), the mass flux at the bubble surface can be estimated by the 
following L-H equation, 

   1ad s dess
max

D c k c k
 


 
      

 
n .             (5) 

Then the reduction of surface tension by the surfactant adsorption is given by the 
Frumkin equation, 

0 ln 1G
max

R T
  


 
   

 
,                  (6) 

and the Marangoni stress on surface is given by, 

G
s s
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R T 
 

     


t τ t t ,               (7) 

where t is the unit vector in the tangential direction. Equation (7) means that the 
gradient of surface concentration gives the shear stress (Marangoni stress) on bubble 
surface, and it yields the decrease of surface velocity. The flow far from a bubble (r = 
R∞) converges to a simple shear flow as shown in Figure 4, 

 0  xU y   u e .                       (8) 

The dimensionless form of equations (2)-(5), (7) and (8) are written as follows using the 
characteristic scales U0, 2a, c∞ and max. 

* * * * * *2 *1
p

Re
    u u u ,              (9) 

* * * *2 *1
c c

Pe
  u ,                   (10) 

 



 
 

Fig. 4  Computational grids around a spherical 
bubble and coordinate system. Velocity field far 
from a bubble converges to a simple shear flow  
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where the superscript * indicates the dimensionless quantities. Pe = 2aU0/D and Pes = 
2aU0/Ds denote the Peclet number for mass transfer in liquid phase and on surface, 
respectively. In this paper, Ds is assumed to be the almost same value as D, and Pes = Pe. 
Sr = 2a/U0 is the dimensionless shear rate. The dimensionless adsorption length K, the 
Hatta number Ha, the Langmuir number La and the Marangoni number Ma are 
determined as follows. 
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The governing equations described above were calculated numerically with the finite 
volume method on the three-dimensional boundary-fitted grid shown in figure 3. The 
outer boundary of the computational domain R∞ was fixed at 80a, which is large enough 
to remove the domain size dependence of the solution for the bubble Reynolds number 
of 100. The computational domain was divided into 86, 87 and 32 grids in r (a ~ R∞),  
(0 ~ ) and  (0 ~ ) directions, respectively. Here, the flow around a spherical bubble is 
symmetric with respect to the (x - y) plane, thus the domain was set for  direction in 0 
≤  ≤ . 
 



Results and Discussion 
Bubble Size Distribution 
  The diameter of the bubbles injected from the bubble generator is measured by 

means of a high speed digital camera at the test section. In the case without surfactant, 
shown as “tap water”, the average diameter is about 1.5mm and the standard deviation 
is about 0.7mm that was not good enough for our ‘mono-dispersed’ requirement. To 
investigate the reason why the bubble size has a large standard deviation, we observe 
the size history of a bubble released from the needle. It is found that bubbles coalesce 
several times before they reach the test section. In the cases with low 3-Pentanol 
concentration (21ppm ~ 32ppm), the bubble size profiles have double peaks around 
0.9mm and 1.1mm. The second peak reflects coalscent bubbles and disappears in the 
case with high concentration (63ppm). A number of coalescent bubble is not so much in 
each 3-pentanol solution, the average diameter is about 0.9mm with a standard 
deviation of 0.1mm. In 2ppm Triton X-100 solution, generated bubble size becomes a 
little bit bigger compared with the case of 3-Pentanol solution and its average diameter 
is about 1mm with a standard deviation of 0.1mm. In this case, bubbles do not coalesce. 
From this result, the bubble size profile satisfies our ‘mono-dispersed’ requirement quite 
well by the addition of small amount of surfactant. 
 
Surfactant Effect on Bubble Clustering Behaviour 
  Through the experiments, it is found that there is a relationship between the spatial 

distribution of the bubbles and the bulk concentration and the species of the surfactant. 
Fig.5 shows the bubbly flow without surfactant and Fig.6 shows the dependence of the 
surfactant concentration. The bulk Reynolds number is 8200 and the air flux rate is 
fixed at 1.4 l/min (the void fraction is about 0.6%, but it differs in each case). 
3-Pentanol is used as a surfactant and its volumetric concentration changes from 21ppm 
to 168ppm to the whole volume of the liquid-phase. The photographs on the left side are 
the ‘front view’ of the channel (x-z plane) and the right side are the ‘side view’ (x-y 
plane). 

In all cases, 3-pentanol injection avoids the coalescence of bubbles and 
‘mono-dispersed’ 1mm bubbles are obtained. Although, two characteristic changes can 
be seen with the increase of the 3-pentanol concentration. One is a change of the 
tendency of the bubble migration toward the wall. Under the condition of the low 
concentration (21ppm and 42ppm), the bubbles strongly accumulate near the wall (Fig.6 
(a) (b), side view). However, further increase of the concentration made this 
accumulation disappear as shown in the side view of Fig.6 (c). That is to say, the 
tendency of the bubble migration toward the wall becomes weaker with the increase of 
the concentration of 3-pentanol beyond certain concentration. The other change arises 
on a number density of the bubbles. The number density of the bubbles gradually rises 
with the increase of the concentration of 3-Pentanol. This is because the rising velocity 
of the bubble becomes smaller due to the increase of the drag on each bubble originated 
in so called Marangoni effect. More details on this Marangoni effect to the bubble 
motion is discussed in the next section. 

The relation between the bubble cluster in the vicinity of the wall and the 
concentration of the 3-pentanol is shown in the ‘front view’ photos. In the present study, 
the most notable bubble clusters are observed in the case of 42ppm. (Fig.6 (b)). Fig.7 
shows the bubbly flow in 2ppm Triton-X100 solution. Triton-X100 is the surfactant  



      
Fig.5 Photographs of bubbly flow without surfactant (Reb=8200, the average void 
fraction of about 0.6%). Left; front view, Right; side view. 

 

    
(a) 21ppm 3-Pentanol 

 

    
(b) 42ppm 3-Pentanol 

 

    
(c) 168ppm 3-Pentanol 

Fig.6 Photographs of bubbly flow with a variation of the surfactant concentrations 
(3-Pentanol, Reb=8200, air injection with the constant flux rate and the average void 
fraction of about 0.6%). Left; front view, Right; side view. 
 

    
Fig.7 Photographs of bubbly flow with 2ppm Triton-X100. (The other conditions are the 
same as in the case of Fig.4 and Fig.5.) Left; front view, Right; side view. 
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which has heavier molecular weight compared with 3-Pentanol. It can cause a stronger 
Marangoni effect with the small amount of solution. It is shown that the bubbles 
distribute uniformly across the channel. There is no bubble cluster appeared in this case 
because the bubbles do not migrate and accumulate near the wall. 

 
Surfactant Effect on Bubble Motions 

    One of the most important surfactant effects on a bubble motion is Marangoni effect 
(levich1962), that is, the shear stress on the bubble surface is produced by the 
non-uniform surfactant adsorption. Regarding to this phenomenon from a continuum 
scale point of view, a surface velocity becomes lower and the drag on the bubble 
increases. That is to say, the Marangoni effect changes the boundary condition on the 
bubble surface from free-slip to no-slip. Fig.8 shows experimental results for the drag 

coefficient( 2 21

2D DC F U a    
 

) of a nearly spherical bubble in quiescent liquid. Reb is a 

bubble Reynolds number and is defined using the bubble diameter and the relative 
velocity of a bubble. In 3-pentanol solution, the bubble takes the intermediate value of 
CD between the clean bubble and the rigid sphere. Increasing the concentration of 
3-pentanol, drag coefficient increases from that of free-slip to no-slip. In the case of 
Triton X-100 solution of 2ppm, CD is almost the same as that of rigid sphere. Takagi et 
al. (2004) conducted experiment and numerical simulation of single bubble and 
evaluated quantitatively the surface velocity of the rising bubble in quiescent liquid with 
surfactant solution. It was shown that, in 3-Pentanol of 4-150 ppm solutions, the surface 
velocity takes an intermediate value between in the case of free-slip condition and 
no-slip condition. On the other hand, in Triton-X100 of only 0.9ppm solution, it was 
shown that the surface becomes totally no-slip and can be regarded as that of rigid 
particle. From these results, it is expected that the bubbles in 3-Pentanol solutions have 
half-slip surface and the bubble in Triton X-100 solution has almost no-slip surface in 
the present experiment. 

Next, we discuss how this Marangoni effect can affect the lateral migration toward 
the wall. It is explained as follows. Numerical studies on the lift force on a spherical 
bubble (Legendre and Magnaudet (1998)) and on a rigid sphere ( Kurose and 
Komori(1999)and Bagchi and Balachandar (2002) ) in a viscous linear shear flow was 

conducted. Those results are shown in Fig.9. CL is calculated as 34

3L LC F a U   
  

 
, 

following Auton’s expression. Sr denotes non-dimensional shear rate which is the ratio 
between the velocity difference across the bubble and the relative velocity.  

 In the present experimental conditions, bubble Reynolds number(Reb) is about 100, 
and the fully contaminated bubble such as the one in Triton X-100 solution can be 
regarded as a rigid sphere. In this condition of Reb=100, the lift force on a spherical 
bubble is more than 10 times larger than that on a rigid sphere. And, the lift force 
coefficient for rigid sphere can be a slightly negative value, which corresponds to the 
effect of the lateral migration toward the center. Therefore, under this condition, the lift 
coefficient of the rigid sphere is considerably less than that of the clean bubble. In the 
case of 21ppm 3-pentanol solution, it might be expected that the lift coefficient takes an 
intermediate value and it decreases as the surface condition approaches to the no-slip 
condition due to the increase of the concentration. In the case of 2ppm Triton X-100 
solution, the lift coefficient may become the same as that of rigid sphere. 



Related to this point, Fukuta et al.(2005) simulated the shear-induced lift force with 
stagnant cap model of a bubble moving in a simple shear flow. They assume the 
stagnant cap c , below which free-slip (tangential stress free) condition is imposed on 
the bubble surface and beyond which no-slip condition is imposed. Their results are 
shown in Fig.10 for the drag coefficient and also for lift coefficient. It is shown that, 
with the decrease of cap angle (free-slip region on a bubble surface), CD increases and 
CL decreases. This decrease of the lift coefficient seems to be the main reason why the 
tendency of the lateral migration of bubbles toward the wall disappears with the 
stronger Marangoni effect. 

    Here, we further investigate the more detail analysis with the adsorption/desorption 
kinetics of surfactant taken into account. Using the numerical method explained in the 
previous sections, we have conducted the numerical simulations of a bubble rising in a 
simple shear flow of surfactant aqueous solution. Fig.11 and 12 shows the result of 
Langmuir number dependence of CD and CL, respectively. It has been shown by Takagi 
et al.(2004), that the Marangoni effect is strongly related to Langmuir number. That is, 
if the surfactant is not easy to desorb from bubble surface, they take a larger Langmuir 
number and shows a stronger Marangoni effect.  

From Fig. 11, it is found that CD becomes larger from the value for a clean bubble 
(Legendre & Magnaudet 1998) to that for a rigid sphere (Mei 1993) with the increase of 
La. This gives the reduction of rising speed of bubbles in surfactant solutions confirmed 
by previous experimental studies (Zhang & Finch 2001, Takagi et al. 2003). When La is 
so large (= 1.12x10-1) that the bubble surface is contaminated sufficiently, CD of bubble 
reaches the value for the rigid particle. On the other hand, CL decreases from the value 
for a clean bubble calculated by Legendre & Magnaudet (1998) when La increases as 
shown in Fig. 8. At the numerical condition of this study, the dependency of CL on La 
began appearing at the region of La ~ O(10-3), and CL reached almost zero at La = 
4.48x10-2. When we set larger La, CL became negative value, CL < 0, which was already 
discussed in Fig.9. To analyze these changes of forces on bubbles, the contributions of 
pressure to the drag coefficient CDP, to the lift coefficient CLP, normal viscous stress to 
the drag coefficient CDV, to the lift coefficient CLV are plotted in Fig.11 and 12. Note that 
CDP + CDV equals CD and CLP + CLV equals CL. For the drag force on bubbles shown in 
Fig.11, CDP and CDV contribute comparably at each La number and show the similar 
dependency on La. Thus it is found that both the pressure and viscous contribution 
become important to the drag force. However, for the lift force shown in Fig.12, CLP 
contributes more significantly than CLV at low La, where the large lift force acts on the 
bubble. This means that the lift force on bubble is dominated by the inertia effect in the 
condition of this calculation. In the case of a clean bubble, Legendre & Magnaudet 
(1998) showed that CLP contributes to CL dominantly and the inertia effects affect 
significantly to the lift force in the range of Re > 50. For the viscous contribution to the 
lift force on a clean bubble, they displayed that CLV takes small negative value, and it 
contributes only a few percent to CL at high Reynolds number. In contrast, for a 
contaminated bubble, CLP decreases while CLV changes little with the increase of La and 
the contamination of the bubble surface. At high La number, where the negative lift 
force acts on a contaminated bubble, CLP reaches almost zero and the viscous 
contribution to the lift force becomes dominant at Re =100 and Sr = 0.2. 

 The lift force is greatly affected by the slip velocity of the gas-liquid interface, 
depending on the surfactant species and their amount. That is, as the free-slip condition 



approaches to the no-slip condition by the addition of the surfactant, the lift force acting 
on the bubble decreases and approaches to that on a rigid sphere which has much 
smaller lift coefficient. This is one of the reason why the tendency of bubble migration 
weaken with the increase of concentration of 3-Pentanol or in Triton-X100 solution. 
Otherwise, factors, such as an effect of the wall and turbulence, should be taken into 
consideration, it is certain that shear-induced lift force plays important role about bubble 
migration. 

 
 Fig.8  Surfactant dependence on the drag coefficient CD as a function of bubble 
Reynolds number Reb. 
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Fig.9 Lift coefficient CL for a rigid sphere (Kurose & Komori 1999, Bagchi & 
Balachandar 2002) and clean bubble (Legendre & Magnaudet 1998). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: Drag coefficient CD (left) and lift coefficient CL (right) for stagnant cap bubble 
in simple shear flow at Reb=100. ( Fukuta et al.(2005) ) 



 
 
 
 
 
 
 
 
 
 
 
 

Fig.11  The plot of CD of a bubble versus La. 
(Line(1): clean bubble (Legendre & Magnaudet 1998),  Line(2): rigid sphere (Mei 1993).) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  The plot of CL of a bubble versus La. 
(Line(1): clean bubble (Legendre & Magnaudet 1998).) 

 
Conclusions 

The effect of surfactants to the upward bubbly channel flow has been introduced. By 
adding a small amount of 3-pentanol or Triton-X100 as surfactant, small spherical 
bubbles of mono-dispersed 1mm diameter were successfully obtained. The experiments 
were conducted under the condition of bulk Reynolds number of 8200 and average void 
fraction of less than 1%. It was found that the addition of the surfactant affects the 
whole bubbly flow structure. And the structure was drastically changed by changing the 
bulk concentration or the species of surfactant.  

Under the condition of about 10-100 ppm concentration of 3-pentanol, small bubbles 
tend to accumulate near the wall and slide up along the wall. These accumulated 
bubbles near the wall form the horizontal bubble clusters of about 10-40mm in size in 
spanwise direction, which has a thin crescent-like shape. The average cluster size is 
much bigger than well-known coherent vortical structure in turbulent boundary layer. 
This fact indicated the drastic modification of turbulent flow structure. Interestingly, 
the increase of 3-pentanol concentration or the change of surfactant to small 
amount(2ppm) of Triton X-100 drastically change the whole bubbly flow structures. 
Under these conditions, bubble clusters are totally disappeared and lateral migration of 
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bubbles toward the wall is no longer observed. 
Numerical analysis was also conducted related to the effect of surfactant on a 

single bubble motion in a simple shear flow. It was shown that Marangoni effect due to 
the surfactant adsorption on bubble surface gives the drastic change of the lift force 
acting on 1mm size bubbles. This change of lift force gives the different tendency on the 
lateral migration of bubbles toward the wall. That is, slightly contaminated bubbles can 
feel the Auton’s-like lift force and migrate toward the wall. This end up with the 
formation of bubble clusters near the wall. On the other hand, fully contaminated bubble 
cannot feel the lift force and they disperse uniformly across the channel without forming 
bubble clusters. 

As is shown here, small amount of surfactant gives a drastic effect to the mutiscale 
structure bubbly flows. That is, surfactant affects the small scale behaviour of each 
bubble and then this change of bubble behaviour ends up with the large scale change of 
whole bubbly flow structures. 
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Abstract 

In this article, we introduce recent activities of multiscale polymer modeling aimed for 

material design in industry. To design the polymer material with expected properties, 

we need to predict polymer structure, and study the relation between the structure and 

properties. However, polymer structure is hierarchical, and has a wide range of length 

scale and time scale. Thus, multiscale and hierarchical modeling are necessary to apply 

computational simulation to polymer material design. OCTA had been developed for 

such a hierarchical polymer modeling. OCTA includes several simulation programs, 

which are based on different physical model, and focus on different length scale and 

time scale. Some studies of hierarchical modeling of polymer have been conducted using 

OCTA. We describe an overview of OCTA, and an example of the study of the structure 

and mechanical properties of the interface of polymer blends.  

 

1. Introduction 

 Polymer materials such as plastics, rubber, film and fiber are widely used for 

industrial products. Not only conventional bulk materials, polymer materials are also 

used in many high-tech materials such as electric devices, battery and artificial organ. 

Various kinds of function are required for such polymer products. For example, 

mechanical properties such as modulus and strength are important for construction 

materials, and electrical and optical properties such as dielectric constant and reflective 

index are important for electric devices and optical films. Since such functions and 

properties are controlled by the structure of polymers, main objective of polymer 

material design is to design the structure of polymers and to predict the properties of 

the materials from the structure. 

 However, the structure of polymers includes very wide range of length scale and 

time scale. Figure 1 shows examples of various polymer structures. Chemical structure 

of monomer unit is a finest structure of polymers. The topological structure of polymer 

chain is not simple. Not only linear chains, some polymer molecules have branched 

structure, and the length of chains corresponding molecular weight is not the same, and 

has a distribution even in same polymer products such as polyethylene, polystyrene and 

so on. In addition to the molecular structure, crystalline structure and phase separated 



structure are examples of higher order structure. Furthermore, crystal structure itself 

has a hierarchical structure, i.e. atomic coordinate in crystalline lattice is the finest 

crystal structure, and lamella, shish kebab and spherulite structure are higher order 

crystal structure. Since the polymer structure includes such a wide range of scale, multi 

scale and multi physics modeling is necessary to design polymer materials. 

 

 

 

 Furthermore, various simulation methods are necessary to study such a 

hierarchical structure and many kinds of functions and properties of polymer materials. 

For examples, quantum physics and chemistry are needed to study electrical and optical 

properties. Molecular dynamics simulation will be applied to study bulk structure of 

polymer. However, since polymer chain has a large molecular weight and long time scale 

of dynamics, it is hard to apply conventional molecular dynamics simulation to realistic 

polymer system even though using powerful computational hardware. Thus 

coarse-grained models are also needed to study higher order polymer structures. 

 OCTA (Open Computational Tool for Advanced material technology) 1  is a 

simulation platform aimed for covering such a wide range of polymer structure. The 

OCTA was developed in a national project of Japan, and then the OCTA was opened for 

Figure 1 Example of polymer structure  



the public after the project finished. From the release of the first version of OCTA in 

April 2002, it has been maintained by many collaborators, and the researchers in more 

than 1000 sites have become the users. 

 We will introduce the overview of OCTA in the following section and an example of 

hierarchical modeling to study of structure and mechanical properties of the interface of 

polymer blends. 

 

2. Overview of OCTA 

 The concept of OCTA is shown in Figure 2. The OCTA contains several simulation 

programs (engine) and user interface (platform). Each engine is based on different 

physical models, and covers different length scale and time scale. Furthermore, 

collaborative operations between engines are conducted to obtain realistic structures 

and properties of soft materials.  

 

  Figure 3 shows computational programs in OCTA. OCTA originally contains four 

engines, COGNAC, PASTA, SUSHI and MUFFIN, and a graphical user interface, 

GOURMET. The overview of each engine is shown in the following. 

 

2.1. COGNAC (COarse Grained molecular dynamics program by NAgoya Cooperation)2 

 COGNAC is a general purpose coarse-grained molecular dynamics (MD) program, 

which focus on the structure and dynamics of polymer chains. Using coarse-grained 

model, realistic length of polymer chains can be put into the simulation system, and 

some multiphase structures such as nano-composites and micro phase separated 

structure of block copolymers can be studied. Figure 4 shows example of multiphase 

Figure 2. The concept of OCTA Figure 3. Computational programs 

in OCTA 



structures studied by COGNAC. 

 

 

2.2. PASTA (Polymer rheology Analyzer with Slip-link model of enTAnglement)3 

 PASTA is based on slip-link model, and predicts the viscoelastic properties of 

polymer melts. A unit of length scale of coarse-graining is entanglement length, which 

typically have molecular weight from 1,000 to 10,000. With this highly coarse-grained 

model, we can predict viscoelastic properties, such as storage modulus G’, loss modules 

G” and steady state viscosity η, of realistic molecular weight and molecular weight 

distribution.  

 

2.3. SUSHI (Simulation Utilities for Soft and Hard Interfaces)4 

 SUSHI is a tool for predicting self-assembly structures such as micro phase 

separation of block copolymers, interfacial structures of polymer blends and structures 

of micelles. SUSHI is based on mean field theory and topology of polymer chain is 

described by path integral. SUSHI output equilibrated fields of polymer segment 

density by iterative calculation of self-consistent filed (SCF). Dynamics of density field 

also can be obtained by solving diffusion equation. Figure 5 show examples of the output 

of SUSHI. 

 

(a) (b) 

Figure 4. Examples of multiphase structures studied by COGNAC, (a) 
polymer-clay nano composite (b) micro phase separated structure of diblock 
copolymer. Scales in figures show typical values, and depend on the 
coarse-graining method.  



 

 

2.4. MUFFIN (MultiFarious FIeld simulator for Non-equilibrium system) 

 MUFFIN is a tool for multi-phase structure such as phase separation of polymer 

blends, suspensions and emulsions. MUFFIN has modules both for fluids and solids. 

Fluid modules of MUFFIN can handle phase separation of polymer blends, dynamic of 

droplet in fluids with taking fluid dynamics and electrostatic interaction into account. 

Solid modules calculate linear elastic behavior of complex multi-phase morphology 

using finite element method. 

 

3. Example of hierarchical modeling5,6 

 An example of hierarchical modeling is shown in this section. Coarse-grained MD 

simulation and SCF calculation has been conducted to examine the structure and 

strength of a polymer interface reinforced with block copolymers. We studied the 

interface of A-homo/AB-diblock/B-homo polymer systems. Since the time scale of 

polymer chain dynamics is very long, it’s difficult to obtain the equilibrated interfacial 

structure even by the coarse-grained simulation. Thus, we developed original algorithm, 

the density-biased Monte Carlo method2, in which equilibrated morphologies are 

obtained by the SCF calculation, then the initial configurations of polymer chains for 

(a) 

(b) 

Figure 5 Examples of the output of SUSHI, (a) equilibrated 
morphology of diblock copolymers at various ratio of block length, (b) 
dynamics of the phase separation of polymer blend. 



coarse-grained MD are generated from the obtained density distribution of each 

segments. Figure 6 shows density profile of A100/B100 blend and A100/A50B50/B100 

blend (numbers after bead type A and B correspond to a number of beads in a chain) 

obtained from the SCF calculation, and Figure 7 shows snapshot structures of 

coarse-grained MD which correspond to the results of SCF calculation. 

 

 
 

   
 

 Stress-strain behavior was studied by elongating the unit cell during the 

coarse-grained MD simulation. Figure 8 shows an example of stress-strain curve and 

snapshot structure at specified strain. In this system, the fracture of interfaces was 

observed at around 4% strain.  

Figure 6 Density profile of each segment type, (a) A100/B100, (b) 
A100/A50B50/B100. 

(a) (b) 

Figure 7 Snapshot structure of the interface of polymer blends, (a) A100/B100, (b) 
A100/A50B50/B100. 

(a) (b) 



 

 The fracture energy was calculated by integrating the stress during elongation 

until the interfaces were completely separated. Figure 9 shows the fracture energy as a 

function of surface density of block copolymers.  

 We found that the fracture energy was proportional to the volume fraction of block 

copolymer until the interface was saturated with block copolymers. Figure 10 shows the 

interfacial energy as a function of the length of shorter block of copolymers, which is 

pulled out from the homopolymer phase. The fracture energy was proportional to the 

square of the length of the shorter block of the copolymer. These results were consistent 

with experimental results7 and theoretical predictions concerning the “pull-out” region8, 
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Figure 8 Stress-strain curve of the interface of polymer blend with diblock 
copolymer (A120/A120B30/B120) system. Inserted picture is snapshots at 
specified strain. 

Figure 10 Fracture energy as a 
function of the length of shorter block.
 

Figure 9 Fracture energy as a function 
of surface density of diblock 
copolymer. 



where one block of diblock copolymers was short enough not to become entangled. 

 

4. Summary and current problems to be solved 

 The OCTA project was thought to be succeeded as a first step of multiscale 

modeling of polymer materials. However, we still need to enhance the science and 

technology to conduct multiscale modeling, which truly contributes the polymer 

material design in industry. We show some examples, which are current problems to be 

solved in the field of polymer modeling in the following; 

 

(1) Large scale computing 

Even though we use coarse-grained model, we still need large scale computing to handle 

the realistic length scale and time scale. In addition to hardware, we need effective 

software such as massively parallelized code running on high performance hardware. 

 

(2) Effective coarse-graining 

Coarse-graining usually loses the chemical details. However, the industrial researches 

often require the detail of chemical structure for material design. Thus we need more 

general and quantitative coarse-graining method to reproduce the structure and 

properties of materials originated from chemical structures. 

 

(3) Quantitative analysis of complex morphology 

Self-assembly structure shows complex morphology especially in the case of complex 

and non-equilibrated system. We need quantitative analysis for such a complex 

morphology to study the relation between structures and properties. 

 

(4) Boundary conditions for multi scale modeling 

When we try to connect two computational model of different length scale, it’s always 

problem how to transfer the boundary condition of small system to large system 

especially in the case of particle model. Periodic boundary condition is a simple 

boundary condition. However, we can’t directory put small systems with periodic 

boundary condition into large system, which has gradient of fields in a large scale. 

 

We belieave that many of the problems are not pecific for polymer materials, but also for 

general computatioal simulation and mathematical science. Thus, we hope that we 

would make progress to overcome the peoblems with the collobaration of physics, 

chemistry and mathematical science. 
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Abstract

Multiscale hierarchy is intrinsic in collsionless plasmas, where various kinetic effects
having their own scales play important roles. Gyrokinetics and the gyrokinetic code
AstroGK are introduced to study multiscale phenomena in plasmas. An application of
the gyrokinetic simulation using AstroGK to magnetic reconnection as an example of
multiscale phenomenon is discussed.

1 Introduction

Plasmas observed in fusion experiments or in wide varieties of astrophysical situations such
as the galaxy clusters, the interstellar medium, the solar corona, solar winds, the Earth’s
magnetosphere are typically in high temperature or in low density. Since collisions can be
rare in such plasmas, deviations from thermal equilibrium can be maintained relatively long
times. In thermally non-equilibrium plasmas, effects due to particle pictures of plasmas called
kinetic effects play crucial roles on plasma dynamics. Examples of the kinetic effects include
inertia of ions and electrons having intrinsic scales of inertial skin depths, and finite Larmor
radius (FLR) effects of ions and electrons. These effects usually generate fine structures in
velocity space, therefore enhance dissipations due to collisions even though collisionality is
considered to be low.

Nonlinear phenomena in kinetic plasmas usually exhibit multiscale structures where var-
ious kinetic effects working at their intrinsic spatial scales are inter-related. The gyrokinetic
approach is well-suited to study kinetic dynamics of plasmas. Gyrokinetics is a limit of ki-
netic model that describes the low-frequency dynamics of weakly collisional plasmas. It is
derived by averaging the kinetic Vlasov-Landau equation and Maxwell’s equation over the
fast cyclotron motion, thus it omits the fast MHD waves, the cyclotron resonance, but retains
FLR effects, and collisionless wave-particle interactions via the Landau resonance.

The theoretical foundation of gyrokinetics has been developed extensively over the past
four decades, and gyrokinetics is now broadly employed for numerical studies of turbulence
driven by microinstabilities in laboratory plasmas. It has also been recently recognized
that the gyrokinetic approach is appropriate for the study of astrophysical plasmas. Taking

∗E-mail: numata@sim.u-hyogo.ac.jp.
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advantage of the knowledge and computational techniques developed in the simulation of
turbulence in fusion plasmas, we have developed a gyrokinetic simulation code, AstroGK [1],
specifically for the study of astrophysical problems and basic properties of plasmas.

