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PREFACE

These lecture notes are based on a course given at the Graduate
School of Mathematics at Kyushu University in Fukuoka in spring 2010.
The main goal was to give — within one semester — a compact intro-
duction to the theory of elliptic curves, modular curves and modular
forms as well as the relations between them. It was aimed at graduate
students with some background in number theory or algebraic curves.

Properties of elliptic curves were given in a rather sketchy way, how-
ever more details were presented for elliptic curves over C and over
finite fields as these are needed in later chapters. The sections on mod-
ular curves and modular forms contain most of the proofs, for example
the construction of Xo(N) as a compact Riemann surface as well as
their moduli properties are given in full detail, likewise the actions of
the Hecke-algebra on weight 2-cusp forms.

The final result given in the course is the analytic continuation of
the L-function L(E,s) of an elliptic curve defined over Q, which fol-
lows from Eichler-Shimura’s Theorem L(f,s) = L(E, s) and analogous
properties of the L-function of the cusp form f associated to E. Mod-
ularity of elliptic curves is explained from the various (equivalent) view
points ‘modular curves’, ‘modular forms’ and ‘Galois-representations’.

The last chapter contains some notes based on a talk in the arith-
metic geometry study group. P-adic Abel-Jacobi maps and their con-
nections to p-adic integration theory are introduced in the classical
cases of abelian varieties and K5 of curves. Finally a more recent gen-
eralization, due to A. Besser, is given in the case of K7 of surfaces.
His formula is likely to play an important role in the construction of
integral indecomposables in K F).

First I thank Professor Masanobu Kaneko for inviting me as a visiting
professor to Kyushu university. Then I thank the Graduate School of
Mathematics for their hospitality and for supporting my stay through
the global COE-programme ‘Maths for Industry’. T also want to thank
all the graduate students who attended my course for their interest in
these lectures.






INTRODUCTION

The Riemann zeta function

o)== =3 0

p n>1

is defined for s € C with Re(s) > 1. ((s) has a meromorphic continu-
ation to C with a simple pole at s = 1, and it is analytic for s # 1.
Let

I'(s) = / e Yy ldy
0
be the Gamma function and let
_s S
Z(s)=n2I <§) ¢(s).

Then Z(s) is meromorphic on C, analytic for s # 0,1 and there is a
functional equation
Z(s)=Z(1—s).
More generally, let K/Q be a number field with [K : Q] = n and let

o1
CGe(s) = [[ (1= N(p)™)
p
be the Dedekind zeta function, where the product is taken over all
prime ideals p of Og. Likewise, (k(s) has a meromorphic continuation
to C\{1} and there is a functional equation given as follows.
Let
e r; be the number of real embeddings K — R,
e 75 be the number of pairs of complex conjugate embeddings
K — C and
e Dy be the discriminant of K.

Let .
Zie(s) =27 5T (5) 7 D) Cels)
be the extended Dedekind zeta function (“extended by Euler factors
at infinity”).
Then Zk(s) has a meromorphic continuation to C, is analytic for
s # 0,1 and we have the following functional equation

ls
ZK<S) = ’DK|2 ZK(l — S).

Now let X/K be a variety over a number field K. Then we can
define (formally):

L(X,s) =[] Lp(X,s)
p

where again the product is taken over all prime ideals p of O and
Ly(X, s) contains information of X mod p (and is defined via X mod
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p). L(X,s) is a well-defined function for Re(s) > 0. One likes to have
both meromorphic continuation and a functional equation.

For example, let X be a curve of genus g.

If g = 0 then X is P! or a conic. Then L(X,s) is a product of
Dedekind zeta functions.

If g =1 then X is an elliptic curve and results exist only for K = Q
or K totally real.

Let E/Q be an elliptic curve, i.e. a smooth, projective geometrically
connected curve with a distinguished Q-rational point O. Alternatively,
E is given by a hypersurface

Y2Z = X3*+aXZ?+ 073
in ]P’(é with O = [0, 1, 0].
The L-series of F is defined as follows:
L(E,s) =[] Ly(E.s)"
p prime

where the Euler-factor L,(E, s) is given as follows:

Let p be a prime for which £ has good reduction, let £, = E mod p
and a, :=1+p— #E,(F,). Then L,(E,s) :=1—a,p~* + p' 2.

It is a fact that L(E, s) is analytic for Re(s) > 3.
Theorem 1. L(E,s) has an analytic continuation to C. Let Z(E,s) =
(2m)=°T'(s)L(E,s). Then Z(E,s) has an analytic continuation to C
and there is a functional equation

Z(E,2—s)=eNs ' Z(E,s)

where Ng is the conductor of E (one has p|Ng < E has bad reduction
at p) and e = +1.

Let H = {z € C|Im(z) > 0} be the upper half plane and N > 1. Let
To(N)={(“") € SLy(Z),c =0 mod N}. I'y(N) then acts on H via

a b az+0b

z2=—.

c d cz+d
Fo(N)\H =: Yy(V)(C) is a (noncompact) Riemann surface.
Let H* = HUQU {oo} = HUPg. T'o(N) acts on H* via

a b I +b
c d Ceor+d
Lo(N)\H* =: Xo(N)(C) is a compact Riemann surface. The elements

of Py and their images in Xo(N)(C) are called cusps.

There exists a smooth projective geometrically connected curve Xo(N)/Q
such that Xo(N)(C) = I'o(N)\H* (which is a model over Q).

Definition 0.0.1. Let E/Q be an elliptic curve. E is called modular if
thereis an N € N (more precisely N = Ng) and a non-trivial morphism
Xo(N) — FE of curves over Q.
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The Shimura-Taniyama conjecture, which is now a theorem, is given
as follows:

Theorem 2. (Wiles, Taylor-Wiles, Breuil-Conrad, Diamond-Taylor)
Let E/Q be an elliptic curve. Then E is modular.

The goal of this course will be to provide a proof of Theorem 1 for
(modular, hence all) elliptic curves over Q.
A proof of Theorem 1 goes along the following lines; using modular
forms.
A function f : H — C is called a modular form of level N and weight
2 if:
(i) f is holomorphic on H;
(i) £((“)2) = (cz+d)*f(z) for all (*}) € Ty(N);
(iii) f(z) is “holomorphic in cusps”.

The latter statement means for example at the cusp co that f has a
o

g-expansion f(z) =Y anq" for ¢ = exp(2miz).
The function f is called a cusp form if ayg = 0. Cusp forms of weight
2 correspond uniquely to holomorphic differential forms on X,(N)(C).
Now if F is a (modular) elliptic curve, then there exists a unique
differential form on E (corresponding to 7*w where 7 : Xo(N) — E)
and thus a unique cusp form f =3 a,q¢"

The FEichler-Shimura Theorem now states:

L(E,s)=L(f,s) = Zann_s.

n=1

We will prove a functional equation for L(f, s).
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1. ELLIPTIC CURVES

1.1. Elliptic curves over C. A complex number w is called a period
of the meromorphic function f, if for all z € C

flz+w) = £(2).

It is easy to see that the periods form a subgroup of the additional
group C. Using the identity theorem from complex function theory
it is shown that the group of periods of a non-constant meromorphic
function is a discrete subgroup in C. A discrete subgroup 2 C C of
rank 2 is called a lattice. A meromorphic function f is called elliptic
function with respect of €2, if €2 is contained in the group of its periods.
For such €2, there exists two R-linear independent elements w;, wo such
that Q = {njw; + nawy : ny,ny € Z}. In the following let Q be a fixed
lattice of periods. Then K (2) = {f : f is elliptic with respect to Q}
is a field. If f € K(Q), then f' € K(Q). It follows from the maximum
principle that any holomorphic elliptic function is constant.

Proposition 1.1.1. Let f be an elliptic function, ay,...,ax the poles
of f in the parallelogram P = {tyw; + tawy : 0 < tq,19 < 1}, Then
k

Z res,, f = 0.

v=1

Proof. We first assume that no a, lies in 0P. Then we apply the residue
theorem and use that

f(§)d¢ =0.
oP
If some a, lie in 0P we move the parallelogram P into a parallelogram
P’ such that no a, lies in 0P’ and apply the same argument. U

Corollary 1.1.2. If an elliptic function f has at most a simple pole
in P (P as in Proposition 1.1.1). Then f is constant.

Corollary 1.1.3. Any non-constant elliptic function attains any value
in C=CU{oo} in P with the same multiplicity.
Proposition 1.1.4. The function
1 1 1
-5+ 2 (o)
wel
w#0

1s an elliptic function. It is called Weierstrass o function.

Proof. We first show that the series is locally uniformly convergent.
Let |z] < R. For almost all w € €2, |w| > 2R. For those w we have

1 1| |2]|2w — 2| R - 3|w| 1

(z —w)? fwPle — w7 wPlw/4 T fwl

w?
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One then shows >, 1/w|* < co. This proof is left to the reader.

In order to show that g is elliptic function we consider the derivation

O (2) = =237, 40 =y~ For ¢ we have

(z—w)
O (z +w) = ¢'(2)
for all w € €. Let wg € Q be fixed. Then
d
3 Pz +wo) = p(2)) = /(= +wo) — ¢'(2) = 0.

Hence o(z + wy) — p(z) = ¢. Choose wy such that wy/2 ¢ €, let
z = —wy/2. Then p(wy/2) — p(—wy/2) = c. As p is an even function,
¢ = 0, Proposition 1.1.4 follows. O

Using that for w # 0.
ISR S
(z—w)2  w? = wott
for |z] < |w|, one then derives the Laurent-expansion of g,

1 - 2v —1
p(Z) = ; + Zlc%z , where cg, = (QU + 1) % w2v 2’
= w0

Then
1 362

p(z)3:g+?—l—304+---,
2
o' (2) :—;+2622+4C423+"',

2 4 8C2

I JR—
@(2) —;—?—16C4+

Consider the elliptic function
f(2) = ¢'(2)* — 4p(2)® + 20c29(2) + 28¢4.

In the parallelogram P the only possible pole of f is the zero point. But
lim, .o f(2) = 0. So defining f(0) = 0 we get a holomorphic elliptic
function on P, hence f = 0. We have shown the next Proposition.

Proposition 1.1.5. The @ function satisfies the differential equation
as follows;

0'(2) = 4p(2)* — g20(2) — 9

92:6OZ$, 93:1402%.

we) we)
w#0 w#0

where
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The zeros of @' within P are the points
_w Wyt wa _ Wwe
01—2,/92——2 >P3—2-

Let p(py) = €, (v =1,2,3). Then the e, are pairwise different and we
can write

©'(2)° = 4p(2) — e1)(p(2) — e2)(p(2) — e3).
Hence the e, are the zeros of the polynomial
4X° — 92X — g3

whose discriminant A = g3 — 27¢g2 must be nonzero. Then we state
without proofs;

Proposition 1.1.6.

(i) Any elliptic function is a rational function in p and ¢'.
(i) K(Q2) 2 C(s)[t]/(t? — 458> + gos + g3).

Proposition 1.1.7. (Addition-Theorem) Let z1,z, € C\Q such that
©(z1) # p(z2). Then
1

P21+ 22) = —p(21) — p(22) + (

: (1) — @'(22)> .

p(21) — p(22)

Let p; = o(2;), ) = ¢'(2), j = 1,2 and p3 = p(21 + 22), py =
¢ (21 + 22). Then

py=ap;+b(j=1,2), —py=aps+D
= % and b € C is defined such that the elliptic func-
tion f(z) = ¢'(2) — ap(z) — b vanishes in 2y, 2 and —z; — z5. We
see that the points (p1, p}), (p2, pb), (p3, p3) lie on a complex line in C?

(assuming p; # ps). Consider the map
. C\Q — C?
2 (p(2), 9(2)
Then the image of ® is an affine curve of degree 3. We put
E = {(u,v) € C*: v* = 4u* — gou — g3},

then ®(z) € F follows from the differential equation of the p-function.
We have ®(z;) = $(z2) if and only if 2z — 2o € Q. We also define
the map ® in the lattice points by considering the complex projective
plane P%2 = {p = [20 : 21 : 2] : 20, 21, 22 € C, [20, 21, 22] # [0,0, 0]} with
homogeneous coordinates z;. We identify C? with its image in P% via
the embedding (u,v) — [1,u,v]. Then C? is the complement of the
projective line {p € P%, 29(p) = 0}. Under this identification E is the
set of points with zo(p) # 0 whose homogeneous coordinates satisfy the
homogeneous cubic equation

where a

* 2 3 2 3
(*) 2025 = 427 — 922521 — G372 -
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This equation is also satisfied if zg = 0,21 = 0,29 = 1 and this is
the only solution, if zp = 0. Then the set E C PZ of points whose
coordinates satisfy (*) is called projective cubic (in Weierstrass normal
form). It contains the affine curve E and the point py = [0 : 0 : 1].
The map ® : C\Q2 — F has a unique continuous extension to C — F
by defining ®(w) = py for w € Q. In a neighbourhood of w, ®(z) is
described by

O(2) = [(z —w)’: (z —w)’p(2) : (2 — w)’¢/ ()]
where the homogeneous coordinates of ®(z) appear as holomorphic
functions at z. As
CI)(Zl) = (I)(ZQ) = 21— 25 €,

® induces a bijection of the factor group

C/Q-=FE
which is a homeomorphism. Via ® we transform the group law from
C/Q to E:
If P,Q € E. Then

P-Q=2(@(P)+27'(Q)

defines an abelian group structure on E with zero element P.

1.2. Elliptic curves over general fields. Let k be a perfect field.

Definition 1.2.1. £ = (F,Op) is called an elliptic curve, if FE is a
non-singular, proper, geometrically connected curve of genus 1 over k
and Op a k-rational point on E.

