MODULAR FORMS, ELLIPTIC AND MODULAR CURVES

LECTURES AT KYUSHU UNIVERSITY 2010
ANDREAS LANGER

Preface

These lecture notes are based on a course given at the Graduate School of Mathematics at Kyushu University in Fukuoka in spring 2010. The main goal was to give - within one semester - a compact introduction to the theory of elliptic curves, modular curves and modular forms as well as the relations between them. It was aimed at graduate students with some background in number theory or algebraic curves.

Properties of elliptic curves were given in a rather sketchy way, however more details were presented for elliptic curves over \mathbb{C} and over finite fields as these are needed in later chapters. The sections on modular curves and modular forms contain most of the proofs, for example the construction of $X_{0}(N)$ as a compact Riemann surface as well as their moduli properties are given in full detail, likewise the actions of the Hecke-algebra on weight 2-cusp forms.

The final result given in the course is the analytic continuation of the L-function $L(E, s)$ of an elliptic curve defined over \mathbb{Q}, which follows from Eichler-Shimura's Theorem $L(f, s)=L(E, s)$ and analogous properties of the L-function of the cusp form f associated to E. Modularity of elliptic curves is explained from the various (equivalent) view points 'modular curves', 'modular forms' and 'Galois-representations'.

The last chapter contains some notes based on a talk in the arithmetic geometry study group. P-adic Abel-Jacobi maps and their connections to p-adic integration theory are introduced in the classical cases of abelian varieties and K_{2} of curves. Finally a more recent generalization, due to A . Besser, is given in the case of K_{1} of surfaces. His formula is likely to play an important role in the construction of integral indecomposables in $K_{1}^{(2)}$.

First I thank Professor Masanobu Kaneko for inviting me as a visiting professor to Kyushu university. Then I thank the Graduate School of Mathematics for their hospitality and for supporting my stay through the global COE-programme 'Maths for Industry'. I also want to thank all the graduate students who attended my course for their interest in these lectures.

Introduction

The Riemann zeta function

$$
\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}=\sum_{n \geq 1} n^{-s}
$$

is defined for $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1 . \zeta(s)$ has a meromorphic continuation to \mathbb{C} with a simple pole at $s=1$, and it is analytic for $s \neq 1$.
Let

$$
\Gamma(s)=\int_{0}^{\infty} e^{-y} y^{s-1} \mathrm{~d} y
$$

be the Gamma function and let

$$
Z(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s) .
$$

Then $Z(s)$ is meromorphic on \mathbb{C}, analytic for $s \neq 0,1$ and there is a functional equation

$$
Z(s)=Z(1-s)
$$

More generally, let K / \mathbb{Q} be a number field with $[K: \mathbb{Q}]=n$ and let

$$
\zeta_{K}(s)=\prod_{\mathfrak{p}}\left(1-N(\mathfrak{p})^{-s}\right)^{-1}
$$

be the Dedekind zeta function, where the product is taken over all prime ideals \mathfrak{p} of O_{K}. Likewise, $\zeta_{K}(s)$ has a meromorphic continuation to $\mathbb{C} \backslash\{1\}$ and there is a functional equation given as follows.

Let

- r_{1} be the number of real embeddings $K \hookrightarrow \mathbb{R}$;
- r_{2} be the number of pairs of complex conjugate embeddings $K \hookrightarrow \mathbb{C}$ and
- D_{K} be the discriminant of K.

Let

$$
Z_{K}(s)=2^{-s r_{2}} \pi^{-\frac{n s}{2}} \Gamma\left(\frac{s}{2}\right)^{r_{1}} \Gamma(s)^{r_{2}} \zeta_{K}(s)
$$

be the extended Dedekind zeta function ("extended by Euler factors at infinity").

Then $Z_{K}(s)$ has a meromorphic continuation to \mathbb{C}, is analytic for $s \neq 0,1$ and we have the following functional equation

$$
Z_{K}(s)=\left|D_{K}\right|^{\frac{1}{2}-s} Z_{K}(1-s) .
$$

Now let X / K be a variety over a number field K. Then we can define (formally):

$$
L(X, s):=\prod_{\mathfrak{p}} L_{\mathfrak{p}}(X, s)
$$

where again the product is taken over all prime ideals \mathfrak{p} of O_{K} and $L_{\mathfrak{p}}(X, s)$ contains information of $X \bmod \mathfrak{p}$ (and is defined via $X \bmod$
$\mathfrak{p}) . L(X, s)$ is a well-defined function for $\operatorname{Re}(s) \gg 0$. One likes to have both meromorphic continuation and a functional equation.

For example, let X be a curve of genus g.
If $g=0$ then X is \mathbb{P}^{1} or a conic. Then $L(X, s)$ is a product of Dedekind zeta functions.

If $g=1$ then X is an elliptic curve and results exist only for $K=\mathbb{Q}$ or K totally real.

Let E / \mathbb{Q} be an elliptic curve, i.e. a smooth, projective geometrically connected curve with a distinguished \mathbb{Q}-rational point \mathcal{O}. Alternatively, E is given by a hypersurface

$$
Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}
$$

in $\mathbb{P}_{\mathbb{Q}}^{2}$ with $\mathcal{O}=[0,1,0]$.
The L-series of E is defined as follows:

$$
L(E, s):=\prod_{p \text { prime }} L_{p}(E, s)^{-1}
$$

where the Euler-factor $L_{p}(E, s)$ is given as follows:
Let p be a prime for which E has good reduction, let $E_{p}=E \bmod p$ and $a_{p}:=1+p-\# E_{p}\left(\mathbb{F}_{p}\right)$. Then $L_{p}(E, s):=1-a_{p} p^{-s}+p^{1-2 s}$.

It is a fact that $L(E, s)$ is analytic for $\operatorname{Re}(s)>\frac{3}{2}$.
Theorem 1. $L(E, s)$ has an analytic continuation to \mathbb{C}. Let $Z(E, s)=$ $(2 \pi)^{-s} \Gamma(s) L(E, s)$. Then $Z(E, s)$ has an analytic continuation to \mathbb{C} and there is a functional equation

$$
Z(E, 2-s)=\epsilon N_{E}^{s-1} Z(E, s)
$$

where N_{E} is the conductor of E (one has $p \mid N_{E} \Leftrightarrow E$ has bad reduction at p) and $\epsilon= \pm 1$.

Let $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ be the upper half plane and $N \geq 1$. Let $\Gamma_{0}(N)=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}), c \equiv 0 \bmod N\right\} . \Gamma_{0}(N)$ then acts on \mathbb{H} via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}
$$

$\Gamma_{0}(N) \backslash \mathbb{H}=: Y_{0}(N)(\mathbb{C})$ is a (noncompact) Riemann surface.
Let $\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}=\mathbb{H} \cup \mathbb{P}_{\mathbb{Q}}^{1} . \Gamma_{0}(N)$ acts on \mathbb{H}^{*} via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) r=\frac{a r+b}{c r+d} .
$$

$\Gamma_{0}(N) \backslash \mathbb{H}^{*}=: X_{0}(N)(\mathbb{C})$ is a compact Riemann surface. The elements of $\mathbb{P}_{\mathbb{Q}}^{1}$ and their images in $X_{0}(N)(\mathbb{C})$ are called cusps.

There exists a smooth projective geometrically connected curve $X_{0}(N) / \mathbb{Q}$ such that $X_{0}(N)(\mathbb{C}) \cong \Gamma_{0}(N) \backslash \mathbb{H}^{*}($ which is a model over $\mathbb{Q})$.
Definition 0.0.1. Let E / \mathbb{Q} be an elliptic curve. E is called modular if there is an $N \in \mathbb{N}$ (more precisely $N=N_{E}$) and a non-trivial morphism $X_{0}(N) \rightarrow E$ of curves over \mathbb{Q}.

The Shimura-Taniyama conjecture, which is now a theorem, is given as follows:

Theorem 2. (Wiles, Taylor-Wiles, Breuil-Conrad, Diamond-Taylor) Let E / \mathbb{Q} be an elliptic curve. Then E is modular.

The goal of this course will be to provide a proof of Theorem 1 for (modular, hence all) elliptic curves over \mathbb{Q}.

A proof of Theorem 1 goes along the following lines; using modular forms.

A function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called a modular form of level N and weight 2 if:
(i) f is holomorphic on \mathbb{H};
(ii) $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z\right)=(c z+d)^{2} f(z)$ for all $\binom{a b}{c d} \in \Gamma_{0}(N)$;
(iii) $f(z)$ is "holomorphic in cusps".

The latter statement means for example at the cusp ∞ that f has a q-expansion $f(z)=\sum_{n=0}^{\infty} a_{n} q^{n}$ for $q=\exp (2 \pi i z)$.

The function f is called a cusp form if $a_{0}=0$. Cusp forms of weight 2 correspond uniquely to holomorphic differential forms on $X_{0}(N)(\mathbb{C})$.

Now if E is a (modular) elliptic curve, then there exists a unique differential form on E (corresponding to $\pi^{*} \omega$ where $\pi: X_{0}(N) \rightarrow E$) and thus a unique cusp form $f=\sum_{n=1}^{\infty} a_{n} q^{n}$.

The Eichler-Shimura Theorem now states:

$$
L(E, s)=L(f, s)=\sum_{n=1}^{\infty} a_{n} n^{-s} .
$$

We will prove a functional equation for $L(f, s)$.

Contents

Preface 3
Introduction 5

1. Elliptic curves 9
1.1. Elliptic curves over \mathbb{C} 9
1.2. Elliptic curves over general fields 12
1.3. Isogenies 16
1.4. Elliptic curves over finite fields 19
1.5. Elliptic curves over p-adic fields 23
2. Modular curves and Modular forms 24
2.1. Riemann surfaces 24
Holomorphic differential forms 25
2.2. Modular curves as Riemann surfaces 27
The complex structure on $\Gamma \backslash \mathbb{H}^{*}$ 30
2.3. Moduli properties of modular curves 31
3. Modular forms 35
3.1. 35
3.2. Hecke operators 40
4. Modular elliptic curves 48
4.1. 48
References 51
5. p-adic Regulators and p-adic integration theory (Special lecture) 52
5.1. Review of classical Abel-Jacobi maps 52
5.2. Abelian varieties over p-adic fields 54
5.3. p-adic integration on curves 55
5.4. p-adic regulators on surfaces 58
References 61

1. Elliptic Curves

1.1. Elliptic curves over \mathbb{C}. A complex number w is called a period of the meromorphic function f, if for all $z \in \mathbb{C}$

$$
f(z+w)=f(z)
$$

It is easy to see that the periods form a subgroup of the additional group \mathbb{C}. Using the identity theorem from complex function theory it is shown that the group of periods of a non-constant meromorphic function is a discrete subgroup in \mathbb{C}. A discrete subgroup $\Omega \subset \mathbb{C}$ of rank 2 is called a lattice. A meromorphic function f is called elliptic function with respect of Ω, if Ω is contained in the group of its periods. For such Ω, there exists two \mathbb{R}-linear independent elements w_{1}, w_{2} such that $\Omega=\left\{n_{1} w_{1}+n_{2} w_{2}: n_{1}, n_{2} \in \mathbb{Z}\right\}$. In the following let Ω be a fixed lattice of periods. Then $K(\Omega)=\{f: f$ is elliptic with respect to $\Omega\}$ is a field. If $f \in K(\Omega)$, then $f^{\prime} \in K(\Omega)$. It follows from the maximum principle that any holomorphic elliptic function is constant.

Proposition 1.1.1. Let f be an elliptic function, a_{1}, \ldots, a_{k} the poles of f in the parallelogram $P=\left\{t_{1} w_{1}+t_{2} w_{2}: 0 \leq t_{1}, t_{2}<1\right\}$, Then

$$
\sum_{v=1}^{k} \operatorname{res}_{a_{v}} f=0
$$

Proof. We first assume that no a_{v} lies in ∂P. Then we apply the residue theorem and use that

$$
\int_{\partial P} f(\zeta) d \zeta=0 .
$$

If some a_{v} lie in ∂P we move the parallelogram P into a parallelogram P^{\prime} such that no a_{v} lies in ∂P^{\prime} and apply the same argument.

Corollary 1.1.2. If an elliptic function f has at most a simple pole in P (P as in Proposition 1.1.1). Then f is constant.

Corollary 1.1.3. Any non-constant elliptic function attains any value in $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ in P with the same multiplicity.

Proposition 1.1.4. The function

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\substack{w \in \Omega \\ w \neq 0}}\left(\frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}\right)
$$

is an elliptic function. It is called Weierstrass \wp function.
Proof. We first show that the series is locally uniformly convergent. Let $|z| \leq R$. For almost all $w \in \Omega,|w| \geq 2 R$. For those w we have

$$
\left|\frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}\right|=\frac{|z||2 w-z|}{|w|^{2}|z-w|^{2}} \leq \frac{R \cdot 3|w|}{|w|^{2}|w|^{2} / 4} \leq C \frac{1}{|w|^{3}} .
$$

One then shows $\sum_{w \neq 0} 1 /|w|^{3}<\infty$. This proof is left to the reader. In order to show that \wp is elliptic function we consider the derivation $\wp^{\prime}(z)=-2 \sum_{w \neq 0} \frac{1}{(z-w)^{3}}$. For \wp^{\prime} we have

$$
\wp^{\prime}(z+w)=\wp^{\prime}(z)
$$

for all $w \in \Omega$. Let $w_{0} \in \Omega$ be fixed. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} z}\left(\wp\left(z+w_{0}\right)-\wp(z)\right)=\wp^{\prime}\left(z+w_{0}\right)-\wp^{\prime}(z)=0 .
$$

Hence $\wp\left(z+w_{0}\right)-\wp(z)=c$. Choose w_{0} such that $w_{0} / 2 \notin \Omega$, let $z=-w_{0} / 2$. Then $\wp\left(w_{0} / 2\right)-\wp\left(-w_{0} / 2\right)=c$. As \wp is an even function, $c=0$, Proposition 1.1.4 follows.

Using that for $w \neq 0$.

$$
\frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}=\sum_{v=2}^{\infty} \frac{v z^{v-1}}{w^{v+1}}
$$

for $|z|<|w|$, one then derives the Laurent-expansion of \wp,

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{v=1}^{\infty} c_{2 v} z^{2 v} \text {, where } c_{2 v}=(2 v+1) \sum_{\substack{w \in \Omega \\ w \neq 0}} \frac{1}{w^{2 v+2}} .
$$

Then

$$
\begin{aligned}
& \wp(z)^{3}=\frac{1}{z^{6}}+\frac{3 c_{2}}{z^{2}}+3 c_{4}+\cdots \\
& \wp^{\prime}(z)=-\frac{2}{z^{3}}+2 c_{2} z+4 c_{4} z^{3}+\cdots \\
& \wp^{\prime}(z)^{2}=\frac{4}{z^{6}}-\frac{8 c_{2}}{z^{2}}-16 c_{4}+\cdots
\end{aligned}
$$

Consider the elliptic function

$$
f(z)=\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+20 c_{2} \wp(z)+28 c_{4} .
$$

In the parallelogram P the only possible pole of f is the zero point. But $\lim _{z \rightarrow 0} f(z)=0$. So defining $f(0)=0$ we get a holomorphic elliptic function on P, hence $f \equiv 0$. We have shown the next Proposition.

Proposition 1.1.5. The \wp function satisfies the differential equation as follows;

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}
$$

where

$$
g_{2}=60 \sum_{\substack{w \in \Omega \\ w \neq 0}} \frac{1}{w^{4}}, g_{3}=140 \sum_{\substack{w \in \Omega \\ w \neq 0}} \frac{1}{w^{6}} .
$$

The zeros of \wp^{\prime} within P are the points

$$
\rho_{1}=\frac{w_{1}}{2}, \rho_{2}=\frac{w_{1}+w_{2}}{2}, \rho_{3}=\frac{w_{2}}{2} .
$$

Let $\wp\left(\rho_{v}\right)=e_{v}(v=1,2,3)$. Then the e_{v} are pairwise different and we can write

$$
\wp^{\prime}(z)^{2}=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right) .
$$

Hence the e_{v} are the zeros of the polynomial

$$
4 X^{3}-g_{2} X-g_{3}
$$

whose discriminant $\Delta=g_{2}^{3}-27 g_{3}^{2}$ must be nonzero. Then we state without proofs;

Proposition 1.1.6.