In this paper, we first present our approach to study multiscale phenomena in plasmas:
gyrokinetics and gyrokinetic simulation using AstroGK. AstroGK has already proven its use-
fullness in a number of studies. Among others, we show our recent result on the tearing
instability as a typical example of multiscale phenomena in plasmas even though the result
is still in preliminary linear stage.

2 Gyrokinetics and AstroGK

In this section, we present the gyrokinetic-Maxwell (GK-M) system of equations solved in
AstroGK, and brief overview of the code.

We first assume that scale separations in space and time are well satisfied such that small
fluctuations are locally embedded in a background plasma which is slowly varying spatially
and temporally. We consider a temporally constant mean magnetic field B0 = B0b̂0. In the
presence of a mean magnetic field, we can adopt the gyrokinetic ordering and average over the
fast cyclotron motion to reduce the Vlasov–Maxwell equations to the GK-M equations; see
Howes et al. [2] and Schekochihin et al. [3] for derivations of these equations expressly intended
for the study of astrophysical plasmas. We also assume spatially uniform background for the
sake of simplicity.

Under the gyrokinetic ordering, the distribution function of particles up to the first order
is given by

fs =

(
1− qsϕ

T0s

)
f0s + hs, (1)

where s = i, e (stands for ions and electrons) is the species label, f0s = n0s/(
√
πvth,s)

3 exp(−v2/v2th,s)
is the zeroth-order, equilibrium Maxwellian distribution function. The first-order part of the
distribution function is composed of the Boltzmann response term, and the gyro-center dis-
tribution function hs defined in the gyro-center coordinate (Rs,Vs) where the coordinate
transform is given by

Rs =r +
v × ẑ

Ωs

, Vs =v. (2)

Upon averaging over the gyro-phase, the gyrokinetic equation evolves hs = hs(Xs, Ys, Zs, V∥,s, V⊥,s, t):

∂hs

∂t
+ V∥,s

∂hs

∂Zs

+
1

B0

{
⟨χ⟩Rs

, hs

}
=

qsf0s
T0s

∂⟨χ⟩Rs

∂t
+ C(hs), (3)

where parallel and perpendicular subscripts refer to directions with respect to the mean
magnetic field. The gyrokinetic potential is given by χ = ϕ− v ·A, and the linear collision
term is represented by C(hs). The angle bracket ⟨ · ⟩Rs denotes the gyro-average at fixed
gyro-center coordinate Rs:

⟨F (r)⟩Rs =
1

2π

∮
F

(
Rs +

Vs × Ẑ

Ωs

)
dΘs, (4)
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where Vs = (V⊥,s, V∥,s,Θs). (The gyro-average at fixed particle coordinate ⟨ · ⟩r can also be
defined by switching roles of r and Rs.)

In the GK-M system, the electromagnetic fields are specified by the three scalar functions
ϕ(r, t), A∥(r, t), and δB∥(r, t)

1 according to:

B =∇⊥A∥ × ẑ + δB∥ẑ, E =−∇ϕ− ∂A

∂t
. (5)

Maxwell’s equations in the gyrokinetic limit reduce to the quasi-neutrality condition, and the
parallel and perpendicular components of Ampère’s law:∑

s

[
−q2sn0s

T0s

ϕ+ qs

∫
⟨hs⟩rdv

]
= 0, (6)

−∇2
⊥A∥ = µ0

∑
s

qs

∫
⟨V∥,shs⟩rdv, (7)

B0∇⊥δB∥ = −µ0∇⊥ ·
∑
s

∫
⟨mV⊥,sV⊥,shs⟩rdv. (8)

We refer the reader to [4] for the explicit form of the collision operator used in the code, as
it has a rather cumbersome form. We mention here the basic properties of the operator. The
operator is based on the linearized Landau collision operator transformed into the gyro-center
coordinate. It has second-order velocity derivatives providing diffusion in velocity space and
conserving terms which include integrations over velocity space. It is constructed to satisfy
Boltzmann’s H-theorem and the conservation of particles, momentum, and energy. It contains
both like-species collisions and inter-species collisions, but the inter-species collisions account
only for the collisions of electrons with one species of ions with large mass. Note that the
linearized collision operator for a given species can be made independent of the first-order
evolution of any other species. The theoretical basis of the collision operator is discussed in
detail in [5].

AstroGK is a Eulerian initial value solver for the GK equation in five-dimensional phase
space. It employs a pseudo-spectral algorithm to discretize the gyrokinetic equation in the
spatial coordinates (x, y), an upwind finite-difference scheme in the z direction. Velocity
space integrals in two dimensional velocity space are calculated using Gaussian quadrature
rules. Time integration is made using the 3rd-order Adams-Bashforth for the nonlinear
term. The linearized collision operator is treated by the first-order implicit Euler scheme
with Sherman-Morrison formula for the moment-conserving corrections.

AstroGK is parallelized using MPI, and shows good parallel performance on various cutting
edge supercomputers. Parallel performance is measured by taking the weak and strong
scalings. The weak scaling is probed by holding the computational work per processing core
constant while the number of cores, thus the total problem size, is increased. On the other
hand, the strong scaling is probed by holding the problem size constant while the number
of processing core is increased. Boths tests are performed on Kraken Cray XT5 system at
the National Institute for Computational Sciences at the University of Tennessee. Kraken

1δB∥ = (∇⊥ ×A⊥)z. We use the Coulomb gauge, which leads to ∇⊥ ·A⊥ = 0 with the ordering. Then,
we can write A⊥ = ∇⊥ς × ẑ, and δB∥ = −∇2

⊥ς in terms of a single scalar function ς.
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consists of 8256 computer nodes each having 12 processing cores, resulting in 99,072 compute
cores in total.

Figure 1 shows the weak and strong scalings. From the weak scaling result, we observe
that AstroGK follows the ideal scaling until the number of processors (Nproc) equals to 12,288
with slight degradation of performance due to the increase of communication forNproc > 1000.
From the strong scaling, we also observe the ideal scaling up to Nproc = 24, 576. Significant
performance loss occurs only at Nproc = 49, 152.

Figure 1: Parallel performance scaling of AstroGK on Kraken Cray XT5 system at NICS, the
University of Tennessee. The left panel shows the weak scaling, and the right panel shows
the strong scaling. Nearly ideal scalings are observed up to 10, 000 ∼ 20, 000 processors.

3 Magnetic reconnection as an example of multiscale

phenomena

The tearing instability is important in magnetic fusion devices, where it drives the formation
of magnetic islands that can significantly degrade heat and particle confinement. Solar flares
and substorms in the Earth’s magnetosphere are some of the many other contexts where
tearing plays a crucial role, includeing magnetic reconncetion, explosive energy release, and
large-scale reconfiguration of the magnetic field.

The evolusion of the tearing instability critically depends on the relationship between the
width of the current layer, δ, where the frozen-flux condition breaks down and reconnection
takes place, and the length scales characteristic of kinetic or non-magnetohydrodynamic
(MHD) effects, such as the ion and electron skin-depth, di and de, the ion sound Larmor
radious, ρSe, and the ion and electron Larmor radii, ρi and ρe. For, sufficiently large electron-
ion collision frequency, νe, the width of the reconnection layer well exceeds all of these non-
MHD scales and the mode is expected to be well described by resistive MHD theory [6]. In
many plasmas of interest, however, this is not the case: a decrease in the collisionality of the
plasma leads to a decrease in the resistivity, causing the current layer width to shrink until
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it reaches or falls below the largest relevant non-MHD scale.

3.1 Problem setup

We set up an initial sheared magnetic field

B = B0ẑ +Beq
y (x)ŷ (9)

where B0 is the background magnetic guide field and Beq
y is the in-plane, reconnecting com-

ponent. A super-imposed perturbation onto the equilibrium magnetic field will grow because
of the tearing instability.

We scan in collisionality and use the Sptizer’s formula to calculate the plasma resistivity
η, recast in terms of the Lundquist number, S = µ0aVA/η = 2.63(νeτA)

−1(de/a)
−2, where VA

is the Alfvén velocity corresponding to the peak value of Beq
y and τA ≡ a/VA is the Alfvén

time. Other relevant quantities are:

ρi = τ 1/2ρSe
√
2, di = β−1/2

e ρSe
√
2,

ρe = σ1/2ρSe
√
2, de = β−1/2

e σ1/2ρSe
√
2.

(10)

σ ≡ me/mi, τ ≡ T0i/T0e, βe ≡ n0T0e/(B
2
0/2µ0), ρSe ≡ cSe/Ωci, cSe =

√
T0e/mi, Ωci = eB0/mi.

In addition to νe, the adjustable parameters considered here include the mass ratio σ, the
electron beta βe, ρSe/a, and τ , although the latter is held fixed at τ = 1.

We study the collisional–collisionless transition by scanning in collisionality. As νe is
decreased, the different ion and electron kinetic scales become important. Given the challenge
of clearly separating all the relevant spatial scales in a kinetic simulation, we split our study
into two sets of runs: a smaller-ρSe series (ρSe/a = 0.02/

√
2 ≃ 0.014) and a larger-ρSe series

(ρSe/a = 0.2/
√
2 ≃ 0.14). Since τ = 1 is held fixed, these two sets of runs also typically

correspond to ρi/a = 0.02 and ρi/a = 0.2, respectively.
In the former set ρe, de ≪ ρSe ≲ δ ≪ a; in this case the frozen-flux condition is broken

by collisions alone, and since δ well exceeds the collisionless electron scales ρe, de, such
scales need not be resolved in the simulations. The ion response, on the other hand, is
predominantly collisional (δ > ρSe) at the smallest considered values of S ∼ 500 but kinetic
(δ ≲ ρSe) at the largest values, S ∼ 105. Thus resistive MHD would be expected, at least
marginally, to be valid in this case at the smaller S values. In the set of runs with larger-ρSe
(ρSe/a ≃ 0.14), we again consider ρe, de ≪ ρSe ≲ a, but since ρSe/a is ten times larger than in
the previous set of runs, the ions in this second set are predominantly kinetic (δ ≲ ρSe) over
the entire considered range of S ∼ 100 − 106. Indeed, at the highest values of S, δ reaches
collisionless electron scales (de at βe ≪ 1 and ρe at βe ∼ 1), and the instability dynamics
become essentially collisionless.

In both sets of runs, we vary S over the ranges mentioned above for three different
sets of βe and σ = me/mi: [(βe, σ)=(0.3,0.01), (0.075,0.0025), (0.01875,0.000625)]. These
parameters are such that ρSe/de ≡

√
βe/(2σ) =

√
15 ≃ 3.9 is held fixed and thus, since ρSe/a

is also held fixed (at either 0.014 or 0.14), de/a is also held fixed (at either 0.0037 or 0.037,
respectively). Given the parameter dependences of di and ρe noted in (10), however, it is
seen that the values of di/a and ρe/a both change as βe and σ are varied in this manner: for
ρSe = 0.014, di = 0.02/

√
βe and ρe/a = 0.02

√
σ, while for ρSe/a = 0.14 they are ten times

larger.
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Figure 2: Growth rate and current sheet width versus the Lundquist num-
ber for ρSe/a = 0.02/

√
2 (upper figures), and ρSe/a = 0.2/

√
2 (lower figures).

Red crosses, green squares, and blue circles show gyrokinetic results for (βe, σ) =
(0.3, 0.01), (0.075, 0.0025), (0.01875, 0.000625), respectively. Red solid, green dashed and blue
dot-dashed lines are the corresponding two-fluid [7] scalings. The relevant scale lengths are
identified on the right axis of the right panel.

3.2 Simulation results

Figure 2 shows the tearing mode growth rate (γ = d logA∥/dt evaluated at the X-point)
and current layer width (full-width at half-maximum) as functions of the Lundquist number
(symbols) for τ = 1. The upper panels correspond to ρSe/a = 0.014, and the lower panels
correspond to ρSe/a = 0.14. Also plotted (lines) are the results obtained from a reduced two
fluid model [7] with an isothermal electron equation of state. This model is derived under the
assumption of low-βe, but exactly how low βe must be for the validity of this model depends
on how the various quantities in the model are ordered and is thus problem-dependent. For
the ordering assumed in [7], it is argued that βe ≪

√
σ is required — a condition that is

marginally satisfied here only for the lowest βe case, (βe, σ) = (0.01875, 0.000625). The two
fluid model is also derived under the assumption of cold ions, but the difference between the
gyrokinetic results at τ = 0 and τ = 1 is small.
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For the largest value of the collisionality, the gyrokinetic growth rates roll-over because
the current layer width is too wide to satisfy the asymptotic scale separation, δ ≪ a, assumed
in the two-fluid model tearing mode dispersion relation that is plotted in the figure. The
deviation between the gyrokinetic and two-fluid results at the lowest S values should therefore
be disregarded.

It is seen from the upper right panel that, as noted earlier, δ > ρSe for all but the largest
S values. In this case, as expected, the two-fluid model, at least at low-βe, recovers the
well-known single-fluid resistive-MHD scalings [6] and is thus independent of βe. The over-
estimation of the growth rates by the two fluid model at higher βe ∼ 0.3 is possibly due to
either a breakdown in the low-βe ordering of the fluid model or a gradual onset of kinetic
effects (e.g., the invalidity of a simple isothermal equation of state).

For the lower panels, we set ρSe/a = 0.14, and adjust νe such that δ ≲ ρSe, thus focusing
on the regime where ion kinetic effects are important. As in the previous case, we observe
better agreement between the GK and two fluid results for lower values of βe. As S increases,
the growth rate and the current layer width are less dependent on the collisionality. In this
regime, electron kinetic effects (Landau damping and even finite electron orbits: note that
for βe = 0.3, δ/ρe ≈ 2) play an role to break the frozen-flux condition instead of collisions,
thus called the collisionless regime. Since these effects are absent in the two fluid model, the
scalings do not agree for any values of βe in this regime.

4 Summary

Multiscale hierarchy is intrinsic in plasmas, and is observed in many situations of interest.
In collisionless plasmas, various kinetic effects play important roles. Our approach to such
multiscale phenomena is a gyrokinetic simulation. With the help of scale separation of
dynamics under the mean magnetic field, we can reduce the phase space dimension from six
to five using the gyrokinetic ordering, thus an accurate kinetic simulation becomes possible
though it is still computational demanding.

We have briefly discussed the gyrokinetic model and the gyrokinetic simulation code,
AstroGK, intended for studies of astrophysical plasmas and basic properties of plasmas. Then,
we have shown the recent application of the gyrokinetic simulation to magnetic reconnection
as a typical example of multiscale phenonema in plasmas. Starting from a collisional case, we
gradually introduced various kinetic effect into the phenomena and observed transition from
the collisional fluid-like case to the collisionless kinetic case by changing the collisionality
parameter.

We have only shown one attempt of understanding multiscale phenomena in plasmas by
the gyrokinetic simulation. However, there have been many studies of nonlinear gyrokinetic
simulations using AstroGK published recent years. For example, the first kinetic simulations
of turbulence describing the transition from Alfvén to kinetic Alfvén wave turbulence at the
scale of the ion Larmor radius in an attempt to understand solar wind turbulence [8, 9],
nonlinear phase-mixing properties of turbulence [10], the study of the statistical properties
of phase-space structures of plasma turbulence [11], the Alfvén wave dynamics in the LAPD
experiment [12]. We refer the readers to the listed publications for more detailed discussions.
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On the Hamilton-Jacobi Variational Formulation of the Vlasov

Equation

P. J. Morrison∗

Department of Physics and Institute for Fusion Studies,

University of Texas, Austin, Texas 78712-1060, USA.

(Dated: January 27, 2012)

The Hamilton-Jacobi formulation of Vlasov-like systems and associated action

principles, developed by the author and D. Pfirsch in a series of papers since the mid

1980s, are briefly reviewed and suggestions for their use are given.

I. INTRODUCTION

In this note we briefly review the Hamilton-Jacobi (HJ) formulation of Vlasov-like sys-

tems. This is a general formulation that applies to the Maxwell-Vlasov system and various

guiding center and gyrokinetic theories with any number of species. It applies to both non-

relativistic and relativistic versions of these theories and even to the Vlasov-Einstein system.

Indeed, it is quite general and applies to any Vlasov-like theory, but we will review it in its

simplest context of the Vlasov-Poisson system.

The formulation evolved out of early work of Pfirsch [1], but the general formulation was

first given in [2]. The HJ formulation is variational – it has in fact two action principles, and

so it provides a natural method via Noether’s theorem for obtaining unambiguous energy-

momentum tensors for general kinetic theories. These were obtained and discussed in a

sequence of papers [2–4] and this work was continued in [5, 6], where errors in the literature

were pointed out.

This note is organized as follows. In Sec. II we review the HJ theory in the context of

classical mechanics. Then in Sec. III the action principle of [2] for the general theory is

described along with a reduced version given in [7]. Finally, in Sec. IV we conclude.

∗ email: morrison@physics.utexas.edu
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II. CLASSICAL HAMILTON-JACOBI THEORY

Hamilton-Jacobi theory arises in the context of classical mechanics where it is proposed

as a means of solving Hamilton systems:

q̇ =
∂H

∂p
and ṗ = −∂H

∂q
(1)

where z := (q, p) denotes coordinates for a 2n dimensional manifold Z and H(q, p) is the

Hamiltonian function that defines the system. Equations (1) can be compactly written in

coordinates as follows:

żi = J ij
c

∂H

∂zj
(2)

where i, j = 1 . . . 2n, the repeated index is to be summed, and the matrix

Jc :=

 0n In

−In 0n

 . (3)

is the the cosymplectic form. Equations (1) can also be written as

ż = [z,H] , (4)

where [ , ] is the Poisson bracket defined on phase space functions by

[f, g] =
∂f

∂zi
J ij

c

∂g

∂zj
. (5)

The basic idea underlying Hamilton-Jacobi theory is to solve Hamilton’s equations by

changing coordinates. Under a coordinate change z ↔ z̄, Eqs. (2) become

˙̄zi = J̄ ij ∂H̄

∂z̄j
(6)

where the Hamiltonian transforms as a scalar, H(z)− H̄(z̄) and the cosymplectic form as a

second order contravariant tensor

J̄mn =
∂z̄m

∂zi
J ij

c

∂z̄n

∂zj
. (7)

Canonical transformations or symplectomorphisms, as they are commonly referred to now

when the global geometry of Z is under consideration, are those for which

J̄mn ≡ Jmn
c . (8)
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Two commonly used methods for generating canonical transformations are the Lie transform

and the mixed variable generating function (MVGF). In recent times in plasma physics the

Lie transform has been widely used, but each has their advantage. The Lie transform is a

series representation that comes from exponentiating a Poisson bracket and when this series

is truncated the canonical property is generally lost. However, the mixed variable generating

function approach does not suffer from this defect, but it succeeds at the expense of giving

an implicit form for canonical transformations, which for our purposes will be generated as

follows:

p =
∂S

∂Q
and Q =

∂S

∂P
with

∥∥∥∥ ∂2S

∂q∂P

∥∥∥∥ 6= 0 . (9)

Here z̄ = (Q,P ) are the new canonical variables, S(q, P, t) is the MVGF, ‖ ‖ denotes de-

terminant and the nonvanishing of ‖∂2S/∂q∂P‖ is a necessary condition, by the implicit

function theorem, for the transformation z ↔ z̄ to exist. If the transformation has explicit

time dependence then the new Hamiltonian does not transform as a scalar, energy not being

a covariant quantity, but is given by

H̄(Q,P, t) = H(q, p, t) +
∂S

∂t
. (10)

The strategy of HJ theory is to make H̄ so simple that trajectories in terms of (Q,P ) can be

obtained, and then the complication in the orbits is embodied in the transformation back to

(q, p). The transformation back is obtained by solving the HJ equation obtained by inserting

(9) into (10), giving
∂S

∂t
+H

(
q,
∂S

∂q
, t

)
= H̄ . (11)

This is the HJ equation for the generating function S.

Various choices for H̄ can be considered. For example H̄ ≡ 0 would mean all of the

dynamics is in the transformation back. This amounts to the use of initial conditions as

coordinates which, except in the most trivial cases, are not good coordinates because of

serious branching issues. Basically, these coordinates are not isolating, i.e., they do not define

good surfaces in Z. A more realistic choice is to choose H̄(P ), where all the configuration

space coordinates are ignorable. This amounts to seeking a transformation to action-angle

variables. It is now known that only for integrable systems do such coordinates exist, and

if the system is not nearly integrable, i.e., not near to the case where Z is foliated by

n-tori, then such coordinates do not even approximately exist. But, near to integrability,
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FIG. 1: Canonical transformation of phase space.

perturbation theory makes sense, as has been shown by KAM theory, which incidentally was

first proven in the HJ context. Thus, there are various issues with classical existence theory

of the HJ equation, tied up with small divisors, the existence of caustics, etc., which we will

not pursue.

Before proceeding to how HJ theory arises in the context of Vlasov, we mention one

more fact from mechanics that we will need, viz., Hamilton dynamics itself is a canonical

transformation. This means that if we could integrate Hamilton’s equations for all initial

conditions z̊, then this would define a map from Z to itself as depicted in Fig. 1. The map

z̊ 7→ z(t), denoted by gt in the figure, is a canonical transformation. The set G = {gt|t ∈ R}

is the Lie group of one-parameter family of canonical transformations, where gt : Z → Z

for all times.

III. HAMILTON-JACOBI ACTION PRINCIPLES FOR VLASOV-POISSON

Here we first consider the Vlasov-Poisson system, then proceed to construct two action

principles.
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A. The Vlasov-Poisson system

Global existence theories for this system were proven in the early 1990s by Pfaffelmoser,

Perthame, Schaeffer and others; but, since our presentation will be formal, these theorems

will not concern us. We will consider the simplest case of one spatial dimension with a

single dynamical variable, the phase space density f(q, p, t), that only depends on (q, p, t)

and f : U × R2 → R+, where the set U ∈ R is often the circle or all of R. Let D := U × R

be the phase spatial domain. The Vlasov equation of interest here is

∂f

∂t
+ p

∂f

∂q
− E∂f

∂p
= 0 ⇐⇒ ∂f

∂t
+ [f,H] = 0 (12)

which is the equation a single electron species, which we wish to solve for a given initial

condition f̊(q, p) = f(q, p, 0). The equality of (12) follows from the definitions

H :=
p2

2
− φ, E =: −∂φ

∂q
, and [f, g] :=

∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (13)

Here, unlike in Sec. II, (q, p) denote independent variables. From context is should be clear

when we mean dependent and when we mean independent variable for these quantities.

It remains to determine the electrostatic potential φ(q, t) through Poisson’s equation

∂2φ

∂q2
=

∫
R
dp f ←→ φ(q, t) =

∫
D

dq′dp′K(q|q′)f(q′, p′, t) (14)

where K(q, q′) denotes the “Green’s” function. For convenience we have included charge

neutrality in the definition of f .

There are two essential components of Vlasov theory that we will exploit:

CE: The characteristic equations of (12), given by

q̇ = [q,H] and ṗ = [p,H] , (15)

which exist because of the hyperbolic nature of (12).

SR: The rule for constructing f from its initial condition f̊ given the solution to (15), i.e.,

f(q, p, t) = f̊ (q̊(q, p, t), p̊(q, p, t)) = f̊ ◦ g−t z̊ =: z#f̊ . (16)

In the first equality of (16) we have first written the solution in the usual way of plasma

physics, in the second in terms of the one-parameter group discussed in Sec. II, and lastly

in terms of a compact notation. Because the characteristic equations (15) are Hamiltonian

we know gt, which is the inverse of the map z̊ 7→ z(t), denotes a canonical transformation.

Thus, we say that the solution f is a symplectic rearrangement (SR) of f̊ .
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B. HJ Vlasov Formulation and the First Action Principle

The HJ formulation alters both of the essential components of Vlasov theory as follows:

CE: The characteristic equations are replaced by the generating function S(q, P, t), knowl-

edge of which is completely equivalent to the trajectories (q(q̊, p̊, t), p(q̊, p̊)).

SR: The rule for constructing f is replaced by a new equivalent rule given in terms of a

new variable defined by

Φ(q, P, t) :=

∥∥∥∥ ∂2S

∂q∂P

∥∥∥∥ f (q, ∂S∂q , t
)
. (17)

The quantity ‖∂2S/∂q∂P‖ was investigated in quantum mechanical contexts by Van Vleck,

Pauli, and DeWitt-Morette, and is often referred to as the Van Vleck determinant.

To complete the formulation one needs equations for the pair of functions (Φ, S), such

that these equations and the rule give solutions equivalent to the Vlasov equation, which

can be written as

f

(
q,
∂S

∂q
, t

)
= f̊

(
∂S

∂P
, P

)
. (18)

It is evident that the HJ equation for S cannot be an ordinary HJ equation since, like

the usual Vlasov equation, it must be global in nature. This arises in (12) through the

electric field E that is determined by Poisson’s equation. Thus, the HJ equation will be,

like Vlasov, an integro-differential equation. With this in mind we rewrite the solution of

Poisson’s equation of (14) in a few different ways:

φ(q, t) =

∫
D

dq′dp′K(q|q′) f(q′, p′, t)

=

∫
D

dq′dP ′K(q|q′) f(q′, p′, t)

∥∥∥∥ ∂2S

∂q′∂P ′

∥∥∥∥
=

∫
D

dq′dP ′K(q|q′) Φ(q′, P ′, t) , (19)

where the last expression shows a clean linear relationship between φ and Φ.

To obtain the equations for S and Φ we appeal to the phase space action principle, the

principle of mechanics that yields Hamilton’s equations upon variation. This action principle

is given by

A[q, p] =

∫ t1

t0

dt (p · q̇ −H) , (20)
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which is defined on phase space paths that begin at q0 at time t0 and end at q1 at time

t1. The functional derivative δA/δq = 0 and δA/δp = 0 imply Hamilton’s equations (1);

boundary conditions on p are not specified. In analogy to (20) we suppose Φ and S are like

conjugate variables and write the following action for them:

A[S,Φ] = −
∫ t1

t0

dt

∫
D

dqdP Φ

(
∂S

∂t
+

1

2

∣∣∣∣∂S∂q
∣∣∣∣2 − φ

2
− H̄

)
(21)

where φ is to be viewed as a shorthand for the expression defined by (19) and H0 is a

reference Hamiltonian analogous to the H̄ of classical HJ theory and we are free to tailor

this to the problem at hand. This amounts to a kind of gauge freedom. Variation of (21)

with respect to Φ gives
∂S

∂t
+

1

2

∣∣∣∣∂S∂q
∣∣∣∣2 − φ− H̄ = 0 , (22)

while variation with respect to S gives

∂Φ

∂t
+

∂

∂q
·
(

Φ
∂H

∂P

)
− ∂

∂P
·
(

Φ
∂H̄

∂Q

)
= 0 . (23)

Thus we arrive at the following

Theorem If S satisfies (22) and Φ satisfies (23), then if f is constructed according to (17)

it satisfies the Vlasov-Poisson system of (12) with (14).

Proof The proof is mainly a chain rule exercise. For the details we refer the reader to [2, 3].

At first impression one might wonder if progress has been made since we began with

one equation and now have two to solve – albeit now we have equations derivable from a

variational principle. It turns out that (23) has special properties that make it easy to solve.

Instead of pursing this here, in the next section we will eliminate this variable all together.

C. Reduced HJ Vlasov Formulation and the Second Action Principle

Before proceeding to our reduced action principle we describe a cartoon of the Vlasov

phase space, as depicted in Fig. 2. Solutions of the Vlasov equation lie in some function

space that we will denote by F . We will not be specific about F , but only discuss properties

in a formal manner with intuition coming from finite-dimensional noncanonical Hamiltonian
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FIG. 2: Depiction of Poisson manifold foliated by constant Casimir symplectic leaves.

systems (see e.g. [8]) for which phase space is a Poisson manifold. Because f = z#f̊ , i.e.

f is a SR of f̊ , not all functions f are accessible from a given f̊ . Under mild continuity

conditions, the rule f = z#f̊ implies certain properties of f and f̊ must coincide for all time,

viz., the number of extrema and their values, the level set topologies, and the area between

any two level sets. The SR property defines an equivalence relation ∼, where a phase space

function f̊ ∼ f if ∃ any canononical transformation z, i.e. any trajectory functions that can

be generated by any Hamiltonian, such that f = z#f̊ . Thus, the dynamics takes place on

a constraint set or, equivalently, motion lies entirely within an equivalence class. In this

way the function state space F is foliated by leaves, each of which is labeled by an initial

condition f̊ . In [4, 9] states f ∼ f̊ were called dynamically accessible.

The space F/ ∼ is formally an infinite-dimensional symplectic manifold and an explicit

nondegenerate Poisson bracket on it was given in [10]. Thus we refer to the leaves as

symplectic leaves. On such a leaf in the vicinity of an equilibrium f̊ , a linear canonical form

for the Poisson bracket was explicitly obtained in [11–13] and structural stability in the

manner of Krein’s theorem was considered in [14]. All this suggests a variational principle

in terms of the single function S with a fixed symplectic leaf label. This principle is given
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by the following:

A[S, f̊ ] = −
∫ t1

t0

dt

∫
D

dqdP f̊

(
∂S

∂P
, P

)∥∥∥∥ ∂2S

∂q∂P

∥∥∥∥
(
∂S

∂t
+

1

2

∣∣∣∣∂S∂q
∣∣∣∣2 − φ

2

)
, (24)

where we have explicitly displayed the dependence on f̊ , but this quantity is not to be varied.