Lemma 1.2.2. Let C' be a non-singular (i.e. smooth) hypersurface of
degree d in P%. Then the genus g(C) of C is given as follows

g(C):(d—1)2(d—2)'

Proof. Let Jo = L(—C) be the ideal sheaf of C. Then we have an exact
sequence
0—Jc—00p— 00— 0

where O¢ = i,(O¢), with i : C — P? being a closed immersion. Then
C ~ dH, where H is a hyperplane in P? and thus Jo = L(—dH) =
Op2(—d).
For the computation of g = dim H'(C, O¢) we use
HY(P? 0(n)) = 0 for all n,
H*(P? O(n)) = H°(P? 0(-3—n))".
Hence we have an exact sequence

0 — HY(C,00) — HO(P2,0(d — 3))* — HO(P?,0(—3))
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where the last entry is zero. Therefore we have

d—1)(d—2
g = dim H°(P*,0(d —3)) = dim k[Xo, X1, XoJaeg=d-3 = %

g

It follows that if C' C P? is a hypersurface of degree 3 and P € C'(k),
then (C, P) is an elliptic curve.

1.2.3. Riemann Roch for curves. (Reminder)

Let X/k be a smooth, proper and geometrically connected curve
and ¢ = g(X). Let D = >, n; P, be a (Weil-)divisor and deg D =
> ni[k(P;) : k]. Let L(D) be the line bundle defined by {f : (f)+D >
0} and (D) = dim H°(X, L(D)).

Let K be a canonical divisor, which is equivalent to saying that
L(K) = Qx/i. Then Riemann-Roch says:

(D) =degD+1—g+I(K — D)

for all divisors D. Moreover, I(K) = g, deg K = 2g — 2.
In particular, if X = FE is an elliptic curve, then K ~ 0; hence
I(D) = deg(D) + I(—D). Moreover, if deg D > 0, then (D) = deg(D).

Proposition 1.2.4. Let E/k be an elliptic curve. Then there is a
smooth plane curve C of degree 3, a rational point Oc € C, so that
(E,Og) is isomorphic to (C, O¢).

C is given by an equation in P} of the form

ZY? 4+ XY Z + a3V Z? = XP + a3 X*Z + ay X Z° + a6 Z°
and one can choose O¢c = [0, 1,0].

Proof. We have I(mOg) = m for all m > 1; hence for all © > 2 there
exists f; € k(E)* with (f;)ee = iOg and fo,..., f,, are a basis of
[(E,L(m)) for all m > 2.

Let 2,y € k(E)* such that (7)s = 20g, (¥)e = 30g. Then fy = 22,
fs = xy, fo = 2 or y* and thus

y2 + a1xy 4+ azy = a0x3 + a2x2 + aux

with ap 7£ 0.

We may assume ag = 1 (otherwise replace z by agx).

Let F = y?z+ayzyz +asyz? — 2° — apa?z — ayx2% — ag2®. Let C C P?
given by FF = 0. Let ¢ = (x,y) : E—0p — C, givingriseto ¢ : E — C,
where ¢(Og) =1[0,1,0] € {z = 0}.

It remains to show that ¢ is an isomorphism.

As a reminder, morphisms £ — P} correspond uniquely to line bun-
dles £ on E together with global sections s, ..., s, of L, which generate
L (i.e. for all p € E, there exists an ¢ such that s; ¢ m,L,). L and
50, .., 8y define ¢ : £ — P} as follows:
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Let E = U, E;, PY = U, U; where E; ={p€ E:s; ¢ m,L } Then
¢ : E; — U; corresponds to Spec k [%, e ;—”} — T'(E;, Op, ), o 2

In our example, ¢ : E — P2 correspond to L(30g),1,z,y.
Let D be a divisor on E, P € Ey. We then have

0 — I'(E,L(D-P)) — I'(E,L(D)) — L(D)y/m, — 0.
As deg D > 2, there exists s € ['(E, L(D)), s ¢ mp,L(D)|,.
If n=degD >3, sg,...,5,-1 is a basis of V. =T'(E,L(D)) and ¢ :
E— IP’Z_1 is the corresponding morphism, then ¢ is a closed immersion.

Proof: the property is stable under base change, so let k = k.
It remains to show that

(i) V separates points: for all P,Q € E(k), with P # Q, there
exists a s € V such that s € mpLp, s ¢ mpLg,

(ii) V separates tangent vectors: for all P € E(k), there exists an
s € V such that s € m,L,\m>L,,.

Both properties follow from Riemann-Roch:
(i) D(E,L(D - P-Q)) S I(E,L(D - P));
(ii) I(E,L(D —2P)) C T'(E,L(D — P)).
Also, ¢ : E — H C P2, corresponding to L = L(30g) is a closed
immersion. Suppose H is not irreducible and reduced. Then
F=YZ+uXYZ+ - =F F

with F}, F5 homogeneous. And thus we have ¢ : F =, Hy, a hy-
persurface, corresponding to Fy and g(H;) = ¢g(F) = 1, which is a
contradiction. U
Remark. If char(k) # 2, 3, then we can show (by a linear transformation
P? — P?) that (F,Og) = (C,0) where C is given by an equation of the
form
Z2Y? =X+ aXZ* + b2°,
this is called the Weierstrass form of E.

Then one can easily show that C' is non-singular if and only if
disc(X? + aX +b) := —16(4a® + 27b%) # 0.

1.2.5. Let S be a scheme. A S-group scheme G — S is a group object
in Sch/S, i.e. one has a quadruple

(Gim:GxGE— G,inv: G — G,e: S — G)
satisfying
e Associativity:

GXxGxG=Gx (GxG) 1xm

—(GxG)x G ~GxG
GxG = G
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commutes.
e Existence of inverse:

invxid

GxG—GxG

S

G S G
commutes.
e One element:
G=G xS idxe
9 GxdG
id

eXid\L \ ‘/m
GxG—- G

commutes.

Examples 1.2.6.
a. Gy, = Gy 5 = Spec Z[T, T Xgpec 2. S-
G, represents the functor
(X — 8)— T(X,0x)".
Proof:
Homg (X, G,,) = Homgpe z(X, Spec Z[T, T7Y) =
Hom(Z[T, T7'],T(X,0x)) = (X, 0x)*.
b. p, = SxgSpec (Z[T]/(T™ —1)). Proof: Homg (X, p,) = {z €
['(X,0x)* 2™ =1}.
c. Let A be an abelian group, then Ag =[]
scheme.

If X — Sisan S-scheme with X = U;c; X its decomposition
into connected components, then

Homg (X, H S) = HHom(XZ-, H S) = HA.

acA acA i€l

aca O 18 an S-group

Ag is called the constant group scheme associated to A.

Definitions 1.2.7.

a. An abelian variety A/k is a geometrically connected, proper,
integral k-group scheme.

b. Let S be a base scheme. An S-group scheme 7 : A — S is
called an abelian scheme if 7 is proper, smooth, with geomet-
rically connected fibers.

Remark. One can show that any abelian variety is smooth and projec-
tive, and that the group law is commutative.
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Theorem 1.2.8. Let E be an elliptic curve. Then E 1is an abelian
variety with 1-section Op € E(k). Conversely, any abelian variety of
dimension 1 is an elliptic curve.

1.3. Isogenies.

1.3.1. Morphism of curves.
Let f : X — Y be a non-trivial morphism of (smooth, projective)
curves over k. Then
(i) f is finite and flat.
(ii) f maps the generic point of Y to the generic point of X.
(iii) f.Ox is a locally free Oy-module of rank n, where n = [k(X) :
k(Y)] =: deg f is the degree of f.
(iv) f induces a homomorpism f* : Pic(Y) — Pic(X) and we have
deg f*L = deg(f)deg L.
(v) Forally € Y: f~'y = Spec k(y) Xy X is a finite k(y)-scheme
of dimension n.
(vi) Define f, : DivX — DivY by f.(>"_ miP) = >, ni[k(P) :
k(f(P))]f(P;). Thendeg f.D = deg D and f,divx(g) = divy Nyx)/kv)(9)-
This induces f, : Pic’(X) — Pic’(Y), Pic(X) — Pic(Y).
One has f, o f* = deg(f).
(vii) Let f: X =Y, g,h: Y — Z be finite with Z/k separated. If
go f=ho f, then g = h.

Definition 1.3.2. Let Ej, Es/k be elliptic curves. A morphism f :
Ey — B, with f(Op,) = Op, is called an isogeny.

Lemma 1.3.3. An isogeny f : Ey — Fy is a morphism of group
schemes.

Let Ey, E5 be elliptic curves. Then

Homy(Ey, E2) = {f:E; — E,, f morphism with f(Og,) = Opg,}
= {f isogeny} U {0}
= {Homomorphisms of group schemes E; — Fs}.

Homy (E, Es) is an abelian group: f + g = ug, o (f X g) x A.
End(F) = Homy(E, E) is an associative ring with 1 = idg and,
because of (vii), without zero-divisors. The map

[]:Z — End(FE)
n +—— [n]=1+---41(n times)
is a ring homomorphism.
Lemma 1.3.4. [ |: Z — End(FE) is a monomorphism.
Let f: E1 — E5 be an isogeny and 7' a smooth k-scheme. Then
f*:Pic’((E»), T) — Pic°((EBy)r, T)
L — L
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is well-defined, hence induces a map

f*:Hom( , E5) — Hom( , E}).
By the Yoneda lemma there exists a unique f : Fy — FE; which induces
! For T € Sy, /k, let ¢p : Hom(T, E;) = Pic((E;)r/T). Then ¢r(f(P)) =
f(or(P)).
Definition 1.3.5. f : Fy — Ej is called the dual isogeny of f.

Proposition 1.3.6.
a. If f+ By — E5 and g : Ey — Ej are isogenies. Then ;a\f =
f ° g' —_— A
b. Let f,g: Ex — E be isogenies. Then f+g=f+g.
c. If f: By — B is an isogeny with deg f =m, then fo f = |m]

and f o f=1[m].
d.f f,[ | = [m] for allm € Z.
e. deg[m] = m? for all m € Z\{0}.

f. For an isogeny f we have deg f = deg f

Definition 1.3.7. Let X,Y be noetherian schemes. A morphism f :
X — Y of finite type is called étale if f is flat and the sheaf of relative
differentials vanishes, that is {2x,y = 0.

Let X and Y be of finite type over k. Then f : X — Y is étale if an
only if f is smooth of relative dimension 0.

Remark 1.3.8.
a. Open immersions are étale.
b. A composition of étale morphisms is étale.
c. A base change of étale morphisms is étale.

Remark 1.3.9. Let k£ be a field, A a finite k-algebra. Then the fol-
lowing are equivalent.
(i) A is an étale k-algebra.
(ii) A= Hz 1 ki where each k; is a separable field extension of k.
(iil) A®yk=[]_, k.
(iv) #Spec (A ®; k) = dimy, A.

For the proof, see Milne, I, paragraph 3.

Definition 1.3.10. Let X,Y be smooth, proper, geometrically con-
nected curves over k and f : X — Y a non-trivial (hence finite and
flat) morphism. Then f is called separable if k(X)/k(Y) is a separable
field extension (which is equivalent to f being geometrically étale).

Proposition 1.3.11. Let f : Fy — E5 be an isogeny of elliptic curves.
Then the following are equivalent

a. f is separable.
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b. f is étale.
c. (df)o:ToE1 — ToEs is a bijection.

Proof. For b. = a., use

Spec k(E,) —— F;

l I

Spec k(FEy) —— Es.

This diagram is cartesian; hence k(F;) is an étale k(FE,)-algebra and
thus k(F4)/k(E,) is separable.

For a. = b., we know that U = {z € Ei : (Qp,/g,), = 0} is open
in Fy, the generic point  is in U, as Spec k(E;) — Spec k(FE») is étale
U # 0.

Ey — Ej is étale <— QEI/EZ =0
< QEl/EZ ®k]%:0

< FEy, Xk — Ey X k is étale.

Without loss of generality, we may assume k = k.

Let © € Fy(k), a € U(k). Then U, :==U —a+ 2 = T,_,(U) is an
open neighbourhood of x in E;. Then

Ta—z

‘J‘.’L‘fﬂ.
f|uz ux—>uf‘—u>E2 f(—>>E2

is étale and thus f is étale.
For b. = c., there is an exact sequence

Qe — Qg e — Qgyp, — 0.
We have
Qp k@ EOg,) = (ThEy)”
and
S Qe i @ k(Op,) = (ToEs)"

Now b. implies (df)* : (ToEs)* — (ToEy)* is surjective and thus df is
injective and thus df is bijective.

For c. = a., we know Qp, /g, ® k(Op,) = 0 and thus (Qg, /5,)0,, =0
and thus U = {z € E1 : (Qg,/p,). = 0} is open and non-empty. So
n € U and therefore k(E;)/k(E,) is étale and also separable. O

Lemma 1.3.12. Let f,g: Fy — FEs be isogenies. Then we have
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1.4. Elliptic curves over finite fields. Let k = F, where ¢ = p".
Let X be an F,-scheme.

The Frobenius, Fry : X — X is then given by id : sp(X) — sp(X)
on the underlying topological spaces and x +— 2% on Ox — Ox.

If f: X — Y is an F,-morphism, then

X >, ox

l |7
y 2y
commutes.
If X = Spec A is affine, then Fry is given by A — A, a +— af.
Let E/F, be an elliptic curve. Then Fry : E — E is an isogeny
because

Spec IF, JFr=id, Spec [F,

o | | o

Fr
FE E FE
commutes.

1.4.1. Let X/F, be a smooth projective curve. Then deg(Frx) = q¢.

Proof. Let f : X — P! e a finite morphism. The commutativity of
the diagram
X X, x

T

Fr]pl

Pl —— P!
implies deg(Fryx) = deg(Frp:1). Hence we may assume X = P!. Then
deg(Frp1) = [k(t) : k(t?)] = q. O
Lemma 1.4.2. Let E/F, be an elliptic curve. Then deg(l — Frg) =
#E(F,).