(i) Any elliptic function is a rational function in \wp and \wp^{\prime}.
(ii) $K(\Omega) \cong \mathbb{C}(s)[t] /\left(t^{2}-4 s^{3}+g_{2} s+g_{3}\right)$.

Proposition 1.1.7. (Addition-Theorem) Let $z_{1}, z_{2} \in \mathbb{C} \backslash \Omega$ such that $\wp\left(z_{1}\right) \neq \wp\left(z_{2}\right)$. Then

$$
\wp\left(z_{1}+z_{2}\right)=-\wp\left(z_{1}\right)-\wp\left(z_{2}\right)+\frac{1}{4}\left(\frac{\wp^{\prime}\left(z_{1}\right)-\wp^{\prime}\left(z_{2}\right)}{\wp\left(z_{1}\right)-\wp\left(z_{2}\right)}\right) .
$$

Let $p_{j}=\wp\left(z_{j}\right), p_{j}^{\prime}=\wp^{\prime}\left(z_{j}\right), j=1,2$ and $p_{3}=\wp\left(z_{1}+z_{2}\right), p_{3}^{\prime}=$ $\wp^{\prime}\left(z_{1}+z_{2}\right)$. Then

$$
p_{j}^{\prime}=a p_{j}+b(j=1,2), \quad-p_{3}^{\prime}=a p_{3}+b
$$

where $a=\frac{\wp^{\prime}\left(z_{1}\right)-\wp^{\prime}\left(z_{2}\right)}{\wp\left(z_{1}\right)-\wp \emptyset\left(z_{2}\right)}$ and $b \in \mathbb{C}$ is defined such that the elliptic function $f(z)=\wp^{\prime}(z)-a \wp(z)-b$ vanishes in z_{1}, z_{2} and $-z_{1}-z_{2}$. We see that the points $\left(p_{1}, p_{1}^{\prime}\right),\left(p_{2}, p_{2}^{\prime}\right),\left(p_{3}, p_{3}^{\prime}\right)$ lie on a complex line in \mathbb{C}^{2} (assuming $p_{1} \neq p_{2}$). Consider the map

$$
\begin{aligned}
\Phi: \mathbb{C} \backslash \Omega & \longrightarrow \mathbb{C}^{2} \\
z & \longmapsto\left(\wp(z), \wp^{\prime}(z)\right) .
\end{aligned}
$$

Then the image of Φ is an affine curve of degree 3 . We put

$$
E=\left\{(u, v) \in \mathbb{C}^{2}: v^{2}=4 u^{3}-g_{2} u-g_{3}\right\},
$$

then $\Phi(z) \in E$ follows from the differential equation of the \wp-function. We have $\Phi\left(z_{1}\right)=\Phi\left(z_{2}\right)$ if and only if $z_{1}-z_{2} \in \Omega$. We also define the map Φ in the lattice points by considering the complex projective plane $\mathbb{P}_{\mathbb{C}}^{2}=\left\{p=\left[z_{0}: z_{1}: z_{2}\right]: z_{0}, z_{1}, z_{2} \in \mathbb{C},\left[z_{0}, z_{1}, z_{2}\right] \neq[0,0,0]\right\}$ with homogeneous coordinates z_{i}. We identify \mathbb{C}^{2} with its image in $\mathbb{P}_{\mathbb{C}}^{2}$ via the embedding $(u, v) \mapsto[1, u, v]$. Then \mathbb{C}^{2} is the complement of the projective line $\left\{p \in \mathbb{P}_{\mathbb{C}}^{2}, z_{0}(p)=0\right\}$. Under this identification E is the set of points with $z_{0}(p) \neq 0$ whose homogeneous coordinates satisfy the homogeneous cubic equation

$$
\begin{equation*}
z_{0} z_{2}^{2}=4 z_{1}^{3}-g_{2} z_{0}^{2} z_{1}-g_{3} z_{0}^{3} \tag{}
\end{equation*}
$$

This equation is also satisfied if $z_{0}=0, z_{1}=0, z_{2}=1$ and this is the only solution, if $z_{0}=0$. Then the set $\bar{E} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of points whose coordinates satisfy $\left({ }^{*}\right)$ is called projective cubic (in Weierstrass normal form). It contains the affine curve E and the point $p_{0}=[0: 0: 1]$. The map $\Phi: \mathbb{C} \backslash \Omega \rightarrow E$ has a unique continuous extension to $\mathbb{C} \rightarrow E$ by defining $\Phi(w)=p_{0}$ for $w \in \Omega$. In a neighbourhood of $w, \Phi(z)$ is described by

$$
\Phi(z)=\left[(z-w)^{3}:(z-w)^{3} \wp(z):(z-w)^{3} \wp^{\prime}(z)\right]
$$

where the homogeneous coordinates of $\Phi(z)$ appear as holomorphic functions at z. As

$$
\Phi\left(z_{1}\right)=\Phi\left(z_{2}\right) \Longleftrightarrow z_{1}-z_{2} \in \Omega,
$$

Φ induces a bijection of the factor group

$$
\mathbb{C} / \Omega \xrightarrow{\sim} \bar{E}
$$

which is a homeomorphism. Via Φ we transform the group law from \mathbb{C} / Ω to \bar{E} :
If $P, Q \in \bar{E}$. Then

$$
P \cdot Q=\Phi\left(\Phi^{-1}(P)+\Phi^{-1}(Q)\right)
$$

defines an abelian group structure on \bar{E} with zero element P_{0}.
1.2. Elliptic curves over general fields. Let k be a perfect field.

Definition 1.2.1. $E=\left(E, \mathcal{O}_{E}\right)$ is called an elliptic curve, if E is a non-singular, proper, geometrically connected curve of genus 1 over k and \mathcal{O}_{E} a k-rational point on E.

Lemma 1.2.2. Let C be a non-singular (i.e. smooth) hypersurface of degree d in \mathbb{P}_{k}^{2}. Then the genus $g(C)$ of C is given as follows

$$
g(C)=\frac{(d-1)(d-2)}{2} .
$$

Proof. Let $\mathcal{J}_{C}=\mathcal{L}(-C)$ be the ideal sheaf of C. Then we have an exact sequence

$$
0 \longrightarrow \mathcal{J}_{C} \longrightarrow \mathcal{O}_{\mathbb{P}^{2}} \longrightarrow \mathcal{O}_{C} \longrightarrow 0
$$

where $\mathcal{O}_{C}=i_{*}\left(\mathcal{O}_{C}\right)$, with $i: C \rightarrow \mathbb{P}^{2}$ being a closed immersion. Then $C \sim d H$, where H is a hyperplane in \mathbb{P}_{k}^{2} and thus $\mathcal{J}_{C} \cong \mathcal{L}(-d H) \cong$ $\mathcal{O}_{\mathbb{P}^{2}}(-d)$.

For the computation of $g=\operatorname{dim} H^{1}\left(C, \mathcal{O}_{C}\right)$ we use

$$
\begin{aligned}
& H^{1}\left(\mathbb{P}^{2}, \mathcal{O}(n)\right)=0 \text { for all } n, \\
& H^{2}\left(\mathbb{P}^{2}, \mathcal{O}(n)\right)=H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(-3-n)\right)^{*} .
\end{aligned}
$$

Hence we have an exact sequence

$$
0 \longrightarrow H^{1}\left(C, \mathcal{O}_{C}\right) \longrightarrow H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(d-3)\right)^{*} \longrightarrow H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(-3)\right)
$$

where the last entry is zero. Therefore we have
$g=\operatorname{dim} H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(d-3)\right)=\operatorname{dim} k\left[X_{0}, X_{1}, X_{2}\right]_{\operatorname{deg}=d-3}=\frac{(d-1)(d-2)}{2}$.

It follows that if $C \subseteq \mathbb{P}^{2}$ is a hypersurface of degree 3 and $P \in C(k)$, then (C, P) is an elliptic curve.
1.2.3. Riemann Roch for curves. (Reminder)

Let X / k be a smooth, proper and geometrically connected curve and $g=g(X)$. Let $D=\sum_{i} n_{i} P_{i}$ be a (Weil-)divisor and $\operatorname{deg} D=$ $\sum_{i} n_{i}\left[k\left(P_{i}\right): k\right]$. Let $\mathcal{L}(D)$ be the line bundle defined by $\{f:(f)+D \geq$ $0\}$ and $l(D)=\operatorname{dim} H^{0}(X, \mathcal{L}(D))$.

Let K be a canonical divisor, which is equivalent to saying that $\mathcal{L}(K) \cong \Omega_{X / k}$. Then Riemann-Roch says:

$$
l(D)=\operatorname{deg} D+1-g+l(K-D)
$$

for all divisors D. Moreover, $l(K)=g$, $\operatorname{deg} K=2 g-2$.
In particular, if $X=E$ is an elliptic curve, then $K \sim 0$; hence $l(D)=\operatorname{deg}(D)+l(-D)$. Moreover, if $\operatorname{deg} D>0$, then $l(D)=\operatorname{deg}(D)$.
Proposition 1.2.4. Let E / k be an elliptic curve. Then there is a smooth plane curve C of degree 3, a rational point $\mathcal{O}_{C} \in C$, so that $\left(E, \mathcal{O}_{E}\right)$ is isomorphic to $\left(C, \mathcal{O}_{C}\right)$.
C is given by an equation in \mathbb{P}_{k}^{2} of the form

$$
Z Y^{2}+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}
$$

and one can choose $\mathcal{O}_{C}=[0,1,0]$.
Proof. We have $l\left(m \mathcal{O}_{E}\right)=m$ for all $m \geq 1$; hence for all $i \geq 2$ there exists $f_{i} \in k(E)^{*}$ with $\left(f_{i}\right)_{\infty}=i \mathcal{O}_{E}$ and f_{2}, \ldots, f_{m} are a basis of $\Gamma(E, \mathcal{L}(m))$ for all $m \geq 2$.

Let $x, y \in k(E)^{*}$ such that $(x)_{\infty}=2 \mathcal{O}_{E},(y)_{\infty}=3 \mathcal{O}_{E}$. Then $f_{4}=x^{2}$, $f_{5}=x y, f_{6}=x^{3}$ or y^{3} and thus

$$
y^{2}+a_{1} x y+a_{3} y=a_{0} x^{3}+a_{2} x^{2}+a_{4} x
$$

with $a_{0} \neq 0$.
We may assume $a_{0}=1$ (otherwise replace x by $a_{0} x$).
Let $F=y^{2} z+a_{1} x y z+a_{3} y z^{2}-x^{3}-a_{2} x^{2} z-a_{4} x z^{2}-a_{6} z^{3}$. Let $C \subseteq \mathbb{P}^{2}$ given by $F=0$. Let $\phi=(x, y): E-\mathcal{O}_{E} \rightarrow C$, giving rise to $\phi: E \rightarrow C$, where $\phi\left(\mathcal{O}_{E}\right)=[0,1,0] \in\{z=0\}$.

It remains to show that ϕ is an isomorphism.
As a reminder, morphisms $E \rightarrow \mathbb{P}_{k}^{n}$ correspond uniquely to line bundles \mathcal{L} on E together with global sections s_{0}, \ldots, s_{n} of \mathcal{L}, which generate \mathcal{L} (i.e. for all $p \in E$, there exists an i such that $s_{i} \notin \mathfrak{m}_{p} \mathcal{L}_{p}$). \mathcal{L} and s_{0}, \ldots, s_{n} define $\phi: E \rightarrow \mathbb{P}_{k}^{n}$ as follows:

Let $E=\cup_{i} E_{i}, \mathbb{P}_{k}^{n}=\cup_{i=1}^{n} \mathcal{U}_{i}$ where $E_{i}=\left\{p \in E: s_{i} \notin \mathfrak{m}_{p} \mathcal{L}_{p}\right\}$. Then $\phi: E_{i} \rightarrow \mathcal{U}_{i}$ corresponds to Spec $k\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right] \rightarrow \Gamma\left(E_{i}, \mathcal{O}_{E_{i}}\right), \frac{x_{j}}{x_{i}} \mapsto \frac{s_{j}}{s_{i}}$.

In our example, $\phi: E \rightarrow \mathbb{P}_{k}^{2}$ correspond to $\mathcal{L}\left(3 \mathcal{O}_{E}\right), 1, x, y$.
Let D be a divisor on $E, P \in E_{0}$. We then have

$$
0 \longrightarrow \Gamma(E, \mathcal{L}(D-P)) \longrightarrow \Gamma(E, \mathcal{L}(D)) \longrightarrow \mathcal{L}(D)_{p / \mathfrak{m}_{p}} \longrightarrow 0
$$

As $\operatorname{deg} D \geq 2$, there exists $s \in \Gamma(E, \mathcal{L}(D)),\left.s \notin \mathfrak{m}_{p} \mathcal{L}(D)\right|_{p}$.
If $n=\operatorname{deg} D \geq 3, s_{0}, \ldots, s_{n-1}$ is a basis of $V=\Gamma(E, \mathcal{L}(D))$ and ϕ : $E \rightarrow \mathbb{P}_{k}^{n-1}$ is the corresponding morphism, then ϕ is a closed immersion.
Proof: the property is stable under base change, so let $k=\bar{k}$.
It remains to show that
(i) V separates points: for all $P, Q \in E(\bar{k})$, with $P \neq Q$, there exists a $s \in V$ such that $s \in \mathfrak{m}_{P} \mathcal{L}_{P}, s \notin \mathfrak{m}_{Q} \mathcal{L}_{Q}$,
(ii) V separates tangent vectors: for all $P \in E(\bar{k})$, there exists an $s \in V$ such that $s \in \mathfrak{m}_{p} \mathcal{L}_{p} \backslash \mathfrak{m}_{p}^{2} \mathcal{L}_{p}$.
Both properties follow from Riemann-Roch:
(i) $\Gamma(E, \mathcal{L}(D-P-Q)) \subsetneq \Gamma(E, \mathcal{L}(D-P))$;
(ii) $\Gamma(E, \mathcal{L}(D-2 P)) \subsetneq \Gamma(E, \mathcal{L}(D-P))$.

Also, $\phi: E \rightarrow H \subseteq \mathbb{P}_{k}^{2}$, corresponding to $\mathcal{L}=\mathcal{L}\left(3 \mathcal{O}_{E}\right)$ is a closed immersion. Suppose H is not irreducible and reduced. Then

$$
F=Y^{2} Z+a_{1} X Y Z+\cdots=F_{1} \cdot F_{2}
$$

with F_{1}, F_{2} homogeneous. And thus we have $\phi: E \xrightarrow{\cong} H_{1}$, a hypersurface, corresponding to F_{1} and $g\left(H_{1}\right)=g(E)=1$, which is a contradiction.
Remark. If $\operatorname{char}(k) \neq 2,3$, then we can show (by a linear transformation $\left.\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}\right)$ that $\left(E, \mathcal{O}_{E}\right) \cong(C, 0)$ where C is given by an equation of the form

$$
Z Y^{2}=X^{3}+a X Z^{2}+b Z^{3}
$$

this is called the Weierstrass form of E.
Then one can easily show that C is non-singular if and only if $\operatorname{disc}\left(X^{3}+a X+b\right):=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$.
1.2.5. Let S be a scheme. A S-group scheme $G \rightarrow S$ is a group object in Sch / S, i.e. one has a quadruple

$$
(G, m: G \times G \longrightarrow G, \text { inv }: G \longrightarrow G, \epsilon: S \longrightarrow G)
$$

satisfying

- Associativity:

commutes.
- Existence of inverse:

commutes.
- One element:

commutes.