Since in (24) the potential φ is now a shorthand for

φ(q, t) =

∫
D

dq′dP ′K(q|q′) f̊
(
∂S

∂P ′
, P ′
)∥∥∥∥ ∂2S

∂q′∂P ′

∥∥∥∥ , (25)

it is clear that variation with respect to S is an onerous task with contributions from f̊ , the

Van Vleck determinant, and the other dependence on S. After some effort, one can show

δA[S, f̊ ]/δS = 0 implies

∂S

∂t
+

1

2

∣∣∣∣∂S∂q
∣∣∣∣2 − φ− H̄ (∂S∂P , P, t

)
= 0 , (26)

where H̄ is any function that satisfies

[f̊(Q,P ), H̄(Q,P, t)] = 0 . (27)

We refer the reader to [7] for more details of this calculation. In priciple, if we are given f̊

and we solve (26) for S, then we can use (18) to construct f , which can be shown to be a

solution to the Vlasov-Poisson system.

IV. CONCLUSIONS

There are many comments that can be made about the above HJ formulations and

variational principles, but we will consider only two.

First, it is clear that the nonlinearity that occurs in the term E∂f/∂p in the Vlasov

equation has been redistributed in both formulations. For example, from the action prin-

ciple of (24) nonlinearity is manifest in the choice of f̊ . Thus it might be worthwhile to

reinvestigate existence proofs in this setting, particularly in light of the activity on viscosity

solutions for HJ and the current studies of weak KAM theory. Through the HJ equation we

have a natural place where pde and ode methods meet, and it seems that techniques from

Hamiltonian dynamical systems theory may prove useful here.

Second, if one obtains an approximate solution to the HJ equation (26) by any means,

numerical or otherwise, then the solution constructed will be a SR. It may not be a good
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solution, but it will satisify f = z#f̊ and all the constraints this relation implies. Thus, one

might think this kind of approximation would be superior.

In closing, we reiterate that everything done here for the Vlasov-Poisson system can be

done for any Vlasov-like system, including the coupling to field equations like Maxwell’s or

Einstein’s.
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A new solution method for singular perturbation
problems in magnetized plasmas

M. Furukawa 1
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This proceeding is a summary of recently published papers on a new solution

method for singular perturbation problems in magnetized plasmas. The new

method enables us to fully avoid inherent difficulties of the traditional matched

asymptotic expansion. The important ingredients are the utilization of a finite-

width inner layer, and the ordering scheme in the outer region. Explanations on

how these ingredients work, and some discussions are given.

1 Background

1.1 General introduction

Singular perturbation problems often appear when we model phenomena in nature. Sup-

pose the model is described by a set of differential equations, and it includes a small

parameter ε. A solution by a naive expansion in ε can give essentially different behavior

compared with the exact solution, which characterizes the singular perturbation problem.

If the highest-order derivative term in the governing equation is multiplied by ε, the model

is a typical singular perturbation problem. For example, if a solid body is placed in a high

Reynolds number fluid flow, a thin boundary layer is formed around it. Viscosity plays

an important role only in the boundary layer, where the viscous term is the highest-order

derivative term in the governing equation multiplied by a small parameter or the inverse of

the Reynolds number. In this proceeding, we consider resistive magnetohydrodynamics

(MHD) linear stability of a magnetized plasma. The resistivity term has the highest-

order derivative in the governing equation. The normalized resistivity or the inverse of

the Lundquist number serves as the small parameter in this case. An internal boundary

layer or a resistive layer can be formed inside the plasma. These are both boundary-layer

problems, that are typical and classical multi-scale phenomena.

MHD linear stability analysis of magnetically confined plasmas has been one of the

important issues in nuclear fusion development. If the plasma becomes unstable against

various MHD modes, the confinement is lost completely or is degraded significantly at

least. The loss of confinement leads to release of energy which was confined, that can seri-

ously damage the experimental device. Therefore the accurate calculation of the stability

boundary in parameters’ space of the experiment has been strongly required.
1E-mail: furukawa@k.u-tokyo.ac.jp

This work has been done in collaboration with
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Finite plasma resistivity introduces several types of resistive MHD instability such

as tearing modes[1]. If the tearing mode becomes unstable, magnetic reconnection occurs

and magnetic islands form in the plasma. Since large-scale magnetic islands degrade the

plasma confinement significantly and even cause complete loss of the confinement, control

and suppression of the islands are one of the urgent issues. To understand physics of

them, accurate calculation of the resistive MHD stability is indispensable.

1.2 Problem setting and governing equations

In order to study the singular perturbation problem in magnetized plasmas, we adopt a

high-beta reduced MHD model[2, 3]. This model describes vortical motions of a plasma

with long wave length along a strong ambient magnetic field in the shear Alfvén time

scale. We assume a cylinderical plasma with its minor radius a and length 2πR0, with

the inverse aspect ratio ε := a/R0 ¿ 1. Note that this ε is different from a small

parameter defining the singular perturbation problem. The cylindrical coordinate system

(r, θ, z) is used. Linearizing the equations and assuming the spacio-temporal dependence

of perturbed quantities Q1(r, θ, z, t) as Q(r)ei (mθ+nz/R0)+γt, we obtain

γ∇2
⊥ϕ = −i F∇2

⊥ψ − i mJ ′
0

r
ψ +

i mκ0r

r
p, (1)

γψ = −i Fϕ + η∇2
⊥ψ, (2)

γp =
i mβ′

r
ϕ, (3)

where Eqs. (1), (2) and (3) are the vorticity equation, the Ohm’s law along magnetic field,

and pressure equation, respectively. We assumed that the equilibrium plasma rotation

does not exist for simplicity. If Rγ > 0, the plasma is unstable. All the quantities are

normalized by the strong ambiend magnetic field B0, the minor radius a, the Alfvén

velocity vA := B0/
√

µ0ρ0 with ρ0 being the equilibrium mass density and µ0 the vacuum

permeability, the Alfvén time τA := a/vA, and the magnetic pressure B2
0/2µ0. The fluid

velocity is v := ẑ × ∇⊥ϕ with ẑ the unit vector in the z direction, ∇⊥ the gradient

operator in the r–z plane and ∇2
⊥ := ∂2/∂r2 + (1/r)∂/∂r − (m/r)2, the magnetic field is

B = ẑ + ∇⊥ψ × ẑ, the equilibrium current in the negative z direction is J0, the prime

denotes d/dr, β is the equilibrium pressure, κ0r is the curvature of equilibrium magnetic

field, the parallel wave number is written as F := εm(n/m+1/q) with q := −εr/ψ′
0 being

the safety factor, ψ0 is the equilibrium component of ψ, and η is the resistivity or the

inverse of Lundquist number. We also use the following notation for later convenience:

γM · u = R · u, (4)

where u := (ϕ, ψ, p)T, and M and R are defined appropriately.

Equations (1), (2) and (3) are fourth-order system. Note that Eq. (3) does not include

radial derivative. As noted above, this is the singular perturbation problem because of

2



the η term. If we assume a high-temperature plasma aimed at fusion, η can be 10−9 –

10−11.

1.3 Brief introduction of matched asymptotic expansion

A magnetic flux surface satisfying q = m/n is called a rational surface, where the parallel

wave number F becomes zero. For a marginally stable wave with γ = 0, the rational

surface is also a resonant surface on which the wave frequency coincides with the Alfvén

frequency. Note that the resonant surface and the rational surface does not coincide

generally if the finite equilibrium plasma rotation and/or the finite real frequency of the

wave exist. Even if we focus on a slow resistive instabilities caused by η ¿ 1, small

effects such as inertia and resistivity are comparable to the effect of magnetic-field-line

tension related to F , since F vanishes on the rational surface. Then a thin resistive

layer is formed around the resonant surface. We have traditionally applied the matched

asymptotic expansion by using η as a small parameter[1, 4, 5]. The resistive layer is the

inner layer of the matched asymptotic expantion. In the inner layer, although we take into

account the inertia and resistivity, we can simplify the governing equation by using that

the layer is very thin. To focus on the inside of the thin layer and on the slow dynamics,

we re-scale the radial coordinate and the frequency by using the resistivity as a small

parameter. This leads to the so-called inner-layer equation. The inner-layer equation is

the fourth-order system.

A set of the complementary regions of the inner layer is the outer region. Since

the resistivity and the inertia terms can be neglected in the outer region, we solve the

inertia-less, ideal MHD equation or the so-called Newcomb equation[6], which is given by

Nψ = 0, (5)

N := ∇2
⊥ +

m

rF

(
J ′

0 +
m

rF
κ0rβ

′
)

. (6)

The Newcomb equation is the second-order system, which has two independent solutions.

The rational surface is the regular singular point of the Newcomb equation if F ′ or q′ does

not vanish there. Then we can construct the Frobenius series solution around the resonant

surface. One of the independent solutions is non-square-integrable, which is called large

solution. The other one is square-integrable, called small solution. The ratio of the small

solution to the large solution, called matching data, plays crucial role in the asymptotic

matching.

Since we have four independent solutions in the inner layer, we need to select two

of the four which asymptotically match onto the outer solution. The successful matching

then gives us the dispersion relation.
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1.4 Difficulties of matched asymptotic expansion

Although the matched asymptotic expansion is well established mathematically, it has

some difficulties in practice:

(i) Although the resistivity and the inertia are neglected in the outer region, they can

be important there if the plasma is close to marginal stability against ideal MHD.

A plasma close to its ideal MHD marginal stability may be preferable to improve

efficiency of a fusion reactor. Such a situation may be simulated by a cylindrical

plasma with q = 1 surface inside the plasma, since the m/n = 1/1 internal kink

mode is marginally stable against ideal MHD.

(ii) The method cannot be applied in the first place if the resonant surface becomes

an irregular singular point of the Newcomb equation. The Frobenius series solution

and also the matching data cannot be obtained around the resonant surface. An

important type of discharge in fusion development has non-monotonic q profile, and

the minimum-q position can be such irregular singularity.

(iii) Accurate numerical computation of the matching data is still difficult in toroidal

plasmas even though some sophisticated theory have been developed for cylindrical[7,

8] and toroidal geometries[9, 10, 11, 12].

(iv) In the plasma close to marginal stability against ideal MHD, the matching data di-

verges. Although a numerical scheme to calculate huge matching data was developed[13],

it is reported that the accuracy of the matching data strongly depend on the local

equilibrium accuracy and grid arrangement[14].

(v) Careful treatment is required in solving the inner equation numerically since the

radial coordinate is re-scaled into unbounded space[10]. The norm of the inner

solution then diverges.

2 Ingredients of new matching method

We have developed a new matching method for removing the difficulties raised above[15,

16]. The key ingredients of the new method are an utilization of an inner region with

a finite width, and an ordering scheme for the outer region. These are briefly explained

below. More detailed descriptions of the formulation, as well as numerical results are

found in Refs. [15, 16].

2.1 Finite-width inner region

In our new method, we adopt a finite-width inner region, instead of infinitely thin inner

layer. Neither the radial coordinate nor the frequency are re-scaled via small resistivity.
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Here we use “inner region” since it is different from the so-called inner layer which is

infinitely thin. Figure 1 shows the geometry. Suppose there is a resonant surface at

r = rs. We set an inner region at rL < r < rR. The outer regions are at 0 ≤ r < rL and

at rR < r ≤ 1. The solutions in the inner and outer regions are then matched directly,

not asymptotically, by imposing continuity of perturbed magnetic field at the matching

points rL and rR.

The matching points are taken to be reasonably apart from rs. Our numerical results

showed that the growth rate γ can be accurately calculated if the width of the inner

region is five times the resistive layer width xr := |r/nBθq
′|1/3η1/3 with Bθ the equilibrium

poloidal magnetic field. For high-temperature plasmas, the resistivity is so small, xr and

thus the required inner-region width becomes very thin.

Since the matching points are apart from the singular point, we can fully avoid

the difficulties in the numerical computation. Accurate computation of the matching

data, including the divergent case, and the careful treatment of the unbounded space are

unnecessary. Furthermore, our method is applicable to the irregular singularity case, since

the method does not rely on the Frobenius series solution.

Figure 1: Geometry.

Note that the finite-width inner region was originally introduced for ideal MHD

modes[17], and extended to resistive wall modes in rotating cylindrical plasmas[18]. The

important difference from these studies is that the resistivity term increases the order of

spatial derivative. We then need to select two of the four independent solutions in the inner

region, that can match onto the outer solution. A natural idea for the selection is to impose

smooth disappearance of parallel electric field E‖ as approaching the matching points from

the inner side[15], which can be implemented by imposing a boundary condition of the

third kind is imposed on ϕ:

ϕ′ =

(
ψ′

ψ
− F ′

F

)
ϕ. (7)

This is obtained from the linearized ideal Ohm’s law

E‖ = −γψ − i Fϕ = 0 (8)
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and its radial derivative E ′
‖ = 0. Note that E‖ = 0 and E ′

‖ = 0 lead to Eq. (7), but Eq. (7)

does not necessarily lead to E‖ = 0 and E ′
‖ = 0. If we assume that Eq. (7) is given, E ′

‖

can be expressed as

E ′
‖ = E‖

ψ′

ψ
. (9)

Therefore, when Eq. (7) is imposed, E ′
‖ approaches zero if E‖ approaches zero as long as

ψ′/ψ is finite. This boundary condition is consistent with that applied in the traditional

matched asymptotic expansion[15].

2.2 Ordering scheme in outer region

Our numerical results by using the finite-width inner region were mostly satisfactory,

although we had one exceptional situation; it is the m/n = 1/1 internal kink mode[15].

Figure 2 shows E‖ as a function of r for the m/n = 1/1 internal kink mode. This is

obtained by solving Eqs. (1) – (3) numerically as an eigenvalue problem in the whole

domain without matching procedure. The resonant surface q = 1 exists at r = 0.5. We

observe that E‖ remains considerably in the q < 1 region. Note that the amplitude is

normalized so that the maximum absolute value becomes unity for all η, in order to show

the relative amplitude of E‖ in the q < 1 region. The relative amplitude of E‖ increases as

η is increased. In the traditional method, we assume an inner layer around q = 1 surface,

and the q < 1 region is treated by ideal MHD where E‖ must be zero. This can degrade

the accuracy of the approximation of asymptotic matching.
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Figure 2: (This is Fig. 21 of Ref. [15]) E‖

for m/n = 1/1 internal kink mode. The

q = 1 surface exists at r = 0.5.

Note that this m/n = 1/1 internal kink

mode is not just an example where the ap-

proximation becomes less accurate. We con-

sider that the situation for the m/n = 1/1

internal kink mode in a cylindrical plasma is

similar to resistive MHD modes in a toroidal

plasma close to ideal MHD marginal stabil-

ity. This is because the m/n = 1/1 in-

ternal kink mode in a cylindrical plasma is

marginally stable against ideal MHD. In a

tokamak operation for example, we try to

raise plasma beta (a ration of plasma pres-

sure to magnetic pressure) to obtain high

fusion gain, up to close to the ideal MHD

marginal stability. Thus resistive MHD

modes in such a plasma should have similar character as the m/n = 1/1 internal kink

mode, i.e. the small inertia and resistivity play important roles even in outer regions

apart from resonant surfaces.
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The remaining E‖ indicate the relative importance of the resistivity and the inertia

in the q < 1 region. We have therefore developed an ordering scheme for the outer region

to include those effects perturbatively. We found that the appropriate ordering, by using

small parameter δ ¿ 1, is given by

η ∼ O(δ3), γ = δγ(1) + δ2γ(2) + · · · ,
ϕ = δϕ(1) + δ2ϕ(2) + · · · , ψ = ψ(0) + δψ(1) + · · · ,
p = p(0) + δp(1) + · · · ,

and
∂

∂r
∼ O(1). (10)

This ordering scheme looks similar to the one adopted for the inner layer in the asymptotic

matching method, however, Eq. (10) makes essential difference. Equation (10), i.e. that

we regard the radial derivative of perturbed quantities to be of order unity, is validated

because the gradient can be very large only inside the inner layer. Note that the subscripts

such as (0) have different meaning from the subscript 0 expressing equilibrium quantities.

The ordering scheme then gives us a hierarchy of generalized Newcomb equations.

The lowest- and the first-order equations agree with the conventional one as Nψ(0) =

Nψ(1) = 0, and the second-order equation is obtained as

Nψ(2) = −
γ2

(1)

F
∇2

⊥

(
ψ(0)

F

)
+

η

γ(1)

( m

rF

)2

κ0rβ
′∇2

⊥ψ(0). (11)

Although it has an inhomogeneous terms on the right-hand side, Eq. (11) is also the

Newcomb equation. The effects of plasma inertia and resistivity manifest themselves in

the inhomogeneous terms, which can be calculated by the lower-order solutions. When

we obtain ψ(j), we can express ϕ(j+1) and p(j) in the outer region by using the parallel

Ohm’s law and the pressure equation. The higher-order terms modifies the outer solution

to include effects of inertia and resistivity.

In the inner region, we solve Eqs. (1) – (3) by imposing appropriate boundary con-

ditions at each order. For example, we solve

γ(1)M · u(0) = R · u(0) (12)

in the lowest order. An important point is that u(0) is solved so that it matches onto ϕ(1),

ψ(0) and p(0) in the outer region. The subscripts of u(j) does not necessarily express the

order of the solution in the inner region, since the adopted ordering scheme, especially

Eq. (10), breaks down in the inner region.

We solve the inner-region equation as a boundary-value problem by assuming a guess

γ(j). The boundary conditions are given so that the amplitude of u(j) coincides with those

of the outer solution. Then, the radial derivatives of those quantities cannot be coninuous

across the matching points for an arbitrary γ(j). We therefore seek γ(j) which makes the
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radial derivative of the perturbation, here we use ψ′
(j), continuous across the matching

points by the Newton–Raphson method for example, In other words, the the continuity

of ψ′
(j) across the matching points gives us the dispersion relation.

3 Discussion and Conclusions

So far we have briefly explained the newly developed matching method. One thing we

should point out is that the required width of the inner region becomes smaller as η is

decreased. We solve the 3×3 matrix system only in the inner region. In the outer region,

we solve the Newcomb equation, which is an ordinary differential equation for only one

scalar variable ψ. Then the computational cost is reduced significantly if we consider

high-temperature plasmas. This feature of our method may become more attractive in

toroidal geometry, since multiple poloidal Fourier modes couple, making the matrix size

bigger.

However, the required inner-region width was just estimated from the numerical

results. Although this estimate seems to be reasonable because we can expect satisfactory

results if the matching points are well outside the resistive layer, we would also need a

mathematical theory on how the results, the growth rate for example, should scale on the

inner-region width. This is an open question.

Another point is the relation between our matching method and the matched asymp-

totic expansion. The accuracy of the numerical results improves if the inner-region width

is increased in our method. On the contrary, the approximation of matched asymptotic

expansion becomes better for smaller resistivity and thus the thinner inner layer. This dif-

ference is of course because our method connects the solutions directly, not asymptotically,

across the matching points, which is essentially different from the matched asymptotic

expansion. However, in developing the mathematical theory on the scaling pointed out

above, the relation would become clearer.

Now let us give conclusions. We have developed a new matching method for resis-

tive MHD stability analysis, which is one of the typical example of singular perturbation

problems. Contrary to the traditional matched asymptotic expansion, we adopt an inner

region with a finite width. The inner and outer solutions are matched directly, not asymp-

totically, across the matching points. This enables us to fully avoid to treat singularity,

because the matching points are chosen to be reasonably apart from the singular point.

The new method is also applicable to the case with irregular singularity. The other im-

portant ingredient is the ordering scheme in the outer region. This leads to the hierarchy

of the generalized Newcomb equation. Then we can take into account the effects of inertia

and resistivity perturbatively in the outer region. We have applied the new method to

well-known examples such as m/n = 2/1 tearing, resistive interchange, double tearing,

m/n = 1/1 internal kink modes. The results showed that the new method can accurately
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calculate the stability of thoes modes. Computational time is also significantly reduced.
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Abstract. Many engineering problems involve different scale in space or time. The 

main interest for engineering designer is to find an optimum macroscopic response of 

structure, although the macroscopic response is strongly dependent on the microscopic 

material properties. The material itself has an individual microstructure, and the 

optimum material is fabricated by controlling the microstructure. Usually, the 

macroscopic material properties are measured by the experimental material tests. The 

asymptotic homogenization collaborated with the finite element method has been 

successfully proposed to find an averaging macroscopic material properties. In this 

paper, an application of the homogenization method to porous piezoelectric material has 

been described. (The detail has been published in the reference [1].) 

1. Introduction 
Piezoelectric materials have the physical properties of a transducer, which converts electrical 

energy to mechanical energy and vice versa. Pb(Zr,Ti)O3 (PZT) ceramic is one of the most 

prominent piezoelectric materials with outstanding properties, and it is widely used for 

ultrasonic transducers and highly sensitive sensors. Particularly in the field of 

micro-electro-mechanical systems (MEMS), PZT ceramic is expected to be used in system 

requiring precise positioning control and considerable actuation force with low electric power.  

Porous PZT ceramics have been proposed to obtain a remarkable electromechanical coupling 

factor and Q-factor. The properties and effects of porous PZT ceramics have been investigated 

[2,3]. However, the mechanism of these improvements of porous PZT is unclear. Moreover, 

there are no reports discussing the 3D morphology of its microstructures. If piezoelectric 

materials is composed of simple microstructures, theoretical approaches, such as Eshelby’s 



tensors [4] and the upper and lower bounds generalizing the Hashin-Strukman variational 

principle [5], can estimate the macroscopic material properties. There is an alternative 

computational approach based on the homogenization method [6-8] for mechanical properties. 

The advantage is robustness in application to periodic heterogeneous materials composed of 

complex microstrucures. The homogenization method has been developed to solve nonlinear 

problems [9-11], solid-fluid coupling problems [12,13] and piezoelectric problems [14,15].  

In this context, automatic finite element (FE) mesh generation of complex microstructures is 

essential for practical use. The digital image-based modeling [16] with cross-sectional images 

has been employed for an automation process. Although accurate cross-sectional images were 

captured by sectioning and polishing [17], it is too time consuming way. Thus, nondestructive 

observation by the X-ray computer tomography (CT) is strongly requested for practical use in 

industries.  

In this study, a multi-scale analysis based on the homogenization method is utilized to evaluate 

material property of real porous PZT ceramics. In the FE modeling of 3D micrographs, the 

accuracy of the X-ray CT images is validated with several direct cross-sectional images by 

scanning electron microscope (SEM). A semi-automatic process provides reasonable 3D 

micrographs with information of the SEM images.  

 
2. Multi-scale modeling for porous piezoelectric materials 
2.1 Outline of the homogenization method for the evaluation of macroscopic properties 

 In this study, the homogenization method incorporated with FEM is used to evaluate the 

effective material properties of porous PZT. The details of the formulation can be found in the 

references [14,15], and are summarized here.  

First, we assume that the porous piezoelectric material may have an averaged properties in a 

macroscale x. The materials properties depend on the morphology of the microstructure that can 

be realized in a microscale y. In addition, it is assumed that the microstructure has periodicity. 

The representative volume element (RVE) is indicated as Y. These two scales are related by a 

positive small number yx .  

Here, we choose )(),( xxu    as independent variables for two field coupled problems, 

and we assume that these independent variables can be expressed by the asymptotic expansion, 
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The other dependent variables can be derived with the above assumptions in a similar 

expansion form. Strain ε and electric field vector E are obtained by taking the derivative of 



independents. 
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where the chain rule on the derivative operator ( 
yx  ) is used. Stress σ  and 

electric displacement D can be evaluated by applying the constitutive equations as follows:  
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Note that each material constant should be distributed in a microscale y. For the case of porous 

materials, some regions have material parameters as bulk material and other regions are 

assigned to pores, which are not discretized into finite elements. By substituting these equations 

into governing equations in the weak form, several sets of equations in each order of  can be 

derived. Consequently, microscopic and macroscopic governing equations are obtained as 
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Eqn. (4) means self-equilibrium in the RVE indicated as Y, and (5) is a similar equation to the 

conventional governing equations except for the use of the homogenized material properties. 

 A macroscopic strain and a macroscopic electric field vector are defined by volume averaging 

in the RVE. 
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In addition, macroscopic material tensors, which can be used as conventional material tensors 

for the macroscopic boundary problem, are obtained from the characteristic functions. 
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Note that characteristic functions should satisfy the periodic boundary conditions in the RVE 

because of an assumption in the derivation of homogenized material tensors. These functions 

should be calculated to solve microscopic governing equations (4) using FEM in general.  
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where klχ  and kl  have nine components associated with the free index k,l and these are 

reduced to six individual components for their symmetry. mΦ  and mR  also have three 

components. In total, nine sets of equations should be solved for the evaluation of homogenized 

materials tensors. 

  

2.2 Semi-automatic process to generate 3D micrographs for porous PZT 

As mentioned in the Introduction, the image scanning by X-ray CT is essential for automatic 

FE mesh generation of microstructure for heterogeneous materials. Here, a semi-automatic 

process is employed to ensure the accurate porosity ratio. First, conventional image-based 

modeling with X-ray CT images is summarized as follows.  

STEP 1. Capture the cross-sectional images in gray scale by X-ray CT 

STEP 2. Estimate the porosity ratio 

STEP 3. Automatic binarization of X-ray CT images with reference to the estimated porosity 

ratio 



STEP 4. Automatic 3D FE Modeling with binarized X-ray CT images 

In the classical rule of mixture, macroscopic material properties are basically functions of the 

porosity ratio. In addition, the shape and the size of pores strongly depend on the estimated 

porosity ratio in the above-mentioned process. Therefore, the porosity ratio is a significant 

factor in the design of porous materials. The mercury penetration method has been widely used, 

but the reliability of this measurement is not guaranteed for samples involving closed 

micropores. Thus, an image-based measurement technique that counts the area of pores in each 

cross-section has been adopted in STEP 2.  

In STEP 3, rectangular specimens with the size 1.5mm×1.5mm×5mm are used for the 

observation by X-ray CT. Then, the direct cross-sectional images of the same specimen are 

captured by SEM with sectioning and polishing. The gray-scale SEM images are binarized 

manually, and black areas corresponding to pores are measured. The manual binarization is 

implemented with only a cross-sectional SEM image composed of six images taken differently. 

This area (=1470×1470 m2) is 30 times larger than the cross-section area of the RVE (=260×

260 m2) defined in the next capter. It should be noted that the porosity ratios in all 

cross-sectional X-ray CT images are measured, and the difference among others is small. 

Therefore, area of the SEM image is sufficiently large enough to estimate the porosity ratio.  

As shown in Fig. 3(c), resolution of the X-ray CT images in the peripheral area is lacking. 

Therefore, only the central region(=650×650 m2) of the original X-ray CT images(=1170×

1170 m2) was used for the 3D microstructure reconstruction in STEP 3.  

The above mentioned semi-automatic process to generate FE model is illustrated in Fig. 1. The 

key points of this process are 1) the estimation of the porosity ratio using manually binarized 

SEM images and 2) the limited use of X-ray CT images.  



 

Figure 1. Semi-automatic process to generate FEM model for porous PZT ceramics. 

 

3. Application to porous PZT materials 
3.1  X-ray CT and SEM observation for 3D microstructure 

Macroscopic material properties of two porous PZT samples with different porosity ratio were 

evaluated by the homogenization method. Figure 2 shows the X-ray CT images for these 

samples. The resolution is 2.6 m for each sample. After capturing 120 X-ray CT images, the 

direct cross-sectional images are captured by SEM with the fine resolution (=0.57 m). The 

estimated porosity ratios of samples A and B are 7.1% and 25.5 %, respectively. The estimation 

is implemented with manually binarized SEM images as mentioned. 

For sample B with 25.5% porosity ratio, the sizes of pores were measured by the binarized 

SEM and X-ray CT images. While the resolution of X-ray CT images is sufficiently high for 

sample B, sample A has many micropores beyond the resolution of the X-ray CT.  



 

Figure 2. X-ray CT images for two different samples. 

 

3.2 Modification for unresolved micropores in binarization process 

Here, a treatment for unresolved micropores is described. After the elimination of unresolved 

micropores, the porosity ratio is counted as 4.4% in the SEM image. The threshold of X-ray CT 

images in the automatic binarization is readjusted to this ratio.  

The remaining porosity ratio (2.7% in volume) is recovered by randomly distributed cubic 

pores that are fixed by 23 in the voxel model as shown in Fig. 3. During the compensating 

process for the remaining porosity ratio, overlapping and/or adjoining pore is removed and 

located in other free space. Note that effect of the distribution of micropores is predictable by 

the classical rule of mixture, and it is vanishingly small. Figures 3 and 4 show the result of 3D 

reconstruction by labeling each collar of closed pores. These observations in 3D morphology 

reveal that sample A has many closed pores and sample B has an open pore percolating huge 

small pores.  