Proof. Frg is not separable, as k(E) — k(F), z — x? is the induced
map on 1 = Spec k(E). Thus, from 1.3.11 it follows that dFrg : TE —
TE is the zero map and thus (1.3.12) d(1 — Frg) =id: TE — TFE and
therefore (1.3.11) 1 — Frg is separable and thus étale.

Let (1—Frg)~'(0) = ker(1—Frg) be defined by the cartesian diagram

ker(l1 — Frg) —— E

J{ J/I—FI‘E
O = Spec F, %, E

Ker(1 — Frg) is a closed subgroup scheme of E.
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We have ker(1 — Frg)(F,) = E(F,) because let Spec F, —' E be an
F,-rational point. Then

Spec I, B

Spec IF, — S E
commutes. So i factors Spec F, — ker(l1 — Frg) — E. As 1 — Frg
is ¢tale, ker(1 — Frg) = [[;_, Spec k; with k;/IF, finite, separable with
dimp, (®]_k;) = deg(1 — Frg). But 1 = Frg on ker(1 —Frg), so Fr =1
on Spec k; — Spec k; and thus 27 = z for all € k;, so that k; = F,.
Therefore ker(1 — Frg) = [[;_, Spec F, and therefore deg(1 — Frg) =
r = #ker(1 — Frg)(F,) = #(E(F,)). O
Definition 1.4.3. Let X/, be a smooth, projective, geometrically
connected variety of dimension d. The Zeta-function of X is defined

as follows
Zx(t) = J] (@ = t*=)~t e Z[[t)).
z€Xo
Here X, is the set of closed points on X and for =z € X, deg(x) =
[k(z) : Fyl.
One can easily show that [[ ¢y, (1 — tdeg@) =1 converges absolutely
in Z[[t]]. The connection to the usual zeta-function,

(x(s) = H (1—=N(x)*)"',  Re(s) > 1

rx€Xo

with N(x) = #k(x) is as follows:
Cx(s) = Zx(q™).
Theorem 1.4.4. (Weil-Conjectures)
a. Zx(t) € Q(t). Moreover
Py(t) - Payg_1(t)
Zx(t) =
0= B AD - Puld)

where P;(t) are polynomials in Z[[t]]. We have Py(t) = 1 —t,
Poy(t) =1 — ¢.
b. There is a functional equation

1 d \ X
Ty (ﬁ) = Zx(t) - (i <q2t> )
where x = (A-A) is the self-intersection number of the diagonal

ACX x X.
c. Riemann hypothesis: if

P(t) =1 —ait), ayeC

J
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then |a;| = qz for alli,j.

Proof. For X = FE an elliptic curve, this has been proven by Hasse.
For X a curve or an abelian variety, the proof has been given by Weil
himself. For arbitrary X, the theorem has been proven by Deligne. We
will prove a) and c¢) in case of an elliptic curve.

Let E/F, be an elliptic curve. Then

Zpt) = JJ@-—tt=tn

z€Ey

_ H (Z tndegr)

z€FEy n>0

_ Z tdeg D

D>0
Divisor in E

Let D > 0 be a divisor with deg D =n > 0. Then
#{D' : D' effective divisor on F with D' ~ D} = ql;D)_—_ll
with [(D) = dim H°(E, L(D)), because
(H(E,L(D)\{0})/F; — {D':D'>0,D"~ D}
fo— (H+D

is a bijection. By Riemann-Roch we have dim H(E,L(D)) = deg D =
n.
Hence we obtain

Zp(t) = 1+Z >y

n=1 a€Pic(E) D>0
dega=n Deg€a

- 1+Zt"q 1#{a€Plc( ) :dega =n}

= 1+ (il t”;f) #Pic’(E

t- 4E(F,)
Moo -a

 l—at+ qt?

T Toni-q)

with a =14 ¢ — #E(F,).
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Let Lp(t) := 1 — at + qt*, so Lg(t) = (1 — at)(1 — Bt) for some
a, € C. As aff = q, we need to show — in order to prove c) for E —
that |a| = |5).

Wehavea:%—i-\/%— ,ﬁz%—\/%—q. So we need to show:

4q > a?.
Put A = EIld[pq(E) X7 Q

The involution f +— f and the degree map extend to maps

1 A— A, awa,
deg . A—>Q20.

Wehavecﬁ):i)d,m:mforallmE@QA, dega = aa = aa,
a+b=a+b.
We show that deg : A — Qs is a positive definite quadratic form.

Bla,b) = glala+b) — (@) ~ a(b)

is bilinear, because
1 — ~ 1 ~
B(a,b) = 5((@ +b)(a+b) —ada — bb) = §(ab + ba)

is bilinear.
The Cauchy-Schwartz inequality implies

B(a, b)| < /deg(a) deg(b)

for all a,b € A. For a = Frg, b = 1 we obtain, using 1.4.1
|1+ ¢ — deg(1 — Frg)|* < 4q.

Lemma 1.4.2 yields |1 + ¢ — #E(F,)|* < 4q; hence a? < 4q.
U

Corollary 1.4.5. Let E/F, be an elliptic curve. Then |#E(F,) — (¢+
D <2,/4.

Let G/S be a group scheme, i : H < G a closed immersion. Then H
is called a subgroup scheme if Homg (T, H) is a subgroup of Homg(7T, G)
for all T'.

For example, let f : G; — G5 be a homomorphism of group schemes
over S. Then ker(f) = G; Xg, S is a subgroup scheme of G.

Let m > 1 and f = [m] : E — E. Then ker[m] is denoted by E[m],
the subgroup scheme of m-torsion points of E.

Proposition 1.4.6. Let E/k be an elliptic curve.
a. Let m € Z, m # 0, ged(m, char(k)) = 1. Then E[m](k) =
Z/m x Z/m. B
b. Let p = char(k) > 0. Then E[p"|(k) = Z/p"Z or 0.
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Definition 1.4.7. Let E/k be an elliptic curve over k, with char(k) =
p > 0. E is called ordinary (resp. supersingular) if Elp|(k) = Z/pZ

(resp. E[p](k) = 0).

Let E be an elliptic curve and [ a prime that does not divide char(k).

Definition 1.4.8. T)(E) = limFE[l"](k)(& Z; ® Z,) is called the [-adic
Tate-module of E. Ti(E) is a continuous Gy, = Gal(k/k)-module.

Proposition 1.4.9. Let Ey, E, be elliptic curves. The natural map
Homy(E1, Es) ® Z; — Hom(TEy, T)Es) is injective.

Corollary 1.4.10. Homg(E1, Es) is a free Z-module of rank less than
or equal to 4.

1.4.11. Let E/k be an elliptic curve. Then End(F) is isomorphic to
one of the following rings
(i) Z;
(ii) order in an imaginary quadratic field;
(iii) order in an indefinite quaternion algebra.

1.5. Elliptic curves over p-adic fields. Let K/Q, be a finite exten-
sion with ring of integers R and residue field k. Let v be the discrete
valuation on R and m# € R be a uniformizing element. We assume
char(k) # 2,3. Let E/k be an elliptic curve with affine Weierstrass
equation y? = 2% + Az + B and discriminant A = —16 (4A3 + 27B3).
The variable change x = u?2’, y = vy, for some u € K* preserves
this form. Then

utA = A, B = B, WA = A.

As FE is nonsingular, we have A # 0. By a change of variables we
can achieve A, B € R. Choose coordinates such that v(A) is minimal.

Reduce the equation modulo 7 to obtain a curve E:
E:y2:x3+gx+§

which is possibly singular (if v(A) > 0). Let P € E(K). Choose
homogeneous coordinates P = [xg, Yo, 20| such that all zg,v0,20 € R
and at least one coordinate lies in R*. Then P = [Zo, 4o, 20] € E(k).
The reduction map fits into a commutative diagram

P"(K) —— P"(k)
E E
B(K) —— E(k).

Definition 1.5.1. Let E be an elliptic curve and E be the reduced
curve for a minimal Weierstrass equation. Then
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(i) £ has good reduction, if E is non-singular, hence an elliptic
curve over k. This is equivalent to the condition v(A) = 0, so
A€ R”.

(ii) E has multiplicative reduction if v(A) > 0 and A, B € R*.

(iii) £ has additive reduction if v(A) > 0, v(B) > 0.

In case (ii) E has a singularity which is a node, in case (i) £ has a
singularity which is a cusp. In case (ii), (iii) are saying that F has bad
reduction.

Theorem 1.5.2. Let F' be a number field with ring of integers Op and
E/F be an elliptic curve. Let Fy, be the completion at some prime p.
Then E/F,, the elliptic curve obtained by base change @pF,, has good
reduction for almost all primes p C Op.

2. MODULAR CURVES AND MODULAR FORMS
2.1. Riemann surfaces.

Definition 2.1.1. Let M be a 2-dimensional manifold (i.e. M is Haus-
dorff and every x € M has an open neighbourhood homeomorphic to
R?). A complex structure on M is a family of pairs {(U;, ¢;),7 € I}
called charts with the following properties:
(i) ¢; : U; — V; is a homeomorphism where U; C M and V; C C
are both open; and
(11) for all pairs 1 and j ij e} ¢Z—1 . ¢2(uz N u]) — gb](uz N u]) is
holomorphic and the union of all U;’s is M.
A Riemann surface is a 2-dimensional manifold together with a com-
plex structure.

Let M be a Riemann surface and U C M an open subset. A function
f U — Cis called holomorphic (resp. meromorphic) if f o gbi_l :
¢ (U NU;) — C is holomorphic (resp. meromorphic) for all charts

Example 2.1.2. Let X/C be a smooth projective curve. Then X (C)
is a compact Riemann manifold.

Proof. The topology on X (C) is induced via the embedding X (C) —
PR.

For the complex structure, let x € X(C), A™ C P" affine with z € A™.
Then XNA™ = V(p) where p C C[T},...,T,] is a prime ideal. Without
loss of generality we may assume x = 0.

Ocn o is a regular local ring with maximal ideal m. There are genera-
tors Fy,..., F,_1,z; € mwith Fy, ..., F,_; generators of pOcn o. Again
without loss of generality we may assume ¢ = n.

Then there exist generators g, . .., g, of p of the form ¢; = Z;:ll h]ij F;
with h;;, k € C[Th,...,T,] and k(0) # 0.
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Hence in a small neighbourhood U of 0 in C™ we have that z € X if
and only if Fj(z) =0fori=1,...,n— 1.

As (Fy, Fs, ..., F,_1,x,) are generators of m we have that
OF, ox
det £(0), =—=(0 0
¢ (8%( )7 8%( )) 1<i<n—1 #
1<j<n
and so

oF;
det <8IJ (O)) 1<i<n—1 # 0.

15521

The implicit function theorem yields that there exist an ¢ > 0
and holomorphic functions g;(2),. .., gn—1(2) for |z| < € such that for
|z1], .-+, |2n] < € we have Fi(z1,...,2,) =0fori=1,...,n—1if and

only if z; = g;(z,) fori=1,... ,n— 1.
Now let D = {(z1,...,2,) € C": |z;| < €}. Then
(XNA")C)ND — C
(21,.--,2n) +— Znp

is a chart (choose € small enough such that k(z) # 0 on D). O

Holomorphic differential forms. Let M be a Riemann surface,
p € M. Then by Oy, = O, we denote the germs of holomorphic
functions in p and Oj; the structure sheaf of holomorphic functions
on M. T,(M) = Derg,(0,,C) is the C-vector space of derivations
D:0,—C.
Let U C M be open. A differential form w on M is an assignment
pelUr—w, e (T,(M))".

For f € I'(U, O) the differential form df on U is defined by (df),(D) =
D(f,) for all D € Der(0,,C). A differential form w on U is called
holomorphic, if it is locally of the form fdg with f and g holomorphic.
The sheaf of holomorphic differential forms is denoted €2,,.

Definition 2.1.3. The genus of M is defined by dim¢ I'(M, /) and
is denoted by g.

Proposition 2.1.4. The assignment X — X(C) defines an equiva-
lence of categories

{smooth projective curves over C} — {compact Riemann surfaces} .
We have
H'(X,Qx) = H'(X(C),Qx().
Proposition 2.1.5. Let M be a compact Riemann manifold. Then, in
singular cohomology, we have
Hl

sing

(M, Z) = 7%
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where g is the genus of M.
Proof. We have H. (M,7Z) = H'(M,Z), the latter denoting sheaf

sing
cohomology. We know that H(M,Z) is torsion-free and finitely gen-
erated. It suffices to show that H'(M,C) = H'(M,Z) ® C is a 2g-
dimensional C-vector space.

Consider the complex of sheaves
0—C— Oy 0o

It is exact, because locally any holomorphic form w is of the form
w=dF = fdz.
We have an exact sequence

0 — C — H°(M,0y) = C — H°(M, Q)
- HI(M7(C> - Hl(Mv OM) - Hl(MvﬁM)
— H*(M,C) — 0.

By Riemann-Roch we have dim H'(M, ;) = 1. Hence we get a short
exact sequence

0 — H'(M,Qy) — H'(M,C) — H'(M,Oy) =
H(M, Q)" — 0

and thus dim H'(M,C) = dim H°(M, Q) + dim H°(M, Qu)* = 2g.
U

Let V' be a finite dimensional complex space. A subgroup I' C V
is called a lattice if T is discrete and V/T" is compact. Equivalently,
I'=7Zv, & --- @ Zvy, for a R-basis (vy,...v9,) of V.

Let now I' be a lattice in C. Then Er = C/I' is a compact Rie-
mann surface in a canonical way. We have g(Er) = 1 because for the
fundamental group one has m(Er) = I' and m(Er) = Hi(Er,Z) =
HY(Er,Z) = Hom(T',Z) = Z & Z. This implies g(Er) = 1 by proposi-
tion 2.1.5.