Examples 1.2.6.

a. $\mathbb{G}_{m}=\mathbb{G}_{m, S}=\operatorname{Spec} \mathbb{Z}\left[T, T^{-1}\right] \times_{\text {Spec } \mathbb{Z}} S$.
\mathbb{G}_{m} represents the functor

$$
(X \rightarrow S) \longmapsto \Gamma\left(X, \mathcal{O}_{X}\right)^{*}
$$

Proof:

$$
\begin{array}{r}
\operatorname{Hom}_{S}\left(X, \mathbb{G}_{m}\right)=\operatorname{Hom}_{\text {Spec }} \mathbb{Z}\left(X, \text { Spec } \mathbb{Z}\left[T, T^{-1}\right]\right)= \\
\operatorname{Hom}\left(\mathbb{Z}\left[T, T^{-1}\right], \Gamma\left(X, \mathcal{O}_{X}\right)\right)=\Gamma\left(X, \mathcal{O}_{X}\right)^{*} .
\end{array}
$$

b. $\mu_{n}=S \times_{\mathbb{G}} \operatorname{Spec}\left(\mathbb{Z}[T] /\left(T^{n}-1\right)\right)$. Proof: $\operatorname{Hom}_{S}\left(X, \mu_{n}\right)=\{x \in$ $\left.\Gamma\left(X, \mathcal{O}_{X}\right)^{*}, x^{n}=1\right\}$.
c. Let A be an abelian group, then $A_{S}=\coprod_{a \in A} S$ is an S-group scheme.

If $X \rightarrow S$ is an S-scheme with $X=\cup_{i \in I} X_{i}$ its decomposition into connected components, then

$$
\operatorname{Hom}_{S}\left(X, \coprod_{a \in A} S\right)=\prod_{i} \operatorname{Hom}\left(X_{i}, \coprod_{a \in A} S\right)=\prod_{i \in I} A .
$$

A_{S} is called the constant group scheme associated to A.

Definitions 1.2.7.

a. An abelian variety A / k is a geometrically connected, proper, integral k-group scheme.
b. Let S be a base scheme. An S-group scheme $\pi: \mathcal{A} \rightarrow S$ is called an abelian scheme if π is proper, smooth, with geometrically connected fibers.

Remark. One can show that any abelian variety is smooth and projective, and that the group law is commutative.

Theorem 1.2.8. Let E be an elliptic curve. Then E is an abelian variety with 1-section $\mathcal{O}_{E} \in E(k)$. Conversely, any abelian variety of dimension 1 is an elliptic curve.

1.3. Isogenies.

1.3.1. Morphism of curves.

Let $f: X \rightarrow Y$ be a non-trivial morphism of (smooth, projective) curves over k. Then
(i) f is finite and flat.
(ii) f maps the generic point of Y to the generic point of X.
(iii) $f_{*} \mathcal{O}_{X}$ is a locally free \mathcal{O}_{Y}-module of rank n, where $n=[k(X)$: $k(Y)]=: \operatorname{deg} f$ is the degree of f.
(iv) f induces a homomorpism $f^{*}: \operatorname{Pic}(Y) \rightarrow \operatorname{Pic}(X)$ and we have $\operatorname{deg} f^{*} \mathcal{L}=\operatorname{deg}(f) \operatorname{deg} \mathcal{L}$.
(v) For all $y \in Y: f^{-1} y=\operatorname{Spec} k(y) \times_{Y} X$ is a finite $k(y)$-scheme of dimension n.
(vi) Define $f_{*}: \operatorname{Div} X \rightarrow \operatorname{Div} Y$ by $f_{*}\left(\sum_{i=1}^{r} n_{i} P_{i}\right)=\sum_{i=1}^{r} n_{i}\left[k\left(P_{i}\right):\right.$ $\left.k\left(f\left(P_{i}\right)\right)\right] f\left(P_{i}\right)$. Then $\operatorname{deg} f_{*} D=\operatorname{deg} D$ and $f_{*} \operatorname{div}_{X}(g)=\operatorname{div}_{Y} N_{k(X) / k(Y)}(g)$.

This induces $f_{*}: \operatorname{Pic}^{0}(X) \rightarrow \operatorname{Pic}^{0}(Y), \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(Y)$. One has $f_{*} \circ f^{*}=\operatorname{deg}(f)$.
(vii) Let $f: X \rightarrow Y, g, h: Y \rightarrow Z$ be finite with Z / k separated. If $g \circ f=h \circ f$, then $g=h$.

Definition 1.3.2. Let $E_{1}, E_{2} / k$ be elliptic curves. A morphism f : $E_{1} \rightarrow E_{2}$ with $f\left(\mathcal{O}_{E_{1}}\right)=\mathcal{O}_{E_{2}}$ is called an isogeny.
Lemma 1.3.3. An isogeny $f: E_{1} \rightarrow E_{2}$ is a morphism of group schemes.

Let E_{1}, E_{2} be elliptic curves. Then

$$
\begin{aligned}
\operatorname{Hom}_{k}\left(E_{1}, E_{2}\right) & =\left\{f: E_{1} \rightarrow E_{2}, f \text { morphism with } f\left(\mathcal{O}_{E_{1}}\right)=\mathcal{O}_{E_{2}}\right\} \\
& =\{f \text { isogeny }\} \cup\{0\} \\
& =\left\{\text { Homomorphisms of group schemes } E_{1} \rightarrow E_{2}\right\} .
\end{aligned}
$$

$\operatorname{Hom}_{k}\left(E_{1}, E_{2}\right)$ is an abelian group: $f+g=\mu_{E_{2}} \circ(f \times g) \times \Delta$.
$\operatorname{End}(E)=\operatorname{Hom}_{k}(E, E)$ is an associative ring with $1=\mathrm{id}_{E}$ and, because of (vii), without zero-divisors. The map

$$
\begin{aligned}
{[]: \mathbb{Z} } & \longrightarrow \operatorname{End}(E) \\
n & \longmapsto[n]=1+\cdots+1(n \text { times })
\end{aligned}
$$

is a ring homomorphism.
Lemma 1.3.4. []: $\mathbb{Z} \longrightarrow \operatorname{End}(E)$ is a monomorphism.
Let $f: E_{1} \rightarrow E_{2}$ be an isogeny and T a smooth k-scheme. Then

$$
\begin{aligned}
f^{*}: \operatorname{Pic}^{0}\left(\left(E_{2}\right), T\right) & \longrightarrow \operatorname{Pic}^{0}\left(\left(E_{1}\right)_{T}, T\right) \\
\mathcal{L} & \longmapsto f^{*} \mathcal{L}
\end{aligned}
$$

is well-defined, hence induces a map

$$
f^{*}: \operatorname{Hom}\left(, E_{2}\right) \longrightarrow \operatorname{Hom}\left(, E_{1}\right) .
$$

By the Yoneda lemma there exists a unique $\hat{f}: E_{2} \rightarrow E_{1}$ which induces f^{*}.

For $T \in S_{m} / k$, let $\phi_{T}: \operatorname{Hom}\left(T, E_{i}\right) \cong \operatorname{Pic}\left(\left(E_{i}\right)_{T} / T\right)$. Then $\phi_{T}(\hat{f}(P))=$ $f^{*}\left(\phi_{T}(P)\right)$.
Definition 1.3.5. $\hat{f}: E_{2} \rightarrow E_{1}$ is called the dual isogeny of f.

Proposition 1.3.6.

a. If $f: E_{1} \rightarrow E_{2}$ and $g: E_{2} \rightarrow E_{3}$ are isogenies. Then $\widehat{g \circ f}=$ $\hat{f} \circ \hat{g}$.
b. Let $f, g: E_{1} \rightarrow E_{2}$ be isogenies. Then $\widehat{f+g}=\hat{f}+\hat{g}$.
c. If $f: E_{1} \rightarrow E_{2}$ is an isogeny with $\operatorname{deg} f=m$, then $f \circ \hat{f}=[m]$ and $\hat{f} \circ f=[m]$.
d. $\hat{\hat{f}}=f, \widehat{[m]}=[m]$ for all $m \in \mathbb{Z}$.
e. $\operatorname{deg}[m]=m^{2}$ for all $m \in \mathbb{Z} \backslash\{0\}$.
f. For an isogeny f we have $\operatorname{deg} f=\operatorname{deg} \hat{f}$.

Definition 1.3.7. Let X, Y be noetherian schemes. A morphism f : $X \rightarrow Y$ of finite type is called étale if f is flat and the sheaf of relative differentials vanishes, that is $\Omega_{X / Y}=0$.

Let X and Y be of finite type over k. Then $f: X \rightarrow Y$ is étale if an only if f is smooth of relative dimension 0 .

Remark 1.3.8.

a. Open immersions are étale.
b. A composition of étale morphisms is étale.
c. A base change of étale morphisms is étale.

Remark 1.3.9. Let k be a field, A a finite k-algebra. Then the following are equivalent.
(i) A is an étale k-algebra.
(ii) $A \cong \prod_{i=1}^{r} k_{i}$ where each k_{i} is a separable field extension of k.
(iii) $A \otimes_{k} \bar{k}=\prod_{i=1}^{r} \bar{k}$.
(iv) $\# \operatorname{Spec}\left(A \otimes_{k} \bar{k}\right)=\operatorname{dim}_{k} A$.

For the proof, see Milne, I, paragraph 3.
Definition 1.3.10. Let X, Y be smooth, proper, geometrically connected curves over k and $f: X \rightarrow Y$ a non-trivial (hence finite and flat) morphism. Then f is called separable if $k(X) / k(Y)$ is a separable field extension (which is equivalent to f being geometrically étale).
Proposition 1.3.11. Let $f: E_{1} \rightarrow E_{2}$ be an isogeny of elliptic curves. Then the following are equivalent
a. f is separable.
b. f is étale.
c. $(\mathrm{d} f)_{0}: T_{0} E_{1} \rightarrow T_{0} E_{2}$ is a bijection.

Proof. For b. \Rightarrow a., use

This diagram is cartesian; hence $k\left(E_{1}\right)$ is an étale $k\left(E_{2}\right)$-algebra and thus $k\left(E_{1}\right) / k\left(E_{2}\right)$ is separable.

For a. \Rightarrow b., we know that $\mathcal{U}=\left\{x \in E_{1}:\left(\Omega_{E_{1} / E_{2}}\right)_{x}=0\right\}$ is open in E_{1}, the generic point μ is in \mathcal{U}, as $\operatorname{Spec} k\left(E_{1}\right) \rightarrow \operatorname{Spec} k\left(E_{2}\right)$ is étale $u \neq \emptyset$.

$$
\begin{aligned}
E_{1} \longrightarrow E_{2} \text { is étale } & \Longleftrightarrow \Omega_{E_{1} / E_{2}}=0 \\
& \Longleftrightarrow \Omega_{E_{1} / E_{2}} \otimes_{k} \bar{k}=0 \\
& \Longleftrightarrow E_{1} \times \bar{k} \longrightarrow E_{2} \times \bar{k} \text { is étale. }
\end{aligned}
$$

Without loss of generality, we may assume $k=\bar{k}$.
Let $x \in E_{1}(\bar{k}), a \in \mathcal{U}(\bar{k})$. Then $\mathcal{U}_{x}:=\mathcal{U}-a+x=\mathcal{T}_{x-a}(\mathcal{U})$ is an open neighbourhood of x in E_{1}. Then

$$
f \mid u_{x}: \mathcal{U}_{x} \xrightarrow{\mathcal{T}_{a-x}} \mathcal{U} \xrightarrow{f \mid u} E_{2} \xrightarrow{\mathcal{T}_{f(x-a)}} E_{2}
$$

is étale and thus f is étale.
For $\mathrm{b} . \Rightarrow \mathrm{c}$., there is an exact sequence

$$
f^{*} \Omega_{E_{2} / k} \longrightarrow \Omega_{E_{1} / k} \longrightarrow \Omega_{E_{1} / E_{2}} \longrightarrow 0
$$

We have

$$
\Omega_{E_{1} / k} \otimes k\left(\mathcal{O}_{E_{1}}\right)=\left(T_{0} E_{1}\right)^{*}
$$

and

$$
f^{*} \Omega_{E_{2} / k} \otimes k\left(\mathcal{O}_{E_{2}}\right)=\left(T_{0} E_{2}\right)^{*} .
$$

Now b. implies $(\mathrm{d} f)^{*}:\left(T_{0} E_{2}\right)^{*} \rightarrow\left(T_{0} E_{1}\right)^{*}$ is surjective and thus $\mathrm{d} f$ is injective and thus $\mathrm{d} f$ is bijective.

For c. \Rightarrow a., we know $\Omega_{E_{1} / E_{2}} \otimes k\left(\mathcal{O}_{E_{1}}\right)=0$ and thus $\left(\Omega_{E_{1} / E_{2}}\right)_{\mathcal{O}_{E_{1}}}=0$ and thus $\mathcal{U}=\left\{x \in E_{1}:\left(\Omega_{E_{1} / E_{2}}\right)_{x}=0\right\}$ is open and non-empty. So $\eta \in \mathcal{U}$ and therefore $k\left(E_{1}\right) / k\left(E_{2}\right)$ is étale and also separable.

Lemma 1.3.12. Let $f, g: E_{1} \longrightarrow E_{2}$ be isogenies. Then we have

$$
\mathrm{d}(f+g)=\mathrm{d} f+\mathrm{d} g: T_{0} E_{1} \longrightarrow T_{0} E_{2} .
$$

1.4. Elliptic curves over finite fields. Let $k=\mathbb{F}_{q}$ where $q=p^{n}$. Let X be an \mathbb{F}_{q}-scheme.

The Frobenius, $\operatorname{Fr}_{X}: X \rightarrow X$ is then given by id : $\operatorname{sp}(X) \rightarrow \operatorname{sp}(X)$ on the underlying topological spaces and $x \mapsto x^{q}$ on $\mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$.

If $f: X \rightarrow Y$ is an \mathbb{F}_{q}-morphism, then

commutes.
If $X=\operatorname{Spec} A$ is affine, then Fr_{X} is given by $A \rightarrow A, a \mapsto a^{q}$.
Let E / \mathbb{F}_{q} be an elliptic curve. Then $\operatorname{Fr}_{E}: E \rightarrow E$ is an isogeny because

commutes.
1.4.1. Let X / \mathbb{F}_{q} be a smooth projective curve. Then $\operatorname{deg}\left(\operatorname{Fr}_{X}\right)=q$.

Proof. Let $f: X \longrightarrow \mathbb{P}^{1}$ e a finite morphism. The commutativity of the diagram

implies $\operatorname{deg}\left(\operatorname{Fr}_{X}\right)=\operatorname{deg}\left(\operatorname{Fr}_{\mathbb{P}^{1}}\right)$. Hence we may assume $X=\mathbb{P}^{1}$. Then $\operatorname{deg}\left(\operatorname{Fr}_{\mathbb{P}^{1}}\right)=\left[k(t): k\left(t^{q}\right)\right]=q$.

Lemma 1.4.2. Let E / \mathbb{F}_{q} be an elliptic curve. Then $\operatorname{deg}\left(1-\operatorname{Fr}_{E}\right)=$ $\# E\left(\mathbb{F}_{q}\right)$.
Proof. Fr_{E} is not separable, as $k(E) \rightarrow k(E), x \mapsto x^{q}$ is the induced map on $\eta=$ Spec $k(E)$. Thus, from 1.3.11 it follows that $\mathrm{dFr}_{E}: T E \rightarrow$ $T E$ is the zero map and thus (1.3.12) $\mathrm{d}\left(1-\operatorname{Fr}_{E}\right)=\mathrm{id}: T E \rightarrow T E$ and therefore (1.3.11) $1-\mathrm{Fr}_{E}$ is separable and thus étale.