 
Figure 3. Labeling image of pores in sample A. 

 

 

 

Figure 4.  Labeling image of pores in sample B. 

 

 

 

 

 



Table 1. Bulk material coefficients 

 Notation in 
vector-matrix format

Values 

Elastic  C11 125.2 

constants C33 116.8 

(GPa)  C12  80.99 

 C13 80.61 

 C44 22.50 

 C66 26.25 

Piezoelectric e31 -10.8 

constants e33 18.72 

(C/m2) e15 15.99 

Dielectric constants 11e  26.78 

(C2/Nm2) 33e  31.87 

 

4.4 Discussion of the macroscopic material parameters 

Figure 5 shows the homogenized material parameters for these two samples. These numerical 

results are compared with results of a series, in which a spherical pore is located in the center of 

the RVE as shown in Fig. 5(a). In the series of spherical pore, the porosity ratios vary according 

to its radius. Figure 5(d) shows the component of the piezoelectric strain tensor Hd  in the 

following “d-form” constitutive equations: 
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The above equations are called homogenized “d-form” constitutive equations.  Each 

component in the e-form constitutive equations in Fig. 5(a)–11(c) shows a monotonic decrease 

in porosity ratio, but the slopes are different. As the porosity ratio increases, the absolute values 

in H
ijd  also show a monotonic decrease as shown in Fig. 5(d) for H

31d  and H
33d . 

 Using these homogenized values, a macroscopic electromechanical coupling factor can be 

evaluated as,  

HHHHHHHHHHH
hHHd

H
hH

h Sd
S

d
k 123123332211333231

33

2

S2S2S2SSSˆ,ddd,
ˆ




    (11) 

where roman style in the material tensor means the vector matrix notation. These results for 

each model are plotted in Fig. 6(d). The constituents in hk  are also plotted in Fig. 6. Two 

characteristic microstructures, labeled as model A and model B in Fig 6(a), have been evaluated 

to discuss the effect of the morphology. 

 These results are summarized below,  



1. Comparisons between sample A and a virtual model containing a spherical pore with the 

same porosity ratio reveal that a change in each material parameters for the case of 

randomly distributed closed pores modeled as a function of porosity ratio. 

2. Each component in material tensors shows monotonic changes with reference to the 

porosity ratio: however, this is strongly dependent on the morphology of its microstructure. 

In particular, for the electromechanical coupling factor at 25% porosity ratio, the value in 

model A is almost double the value in model B. 

3. The percolation of pores plays a significant role to improve the electromechanical coupling 

factor. The effect of the percolation is also discussed from a microstructural viewpoint by 

Roncari et al.[18]. 

4. The H
33d  ( Hd333  in tensor description) is a positive value, and the other component of the 

piezoelectric strain tensor H
31d  ( Hd311 ) and H

32d  ( Hd322 ) have negative values. The slope of 

change in H
33d  is lower than that in the absolute values in the other directions H

31d  and 
H
32d . Consequently, these changes cause the monotonic increase in dh. Experimental results 

[2,3] support our numerical results qualitatively. 

 

In future work, we have to verify the accuracy of the homogenization method by comparing 

with experimental data. In general, PZT materials are used after polarization as a precondition 

for piezoelectric properties. The polar directions are strongly dependent on the initial orientation 

of the crystal and on the distribution of stress and electrical displacement vector in the 

polarization process at high voltage. Therefore, we have to carefully consider the 

crystallographic orientation and nonlinear material behaviors.  



 
Figure 5. Homogenized material properties of image-based models and fictitious models with a 

closed spherical pore. The round bracket in figures indicates the components of tensor in 

vector-matrix notation. 

 

 
Figure 6. Comparison of the effect of microstructures in macroscopic material properties. 



 

5. Conclusions 
 In this paper, we discussed the mechanisms of outstanding properties of porous PZT with 

several numerical results by the homogenization method.  

A major problem in the homogenization method is the application to the nonlinear problem 

including material and geometrical nonlinearities. The asymptotic homogenization is one of the 

convergence theories. That is, when the spatial scale in material differs vastly from the spatial 

scale in structure, the theory gives a reasonable approximation. However, the engineering 

material, especially in the nonlinear region, shows the ‘scale effect’. If the nonlinear 

homogenization theory, which can predict the scale effect in the material response, is proposed, 

many engineers may use the design of structure and material. 
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Abstract

An iterative domain decomposition method is applied to magnetostatic problems. In our previous
methods the gauge condition is neglected, then the magnetic vector potential is only one unknown func-
tion. On the other hand, it has been well-known that some theoretical results has been introduced, where
a mixed formulation with the Lagrange multiplier is introduced in order to impose the gauge condition.
Therefore, in this paper, we formulate again an iterative domain decomposition method based on a mixed
formulation of magnetostatic problem, and discuss relations with the previous one.

Keywords: magnetostatic problem, mixed formulation, iterative domain decomposition method

1 Introduction
We have introduced an iterative domain decomposition method to solve quite large scale electromagnetic
field problems; see, for example, Kanayama et al. [8]. In our previous methods the gauge condition is
neglected, then the magnetic vector potential is only one unknown function. These previous results focus
themselves on the engineering points of view: the previous formulation enables us to reduce computational
consts in practical large scale simulations. However this formulation yields an indeterminate linear system,
it is difficult to mathematically justify numerical results, for example unique solvability of the problems
and convergency of the approximate solution.

On the other hand, some theoretical results has been introduced by, for example, Kikuchi [6], [7],
where a mixed formulation with the Lagrange multiplier is introduced in order to impose the gauge con-
dition. These results focus themselves on the mathematical point of view: owing to the introduction of
the Lagrange multiplier, their mixed formulation enable us to prove unique solvability of the problems and
convergency of the approximate solution. However this formulation yields an indefinite linear system, it is
difficult to find an appropriate iterative solver, which is efficient enough to reduce computational costs for
practical large scale problems.

At first in this paper, we formulate again an iterative domain decomposition method based on a mixed
formulation of magnetostatic problem introduced in Kikuchi [6], [7], which enable us to prove unique
solvability of the problems and convergency of the approximate solution. Seconed, to reduce computational
costs, we simplify our iterative domain decomposition method into another one, and we discuss relations
between the reduced formulation and the previous one.

2 Formulation of magnetostatic problems
Let Ω be a polyhedoral domain with its boundary Γ, and n the outward unit normal of Ω. Let u denote
the magnetic vector potential, f an excitation current density, and ν the magnetic reluctivity. Then, we



consider the magnetostatic equation with the Coulomb gauge condition:
rot(ν rot u) = f in Ω, (1a)
div u = 0 in Ω, (1b)
u × n = 0 on Γ; (1c)

for example, see Kikuchi [6].
As usual, let L2(Ω) be the space of real functions defined in Ω and 2nd power summable in Ω, let ‖ . ‖

be its norm, and let ( . , . ) be its inner product; let H1(Ω) be the space of functions in L2(Ω) with derivatives
up to the 1st order, and let ‖ . ‖1 and | . |1 be its norm and seminorm, respectively; and set functional spaces
X, M, V , and Q by

X :=
{
v ∈ (L2(Ω)

)3; rot v ∈ (L2(Ω)
)3}
, M := H1(Ω),

V :=
{
v ∈ X; v × n = 0 on Γ

}
, Q :=

{
q ∈ M; q = 0 on Γ

}
,

respectively; set bilinear forms a( . , . ) and b( . , . ) by

a(u, v) :=
∫
Ω

ν rot u rot v dx, ∀(u, v) ∈ X × X,

b(v, q) :=
∫
Ω

v grad q dx, ∀(v, q) ∈ (L2(Ω)
)3 × M,

respectively.
Now, by introducing the Lagrange multiplier p, we obtain a mixed weak formulation of (1) as follows:

given f ∈ (L2(Ω)
)3, find (u, p) ∈ V × Q such that{

a(u, v) + b(v, p) = ( f , v), (2a)
b(u, q) = 0, ∀(v, q) ∈ V × Q. (2b)

Some theoretical results of (2) such as the unique solvability have been proved in Kikuchi [6].

Remark 1 As in mentioned in Kikuchi [6], if f satisfies that div f = 0 in Ω, then p = 0. This property
plays a key role in the forthcoming section.

3 Domain decomposition method
For simplicity, the domain Ω is assumed to be decomposed into two non-overlapping subdomains Ω(1) and
Ω(2) with their boundaries ∂Ω(1) and ∂Ω(2), respectively:

Ω(i) , ∅ (i = 1, 2), Ω = Ω
(1)∪ Ω (2)

, Ω(1)∩ Ω(2) = ∅;

and let γ12 be the interface between Ω(1) and Ω(2) defined by γ12 := Ω
(1)∩ Ω (2)

; see Fig. 1. For i = 1, 2, the
outward unit normal of Ω(i) is denoted by n(i), and set n = n(1)(= −n(2)) on the interface γ12.

Instead of the real functions defined in Ω, we associate this decomposition to function spaces, bilinear
forms, and inner product: let L2(Ω(i)) and H1(Ω(i)) be the space of real functions defined in Ω(i), which are
corresponding to L2(Ω) and H1(Ω); set function spaces X(i), M(i), V (i)

γ12 , Q(i)
γ12 , V (i), and Q(i) by

X(i) :=
{
v ∈ (L2(Ω(i))

)3; rot v ∈ (L2(Ω(i))
)3}
, M(i) := H1(Ω(i)),

V (i)
γ12

:=
{
v ∈ X(i); v × n = 0 on ∂Ω(i)\γ12

}
, Q(i)

γ12
:=
{
q ∈ M(i); q = 0 on ∂Ω(i)\γ12

}
,

V (i) :=
{
v ∈ X(i); v × n = 0 on ∂Ω(i)

}
, Q(i) :=

{
q ∈ M(i); q = 0 on ∂Ω(i)

}
,

2



Fig. 1: Two non-overlapping subdomains of Ω.

respectively; and set bilinear forms and inner product a(i)( . , . ), b(i)( . , . ), and ( . , . )Ω(i) by

a(i)(u(i), v (i)) :=
∫
Ω(i)
ν rot u(i) rot v (i) dx, ∀(u(i), v (i)) ∈ X(i) × X(i),

b(i)(v (i), p(i)) :=
∫
Ω(i)

v (i) grad p(i) dx, ∀(v (i), p(i)) ∈ (L2(Ω(i))
)3 × M(i),

(u(i), v (i))Ω(i) :=
∫
Ω(i)

u(i) v (i) dx, ∀(u(i), v (i)) ∈ (L2(Ω(i))
)3 × (L2(Ω(i))

)3
,

respectively. Moreover, set function spaces Λ and Ξ by

Λ :=
{
λ : γ12 → R3; λ = (v × n)|γ12 , v ∈ V

}
, Ξ :=

{
ξ : γ12 → R; ξ = q|γ12 , q ∈ Q

}
;

and set u (i)(η) by any extension operator from Λ to V (i)
γ12 such that η =

(
u (i)(η)× n

)|γ12 , and p (i)(ζ) by any
extension operator from Ξ to Q(i)

γ12 such that ζ = p(ζ)|γ12 . A characterization of tangential trace spaces Λ
and an tangential extension operator on u (i)(η) has been given in Alonso–Valli [1], Buffa–Ciarlet [2], [3],
Buffa, et al. [4], and Quarteroni–Valli [9].

Now, a two-subdomain problem is introduced by the followings: for i = 1, 2, find (u(i), p(i)) ∈ V (i)
γ12×Q(i)

γ12

such that

a(i)(u(i), v (i)) + b(i)(v (i), p(i)) = ( f (i), v (i))Ω(i) , (3a)
b(i)(u(i), q(i)) = 0, ∀(v (i), q(i)) ∈ V (i)× Q(i) (3b)
u(1)× n = u(2)× n on γ12, (3c)
p(1)= p(2) on γ12, (3d)
a(2)(u(2), u (2)(η)) + b(2)( u (2)(η), p(2))

= ( f (1), u (1)(η))Ω(1) + ( f (2), u (2)(η))Ω(2) − a(1)(u(1), u (1)(η)) − b(1)( u (1)(η), p(1)), (3e)
b(2)(u(2), p (2)(ζ)) = b(1)(u(1), p (1)(ζ)), ∀(η, ζ) ∈ Λ × Ξ. (3f)

If
{
(u(1), p(1)), (u(2), p(2))

}
is a pair of the solutions of two-subdomain problem (3), then the solution of

the one-domain problem (2) could be constructed by

(u, p) :=
{

(u(1), p(1)) in Ω(1), (4a)
(u(2), p(2)) in Ω(2). (4b)

On the other hand, if (u, p) is a solution of the one-domain problem (2), then a pair of the solutions{
(u(1), p(1)), (u(2), p(2))

}
of the two-subdomain problem (3) could be constructed by

(u(i), p(i)) := (u|Ω(i) , p|Ω(i) ) in Ω(i). (5)

3



Moreover, as mentioned in Sec 2, the one-domain problem (2) is uniquely solvable. Then two-subdomain
problem (3) is also uniquely solvable. Therefore, the equivalency between both formulations and unique
solvability could be obtained as follows:

Theorem 1 There exists a unique solution (u, p) ∈ V × Q of the two-subdomain problem (3). Moreover,
the one-domain problem (2) and the two-subdomain problem (3) are equivalent.

For i = 1, 2, let E (i)( f , λ, ξ) an extention operator from
(
L2(Ω)

)3 × Λ × Ξ to V (i)
γ12 × Q(i)

γ12 defined by
E (i)( f , λ, ξ) := (u(i), p(i)), where (u(i), p(i)) is the solution of the following magnetostatic problem:

a(i)(u(i), v (i)) + b(i)(v (i), p(i)) = ( f (i), v (i))Ω(i) , (6a)
b(i)(u(i), q(i)) = 0, ∀(v (i), q(i)) ∈ V (i)× Q(i), (6b)
u(i)× n = λ on γ12, (6c)
p(i)= ξ on γ12. (6d)

Then, a Steklov–Poincaré operator A from Λ × Ξ to (Λ × Ξ)′ is set by

〈
A (λ, ξ), (η, ζ)

〉
γ12

:=
2∑

i=1

{
a(i)( u (i), v (i)) + b(i)( v (i), p (i)) + b(i)( u (i), q (i))

}
, ∀λ, η ∈ Λ, ∀ξ, ζ ∈ Ξ (7)

where ( u (i), p (i)) := E (i)(0, λ, ξ) and ( v (i), q (i)) := E (i)(0, η, ζ); and an interface source χ ∈ (Λ × Ξ)′ is set
by

〈
χ, (η, ζ)

〉
γ12

:=
2∑

i=1

{
( f (i), v (i))Ω(i) − a(i)( û (i), v (i)) − b(i)( v (i), p̂ (i)) − b(i)( û (i), q (i))

}
, ∀ξ, ζ ∈ Ξ (8)

where ( û (i), p̂ (i)) := E (i)( f (i), 0, 0) and ( v (i), q (i)) := E (i)(0, η, ζ). Now we introduce the following interface
problem on γ12: 〈

A (λ, ξ), (η, ζ)
〉
γ12
=
〈
χ, (η, ζ)

〉
γ12
, ∀(η, ζ) ∈ Λ × Ξ. (9)

By using the solution (u(i), p(i)) of two-subdomain problem (3), let us set (λ, ξ) by λ := u(1)×n (= u(2)×n)
and ξ := p(1)(= p(2)). Then, because of (3c)–(3f), (λ, ξ) satisfies the interface problem (9). On the other
hand, once the solution (λ, ξ) is obtained by solving the interface problem (9), for i = 1, 2, each pair
(u(i), p(i)) ∈ V (i)

γ12 ×Q(i)
γ12 could be found from the problem (3a) and (3b) in the corresponding subdomain Ω(i),

where the solution (λ, ξ) is regarded as the Dirichlet boundary on the interface: u(i)× n = λ and p(i) = ξ on
γ12. Finally, from (4), we can obtain the solution (u, p) of the one-domain problem (2).

Therefore, error analysis of the approximate solution of the problem (3) could be reduced into error
analysis of the one of each subdomain problem; For example, when magnetic vector potential u is approx-
imated by the Nedelec element of the first order and the Lagrange multiplier p is approximated by the
conventional P1-element; see Kikuchi [7].

The interface problem (9) is symmetric, and not positive definite. Then, by following Glowinski et
al. [5], the following conjugate gradient algorithm could be obatined (at least formally):

Choose (λ0, ξ0);

Compute (g0, δ0) by (10);

(w0, ω0) := (g0, δ0);

for k = 0, 1, . . .;

Compute A (wk, ωk) by (11);

αk :=
(
(gk, δk), (gk, δk)

)
/
(
A (wk, ωk), (wk, ωk)

)
;

(λk+1, ξk+1) := (λk, ξk) − αk (wk, ωk);

(gk+1, δk+1) := (gk, δk) − αk A (wk, ωk);

4



βk :=
(
(gk+1, δk+1), (gk+1, δk+1)

)
/
(
(gk, δk), (gk, δk)

)
;

If
(
(gk+1, δk+1), (gk+1, δk+1)

)
/
(
(g0, δ0), (g0, δ0)

)
< ε, break;

(wk+1, ωk+1) := (gk+1, δk+1) + βk (wk, ωk);

end;

where ε is a positive constant for the criterion of the convergence. In the above conjugate gradient algory-
thm, (g0, δ0) could be computed by the extentions ( ũ (i)

0 , p̃
(i)
0 ) and ( v (i), q (i)) as follow:〈

(g0, δ0), (η, ζ)
〉
γ12

=

2∑
i=1

{
a(i)( ũ (i)

0 , v (i)) + b(i)( v (i), p̃ (i)
0 ) − ( f (i), v (i))Ω(i) + b(i)( ũ (i)

0 , q (i))
}
, ∀(η, ζ) ∈ Λ × Ξ, (10)

where ( ũ (i)
0 , p̃

(i)
0 ) := E (i)( f (i), λ0, ξ0); and A (wk, ωk) could be computed by the extentions ( û (i)

0 , p̂
(i)
0 ) and

( v (i), q (i)) as follow:

〈
A (wk, ωk), (η, ζ)

〉
γ12
=

2∑
i=1

{
a(i)( û (i)

k , v (i)) + b(i)( v (i), p̂ (i)
k ) + b(i)( û (i)

k , q (i))
}
, ∀(η, ζ) ∈ Λ × Ξ, (11)

where ( û (i)
k , p̂

(i)
k ) := E (i)(0,wk, ωk). The extentions ( ũ (i)

0 , p̃
(i)
0 ), ( û (i)

0 , p̂
(i)
0 ), and ( v (i), q (i)) in (10) and (11)

could be computed in Ω(1) and Ω(2) independently. Therefore, the above conjugate gradient algorythm is
familiar with parallel computations.

Moreover, as mentioned in Remark 1, if f (i) satisfies that div f (i) = 0 in Ω(i), then p(i) vanishes. This
implies that we can neglect the components corresponding to the Lagrange multiplier in the conjugate
gradient algorythm. Therefore we can get the reduced conjugate gradient algorythm as follows:

Choose λ0;

Compute g0 by (12);

w0 := g0;

for k = 0, 1, . . .;

Compute A1(wk, 0) by (13);

αk :=
(
gk, gk

)
/
(
A1(wk, 0),wk,

)
;

λk+1 := λk − αk wk;

gk+1 := gk − αk A1(wk, 0);

βk :=
(
gk+1, gk+1

)
/
(
gk, gk

)
;

If
(
gk+1, gk+1

)
/
(
g0, g0

)
< ε, break;

wk+1 := gk+1 + βk wk;

end;

In the reduced conjugate gradient algorythm, g0 could be computed by the first component of the following
equation:〈

(g0, δ0), (η, ζ)
〉
γ12

=

2∑
i=1

{
a(i)( ũ (i)

0 , v (i)) + b(i)( v (i), p̃ (i)
0 ) − ( f (i), v (i))Ω(i) + b(i)( ũ (i)

0 , q (i))
}
, ∀(η, ζ) ∈ Λ × Ξ, (12)

where ( ũ (i)
0 , p̃

(i)
0 ) := E (i)( f (i), λ0, 0); and A1(wk, 0) could be computed by the first component of the follow-

ing equation:

〈
A (wk, 0), (η, ζ)

〉
γ12
=

2∑
i=1

{
a(i)( û (i)

k , v (i)) + b(i)( v (i), p̂ (i)
k ) + b(i)( û (i)

k , q (i))
}
, ∀(η, ζ) ∈ Λ × Ξ, (13)

5



where ( û (i)
k , p̂

(i)
k ) := E (i)(0,wk, 0).

References
[1] Alonso, A. and Valli, A., Some remarks on the characterization of the space of tangential traces of

H(rot;Ω) and the construction of an extension operator, Manuscripta Math., 89 (1996), pp.159–178.

[2] Buffa, A. and Ciarlet, P.-G., On traces for functional spaces related to Maxwell’s equations. I, An
integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci., 24 (2001), pp.9–30.

[3] Buffa, A. and Ciarlet, P.-G., On traces for functional spaces related to Maxwell’s equations. II, Hodge
decompositions on the boundary of Lipschitz polyhedra and applications, Math. Methods Appl. Sci.,
24 (2001), pp.31–48.

[4] Buffa, A., Costabel, M., and Sheen, D., On traces for H(curl, Ω) in Lipschitz domains, J. Math. Anal.
Appl., 276 (2002), pp.845–867.

[5] Glowinski, R., Dinh, Q.V., and Periaux, J., Domain decomposition methods for nonlinear problems
in fluid dynamics, Compt. Meths. Appl. Mech. Engrg., 40 (1983), pp.27–109.

[6] Kikuchi, F., Mixed formulations for finite element analysis of magnetostatic and electrostatic prob-
lems, Japan J. Appl. Math., 6 (1989), pp.209–221.

[7] Kikuchi, F., On a discrete compactness property for the Nedelec finite elements, J. Fac. Sci. Univ.
Tokyo, Sect. IA Math., 36 (1989), pp.479–490.

[8] Kanayama, H., Shioya, R., Tagami, D., and Matsumoto, S., 3-D Eddy Current Computation for a
Transformer Tank, COMPEL, 21 (2002), pp.554–562.

[9] Quarteroni, A. and Valli, A., Domain Decomposition Methods for Partial Differential Equations,
Oxford, 1999.

6



Variational approach to multi-scale dynamical system
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I. INTRODUCTION

In mathematical models that describe multi-scale physics, microscopic effect often acts
as singular perturbation; a higher derivative term is brought into macroscopic governing
equations. Instead of directly solving such multi-scale problem (which is usually difficult
even with the help of numerical computation), it is mathematically tractable and physi-
cally informative to solve it approximately with some techniques such as the renormalized
perturbation method and the asymptotic matching method. In this work, we present an-
other approach that utilizes the variational principle. This powerful approach is basically
applicable to problems which can be regarded as a multi-scale Hamiltonian system.

Two typical examples of multi-scale problems are shown in FIG. 1. The parameters
ν, α ∈ R are usually small in physical context and, hence, the higher-order derivative works
only inside thin boundary layer. While these two examples are known to be integrable, it
is generally difficult to solve nonlinear behavior of more complicated multi-scale problems.
Note that, in the case of the KdV equation, the singular perturbation does not leads
to energy dissipation but modifies conservation law of the dynamical system. For such
conservative singular perturbations, we can take advantage of Hamiltonian structure of
the systems to find constants of motion [1, 2]. Even when the system is not integrable,
variational principle allows us to predict behavior of solution in a heuristic manner. If
we makes a good choice of test function, we can obtain an approximate solution without
solving higher-order differential equations directly or perturbatively. Accuracy of the result
depends on how good the test function mimics the true solution.

In order to demonstrate the variational approach, we argue a problem of magnetic
reconnection in collisionless (i.e., dissipationless) plasma. Although this approach is not
all-purpose, we expect a lot of applications to other multi-scale Hamiltonian systems.

Dissipative Conservative

Burgers equation:
∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
KdV equation:

∂u

∂t
+ u

∂u

∂x
+ α

∂3u

∂x3
= 0

Time-irreversible Time-reversible

Shock Soliton
(⇑ multi-scale Hamiltonian system)

FIG. 1: Two kinds of singular perturbation

II. MODEL OF COLLISIONLESS MAGNETIC RECONNECTION

In perfect fluid, the topology of vortex field line will not change according to the well-
known Kelvin’s circulation theorem. This vorticity conservation law is violated in the
presence of small viscosity (which is a singular perturbation leading to the Navier-Stokes
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equation), where reconnection of vortex field lines occurs on a small scale. Analogous
phenomenon is also present in magnetohydrodynamics (MHD), in which the topology of
magnetic field is preserved in ideal limit. Again, one can show that magnetic field lines
reconnect by adding resistivity into the ideal MHD equations. Magnetic reconnection
is naturally observed in various plasmas (ionized gases) residing in magnetosphere, solar
flare and magnetic confinement experiments. In these circumstances, however, ions and
electrons are almost collisionless, which implies that the resistivity is very small (magnetic
Raynolds number is Rm ∼ 109−13). It is pointed out that the analysis and simulation of
the resistive MHD equations cannot fully explain the reconnection speed of observations.
Therefore, we need to take account of other microscopic effects (i.e., singular perturbations)
that seem to cause fast magnetic reconnections in collisionless plasmas.

Instead of resistivity, the effect of “electron inertia” (which is also neglected in the
ideal MHD model) is a major candidate of singular perturbation that triggers collisionless
reconnection. As simplest analytical model, we consider the following equations for 2D
velocity field v = ∇ϕ(x, y, t)× ez and magnetic field B = ∇ψ(x, y, t)× ez,

∂∇2ϕ

∂t
− [ϕ,∇2ϕ]− [∇2ψ,ψ] = 0, (1)

∂(ψ − d2e∇2ψ)

∂t
− [ϕ, ψ − d2e∇2ψ] = 0, (2)

where [f, g] = (∇f × ∇g) · ez. In comparison to the 2D Euler equation, the vorticity
equation (1) includes the electromagnetic force, [∇2ψ,ψ], where J = −∇2ψ corresponds
to (electric) current. The small scale parameter de ≪ 1 (called the electron skin depth)
plays a role of singular perturbation. When de = 0, the (collisionless) Ohm’s law (2)
conserves the magnetic flux ψ and hence the field line of B never changes its topology.
On the other hand, for de ̸= 0, the modified flux ψe = ψ − d2e∇2ψ is still conserved, but
the magnetic reconnection is allowed to occur within a thin layer of the width ∼ de [3].
Since the electron inertia does not cause energy dissipation, (1) and (2) are known to be
a Hamiltonian system [4]; ∂tF = {F,H} for ∀F (ϕ, ψ), where

Hamiltonian: H =
1

2

∫
d2x

[
|∇ϕ|2 + |∇ψ|2 + d2e(∇2ψ)2

]
(3)

Casimir invariants: C1 =

∫
d2xF1(ψe)∇2ϕ, C2 =

∫
d2xF2(ψe) (4)

for ∀F1,2 : R → R.
In this work, we consider a 1D static equilibrium state which is periodic in both x and

y directions,

ϕ ≡ 0, ψ(x) = cosx on x ∈ [−π, π]. (5)

The corresponding magnetic field B is antiparallel as shown in FIG. 2. This magnetic
shear will serve as the free energy source for instability.

Asymptotic matching analysis of the linearized system [5, 6] shows that the recon-
nection is indeed triggered by a linearly unstable mode, leading to the energy conversion
from magnetic energy 1

2

∫
|∇ψ|2d2x to kinetic energy 1

2

∫
|∇ϕ|2d2x and also current energy

1
2

∫
d2eJ

2d2x. However, it seems that such the perturbation analysis fails to converge even
before the mode amplitude reaches the scale of de. Nonlinear regime of the reconnection
process is investigated to some extend [7] but remains mostly unclear.
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FIG. 2: Equilibrium magnetic field (=initial state)

III. VARIATIONAL PRINCIPLE ∼ LAGRANGIAN FORMULATION ∼

To study the above mentioned reconnection process, we first formulate the variational
principle for (1) and (2), where displacement field of fluid elements is the dynamical
variable to be varied. By translating the (noncanonical) Hamiltonian system, (1) and (2),
in the language of (canonical) Lagrangian mechanics, we can distinguish free energy source
of the instability in explicit form.