Alternatively, Er = R/Z x R/Z = S' x S* (as topological spaces)
and thus H'(Er,Z) = H'(S' x S',Z) = 7°.

It follows that Er together with 0 mod I' is an elliptic curve; the
addition law is the canonical one.

The following questions arise: is any elliptic curve of the form Er?
What are the morphism Fr — Ep/?

Let Lattices be the category of lattices I' in C with Hom(I'y, T'y)
defined as those homeomorphisms f : I'y — I's for which there exists
an « € C such that f(v) = ay for all v € T'y.

Proposition 2.1.6. We have an equivalence of categories

compact Riemann surfaces of

Lattices — { genus 1 with zero-point

} =, {elliptic curves/C} .
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Proof. Let M be a compact Riemann surface with g(M) = 1 with
0 € M. We need to show that there exists a I' such that Er = M.
There exists an exact sequence of sheaves
O—)Z—)OMGXP%W) O* 0
which yields the exact sequence
HOM,0,) "5 pgoov,0i,)  — HY(M,Z)

(=C) (=C) =T
— HYM,0y) — Pic(M) &8 HAM,Z) —0

(=C) (= H' (M, 03)) (=2)

and thus M = Pic’(M) = C/T.
It remains to show that Hom(FEr,, Er,) = Hom(I'y, T's).
Let f be a homomorphism and g be a holomorphic function such
that the square
c 2> C

Lo

Er, —— Er,
commutes.

For all v € I'; the function z — g(z + ) — g(2) is discrete; hence
it is constant. So for all z,y € I'y we have that ¢'(z + ) = ¢'(z) and
thus ¢'(2) is holomorphic on C/T'; hence it is also constant. Thus g is
of the form az + 3 for some ( € I'y and without loss of generality we
may assume that g(z) = az. d

2.2. Modular curves as Riemann surfaces. Let H = {z € C :
Im(z) > 0} be the complex upper half plane and H* = HU P =
HUQU {oco}.

The elements of ]P)(%;D C H* are called cusps. H* is equipped with an
action of SLy(Z): for a = (ab) € SLy(Z),z € H, az is defined to be

b +b
et while if 2 = (2 : y) € Pg, then az = -

We set j(a,z) = cz+d for a = (Cd), z € H. We then have

and

Im(az) = Im ((az +b)(cz + d)) _ ‘Im(z) .
ez +df? (e, 2)[?
Let I' € SLy(Z) be a fixed subgroup of finite index. For z € H* let
[, ={y €T :~z =z}, the stabilizer group of z.
Remark 2.2.1.
a. SLy(Z) acts transitively on Pg;
b. T =TN{(}' ) :mez}.

0 +£1
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Proof.

a. Let r = ¢ € Q, with a,b € Z and gcd(a,b) = 1. Then there

exist ¢,d € Z such that ad — bc = 1 and thus r = (‘;2) 00.

b. Let @ = (*%) € T'o. Then (a:c) = (1:0) and thus ¢ = 0, so
that ad = 1 and therefore a = d = £1.

0

We define X (I') = I'\H* and Y(I') = I'\H. The images of Q U oo
under the projection H* — X (I') are called cusps. We want to show
that X (I') is a compact Riemann surface.

Definition 2.2.2. We define a topology on H* as follows:

On H we choose the natural topology induced by C. For a cusp
s € Q, thesets {s}U{z e H: |z —(s+ir)| <r} forr € R} form a
basis of neighbourhoods of s.

For the cusp s = oo, we define {oo}U{z € H : Im(2) > r} for r € R
as a basis of neighbourhoods.

We remark that a € I' maps the basis of neighbourhoods of the cusp
to the basis of neighbourhoods of the cusp a(s). Consequently, I' acts
continuously on H*.

Lemma 2.2.3.

a. Let A, B C H be compact subsets. Then {y €T : yAN B # 0}
18 finite;

b. let A C H be compact and s € H* a cusp. Then there exists a
neighbourhood U of s such that {y € T : UN~A # (0} is finite.

Proof.

a. Without loss of generality, we may assume A = B. There
exist r, R > 0 such that » < Im(z) < R for all z € A. Let
v= (") e withyAn A # 0.

Then for z € YANA we have r < Im(vz) = UI(T(ZZ))'Q < U(WRZ)‘Q.

Thus [5(7,2)[* < £ and thus ¢*Im(2)? < [cz + d|* < £ so that

Ar? < g and therefore ¢ < \/% so that ¢ and z are bounded

and thus d is bounded too.
AsyANA # () implies 7' ANA # @ and using v~ = (£ "),

—C a

it follows that a is bounded too. Since both az and cz + d are
bounded, b is also bounded.

b. Without loss of generality, we may assume that s = co. There
exist 7, R > 0 such that r < Im(z) < R for all z € A. For

v = (") € N'I'x (so ¢ # 0) we have Im(yz) = ;252‘)2 <

Im(z) 1 1
(cIm(2))2 < Tm(2) < o forall z € A

For v € T,z € A we have Im(vz) = Im(z) < R, so yAN
{z|Im(2) > max(%, R)} = 0 for all v € T', hence b. follows.

S
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g

We endow the quotient topology on X (I') with respect to the pro-
jection m : H* — X(T').

Proposition 2.2.4. X(I') is a Hausdorff space.

Proof. As 7 is open, we need to show the following claim: for z,y € H*
with yx # y for all v € T" there are neighbourhoods U,V of x resp. y
with U NV = for all v € T.

Case 1: z,y € H. There exists a compact neighbourhood U of x with
y & yU for all v € T', because {y € I' : yU' N {y} # 0} is finite for any
compact neighbourhood U’ of x; we take U such that U C U"\ U,er vy.

Let V' be a compact neighbourhood of y. Then V'\ U,er yU is
a neighbourhood of y. Choose V to be a neighbourhood of y with
V CV'\ Uyer7U.

Case 2: x e H, y € IP’}@. This is clear by the second part of Lemma
2.2.3.

Case 3: = and y are both cusps. Without loss of generality we may
assume y = oco. Put L ={z:Im(2) =1} and K = {z : Im(2) = 1,0 <
Re(z) < h} asection of L, such that U,ep, vK = L.

By the second part of Lemma 2.2.3, there exists a neighbourhood
V of y = oo with VN~vK = () and a neighbourhood U of x with
UNyK =0forallyel. SoyUNL =0 andyWNL=0forall yeT;
hence U N~V = () for all v € T O

Proposition 2.2.5. X(I') is compact.
We first show the following

Lemma 2.2.6. Let F = {z € H: |2| > 1,—1 < Re(z) < 3}. Then
F — SLy(Z)\H is surjective. More precisely, F is a fundamental do-

main, i.e. Uyesr,zyyF =H and vF°NF° =0 for all vy €T, v # 1.

Proof. For z € H, {Im(vyz) : v € I'} is bounded from above (2.2.3, b),
hence attains its maximum. Let, without loss of generality, z be such
that Im(2) = max{Im(vyz) : v € I'}. After translation, we may assume
that —% < Re(z) < %

Assume z ¢ F, so that |z| < 1. For S = (_01(1)) € SLy(Z) we have

Im(Sz) = Im(—1) = ITZ‘(QZ) > Im(z). This contradicts the choice of z;
hence z € J.

It is an easy exercise to show that the subgroup of SLy(Z) generated
by S and T = (};) coincides with SLy(Z). From this the Lemma
follows. O
Proof (of 2.2.5). Consider the case I' = SLy(Z). Let {U,}icr be an
open covering of X (T'). Assume iy € I such that 7=!(U;,) is a neigh-
bourhood of co. Then {7 (U;)}ier, is an open covering of the com-
pact set F\m~1(U;,), hence it has a finite sub-covering. The same then
holds for {U;} and thus X (I") is compact for I' = SLy(7Z).
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If ' € SLy(Z) is a subgroup of finite index, then SLy(Z) = Ul_ e,
so Ul_,a; (FU{oo}) C H* is compact and

U105 (F U {oo}) — H" — X(T)
is surjective; hence X (I") is compact. O

The complex structure on I'\H*.

Lemma 2.2.7.

a. Let Py be a cusp. Then there exists a unique natural number
h > 0 such that for p € SLy(Z) with p(Py) = oo we have

_ 1 r\"
Fpo—pl{:i:(o 1) :mEZ}p.

b. Let P € H. Then U'p is a finite cyclic group.

Proof.
a. Using 2.2.1 we have I'p, = p~* (pI'p™ ') p and, for some h € N,

h >0, (pI'p ) = {i (éi‘)m tm € Z}. It remains to show

that h does not depend on the choice of p.

If pPy = 00 = p' Py, then p' = vp with v = £+ ((1)71‘) for some

n € Z, 50 (pPTp e = (007 oo = (plp ey =
(PTp™ oo

b. by 2.2.3 a, I'p is finite. Let v € SLy(R) such that ai = P.

Then o 'T'pa is a finite subgroup of {3 € SLy(R) : fi =i} =

{(n2 %) 2 e R} 2 {£€C: & =1}. Soa™'Tais cyclic

and then so is I'p.

g

Lemma 2.2.8. Let P € H*. Then there exists a neighbourhood U of
P with the following properties:

(i) if yUNU # 0 then v € I'p;

(ii) yU = U for all v € T'p.

Proof. First case: let P be a cusp; without loss of generality we may
assume P = oco. We choose U = {z € H : Im(z) > 1}. For v € I'\I',

we have, writing v = (CCLZ) with ¢ # 0:

Im(z) Im(2) 1
O =G R = P = ) <
for z€ U, soyUNU = (. For v € I'y, we have yU = U.

Second case: P € H. There exists a compact neighbourhood U’ of
P with T := {~ : 7U' N U’ # 0} is finite. Then there exists an Uy C
U\ Uyernr, 7U’, an open neighbourhood of P such that vUy N Uy # ()
implies v € I'p.

Finally define U := Nyer,7Uo. U
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For P € H define the order ep of P as follows: ep = 1#(I'p). (Note
that {£1} C 'p.) P is called an elliptic point if ep > 1.

Let A\: H — D = {z € C: |z|] < 1} be a biholomorphic map with
A(P) = 0 (for example A\(z) = 2=%). Let v € I'p be a generator of I'p.
Let y =AoyoA™!:D — D. Then 7 is an isomorphism with 7(0) = 0
and 7°F = id, so ¥(z) = &z for all z € D, where ¢ is a primitive ep-th
root of unity (Schwarz’ Lemma).

Lemma 2.2.9. The map D — D, z +— 2P induces a homeomorphism
D/(7) — D.

Let U be as in lemma 2.2.8. Then the map
Ap: Tp\U 5 (\D — D CC
C I'p\H* z o 2t
is a homeomorphism onto an open subset of C.
Lemma 2.2.10. The map
Uw={z€H:Im(z) >1}Ucc — C

exp(%iz) if ze H
= { Oh if z =00

induces a homeomorphism

A {i((l) }f) :mez}\Uw—w/gc

onto an open disc V' around 0.

For the cusp P we obtain, by using 2.2.7, a homeomorphism

Ap: Tp\pH(Us) L{:i:((l) }f) :mEZ}\UOO—ﬂ/QC.

C I'\H*
The Ap, for P € H* defined as above, define the complex structure
on X(I).

2.3. Moduli properties of modular curves. Let N > 1 be a natu-
ral number. We define

To(N) = {(i Z)GSLQ(Z):CEO modN},
Xo(N) = X(Io(N)) = Lo(N)\H",
Yo(N) = Y(Iy(N)) = To(N)\H.

In the following we discuss the modular curves Xo(N) (resp. Yo(N))
as moduli spaces of elliptic curves with Level structure.
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Proposition 2.3.1. There is a canonical bijection of the set ELL(N)(C)
of isomorphism classes of pairs (E,C'), where E as an elliptic curve
over C and C' a cyclic subgroup of E(C) of order N, and the set Yo(N) :

o ELLY(N)(C) = Yo(N).

Proof. Case 1: Let N = 1. For z € H we consider the lattice A, =
Z @ Zz and define E, = C/A. For z, 7 € H we have
E.2E, < ~vyz=2 for some vy € SLy(Z).

“<«< 7: Let E, = E,. Then there exists A € C* : AA,, = A,. So
Ay = az + b, \ = cz +d with a,b,c,d € Z. We have moreover \~1z =
adZ + VXt =2 +d, as ATA, = A, hence vz = 2 with v =
a b
c d )
We have R-linear maps

f:C—C, ur— Au,

g:C—C, ur— \"lu.

The matrix of f with respect to basis (1, z2),(1,2') is z 2 ), the

!/ /
matrix of g with respect to basis (1, 2'), (1, 2) is CCZ, Z, ,
a v a b 10 a b
hence(c, d’)(c d):(O 1>,sodet<c d):jzl.Then
az+b dety-Imz
0<Imz' =1 = = dety = 1.
I lcz + d|? e
“:>”:Deﬁne)\:cz+dfor'y:(z Z).Then
N =XMz=az+bA=cz+d = M. SA..

d —=b

—C a

For y~! = (

—er +a= (v 72) = §(L,2)j(7.2) = AT = ML S AL

) we have y7'2' = 2, s0 (—cz’ + a)A, € A, and

hence we have E, & E,,.
Let A be an arbitrary lattice on C and wq, ws a R-basis without loss of
generality Im(w;/wy) > 0. Define z := w;/wy € H. Then A = wyA,,
i.e. C/A = E,. Hence the map

SLy(Z)\H — Isomorphism classes of elliptic curves

z+— F,
is a bijection.
1
Case 2: N > 1. Define C, = NZ+ 2Z/A\, € E,, then (E,,C,) &
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a b

(E,,C,) <= there exists v = ( e d ) € SLy(Z) such that vz = 2/

and for A = ¢z 4+ d we have

1 1

Consider the diagram

v
7 —— A,y e — 2 ey 1,

(2] |7
7 —— A, e+ 2,9 1.