Let $\left(1-\mathrm{Fr}_{E}\right)^{-1}(0)=\operatorname{ker}\left(1-\mathrm{Fr}_{E}\right)$ be defined by the cartesian diagram

$\operatorname{Ker}\left(1-\operatorname{Fr}_{E}\right)$ is a closed subgroup scheme of E.

We have $\operatorname{ker}\left(1-\operatorname{Fr}_{E}\right)\left(\mathbb{F}_{q}\right)=E\left(\mathbb{F}_{q}\right)$ because let Spec $\mathbb{F}_{q} \xrightarrow{i} E$ be an \mathbb{F}_{q}-rational point. Then

commutes. So i factors Spec $\mathbb{F}_{q} \rightarrow \operatorname{ker}\left(1-\operatorname{Fr}_{E}\right) \rightarrow E$. As $1-\operatorname{Fr}_{E}$ is étale, $\operatorname{ker}\left(1-\operatorname{Fr}_{E}\right) \cong \prod_{i=1}^{r}$ Spec k_{i} with k_{i} / \mathbb{F}_{q} finite, separable with $\operatorname{dim}_{\mathbb{F}_{q}}\left(\oplus_{i=1}^{r} k_{i}\right)=\operatorname{deg}\left(1-\operatorname{Fr}_{E}\right)$. But $1=\operatorname{Fr}_{E}$ on $\operatorname{ker}\left(1-\operatorname{Fr}_{E}\right)$, so $\mathrm{Fr}=1$ on Spec $k_{i} \rightarrow$ Spec k_{i} and thus $x^{q}=x$ for all $x \in k_{i}$, so that $k_{i}=\mathbb{F}_{q}$. Therefore $\operatorname{ker}\left(1-\operatorname{Fr}_{E}\right)=\prod_{i=1}^{r} \operatorname{Spec} \mathbb{F}_{q}$ and therefore $\operatorname{deg}\left(1-\operatorname{Fr}_{E}\right)=$ $r=\# \operatorname{ker}\left(1-\operatorname{Fr}_{E}\right)\left(\mathbb{F}_{q}\right)=\#\left(E\left(\mathbb{F}_{q}\right)\right)$.
Definition 1.4.3. Let X / \mathbb{F}_{q} be a smooth, projective, geometrically connected variety of dimension d. The Zeta-function of X is defined as follows

$$
Z_{X}(t)=\prod_{x \in X_{0}}\left(1-t^{\operatorname{deg}(x)}\right)^{-1} \in \mathbb{Z}[[t]] .
$$

Here X_{0} is the set of closed points on X and for $x \in X_{0}, \operatorname{deg}(x)=$ $\left[k(x): \mathbb{F}_{q}\right]$.

One can easily show that $\prod_{x \in X_{0}}\left(1-t^{\operatorname{deg}(x)}\right)^{-1}$ converges absolutely in $\mathbb{Z}[[t]]$. The connection to the usual zeta-function,

$$
\zeta_{X}(s)=\prod_{x \in X_{0}}\left(1-N(x)^{-s}\right)^{-1}, \quad \operatorname{Re}(s) \gg 1
$$

with $N(x)=\# k(x)$ is as follows:

$$
\zeta_{X}(s)=Z_{X}\left(q^{-s}\right)
$$

Theorem 1.4.4. (Weil-Conjectures)
a. $Z_{X}(t) \in \mathbb{Q}(t)$. Moreover

$$
Z_{X}(t)=\frac{P_{1}(t) \cdots P_{2 d-1}(t)}{P_{0}(t) P_{2}(t) \cdots P_{2 d}(t)}
$$

where $P_{i}(t)$ are polynomials in $\mathbb{Z}[[t]]$. We have $P_{0}(t)=1-t$, $P_{2 d}(t)=1-q^{d} t$.
b. There is a functional equation

$$
Z_{X}\left(\frac{1}{q^{d}} t\right)=Z_{X}(t) \cdot\left(\pm\left(q^{\frac{d}{2}} t\right)^{\chi}\right)
$$

where $\chi=(\Delta \cdot \Delta)$ is the self-intersection number of the diagonal $\Delta \subseteq X \times X$.
c. Riemann hypothesis: if

$$
P_{i}(t)=\prod_{j}\left(1-\alpha_{i j} t\right), \quad \alpha_{i j} \in \mathbb{C}
$$

$$
\text { then }\left|\alpha_{i j}\right|=q^{\frac{i}{2}} \text { for all } i, j .
$$

Proof. For $X=E$ an elliptic curve, this has been proven by Hasse. For X a curve or an abelian variety, the proof has been given by Weil himself. For arbitrary X, the theorem has been proven by Deligne. We will prove a) and c) in case of an elliptic curve.

Let E / \mathbb{F}_{q} be an elliptic curve. Then

$$
\begin{aligned}
Z_{E}(t) & =\prod_{x \in E_{0}}\left(1-t^{\operatorname{deg}(x)}\right)^{-1} \\
& =\prod_{x \in E_{0}}\left(\sum_{n \geq 0} t^{n \operatorname{deg} x}\right) \\
& =\sum_{\substack{D \geq 0 \\
\text { Divisor in }}} t^{\operatorname{deg} D} \\
& =1+\sum_{n=1}^{\infty} \sum_{\substack{D \geq 0 \\
\operatorname{deg} D=n}} t^{n} .
\end{aligned}
$$

Let $D \geq 0$ be a divisor with $\operatorname{deg} D=n \geq 0$. Then
$\#\left\{D^{\prime}: D^{\prime}\right.$ effective divisor on E with $\left.D^{\prime} \sim D\right\}=\frac{q^{l(D)}-1}{q-1}$
with $l(D)=\operatorname{dim} H^{0}(E, \mathcal{L}(D))$, because

$$
\begin{aligned}
\left(H^{0}(E, \mathcal{L}(D)) \backslash\{0\}\right) / \mathbb{F}_{q}^{*} & \longrightarrow\left\{D^{\prime}: D^{\prime} \geq 0, D^{\prime} \sim D\right\} \\
f & \longmapsto(f)+D
\end{aligned}
$$

is a bijection. By Riemann-Roch we have $\operatorname{dim} H^{0}(E, \mathcal{L}(D))=\operatorname{deg} D=$ n.

Hence we obtain

$$
\begin{aligned}
Z_{E}(t) & =1+\sum_{\substack{n=1}}^{\infty} \sum_{\substack{\in \operatorname{Pic}(E) \\
\operatorname{deg} a=n \\
d \geq n \\
D \in \mathfrak{c}}} t^{n} \\
& =1+\sum_{n=1}^{\infty} t^{n} \frac{q^{n}-1}{q-1} \#\{\mathfrak{a} \in \operatorname{Pic}(E): \operatorname{deg} \mathfrak{a}=n\} \\
& =1+\left(\sum_{n=1}^{\infty} t^{n} \sum_{i=1}^{n-1} q^{i}\right) \# \operatorname{Pic}^{0}(E) \\
& =1+\frac{t \cdot \# E\left(\mathbb{F}_{q}\right)}{(1-t)(1-q t)} \\
& =\frac{1-a t+q t^{2}}{(1-t)(1-q t)}
\end{aligned}
$$

with $a=1+q-\# E\left(\mathbb{F}_{q}\right)$.

Let $L_{E}(t):=1-a t+q t^{2}$, so $L_{E}(t)=(1-\alpha t)(1-\beta t)$ for some $\alpha, \beta \in \mathbb{C}$. As $\alpha \beta=q$, we need to show - in order to prove c) for $E-$ that $|\alpha|=|\beta|$.

We have $\alpha=\frac{a}{2}+\sqrt{\frac{a^{2}}{4}-q}, \beta=\frac{a}{2}-\sqrt{\frac{a^{2}}{4}-q}$. So we need to show: $4 q \geq a^{2}$.

Put $A=\operatorname{End}_{\mathbb{F}_{q}}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$.
The involution $f \mapsto \hat{f}$ and the degree map extend to maps

$$
\begin{aligned}
i & : A \longrightarrow A, \quad a \mapsto \hat{a}, \\
\operatorname{deg} & : A \longrightarrow \mathbb{Q}_{\geq 0} .
\end{aligned}
$$

We have $\widehat{a b}=\hat{b} \hat{a}, \hat{m}=m$ for all $m \in \mathbb{Q} \subseteq A, \operatorname{deg} a=a \hat{a}=\hat{a} a$,
$\widehat{a+b}=\hat{a}+\hat{b}$.
We show that deg: $A \rightarrow \mathbb{Q}_{\geq 0}$ is a positive definite quadratic form.

$$
\beta(a, b):=\frac{1}{2}(q(a+b)-q(a)-q(b))
$$

is bilinear, because

$$
\beta(a, b)=\frac{1}{2}((a+b)(\widehat{a+b})-a \hat{a}-b \hat{b})=\frac{1}{2}(a \hat{b}+b \hat{a})
$$

is bilinear.
The Cauchy-Schwartz inequality implies

$$
|\beta(a, b)| \leq \sqrt{\operatorname{deg}(a) \operatorname{deg}(b)}
$$

for all $a, b \in A$. For $a=\operatorname{Fr}_{E}, b=1$ we obtain, using 1.4.1

$$
\left|1+q-\operatorname{deg}\left(1-\operatorname{Fr}_{E}\right)\right|^{2} \leq 4 q .
$$

Lemma 1.4.2 yields $\left|1+q-\# E\left(\mathbb{F}_{q}\right)\right|^{2} \leq 4 q$; hence $a^{2} \leq 4 q$.

Corollary 1.4.5. Let E / \mathbb{F}_{q} be an elliptic curve. Then $\mid \# E\left(\mathbb{F}_{q}\right)-(q+$ 1) $\mid \leq 2 \sqrt{q}$.

Let G / S be a group scheme, $i: H \hookrightarrow G$ a closed immersion. Then H is called a subgroup scheme if $\operatorname{Hom}_{S}(T, H)$ is a subgroup of $\operatorname{Hom}_{S}(T, G)$ for all T.

For example, let $f: G_{1} \rightarrow G_{2}$ be a homomorphism of group schemes over S. Then $\operatorname{ker}(f)=G_{1} \times{ }_{G_{2}} S$ is a subgroup scheme of G.

Let $m \geq 1$ and $f=[m]: E \rightarrow E$. Then $\operatorname{ker}[m]$ is denoted by $E[m]$, the subgroup scheme of m-torsion points of E.

Proposition 1.4.6. Let E / k be an elliptic curve.
a. Let $m \in \mathbb{Z}, m \neq 0, \operatorname{gcd}(m, \operatorname{char}(k))=1$. Then $E[m](\bar{k}) \cong$ $\mathbb{Z} / m \times \mathbb{Z} / m$.
b. Let $p=\operatorname{char}(k)>0$. Then $E\left[p^{r}\right](\bar{k}) \cong \mathbb{Z} / p^{r} \mathbb{Z}$ or 0 .

Definition 1.4.7. Let E / k be an elliptic curve over k, with $\operatorname{char}(k)=$ $p>0$. E is called ordinary (resp. supersingular) if $E[p](\bar{k}) \cong \mathbb{Z} / p \mathbb{Z}$ (resp. $E[p](\bar{k})=0$).

Let E be an elliptic curve and l a prime that does not divide $\operatorname{char}(k)$.
Definition 1.4.8. $T_{l}(E)=\lim _{\leftarrow} E\left[l^{r}\right](\bar{k})\left(\cong \mathbb{Z}_{l} \oplus \mathbb{Z}_{l}\right)$ is called the l-adic Tate-module of $E . T_{l}(E)$ is a continuous $G_{k}=\operatorname{Gal}(\bar{k} / k)$-module.

Proposition 1.4.9. Let E_{1}, E_{2} be elliptic curves. The natural map $\operatorname{Hom}_{k}\left(E_{1}, E_{2}\right) \otimes \mathbb{Z}_{l} \rightarrow \operatorname{Hom}\left(T_{l} E_{1}, T_{l} E_{2}\right)$ is injective.

Corollary 1.4.10. $\operatorname{Hom}_{k}\left(E_{1}, E_{2}\right)$ is a free \mathbb{Z}-module of rank less than or equal to 4 .
1.4.11. Let E / k be an elliptic curve. Then $\operatorname{End}(E)$ is isomorphic to one of the following rings
(i) \mathbb{Z};
(ii) order in an imaginary quadratic field;
(iii) order in an indefinite quaternion algebra.
1.5. Elliptic curves over p-adic fields. Let K / \mathbb{Q}_{p} be a finite extension with ring of integers R and residue field k. Let v be the discrete valuation on R and $\pi \in R$ be a uniformizing element. We assume $\operatorname{char}(k) \neq 2,3$. Let E / k be an elliptic curve with affine Weierstrass equation $y^{2}=x^{3}+A x+B$ and discriminant $\Delta=-16\left(4 A^{3}+27 B^{3}\right)$. The variable change $x=u^{2} x^{\prime}, y=u^{3} y^{\prime}$, for some $u \in K^{\times}$preserves this form. Then

$$
u^{4} A^{\prime}=A, u^{6} B^{\prime}=B, u^{12} \Delta^{\prime}=\Delta .
$$

As E is nonsingular, we have $\Delta \neq 0$. By a change of variables we can achieve $A, B \in R$. Choose coordinates such that $v(\Delta)$ is minimal. Reduce the equation modulo π to obtain a curve \widetilde{E} :

$$
\widetilde{E}: y^{2}=x^{3}+\widetilde{A} x+\widetilde{B}
$$

which is possibly singular (if $v(\Delta)>0$). Let $P \in E(K)$. Choose homogeneous coordinates $P=\left[x_{0}, y_{0}, z_{0}\right]$ such that all $x_{0}, y_{0}, z_{0} \in R$ and at least one coordinate lies in R^{\times}. Then $\widetilde{P}=\left[\widetilde{x_{0}}, \widetilde{y_{0}}, \widetilde{z_{0}}\right] \in \widetilde{E}(k)$. The reduction map fits into a commutative diagram

Definition 1.5.1. Let E be an elliptic curve and \widetilde{E} be the reduced curve for a minimal Weierstrass equation. Then
(i) E has good reduction, if \widetilde{E} is non-singular, hence an elliptic curve over k. This is equivalent to the condition $v(\Delta)=0$, so $\Delta \in R^{\times}$.
(ii) E has multiplicative reduction if $v(\Delta)>0$ and $A, B \in R^{\times}$.
(iii) E has additive reduction if $v(A)>0, v(B)>0$.

In case (ii) \widetilde{E} has a singularity which is a node, in case (iii) \widetilde{E} has a singularity which is a cusp. In case (ii), (iii) are saying that E has bad reduction.

Theorem 1.5.2. Let F be a number field with ring of integers \mathcal{O}_{F} and E / F be an elliptic curve. Let $F_{\mathfrak{p}}$ be the completion at some prime \mathfrak{p}. Then $E / F_{\mathfrak{p}}$, the elliptic curve obtained by base change $\otimes_{F} F_{\mathfrak{p}}$, has good reduction for almost all primes $\mathfrak{p} \subset \mathcal{O}_{F}$.

2. Modular curves and Modular forms

2.1. Riemann surfaces.

Definition 2.1.1. Let M be a 2-dimensional manifold (i.e. M is Hausdorff and every $x \in M$ has an open neighbourhood homeomorphic to $\left.\mathbb{R}^{2}\right)$. A complex structure on M is a family of pairs $\left\{\left(\mathcal{U}_{i}, \phi_{i}\right), i \in I\right\}$ called charts with the following properties:
(i) $\phi_{i}: \mathcal{U}_{i} \rightarrow V_{i}$ is a homeomorphism where $\mathcal{U}_{i} \subseteq M$ and $V_{i} \subseteq \mathbb{C}$ are both open; and
(ii) for all pairs i and $j \phi_{j} \circ \phi_{i}^{-1}: \phi_{i}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right) \rightarrow \phi_{j}\left(\mathcal{U}_{i} \cap \mathcal{U}_{j}\right)$ is holomorphic and the union of all \mathcal{U}_{i} 's is M.
A Riemann surface is a 2 -dimensional manifold together with a complex structure.