From now on, let us simply denote the equilibrium state by (ϕ, ψe) and the perturbed
state by (ϕ̃, ψ̃e), where ϕ = 0 and ψe = (1 + d2e) cosx. The conservation law (2) restricts
the perturbation ψe → ψ̃e such that the dynamics is constrained on the constant Casimir
surface, C2 = const. In the same manner as Newcomb’s Lagrangian theory [8], we can for-
mally solve (2) by introducing displacement field. Since the fluid is 2D and incompressible,
the perturbed state (ϕ̃, ψ̃e) is generated by a gauge function G(x, y, t) such that

ϕ̃(x+ ∂yG(x, y, t), y, t) =∂tG(x, y, t), (6)

ψ̃e(x+ ∂yG(x, y, t), y, t) =ψe(x). (7)

One can directly confirm that this perturbation is a solution of (2) for any G. Here,
Ξ(x, y, t) = ∂yG(x, y, t) corresponds to the displacement of fluid in x direction. For these
constrained perturbations, we define the Lagrangian as

L[G] = L(ϕ̃, ψ̃e) =
1

2

∫
d2x

(
|∇ϕ̃|2 − |∇ψ̃|2 − d2e|∇2ψ̃|2

)
. (8)

By invoking the variational principle,

δ

∫
L[G]dt = 0 w.r.t. ∀δG, (9)

we find that the Euler-Lagrange equation corresponds to the vorticity equation (1).
Therefore, we can analyze nonlinear behavior of perturbation (ϕ̃, ψ̃) using the canoni-
cal coordinate G. By comparison with the Hamiltonian (3), one can find that W =
1
2

∫ (
|∇ψ̃|2 + d2e|∇2ψ̃|2

)
d2x plays a role of potential energy of this dynamics. If the po-

tential energy decreases (δW < 0) for some function G (i.e., some displacement of fluid),
then such a perturbation will grow with the release of free energy [9].

We will show that a rather simple fluid motion is enough to prove the occurrence of
spontaneous magnetic reconnection which, moreover, accelerates in the nonlinear phase.

IV. LINEAR STABILITY ANALYSIS

Let us perform small-amplitude expansion of the Lagrangian (8) around the equilibrium
state. In this work, we measure the amplitude of perturbation by ϵ = max |Ξ| = max |∂yG|.
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From (6) and (7), we get

ϕ̃ =Gt − ΞG′
t +

1

2
(Ξ2G′

t)
′ − 1

6
(Ξ3G′

t)
′′ +

1

24
(Ξ4G′

t)
′′′ +O(ϵ6), (10)

ψ̃e =ψe − Ξψ′
e +

1

2
(Ξ2ψ′

e)
′ − 1

6
(Ξ3ψ′

e)
′′ +

1

24
(Ξ4ψ′

e)
′′′ +O(ϵ5). (11)

where Gt = ∂tG and the prime (′) denotes the x derivative. Substitution of these expres-
sions into the Lagrangian gives

L(ϕ̃, ψ̃e) = L(ψe) + L(1) (ψe;G) +
1

2
L(2)(ψe;G,G) +

1

6
L(3)(ψe;G,G,G) + . . . (12)

Since the equilibrium state is already an extremum of the Lagrangian, one can show that
the first-order term vanishes, L(1) (ψe;G) = 0, for any G.

Then, the second-order Lagrangian L(2) governs the linearized dynamics. By assuming
Ξ(x, y, t) = ϵRe[ξ̂(x)eik(y−ct)] with a wavenumber k ∈ R and an eigenvalue c ∈ C, we can
write the eigenvalue problem in the form of

{[c2 − (ψ′
e)

2]ξ̂′}′ − k2[c2 − (ψ′
e)

2]ξ̂ = d2eψ
′
eJ

′′′ξ̂ + ψ′
ed

2
e∇2(1− d2e∇2)−1∇2(ψ′

eξ̂), (13)

where ∇2 should be interpreted as ∇2 = ∂2x − k2. Note that this is essentially a fourth
order ordinary differential equation (unless de = 0) because there is an integral operator
(1 − d2e∇2)−1 on the right hand side. This integrodifferential form (13) is nonetheless
very informative, for it comes from the extremum condition of the symmetric quadratic
Lagrangian L(2). Multiplying ξ̂∗ on the both sides of (13) and integrating over the x
domain [−π, π], we get c2I(2) =W (2) where

I(2) =

∫
dx
(
|ξ̂′|2 + k2|ξ̂|2

)
> 0, (14)

W (2) =

∫
dx

[
|∇(ψ′

eξ̂)|2 + ψ′
eψ

′′′|ξ̂|2 −∇2(ψ′
eξ̂

∗)d2e(1− d2e∇2)−1∇2(ψ′
eξ̂)

]
. (15)

(i) (ii) (iii)

The functionals, c2I(2) and W (2), respectively represent the kinetic and potential en-
ergies for linear perturbation, which are obviously symmetric. Now, we can apply the
Rayleigh-Ritz method to this problem. Namely, if W (2)/I(2) takes a minimum value for
some ξ̂, then such a ξ̂ is the eigenfunction of the eigenvalue c2 = min[W (2)/I(2)], which
actually provides the lower bound of c2, that is, the most unstable mode (Im c > 0) when
W (2) < 0. Even though analytical form for the true solution of (13) is intractable, we can
estimate min[W (2)/I(2)] by substituting a test function ξ̂ that is composed of elementary
functions.

As indicated in (15), there are three terms in the potential energy, which have definite
signs, (i)> 0, (ii)< 0 and (iii)< 0. In the ideal MHD limit (de = 0), we can easily prove
(i)+(ii) > 0, which implies that there is no instability triggering reconnection. We remark
that, if there was no magnetic shear ψ′′ ≡ 0 in the equilibrium state, we could again
prove linear stability (i)+(iii) > 0. The effect of electron inertia (iii) merely weakens the
magnetic field tension (i) on small scale ∼ de. Thus, magnetic reconnection (W (2) < 0)
will be triggered in the presence of both magnetic shear (ii) and electron inertia (iii).

Let us temporarily suppose that de = 0 and introduce ψ̂ = −ψ′ξ̂. When k2 < 1, we
can show that ψ̂ = cosκ(|x| − π/2) formally makes W (2) negative, where κ =

√
1− k2.

However, this perturbation cannot be unstable because the corresponding ξ̂ = −ψ̂/ψ′

becomes discontinuous at x = 0,±π and I(2) = ∞. The role of the singular perturbation
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FIG. 3: Trial eigenfunctions ξ̂, ψ̂e, ψ̂ chosen by this work. Corresponding field lines are respectively
shown above, where Be = ∇ψe×ez. (Note: amplitudes of linear perturbations are exaggerated to
display the island structure. For such island size, the nonlinear effect is important in reality.)

de ≪ 1 is to smooth out these discontinuities by establishing thin boundary layers around
them. For simplicity, we assume the ordering, πk2/4 ≪ d2e ≪ 1, and choose the following
structure of eigenfunction.

ξ̂(x) =


1 −π + de < x < −de
−x/de −de < x < de

−1 de < x < π − de

(16)

where the boundary layers at x = ±π are basically equivalent to the one at x = 0 (see
FIG. 3). We can directly show that this piecewise linear function indeed makes W (2)

negative and keeps I(2) finite as follows.
Since k2 is assumed to be small, the most part of the kinetic energy (14) stems from

the boundary layers,

I(2) ≃ 4

de
. (17)

In order to estimate W (2), we needs to calculate ψ̂ = (1−d2e∇2)−1ψ̂e for given ψ̂e = −ψ′
eξ̂.

By noting that (1− d2e∇2)−1 ≃
∫
e−|x−s|/de ◦ ds, we can derive ψ̂ which is not so spiky as

ψ̂e in the boundary layers (as shown in FIG. 3). After some lengthy but straightforward
calculation, we obtain, to leading order,

W (2) ≃− 4

6
(1 + 27e−2)de = −4× 0.776de. (18)

The linear growth rate γ = Im(kc) is therefore evaluated as

γ =
√
0.776kde = 0.881kde. (19)

In FIG. 3, we also exhibit field lines of v, Be and B perturbed by this unstable mode. Via
reconnection of magnetic field lines, the potential energy (or mostly the magnetic energy)
decreases, W (2) < 0, and in turn the kinetic energy increases c2I(2) > 0 by generating
convection cells. The so-called magnetic island is observed in B as evidence of topological
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FIG. 4: Linear growth rate of the tearing mode

change. Unstable mode which triggers magnetic reconnection is generally called the tearing
mode.

In FIG. 4, the analytical estimate of the growth rate is compared with a numerical
simulation with parameters k = 0.5/2π and de/2π = 0.01. For smaller k, we observe a
good agreement since the piecewise linear function agrees well with the true eigenfunction.
We remark that we can also reproduce the maximum growth rate at k ≃ 0.2 by improving
the test function in an appropriate manner.

V. NONLINEAR STABILITY ANALYSIS

At the beginning of studying nonlinear stage of the above linear instability, one may
try to continue the perturbation analysis of the Lagrangian (12) (i.e., weakly nonlinear
analysis). However, we have already seen that the linearly unstable mode Ξ = ϵξ̂ cos[k(y−
ct)] has a steep gradient Ξ′ ∼ Ξ/de in the boundary layers. This fact means that the
perturbation expansion, (10) and (11), will not converge when ϵ reaches de. Actually, we
will find that ϵ exceeds de without saturation and a fully nonlinear analysis is required
around the boundary layers.

To avoid this difficulty of perturbation analysis, let us again exploit the variational
method. Namely, if a trial fluid motion (parameterized by the amplitude ϵ) continues
to decrease the potential energy W , such a motion is expected to be nonlinearly unsta-
ble. As a natural extension of linearly unstable motion, we choose a nonlinear displace-
ment Ξ(x, y, ϵ) = ∂yG(x, y, ϵ) that is generated by the infinitesimal displacement field

ξ̂(x) cos ky = ∂y ĝ(x, y) prescribed by (16). Mathematically, we should integrate the fol-
lowing evolution equation for G,

∂ϵG(x, y, ϵ) = ĝ(x+ ∂yG(x, y, ϵ), y), G(x, y, 0) ≡ 0. (20)

The resulting function G generates nonlinear perturbations ϕ̃ and ψ̃ according to (6) and
(7), where only the amplitude ϵ is regarded as a function of t. For this fluid motion, a
simple relation holds,

ϕ̃(x, y, t) =ĝ(x, y)
dϵ

dt
. (21)

Therefore, the estimate of the kinetic energy K is almost the same as the one for linear
perturbation,

K =
1

2

∫ ∫
|∇ϕ̃|2dxdy ≃ 2π

k

1

k2de

(
dϵ

dt

)2

(22)
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FIG. 5: Nonlinear displacement

FIG. 6: Development of ψ̃e at the X point, (x, y) = (0, 0).

Since the x component of the velocity is given by ṽx = ξ̂(x) cos ky × dϵ/dt, the amplitude
ϵ(t) is equal to the maximum displacement along the x direction and, hence, measures
the half width of the magnetic island. We have seen in the previous section that the
exponential growth ϵ(t) ∝ eγt occurs in the linear regime 0 ≤ ϵ ≪ de. Now, we are
interested in what happens in the nonlinear regime ϵ > de.

When ϵ > de, a line element of fluid is distorted by convection as illustrated in FIG. 5.
The displacement is no longer sinusoidal along the y direction and the asymmetry between
the X point (y = 0) and the O point (y = ±π/k) is more emphasized.

At the X point, the equilibrium flux ψe ≃ cosx will be compressed by flow along the x
direction, which is analytically expressed by

ψ̃e|y=0 =1 +


−1

2e
2ϵ/dex2 0 < x < dee

−ϵ/de

−1
2

(
de log

x
de

+ de + ϵ
)2

dee
−ϵ/de < x < de

− (x+ϵ)2

2 de < x

(23)

As the fluid motion evolves (ϵ ↗), ψ̃e will concentrate on the X point (see FIG. 6). For
large ϵ/de ≫ 1, the spike of ψ̃e looks like a logarithmic function ∼ −ϵ log |x/de|. By solving
ψ̃ = (1− d2e∂

2
x)

−1ψ̃e for ψ̃, we obtain the current profile J̃ = (ψ̃e − ψ̃)/d2e as

J̃ |y=0 ≃ 1− ϵ
ex/deEi(−x/de) + e−x/deEi(x/de)

2de
, (24)

where Ei(x) =
∫ x
−∞(es/s)ds is the exponential integral. Although a strong current spike

develops J̃ → (ϵ/de) log |x/de| at the X point, note that it remains square-integrable.
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FIG. 7: Development of ψ̃e at the O point, (x, y) = (0, π/k).

Therefore, we estimate the potential energy change around X point (x = 0, y = 0) as
follows, ∫ de

0
d2e(|J̃ |2 − |J |2)dx =1.35ϵ2de +O(ϵd2e) (25)∫ de

0
|ψ̃′|2dx−

∫ de+ϵ

0
|ψ′|2dx =− ϵ3

3
− 0.78ϵ2de +O(ϵd2e) (26)

in nonlinear regime ϵ/de ≫ 1, where decrease of magnetic energy (due to the reconnection)
is more dominant than increase of current energy.

On the other hand, at the O point (x = 0, y = ±π/k), the flux ψ̃e will be expanded by
convection,

ψ̃e|y=π/k =1 +


−1

2e
−2ϵ/dex2 0 < x < de

−d2e
2 e

2x−de−ϵ
de de < x < de + ϵ

− (x−ϵ)2

2 de + ϵ < x

(27)

As shown in FIG. 7, the subsequent ψ̃e becomes flat-topped and the generated current is
very small,

J̃ |y=π/k ≃

{
−1− 2

3e
2x−de−ϵ

de + 3
2e

x−de−ϵ
de 0 < x < de + ϵ

−1
6e

−x−de−ϵ
de de + ϵ < x

. (28)

Therefore, in the nonlinear regime ϵ/de ≫ 1, no significant change in the potential energy
occurs around the O point; ∫ ∞

0
d2e(|J̃ |2 − |J |2)dx =− ϵd2e +O(d3e) (29)∫ de+ϵ

0
|ψ̃′|2dx−

∫ de

0
|ψ′|2dx =O(d3e) (30)

which are negligible in comparison to the changes at the X point.
Although we have only investigated the two extremal situations, i.e., the X and O

points, we can expect that the potential energy continues to decrease even in the nonlinear
regime ϵ/de ≫ 1. The prominence of the current spike at the X point cannot elevate the
total potential energy. By contrast, the potential energy can decrease faster than the
linear regime in powers of ϵ3.
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FIG. 8: Time evolution of modal amplitude (left) and potential energy (right).

In terms of normalized variables, ϵ̂ = ϵ/de (t̂ = kdet), we reduce the Lagrangian to

L =K −W ≃
(
dϵ̂

dt̂

)2

− U(ϵ̂), (31)

which immediately gives the equation of motion,

d2ϵ̂

dt̂2
= −U ′(ϵ̂). (32)

We have performed nonlinear simulation of this instability (with parameters k = 0.5/2π
and de/2π = 0.01, again). The liner growth rate (which is numerically γ = 0.934kde)
is indeed accelerated when ϵ > de in FIG. 8(left). The numerically evaluated potential
U(ϵ̂) is plotted in FIG. 8(right), whose decrease becomes steeper than the linear regime
U(ϵ̂) = −0.873ϵ̂2. However, it is very difficult to survey further nonlinear evolution be-
cause numerical simulation has limitations to deal with the current spike which becomes
increasingly singular. By adding a diffusion term of current (which makes the current
energy dissipate), we observe that the growth of ϵ̂ is enhanced and the reconnection con-
tinues.

The fluid motion we considered here may not be the most unstable one, but it cer-
tainly decreases the potential energy, which implies capability to release free energy of the
equilibrium state. As one can easily imagine, this nonlinear growth should be decelerated
eventually before ϵ reaches the equilibrium scale size ϵ→ 1 (at which the magnetic energy
will start to be exhausted).
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Multiscale characteristics of moist convections 
and heavy precipitation in the tropics 

Shigeo Yoden, Shigenori Otsuka, and Nurjanna J. Trilaksono 

Department of Geophysics, Kyoto University, Kyoto, Japan 

Introduction 

Moist convections are the main driver of the tropical circulation and a key element of the 

multiple scale interactions in the tropics. Such dynamical situation in the tropics is quite different 

from that in mid-latitudes, i.e., dry dynamics governed by the conservation law of potential vorticity 

[1]. In the tropics, our dynamical understanding is still limited and ability of numerical weather 

predictions is far from satisfactory, mainly due to the wide range of spatial and time scales of the 

multiple scale interactions. Numerical representation of moist convections and their organization 

with a finite mesh size is still one of the major defects of current global climate models too. 

About a quarter of a century ago, in 1986, Hayashi and Sumi [2] made a numerical experiment 

with a general circulation model (GCM) of the atmosphere with an idealized lower boundary 

condition of an ocean covered globe ("aqua planet"). They found a long period (30-40 days) 

oscillation as a collective motion of cumulus ensemble activity along the equator as shown in Fig.1. 

The oscillation was characterized by a superposition of two different scales: the scale of precipitation 

patterns and the scale of the modulation of precipitation. They pointed out the resemblance of the 

latter structure to that of the observed intraseasonal variation of the equatorial circulation known as 

Madden-Julian Oscillation 

(MJO) found by Madden and 

Julian [3, 4]. Motivated by 

this theoretical work, 

Nakazawa [5] verified the 

existence of such multiscale 

characteristics in the real 

tropical atmosphere by 

analyzing the 3-hourly 

geostationary meteorological 

satellite (GMS) infrared data.  

Since then, lots of 

numerical and observational 

studies on the multiscale 

characteristics of moist 

Fig. 1. Longitude-time section of precipitation per 12 hours obtained 

by an "aqua planet" numerical experiment [2]. The regions of 

precipitation greater than 1 mm/12 h are shaded. 
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 Figure 2 shows the time-longitude cross sections of (a) the TRMM estimated rainfall data, and 

(b) the ensemble mean of the model simulated precipitation rate averaged between 5.5S - 8S with a 

horizontal resolution of 20 km. Note that the horizontal resolution is one order smaller than that of 

Hayashi and Sumi (~310 km) whereas one order larger than that of Miura et al. (~3.5 km). 

Comparison of such plots of the real atmospheric data and those obtained by numerical simulation 

shows fundamental agreement on the temporal modulation of the spatial distributions of 

precipitation, including the enhancement of precipitation on the time scale of pentad during the 

period of heavy rainfall, from 31 January to 4 February, in the Jakarta Flood event. During the 

simulated two-month period, modulation of the monsoon circulation is observed and the Jakarta 

Flood event is associated with a strong cold surge event across the equator. See [7] for the details. 

Statistical analysis of the numerically obtained heavy precipitation in the tropics 

The numerical data obtained in the time-lagged ensemble downscaling experiments with four 

horizontal resolutions (2, 4, 5, and 20 km, denoted as EXP i km) were analyzed to study the spatial 

and temporal variation of precipitation distribution simulated by the model for five days of the 

Jakarta Flood event [8, 9]. Figure 3 shows a histogram of precipitation rate for EXP2km, EXP4km, 

EXP5km, and EXP20km (from left to right), and for the Java sea, the northern coast of Java Island, 

the mountain area, and the southern coast of Java Island (from top to bottom), for all the nine 

ensemble members. There is a large variation of values for different resolutions and different regions 

in the upper tail of the histogram. All the models show a high value of precipitation in the northern 

coast region regardless of their horizontal resolution, and EXP4km shows the highest value of 

precipitation (77 mm/hr). If we look at the slope of the frequency distributions, a higher resolution 

experiment tends to show a more gradual decrease of rainfall frequency as function of rainfall value. 

The upper tail of cumulative distribution functions (CDFs) of the precipitation rates was 

analyzed in details to focus on the heavy rainfall part. In the northern coast region, the highest 

contribution of heavy precipitation is well reproduced in the experiments except EXP20km, 

indicating that the downscaling improves the statistical nature of heavy precipitation. In general, the 

performance of downscaling is good in the situation of Jakarta Flood event in February 2007, in 

which convective activities play an important role in the heavy precipitation. Finer resolution results 

show better performance on the precipitation over complex terrain of the mountain region. 

These results of the statistical analysis of heavy precipitation are indicative of possibility to use 

this kind of quantities for potential forecast of heavy precipitation in future as a product of ensemble 

forecasts. As an extension of these studies, we are now analyzing the size distributions of rain areas. 

The distributions show a power low for lower rain rates while a lognormal distribution for higher 

rain rates in all the experiments of the four horizontal resolutions. Details of the distributions and 
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Dimension Reduction Study of Microseismic Activity in the Earth’s Crust and Mantle in 
the Plate Boundary Region 
 
Mitsuhiro Toriumi 
 
Institute for Research of Earth Evolution (IFREE) 
JAMSTEC, JAPAN 
 
Abstract 
 
Microseismic activity of the crust and mantle in the southwestern Japan was studied by 
means of dimension reduction method using principal component analysis. The 
microseismicity rates defined by the number of the microseismic events of M1-M2 were 
estimated in the volume of the Japanese crust and the subducting Philippine Sea Plate 
and of 1998-2008 from the JMA1 database. The spatial dimension of this region is 96 
and total number of the microseismicity rate data reaches 120.  
 The data were projected effectively on hyper surface of 10 dimension, and the 
components of this reduced space are obtained as the eigenvectors of the cross 
correlation matrix of the total data. It shows that the linear combinations of the 
microseismicity rates can be divided mainly into three types of postseismic signals after 
large earthquakes, slowly changing components, and annually changing components. 
The last term is probably derived from solid tidal force, and the first term is responsible 
for the relaxation after large earthquake and the second term is due to long term strain 
change in the crust and subducting plate. 
 
Key words: microseismicity, dimension reduction, deformation of the earth interior, 
principal component analysis 
 
1, Introduction 
 
 Recent heavily disaster at 3.11 of 2011 in the northeastern Japan attacked severe 
damages to Japanese islands and aftershocks of seismic large events now continue to 
take place in the subducting Pacific plate and overriding crust and wedge mantle 
beneath Japanese islands. The seismic activity of the crust and mantle is basically 
governed by the mechanical states and properties of the rocks, because seismic events 
are thought to be the shear crack propagation. The magnitude of earthquakes can be 
represented by the logarithmic intensity of the product of rigidity of rocks, displacement 
of shear, and the area of the shear crack surface, and thus the wide variation of the 
earthquake magnitude is responsible for the wide range of shear crack surface area. The 
earthquakes of M9 reach about 500km x 200km, and those of M1 do about 1mx1m. 
 The earthquake events are similar to the spike signals in the time series of the 
mechanical states in the mantle and crust (Aoki and Scholz, 2003; Terakawa and 
Matsu’ura, 2010). The intensities of the spikes are represented by the logarithmic 
magnitude of moment generated by the single earthquake and the their time intervals 
between various spikes with different intensities are not always the values but not 
perfectly random.  The spike signals show clearly the mechanical states over the 
critical condition where the rocks behave brittle manner of shear deformation, namely 



the rapid propagation of shear cracks.  On the other hand, the micro-earthquake signals 
are generated in the condition under the large scale failure stress, and then they rise 
repeatedly in the same volume by the repeated stress operation.  
 In the experimental investigation, repeated nature of shear crack activation has been 
shown by many authors (Ohnaka and Mogi, 1981). Especially, the acoustic emissions in 
the deformation of rocks can be sharply observed as repeated signals from the micro 
cracks corresponding to the magnitude of strain. The rate of the generation of the 
signals clearly increases with increasing strain magnitude, suggesting that the rate of 
acoustic emission signals is potentially indicator of the local strain in the sample, and 
that the distribution pattern of the signal rates should display the localization of the 
large strain or the degree of the strain localization responsible for the large scale failure 
of the specimen. 
 The strain localization in the plate boundary and within the crust and mantle is most 
important problem to understand the fracture process in the earth interior (Ashby and 
Sammis, 1991). Considering that the fault propagation, that is the large shear crack, is 
not point-source process but the crack tip source process that represents peripheral 
region source of the shear cracks. Therefore, the coeval strain localization can reveal 
several long tubed regions along the large scale shear cracks in the earth interior. Thus, 
in order to study the mechanical coupling of the strain magnitude among the regions 
apart from each other, we require intensities of correlation functions of the time series 
of strain magnitude measured by rate of repeated micro earthquake signals among many 
localities in the earth interior and also we need the secure observations of many 
localities and narrow time intervals because of clarifying the short term strain 
localization.  
 The author intends to study the dimension reduction of the microseismicity rate 
defined by the micro earthquake numbers generated in the proper time intervals and 
volume in the earth interior to obtain the time trajectories of some combination of the 
microseismicity rates of many localities.  Such linear combinations represent the new 
unit vectors in the reduced orthogonal coordinate system and they imply the intensities 
of mechanical coupling among all localities studied here. 
 
2, Microseismicity rate as an indicator of the combination of strain, stress and fracture 
toughness 
 
 The seismic activity of the earth interior is sharply concentrated along the plate 
boundary zone although deep activity is restricted in the subduction zone. As stated in 
the earlier section, the intensity of the earthquake can be represented by logarithmic 
moment release generated from fault slip motion as the magnitude which ranges from 0 
to 10. In the past the maximum magnitude of the plate boundary earthquake recorded 
reaches 9.5 at the 1960 Chile, but 3.11 Tohoku-Pacific earthquake was that of M9.0. 
After such giant earthquakes there are lots of showers of various magnitudes of 
earthquakes, and they are called as post seismic events having the intensities from M1 
to M8.  
 Considering that the earthquake takes place by rapid slip motion of the large scale 
shear cracks in the earth interior, the elastic strains are to be concentrated at the crack 
tips around the area of that cracks. However, the displacements along on the shear crack 
surface are not the same distance, the shear crack propagation should make the local 



accumulation of strain and stress. Thus, near the large scale shear slip, coincident strain 
and stress localized regions must be associated with the large shear cracks.  
 Experimental investigations of yielding and successive fracturing of compressed rock 
specimens have revealed many signals of acoustic emission with very high frequencies 
which were generated randomly in the initial stage and in the later signals become 
concentrated along on the maximum shear planes post dated by conjugated faults. It 
seems that the change of the spatio-temporal pattern of the signal distribution in the 
deformed specimens should be apparently recognized before and after the large scale 
earthquake as an excess signal over the noisy background.  
 The detection of such signals must be surveyed by means of through searches of many 
time series of seismic activities of many neighboring volumes of the crust and mantle. 
Then, first, the author will intend to define the microseismicity rate as the spike density 
rate in the earth interior as follows. 
 In this paper, he introduced the microseismicity rate to be the total number of seismic 
spike signals between M1 to M2 per one month in the unit volume of 0.5o x 0.5o x 
thickness with 20km of the island arc crust of the Southwest Japan and subducted 
Philippine Sea Plate. In these regions the widths of longitude and latitude are about 50 
km length, respectively. Time window of one month is selected because of available 
spike numbers to investigate the stochastic analyses during the high resolution periods 
from 1998 to 2008 for well-defined time series of seismicity over M1 have been 
continuously observed by means of dense observatories network by Japan Agency of 
Meteorogy was started at 1998.  
 Here, the author avoided the seismicity rates exceeding M2 because rather large 
earthquakes represent the large scale shear crack propagation and then those action must 
change irreversibly the mechanical nature but more small size shear cracks may be 
reversible signature of the mechanical state of the crust and mantle as seen in the 
experimental deformation of the rock samples before yielding (Atkinson, 1984).  
 The studied area is ranged from 32 to 36 o of the latitude and from 132.5 to 138.5 o of 
the longitude, involving the Southwest Japan Arc and trench segment from Nannkai - 
Tonankai - Tokai region as shown in figure 1.   Therefore, 12x8 blocks of the SW 
Japan crust and and those of the Philippine Sea Plate are chosen for data analyses.  The 
time interval is taken as one month from January of 1998 to 2008, and thus sample 
number attains 120 in the time series.   Thus the total number of independent 
parameters is 140x12x8.  
 In this study, the seismicity rate is taken as the vector data in the 12x8 dimensional 
space and therefore samples of vector data count 120 in the studied case. Accordingly 
the following data sets can be assembled to infer the trajectory of the mechanical states 
of the crust and subducting mantle in the SW Japan as shown in figure 2;  
 
  Xj (n(1j), n(2j), n(3j), .....n(kj)) for j=1 to 140 
 
 where n and X are microseismicity rates and their vector, respectively, and k is 96. 
 Expermenntal results of acoustic emmision in the deformation of rocks indicate clear 
relations between strain and number of acoustic signals. The time study of the numbers 
of signals also indicated repeated generation of micro shear cracks and show the scarce 
hysteresis between the strain and number of acoustic emission (Ohnaka and Mogi, 
1981). It leads that the shear cracks under the size of critical Griffith crack must be 



reversible for instantaneous slip motion: the micro shear crack may retreat the 
undeformed state by elastic stresses induced by the foward slip.  The critical size of the 
shear crack is estimated about 10 m in diameter in the earth interior. Consequently the 
shear cracks of M1-2 are less than the critical Griffith cracks.  
 In the case of water-filled shear crack the surface tension should decrease because of  
hydration reaction between mineral surface and water. According to critical size 
proportional to surface tension, the critical Griffith crack size becomes small. On the 
other hand, higher temperature condition yield enhancement of ductile behavior, 
suggesting an increase of fracture toughness. 
 Therefore, the shear cracks can be divided into two types by the length: the crack under 
the critical size is reversible type and that over the critical size is to be irreversible one. 
The shear cracks of M1-2 may be the reversible type. In this paper, the author intends to 
reveal the mechanical coupling among every reference volumes in the studied region 
with special reference to microseismicity rate time series as previously shown in figure 
2. 
 