Then (*) implies;
( (g ; ) es = mey modulo N for some m € Z < ¢ =0 modulo N.

So (E,,C.) = (E.,C,) is equivalent that there exists 7 € I'o(N) such
that vz = 2/. It remains to show; for all (E,C) there exists an isomor-
phism z : (E,C) = (E.,C,). Choosing 2’ € H such that £, = E,
then (E,C) = (E.,C.) with C" = A'/A,.. Choose v € SLy(Z)
with ' o U"Y(NA') = NeyZ + esZ. Then (E,C) = (E,,C,) with
z =712 O

Let S be a noetherian scheme, ¥ : Sch/S — Sets, a contravari-
ant functor from the category Sch/S of noetherian S-schemes to the
category of sets.

Definition 2.3.2. A (noetherian) S-scheme M is called fine moduli
space for &, if M represents the functor F, i.e. if there is an isomor-
phism of functor

F — Homgen/s( , M).
Let N > 1. We consider the following functor
ELLG(N) : Sch/Spec Z[] —  Sets
Isomorphism classes of pairs (E, C)

S — where E/S is an elliptic curve and
C' a cyclic subgroup of order N

Remark. Note that “E > S is an elliptic curve” means that E/S is
on abelian scheme of relative dimension 1. (This implies that all fibers
are elliptic curves). A cyclic subgroup C' on F of order N is a closed
subgroup scheme of F, such that 7 : ' — F — S is finite, flat and
m.0O¢ a locally free Og-module of rank N. Moreover if Spec 2 — S is
a geometric point, then C(Q) = Z/NZ.

Lemma 2.3.3. ELLG(N) does not have a fine moduli space.
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Proof. Assume it does have a fine moduli space that we denote by M.
Let &'/k be an extension of fields with (char(k), N) = 1 or char(k) = 0.
Then M (k) — M(K') is injective, hence ELL(N)(k) — ELL(N)(K)
is injective. Let (E,C) € ELLy(N)(k). Choose k with k*/(k*)* #
1, (char(k),2N) = 1. Then {£id} = Z/2Z < Aut(E,C). Let ¢ :
Gy — {%id} € Aut(E,C) a nontrivial homomorphism (ex. because
HY (K, po) =2 k% /(k*)?). Let k' = kX, so

¢ : G — Gal(k'/k) 5 {#id}.
The pair (E x k', C X k') with the Gal(k'/k)-action ¢(0) X 0,0 €
Gal(k’/k) comes via base change k' /k from a pair (£, C") € ELLy(N)(k).
We have (E',C") xx k' = (E,C) xi k' but (E,C) 2 (E',C").
This finishes the proof of the Lemma. U

Definition 2.3.4. A S-scheme M is called coarse moduli space for
F :Sch/S — Sets if there exists a morphism
¢ : FF— Hom( , M)
such that
a. If Spec k — S is a geometric point, then ¢ induces an isomor-
phism B B
F(k) — Hom(Spec k, M),
b. ¢ is universal with respect to morphisms F — Hom( , M), i.e.
HOIIl(F, HOIII( s N)) = HOHlSch/S(M, N)
for any S-scheme N.

If a coarse moduli space exists, then it is uniquely determined by b.
(up to isomorphism).
Proposition 2.3.5. ELLG(N) has a coarse moduli space denoted by
Yo(N) — Spec Z[+]. Yo(N) is smooth and quasi-projective over Z[+]
of relative dimension 1.

Finally we briefly discuss the moduli problem for X,(N).

Definition 2.3.6. A generalized elliptic curve over S is a stable curve
m: C — S of genus 1, i.e. 7 is proper flat, all geometric fibers C;
for 5 € S are reduced, connected and 1-dimensional and satisfy the
following conditions;

a. Cz has only ordinary double points as singularities.
b. dimk(g)Hl(@g, Oeg) =1
together with a morphism
7 xgC— C
( where C™¢ is the open subscheme of € where 7 is smooth) such that,

(i) the restriction of “+ " to €™ induces a commutative group
scheme structure on C"8/S,
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(i) “+7: €™ x C — C defines an action of €™ on C,
(iii) If s is a geometric point of S then C; is either smooth over
space k(5) (hence an elliptic curve) or of type a.

In the latter case, we require that C; ® acts by rotation on the graph
['(Cs). Let ELLG(N)(S) be isomorphism classes of pairs (€, C') where
C is a generalized elliptic curve over S, C' a subgroup scheme of €™
with Cs; =2 Z/NZ for all 5 — s such that C5 meets all components of
Cs.

Theorem 2.3.7. ELL,(N) has a coarse moduli space denoted by Xo(N).
Xo(N) is smooth projective geometrically connected of relative dimen-
sion 1 over Spec Z[~]. The morphism ELL(N) — ELLy(N) induces
an open immersion

Yo(N) — Xo(N).

Proposition 2.3.5 and Theorem 2.3.7 imply that there exists smooth
curve Yy(NV) over Q and Xo(N) defined over Q such that

Yo(N)(C) = To(N)\H — T'o(N)\H" = Xo(N)(C).

3. MODULAR FORMS
3.1. Let k > O be aninteger, « € GL3 (R) := {a = (") € GLy(R) : deta > 0}.
Consider a function f : H — C and define
fla(2) == j(a, 2) % det(a)" f(az)

where az = gjj:s We have flog = (fla)ls-

Definition 3.1.1. Let I' € SLy(Z) with —1 € I' be a subgroup of finite
index and k£ > 0. A meromorphic function f : H — C is called modular
function for T' of weight 2k if the following properties hold

(i) fly = fforall v € T, ie. f(2£2) = (cz + d)** f(2) for all
(*!) el z € H;
(ii) f is meromorphic in the cusps.

This second condition means the following: let s be a cusp and
p € SLy(Z) with p(s) = oco. Let h > 1 be as in Lemma 2.2.6 a. So
p (5 imeZ}p=T,. Let Uy = {z : Im(z) > 1}. Then

Flos(z+0) = (Floeny) () = flom )

so fl,-1(2) = f(gn) where f is meromorphic on D\{0} and ¢, =
exp (%z), thus f(gn) = Do . ang} in a Laurent-expansion. We
then have

f meromorphic in s <= a, =0 for all n <0,

f holomorphic in s <= a, =0 forall n <0,

and ords(f) = min{n : a,, # 0}.
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Definition 3.1.2. A modular function f is called modular form (for I'
of weight 2k) if f is holomorphic in the cusps. f is called a cusp form
if ords(f) > 0 for all cusps s.

Define My, (I') tobe {f : HH — C : f a modular form for I" of weight 2k}
and Sox(I") to be {f : H — C: f a cusp form for I' of weight 2k}.

Proposition 3.1.3 (Eisenstein series). Let k be an integer which is at
least 2 and let z € H. The function

(m,n)#(0,0)

is a nonzero modular form of weight 2k for SLy(7Z).

Proof. Convergence and holomorphy on H follow from the following
well-known

Lemma 3.1.4. Let Q be a lattice in C. The series

L::Z !

T
0te I

1s absolutely convergent for t > 2.

To show that Gax(z) is finite at oo, we will show that Go(2) ap-
proaches an explicit finite limit as z — i0o. The terms of Gox(2) are
of the form 1/(mz + n)?; those which have m # 0 will contribute 0
to the sum, while those which have m = 0 will each contribute 1/n%".
Therefore we have

lim Gop(z) = % — 20 (2k),

2—100
0#n€Z

which is finite (and nonzero).

To show that Gao(z) is modular for SLy(Z), it will suffice to show
that it transforms correctly under the matrices S and T'; it can be seen
that Gor(2) = Gar(z + 1) by substituting z + 1 for z; we have already
shown that Gax(2) is uniformly and absolutely convergent so we can
rearrange the terms as necessary. We now show that G (z) transforms
correctly under S by rearranging;

2k
—ok z
cGop(—1 = _—
z Qk( /Z) m%;z (—m/z—i—n)%
(m,n)#(0,0)
= Y = Gale)
o= (—=m +nz)

(m,n)#(0,0)
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as required (again, we are using the fact that Gax(z) is uniformly and
absolutely convergent on H), and so therefore Ggx(z) is a modular form
of weight 2k, which is what we wanted to prove. O

We see from the proof that G (z) does not vanish at 0o, so we have
an example of a nonzero form of nonzero weight which is not a cusp
form. We will now exhibit the Fourier expansion of Gax(2).

Proposition 3.1.5. Let k& > 2 be an integer, and let z € H. The
modular form Gox(2) has Fourier expansion

2(2mi) % &

Gor(z) = 2¢(2k) + k= 1)1 2

092k—1 (n)qn7

where we define og,_1(n) to be the function

02k1 E m?

0<m|n

There is a formula for the cotangent function;

1
7rcot 7rz :_+Z<z+m z—m)

and we also have the identity

9
meot(mz) = WZ?SEZ;) =i — 1 Z_Wq =im — 27 ; q",

where ¢ := e*™*. By equating these identities, we see that

1 «— 1 1 = .
(3.1.6) ;+Z<Z+m+2_m)_w—2mnz:0q.

m=1

We differentiate both sides of (3.1.6) 2k — 1 times with respect to z to
obtain the formula

1 27m oh1 4
(3.1.7) > CES %_1 |Zn ,

meZ

which is valid for &k > 2. We note that the left hand side of this looks
very like a component of Gy, whereas the right hand side looks much
like a component of the Fourier expansion given in the theorem.

We will now use (3.1.7) to write Gox(2) as a Fourier expansion. Be-
cause k > 2, we have absolute convergence of our series, so the following
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rearrangements are valid;

1
Culd)= D, Gy

m,nel
(m,n)7#(0,0)
O;énEZ m=1n=—

2k O oo

(—2mi) 2 lmn
:2§(2k3)+2(2k_1|22nk
(—

m=1n=1

273 )2k &

2C(2k) + 2(% D ;

Uqu(n)q%

A standard notation for Eisenstein series is to write

Gy
Pl = 5 ony

which is called the normalized Eisenstein series of weight 2k (of level
1). For these modular forms, the following series identity holds;

Bay, £~
where the By are the Bernoulli numbers, which are defined by
t tm
et —1 oml
m=0

We will now construct our first example of a cusp form. We define
the A function and the Ramanujan 7 function in the following;

_ B2 - Es(2)* ¢ n
A(z) = 1798 = ;T(n)q :

A(z) is an example of a nonzero cusp form (of weight 12). The Fourier
coefficients of A(z) are all integers, and they are also multiplicative;
that is, 7(mn) = 7(m)7(n) if (m,n) = 1. They also satisfy recurrence;
if p is a prime, then
T(p") = T(p)T(p") = p'r(p"?), forn > 2.
Proposition 3.1.8. There is a canonical isomorphism
Sy(T) — HO(X(T), Q")
f — wy.
Proof. We only define the construction of the differential form wy as-

sociated to f € Sy(T).
We know that f(z)dz is a holomorphic differential form on H. For

v=(4}) €T we have f(y2)dvz = f(v2)(cz +2) %z = f(2)dz.
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For z € H, wy is defined as follows: there exists an open neigh-
bourhood as in Lemma 2.2.7 such that we have

U, —>>VCD T

rA\U,—2-v'cp v
where e = e, = 1#I'(z). Then A\.(f(2)dz) = F(w)dw is a
differential form on V' and ordy(F") = ord,(f).

Let € be a primitive e-th root of unity. Let Rw = w on V.
Then A'o R\ is a generator of T, so F(w)dw = F(éw)d(éw) =
¢ F(§w)dw and thus there exists a holomorphic function Fy with
F(w)=w- F( ) (because wF' (w) = wF (éw) is invariant un-
der T.). So 1L F(w)d(w®) = L (wF(w)dw) = F(w)dw and
thus wy|y,, which is defined as (g.)™* (21 F.(w)dw) is mero-
morphic on U, (so 7' (wy) = f(2)dz).

Now e - ordg(Fy) = ord(F) + 1, so ordg(Fy) > 0 and thus is
11 F (w)dw holomorphic on V” and thus is also wy|y, holomor-
phic.

. To define wy on a cusp, we may assume without loss of gener-

ality that s = co. Then Uy, = {7 : Im(7) > 1}. Consider the
map

{(j;l fl) EZ}\U =, D\{0}

z — q=exp(2miz).

Then f(z)dz = f(q)(§2)~*dg = sz / (@)dg and we define wy|y

=f
9t <2mq ) then wy is holomorphic because ord( f(q) =
—1+ ordy ( f)>0

0

Now let f(z) € Sox(T') and f(z) = > 7 a,q¢" the g-expansion of

f(2).

Lemma 3.1.9. a, = O(n¥), so ! ! is bounded for n > 1.

Proof (only for T' = SLy(Z)). Because f(z) = q (3,51 ang""") we have

£(2)] = Olgl) = O(e~*) where y = Im(z).
(L) = . Then 002) = o = 52l
z).
As ¢(2) = O(e7?™y*) = O(1), we have that ¢ is bounded on F =
{zeC:|z] >1,—3 < Re(z) < 1}, s0 ¢ is bounded, so |f(z)| < My~*
for all z € HL.

Now let Y > 0 be fixed, ¢ = exp(2mi)(z +iy) where 0 < x < 1. Then

On = 27m

fo x +iy)g "dx 50 |a,| < My Fe 2" for all y.

w(oo)
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For y = L we have |a,| < Mn"*. This completes the proof for I' =

3.2. Hecke operators. Let G be a group, with I" and I subgroups.
We say that I and I” are commensurable (notation I' ~ I') if I NI
has finite index in both I" and I". )

Let I be a subgroup of G, ' = {a € G: T ~ala'}. Then T C G
is a subgroup and I' D T,

Lemma 3.2.1. a. Let o € T'. Then
M\(Tal') = (I'Na 'Ta)\I'
and
(Tal)/T 2T/(T'Nala™t).
b. If #(I'\I'al') = #(T'al'/T"), then T'al'/T and T\I'al' have a

common system of representatives.