Let M be a Riemann surface and $\mathcal{U} \subseteq M$ an open subset. A function $f: U \rightarrow \mathbb{C}$ is called holomorphic (resp. meromorphic) if $f \circ \phi_{i}^{-1}$: $\phi_{i}\left(\mathcal{U} \cap \mathcal{U}_{i}\right) \rightarrow \mathbb{C}$ is holomorphic (resp. meromorphic) for all charts $\left(\mathcal{U}_{i}, \phi_{i}\right)$ of M.

Example 2.1.2. Let X / \mathbb{C} be a smooth projective curve. Then $X(\mathbb{C})$ is a compact Riemann manifold.
Proof. The topology on $X(\mathbb{C})$ is induced via the embedding $X(\mathbb{C}) \hookrightarrow$ $\mathbb{P}_{\mathbb{C}}^{n}$.

For the complex structure, let $x \in X(\mathbb{C}), \mathbb{A}^{n} \subset \mathbb{P}^{n}$ affine with $x \in \mathbb{A}^{n}$. Then $X \cap \mathbb{A}^{n}=V(\mathfrak{p})$ where $\mathfrak{p} \subseteq \mathbb{C}\left[T_{1}, \ldots, T_{n}\right]$ is a prime ideal. Without loss of generality we may assume $x=0$.
$\mathcal{O}_{\mathbb{C}^{n}, 0}$ is a regular local ring with maximal ideal \mathfrak{m}. There are generators $F_{1}, \ldots, F_{n-1}, x_{i} \in \mathfrak{m}$ with F_{1}, \ldots, F_{n-1} generators of $\mathfrak{p} \mathcal{O}_{\mathbb{C}^{n}, 0}$. Again without loss of generality we may assume $i=n$.

Then there exist generators g_{1}, \ldots, g_{r} of \mathfrak{p} of the form $g_{i}=\sum_{j=1}^{n-1} \frac{h_{i j}}{k} F_{j}$ with $h_{i j}, k \in \mathbb{C}\left[T_{1}, \ldots, T_{n}\right]$ and $k(0) \neq 0$.

Hence in a small neighbourhood \mathcal{U} of 0 in \mathbb{C}^{n} we have that $z \in X$ if and only if $F_{i}(z)=0$ for $i=1, \ldots, n-1$.

As $\left(F_{1}, F_{2}, \ldots, F_{n-1}, x_{n}\right)$ are generators of \mathfrak{m} we have that

$$
\operatorname{det}\left(\frac{\partial F_{i}}{\partial x_{j}}(0), \frac{\partial x_{n}}{\partial x_{j}}(0)\right)_{\substack{1 \leq i \leq n-1 \\ 1 \leq j \leq n}} \neq 0
$$

and so

$$
\operatorname{det}\left(\frac{\partial F_{i}}{\partial x_{j}}(0)\right)_{\substack{1 \leq i \leq n-1 \\ 1 \leq j \leq n-1}} \neq 0
$$

The implicit function theorem yields that there exist an $\epsilon>0$ and holomorphic functions $g_{1}(z), \ldots, g_{n-1}(z)$ for $|z|<\epsilon$ such that for $\left|z_{1}\right|, \ldots,\left|z_{n}\right|<\epsilon$ we have $F_{i}\left(z_{1}, \ldots, z_{n}\right)=0$ for $i=1, \ldots, n-1$ if and only if $z_{i}=g_{i}\left(z_{n}\right)$ for $i=1, \ldots, n-1$.

Now let $D=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{i}\right|<\epsilon\right\}$. Then

$$
\begin{aligned}
\left(X \cap \mathbb{A}^{n}\right)(\mathbb{C}) \cap D & \rightarrow \mathbb{C} \\
\left(z_{1}, \ldots, z_{n}\right) & \mapsto z_{n}
\end{aligned}
$$

is a chart (choose ϵ small enough such that $k(z) \neq 0$ on D).
Holomorphic differential forms. Let M be a Riemann surface, $p \in M$. Then by $\mathcal{O}_{M, p}=\mathcal{O}_{p}$ we denote the germs of holomorphic functions in p and \mathcal{O}_{M} the structure sheaf of holomorphic functions on $M . T_{p}(M)=\operatorname{Der}_{\mathcal{O}_{p}}\left(\mathcal{O}_{p}, \mathbb{C}\right)$ is the \mathbb{C}-vector space of derivations $D: \mathcal{O}_{p} \rightarrow \mathbb{C}$.

Let $U \subseteq M$ be open. A differential form ω on M is an assignment

$$
p \in U \mapsto \omega_{p} \in\left(T_{p}(M)\right)^{*} .
$$

For $f \in \Gamma(U, \mathcal{O})$ the differential form $\mathrm{d} f$ on U is defined by $(\mathrm{d} f)_{p}(D)=$ $D\left(f_{p}\right)$ for all $D \in \operatorname{Der}\left(\mathcal{O}_{p}, \mathbb{C}\right)$. A differential form ω on U is called holomorphic, if it is locally of the form $f \mathrm{~d} g$ with f and g holomorphic. The sheaf of holomorphic differential forms is denoted Ω_{M}.

Definition 2.1.3. The genus of M is defined by $\operatorname{dim}_{\mathbb{C}} \Gamma\left(M, \Omega_{M}\right)$ and is denoted by g.

Proposition 2.1.4. The assignment $X \mapsto X(\mathbb{C})$ defines an equivalence of categories
$\{$ smooth projective curves over $\mathbb{C}\} \xrightarrow{\cong}\{$ compact Riemann surfaces $\}$. We have

$$
\begin{aligned}
H^{i}\left(X, \mathcal{O}_{X}\right) & \cong H^{i}\left(X(\mathbb{C}), \mathcal{O}_{X(\mathbb{C})}\right) \\
H^{i}\left(X, \Omega_{X}\right) & \cong H^{i}\left(X(\mathbb{C}), \Omega_{X(\mathbb{C})}\right)
\end{aligned}
$$

Proposition 2.1.5. Let M be a compact Riemann manifold. Then, in singular cohomology, we have

$$
H_{\text {sing }}^{1}(M, \mathbb{Z}) \cong \mathbb{Z}^{2 g}
$$

where g is the genus of M.
Proof. We have $H_{\text {sing }}^{1}(M, \mathbb{Z}) \cong H^{1}(M, \mathbb{Z})$, the latter denoting sheaf cohomology. We know that $H^{1}(M, \mathbb{Z})$ is torsion-free and finitely generated. It suffices to show that $H^{1}(M, \mathbb{C})=H^{1}(M, \mathbb{Z}) \otimes \mathbb{C}$ is a $2 g$ dimensional \mathbb{C}-vector space.

Consider the complex of sheaves

$$
0 \longrightarrow \mathbb{C} \longrightarrow \mathcal{O}_{M} \xrightarrow{\mathrm{~d}} \Omega \longrightarrow 0 .
$$

It is exact, because locally any holomorphic form ω is of the form $\omega=\mathrm{d} F=f \mathrm{~d} z$.

We have an exact sequence

$$
\begin{array}{r}
0 \longrightarrow \mathbb{C} \xrightarrow{\equiv} H^{0}\left(M, \mathcal{O}_{M}\right)=\mathbb{C} \longrightarrow H^{0}\left(M, \Omega_{M}\right) \\
\longrightarrow H^{1}(M, \mathbb{C}) \longrightarrow H^{1}\left(M, \mathcal{O}_{M}\right) \longrightarrow H^{1}\left(M, \Omega_{M}\right) \\
\longrightarrow H^{2}(M, \mathbb{C}) \longrightarrow 0 .
\end{array}
$$

By Riemann-Roch we have $\operatorname{dim} H^{1}\left(M, \Omega_{M}\right)=1$. Hence we get a short exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(M, \Omega_{M}\right) \longrightarrow H^{1}(M, \mathbb{C}) \longrightarrow H^{1}\left(M, \mathcal{O}_{M}\right) \cong \\
& H^{0}\left(M, \Omega_{M}\right)^{*} \longrightarrow 0
\end{aligned}
$$

and thus $\operatorname{dim} H^{1}(M, \mathbb{C})=\operatorname{dim} H^{0}\left(M, \Omega_{M}\right)+\operatorname{dim} H^{0}\left(M, \Omega_{M}\right)^{*}=2 g$.

Let V be a finite dimensional complex space. A subgroup $\Gamma \subset V$ is called a lattice if Γ is discrete and V / Γ is compact. Equivalently, $\Gamma=\mathbb{Z} v_{1} \oplus \cdots \oplus \mathbb{Z} v_{2 g}$ for a \mathbb{R}-basis $\left(v_{1}, \ldots v_{2 g}\right)$ of V.

Let now Γ be a lattice in \mathbb{C}. Then $E_{\Gamma}=\mathbb{C} / \Gamma$ is a compact Riemann surface in a canonical way. We have $g\left(E_{\Gamma}\right)=1$ because for the fundamental group one has $\pi_{1}\left(E_{\Gamma}\right)=\Gamma$ and $\pi_{1}\left(E_{\Gamma}\right)=H_{1}\left(E_{\Gamma}, \mathbb{Z}\right)=$ $H^{1}\left(E_{\Gamma}, \mathbb{Z}\right)=\operatorname{Hom}(\Gamma, \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Z}$. This implies $g\left(E_{\Gamma}\right)=1$ by proposition 2.1.5.

Alternatively, $E_{\Gamma}=\mathbb{R} / \mathbb{Z} \times \mathbb{R} / \mathbb{Z} \cong S^{1} \times S^{1}$ (as topological spaces) and thus $H^{1}\left(E_{\Gamma}, \mathbb{Z}\right) \cong H^{1}\left(S^{1} \times S^{1}, \mathbb{Z}\right) \cong \mathbb{Z}^{2}$.

It follows that E_{Γ} together with $0 \bmod \Gamma$ is an elliptic curve; the addition law is the canonical one.

The following questions arise: is any elliptic curve of the form E_{Γ} ? What are the morphism $E_{\Gamma} \rightarrow E_{\Gamma^{\prime}}$?

Let Lattices be the category of lattices Γ in \mathbb{C} with $\operatorname{Hom}\left(\Gamma_{1}, \Gamma_{2}\right)$ defined as those homeomorphisms $f: \Gamma_{1} \rightarrow \Gamma_{2}$ for which there exists an $\alpha \in \mathbb{C}$ such that $f(\gamma)=\alpha \gamma$ for all $\gamma \in \Gamma_{1}$.

Proposition 2.1.6. We have an equivalence of categories
Lattices $\xlongequal{\cong}\left\{\begin{array}{c}\text { compact Riemann surfaces of } \\ \text { genus } 1 \text { with zero-point }\end{array}\right\} \xrightarrow{\cong}\{$ elliptic curves $/ \mathbb{C}\}$.

Proof. Let M be a compact Riemann surface with $g(M)=1$ with $0 \in M$. We need to show that there exists a Γ such that $E_{\Gamma} \cong M$.

There exists an exact sequence of sheaves

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_{M} \xrightarrow{\exp (2 \pi i)} \mathcal{O}_{M}^{*} \longrightarrow 0
$$

which yields the exact sequence

$$
\begin{array}{cccc}
H^{0}\left(M, \mathcal{O}_{M}\right) & \xrightarrow{\exp (2 \pi i)} & H^{0}\left(M, \mathcal{O}_{M}^{*}\right) & \longrightarrow
\end{array} H^{1}(M, \mathbb{Z})
$$

and thus $M=\operatorname{Pic}^{0}(M) \cong \mathbb{C} / \Gamma$.
It remains to show that $\operatorname{Hom}\left(E_{\Gamma_{1}}, E_{\Gamma_{2}}\right) \cong \operatorname{Hom}\left(\Gamma_{1}, \Gamma_{2}\right)$.
Let f be a homomorphism and g be a holomorphic function such that the square

commutes.
For all $\gamma \in \Gamma_{1}$ the function $z \mapsto g(z+\gamma)-g(z)$ is discrete; hence it is constant. So for all $z, \gamma \in \Gamma_{1}$ we have that $g^{\prime}(z+\gamma)=g^{\prime}(z)$ and thus $g^{\prime}(z)$ is holomorphic on \mathbb{C} / Γ; hence it is also constant. Thus g is of the form $\alpha z+\beta$ for some $\beta \in \Gamma_{2}$ and without loss of generality we may assume that $g(z)=\alpha z$.
2.2. Modular curves as Riemann surfaces. Let $\mathbb{H}=\{z \in \mathbb{C}$: $\operatorname{Im}(z)>0\}$ be the complex upper half plane and $\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{P}_{\mathbb{Q}}^{1}=$ $\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}$.

The elements of $\mathbb{P}_{\mathbb{Q}}^{1} \subset \mathbb{H}^{*}$ are called cusps. \mathbb{H}^{*} is equipped with an action of $S L_{2}(\mathbb{Z})$: for $\alpha=\binom{a b}{c d} \in S L_{2}(\mathbb{Z}), z \in \mathbb{H}, \alpha z$ is defined to be $\frac{a z+b}{c z+d}$, while if $z=(x: y) \in \mathbb{P}_{\mathbb{Q}}^{1}$, then $\alpha z=\frac{a x+b y}{c x+d y}$.

We set $j(\alpha, z)=c z+d$ for $\alpha=\left(\begin{array}{ll}a & b \\ c d\end{array}\right), z \in \mathbb{H}$. We then have

$$
j(\alpha \beta, z)=j(\alpha, \beta z) j(\beta, z)
$$

and

$$
\operatorname{Im}(\alpha z)=\operatorname{Im}\left(\frac{(a z+b)(c \bar{z}+d)}{|c z+d|^{2}}\right)=\frac{\operatorname{Im}(z)}{|j(\alpha, z)|^{2}}
$$

Let $\Gamma \subset S L_{2}(\mathbb{Z})$ be a fixed subgroup of finite index. For $z \in \mathbb{H}^{*}$ let $\Gamma_{z}=\{\gamma \in \Gamma: \gamma z=z\}$, the stabilizer group of z.

Remark 2.2.1.

a. $S L_{2}(\mathbb{Z})$ acts transitively on $\mathbb{P}_{\mathbb{Q}}^{1}$;
b. $\Gamma_{\infty}=\Gamma \cap\left\{\left(\begin{array}{cc} \pm 1 & m \\ 0 & \pm 1\end{array}\right): m \in \mathbb{Z}\right\}$.

Proof.
a. Let $r=\frac{a}{b} \in \mathbb{Q}$, with $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=1$. Then there exist $c, d \in \mathbb{Z}$ such that $a d-b c=1$ and thus $r=\left(\begin{array}{c}a c \\ b \\ b\end{array}\right) \infty$.
b. Let $\alpha=\binom{a b}{c d} \in \Gamma_{\infty}$. Then $(a: c)=(1: 0)$ and thus $c=0$, so that $a d=1$ and therefore $a=d= \pm 1$.

We define $X(\Gamma)=\Gamma \backslash \mathbb{H}^{*}$ and $Y(\Gamma)=\Gamma \backslash \mathbb{H}$. The images of $\mathbb{Q} \cup \infty$ under the projection $\mathbb{H}^{*} \rightarrow X(\Gamma)$ are called cusps. We want to show that $X(\Gamma)$ is a compact Riemann surface.

Definition 2.2.2. We define a topology on \mathbb{H}^{*} as follows:
On \mathbb{H} we choose the natural topology induced by \mathbb{C}. For a cusp $s \in \mathbb{Q}$, the sets $\{s\} \cup\{z \in \mathbb{H}:|z-(s+i r)|<r\}$ for $r \in \mathbb{R}_{+}^{*}$ form a basis of neighbourhoods of s.