 
2, Dimension reduction of microseismicity rate 
 
 
 The microseismicity rate vectors have apparently dependent parameters n(i,j) of given j 
and also, the time series of every n(i,j) of given i shows the tranjectories of local 
microseismicity rate. As shown in figure 3, the trajectories of the microseismicity rates 
are considered to be the unique attractor in the space of n(i) for i=1 to 96, because every 
components of Xj for j=1 to 140 are mutually as a function of them and the time. In 
other words, we can consider the following dynamical differential equations of n(i), 
 
 d n(i)/dt = fi(n(j)) 
 
Thus, if we think of the strong dependency as exemplified by the perfectly continuous 
elastic mass applied by the external force through the boundary, every n(i) are 
approximatedly the same and the its trajectory in the high dimension space is uniquely 
governed by the external force change.  On the other hand, the slider block system in 
which every blocks are connected by spring and frictional stresses operate between the 
block and the basement floor have strongly random slip motions of each block.  In this 
system, the available linear comibinations of positions of every blocks display the clear 
attractor in the new low dimensional space.  This space must be constructed by the 
dimension reduction method by using the principal component anaysis concerning the 
displacements of every blocks and their time series as shown in the plate boundary 
along the Japan trench by Toriumi (2009).  
 The actual dimension of the hyper space made by n(i) is to be determined by the hyper 
surface which contains almost always the trajectories of X as shown in figure 3 and then 
it is obtained by the transformed coordinates by made by rotation matrix W as follows; 
 
 Z = W X + g 
 
in which g is the Gaussian noise term derived from projection onto the hyper surface. 



In order to determine the unique rotation matrix W, the optimization of the distance 
from the newly obtained Cartesian coordinates Z with smaller dimension should be 
performed, leading to obtain the eigenvector of the cross correlation matrix composed 
with large number of time collection samples (Jollife, 2002). Consequently, we estimate 
the principal component vectors Z1, Z2, Z3, …and Zl (l is less than 96 in this study) in 
the decreasing order of the eigen value. Following the normal principal component 
analysis method, we choose the number of available number of new dimensions as the 
dispersion of the samples data becomes 90%. Actually, the dispersion curve against the 
number of new dimensions displays rapid decrease and then changes to be flat near the 
90% of the value, suggesting the minimum Akaike information criterion at that point.  
 In this study, we use the projected hyper surface of 10 dimension for the necessary of 
the redundant number of dimensions. Later, it shows that the projected hyper surface 
changes during the time because of successive change of mechanical coupling modes 
among the studied blocks of the crust and mantle as sharply shown by localization of 
large earthquake and its following post seismic activity.  
  
 
3, Results  
 
 
  The microseismicity rates are estimated from JMA1 database in the ERI of university 
of Tokyo. The time range studied here are from 1998 Jan.31 to 2008 Jan.31. The 
microseismicity rate of the earthquakes with magnitude ranging from 1 to 2 is to be 
number of event in the one month within the volume of 0.5o x 0.5o of latitude and 
longitude and depth range of 20km in the crust and of 50km in the Philippine Sea Plate.  
 Total number of micro earthquake events reaches about 60,000. The data processing 
has been carried out using the R-language open source. The visualization of the 
eigenvectors of the cross correlation matrix was performed by pseudo coloring in the 
map as shown in figures 4 and 5.  
 First, we intend to show the case of the Philippine Sea Plate which is subducting under 
the SW Japan arc reaching to the mantle under the front of the Japan Sea from the 
Nankai trough. As seen in figure 6, the first principal component Z1 indicates sharply 
the microseismic activities just after the large earthquake, judging from the localization 
of the intensity of Z1 just at the location of the large earthquake. The decay pattern of 
the seismicity rate after the large earthquake is similar to the power law type one, 
indicating the postseismic activity shown by Ishimori-Iida relation.  
 The second and subsidiary components of the microseismicity rates of the subducted 
oceanic plate can be classified into three types: one shows the time series having slow 
change, the second is the time series having annual and sub annual change as shown in 
figure 6. The third type shows the random variation in the time series as shown in figure 
6. The geometrical patterns of slowly changing components display clearly the 
mechanical coupling among the regions of central area beside the Nankai trough and the 
areas of Kii and eastern Shikoku and Kinki regions. The time series of these 
components appear several to several ten years periodic changes with slightly 
correlation to the large earthquakes. Further, their time changes contain slight 
fluctuation.  
 The most striking temporal changes of the higher components are annual to sub annual 



periodic patterns as shown in figure 7. The periodicity of these patterns can be also 
suggested by the foulier spectra of the time series of the annual changes as shown in 
figure 8, showing that there are several periodicities having 1 and half years, three years 
and more long periodicities. The geometrical patterns of the annual periodicity of the 
higher components are identified to the mechanical correlations among the regions of 
near Nankai trough and Kii and Hamanako regions.  
 
 
4, Discussions and conclusions 
 
 
 The dimension reduction method using the principal component analysis can be 
available for investigation of the strength of mechanical coupling within the island arc 
crust and subducting oceanic plate in the southwestern Japan region. The geometrical 
patterns obtained by the intensity distribution of the correlation matrix of the projected 
hyper surface, that is the eigenvectors, show sharply the several characteristic features 
and time series. Firstly, it should be said that the microseismicity rates of the crust and 
oceanic plate can be decomposed to principal components in terms both of geometrical 
patterns and temporal changes. The first component is identified to the localized 
microseismic activity just after the large earthquakes, that is the post seismic activity. 
The second type is the slowly changing microseismicity rates and it contains several to 
several ten years periodicities and small fluctuations. In addition, the third type is 
revealed to show the annual periodic change, suggesting that the microseismic activity 
of the small scale shear cracks is strongly responsible for the solid tidal deformation of 
the earth interior.  
 The first component of the reduced dimensional space has relaxation of the Poisson 
type just having logarithmic decrease with time, suggesting the diffusive relaxation of 
elastic strain energy around the center of the earthquake. In other words, the time 
change of the combination microseismicity rates have the following relation with time, 
 
 dZ1/dt = -kZ1 
 
where k is the time decay constant of the postseimicity.  
 The behavior of the slow processes of the higher principal components displays long-
term variation of the mechanical coupling among the plate boundary regions and the 
oceanic plate interior, and the mechanical relationships between the large earthquake 
event and the slow processes can be investigated by correlation diagram between the 
intensity of the first component Z1 and that of the higher components. In figure 9, the 
correlation diagrams between Z1 and Z2, and Z6 and Z7 are shown, suggesting that the 
peaks of slowly changing higher components are correlated with the time of large 
earthquake.  
 On the other hand, the annual changing components are suggested to be responsible 
for the change of tidal strain in the earth interior, judging from the peaks of the principal 
components showing the combination of the microseismicity rates occur near the 
equinox times in the year. Considering that the the microseismic signals are generated 
by the rapid slip of small shear cracks and that micro shear cracks should have the 
peculiar orientations related with the plate motion, the critical resolved shear stress 



acted on the micro shear crack surfaces becomes the peak magnitude at the maximum 
tidal periods as suggested by Nakata et al. (2008). Thus the maximum activity of the 
microshear cracks should take place annually or subannually as being revealed in this 
study. 
 The dimension reduction study of the microseismicity rates in the island arc crust and 
the subducting oceanic plate reveals that the microseismic activity can be divided into 
several types of the eigenvector space of the cross correlation matrix of the time series 
data. One is the post seismic activity after large earthquake, the second is the slow 
process involving the large earthquake effect, and the third is the tidal strain – inducing 
microseismic activity. These components show the strong mechanical coupling in the 
map displaying the intensity distribution of their components.  
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Figure 1, The studied areas of dimension reduction of microseismicity rates 

            of the Philippine Sea Plate (A) and island arc crust (B), showing the 

            microseismic locations of M1 to M2 from 1998-2010.   
Figure 2, Microseismicity rates and the microseismicity vector showing the number of  

          micro earthquake events of the divided blocks in the oceanic plate. See text. 

Figure 3, Trajectory of the microseismicity rate vector in the original space and reduced 

            hyper surface. See text. 

Figure 4, Spatial patterns of the principal components in the reduced hyper surface of the  

          subducting Philippine Sea Plate, showing the color index of intensity of the components 

        . Red color is positive and blue color is negative intensity, but the color contrast should  

          be noticed. 

Figure 5, Spatial patterns of principal components in the reduced hyper surface showing the 

           strength of mechanical coupling in the island arc crust of SW Japan. The explanations 

           are the same in the previous figure. 

Figure 6, Time series of the principal components in the reduced hyper surface of the Philippine 

         Sea Plate. See text. 

Figure 7, Time series and the spatial patterns of the annually changing components of the  

         reduced hyper surface of  data from Philippine Sea Plate. 

Figure 8, Fourier spectra of the annually changing principal components of the 

         microseismicity rate vectors in the southwestern Japan crust and Philippine 

         Sea Plate(upper). 
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Figure 1, The studied areas of dimension reduction of microseismicity rates
of the Philippine Sea Plate (A) and island arc crust (B), showing the

microseismic locations of M1 to M2 from 1998-2010.
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Figure 2, Microseismicity rates and the microseismicity vector showing the number of 
micro earthquake events of the divided blocks in the oceanic plate. See text.
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Figure 3, Trajectory of the microseismicity rate vector in the original space and reduced
hyper surface. See text.
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Figure 4, Spatial patterns of the principal components in the reduced hyper surface of the 
subducting Philippine Sea Plate, showing the color index of intensity of the components

. Red color is positive and blue color is negative intensity, but the color contrast should 
be noticed.
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Figure 5, Spatial patterns of principal components in the reduced hyper surface showing the
strength of mechanical coupling in the island arc crust of SW Japan. The explanations
are the same in the previous figure.
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Figure 6, Time series of the principal components in the reduced hyper surface of the Philippine
Sea Plate. See text.
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ON THE EVOLUTION OF COPULAS

NAOYUKI ISHIMURA AND YASUKAZU YOSHIZAWA

Abstract. This article reports our recent studies on the evolution of copulas. As is well
known, a copula provides a flexible tool for investigating dependence relations among random
variables. Except for a few cases, however, copulas are concerned mainly with the static
problems, not with the time-dependent ones. On the other hand, we have introduced the
concept of the evolution of copulas, which claims that a copula itself evolves according to
the time variable. We review our establishments as well as drawbacks on this topic.

1. Introduction

This article reviews our recent researches on the evolution of copulas [5][6][17][18] with com-
ments and extensions.

A copula function, or simply a copula, is well employed tool for understanding the depen-
dence structure among random variables. Copulas make a link between multivariate joint
distributions and univariate marginal distributions. The study of copulas has been devel-
oped extensively from around 1990s. Because of their flexible structure, copulas have been
applied in many situations, such as risk management, financial mathematics, seismological
analysis, and so on. Let us recall the definition of copula and the fundamental theorem due
to A. Sklar [13] in the bivariate case.

Definition 1. A function C defined on I2 := [0, 1]× [0, 1] and valued in I is called a copula
if the following conditions are fulfilled.

(i) For every (u, v) ∈ I2,

(1) C(u, 0) = C(0, v) = 0, C(u, 1) = u and C(1, v) = v.

(ii) For every (ui, vi) ∈ I2 (i = 1, 2) with u1 ≤ u2 and v1 ≤ v2,

(2) C(u1, v1) − C(u1, v2) − C(u2, v1) + C(u2, v2) ≥ 0.

The requirement (2) is referred to as the 2-increasing condition. We also note that a copula
is continuous by its definition.

Theorem 2. (Sklar’s theorem) Let H be a bivariate joint distribution function with marginal
distribution functions F and G; that is,

lim
x→∞

H(x, y) = G(y), lim
y→∞

H(x, y) = F (x).

Then there exists a copula, which is uniquely determined on RanF × RanG, such that

(3) H(x, y) = C(F (x), G(y)).

Conversely, if C is a copula and F and G are distribution functions, then the function H
defined by (3) is a bivariate joint distribution function with margins F and G.

2000 Mathematics Subject Classification. 91G80; 35K05.
Key words: evolution of copulas, heat equation, discrete process, convergence.

1



2 NAOYUKI ISHIMURA AND YASUKAZU YOSHIZAWA

As its definition indicates, copulas are concerned principally with the static problems, not
with the time-dependent ones. A few exceptions include the study on the copulas and the
Markov processes by W.F. Darsow, B. Nguyen, and E.T. Olsen [1], and also on the dynamic
copulas by A.J. Patton [12]. The former investigates the dependence relation between the
Markov processes at different times. The typical procedure of the latter is as follows: Take
one Archimedean copula (which is a well known class of one-parameter family of copulas) and
denote it by C(u, v; ρ), where ρ is a parameter whose value should belong to some interval
J (⊂ R). The dynamic copula is then provided as

C(u, v; ρt) with ρt = Λ(Xt(ρt−1)),

where Xt(ρt−1) means some time-series model, say ARMA(p, q)-type process, and Λ is the
transformation function which is designed to keep ρt ∈ J .

On the other hand, we have proposed the concept of the evolution of copulas. To be a
little specific, the evolution of copulas proclaims that a copula itself evolves according to the
time, where copulas satisfy the standard heat equation.

The purpose of this review is to summarize the results concerning the evolution of copulas
and to make some extensions. Shortcomings of this concept are also discussed.

2. Evolution of Copulas

This section recalls the results of [5][6].
The evolution of copulas we have introduced is a time parameterized family of copulas

{C(u, v, t)}t≥0, which satisfy the heat equation:

(4)
∂C

∂t
(u, v, t) =

( ∂2

∂u2
+

∂2

∂v2

)
C(u, v, t).

Here, by the definition of copula, we understand that C(·, ·, t) fulfills (1)(2); to be precisely,
we postulate that

(i) for every (u, v, t) ∈ I2 × (0,∞),

(5) C(u, 0, t) = C(0, v, t) = 0, and C(u, 1, t) = u and C(1, v, t) = v.

(ii) for every (ui, vi, t) ∈ I2 × (0,∞) (i = 1, 2) with u1 ≤ u2 and v1 ≤ v2,

(6) C(u1, v1, t) − C(u1, v2, t) − C(u2, v1, t) + C(u2, v2, t) ≥ 0.

The stationary solution to (4), which is referred to as the harmonic copula, is uniquely
determined to be Π(u, v) := uv, in view of the boundary condition (1). We note that the
copula Π represents the independent structure between two respective random variables.

The main establishment of [5] is the existence proof of solutions to (4), which satisfy the
copula conditions (5)(6). In particular, the solution u = u(u, v, t) is expressed as

C(u, v, t)

= uv + 4
∞∑

m,n=1

e−π2(m2+n2)t sin mπu sin nπv

∫∫
I2

sin mπξ sin nπη(C0(ξ, η) − ξη)dξdη.

The typical result is
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Theorem 3. For any bivariate copula C0(u, v), there exists a unique family of time-parame-
trized bivariate copulas {C(u, v, t)}t≥0 such that

∂C

∂t
(u, v, t) =

( ∂2

∂u2
+

∂2

∂v2

)
C(u, v, t) for (u, v, t) ∈ I2 × (0,∞)

C(u, v, 0) = C0(u, v) on (u, v) ∈ I2.
(7)

Moreover we have

lim
t→∞

C(u, v, t) = Π(u, v) uniformly on (u, v) ∈ I2.

In the time-reversed version, we have

Theorem 4. For any bivariate copula CT (u, v), where T (> 0) denotes the maturity, there
exists a unique family of time-parametrized bivariate copulas {C(u, v, t)}0≤t≤T such that

∂C

∂t
(u, v, t) +

( ∂2

∂u2
+

∂2

∂v2

)
C(u, v, t) = 0 for (u, v, t) ∈ I2 × {t ≤ T},

C(u, v, T ) = CT (u, v) on (u, v) ∈ I2.

Here the convergence property as t → −∞ is not so relevant issue from the financial
standpoint.

In addition to the above results, the convergence of the population version of Kendall’s
tau and Spearman’s rho, which are denoted by τ and ρ, respectively, is proved. These are
known quantity of the measures of association and represented in terms of copulas as follows
(see [11]): Let X and Y be continuous random variables whose copula is C. Then we have

τX,Y = τC = 4

∫∫
I2

C(u, v)dC(u, v) − 1 = 1 − 4

∫∫
I2

∂C

∂u
(u, v)

∂C

∂v
(u, v) dudv,

ρX,Y = ρC = 12

∫∫
I2

C(u, v) dudv − 3 = 12

∫∫
I2

(C(u, v) − uv) dudv.

We obtain the next theorem, whose proof is given for completeness.

Theorem 5. Let Ct = C(u, v, t) (t ≥ 0) be a time-parametrized family of bivariate copulas,
which satisfy (7). Then it follows that

|τCt | + |ρCt | ≤ Ae−Bt as t → ∞,

where A and B are positive constants.
In particular, Ct → Π exponentially as t → ∞.

Proof. We employ the notation: ‖(C − Π)(t)‖2
2 :=

∫∫
I2

(C(u, v, t) − uv)2 dudv. We compute

1

2

d

dt
‖(C − Π)(t)‖2

2 =

∫∫
I2

(C − Π) · 4(C − Π) dudv = −‖∇(C − Π)(t)‖2
2

≤ −α‖(C − Π)(t)‖2
2,

(8)

where α > 0 denotes a constant due to the Poincaré inequality. The use of this inequality is
possible thanks to C − Π = 0 on ∂I2. We thus deduce that

‖(C − Π)(t)‖2
2 ≤ ‖C0 − Π‖2

2e
−2αt.

Taking into account of this estimate, we infer that

|ρc| ≤ 12‖(C − Π)(t)‖2 ≤ 12‖C0 − Π‖2e
−αt.



4 NAOYUKI ISHIMURA AND YASUKAZU YOSHIZAWA

This proves the exponential convergence of ρ.
Next we turn our attention to τ . We recall the next formula, which is derived upon direct

calculation.

τC =
2

3
ρC − 4

∫∫
I2

∂

∂u
(C(u, v) − uv) · ∂

∂v
(C(u, v) − uv) dudv.

It then follows that

eαt|τC(t)| ≤ 2

3
eαt|ρC(t)| + 4eαt

∫∫
I2

∣∣∣ ∂

∂u
(C − Π)(t) · ∂

∂v
(C − Π)(t)

∣∣∣ dudv

≤ 8‖C0 − Π‖2 + 4eαt‖∇(C − Π)(t)‖2
2.

In light of the continuity of ‖∇(C − Π)(t)‖2 with respect to t, it suffices to show that∫ ∞

t

eαs‖∇(C − Π)(s)‖2
2ds < ∞,

which implies that eαt‖∇(C − Π)(t)‖2
2 ≤ M < ∞ for all large t with some constant M .

In view of (8), we infer that

1

2

d

dt
(eαt‖(C − Π)(t)‖2

2) + eαt‖∇(C − Π)(t)‖2
2 =

α

2
eαt‖(C − Π)(t)‖2

2

≤ α

2
e−αt‖C0 − Π‖2

2,

from which we conclude that

2

∫ ∞

t

eαs‖∇(C − Π)(s)‖2
2ds ≤ eαt‖(C − Π)(t)‖2

2 +

∫ ∞

t

αe−αs‖C0 − Π‖2
2ds

≤ 2‖C0 − Π‖2
2e

−αt.

In summary, we have established eαt|τC(t)| ≤ 8‖C0 − Π‖2 + 4M and the proof of the expo-
nential convergence of τ is thereby completed. ¤

3. Evolution of copulas in discrete processes

This section reproduces [17].
The evolution of copulas is able to be considered in discrete processes. The construction

of a discretely parametrized family of copulas proceeds as follows.
Let N À 1 and 0 < h ¿ 1. We put

∆u = ∆v :=
1

N
, ∆t := h, λ :=

∆t

(∆u)2
=

∆t

(∆v)2
= hN2,

and

ui := i∆u =
i

N
, vj := j∆v =

j

N
(i, j = 0, 1, · · · , N).

Our family of copulas {Cn(u, v)}n=0,1,2,··· is now defined as follows: First,

C0(u, v) := C0(u, v),

where C0 denotes given initial copula.
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At {(ui, vj)}i,j=0,1,··· ,N , the value Cn
i,j := Cn(ui, vj) is defined to be governed by the system

of difference equations

Cn+1
i,j − Cn

i,j

∆t
=

Cn
i+1,j − 2Cn

i,j + Cn
i−1,j

(∆u)2
+

Cn
i,j+1 − 2Cn

i,j + Cn
i,j−1

(∆v)2
for i, j = 1, 2, · · · , N − 1,

(9)

combined with the boundary conditions{
Cn

0,j = 0 = Cn
i,0

Cn
i,N = ui, Cn

N,j = vj

for i, j = 0, 1, · · · , N.

As to the point (u, v) ∈ I2 other than {(ui, vj)}i,j=0,1,...,N , the value Cn(u, v) is provided
by interpolation. That is, if for instance

ui ≤ u ≤ ui+1, vj ≤ v ≤ vj+1,

then we put

Cn(u, v) := Cn
i,j +

Cn
i+1,j − Cn

i,j

ui+1 − ui

(u − ui) +
Cn

i,j+1 − Cn
i,j

vj+1 − vj

(v − vj)

+
Cn

i+1,j+1 − Cn
i+1,j − Cn

i,j+1 + Cn
i,j

(ui+1 − ui)(vj+1 − vj)
(u − ui)(v − vj).

Other parts are computed similarly. We note that if Cn
i,j = uivj, Cn

i+1,j = ui+1vj, Cn
i,j+1 =

uivj+1 and Cn
i+1,j+1 = ui+1vj+1 then Cn(u, v) = uv for ui ≤ u ≤ ui+1, vj ≤ v ≤ vj+1. We

thus stress that the current interpolation should replace the one in [17].
It is easy to check that a sequence of copulas {Cn(u, v)}n=0,1,2,··· defined above verify the

boundary conditions (1) as well as the 2-increasing condition (2) provided λ ≤ 1/4. We also
note that in this range of λ, the difference scheme (9) is stable.

Next, we define Dn(u, v) := Cn(u, v) − uv. It follows that {Dn
i,j := Cn

i,j − uivj}n=0,1,2,···
satisfies the system of difference equations (9) with the null boundary conditions. Thanks
to the interpolation above, we infer that

(10) max
(u,v)∈I2

|Dn(u, v)| ≤ Kθn,

for some constants K, θ with 0 < θ < 1, provided λ < 1/4. In particular, we have Dn → 0
as n → ∞ uniformly on I2. In summary, we have the next theorem.

Theorem 6. For any initial copula C0, there exists a sequence of copulas {Cn(u, v)}n=0,1,2,···,
which satisfy the system of difference equations (9) at every {(ui, vj)}i.j=0,1,··· ,N . As n → ∞,
it follows that

Cn(u, v) → uv uniformly on I2.

The convergence of the population version of Kendall’s tau (τ) and the Spearman’s rho
(ρ) under this discrete processes is also shown. The formulas for τ and ρ utilize the ones for
the empirical copulas (see §5.6 of [11]), which are, respectively,

τ =
2N

N − 1

N∑
i,j=2

(Cn
i,jC

n
i−1,j−1 − Cn

i,j−1C
n
i−1,j), ρ =

12

N2 − 1

N∑
i,j=1

(Cn
i,j − uivj).

The convergence as n → ∞ is then deduced directly.
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Theorem 7. For any initial copula C0, a sequence of copulas {Cn(u, v)}n=0,1,2,··· proved in
Theorem 6 fulfills

|τ |, |ρ| → 0 exponentially as n → ∞.

Proof. In view of (10) and the uniform bound max(u,v)∈I2 |C(u, v)| ≤ 1, we assert that

max
i,j=0,1,··· ,N

|Cn
i,j − uivj| → 0

exponentially as n → ∞. Taking into account that

uivjui−1vj−1 − uivj−1ui−1vj = 0,

we see immediately the desired result. ¤

4. Generalizations

It is fortunate that in discrete processes we are able to deal with the evolution of copulas in
higher dimensions. We recall the definition of copulas once again in the d-dimensional case.

Definition 8. A function C defined on Id := [0, 1]d and valued in I is called a copula if the
following three conditions are fulfilled.

(i) C(u1, u2, · · · , ud) is increasing in each component ui.
(ii) For every i ∈ {1, 2, · · · , d}, ui ∈ I,

C(u1, · · · , ui−1, 0, ui+1, · · · , ud) = 0, C(1, · · · , 1, ui, 1, · · · , 1) = ui.

(iii) (d-increasing condition) For every (u1i, u2i, · · · , udi) ∈ Id with u1i ≤ u2i (i = 1, 2),

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+i2+···+idC(u1i1 , u2i2 , · · · , udid) ≥ 0.

The Sklar’s theorem holds also in this d-dimensional version (see for instance [11]).

Theorem 9. (Sklar’s theorem) Let H be a joint distribution function with marginal distri-
bution functions F1, F2, · · · , Fd. Then there exists a copula C : Id → I, which is uniquely
determined on RanF1×RanF2×· · ·×RanFd, such that, for all xi ∈ [−∞,∞] (i = 1, 2, · · · , d),

(11) H(x1, x2, · · · , xd) = C(F1(x1), F2(x2), · · · , Fd(xd)).

Conversely, if C is a copula and F1, F2, · · · , Fd are univariate distribution functions, then
the function H defined by (11) is a joint distribution function with margins F1, F2, · · · , Fd.

Hereafter we confine ourselves to the 3-dimensional case as an illustration of the idea and
for simplicity. The detailed treatment together with the convergence as the mesh size tending
to zero will be discussed elsewhere.

As before, let N À 1 and 0 < h ¿ 1. We put

∆u = ∆v = ∆w :=
1

N
, ∆t := h, λ :=

∆t

(∆u)2
=

∆t

(∆v)2
=

∆t

(∆w)2
= hN2,

and

ui := i∆u =
i

N
, vj := j∆v =

j

N
, wk := k∆w =

k

N
(j = 0, 1, · · · , N).

A family of copulas {Cn(u, v, w)}n=0,1,2,··· is defined similarly as in the bivariate case: The
initial condition is

C0(u, v, w) := C0(u, v, w),
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where C0 denotes given initial copula.
At {(ui, vj, wk)}i,j,k=0,1,··· ,N , the value Cn

i,j,k := Cn(ui, vj, wk) should be governed by the
system of difference equations

Cn+1
i,j,k − Cn

i,j,k

∆t
=

Cn
i+1,j,k − 2Cn

i,j,k + Cn
i−1,j,k

(∆u)2
+

Cn
i,j+1,k − 2Cn

i,j,k + Cn
i,j−1,k

(∆v)2

+
Cn

i,j,k+1 − 2Cn
i,j,k + Cn

i,j,k−1

(∆w)2
for i, j.k = 1, 2, · · · , N − 1,

(12)

combined with the boundary conditions{
Cn

0,j,k = Cn
i,0,k = Cn

i,j,0 = 0

Cn
i,N,N = ui, Cn

N,j,N = vj, Cn
N,N,k = wk

for i, j, k = 0, 1, · · · , N.

As to the point (u, v, w) ∈ I3 other than {(ui, vj, wk)}i,j,k=0,1,...,N , the value Cn(u, v, w) is
provided by interpolation. This time it is a little complicated. If for instance

ui ≤ u ≤ ui+1, vj ≤ v ≤ vj+1, wk ≤ w ≤ wk+1,

then we define

Cn(u, v, w) := Cn
i,j,k

+
Cn

i+1,j,k − Cn
i,j,k

ui+1 − ui

(u − ui) +
Cn

i,j+1,k − Cn
i,j,k

vj+1 − vj

(v − vj) +
Cn

i,j,k+1 − Cn
i,j,k

wk+1 − wk

(w − wk)

+
Cn

i+1,j+1,k − Cn
i+1,j,k − Cn

i,j+1,k + Cn
i,j,k

(ui+1 − ui)(vj+1 − vj)
(u − ui)(v − vj)

+
Cn

i+1,j,k+1 − Cn
i+1,j,k − Cn

i,j,k+1 + Cn
i,j,k

(ui+1 − ui)(wk+1 − wk)
(u − ui)(w − wk)

+
Cn

i,j+1,k+1 − Cn
i,j,k+1 − Cn

i,j+1,k + Cn
i,j,k

(vj+1 − vj)(wk+1 − wk)
(v − vj)(w − wk)

+
Cn

i+1,j+1,k+1 − Cn
i+1,j+1,k − Cn

i+1,j,k+1 − Cn
i,j+1,k+1 + Cn

i+1,j,k + Cn
i,j+1,k + Cn

i,j,k+1 − Cn
i,j,k

(ui+1 − ui)(vj+1 − vj)(wk+1 − wk)
·

· (u − ui)(v − vj)(w − wk).