Proof. a. I — TI'\I'al', v — Tay induces I' N a 'Ta\l' —
\Cal.
b. Exercise.

U

Let I' C G be a subgroup, A C ' a monoid with I' C A. Let
R[T", A] be the free Z-module with basis [['al'], « € A. Let o, 8 € A,

Tl = JTa;, TAT = JT;. Then
( J

[Tal|[TAT] =) " mpyr[TAT]
with
mryr = #{(i,5)|[TaiB; =T}
#{(,J)[Pa; ;1" =TI'}
# (D\I'T)
One shows: mp,r is independent from the choice of representatives
(7% ﬁ]a -

Proposition 3.2.2. R[I', Al is an associative ring with unit [I']. R(I", A)
15 called a Hecke algebra.

Lemma 3.2.3. Let I') A be as above and we assume that there is a
map t : A — A with
(i) (af) = (B)i() and t(t(a)) = « for all o, B € A;
(i) «(I') =T
(iii) ¢(F'al') = Tal’, i.e. ['i(a)l’ = Tal.
Then, for each a € A, T\T'al' and Tal'/T" have a common system of
representatives and R[[, A] is commutative.
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Proof. Tal' = U;l'ay;, soTal’ = T'e(a)l = Uje(ay)T, and thus #(I\T'al) =
#(Ial’/T"). This implies the first claim, by 3.2.1.
Now we show that R[I', A] is commutative.

Consider
Fol'= JTo; = JaiT,
rpr = Urs: =Jar,

S0
Tol' = | JTu(),
rer = | Jrus),
[CalLBr] = Y m, [T,
where

my = #{(,7): La;0; =T~I'} /#(IT\I'T)
= #{(,) : Tu(Bi)e(ai)T" = To(y)T'} /#(T\IST)
= coefficient of [[7T] in [T'ST][Cal].

Let n > 1. Now we consider the Hecke algebra for T'o(V).

Lemma 3.2.4. Let o = (“") € My(Z) with deta # 0. Then o €
To(N).

Proof. Without loss of generality we may assume detaw = m > 1. It
suffices to consider the case N = 1.
Let

cor={(2 eswen (1 £)=(32) i)

For v € T'(m) we have ma~'ya = ma~'a = (7' ?) mod m (where
ma™! € SLy(Z)) and thus a 'ya € SLy(Z) such that SLy(Z) N

P

aSLy(Z)a™ D T'(m) and therefore a € SLy(Z). O
Let

AO(N):{<CCL Z)GSLQ(Z):CEO modN,gcd(a,N):l,det<z Z)>0}.

Ao(N) is a monoid with To(N) € Ag(N) € To(N) and R(To(N), Ag(N)) =
R(N) is the Hecke algebra.

Lemma 3.2.5.
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(i) Let o € Ag(N). Then there is a diagonal matriz o € Ag(N)
such that

(ii) For all primes | we have

[y(N) (é ?) Fo(N) = To(N) ((1) ?) Ty(N).

(iii) For all primes 11 N and p|N we have

ro) g ) ro<N>=lL:Jllro<N> (6 1)U (5 9).

Ty(N) ((1) 2) Ty(N) = QPO(N) G 2) .

Proof. The proof of Lemma 3.2.5 is straight forward. We only show
part (i). Let a = (‘ig) € A¢(N) where (a, N) = 1 and ¢ = K'N for
some k' € Z. We construct a matrix § = ( k)](vi
triangular and 3 € ['o(N), as follows;

Case 1: If (a,k’'N) = 1 then we define z = a, k = —k’ and choose
X,Y € Z such that aX + k'NY = 1. Thus we define § = (k)fvf)
Case 2 : Let ¢ = (a,k’). Since (a,N) = 1, we have (¢,N) = 1.
Define k = —k'/e, z = a/e. Then (z,kN) = 1. Find X,Y € Z with
zX — kNY =1 and define ¢ = (X Y).

kN =z

Then fa = (a/ bl) € Ao(N). We put § = (a/,d’). Then

0 d
a b\ _ (1 0)(d ¥V
0 a) \0ods)\o 2/

Now let (“l b/> € Ao(N) with (¢/,d’) = 1. Find X,Y € Z with o’ X +

) such that o is upper

0d

dY = —b'. Then

1Y\ [« ¥\ (1 X\ _ (d 0
0 1 0 d)\o 1) \0 d)/°
This finishes the proof of (i). d

Proposition 3.2.6. R(N) is commutative and for any o € Ag(N),
Fo(N)\Lo(N)al'g(N) and I'o(N)al'g(N)/To(N) have a common sys-
tem of representatives.

Proof. Let a = (ZZ) € Ao(N) and () := <§b§> .Then ¢ : Ag(N) —
Ao(N) satisfies (i) to (iii) in 3.2.3 (the third property follows from
Lemma 3.2.5). O
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Proposition 3.2.7. S3(I'g(N)) is in a natural way a R(N)-right-module.
For oo € Ag(N) and f € So(Lo(N)) we define the action f|ar) by

flirar = Zf

€7

where

ol = U T

Proof. For v € T'y(N) we have (3, flai) |y = Doi flasy- As a7y is a
system of representatives of I'\I'aI', we have that ), f|,, is [-invariant.

Write flo, = >0y agf)q,’}i. Then 3 fla, = > 2,51 angj, for some h.
But >’ fla, is I'o(N)-invariant and thus A = 1. O

Let [ be a prime with [ { N. Define
10
fie Y IuWar] = 6 () 1o

det a=l
[Co(N)aTg(N)]

For a prime p with p|N, let

U= Y are)] =0 () Talv)
[Po(M)aTo(N)]

By 3.2.5 (c) we have

o0 (29) v = Yo (42 U (19)

and for p|N:

n>1 7=0 n>1
e n

= 0+l (- n
2 a(nl) + la l> q

flo, = > alnp)q".

f is called an eigenform iff f is an eigenvector for Tj, U, for all [ { N
and p|N. If f is an eigenform, then U,f = X(p)f, Ti.f = A1) f.
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Lemma 3.2.8. Let f(z) € So(I'o(N)) be an eigenform. Then the L-
series associated to f, L(f,s) = > -, a,n"° has a representation as
Euler-product:

L(f,s)=a [J (1= Ap~*) [T (1 =A@ +17%).

pIN UN

n=1

f is called normalized if a; = 1. In this case, we have \(p) = ay,

)\(l) = Q.
Proof.

(L= A+ 1) L(fys) = Y (an — Az + lal%) n=°

n=1
S

= E anpn”®.

n=1
ged(n,l)=1

g

In general, S3(I'9(IV)) does not have a basis consisting of eigenforms.
To study the existence of eigenforms in S»(I'o(N)) we introduce a her-
mitian inner product on Sy (I'g(V)).

= % defines a measure on H (where z = = + iy). We show that
v is GL§ (R)-invariant:
Let a = (“%) € GLF (R).

Then
d(az)  det(a)
dz  j(a, 2)?
d(az)  det(a)
dz j(a, 2)?
1 11 _
?dx ANdy = Eédz Adz,
and
i1 _ i 1 |j(a,2)]* (daz daz
——d d = — dzAdz
2 Im(az)? (az) A daz 2Im(z)? (deta)? \ fz dz endz
1 _
= 51m(z)2d2/\dz'

Let F := {z € H: |z| > 1,—1 < Re(z) < 3} be a fundamental
domain for SLy(Z)\H. If T'o(N)a; = SLy(Z), then D = U;o,F is a
fundamental domain for I'g(N)\H.

Definition 3.2.9. Let f,g € S2(I'o(/V)). Then

(f.g) = /f o(=)dudy
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is called the Peterson scalar product on Se(I'g(V)).

Indeed, we have

(1) I{f, )] < oo.
It suffices to show [ |f(z) g(2)|dzdy < oo. As |f(2)], |lg(2)| =
O(e™?™) we have

/ 1£(2)g(2)|dzdy < C’/ e~ ™dy < oo.

2

(ii) Independence from the choice of representatives a;.
For a € GL3 (R), we have

/ f(z g(z)dedy = Lf(az)MIm(az)Qy_gdxdy
= [ (e Gy,

Proposition 3.2.10. The Hecke operators T}, for 11 N, are Hermitian
with respect to (,). Hence So(T'o(N)) has a basis of eigenforms of Tj,
[tN.

Proof. If I' C SLy(Z) has finite index, then define

with D a fundamental domain for I, f,g € Sa(I"). Define

1

L) 1] /P

(f,9) =

which is independent from I.
Choose a common system of representatives of right- and left-cosets
of To(N) (47) To(V):

To(N) (10) UFO i:LiJaiFO(N
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For o € My(Z) with det(a) # 0, put o/ = det(a) - a~!. Then o} is a
system of representatives of I'o(N)\I'o(N) () [o(IN). We have

(Tif,g) = [SLa(Z) : To(N)| (T3 f, 9)
= (Z(f amg)) [SLy(Z) : To(N)]

L [SLQ(Z) : FO(N)] . _ZU .
[SLa(Z) : To(N) N 'To(N)av] /FO(N)\H (flas) (2)g(2)v(d2)

B (7 ) o)) [

(
= 0 (o) (g ) oym) [ s GLIREs
)

o) (2)9()0(d2)

O
Definition 3.2.11.

[ f(z)or f(pz)
is called the space of old forms, denoted by Sa(T'o(NN)). Then Sy(To(N))*¥ =
(SQ(FO(]V))OM)L is called the space of new forms.

Proposition 3.2.12. Sy(I'o(N))™"Y is invariant under U,, T; for all
p|N, 11 N and has a basis of eigenforms.

Let Wy = (5 3'). For (%°) € Ag(N) we have Wy (5 50) Wy' =

N 0 cN d cN d

(_ZN ~¢). Therefore Wy is in the normalizer of T'o(N) and for f €

52(F0(N)>7 we have f‘WN € SQ<F0<N))
Definition 3.2.13. The map
WN - SQ(F()(N)) — SQ(F()(N))
[ o— f|WN
is called Atkin-Lehner involution.

Note: WyWy = (70N %) acts as identity on Sy(I'(V)); hence wy

is really an involution.

Proposition 3.2.14.

a. wy commutes with all Hecke operators for 11 N.
b. wy leaves So(I'(N))™Y invariant. More precisely: if f is a new
form then wy(f) = +f.
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Proposition 3.2.15. Let f € So(I'o(N)) and define A(f,s) := (2m)*T'(s)L(f, s).
Then A(f,s) has an analytic continuation to C. If wy(f) = £f, then
A(f,s) satisfies the functional equation A(f,2 —s) = FN*IA(f,s).

Proof. Without loss of generality, we may assume wy(f) = +f, f(z) =
Yoo L ang™ with ¢ = exp(27iz), a1 = 1, a, = O(n) (following Lemma

3.1.9). Then:
> 2mn\ [ dt
A(f, = n | —= s —
SA(f, ) Za (m) /0 et

n=1

b oo _ 27mnt dt
= E ape vVNtT—

n=1+0

as > ooy 17 |an|6_2%tt"% converges for o > 2.
For Re(s) > 2 we have

& > _ 27nt dt
A(f,s) = /0 t’ (Zane 2W> 7
n=1

()
[orr(Gm) T [o(GR)

and f(it) = O(e™*™) for ¢ > 3. Hence both integrals are uniformly
absolutely convergent on any vertical section. Thus we have

o = [ () (i)
() e () ()
- o) e e ()

and thus NSA(f 5) = q:Nl—%A(f,Q—s). We have used that f (n}ﬁ) =
f‘WN ( > (Zt)
O

One can also consider modular forms and cusp forms for the modular
group
T\ (N) = {(i 2) € SLy(Z):e=0(N),a=d= 1(N)} .

In this case we denote the spaces My (I'1(N)) and Si(I'1(V)). Fur-
thermore, given a character y of (Z/NZ)* we let My (N, x) and Si(N, x)
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be the subspaces of M (I'1(NV)) and Sk(I'1(IV)) consisting of f such that

fley = x(d)f
a b

for v = (% g) € Do(N). (Implicit in the notation x(d) is the usual
identification of characters of (Z/NZ)* with Dirichlet characters mod-
ulo N.) Another way to describe the subspaces M (N, x) and Sk (N, x)
is to say that they are the y-eigenspaces for the “diamond operator”
f — flx{d). In this approach d denotes an element of (Z/NZ)*, and
the operator (d) is defined by setting

flld) = fley

for any v € I'g(N) which reduces modulo N to a matrix with d as lower
right-hand entry. In view of the isomorphism

Lo(N)/T1(N) — (Z/NZ)*

a b
cN d
the diamond operators give a well-defined action of (Z/NZ)* on My(I';(N))

and Si(I'1(N)), and consequently we have eigenspace decompositions

M (T1(N)) = &, My(N, x)

coset of ( ) ——d mod N,

and
Sk(I'1(N)) = &,Sk(N, x)
where y runs over Dirichlet characters modulo N. Note that if y is the
trivial character then Mg (N, x) and Si(N, x) coincide with My (I'o(N))
and Sk(I'o(NNV)) respectively.
It is possible to extend Proposition 3.2.15 (analytic continuation of
L-function) for cusp forms in Si(I';(N)).

4. MODULAR ELLIPTIC CURVES
4.1.

Definition 4.1.1. Let E be an elliptic curve defined over Q. Then E
is called modular if there is a non-constant morphism

m:Xo(N)— E
of algebraic curves defined over Q, where N is the conductor of F.