For the cusp $s=\infty$, we define $\{\infty\} \cup\{z \in \mathbb{H}: \operatorname{Im}(z)>r\}$ for $r \in \mathbb{R}_{+}^{*}$ as a basis of neighbourhoods.

We remark that $\alpha \in \Gamma$ maps the basis of neighbourhoods of the cusp to the basis of neighbourhoods of the cusp $\alpha(s)$. Consequently, Γ acts continuously on \mathbb{H}^{*}.

Lemma 2.2.3.

a. Let $A, B \subseteq \mathbb{H}$ be compact subsets. Then $\{\gamma \in \Gamma: \gamma A \cap B \neq \emptyset\}$ is finite;
b. let $A \subseteq \mathbb{H}$ be compact and $s \in \mathbb{H}^{*}$ a cusp. Then there exists a neighbourhood U of s such that $\{\gamma \in \Gamma: U \cap \gamma A \neq \emptyset\}$ is finite.

Proof.
a. Without loss of generality, we may assume $A=B$. There exist $r, R>0$ such that $r \leq \operatorname{Im}(z) \leq R$ for all $z \in A$. Let $\gamma=\binom{a b}{c} \in \Gamma$ with $\gamma A \cap A \neq \emptyset$.

Then for $z \in \gamma A \cap A$ we have $r \leq \operatorname{Im}(\gamma z)=\frac{\operatorname{Im}(z)}{|j(\gamma, z)|^{2}} \leq \frac{R}{|j(\gamma, z)|^{2}}$. Thus $|j(\gamma, z)|^{2} \leq \frac{R}{r}$ and thus $c^{2} \operatorname{Im}(z)^{2} \leq|c z+d|^{2} \leq \frac{R}{r}$ so that $c^{2} r^{2} \leq \frac{R}{r}$ and therefore $c \leq \sqrt{\frac{R}{r^{3}}}$ so that c and z are bounded and thus d is bounded too.

As $\gamma A \cap A \neq \emptyset$ implies $\gamma^{-1} A \cap A \neq \emptyset$ and using $\gamma^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$, it follows that a is bounded too. Since both $a z$ and $c z+d$ are bounded, b is also bounded.
b. Without loss of generality, we may assume that $s=\infty$. There exist $r, R>0$ such that $r \leq \operatorname{Im}(z) \leq R$ for all $z \in A$. For $\gamma=\binom{a b}{c d} \in \Gamma \backslash \Gamma_{\infty}($ so $c \neq 0)$ we have $\operatorname{Im}(\gamma z)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}} \leq$ $\frac{\operatorname{Im}(z)}{(\operatorname{cIm}(z))^{2}} \leq \frac{1}{\operatorname{Im}(z)} \leq \frac{1}{r}$ for all $z \in A$.

For $\gamma \in \Gamma_{\infty}, z \in A$ we have $\operatorname{Im}(\gamma z)=\operatorname{Im}(z) \leq R$, so $\gamma A \cap$ $\left\{z \left\lvert\, \operatorname{Im}(z)>\max \left(\frac{1}{r}, R\right)\right.\right\}=\emptyset$ for all $\gamma \in \Gamma$, hence b. follows.

We endow the quotient topology on $X(\Gamma)$ with respect to the projection $\pi: \mathbb{H}^{*} \rightarrow X(\Gamma)$.
Proposition 2.2.4. $X(\Gamma)$ is a Hausdorff space.
Proof. As π is open, we need to show the following claim: for $x, y \in \mathbb{H}^{*}$ with $\gamma x \neq y$ for all $\gamma \in \Gamma$ there are neighbourhoods U, V of x resp. y with $\gamma U \cap V=\emptyset$ for all $\gamma \in \Gamma$.

Case 1: $x, y \in \mathbb{H}$. There exists a compact neighbourhood U of x with $y \notin \gamma U$ for all $\gamma \in \Gamma$, because $\left\{\gamma \in \Gamma: \gamma U^{\prime} \cap\{y\} \neq \emptyset\right\}$ is finite for any compact neighbourhood U^{\prime} of x; we take U such that $U \subseteq U^{\prime} \backslash \cup_{\gamma \in \Gamma} \gamma y$.

Let V^{\prime} be a compact neighbourhood of y. Then $V^{\prime} \backslash \cup_{\gamma \in \Gamma} \gamma U$ is a neighbourhood of y. Choose V to be a neighbourhood of y with $V \subseteq V^{\prime} \backslash \cup_{\gamma \in \Gamma} \gamma U$.

Case 2: $x \in \mathbb{H}, y \in \mathbb{P}_{\mathbb{Q}}^{1}$. This is clear by the second part of Lemma 2.2.3.

Case 3: x and y are both cusps. Without loss of generality we may assume $y=\infty$. Put $L=\{z: \operatorname{Im}(z)=1\}$ and $K=\{z: \operatorname{Im}(z)=1,0 \leq$ $\operatorname{Re}(z) \leq h\}$ a section of L, such that $\cup_{\gamma \in \Gamma_{\infty}} \gamma K=L$.

By the second part of Lemma 2.2.3, there exists a neighbourhood V of $y=\infty$ with $V \cap \gamma K=\emptyset$ and a neighbourhood U of x with $U \cap \gamma K=\emptyset$ for all $\gamma \in \Gamma$. So $\gamma U \cap L=\emptyset$ and $\gamma V \cap L=\emptyset$ for all $\gamma \in \Gamma$; hence $U \cap \gamma V=\emptyset$ for all $\gamma \in \Gamma$.
Proposition 2.2.5. $X(\Gamma)$ is compact.
We first show the following
Lemma 2.2.6. Let $\mathcal{F}=\left\{z \in \mathbb{H}:|z| \geq 1,-\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2}\right\}$. Then $\mathcal{F} \rightarrow S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is surjective. More precisely, \mathcal{F} is a fundamental domain, i.e. $\cup_{\gamma \in S L_{2}(\mathbb{Z})} \gamma \mathcal{F}=\mathbb{H}$ and $\gamma \mathcal{F}^{\circ} \cap \mathcal{F}^{\circ}=\emptyset$ for all $\gamma \in \Gamma, \gamma \neq 1$.
Proof. For $z \in \mathbb{H},\{\operatorname{Im}(\gamma z): \gamma \in \Gamma\}$ is bounded from above (2.2.3, b), hence attains its maximum. Let, without loss of generality, z be such that $\operatorname{Im}(z)=\max \{\operatorname{Im}(\gamma z): \gamma \in \Gamma\}$. After translation, we may assume that $-\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2}$.

Assume $z \notin \mathcal{F}$, so that $|z|<1$. For $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in S L_{2}(\mathbb{Z})$ we have $\operatorname{Im}(S z)=\operatorname{Im}\left(-\frac{1}{z}\right)=\frac{\operatorname{Im}(z)}{|z|^{2}}>\operatorname{Im}(z)$. This contradicts the choice of $z ;$ hence $z \in \mathcal{F}$.

It is an easy exercise to show that the subgroup of $S L_{2}(\mathbb{Z})$ generated by S and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ coincides with $S L_{2}(\mathbb{Z})$. From this the Lemma follows.
Proof (of 2.2.5). Consider the case $\Gamma=S L_{2}(\mathbb{Z})$. Let $\left\{U_{i}\right\}_{i \in I}$ be an open covering of $X(\Gamma)$. Assume $i_{0} \in I$ such that $\pi^{-1}\left(U_{i_{0}}\right)$ is a neighbourhood of ∞. Then $\left\{\pi^{-1}\left(U_{i}\right)\right\}_{i \in I \backslash i_{0}}$ is an open covering of the compact set $\mathcal{F} \backslash \pi^{-1}\left(U_{i_{0}}\right)$, hence it has a finite sub-covering. The same then holds for $\left\{U_{i}\right\}$ and thus $X(\Gamma)$ is compact for $\Gamma=S L_{2}(\mathbb{Z})$.

If $\Gamma \subseteq S L_{2}(\mathbb{Z})$ is a subgroup of finite index, then $S L_{2}(\mathbb{Z})=\cup_{i=1}^{r} \Gamma \alpha_{i}$, so $\cup_{i=1}^{r} \alpha_{i}(\mathcal{F} \cup\{\infty\}) \subset \mathbb{H}^{*}$ is compact and

$$
\cup_{i=1}^{r} \alpha_{i}(\mathcal{F} \cup\{\infty\}) \longrightarrow \mathbb{H}^{*} \longrightarrow X(\Gamma)
$$

is surjective; hence $X(\Gamma)$ is compact.

The complex structure on $\Gamma \backslash \mathbb{H}^{*}$.

Lemma 2.2.7.

a. Let P_{0} be a cusp. Then there exists a unique natural number $h>0$ such that for $\rho \in S L_{2}(\mathbb{Z})$ with $\rho\left(P_{0}\right)=\infty$ we have

$$
\Gamma_{P_{0}}=\rho^{-1}\left\{ \pm\left(\begin{array}{cc}
1 & h \\
0 & 1
\end{array}\right)^{m}: m \in \mathbb{Z}\right\} \rho .
$$

b. Let $P \in \mathbb{H}$. Then Γ_{P} is a finite cyclic group.

Proof.
a. Using 2.2.1 we have $\Gamma_{P_{0}}=\rho^{-1}\left(\rho \Gamma \rho^{-1}\right)_{\infty} \rho$ and, for some $h \in \mathbb{N}$, $h>0,\left(\rho \Gamma \rho^{-1}\right)_{\infty}=\left\{ \pm\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)^{m}: m \in \mathbb{Z}\right\}$. It remains to show that h does not depend on the choice of ρ.

If $\rho P_{0}=\infty=\rho^{\prime} P_{0}$, then $\rho^{\prime}=\gamma \rho$ with $\gamma= \pm\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ for some $n \in \mathbb{Z}$, so $\left(\rho^{\prime} \Gamma \rho^{\prime-1}\right)_{\infty}=\left(\gamma \rho \Gamma \rho^{-1} \gamma^{-1}\right)_{\infty}=\gamma\left(\rho \Gamma \rho^{-1}\right)_{\infty} \gamma^{-1}=$ $\left(\rho \Gamma \rho^{-1}\right)_{\infty}$.
b. by $2.2 .3 \mathrm{a}, \Gamma_{P}$ is finite. Let $\alpha \in S L_{2}(\mathbb{R})$ such that $\alpha i=P$. Then $\alpha^{-1} \Gamma_{p} \alpha$ is a finite subgroup of $\left\{\beta \in S L_{2}(\mathbb{R}): \beta i=i\right\}=$ $\left\{\binom{\sin z \cos z}{-\cos z \sin z}: z \in \mathbb{R}\right\} \cong\{\xi \in \mathbb{C}: \xi \bar{\xi}=1\}$. So $\alpha^{-1} \Gamma_{p} \alpha$ is cyclic and then so is Γ_{P}.

Lemma 2.2.8. Let $P \in \mathbb{H}^{*}$. Then there exists a neighbourhood U of P with the following properties:
(i) if $\gamma U \cap U \neq \emptyset$ then $\gamma \in \Gamma_{P}$;
(ii) $\gamma U=U$ for all $\gamma \in \Gamma_{P}$.

Proof. First case: let P be a cusp; without loss of generality we may assume $P=\infty$. We choose $U=\{z \in \mathbb{H}: \operatorname{Im}(z)>1\}$. For $\gamma \in \Gamma \backslash \Gamma_{\infty}$ we have, writing $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c \neq 0$:

$$
\operatorname{Im}(\gamma z)=\frac{\operatorname{Im}(z)}{|j(\gamma, z)|^{2}} \leq \frac{\operatorname{Im}(z)}{c^{2} \operatorname{Im}(z)^{2}} \leq \frac{1}{\operatorname{Im}(z)}<1
$$

for $z \in U$, so $\gamma U \cap U=\emptyset$. For $\gamma \in \Gamma_{\infty}$ we have $\gamma U=U$.
Second case: $P \in \mathbb{H}$. There exists a compact neighbourhood U^{\prime} of P with $\Gamma^{\prime}:=\left\{\gamma: \gamma U^{\prime} \cap U^{\prime} \neq \emptyset\right\}$ is finite. Then there exists an $U_{0} \subseteq$ $U^{\prime} \backslash \cup_{\gamma \in \Gamma^{\prime} \backslash \Gamma_{P}} \gamma U^{\prime}$, an open neighbourhood of P such that $\gamma U_{0} \cap U_{0} \neq \emptyset$ implies $\gamma \in \Gamma_{P}$.

Finally define $U:=\cap_{\gamma \in \Gamma_{P}} \gamma U_{0}$.

For $P \in \mathbb{H}$ define the order e_{P} of P as follows: $e_{P}=\frac{1}{2} \#\left(\Gamma_{P}\right)$. (Note that $\{ \pm 1\} \subseteq \Gamma_{P}$.) P is called an elliptic point if $e_{P}>1$.

Let $\lambda: \mathbb{H} \rightarrow \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be a biholomorphic map with $\lambda(P)=0$ (for example $\lambda(z)=\frac{z-P}{z-P}$). Let $\gamma \in \Gamma_{P}$ be a generator of Γ_{P}. Let $\bar{\gamma}=\lambda \circ \gamma \circ \lambda^{-1}: \mathbb{D} \rightarrow \mathbb{D}$. Then $\bar{\gamma}$ is an isomorphism with $\bar{\gamma}(0)=0$ and $\bar{\gamma}^{e_{P}}=\mathrm{id}$, so $\bar{\gamma}(z)=\xi z$ for all $z \in \mathbb{D}$, where ξ is a primitive e_{P}-th root of unity (Schwarz' Lemma).

Lemma 2.2.9. The map $\mathbb{D} \rightarrow \mathbb{D}, z \mapsto z^{e_{P}}$ induces a homeomorphism $\mathbb{D} /\langle\bar{\gamma}\rangle \xrightarrow{\cong} \mathbb{D}$.

Let U be as in lemma 2.2.8. Then the map

$$
\begin{array}{ccccc}
\lambda_{P}: \begin{array}{cc}
\Gamma_{P} \backslash U & \lambda \\
& \subset \Gamma_{P} \backslash \mathbb{H}^{*}
\end{array} & z & \longmapsto \bar{\gamma}\rangle \backslash \mathbb{D} & \longrightarrow & \mathbb{D} \\
& & z^{e_{P}}
\end{array}
$$

is a homeomorphism onto an open subset of \mathbb{C}.
Lemma 2.2.10. The map

$$
\begin{aligned}
U_{\infty}=\{z \in \mathbb{H}: \operatorname{Im}(z)>1\} \cup \infty & \longrightarrow \mathbb{C} \\
z & \longmapsto\left\{\begin{array}{cl}
\exp \left(\frac{2 \pi i z}{h}\right) & \text { if } z \in \mathbb{H} \\
0 & \text { if } z=\infty
\end{array}\right.
\end{aligned}
$$

induces a homeomorphism

$$
\lambda_{\infty}:\left\{ \pm\left(\begin{array}{cc}
1 & h \\
0 & 1
\end{array}\right)^{m}: m \in \mathbb{Z}\right\} \backslash U_{\infty} \longrightarrow V \subseteq \mathbb{C}
$$

onto an open disc V around 0 .
For the cusp P we obtain, by using 2.2.7, a homeomorphism

$$
\lambda_{P}: \quad \Gamma_{P} \backslash \rho^{-1}\left(U_{\infty}\right) \quad \xrightarrow{\rho}\left\{ \pm\left(\begin{array}{cc}
1 & h \\
0 & 1
\end{array}\right)^{m}: m \in \mathbb{Z}\right\} \backslash U_{\infty} \rightarrow V \subseteq \mathbb{C} .
$$

$$
\subseteq \Gamma \backslash \mathbb{H}^{*}
$$

The λ_{P}, for $P \in \mathbb{H}^{*}$ defined as above, define the complex structure on $X(\Gamma)$.
2.3. Moduli properties of modular curves. Let $N \geq 1$ be a natural number. We define

$$
\begin{aligned}
\Gamma_{0}(N) & =\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0 \quad \bmod N\right\} \\
X_{0}(N) & =X\left(\Gamma_{0}(N)\right)=\Gamma_{0}(N) \backslash \mathbb{H}^{*} \\
Y_{0}(N) & =Y\left(\Gamma_{0}(N)\right)=\Gamma_{0}(N) \backslash \mathbb{H} .
\end{aligned}
$$

In the following we discuss the modular curves $X_{0}(N)\left(\right.$ resp. $\left.Y_{0}(N)\right)$ as moduli spaces of elliptic curves with Level structure.