Other parts are computed similarly. It is to be noted that the coefficients of the terms
involving u− ui, v − vj, w −wk are all non-negative by virtue of the d-increasing condition.

It is easy to check that a sequence of copulas {Cn(u, v, w)}n=0,1,2,··· is well defined and the
difference scheme is stable provided λ ≤ 1/6. The similar result as Theorem 6 holds also
true.

Theorem 10. For any initial copula C0 of 3-dimension, there exists a sequence of cop-
ulas {Cn(u, v, w)}n=0,1,2,···, which satisfy the system of difference equations (12) at every
{(ui, vj, wk)}i.j=0,1,··· ,N . As n → ∞, it follows that

Cn(u, v, w) → uvw uniformly on I3.

Here we omit the details of the proof and other properties.
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5. Discussions

The copula approach provides a flexible way of designing the description of the dependence
structure among random environment. The copula technique is now widely employed in
many multivariate risk models; we recall for instance the works of [2][3][4][7]. The book
by R.B. Nelsen [11] offers an excellent introduction to this area, and a nice review by H.
Tsukahara [14] should be mentioned (see also [15][16]).

The copula theory, however, is principally concerned with the static problems. To the
authors’ knowledge, the attempt of extending copulas to involve time variable in any sense
is that of examples listed in Introduction. Indeed, T. Mikosch [10] casts a doubt about the
applicability of the dynamic copula.

On the other hand, we have introduced the notion of the evolution of copulas. The idea
is rather easy and we just presume that the copula itself evolves and deforms its structure
according to the time-dependent partial differential equation, in our case, the standard heat
equation. The existence and the convergence are proved. However, along this evolution
every copula converges to the typical product copula; that is, all the nonlinear dependence
structure evolves to the independence structure. This is surely not so welcome from the
viewpoint of finance. We thus think that the time-reversal version like Theorem 4 may be
useful in applications.

The evolution of copulas in discrete setting is another fascinating subject for further inves-
tigations; we can treat easily the case of higher dimensions. We return to this issue, possibly
with the application to real data, in the future researches.

Acknowledgement. The first author (N.I.) is supported in part by the grant from the
Japan Society for the Promotion of Sciences (No.21540117) as well as the research grant
(2011) from the Tokio Marine Kagami Memorial Foundation.
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Real Indeterminacy and Conservation Law in Random Matching Models with

Divisible Money

Kazuya Kamiya, University of Tokyo

In this paper, I consider matching models with divisible fiat money. It is shown that there always

exists a conservation law in the stationarity condition for money holdings distribution in such

models and thus real indeterminacy of stationary equilibria arises. Surprisingly it has nothing to

do with the other specifications, e.g., the bargaining procedures, of the models. I also introduce a

policy which breaks the conservation law.

1 Introduction

Recently, real indeterminacy of stationary equilibria has been found in matching models with

divisible fiat money. Kamiya and Shimizu (2006) show that there always exists a conservation law

in such models and thus real indeterminacy generically arises. Surprisingly it has nothing to do

with the other specifications, e.g., the bargaining procedures, of the models. Kamiya and Shimizu

(2007) also present a way to break the conservation law, and to induce an efficient equilibrium.

The purpose of this paper is to give a unified approach to the above two results.

A sketch of the idea is as follows. Suppose the nominal stock of money is given. When the price

level is lower, there is more liquidity in the economy, the trade is more frequent, and therefore the

welfare level is higher. When the price level is higher, there is less liquidity in the economy, the

trade is less frequent, and therefore the welfare level is lower. If the corresponding equilibrium

values of the other variables can be found, such as the money holdings distribution and the value

function, as the price level continuously varies, then the real indeterminacy follows. More precisely,

if the number of variables is larger than that of equations, then by applying the implicit function

theorem this property holds. I can show that the stationary condition of money holdings has a

conservation law and thus there is at least one more variable than the number of equations. Thus

the stationary equilibria in such models are indeterminate.



In this paper, I consider the case of one fiat money. Suppose it is divisible and there is an upper

bound of its holdings. I focus on the stationary equilibria in which, for some positive number p,

all trades occur with its integer multiple amounts of money. I focus on stationary distributions

on {0, . . . ,N} expressed by h = (h(0), . . . , h(N)), where h(n) is the measure of the set of agents
with np amount of money, and N < ∞ is the upper bound. The condition for stationarity of

money holdings is On = In, n = 0, 1, . . . , N , and
PN

n=0 h(n) = 1, where On (In) is the outflow

(inflow resp.) at n. Since
PN

n=0On =
PN

n=0 In always holds, then, at first glance, there seem to

be (N +1) independent equations. Thus it seems that the numbers of independent equations and

variables, h(n), n = 0, . . . , N , are the same. However, it can be shown that one more equation

is always redundant and that the system of equations has always at least one degree of freedom;

namely,
PN

n=0 nOn =
PN

n=0 nIn, a conservation law, always holds. This fact is the key to the real

indeterminacy of stationary equilibria.

I also show that a tax-subsidy policy can break the identity, and induce an efficient equilibrium.

The identity means that the total money holding are the same before and after trades. Thus the

government can break the identity by absorbing and discarding money by using tax and subsidy.

The plan of this paper is as follows. In the next section, I present a general model and discuss

the case without tax-subsidy policies. Section 3 is devoted the case with the policy.

2 The Model

I first present a general model, where the private sector is a special case of Kamiya and Shimizu

(2006). Hereafter, I call it KS1 simply.

There is a continuum of private agents with a mass of measure one. There are k ≥ 3 types of
agents with equal fractions and the same number of types of goods. Let κ be the reciprocal of k.

A type i good is produced by a type i− 1 agent. A type i agent obtains some positive utility only
when she consumes type i good. I make no assumption on the divisibility of goods. I assume that

fiat money is durable and perfectly divisible. Time is continuous, and pairwise random matchings

take place according to Poisson process with parameter μ > 0.

I focus on the case that, for some positive number p, all trades occur with its integer multiple



amounts of money. In what follows, I focus on a stationary distribution of economy-wide money

holdings on {0, . . . , N} expressed by h = (h0, . . . , hN ), where hn is the measure of agents with np
amount of money, and N < ∞ is the upper bound of the distribution. For simplicity, I assume

that N is exogenously given. I also focus on the case of hn ≥ 0 and
PN

n=0 hn = 1. Let M > 0 be a

given nominal stock of money circulating in the private sector. Since p is uniquely determined byPN
n=0 pnhn =M for a given h for h0 6= 1, then, deleting p from {0, p, . . . , Np}, the set {0, . . . , N}

can be considered as the state space.

Since I adopt a general framework, various types of bargaining procedures are allowed.1 An

agent with n, or an agent with np amount of money, chooses an action in An = {an1, . . . , ansn}.
Let A = ΠNn=0An. For simplicity, I focus on the stationary equilibrium in which all agents choose

pure strategies. Let S =
PN

n=0 sn. Given an equilibrium action profile a = (a0, . . . , aN ), where an

is the action taken at np in the equilibrium, define α(a) = {(n, j) | an = anj}.
The monetary transition resulted from transaction among a matched pair is described by a

function f . When an agent with money holdings np and action anj meets an agent with n
0p

and an0j0 , the former’s and the latter’s states, i.e., money holdings, will be n + f(n, j;n
0, j0) and

n0 − f(n, j;n0, j0), respectively. That is, f maps an ordered pair (n, j;n0, j0) to a non-negative
integer f(n, j;n0, j0). Here “ordered” means, for example, that the former is a seller and the latter

is a buyer. When N is exogenously determined, I assume

N ≥ n+ f(n, j;n0, j0) and n0 − f(n, j;n0, j0) ≥ 0.

Next, I introduce government agents following Aiyagari and Wallace (1997). They follow a

rule which prescribes them how to collect tax from or give subsidy to the agents they are matched

with. I assume that government agents can observe current money holdings of agents they are

matched with. Let G > 0 be the measure of the government agents. Thus the total measure of

agents is 1 +G. Note that in the following arguments G can be any small positive number.

Then I describe government’s policy by (t0, t1, . . . , tN ), where tn ∈ [−1, 1], t0 ≥ 0, and tN ≤ 0.
Each government agent gives subsidy p to the matched agent with n with probability |tn| when
tn > 0, while she collects tax p with probability |tn| when tn < 0. As seen in the previous section,

1See Remark 1 for the details.



the budget of the government may not be balanced out of equilibria.

Let θ ∈ RL be the parameters of the model besides t. Note that θ includes k, μ, and G.
Below, I adopt dynamic programming approach. Let Vn be the value of state n, n = 0, . . . , N .

The variables in the model are denoted by x = (h, V, a). Let Wnj(x; θ, t) be the value of action j

at state n. Thus, in equilibria, Wnj(x; θ, t) = Vn holds for (n, j) ∈ α(a). Note that Wnj(x; θ, t)

includes the utility and/or the production cost of perishable goods.

2.1 Stationary Equilibria without Tax-Subsidy

First, I consider the case that tn = 0 for all n.

Define

hnj =

(
hn if anj = an,

0 if anj 6= an.

Then by the random matching assumption and the definition of f , the inflow In into state n and

the outflow On from state n are defined as follows:

In(h, a; θ) =
μκ

1 +G

⎡⎣ X
(i,j,i0,j0)∈Xn

hijhi0j0 +
X

(i,j,i0,j0)∈X0
n

hijhi0j0

⎤⎦ ,
On(h, a; θ) =

μκ

1 +G

⎡⎣ X
(j,i0,j0)∈Yn

hnjhi0j0 +
X

(j,i0,j0)∈Y 0
n

hnjhi0j0

⎤⎦ ,
where

Xn = {(i, j, i0, j0) | f(i, j; i0, j0) > 0, i+ f(i, j; i0, j0) = n},

X 0
n = {(i, j, i0, j0) | f(i, j, i0, j0) > 0, i0 − f(i, j; i0, j0) = n},

Yn = {(j, i0, j0) | f(n, j; i0, j0) > 0},

Y 0n = {(j, i0, j0) | f(i0, j0;n, j) > 0}.

I denote In − On by Dn. Then the condition for stationarity is Dn = 0 for n = 0, . . . ,N andPN
n=0 hn = 1. Clearly,

PN
n=0Dn = 0 holds as an identity, and thus at least one equation is

redundant. Moreover, the following theorem prunes the above conditions of another redundant

equation other than this.



Theorem 1 (Kamiya and Shimizu (2006)) For any a,

NX
n=0

nDn(h, a; θ) = 0, (1)

is an identity.

The identity can be considered as a conservation law. The economic interpretation of the law

is as follows. Suppose that two agents, say a buyer and a seller, meet and a monetary trade occurs.

Then the amount of money the buyer pays is equal to that of the seller obtains; in other words, the

sum of their money holdings before trade is equal to that after trade. Since this holds in each trade,

the total amount of money before trades, expressed by
PN

n=0 pnOn(h, a; θ), is equal to the total

amount of money after trades, expressed by
PN

n=0 pnIn(h, a; θ), and thus
PN

n=0 nDn(h, a; θ) = 0

always holds.

Together with the other identity
PN

n=0Dn(h, a; θ) = 0, the above theorem implies that h is

a stationary distribution if and only if Dn(h, a; θ) = 0, n = 2, . . . , N, and
PN

n=0 hn = 1 hold.

Namely, the condition for stationarity has at least one-degree of freedom. This is the main cause

of the indeterminacy.

Now the equilibrium condition is expressed as follows:

Definition 1 Given θ, x = (h, V, a) ∈ RN+1×RN+1+ ×A is a (pure strategy) stationary equilibrium
without tax-subsidy if it satisfies the following:

Dn(h, a; θ) = 0, n = 2, . . . , N

NX
n=0

hn − 1 = 0,

Vn −Wnj(x; θ, 0) = 0, (n, j) ∈ α(a)

Vn −Wnj(x; θ, 0) ≥ 0, (n, j) /∈ α(a). (2)

(h, V ) is called a stationary equilibrium for a and θ if (h, V, a) is a stationary equilibrium for

θ. Let Eaθ be the set of such (h, V )s, and g
a : RN+1+ × RN+1 × RL(3 (h, V, θ)) → RN−1 × R ×

RN+1 × RS−N−1 be the LHS of the above condition.



Remark 1 In addition to the above equilibrium conditions, the following conditions are typically

required: (i) the existence of p > 0 satisfying
PN

n=0 pnhn = M , (ii) the incentive not to choose

an action out of the action space, and (iii) the incentive to take the equilibrium strategy at state

η /∈ {0, p, . . . , Np}. However, they are not very restrictive. As for (i), it immediately follows from
h0 6= 1. As for (ii) and (iii), KS1 presents a sufficient condition to assure that (ii) and (iii) hold,
and it is satisfied in all of the matching models with divisible money known so far, such as Zhou

(1999)’s model, a divisible money version of Camera and Corbae (1999)’s model, and a divisible

money version of Trejos and Wright (1995)’s model.

Let

Ca = {0} × · · · × {0}| {z }
2N+1

×R++ × · · · × R++| {z }
S−N−1

,

and, for (n, j) /∈ α(a),

Ca(n,j) = {0} × · · · × {0}| {z }
2N+1

×R++ × · · · × R++ × {0} × R++ × · · · × R++| {z }
S−N−1

,

where the last {0} corresponds to Vn −Wnj(x; θ, 0). Moreover, for (n, j), (n
0, j0) /∈ α(a),

Ca(n,j)(n
0,j0) = {0} × · · · × {0}| {z }

2N+1

×R× · · · × R× {0} × R× · · · × R× {0} × R× · · · × R| {z }
S−N−1

,

where the last two {0}s correspond to Vn−Wnj(x; θ, 0) and Vn−Wn0j0(x; θ, 0), respectively. Below,

it is verified that there is the indeterminacy of the stationary equilibrium under some regularity

conditions.

Assumption 1 Given a, ga is of class C2 and is transversal to Ca, Ca(n,j), and Ca(n,j)(n
0,j0) for

all (n, j) /∈ α(a) and (n0, j0) /∈ α(a).2

Assumption 2 Given a, there exists a C2-manifold without boundary, Θ ⊂ RL, such that Eaθ 6= ∅
holds for all θ ∈ Θ.

Theorem 2 (Kamiya and Shimizu (2006)) For a given a, suppose Assumptions 1 and 2 are

satisfied for some Θ. Then, for almost every θ ∈ Θ, Eaθ is a one-dimensional manifold with
2This assumption implies that that Dn = 0, n = 2, . . . , N , are linearly independent in stationary equilibria. See

KS1 for indeterminacy results of the other cases.



boundary. Moreover, at any endpoint of the manifold, only one Vn−Wnj(x; θ, 0) ≥ 0, (n, j) /∈ α(a),

is binding, and at points in the relative interior of the manifold, no inequality is binding.

KS1 also shows that this indeterminacy is real. That is, the welfare are typically not the same

in a connected component of the equilibrium manifold.

2.2 Stationary Equilibria with Tax-Subsidy

In this section, I investigate the case of t 6= (0, . . . , 0). In what follows, variables and functions

with “tilde” denote the ones with nonzero t. The inflow at n, Ĩn, and the outflow at n, Õn, are

defined as follows:

Ĩn(h̃, a; θ, t) = In(h̃, a; θ) +
μG

1 +G

³
t+n−1h̃n−1 + t

−
n+1h̃n+1

´
,

Õn(h̃, a; θ, t) = On(h̃, a; θ) +
μG

1 +G
|tn|h̃n,

where t+n = max{0, tn}, t−n = −min{0, tn}, and t−1 = tN+1 = 0. Let D̃n(h̃, a; θ, t) = Ĩn(h̃, a; θ, t)−
Õn(h̃, a; θ, t).

Since
PN

n=0 nD̃n is not identically zero, then I define a stationary equilibrium with tax-subsidy

as follows. In other words, the tax-subsidy breaks the conservation law.

Definition 2 Given θ, x̃ = (h̃, Ṽ , a) ∈ RN+1×RN+1+ ×A is a (pure strategy) stationary equilibrium
with tax-subsidy scheme t if it satisfies the following:

D̃n(h̃, a; θ, t) = 0, n = 1, . . . , N

NX
n=0

h̃n − 1 = 0,

Ṽn −Wnj(x̃; θ, t) = 0, (n, j) ∈ α(a)

Ṽn −Wnj(x̃; θ, t) ≥ 0, (n, j) /∈ α(a). (3)

Theorem 3 (Kamiya and Shimizu (2007)) Given a, consider the following system of the station-

ary condition:

(D̃1, . . . , D̃N ,

NX
n=0

h̃n − 1)T = (0, . . . , 0)T ,



where T denotes transpose. If the Jacobian matrix with respect to h̃ of the LHS of the above system

is of full rank at a stationary distribution, then the stationary distribution is locally determinate.

Moreover, the budget is balanced on this stationary distribution.

Next, I discuss the existence of a locally determinate stationary equilibrium which has the

following property; it is induced by a certain tax-subsidy scheme, and it exists in any given

neighborhood of the stationary equilibrium which is not induced by tax-subsidy. I choose an

arbitrary stationary equilibrium without tax-subsidy, denoted by x∗ = (h∗, V ∗, a∗), which is in

the relative interior of the equilibrium manifold. Thus, by Theorem 2, (2) is satisfied with strict

inequalities.

First, the following vector can be found:

Lemma 1 There exists an (N + 1)-dimensional vector τ satisfying

(a) τ 6= (0, . . . , 0),
(b)

³
∂Dn(h

∗,a∗;θ)
∂hi

´
i=0,...,N

· τ = 0 for n = 2, . . . , N ,
(c) h∗ · τ = 0.

The above lemma clearly holds, since (b) and (c) have at least one-degree of freedom.

Using this vector, a tax-subsidy scheme t = ²τ is constructed. Here ² > 0 is the size of the

policy. For such a t to be a tax-subsidy scheme, I need the following assumption:

Assumption 3 It is also satisfied for τ in Lemma 1 that

(d) τN ≤ 0, and
(e) τ0 ≥ 0.

Next, I make the following assumption.

Assumption 4 Wnj is C
2 with respect to ² for any (n, j).

Under the above conditions and assumptions, the government can approximately induce any

stationary equilibrium.



Theorem 4 Suppose Assumptions 1, 2, 3, and 4 hold. Then, for almost every θ ∈ Θ, almost
every (h∗, V ∗) ∈ Ea∗θ , and any δ-neighborhood of (h∗, V ∗), there exists a tax-subsidy scheme such
that a stationary equilibrium with tax-subsidy is locally determinate and lies in the neighborhood.
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Abstract 
We present the physics-based theoretical analysis of the mechanisms and the properties of Rayleigh-

Taylor turbulent mixing, and focus on the consideration of correlations and fluctuations of the 

statistically unsteady turbulent mixing dynamics. The analysis extends to non-canonical 

circumstances the ideas of Kolmogorov theory on symmetries of turbulent dynamics, accounts for the 

essentially multi-scale character of the flow evolution, and identifies the transport of momentum as a 

better indicator of turbulent mixing dynamics than the transport of energy. The invariance of the rate 

of momentum loss leads to essentially non-Kolmogorov invariant, scaling and spectral properties of 

turbulent mixing flow. Rayleigh-Taylor turbulent mixing exhibits more order compared to isotropic 

turbulence. Its viscous and dissipation scales are finite and set by the flow acceleration. We discuss 

the outcomes of theoretical results for practical applications and for the methods of flow mitigation 

and control. 

 

Keywords 
Turbulent mixing, Rayleigh-Taylor instability, invariants and scaling and symmetries, statistically 

unsteady process, stochastic modeling 

 

 

I. Introduction 

Turbulence is common to consider as the last unresolved problem of classical physics [1-16]. 

For years its complexity and universality assisted engineers and practitioners, nourished enthusiasm 

of scientists, and fascinated mathematicians [1-16]. Similarity and isotropy are fundamental 

hypotheses that advanced our understanding of turbulent processes. Still the problem withstands the 

efforts applied thus indicating a need in new concepts to better control the irregular dynamics [3,4]. 

Turbulent motions of realistic fluids are often characterized by non-equilibrium heat transport, sharp 

changes of density and pressure, and may be a subject to spatially varying and time-dependent 

acceleration and rotation [1-16]. Turbulent mixing induced by the Rayleigh-Taylor instability (RTI) is 

generic problem, which we encounter when trying to extend our knowledge of turbulent processes 

beyond the limit of idealized consideration [3,4]. 

Rayleigh-Taylor (RT) turbulent mixing is an extensive interfacial mixing process which 

develops when fluids of different densities are accelerated against a density gradient [1,2]. It governs 

a broad variety of natural phenomena spanning macroscopic to atomistic scales and high to low 

energy density regimes, and plays an important role in technological applications in aerodynamics 

and aeronautics [5-13]. Examples include instabilities of plasmas, light-material interaction, material 

transformation under high strain rate, atmospheric flows, shock-turbulence interaction, non-canonical 

wall-bounded flows, scramjet combustors, liquid atomization and free-space optical 

telecommunications [5-13]. Rayleigh-Taylor mixing is a multi-scale, heterogeneous, anisotropic and 

statistically unsteady turbulent process with non-local interactions among the many scales [3,4]. Its 
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development is usually associated with the conditions of strong gradients of pressure and density and 

may also include spatially varying and time-dependent acceleration, diffusion of species, heat release, 

and chemical reactions [17-28,29-39]. These conditions depart from those under which canonical 

Kolmogorov turbulence is expected to occur [14-16,40]. Capturing the properties of Rayleigh-Taylor 

mixing can enable a better understanding of realistic turbulent flows and can further improve the 

methods of their mitigation and control [40]. Here we discuss the influence of momentum transport 

on fundamental properties of turbulent mixing, and outline some new ideas that may help to better 

control the mixing process in the applications [5-13]. 

Arising in a variety of diverse circumstances, RT flows exhibit some similar features of their 

evolution [3,4]. The mixing starts to develop when the fluid interface is slightly perturbed near its 

equilibrium state. The flow transitions from an initial stage, where the perturbation amplitude grows 

relatively quickly [e.g. exponentially in time, if the fluids are incompressible and immiscible and are 

to sustained acceleration or gravity g ], to a nonlinear stage, where the growth-rate slows and the 

interface is transformed into a composition of a large-scale coherent structure and small-scale 

irregular structures driven by shear, and then finally to a stage of turbulent mixing, whose dynamics is 

believed to be self-similar [41-58]. 

The large-scale coherent structure in RT flows is a periodic array of bubbles and spikes, with 

light (heavy) fluid with density ( )hlρ  penetrating the heavy (light) fluid in bubbles (spikes) [3,4]. The 

dynamics of the structure is governed by two, in general independent, length scales: the amplitude h~  

in the direction of gravity and the spatial period λ  in the normal plane [3,4,59-62]. The horizontal 

scale λ  is set by the mode of fastest-growth or by the initial conditions [3,4]. It may increase, if the 

flow is two-dimensional and the initial perturbation is broad-band and incoherent [43-49]. The 

vertical scale h~  grows as power-law with time, and it is believed that in the mixing regime 2~
~ gth , 

g=g  [41-58]. This scale can be regarded as an integral scale, which represents cumulative 

contributions of small-scale structures in the flow dynamics [3,4,59-62]. The small-scale vortical 

structures are produced by the Kelvin Helmholtz instabilities at the fluid interface [17-39]. In miscible 

fluids, the small-scale structures diffuse from the interface into the bulk, and the mixing process is 

slowing down. Some other features are induced in the dynamics by compressibility, high energy 

density conditions and non-uniform acceleration [5-13]. 

To quantify RT mixing flow the observations were focused on diagnostics of the coarsest 

scales h~  and ascertainment of dependency 2~ Agth α=  where α  is a constant and 

( ) ( )lhlhA ρ+ρρ−ρ=  is the Atwood number [17-39]. RT dynamics was characterized by period 

λ , and growth of this scale with 2~
~

~ gthλ  was suggested as a primary mechanism of the mixing 

development [43-49]. To account for the time-dependence of the integral scale 2~
~ gth  and interpret 

experimental and numerical data in RTI in terms of turbulent power-laws, some modifications were 

applied to Kolmogorov theory, including an introduction of a virtual origin and a time-scale for 

transition to turbulence, a substitution of time-dependencies in Kolmogorov invariants, and a 

description of RTI by analogy with passive scalar mixing [50-57]. Some quantitative agreements 
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were found between the observations data that spanned relatively short dynamic range and the models 

that used adjustable parameters [43-57]. Some qualitative features of the turbulent process still remain 

unclear, e.g. a relatively ordered character of RT flow at high Reynolds numbers [56]. To date, 

experiments and simulations did not provide a trustworthy guidance on whether the concepts of 

classical turbulence are applicable to an accelerating RT flow and whether the scaling 2~ gth  and 
2gtλ  are indeed universal. 

We refer the reader to recent reviews [3,4,28,40] for a detailed discussion of the state of the 

art in theoretical, experimental, numerical and computational studies of Rayleigh-Taylor flows. This 

paper presents the physics-based analysis of the mechanisms and the properties of RT mixing 

suggested by the studies [3,4,59-62] and focuses on the consideration of correlations and fluctuations 

of the statistically unsteady turbulent dynamics. We extend to non-canonical circumstances of 

unsteady turbulent mixing the ideas of Kolmogorov theory [14-16] on symmetries of turbulent 

dynamics. Our consideration accounts for the essentially multi-scale character of RT evolution, and 

identifies the transport of momentum as a better indicator of RT mixing flow than the transport of 

energy [3,4,59-62]. The invariance of the rate of momentum loss leads to essentially non-

Kolmogorov invariant, scaling and spectral properties of the turbulent mixing. The RT mixing 

exhibits more order compared to isotropic turbulence. Its viscous and dissipation scales are finite and 

set by the flow acceleration [3,59-62]. We discuss the outcomes of theoretical results for practical 

applications and for the methods of flow mitigation and control. 

 

 

II. Mechanisms, symmetries, and invariants measures of turbulent processes. 
As in any natural process, turbulent transports are governed by the conservations principles 

[14]. The conservations of mass and momentum have the form 

0=ρ⋅∇+ρ V& , ( )( ) 0=+∇+−∇⋅+ρ SgVVV p& ,  (1) 

where ρ , V  and p  are the fluid density, velocity and pressure, S  denotes terms induced by viscous 

stress and other effects, and dot marks the partial derivative in time t . In RT flow the fluid interface 

is a discontinuity, and equations (1) yield also the boundary conditions at the interface which balance 

the transports of mass, momentum and energy of the fluids [14]. The system is spatially extended and 

has no mass sources. 

 

2.1 Symmetries of turbulent processes. 
A cornerstone of Kolmogorov theory is that the isotropic and homogeneous turbulent flow 

has a number of symmetries in statistical sense [15]. Indeed, for a homogeneous fluid with 

const=ρ , with neglected effects of gravity, viscous stress and other terms, 0== Sg , and 

asymptotically in time, system (1) describes canonical turbulent flow [15] that is invariant to Galilean 

transformation, to temporal translations, and to spatial translations, and spatial inversions and 

rotations. It is also scale-invariant with LKL → , ntKt −→ 1  and nVKV →  for any n , where 
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V=V , and L  is a characteristic length scale [14-16]. Kolmogorov [15] found that for isotropic 

homogeneous turbulence 31=n , and that the measure of the scaling symmetry is the rate of change 

of specific kinetic energy LV 3~ε . Later it was shown that the arbitrariness of n  reflects in 

turbulence multi-scaling and intermittency, see Refs [16,63-67] and references therein. 

Similarly to Kolmogorov turbulence, Rayleigh-Taylor turbulent mixing has a number of 

symmetries [3,4,59-61]. Due to the presence of gravity, 0≠g , and non-inertial character of the 

dynamics, these symmetries are distinct from those of Kolmogorov turbulence. Rayleigh-Taylor 

mixing flow is invariant with respect to translations, inversions and rotations in the plane normal to 

g , and to scaling transformation LKL → , ntKt −→ 1  and nKvv→  with 21=n . The measure 

of this scaling symmetry L2v  has the same dimension as g  and quantifies the rate of change of 

specific momentum, Table 1. 

 

Table 1: Symmetries of turbulent processes 

Kolmogorov 

turbulence 

Kolmogorov turbulence is inertial and is invariant with respect to Galilean 

transformation, translations in time and 3D space, and spatial rotations and inversions. It 

is scale-invariant, LKL → , nTKT −→ 1 , nKvv→  with 31=n . 

RT turbulent 

mixing 

Rayleigh-Taylor turbulent mixing is non-inertial and is invariant with respect to 

translation, rotations and inversions in the plane normal to gravity g . It is scale 

invariant, LKL → , nTKT −→ 1 , nKvv→  with 21=n . 

 

 

2.2 Momentum-based consideration of turbulent mixing. 
In RT mixing flow, the specific momentum is gained due to buoyancy and is lost due to 

dissipation. The dynamics of a parcel of fluid is governed by a balance per unit mass of the rate of 

momentum gain μ~  and the rate of momentum loss μ  as 

v=h& ,  μ−μ= ~v&      (2) 

Here h  is the vertical length scale, e.g. position of the center of mass of the fluid parcel, v  is the 

corresponding velocity, and μ~  and μ  are the absolute values of vectors pointed in opposite directions 

along the gravity g  [3,4,59-62]. Eqs. (2) represent in a simplified dimensional-grounds-based form 

the conservation of mass and momentum (1). 