We formulate equivalent conditions for the modularity of E.
As dim H°(E,Q) = 1, there is an invariant differential form w €
H°(E, Q) which is unique up to constants. Over C, we have

T'w=cf(z)dz, c€C, c#0

where f is a normalized cusp form. Let Jo(N) be the Jacobian variety
of Xo(N). For a construction of Jacobians over C, see the beginning of
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chapter 5. By the universal property of Jacobian varieties, there exists
a non-trivial morphism

Jo(N) — E
such that the diagram of morphisms

FE
commutes.

Let k& be a field, Ab%(k) be the category of abelian varieties up to
isogeny.

Ob(Ab’(k)) = Ob(Ab(k)) = abelian varieties
Hom"(A, B) = Hom (A, B) = Homy (A, B) ® Q

Lemma 4.1.2. Ab%(k) is a semisimple Q-linear abelian category. For
A € Ob(Ab’(k)), End’(A) = End(A4) ® Q is a finite-dimensional
semisimple Q-algebra.

The Hecke operators T}, [ 1 N define correspondences in X(N), resp.

Jo(N) which are compatible with the action of T; on Sa(I'g(N)), in the
sense of the following

Lemma 4.1.3. The diagram (use Proposition 3.1.8)
J(N)(C) —— S:(Lo(N))*"/Hy(Xo(N)(C). Z)

J{(TZ)* lTlV
Jo(N)(C) «—— Sy(To(N))*/Hi(Xo(N)(C),Z)

18 commutative.

Let Ty be the subalgebra of End’(Jy(N)) which is generated by
Hecke correspondences (7;).. Then Iy is a commutative semisimple
Q-algebra. Now we consider the set Sub.Jy(NN) of abelian subvarieties
of Jo(N) (which are direct summands of Jy(N) by Lemma 4.1.2). For
A € SubJy(N), let p(A) = {t € IIxy : Im(t) C A}. Then p(A) is an
ideal. Conversely, let for an ideal I C Ily,

o(I) :=1Im(I) € SubJy(N).

We have p(¢(I)) D I and ¢(p(A)) C A. If p € Spec Ily is a prime
ideal, we have p(p(p)) = p. Define A, := Jo(N)/¢(p). As p is an ideal,
the IIy-action on Jy(N) induces a homomorphism Iy — End(A,).

Proposition 4.1.4. Let E be an elliptic curve defined over Q. Then
E is modular if and only if there exists N € N (the conductor of E)
and p € Spec Iy with E = A,.
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It is obvious that the existence of an isomorphism F = A, implies
the modularity of E, using diagram (4.1.1).

Let now E be modular, E = A, for some p € Spec [Iy. Let E(p) =
y/p. As HY(E, Q) is Q-vector-space of dimension 1 and also a E(p)-
module, we have E(p) = Q. Let a : IIy — Q be the corresponding
ring homomorphism, i.e. a(7;) = T; mod p. Let w € H°(E, Q) be a
generator such that 7*w = cf(z)dz = cwy, for a normalized cusp form
f, then we have

a(l)f(z) = fITi,
i.e. f is an eigenform under all Hecke operators T; for [ { N with
eigenvalue a(l) := a(T;).

There exists a model of E over Spec Z[1/N], i.e. an elliptic curve
€ over Spec Z[1/N], with &, = E (n = Spec Q). &£ is uniquely deter-
mined. We define the L-function of F

L(E,s) = []L(BEs, 1)
UN

= [Ja—at+12)"
UN
with ¢ = 1 + 1 — $E(F)) (E; := £ x F;). We have seen in Chapter I,

that |a;| < 2v/1. Using this fact it can be shown that L(E, s) converges
absolutely and uniformly for Re(s) > 3/2.

Proposition 4.1.5. Let E be a modular elliptic curve over Q, E = A,
for p € Spec lly, and f the corresponding eigenform. Then E has a
model over Spec Z[1/N] and we have

L(E,s) = L(f,s)

up to finitely many Euler-factors. Hence L(E,s) has an analytic con-
tinuation to C and satisfies a functional equation with respect to s —
2 — s (see Theorem 1 in the introduction).

Finally we can describe modularity purely in terms of Galois repre-
sentations. To F, we can associate a canonical Galois representation on
its Tate-module T,(E) for any prime p. Let T,(E) := lim E»(Q) = Z;.
The Gal(Q/Q)-action on E(Q) induces a p-adic Galois representation

pp.i + Gal(Q/Q) — GL(T,(E)) = GLa(Zy).
It has the following properties:

e detp, p = X, (the cyclotomic character).
e p, r is unramified outside pN, i.e. for all primes [ { pN, the
inertia group I; satisfies I; C Ker(py,plaq, )-

Likewise, by the theory of Eichler and Shimura, one can associate to a
normalized newform f in S3(I'o(IV)) a Galois representation

pf . Gal(@/@) — GLQ(Of),
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where Oy is the ring of integers in a p-adic field Ky obtained by the
completion (at a prime above p) of a number field generated by the
Fourier coefficients a,, (n > 1) of f, such that for all primes [ { pN, py
is unramified at [ and satisfies the two conditions

o Trace(ps(Froby)) = a,
o det(ps(Froby)) = L.

Definition 4.1.6. A Galois representation
p: Gal(Q/Q) — GLy(Ok)

(where Ok is the ring of integers in a p-adic field K) is called modular,
if there exists a cusp form f € Sa(I'g(N)) such that

pr = p.

Proposition 4.1.7. The Galois representation p,r associated to a
modular elliptic curve E over Q is modular for all primes p.

One shows that the characteristic polynomial x, ,(Fr;) of the I-
Frobenius, acting on T,(E) ® Q,, satisfies

pryE(Frl) = det(XI — pp p(Fr))
— X2 X+l

where a; = a;(f) is the Fourier coefficient of the eigenform f associated
to E. This follows from Eichler-Shimura Theory ([2] and [3]).

Final remark. The modularity conditions given in Definition 4.1.1,
Proposition 4.1.4, Proposition 4.1.5 and Proposition 4.1.7 are all equiv-
alent.
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5. p-ADIC REGULATORS AND p-ADIC INTEGRATION THEORY
(SPECIAL LECTURE)

5.1. Review of classical Abel-Jacobi maps. Let X be a compact
Riemann surface of genus ¢g and base point 0 € X. Let x; € X,
1=1,...,N. We consider a formal linear combination

a:Zni([xi] —[0), n,eZ

which we call a zero-cycle of degree 0 on X.

A classical problem in complex function theory which was studied by
Abel is to decide when there exists a meromorphic function f € C(X)*
with div(f) = «, i.e. when « is a principal divisor.

Let Div(X) be the divisor group of X and let C1(X) be the abelian
group generated by continuous maps v : [0,1] — X.

Let ¢ : C1(X) — Div(X) be the map defined by d(y) = (1) — v(0)
and Z;(X) = Keré be the group of 1-cycles (closed paths) which has
the first homology group H;(X,Z) as a factor group. For v € C(X)
and w € H°(X, Q') the integral [ w is well-defined.

Now let v € Z1(X). As global holomophic 1-forms are closed, Stokes’
Theorem implies that fv w only depends on the homology class of v in

H,(X,Z). Hence one gets a linear, injective map
H\(X,Z) — H°(X, QY.

As H(X,Z) has rank 2g, its image defines a lattice in the g-dimensional
C-vector space H°(X,QY)*, hence the quotient H°(X,QY)*/H,(X,Z)
is a complex torus.

For a zero-cycle a of degree 0, @ = S ny([x;] — [0]) choose paths
7v; from 0 to z;. Then the image of > n; fv- in HO(X,QY)*/H\(X,7Z)
only depends on the zero-cycle a.

Let Zy(X) be the abelian group of zero-cycles of degree 0. Then the
map

0 1y*
px : Zo(X) — J(X) = HHE)(()}{ZZ))
Yoni([z] = [0) — (0 X[y w)
is well-defined.
The Theorems of Abel and Jacobi describe the properties of px.

Theorem 5.1.1.
a. (Abel) Kerpy equals the set of principal divisors, so px induces
an injection
Aog(X) = Zy(X)/principal divisors — J(X).
b. (Jacobi) px is an isomorphism.

Moreover, the quotient J(X) has the structure of an abelian variety,
called the Jacobian variety of X. It has dimension g.
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More generally, let X/C be a smooth proper variety with dim X = d
such that X (C) is a compact complex manifold. Again we can consider
the Abel-Jacobi map

HD ( X Ql)*
s Ag(X _—
px ) T )
defined in the same way, with values in the Albanese variety of X,
which is an abelian variety associated to X in a canonical way and
satisfies a universal property.

The analogue of the Abel-Jacobi theorem does not hold in general

as was noticed by Mumford.

Theorem 5.1.2. If H*(X,0x) # 0, then Kerpx is large (contains a
oo-dimensional Q-vector space).

= Alby (X)

Conjecture 5.1.3. If H*(X,0x) = 0, then px is an isomorphism.

One can also consider Abel-Jacobi maps in other codimensions. Let
Ch'(X) be the Chow group of codimension i-cycles modulo rational
equivalence. One has a cycle class map with values in Betti cohomology

clg : Ch'(X) — HE(X(C), 7).
Let Ch’(X)o = Kerclp.
In analogy to
H*1(X(C),C)
(H?-1(X(C), Z(d)) + Fil*)
one can consider the so called intermediate Jacobians
, H?*~Y(X(C),C
Jac (C) = — (X ).’ ) o

H?*=Y(X(C),Z(i)) + Fil'
which are no longer abelian varieties in general. (Note that Z(i) =
Z(27/—1)®" for i € N and Fil' denotes the Hodge-filtration.) Let
J € N be such that i + 5 = d.

By duality between cohomology and homology one has an isomor-
phism

Alb(C) =

) Fj+1H2j+1 X *
e (©) = (X(©).©)
H;11(X(C), Z)
The generalized Abel-Jacobi map
P Ch(X)y — Jack (C)

can be described via integration as follows.

Let Z be a codimension i-cycle in Ch’(X)y and I" a topological chain
with boundary Z.

Then p\(Z)(w) = Jpw for any holomorphic j + 1-form w.

In the following we describe p-adic analogues of these maps, so called
p-adic Abel-Jacobi maps which often occur as syntomic regulator maps
by using p-adic integration theory.
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5.2. Abelian varieties over p-adic fields. Let A/K be an abelian
variety over a p-adic field K with good reduction. Consider the Kummer-
sequence on K-valued points

0 — A(K) — A(K) 25 A(K) — 0.
The long exact Galois cohomology sequence induces a map
A(K) © Q, = H'(K,V,(Ag))
where V,(Ag) is the p-adic Tate-module of A (®Q,). The image of 0

is the Bloch-Kato group H (K, V,(Ag)), defined in (B-K). As A(K) is
a p-adic Lie group one has an exponential map

Lie(A(K)) =2 A(K) @ Q

on the Lie algebra Lie(A(K)) which can be canonically defined with
HY(A,0;) = Hi.(A)/Fil' where A is the dual abelian variety. This
quotient can be identified with H24~'(A)/Fil* which — by Poincaré
duality — is isomorphic to (Fil' Hlg (A))*.

The map 9 o exp : H2"1(A)/Fil* =, H}(K,V,(Ag)) is the Bloch-
Kato exponential map (B-K), denoted here by Exp and is defined for
any (de Rham) p-adic Galois-representation. Let x € A(K). Then
Exp 1(0(x))(w) for w € H°(A, Q') can be described using p-adic inte-
grals:

One has (for Log being a local inverse of Exp)

Exp~!(9(2))(w) = Log(z)(w)
= F,(v)

where F, is a Coleman integral of w satisfying F,,(0) = 0. The theory of
Coleman integrals is reviewed in the next sections. For w € H°(A4, Q)
one way to define F, is via the formula

F,(x) := Log(z)(w).

5.2.1. We will need some elementary definitions and properties in Mil-
nor K-theory.

For a field F, let Ko(F) = Z, K;(F) = F*,
KyF)=F*®z F*/{a® (1 —a),a #0,1).

The image of a®b in Ky(F') is call the Steinberg symbol and denoted
by {a,b}. The relation {a,1 —a} = 0 in Ky(F) is called Steinberg-
relation. Now let F' be a discretely valued field with valuation v and

residue field k

The map
T,: Ky(F) — Kyi(k") =Fk"
via)v av(b)
<CL,b> — (—1) () (b)m

is called the tame symbol.
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Let, for a smooth scheme Z over a Dedekind ring R, K5 be the
Zariski sheaf associated to the presheaf

o) ®0oU)*

Ky (U) = (a®(l1—a),a,1—a€OU))

Then one has the following.

Theorem 5.2.2 (Bloch-Gersten-Quillen). The complex

Ty % div
Brezo Ko (k(2)) =5 Byenk(y)” 25 @,epnZ

computes the Zariski-cohomology of the sheaf Ky. Moreover, H2 (Z, Ky) =
Ch*(Z) := coker(div).

5.3. p-adic integration on curves. Let C//Z, be smooth and proper
and U C C be an affine open such that Z := CFP\UFP is a finite set of
closed points. To U one can associate a basic wide open V' in the sense
of Coleman ((Coll), (Col2)) which coincides with the affinoid Dagger

space |Up, [g@ in the rigid analytification C' of C. Let for r < 1, D,

be the disc of radius . Let V; be the curve obtained by removing
from C discs D, in the tubes of the finitely many points e € Z. Then
V =1imV,. For e € Z let V, be the annuli end at e.

Then A(V.) = {f =>_,>_o an2, f converges for r < |z.| < 1 for some r >
0}. Here z, is a local parameter at e.

Define Ajo(Ve) = A(Ve)[log z¢] and for x € U(F,), let U, = {|z;] <
1} :]x[é% and A(Uy) = {f = >, 50 @2y, [ converges for |z,| < 1}.

With the definition dlog z. = df one sees that any 1-form is locally
integrable.