Proposition 2.3.1. There is a canonical bijection of the set $\mathcal{E} \mathcal{L} \mathcal{L}_{0}(N)(\mathbb{C})$ of isomorphism classes of pairs (E, C), where E as an elliptic curve over \mathbb{C} and C a cyclic subgroup of $E(\mathbb{C})$ of order N, and the set $Y_{0}(N)$:

$$
\varphi: \mathcal{E} \mathcal{L} \mathcal{L}_{0}(N)(\mathbb{C}) \rightarrow Y_{0}(N) .
$$

Proof. Case 1: Let $N=1$. For $z \in \mathbb{H}$ we consider the lattice $\Lambda_{z}=$ $\mathbb{Z} \oplus \mathbb{Z} z$ and define $E_{z}=\mathbb{C} / \Lambda$. For $z, z^{\prime} \in \mathbb{H}$ we have

$$
E_{z} \cong E_{z^{\prime}} \Longleftrightarrow \gamma z=z^{\prime} \quad \text { for some } \gamma \in S L_{2}(\mathbb{Z})
$$

$" \Leftarrow "$: Let $E_{z} \cong E_{z^{\prime}}$. Then there exists $\lambda \in \mathbb{C}^{\times}: \lambda \Lambda_{z^{\prime}}=\Lambda_{z}$. So $\lambda_{z^{\prime}}=a z+b, \lambda=c z+d$ with $a, b, c, d \in \mathbb{Z}$. We have moreover $\lambda^{-1} z=$ $a^{\prime} z^{\prime}+b^{\prime}, \lambda^{-1}=c^{\prime} z^{\prime}+d^{\prime}$, as $\lambda^{-1} \Lambda_{z}=\Lambda_{z^{\prime}}$, hence $\gamma z=z^{\prime}$ with $\gamma=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
We have \mathbb{R}-linear maps

$$
\begin{aligned}
& f: \mathbb{C} \longrightarrow \mathbb{C}, u \longmapsto \lambda u, \\
& g: \mathbb{C} \longrightarrow \mathbb{C}, u \longmapsto \lambda^{-1} u .
\end{aligned}
$$

The matrix of f with respect to basis $(1, z),\left(1, z^{\prime}\right)$ is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the matrix of g with respect to basis $\left(1, z^{\prime}\right),(1, z)$ is $\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$, hence $\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, so $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)= \pm 1$. Then

$$
0<\operatorname{Im} z^{\prime}=\operatorname{Im} \frac{a z+b}{c z+d}=\frac{\operatorname{det} \gamma \cdot \operatorname{Im} z}{|c z+d|^{2}} \Rightarrow \operatorname{det} \gamma=1
$$

" \Rightarrow ": Define $\lambda=c z+d$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then

$$
\lambda z^{\prime}=\lambda \gamma z=a z+b, \lambda=c z+d \Rightarrow \lambda \Lambda_{z^{\prime}} \subseteq \Lambda_{z} .
$$

For $\gamma^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ we have $\gamma^{-1} z^{\prime}=z$, so $\left(-c z^{\prime}+a\right) \Lambda_{z} \subseteq \Lambda_{z^{\prime}}$ and

$$
-c z^{\prime}+a=j\left(\gamma^{-1}, \gamma z\right)=j(1, z) j(\gamma, z)^{-1}=\lambda^{-1} \Rightarrow \lambda \Lambda_{z^{\prime}} \subseteq \Lambda_{z},
$$

hence we have $E_{z} \cong E_{z^{\prime}}$.
Let Λ be an arbitrary lattice on \mathbb{C} and w_{1}, w_{2} a \mathbb{R}-basis without loss of generality $\operatorname{Im}\left(w_{1} / w_{2}\right)>0$. Define $z:=w_{1} / w_{2} \in \mathbb{H}$. Then $\Lambda=w_{2} \Lambda_{z}$, i.e. $\mathbb{C} / \Lambda \cong E_{z}$. Hence the map

$$
\begin{aligned}
S L_{2}(\mathbb{Z}) \backslash \mathbb{H} & \longrightarrow \text { Isomorphism classes of elliptic curves } \\
z & \longmapsto E_{z}
\end{aligned}
$$

is a bijection.
Case 2: $N>1$. Define $C_{z}=\frac{1}{N} \mathbb{Z}+z \mathbb{Z} / \Lambda_{z} \subseteq E_{z}$, then $\left(E_{z}, C_{z}\right) \cong$
$\left(E_{z^{\prime}}, C_{z^{\prime}}\right) \Longleftrightarrow$ there exists $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ such that $\gamma z=z^{\prime}$ and for $\lambda=c z+d$ we have

$$
\begin{equation*}
\lambda\left(\frac{1}{N} \mathbb{Z}+\mathbb{Z} z^{\prime}\right)=\frac{1}{N} \mathbb{Z}+\mathbb{Z} z \tag{*}
\end{equation*}
$$

Consider the diagram

Then (*) implies;
$\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) e_{2}=m e_{2}$ modulo N for some $m \in \mathbb{Z} \Leftrightarrow c \equiv 0$ modulo N.
So $\left(E_{z}, C_{z}\right) \cong\left(E_{z^{\prime}}, C_{z^{\prime}}\right)$ is equivalent that there exists $\gamma \in \Gamma_{0}(N)$ such that $\gamma z=z^{\prime}$. It remains to show; for all (E, C) there exists an isomorphism $z:(E, C) \cong\left(E_{z}, C_{z}\right)$. Choosing $z^{\prime} \in \mathbb{H}$ such that $E_{z^{\prime}} \cong E$, then $(E, C) \cong\left(E_{z^{\prime}}, C_{z^{\prime}}\right)$ with $C^{\prime}=\Lambda^{\prime} / \Lambda_{z^{\prime}}$. Choose $\gamma \in S L_{2}(\mathbb{Z})$ with $\gamma^{t} \circ \Psi^{-1}\left(N \Lambda^{\prime}\right)=N e_{1} \mathbb{Z}+e_{2} \mathbb{Z}$. Then $(E, C) \cong\left(E_{z}, C_{z}\right)$ with $z=\gamma^{-1} z^{\prime}$.

Let S be a noetherian scheme, $\mathcal{F}: \mathbf{S c h} / S \rightarrow$ Sets, a contravariant functor from the category $\mathbf{S c h} / S$ of noetherian S-schemes to the category of sets.

Definition 2.3.2. A (noetherian) S-scheme M is called fine moduli space for \mathcal{F}, if M represents the functor \mathcal{F}, i.e. if there is an isomorphism of functor

$$
\mathcal{F} \longrightarrow \operatorname{Hom}_{\mathbf{S c h} / S}(, M) .
$$

Let $N \geq 1$. We consider the following functor $\mathcal{E} \mathcal{L} \mathcal{L}_{0}(N): \operatorname{Sch} / \operatorname{Spec} \mathbb{Z}\left[\frac{1}{N}\right] \longrightarrow$ Sets

$$
S \longrightarrow\left\{\begin{array}{c}
\text { Isomorphism classes of pairs }(E, C) \\
\text { where } E / S \text { is an elliptic curve and } \\
C \text { a cyclic subgroup of order } N
\end{array}\right\}
$$

Remark. Note that " $E \xrightarrow{\pi} S$ is an elliptic curve" means that E / S is on abelian scheme of relative dimension 1. (This implies that all fibers are elliptic curves). A cyclic subgroup C on E of order N is a closed subgroup scheme of E, such that $\pi: C \rightarrow E \rightarrow S$ is finite, flat and $\pi_{*} O_{C}$ a locally free O_{S}-module of rank N. Moreover if Spec $\Omega \rightarrow S$ is a geometric point, then $C(\Omega) \cong \mathbb{Z} / N \mathbb{Z}$.

Lemma 2.3.3. $\mathcal{E} \mathcal{L} \mathcal{L}_{0}(N)$ does not have a fine moduli space.

Proof. Assume it does have a fine moduli space that we denote by M. Let k^{\prime} / k be an extension of fields with $(\operatorname{char}(k), N)=1$ or $\operatorname{char}(k)=0$. Then $M(k) \rightarrow M\left(k^{\prime}\right)$ is injective, hence $\mathcal{E} \mathcal{L} \mathcal{L}_{0}(N)(k) \rightarrow \mathcal{E} \mathcal{L} \mathcal{L}_{0}(N)\left(k^{\prime}\right)$ is injective. Let $(E, C) \in \mathcal{E} \mathcal{L} \mathcal{L}_{0}(N)(k)$. Choose k with $k^{\times} /\left(k^{\times}\right)^{2} \neq$ $1,(\operatorname{char}(k), 2 N)=1$. Then $\{ \pm \mathrm{id}\} \cong \mathbb{Z} / 2 \mathbb{Z} \cong \operatorname{Aut}(E, C)$. Let φ : $G_{k} \rightarrow\{ \pm \mathrm{id}\} \subseteq \operatorname{Aut}(E, C)$ a nontrivial homomorphism (ex. because $\left.H^{1}\left(k, \mu_{2}\right) \cong k^{\overline{\times}} /\left(k^{\times}\right)^{2}\right)$. Let $k^{\prime}=\bar{k}^{\text {ker } \varphi}$, so

$$
\varphi: G_{k} \rightarrow \operatorname{Gal}\left(k^{\prime} / k\right) \xrightarrow{\bar{\varphi}}\{ \pm \mathrm{id}\} .
$$

The pair $\left(E \times_{k} k^{\prime}, C \times_{k} k^{\prime}\right)$ with the $\operatorname{Gal}\left(k^{\prime} / k\right)$-action $\bar{\varphi}(\sigma) \times \sigma, \sigma \in$ $\operatorname{Gal}\left(k^{\prime} / k\right)$ comes via base change k^{\prime} / k from a pair $\left(E^{\prime}, C^{\prime}\right) \in \mathcal{E} \mathcal{L} \mathcal{L}_{0}(N)(k)$. We have $\left(E^{\prime}, C^{\prime}\right) \times_{k} k^{\prime} \cong(E, C) \times_{k} k^{\prime}$ but $(E, C) \not \not 二\left(E^{\prime}, C^{\prime}\right)$.
This finishes the proof of the Lemma.
Definition 2.3.4. A S-scheme M is called coarse moduli space for $F: \mathbf{S c h} / S \rightarrow$ Sets if there exists a morphism

$$
\varphi: F \longrightarrow \operatorname{Hom}(, M)
$$

such that
a. If Spec $\bar{k} \rightarrow S$ is a geometric point, then φ induces an isomorphism

$$
F(\bar{k}) \longrightarrow \operatorname{Hom}(\operatorname{Spec} \bar{k}, M),
$$

b. φ is universal with respect to morphisms $F \rightarrow \operatorname{Hom}(, M)$, i.e.

$$
\operatorname{Hom}(F, \operatorname{Hom}(, N)) \cong \operatorname{Hom}_{\mathbf{S c h} / S}(M, N)
$$

for any S-scheme N.
If a coarse moduli space exists, then it is uniquely determined by b. (up to isomorphism).
Proposition 2.3.5. $\mathcal{E L} \mathcal{L}_{0}(N)$ has a coarse moduli space denoted by $Y_{0}(N) \rightarrow$ Spec $\mathbb{Z}\left[\frac{1}{N}\right] . Y_{0}(N)$ is smooth and quasi-projective over $\mathbb{Z}\left[\frac{1}{N}\right]$ of relative dimension 1 .

Finally we briefly discuss the moduli problem for $X_{0}(N)$.
Definition 2.3.6. A generalized elliptic curve over S is a stable curve $\pi: \mathcal{C} \rightarrow S$ of genus 1, i.e. π is proper flat, all geometric fibers $\mathcal{C}_{\bar{s}}$ for $\bar{s} \in S$ are reduced, connected and 1-dimensional and satisfy the following conditions;
a. $\mathcal{C}_{\bar{s}}$ has only ordinary double points as singularities.
b. $\operatorname{dim}_{k(\bar{s})} H^{1}\left(\mathcal{C}_{\bar{s}}, O_{\mathcal{C}_{\bar{s}}}\right)=1$
together with a morphism

$$
"+": \mathcal{C}^{\text {reg }} \times_{S} \mathrm{C} \longrightarrow \mathcal{C}
$$

(where $\mathcal{C}^{\text {reg }}$ is the open subscheme of \mathcal{C} where π is smooth) such that,
(i) the restriction of " + " to $\mathcal{C}^{\text {reg }}$ induces a commutative group scheme structure on $\mathcal{C}^{\text {reg }} / S$,
(ii) " + ": $\mathcal{C}^{\text {reg }} \times \mathcal{C} \rightarrow \mathcal{C}$ defines an action of $\mathcal{C}^{\text {reg }}$ on \mathcal{C},
(iii) If \bar{s} is a geometric point of S then $\mathcal{C}_{\bar{s}}$ is either smooth over space $k(\bar{s})$ (hence an elliptic curve) or of type a.

In the latter case, we require that $\mathcal{C}_{\bar{s}}^{\text {reg }}$ acts by rotation on the graph $\Gamma\left(\mathcal{C}_{\bar{s}}\right)$. Let $\overline{\mathcal{E} \mathcal{L} \mathcal{L}_{0}}(N)(S)$ be isomorphism classes of pairs (\mathcal{C}, C) where \mathcal{C} is a generalized elliptic curve over S, C a subgroup scheme of $\mathfrak{C}^{\text {reg }}$ with $C_{\bar{s}} \cong \mathbb{Z} / N \mathbb{Z}$ for all $\bar{s} \rightarrow s$ such that $C_{\bar{s}}$ meets all components of $\mathrm{C}_{\bar{s}}$.

Theorem 2.3.7. $\overline{\mathcal{E L} \mathcal{L}_{0}}(N)$ has a coarse moduli space denoted by $X_{0}(N)$. $X_{0}(N)$ is smooth projective geometrically connected of relative dimension 1 over $\operatorname{Spec} \mathbb{Z}\left[\frac{1}{N}\right]$. The morphism $\mathcal{E} \mathcal{L} \mathcal{L}_{0}(N) \hookrightarrow \overline{\mathcal{E} \mathcal{L} \mathcal{L}_{0}}(N)$ induces an open immersion

$$
Y_{0}(N) \longrightarrow X_{0}(N) .
$$

Proposition 2.3.5 and Theorem 2.3.7 imply that there exists smooth curve $Y_{0}(N)$ over \mathbb{Q} and $X_{0}(N)$ defined over \mathbb{Q} such that

$$
Y_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathbb{H} \hookrightarrow \Gamma_{0}(N) \backslash \mathbb{H}^{*}=X_{0}(N)(\mathbb{C})
$$

3. Modular forms

3.1. Let $k \geq 0$ be an integer, $\alpha \in G L_{2}^{+}(\mathbb{R}):=\left\{\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(\mathbb{R}): \operatorname{det} \alpha>0\right\}$. Consider a function $f: \mathbb{H} \rightarrow \mathbb{C}$ and define

$$
\left.f\right|_{\alpha}(z):=j(\alpha, z)^{-2 k} \operatorname{det}(\alpha)^{k} f(\alpha z)
$$

where $\alpha z=\frac{a z+b}{c z+d}$. We have $\left.f\right|_{\alpha \beta}=\left.\left(\left.f\right|_{\alpha}\right)\right|_{\beta}$.
Definition 3.1.1. Let $\Gamma \in S L_{2}(\mathbb{Z})$ with $-1 \in \Gamma$ be a subgroup of finite index and $k \geq 0$. A meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called modular function for Γ of weight $2 k$ if the following properties hold
(i) $\left.f\right|_{\gamma}=f$ for all $\gamma \in \Gamma$, i.e. $f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2 k} f(z)$ for all $\binom{a b}{c d} \in \Gamma, z \in \mathbb{H} ;$
(ii) f is meromorphic in the cusps.