The rate of momentum gain is the rate of change of specific momentum which can be gained 

due to buoyancy (e.g. the specific buoyant force), and vε=μ ~~ , where ε~  is the rate of energy gain 

(e.g. the rate of change of specific potential energy). The value ( )Afg=μ~  with ( )Af  being a 

function on the Atwood number, and it is rescaled hereafter as ( ) gAfg → . The rate of momentum 

loss is the rate of change of specific momentum which is lost due to dissipation, and vε=μ , where 

ε  is the rate of change of specific kinetic energy. In the limit of vanishing viscosity on the basis of 

dimensional grounds LvC 3=ε , where L  is the characteristic length scale and constC =  [3,59-
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62]. The ratio between εμ ~,~  as well as εμ,  are the standard relations between the (specific) power 

and force [14]. 

As discussed in [59], asymptotic solutions for model (2) depend on whether the characteristic 

length scale of the flow is horizontal or vertical. If the characteristic length scale is horizontal, λ~L , 

then Eqs. (2) has steady solution with λg~v  and λgth ~ , and the rates of momentum and 

energy are balanced: g=μ=μ~  and ( ) Cg λλ=ε=ε 2/3~ . If the characteristic scale is vertical, 

hL ~ , then asymptotically in time, 22gtah =  and gta=v  with ( ) 121 −+= Ca . The rates of 

energy gain and dissipation are time-dependent, tga 2~ =ε  and ( ) tgaa 21−=ε , and the rates of 

momentum gain and loss are time- and scale-invariant, g=μ~  and hC 2v=μ  [59-62]. As found in 

many observations, the values of a  are rather small, 15.005.0~ −a  [17-39]. Thus, in the mixing 

flow almost all energy induced by the buoyancy dissipates, ε≈ε~  with ( )a−=εε 1~ , and the rates of 

momentum gain and loss slightly imbalance one another, μ≈μ~  with ( ) a=μμ−μ ~~ . Self-similar 

mixing may develop when horizontal scale λ  grows with time as 2~~ gthλ  [43-49], and when the 

vertical scale h , hh ~
~ , is the characteristic scale for energy dissipation that occur in the small-scale 

structures at the fluid interface [3,59-62]. 

 

2.3 Mechanisms of development of RT mixing. 
Agreeing in certain limiting cases with principal results of the heuristic models [41-57], 

momentum consideration (2) identifies some new properties of the mixing flow [59-62]. It suggests 

that the accelerated turbulent mixing develops due the imbalance of gain and loss of specific 

momentum, μ≠μ ~ . This imbalance may occur when (i) the horizontal scale grows as 2~ gtλ , and/or 

when (ii) the vertical scale h  is a characteristic scale for energy dissipation, LC 3v=ε  with hL ~ , 

and when it represents cumulative contributions of small-scale structures into the flow dynamics. 

Existence of two distinct mechanisms of the mixing development reconciles with one another the 

models [41-59]. It also agrees with results of theoretical studies [4], which found that the amplitude 

h~  and period λ  provide independent contributions to the nonlinear RT dynamics and that for highly 

coherent large-scale coherent structures the growth of horizontal scales may not occur. 

 

2.4 Energy budget, transports of energy and momentum, position of the center of mass. 
Turbulence is a property of dissipative systems and it decays unless it is driven [14-16,63-67]. 

Kolmogorov turbulence is driven by an external energy source, which supplies energy to the flow at a 

constant rate ε : Energy is injected at large scales by an external source, and then it is transferred 

without loss through the inertial interval and dissipates at small scales [14-16,63-67]. According to the 

momentum consideration [3,59-62], for Rayleigh-Taylor turbulent mixing an external energy source 

(other than gravity) is not required, and the specific momentum is gained due to buoyancy and is lost 

due to dissipation. In accelerated flow at any scale μ≠μ ~  and ε≠ε ~ , and this imbalance indicates 

that the mean velocity of the center of mass of the fluid entrained in the motion is time-dependent, 

whereas in statistically steady turbulent flow it is invariable, Table 2. 
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Table 2: Energy source, transports of momentum and energy, center of mass position in 
the turbulent processes 

Kolmogorov 

turbulence 

Energy is injected at large scales by an external source, and is transferred without losses 

through the inertial interval and dissipates at small scales. Mean velocity of the center of 

mass of the fluid system is time-independent. 

RT turbulent 

mixing 

There is no external energy source other than gravity. Energy and momentum are gained 

due to buoyancy and are lost due to dissipation. In steady regime 0~ =μ−μ  and 

( ) Cg λλ=ε=ε 2/3~ . Accelerated turbulent mixing is driven by imbalance between 

the gain and loss of specific momentum, and at any scale μ≠μ ~  and ε≠ε ~ . In 

accelerated mixing, the mean velocity of the center of mass of the fluid system is time-

dependent. 

 

 

2.5 Asymptotic states of turbulent processes in space and in time. 
Statistically steady Kolmogorov turbulence is an asymptotic in time state, which is achieved 

when the memory of the initial conditions is completely lost, and when the boundaries of the outside 

domain do not influence the dynamics [15,63-67]. These conditions can be realized in a spatially 

extended system or in a finite-size domain, when the span of scales runs several decades from viscous 

to integral scale [15]. Implementation of these conditions in Rayleigh-Taylor turbulent mixing 

requires special attention [28]. In a finite-size domain, an asymptotic in time dynamics corresponds to 

a stable state with no motion at all: under the influence of gravity (directed from the top to the bottom) 

the system transits from an unstable configuration to a stable configuration (e.g. from an initial state 

with heavier fluid located at the top of the domain and lighter fluid - at the bottom to a reverse state), 

and the change in the system potential energy dissipates into heat. In a spatially extended system (e.g. 

in a large domain) the flow may accelerate, however at a certain time compressibility and 

stratification start to play a role and results in flow stabilization, as discussed in Ref. [14,59]. To allow 

for the development of Rayleigh-Taylor turbulent mixing and to enable its diagnostics over substantial 

span of scales, the size of the domain should be large enough yet not so large to prevent mixing 

stabilization by effects of compressibility and stratification. 

 

2.6 Effective drag in the turbulent flows. 
Regularization of accelerated turbulent mixing is at first glance an unusual concept. However, 

there is some evidence from previous studies that is does take place. For instance, re-laminarization of 

an accelerated flow is a well-known fluid dynamics phenomenon discovered in the works of Taylor 

[68] for flows in curved pipes and Sreenivasan [69] for boundary layers. Another indication of a more 

regular character of Rayleigh-Taylor mixing follows from the characteristic value of the flow drag. 

Coefficient C  in the dependencies LC 3v=ε  and LC 2v=μ  can be viewed as effective drag 

coefficient, which is related to the growth-rate 22gtah =  via ( ) 121 =+ Ca  [59-62]. For 0→C  
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(no drag) the solution is a free-fall with 1→a , whereas for ∞→C  (infinitely large drag) 0→a  

and the flow cannot accelerate. Experiments and simulations report relatively small values of 

15.005.0~ −a  (with 07.003.0~ −α  in the relation 2gtAh α=  in [49]). These values correspond 

to drag coefficient of 83~ −C , indicating that flow may tend to be more laminar rather than 

turbulent [63-67]. In canonical Kolmogorov turbulence, the value of C  is calculated from the third-

order velocity structure function as 4/5=C  and 1~C  [15,63-67]. This may lead to 3.07/2 ≈=a  

( 14.0~α  in 2gtAh α=  in [49]), which is significantly greater than the values actually observed. 

 

2.7 Invariant measures of turbulent process. 
In isotropic turbulence, the total momentum is zero because of isotropy. Time- and scale-

invariance of the energy dissipation rate L3~ vε  implies that the energy injected at large scales, 

( )Lvv2~ε , is transferred without loss through the inertial range and is dissipated at small scales, 

( )( )2~ LvvLε  [15,16,63-67]. That is, time- and scale-invariance of the energy dissipation rate 

L3~ vε  is compatible with existence of inertial interval and non-dissipative energy transfer 

between the scales [15,16,63-67]. In accelerated Rayleigh-Taylor turbulent mixing, the rates of 

change of specific energy are time-dependent, the energy dissipation rate is time-dependent, 

tg 2~~~ εε , and the specific momentum is imbalanced, μ≠μ~ . Time- and scale invariance of 

L2~ vμ  implies that at any time and length scale the specific momentum is being lost at the same 

constant rate, and momentum transfer between the scales is non-dissipative [61]. Enstrophy is another 

invariant of isotropic turbulence [63-67], whereas in Rayleigh-Taylor mixing this value decays with 

time (thus providing another indication of a tendency of accelerated mixing flow to re-laminarize) 

[61]. In Rayleigh-Taylor flow, vortical structures form helixes not vortices. In a flow dominated by 

the growth of horizontal scales, 2~~ gthλ , the helicity is a statistically steady value and its 

steadiness may serve as an indicator of achieving a merger-driven self-similarity [61], Table 3. 

 

Table 3: Some invariant measures of the turbulent process 

Kolmogorov 

turbulence 

Dynamics is statistically steady. Invariance of energy dissipation rates L3~ vε  is 

compatible with existence of inertial interval and energy cascade. Enstrophy and helicity 

are other invariants. 

RT turbulent 

mixing 

Dynamics is statistically unsteady. Invariance of rate of momentum loss L2~ vμ  leads 

to non-dissipative momentum transport between the scales. Energy dissipation rate and 

enstrophy are time-dependent, and helicity is invariant. 
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III. Correlations and fluctuations in turbulent processes. 
 

3.1 Space-time scaling properties: correlations and fluctuations in the turbulent process. 

For a description of scaling properties, let the length scale L  and time scale T  refer to large 

scales and times, let the characteristic velocity be v , let the characteristic velocity be lv at a small 

length scales l , and let the characteristics velocity be τv  on a short time-scale τ . 

In Kolmogorov turbulence [14-16,63-67], the invariance of the energy dissipation rate 

lL l
33 ~~ vvε  yields the velocity scaling ( ) 3/1~ Lll vv , N -th order velocity structure function 

( ) 3/~ Nl ε , and velocity scaling with time ( ) 3/1~ Tττ vv . The relative velocity of two parcels of 

fluids involved in these motions is ( ) 2/1~ ετ  on a time delay τ , and it is substantially smaller than the 

velocity fluctuations ( ) 3/1~ τετ vv  induced by turbulence. This well-known result means that in 

Kolmogorov turbulence, the main contribution to velocity fluctuations is provided by the turbulence 

not by the initial conditions [15], Tables 4,5. 

 

Table 4: Spatial scaling of the velocity in the turbulent process 

 Velocity scaling Velocity Nth order structure function 

Kolmogorov 

turbulence 

( ) 3/1~ Lll vv based on ε  invariance ( ) 3/~ Nl ε  based on ε  invariance 

RT turbulent 

mixing 

( ) 2/1~ Lll vv  based on μ  invariance ( ) 2/~ Nlμ  based on μ  invariance 

 

In Rayleigh-Taylor turbulent mixing, the invariance of the rate of momentum loss 

lL l
22 ~~ vvμ  yields the velocity scaling ( ) 2/1~ Lll vv , N -th order velocity structure function 

( ) 2/~ Nlμ , and the velocity scaling with time ( )Tττ ~vv . For two parcels of fluids involved in the 

motion with a time delay τ , their relative velocity is ( ) ττμ−μ g~~~  and it is comparable to 

μττ ~v  induced by turbulent fluctuations, whereas their own velocities grow with time as gt~  and 

( )τ−tg~  [14]. We see that in accelerated mixing flow, the velocity fluctuations are ‘frozen’ to the 

level of the initial conditions, and with time the contribution of fluctuations to the mixing dynamics is 

reduced, Tables 4,5. 

 

Table 5: Temporal scaling of the velocity in the turbulent process 

 Velocity scaling Velocity fluctuations 

Kolmogorov 

turbulence 

( ) 3/1~ Tττ vv  based on ε  invariance ( ) 3/1~ τετ vv  based on ε  invariance 

and ( ) ( ) 2/13/1 ετ>>τεv  

RT turbulent 

mixing 

( )Tττ ~vv  based on μ  invariance μττ ~v based on μ  invariance and 

( ) ττμ−μμτ g~~~  
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3.2 Reynolds number, viscous scale and integral scale in turbulent processes. 

In Kolmogorov turbulence, Reynolds number is finite constL =ν= vRe  and local 

Reynolds number ν= lll vRe  scales as ( ) 3/4Re~Re Lll  leading to the viscous length scale 

( ) 4/13~ εννl  and time-scale ( ) 2/1~ εντν  for 1~Re l . In accelerated turbulent mixing the 

Reynolds number grows with time as νν= 32~Re tgLv  and the local Reynolds number 

ν= lll vRe  scales as ( ) 2/3Re~Re Lll . For 1~Re l  viscosity plays a dominant role, thus leading 

to viscous length-scale ( ) 3/12~ μννl  with the corresponding time scale ( ) 3/12~ μντν . The viscous 

length-scale is finite. It is set by the flow acceleration and are comparable to the wavelength of mode 

of fastest growth [1,2]. Thus despite in accelerated Rayleigh-Taylor mixing the Reynolds number can 

reach large values relatively quickly the flow viscous scale remains finite. An upper limit for 

Reynolds number ν32~Re tg  can be estimated at a border of validity of incompressible 

approximation cgt ~  as νgcc
3~Re , where c  is the sound speed, Table 6. 

 
Table 6: Reynolds number, viscous scale, and integral scale in the turbulent process 

 Reynolds number Viscous and integral scales 

Kolmogorov 

turbulence 

constL =ν= vRe . Invariance of ε  

leads to ( ) ( ) 3/4Re~~Re Lllll νv . 

Invariance of ε  leads to ( ) 4/13~ εννl  and 

( ) 2/1~ εντν . An integral scale is the scale at 

which energy is gained by the flow system 

RT turbulent 

mixing 

νν= 32~Re tgLv . Invariance of μ  

leads to ( ) ( ) 2/3Re~~Re Lllll νv . 

For cgt ~  upper limit is νgcc
3~Re . 

Invariance of μ  leads to ( ) 3/12~ μννl  and 

( ) 3/12~ μντν . An integral scale is the coarsest 

vertical scale representing cumulative 

contributions of small scale structures. 

 

In Kolmogorov turbulence the integral scale is the scale, at which energy is gained by the 

flow system. For turbulent mixing this consideration may not be directly applicable. In Rayleigh-

Taylor mixing, momentum and energy are gained and dissipated at any scale, and imbalance between 

the rate of momentum gain and loss leads to flow acceleration. The coarsest vertical scale in 

Rayleigh-Taylor flow can be regarded as an integral cumulative scale, which represents cumulative 

contributions of small-scale structures in the flow dynamics, Table 6. 

 

 
3.3 Dimensional-analysis-based spectral properties of the turbulent process. 
In isotropic turbulence, the invariance of energy dissipation rate leads to kinetic energy 

spectrum ( ) 3/53/2~ −ε kkE  [15,63-67]. In Rayleigh-Taylor mixing accurate determination of spectra 

(and corresponding eigen-functions) is a formidable task because the dynamics is statistically 

unsteady. Dimensional analysis suggests that the spectrum of specific kinetic energy have the form 
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( ) 2~ −μkkE , which is steeper than Kolmogorov; similarly for the spectrum of specific momentum 

one obtains ( ) 2/32/1~ −μ kkM . In Kolmogorov turbulence ( ) 0≡kM  due to isotropy, Table 7, [61]. 

 

Table 7: Dimensional-analysis-based spectral properties of the turbulent process 

 Spectrum of specific kinetic energy Spectrum of specific momentum 

Kolmogorov 

turbulence 

( ) 3/53/2~ −ε kkE  set by invariance of ε . ( ) 0≡kM  due to isotropy 

RT turbulent 

mixing 

( ) 2~ −μkkE  set by invariance of μ  ( ) 2/32/1~ −μ kkM  set by invariance of 

μ  

 
 

3.4 Pressure fluctuations. 
In Kolmogorov turbulence, pressure fluctuations are evaluated using fourth-order velocity 

structure function so that pressure fluctuates as 3/43/4~ lε  with spectrum 3/73/4~ −ε k  [63-67]. For 

Rayleigh-Taylor mixing dimensional analysis suggests for pressure fluctuations 22~ lμ  with 

spectrum 32~ −μ k  which is steeper than in Kolmogorov turbulence, Table 8 [61]. 

 
Table 8: Dimensional-analysis-based properties of pressure fluctuations 

 Scaling Spectrum 

Kolmogorov 

turbulence 

3/43/4~ lε  set by invariance of ε . 3/73/4~ −ε k  set by invariance of ε . 

RT turbulent 

mixing 

22~ lμ  set by invariance of μ  32~ −μ k  set by invariance of μ  

 

 

3.5 Statistically steady and statistically unsteady turbulent mixing. 

To conclude this section, we discuss in more details statistically steady and statistically 

unsteady regimes in Rayleigh-Taylor flows. In a steady regime, the flow can appear more coherent or 

more ‘turbulent’ depending on the Atwood number and the initial conditions [3,4]. For the steady 

flow, the rates of momentum gain and loss as well as energy gain and dissipation are balanced, 

μ=μ~  and ε=ε~ , and the characteristic length scale of the flow λ  is constant. The characteristic 

velocity is λg~v , the Reynolds number is νλλν= gL ~Re v , and the energy dissipation 

rate is constant ( ) λλε 2/3~ g . This formally corresponds to the viscous scale 

( ) ( )( ) 4/12/334/13 ~ λλνεν g , which is smaller than the mode of fastest growth ( ) 3/12 gν  for 

( ) 3/12 gν>λ . However, as ( )( ) ~
4/12/33 λλνλ g ( )( ) 8/93/12 gνλ  and 18/9 ≈ , the characteristic 

span of scales in the steady flow is well captured by the ratio ( ) 3/12 gνλ . 
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The flow acceleration increases the flow velocity, integral length scale, Reynolds numbers, 

and energy dissipation rate. At the first glance, this may lead to an appearance of high-Reynolds 

number turbulent flow with a significant span of scales [41-58]. Momentum consideration [59-62] 

suggests however that buoyancy-driven turbulent mixing is accelerated due to imbalance between the 

gain and loss of momentum and energy with ( ) a=μμ−μ ~~  and ( ) a=εε−ε ~~ . In this flow the 

velocity gt~v , the length scale 2~ gth , the Reynolds number ν32~Re tg , and the span of 

scales ( ) 3/122~ ggt ν  indeed increases. Here the viscous scale is ( ) 3/12~ gν  and upper limit for 

the span of scales is ( ) 3/122~ ggc ν  for gtc ~ . However, compared to the case of statistically 

steady isotropic and homogeneous turbulence, the accelerated turbulent mixing exhibits stronger 

correlations, reduced contribution of fluctuations and steeper spectra and may tend to be more laminar 

[59-62], Table 9. 

Table 9: Flow quantities in statistically steady and statistically unsteady Rayleigh-Taylor mixing 

Steady RT 

flow 

Balance of momentum and energy μ=μ~  and ε=ε~ . Constant length scale λ , 

velocity λg~v , Reynolds number νλλ g~Re  and energy dissipation rate 

( ) λλε 2/3~ g  with corresponding viscous scale ( )( ) 4/12/33 λλν g  and  

span of scales ( )( ) 8/93/12 gνλ . 

Unsteady RT 

flow 

Imbalance of momentum and energy ( ) a=μμ−μ ~~  and ( ) a=εε−ε ~~ . 

Time-dependent length scale 2~ gth , velocity gt~v , Reynolds number 

ν32~Re tg  and energy dissipation rate tg 2~ε . Constant rate of momentum 

loss g~μ  with corresponding viscous scale ( ) 3/12~ gν  and  

span of scales ( ) 3/122~ ggt ν  with upper limit ( ) 3/122~ ggc ν . 

 

 

 

IV. Stochastic modeling of statistically unsteady turbulent mixing process 
As in any turbulent process, RT mixing dynamics has a random character, which is resulted 

from contribution of small-scale structures and interactions of all the scales [60,63-67]. Capturing this 

randomness is a complex task. In Kolmogorov turbulence, random character of flow dissipation is 

induced by velocity fluctuations with the energy dissipation rate being a statistic invariant [63-67]. In 

RT mixing flow the velocity and the length scale both fluctuate and the energy dissipation rate grows 

with time. We account for the random character of dissipation in RT flow on the basis of idea that 

even in a statistically unsteady process [whose fluctuating quantities are time-dependent and non-

Gaussian] there exist time- and scale-invariant values fluctuating about their means, particularly, the 

rate of momentum loss μ  [60]. 

To study the effect of fluctuations on the mixing dynamics, Eqs.2 are represented in a 

differential form  
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dtdh v= ,  Μ−Μ= d
~

dvd ,     (3a) 

with differentials of momentum gain dtg=Μ~d  and loss =Μd ( )dthC 2v  and with C  being a 

stochastic process [60]. This process is, in general, time-dependent, =C ( )tC , and is characterized by 

a time-scale Cτ , showing how fast the distribution ( )tC  approaches a stationary probability density 

function ( )Cp . The function ( )Cp  is non-symmetric, 0>C , with the mean value C , with the 

mode maxC  corresponding to the highest value of ( )Cp , and with the standard deviation σ , 

describing the fluctuations intensity. For stochastic processes with log-normal distribution 

( ) =Cp ( )( ) Ce CC σπσ−− 2
22

0 2lnln , the mean ( )2exp 2
0 σ= CC , the mode ( )2

0max exp σ−= CC , and the 

set of stochastic differential equations in (3a) takes the form 

dtdh v= , dt
h

Cgdtdv
2v

−= , dWCdt
C
CCdC

CC τ
σ+

τ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛ σ
−−=

2

2
ln

2

, (3b) 

with dW  being a standard Weiner process. 

The stochastic modeling results indicate that fluctuations do not change the asymptotic time-

dependence of the dynamics, so that 2~ 2gth  as ∞→τt , yet they influence significantly the 

coefficient 22 gtha =  [60]. Depending on the shape of the distribution ( )Cp  and on the 

fluctuations intensity σ , the mean value of a  may vary in several folds, and, furthermore, it saturates 

slowly with time for ( ) 1>>τt . This result explains qualitatively the several-fold scatter in the values 

of a  in the experiments and simulations [49]. It indicates that the growth-rate parameter a  is 

sensitive to the dissipation statistics and it is a significant parameter not because it is “deterministic” 

or “universal,” but because its value is rather small, 1<<a  [50]. Found in many experiments and 

simulations, the small a  implies that in RT flows almost all energy induced by the buoyant force 

dissipates, and a slight imbalance between the rates of momentum loss μ  and gain μ~  is sufficient for 

the mixing development. We emphasize that the rate of momentum loss ( ) hCt 2v=μ  is relatively 

insensitive to the effect of fluctuations, and monitoring the momentum transport is thus has crucial 

importance for grasping the essentials of the mixing process. 

 

 

 

V. Outcomes of theoretical analysis for mitigation and control of turbulent mixing process 
To date, the design of experiments on RT mixing [17-39] employs the results of traditional 

models [41-58] suggesting the following scenarios for RT evolution. Initially, small perturbations at 

the interface with wavelength λ  grow fast. In the nonlinear regime the velocity is λg~v  and 

amplitude is λgt~vt~h . Horizontal and vertical scales are strongly coupled, and self-similar 

growth of horizontal scales (e.g. bubble interaction and merge) leads to flow acceleration with 
2~~ gthλ . In accelerated regime the scales grow as 2~ gth  and 2~ gtλ , the Reynolds number 

and energy dissipation rate increase as ν32~Re tg  and t23 g~hv~ε . This may be interpreted as 

the development of a turbulent state of the mixing flow, which is similar to isotropic and 

homogeneous turbulence and is independent of the initial conditions, and whose viscous scale decays 
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as ( ) ( ) 4/1234/13 ~ tgνεν  and span of scales increases as ( ) ~
4/13 ενh 4/34/92/3 νtg . Therefore, 

according to these scenarios, RT turbulent mixing, once it appears, cannot be controlled. To proceed 

to mixing regime faster, the initial perturbation may contain large wavelength modes. To suppress the 

mixing development, the interface should be ‘finely polished’ [41-58]. 

As discussed in the foregoing, some of results of traditional models [41-58] can be obtained 

within the frames of the theoretical analysis [59-62] with the use of additional adjustable parameters. 

Some other results of the traditional models [41-58] are known to have severe limitations [4]. 

The theoretical analysis [3,4,59-62] finds that in the nonlinear regime of RTI, horizontal and 

vertical scales contribute independently to the dynamics, and the rates of specific momentum and 

energy are balanced, μ=μ~  and ε=ε~ . Accelerated turbulent mixing develops due to imbalance of 

specific momentum and energy with ( ) a=μμ−μ ~~  and ( ) a=εε−ε ~~ , where 22gtah =  (with 

‘effective’ g  accounting for the density ratio). There are two distinct mechanisms for the mixing 

development: (i) growth of horizontal scale (period) 2~ gtλ  and (ii) dominance of vertical scale 

(amplitude) hL ~  or energy dissipation. Bubble merge is possible but not a necessary condition for 

the mixing to occur. Compared to isotropic turbulence, RT turbulent mixing exhibits more order, 

steeper spectra, stronger correlations, and weaker contributions of fluctuations, which are ‘frozen’ to 

the initial conditions. In turbulent mixing flow the viscous scale is finite and is set by flow 

acceleration as ( ) ( ) 3/123/12 ~ gνμν . The span of scales is ( ) ( ) 3/1223/12 ~ ggtgh νν  with the 

upper limit ( ) 3/122 ggc ν . In the mixing flow the rates of gain and loss of specific momentum are 

time- and scale-independent, gL ~~~~ 2vμμ , the rates of energy gain and dissipation are time-

dependent, tg 2~~~ εε , and Reynolds number increases as ν32~Re tg . Therefore, the theoretical 

analysis [3,4,59-62] suggests that RT mixing flow can in principle be controlled by means of initial 

perturbation and acceleration. Horizontal and vertical scales can be controlled independently, and 

initial perturbation with large wavelengths may not induce any turbulence [4,59-62]. For better 

control of RT mixing, one should impose proper (e.g. highly coherent) initial conditions in order to 

prevent bubble merge. Furthermore, one should choose very special initial conditions to force the 

flow to fluctuate [3,4,59-62]. 

It would be beneficial for the design of experiments on RT mixing to account for that in 

strongly fluctuating turbulent flows the Reynolds number is high; yet not in any high Reynolds 

number flow the fluctuations are strong [59-62]. Implementation of turbulent flows in experiments is 

an extremely challenging task [28], as good experiments on turbulence are the ‘quantitative’ 

experiments, which require accurate interpretation of the (bias-free) experimental noise. A qualitative 

experiment with a binary answer ‘yes/no’ may be a good solution the case of RT turbulent mixing. 

Such an experiment may involve a comparative study of RT mixing dynamics with various initial 

conditions, e.g. involving hexagonal grid, square grid, two-mode grid, and fractal grid [70] in case of 

three-dimensional spatially extended flows. According to the analysis [3,4,59-62], the expected results 

would be the following. For accurately implemented hexagonal grid, bubble merge may not occur, 

and the flow is ‘regular’ and is dominated by the coherent structure. For square grid, bubble merge 
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may occur via multi-pole interactions. For two-mode grid with small and large wavelengths, bubble 

merge will develop faster compared to square grid. Fractal grid [70] may be the best to induce 

fluctuations and a ‘turbulent-like’ dynamics (these fluctuations may be dominated by the few modes 

and may not be stochastic [70]). 

 

 

VI. Conclusion 

We have considered the effect of momentum transport on scaling, invariant and statistical 

properties of Rayleigh-Taylor mixing flow [3,4,59-62]. It is shown that the rate of momentum loss is 

a better indicator of the unsteady turbulent dynamics than the rate of energy dissipation. Our 

consideration accounts for the multi-scale character of turbulent mixing dynamics and indicates two 

possible mechanisms for the mixing development. The first is the traditional “merge” associated with 

the growth of horizontal scales. The second is associated with the production of small-scale structures 

and with the growth of the vertical scale, which plays the role of the integral scale for energy 

dissipation. Based on invariance of the rate of momentum loss, we found that the fundamental 

properties of statistically unsteady Rayleigh-Taylor turbulent mixing depart substantially from 

classical Kolmogorov scenario. In particular, turbulent mixing flow exhibits more order compared to 

isotropic turbulence, and its viscous scale is set by the flow acceleration. The stochastic modeling 

results indicate that the growth-rate parameter of the mixing zone is a sensitive to statistical properties 

of dissipation. The momentum-based consideration of Rayleigh-Taylor mixing suggests a principal 

opportunity of mitigation and control of the statistically unsteady turbulent process. 
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