The idea of Coleman-integration is to construct a canonical subspace
Aca(V) C [Tecvm,) AUs) X [l.cs Atog(Ve) such that any Coleman 1-
form w, ie. w € Aco(V) @ QY(V) =: Qf,(V), becomes integrable
(globally), unique up to constants, i.e. one obtains an exact sequence

(5.3.1) 0— Cp — Aca(V) -5 QL (V) — 0.

We describe the first step in this construction, namely we associate
to w € QYV) a unique F, € Aco1(V) (unique map up to constants)
as follows: consider the class [w] € Hyyw(Ug,,Q,) in the Monsky-
Washnitzer cohomology which is equipped with a cannonical action of
Frobenius ®. It comes from lifting the Frobenius from U, to the affi-
noid Dagger-space |Ug, [*(GK). There exists a polynomial P € Q,[T]
with roots which are not roots of unity such that P(®*)w = dn for
some 7 € A(V).

Then Coleman shows that there is a unique Fi, € [],cym,) A(Us) ¥
[1.c; Aog(Ve) (unique up to constants) such that P(®*)F, = 7, hence
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one obtains an exact sequence

0— C, — Aca1(V) - Ql(v) — 0

Fw:/w — w.

The subspace Acq(V) together with a map [ : w — F, from
Aca(V) @av) QYV) to Aca(V) is uniquely determined by the fol-
lowing properties:

1. [ is primitive for the differentials d : dF}, = w.
2. Frobenius-equivariance:

foa-e (f2)

3. If g € A(V), then Fy, = g + C,.
Lemma 5.3.2. For g € A(V) we have Fyiogy = logg.

Then define Floggw = Fryp g0

Let now f,g € Q,(C). Assume f,g € O(U)*/Z,. Assume div(f) N
div(g) # 0. Suppose ord,,(g) # 0 for any Q,-rational point zy. Choose
Flog g and choose F, such that F,(x9) = 0 (for w € H*(C,Q"). Then
choose [ F,dlogg such that the integration by parts formula holds:

Flog o + / F.dlogg = log gF..

As the logarithm is bounded on K* for any discretely valued field K
we see that lim (log gF,)(z) = 0. Then define
xr—x0

Fioaolan) = (= [ Fudlog) z0),

Let divf = > n;(x;). Define

/ IOgg W= Zniﬂoggw(xi)-
(f) i

We have seen that Fj,e 4, extends to a functions C(C,) — C, by con-
tinuity.
Define ro({f, g})(w) = f(f) log g - w.

Theorem 5.3.3 (Coleman-de Shalit). (Col-dS) rc({f, g}) is bilinear,

skew-symmetric and satisfies the following

a. ¢ factors through Ko(Q,(C)) to give a homomorphism
ro : Ko(Qy(C)) — Hom(H(C, QL5 ), Qp),

C/Qp
b. depends only on div(f), div(g),
c. is Gal(Q,/Q,)-equivariant,
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d. is functorial in C: if u: C" — C is a finite morphism, then

re(u f,u*g) = u're(f, g)-

Coleman and de Shalit apply this construction to CM-elliptic curves
E and relate the above regulator rg, evaluated at certain Steinberg-
symbols {f, g} where f and g are Q-rational functions with divisors
supported at torsion points of E to the value of the p-adic L-function
L,(E,s)at s=0.

In a series of papers ((B1) - (B4)) A. Besser studies rigid syn-
tomic regulators with values in certain (modified) syntomic cohomol-
ogy groups H! . In particular, for f,g € O(U)*, where U C Cy, is
as above he defines 75y (f), Tsyn(9) € Hpo(U, 1) and their cup-product
rsnifs 9}) € H2,(U,2). One of his main results is to relate the Coleman-
de Shalit regulator (deﬁned via p-adic integrals) to syntomic regulators.
More precisely he shows the following ((B2)):

Theorem 5.3.4. The following diagram

K2<0Qp) ﬂ) syn(O 2) éR(C@p>
K5(Q,(C)) ——  Hom(Hr(Cq,), Q)
Hom(H°(C, wC/Q ),Q,) =—— Hom(H(C, wC/Q ), Q)

is commutative. Here the first right vertical arrow is induced by Poincaré
duality.

The proof of this Theorem relies on the one hand on Serre’s cup
product formula which says that for two 1-forms of the second kind
w,n giving rise to globally defined cohomology classes in Hg (C').

One has

wUn= ZResx(Fw-n)

zeC
and on the following residue formula ((B2)).

Proposition 5.3.5. Let f,g € Q,(C), w € H(C,Qp,q ) and n(f,9)
be the image of rsy({ f, g}) under the isomorphism HZ (U, 2) = Hyw(Ur,, Q) =

rlg(qu@p)
Then
> Rese(FL-n(f.9) =Y log To{f, g} Fu(x) + / logg-w.
Ve annuli xeC (f)

end at e

Here T, is the previously defined tame symbol and f( n log -w the
integral defined via the function Fiog g.-
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As is explained by Besser the left hand side in the above formula
is “morally” the cup-product “log fdlog¢” Uw which does not have a
meaning in the p-adic setting, but is defined in the context of complex
regulators, defined by Bloch and Beilinson.

5.4. p-adic regulators on surfaces. Let X be a smooth proper sur-
face over a p-adic field K with good reduction, so there exists a smooth
proper model X over O, the ring of integers in K, with generic fiber
X and closed fiber Y.

Let H:, (X, %5) (resp. H., (X, %X5)) be the Zariski- K-cohomology on
X (resp. X) and Pic(Y') the Picard group of Y.

Localization in algebraic K-theory yields an exact sequence (Mi):
(5.4.1) HL (X, %) — HL (X, %K3) -5 Pic(Y).

zar

Note that an element in H'(X,X,) is represented by a finite for-
mal sum Y (C, fi), where C; is a curve on X, f; € k(C;) and
Y r  div(f;) = 0. This follows from Theorem 5.2.2. One has a similar
description for H}, (X, K3).

If for an abelian group M, M= limM /p™ denotes its p-adic comple-

tion, then 5.4.1 induces an exact sequence

(542) 0— HL (X,50) ©Q, — H. (X, %5) ® Q, —2 Pic(Y).

zar zar

The following lemma follows from Bloch-Ogus theorey and the theo-
rey of Merkurjev-Suslin relating K, of a field to its Galois cohomology
(see (CT-R)):

Lemma 5.4.3. There is an isomorphism

H,o (X, 5o /p") = Ker(Hgy (X, Z/p"(2)) — Heg(k(X),Z/p"(2)))
where the right hand side is also known as the first coniveau filtration
on H3(X,Z/p"(2)).

Using lemma 5.4.3 one gets the étale p-adic regulator map
(544)  H'(X,K2) ® Q, <5 H3(X,Q,(2)) 2 H'(Gal(K/K), V)

where V := H2(X,Q,(2)) and the last isomorphism is induced by the
Hochschild-Serre spectral sequence and uses a weight-argument from
the Weil-conjectures.

Let

Hi(K,V):=Ker (H(Gal(K/K),V) — H"(Gal(K/K), Beis ® V)

where B, is Fontaine’s ring of p-adic periods. Then 5.4.2 — 5.4.4
induce a commutative diagram

0 — Hzlar(x/’jc\2)®(@p - Hzlar(m)(g(@]?

(5.4.5) [reyn [Cet
0 — HYK,V) — HY(Gal(K/K),V).
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Here the vertical maps are injections and we can identify — using a
well-known isomorphism between syntomic cohomology and H'(K, V)
and the compatibility of syntomic with étale regulators proven by Niziol
(see also (L-S)) — the left vertical map with the syntomic regulator,
although the syntomic cohomology H3, (X, Sg,(2)) will not occur ex-
plicitly in this section.

On H} (X, Xs,) one has so-called decomposable elements arising by
cup-product from Pic(X) ® Oj.

One has a map

Pic(X) ® O — NS(X) ® O — H(K,Q,(1) ® NS(X))

where NS(X) denotes the Neron-Severi group.
Assume that NS(X) = NS(X). Then we get the map

Pic(X) ® Of — NS(X) ® H}(K,Q,(1))
which fits into a commutative diagram (L)

PIC(:X:) & O;( E— Hzlar(m) & QP
(5.4.6) l [Ty
NS(X) ® HH(EK,Qy(1)) — H(K,V).

The left vertical map comes from a boundary map of the Kummer se-
quence K* — H'(K,Q,(1)). The image of the decomposable elements
generates NS(X) ®@ H(K,Q,(1)) (L).

As mentioned in section 5.2, the Bloch-Kato exponential map (B-K)
is defined for any (de Rham-) Galois-representation. In our situation,
Exp induces an isomorphism (using Bgr-comparison isomorphism)

(5.4.7) H3p(X)/Fil2 = HY(K, V).

By Poincaré duality, H2,(X)/Fil*> = (Fil' H2;(X))* so we can interpret
a syntomic cohomology class as a linear form on Fil' H25 (X).

Lemma 5.4.8. 74, maps the decomposable elements (i.e. Pic(X)®O% )
in Fil' H2, (X)/Fil*> under the isomorphism Exp ™t (5.4.7).

For the proof see (L).

Corollary 5.4.9. An element z € H*(X,Xy) is requlator-indecomposable
(i.e. Ton(2) ¢ NS(X) ®@ H}(K,Qy(1))) if there exists a 2-form w €
HO(X,0?) = Fil?H2,(X) such that reyn(2)(w) # 0.

If w = n Uny where n; € Fil' Hiz(X), no € Hlz(X) (50 w is a
cup-product of two 1-forms) and if z € H'(X,Xs,) is represented by
a finite formal sum z = )" (C;, f;) then Besser (B4) has recently
proven a formula for g, (2) (71 Un2) using generalized residues (that he
calls triple indices, defined in (B-dJ)), involving log f; and the Coleman
integrals of n; and n,. If n; and 7, are both global holomorphic 1-forms
in H°(X, Q") one can describe his formula as follows.
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Proposition 5.4.10.

Tsyn(2) (T Una) = Z X:Res6 (/ Fﬂ-zf.mﬂ';kﬁg) dlog f;.
1 e

1=

Here 7; : Z; — X is a normalization of the curve C;, the functions f;
are invertible on some open affine U; C Z; and the residues are taken
at annuli ends attached to the basic wide opens V; associated to U;.
Then [ Frep, iy is a Coleman-integral in Acel (V).

Proposition 5.4.10 should be compared with Theorem 5.1.4 and the
Abel-Jacobi map for abelian varieties in section 5.2.

An interesting case where this formula can be applied is the case of
a self-product of an elliptic curve €/Z,,.

There are elements in H'(& x &, Ky) which turn out to be regulator-
decomposable (see (L)) and there are elements constructed by Milden-
hall and Flach (see (Mi)) which are candidates for being regulator-
indecomposable. In the following we will discuss these elements.

Let E be an elliptic curve defined over Q and Xy(N) —— E a mod-
ular parameterization, with N being the conductor of E.

We recall the element defined by Flach/Mildenhall in H'(Xy(N) x
Xo(N),XKs) (resp. HY(E x E,X5)). Let [ be a prime that does not
divide N. Then we have the Atkin-Lehner involution

which on Yy(IN) can be described as follows:

Identify a point (A, Cjy) € Yo(IN), where A is an elliptic curve and
Cin a (cyclic) subgroup of order IN. with a cyclic isogeny of degree I
between elliptic curves equipped with a subgroup of order N

N (A Cy) — (A/C, Civ/CY)

where Cy, C} are the unique subgroups of orders N and [ in Cjy.
W, sends the isogeny A; to its dual Af. Cusps on Xo(N) are equiv-
alence classes of Pg, under the action of T'o(NN). For each 0 < d|N let

t = ged(d, ). Then there are ¢(t) cusps (4) with a € (Z/tZ)*. (%)

d d
is the class of a cusp g with x = a mod ¢, y = d mod N. Notation:
Pf = (5).

Above each cusp P§ of Xo(N) with d|N there are two cusps in
Xo(IN), namely P} and Pf that are swapped under W.
Then we have the map

€: Xo(IN) — Xo(N) x Xo(N),

€ = (dy,dy o W;), where d; is the degeneracy map. The image of € is
the graph of the I-Hecke operator on Xy(N) x Xo(N) and is called 7;.
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On Xo(IN) we have the modular unit

o= [T 52 € (oavnz[p])

d||N

where for M € N, Ay/(z) is equal to A(Mz) and is a modular form for

LCo(M) induced by the discriminant form A; this is a unique cusp form

of weight 12 for SLy(Z). The divisor of A, at the cusp is well-known.
It is shown by Mildenhall and Flach that

(x)  ordpe(g,n) = —ordpe(g1.n) # 0.

This implies that e.(divg, n) = 0; hence (7}, g, n) defines an element
in H'(Xo(N) x Xo(N),XKs) which is integral away from N - 1. (Its
properties at the prime [ where they satisfy an Eichler-Shimura identity
are crucial in the papers of Mildenhall /Flach, but we don’t need them
here.)

Let p be a prime not dividing [ - N. Then m.(7}, g, ) is an element
in the cohomology H'(€ x €z,,K,) and we conjecture that for a given
prime p there always exists an [ # p, I fN such that 7 (7. (77, gi.n))
is indecomposable in HZ (€ x €z, Sg,(2)).

To prove this conjecture, one has to apply Besser’s triple index for-
mula (proposition 5.4.10) to compute

Tsyn(ﬂ_* (T’la gl,N)) (wl U wQ)

where w is an invariant form of E, so w € H°(E,QY), w; = miw,
wy = mMyw With m; : ' X ' — E the canonical projections.

Remark. We note that, by different methods, indecomposable elements
in H'(Xz,,X,) were constructed by Asakura and Sato (A-S), when X
is a model of an elliptic K3-surface.
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