This second condition means the following: let s be a cusp and $\rho \in S L_{2}(\mathbb{Z})$ with $\rho(s)=\infty$. Let $h \geq 1$ be as in Lemma 2.2.6 a. So $\rho^{-1}\left\{\left(\begin{array}{cc} \pm 1 m h \\ 0 & \pm 1\end{array}\right): m \in \mathbb{Z}\right\} \rho=\Gamma_{s}$. Let $U_{\infty}=\{z: \operatorname{Im}(z)>1\}$. Then

$$
\left.f\right|_{\rho^{-1}}(z+h)=\left(\left.f\right|_{\rho^{-1} \circ\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right)}\right)(z)=\left.f\right|_{\rho^{-1}}(z)
$$

so $\left.f\right|_{\rho^{-1}}(z)=\tilde{f}\left(q_{h}\right)$ where \tilde{f} is meromorphic on $\mathbb{D} \backslash\{0\}$ and $q_{h}=$ $\exp \left(\frac{2 \pi i}{h} z\right)$, thus $\tilde{f}\left(q_{h}\right)=\sum_{n=-\infty}^{\infty} a_{n} q_{h}^{n}$ in a Laurent-expansion. We then have

$$
\begin{aligned}
f \text { meromorphic in } s & \Longleftrightarrow a_{n}=0 \text { for all } n \ll 0 \\
f \text { holomorphic in } s & \Longleftrightarrow a_{n}=0 \text { for all } n<0
\end{aligned}
$$

and $\operatorname{ord}_{s}(f)=\min \left\{n: a_{n} \neq 0\right\}$.

Definition 3.1.2. A modular function f is called modular form (for Γ of weight $2 k$) if f is holomorphic in the cusps. f is called a cusp form if $\operatorname{ord}_{s}(f)>0$ for all cusps s.

Define $M_{2 k}(\Gamma)$ to be $\{f: \mathbb{H} \rightarrow \mathbb{C}: f$ a modular form for Γ of weight $2 k\}$ and $S_{2 k}(\Gamma)$ to be $\{f: \mathbb{H} \rightarrow \mathbb{C}: f$ a cusp form for Γ of weight $2 k\}$.

Proposition 3.1.3 (Eisenstein series). Let k be an integer which is at least 2 and let $z \in \mathbb{H}$. The function

$$
G_{2 k}(z):=\sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m z+n)^{2 k}}
$$

is a nonzero modular form of weight $2 k$ for $S L_{2}(\mathbb{Z})$.
Proof. Convergence and holomorphy on \mathbb{H} follow from the following well-known

Lemma 3.1.4. Let Ω be a lattice in \mathbb{C}. The series

$$
L:=\sum_{0 \neq \rho \in \Omega} \frac{1}{|\rho|^{t}}
$$

is absolutely convergent for $t>2$.

To show that $G_{2 k}(z)$ is finite at ∞, we will show that $G_{2 k}(z)$ approaches an explicit finite limit as $z \rightarrow i \infty$. The terms of $G_{2 k}(z)$ are of the form $1 /(m z+n)^{2 k}$; those which have $m \neq 0$ will contribute 0 to the sum, while those which have $m=0$ will each contribute $1 / n^{2 k}$. Therefore we have

$$
\lim _{z \rightarrow i \infty} G_{2 k}(z)=\sum_{0 \neq n \in \mathbb{Z}} \frac{1}{n^{2 k}}=2 \zeta(2 k),
$$

which is finite (and nonzero).
To show that $G_{2 k}(z)$ is modular for $S L_{2}(\mathbb{Z})$, it will suffice to show that it transforms correctly under the matrices S and T; it can be seen that $G_{2 k}(z)=G_{2 k}(z+1)$ by substituting $z+1$ for z; we have already shown that $G_{2 k}(z)$ is uniformly and absolutely convergent so we can rearrange the terms as necessary. We now show that $G_{2 k}(z)$ transforms correctly under S by rearranging;

$$
\begin{aligned}
z^{-2 k} \cdot G_{2 k}(-1 / z) & =\sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}} \frac{z^{-2 k}}{(-m / z+n)^{2 k}} \\
& =\sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}} \frac{1}{(-m+n z)^{2 k}}=G_{2 k}(z),
\end{aligned}
$$

as required (again, we are using the fact that $G_{2 k}(z)$ is uniformly and absolutely convergent on \mathbb{H}), and so therefore $G_{2 k}(z)$ is a modular form of weight $2 k$, which is what we wanted to prove.

We see from the proof that $G_{2 k}(z)$ does not vanish at ∞, so we have an example of a nonzero form of nonzero weight which is not a cusp form. We will now exhibit the Fourier expansion of $G_{2 k}(z)$.

Proposition 3.1.5. Let $k \geq 2$ be an integer, and let $z \in \mathbb{H}$. The modular form $G_{2 k}(z)$ has Fourier expansion

$$
G_{2 k}(z)=2 \zeta(2 k)+\frac{2(2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n},
$$

where we define $\sigma_{2 k-1}(n)$ to be the function

$$
\sigma_{2 k-1}(n):=\sum_{0<m \mid n} m^{2 k-1} .
$$

There is a formula for the cotangent function;

$$
\pi \cot (\pi z)=\frac{1}{z}+\sum_{m=1}^{\infty}\left(\frac{1}{z+m}+\frac{1}{z-m}\right)
$$

and we also have the identity

$$
\pi \cot (\pi z)=\pi \frac{\cos (\pi z)}{\sin (\pi z)}=i \pi-\frac{2 i \pi}{1-q}=i \pi-2 i \pi \sum_{n=0}^{\infty} q^{n}
$$

where $q:=e^{2 \pi i z}$. By equating these identities, we see that

$$
\begin{equation*}
\frac{1}{z}+\sum_{m=1}^{\infty}\left(\frac{1}{z+m}+\frac{1}{z-m}\right)=\pi-2 i \pi \sum_{n=0}^{\infty} q^{n} \tag{3.1.6}
\end{equation*}
$$

We differentiate both sides of (3.1.6) $2 k-1$ times with respect to z to obtain the formula

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}} \frac{1}{(m+z)^{2 k}}=\frac{(-2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n=1}^{\infty} n^{2 k-1} q^{n} \tag{3.1.7}
\end{equation*}
$$

which is valid for $k \geq 2$. We note that the left hand side of this looks very like a component of $G_{2 k}$, whereas the right hand side looks much like a component of the Fourier expansion given in the theorem.

We will now use (3.1.7) to write $G_{2 k}(z)$ as a Fourier expansion. Because $k \geq 2$, we have absolute convergence of our series, so the following
rearrangements are valid;

$$
\begin{aligned}
G_{2 k}(z) & =\sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}} \frac{1}{(m z+n)^{2 k}} \\
& =\sum_{0 \neq n \in \mathbb{Z}} \frac{1}{n^{2 k}}+2 \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(m z+n)^{2 k}} \\
& =2 \zeta(2 k)+2 \frac{(-2 \pi i)^{2 k}}{(2 k-1)!} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n^{2 k-1} q^{m n} \\
& =2 \zeta(2 k)+2 \frac{(-2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} .
\end{aligned}
$$

A standard notation for Eisenstein series is to write

$$
E_{2 k}(z):=\frac{G_{2 k}}{2 \zeta(2 k)},
$$

which is called the normalized Eisenstein series of weight $2 k$ (of level 1). For these modular forms, the following series identity holds;

$$
E_{2 k}(z)=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

where the $B_{2 k}$ are the Bernoulli numbers, which are defined by

$$
\frac{t}{e^{t}-1}=\sum_{m=0}^{\infty} B_{m} \cdot \frac{t^{m}}{m!}
$$

We will now construct our first example of a cusp form. We define the Δ function and the Ramanujan τ function in the following;

$$
\Delta(z):=\frac{E_{4}(z)^{3}-E_{6}(z)^{2}}{1728}=\sum_{n=1}^{\infty} \tau(n) q^{n} .
$$

$\Delta(z)$ is an example of a nonzero cusp form (of weight 12). The Fourier coefficients of $\Delta(z)$ are all integers, and they are also multiplicative; that is, $\tau(m n)=\tau(m) \tau(n)$ if $(m, n)=1$. They also satisfy recurrence; if p is a prime, then

$$
\tau\left(p^{n}\right)=\tau(p) \tau\left(p^{n-1}\right)-p^{11} \tau\left(p^{n-2}\right), \text { for } n \geq 2
$$

Proposition 3.1.8. There is a canonical isomorphism

$$
\begin{aligned}
S_{2}(\Gamma) & \longrightarrow H^{0}\left(X(\Gamma), \Omega^{\mathrm{hol}}\right) \\
f & \longmapsto \omega_{f} .
\end{aligned}
$$

Proof. We only define the construction of the differential form ω_{f} associated to $f \in S_{2}(\Gamma)$.

We know that $f(z) \mathrm{d} z$ is a holomorphic differential form on \mathbb{H}. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ we have $f(\gamma z) \mathrm{d} \gamma z=f(\gamma z)(c z+2)^{-2} \mathrm{~d} z=f(z) \mathrm{d} z$.

1. For $z \in \mathbb{H}, \omega_{f}$ is defined as follows: there exists an open neighbourhood as in Lemma 2.2.7 such that we have

where $e=e_{z}=\frac{1}{2} \# \Gamma(z)$. Then $\lambda_{*}(f(z) \mathrm{d} z)=F(\omega) \mathrm{d} \omega$ is a differential form on V and $\operatorname{ord}_{0}(F)=\operatorname{ord}_{z}(f)$.

Let ξ be a primitive e-th root of unity. Let $\mathbb{R} \omega=\xi \omega$ on V. Then $\lambda^{-1} \circ R \lambda$ is a generator of Γ_{z}, so $F(\omega) \mathrm{d} \omega=F(\xi \omega) \mathrm{d}(\xi \omega)=$ $\xi F(\xi \omega) \mathrm{d} \omega$ and thus there exists a holomorphic function F_{1} with $F_{1}\left(\omega^{e}\right)=\omega \cdot F(\omega)$ (because $\omega F(\omega)=\xi \omega F(\xi \omega)$ is invariant under Γ_{z}). So $\frac{1}{e} \frac{1}{\omega^{e}} F_{1}\left(\omega^{e}\right) \mathrm{d}\left(\omega^{e}\right)=\frac{1}{\omega}(\omega F(\omega) \mathrm{d} \omega)=F(\omega) \mathrm{d} \omega$ and thus $\left.w_{f}\right|_{U_{z}}$, which is defined as $\left(g_{z}\right)^{-1}\left(\frac{1}{e} \frac{1}{\omega} F_{z}(\omega) \mathrm{d} \omega\right)$ is meromorphic on U_{z} (so $\left.\pi^{-1}\left(\omega_{f}\right)=f(z) \mathrm{d} z\right)$.

Now $e \cdot \operatorname{ord}_{0}\left(F_{1}\right)=\operatorname{ord}(F)+1$, so $\operatorname{ord}_{0}\left(F_{1}\right)>0$ and thus is $\frac{1}{e} \frac{1}{\omega} F_{1}(\omega) \mathrm{d} \omega$ holomorphic on V^{\prime} and thus is also $\left.\omega_{f}\right|_{U_{z}}$ holomorphic.
2. To define ω_{f} on a cusp, we may assume without loss of generality that $s=\infty$. Then $U_{\infty}=\{\tau: \operatorname{Im}(\tau)>1\}$. Consider the map

$$
\left.\begin{array}{rl}
\left\{\left(\begin{array}{cc}
\pm 1 & m \\
0 & \pm 1
\end{array}\right): m \in \mathbb{Z}\right\} \backslash U_{\infty} & \xrightarrow{g_{\infty}} \mathbb{D} \backslash\{0\} \\
z & \longmapsto
\end{array}\right) q=\exp (2 \pi i z) .
$$

Then $f(z) \mathrm{d} z=\tilde{f}(q)\left(\frac{\mathrm{d} q}{\mathrm{~d} z}\right)^{-1} \mathrm{~d} q=\frac{1}{2 \pi i q} \tilde{f}(q) \mathrm{d} q$ and we define $\left.\omega_{f}\right|_{U_{\pi(\infty)}}=$ $g_{\infty}^{-1}\left(\frac{1}{2 \pi i q} \tilde{f}(q) \mathrm{d} q\right)$, then ω_{f} is holomorphic because $\operatorname{ord}\left(\frac{1}{q} \tilde{f}(q)\right)=$ $-1+\operatorname{ord}_{\infty}(f) \geq 0$.

Now let $f(z) \in S_{2 k}(\Gamma)$ and $f(z)=\sum_{n=1}^{\infty} a_{n} q^{n}$ the q-expansion of $f(z)$.

Lemma 3.1.9. $a_{n}=O\left(n^{k}\right)$, so $\left|\frac{a_{n}}{n^{k}}\right|$ is bounded for $n \geq 1$.
Proof (only for $\Gamma=S L_{2}(\mathbb{Z})$). Because $f(z)=q\left(\sum_{n \geq 1} a_{n} q^{n-1}\right)$ we have $|f(z)|=O(|q|)=O\left(e^{-2 \pi y}\right)$ where $y=\operatorname{Im}(z)$.

Let $\phi(z)=|f(z)| y^{k}$. Then $\phi(\gamma z)=|f(\gamma z)| \operatorname{Im}(\gamma z)^{k}=|f(\gamma z)| j(\gamma, z)^{-2 k} \operatorname{Im}(z)^{k}=$ $\phi(z)$.

As $\phi(z)=O\left(e^{-2 \pi y} y^{k}\right)=O(1)$, we have that ϕ is bounded on $\mathcal{F}=$ $\left\{z \in \mathbb{C}:|z| \geq 1,-\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2}\right\}$, so ϕ is bounded, so $|f(z)| \leq M y^{-k}$ for all $z \in \mathbb{H}$.

Now let $y>0$ be fixed, $q=\exp (2 \pi i)(x+i y)$ where $0 \leq x \leq 1$. Then $a_{n}=\frac{1}{2 \pi i} \int_{0}^{1} f(x+i y) q^{-n} \mathrm{~d} x$ so $\left|a_{n}\right| \leq M y^{-k} e^{-2 n \pi y}$ for all y.

For $y=\frac{1}{n}$ we have $\left|a_{n}\right| \leq M n^{k}$. This completes the proof for $\Gamma=$ $S L_{2}(\mathbb{Z})$.
3.2. Hecke operators. Let G be a group, with Γ and Γ^{\prime} subgroups. We say that Γ and Γ^{\prime} are commensurable (notation $\Gamma \sim \Gamma^{\prime}$) if $\Gamma \cap \Gamma^{\prime}$ has finite index in both Γ and Γ^{\prime}.
Let Γ be a subgroup of $G, \tilde{\Gamma}=\left\{\alpha \in G: \Gamma \sim \alpha \Gamma \alpha^{-1}\right\}$. Then $\tilde{\Gamma} \subseteq G$ is a subgroup and $\tilde{\Gamma} \supseteq \Gamma$.
Lemma 3.2.1. \quad a. Let $\alpha \in \tilde{\Gamma}$. Then

$$
\Gamma \backslash(\Gamma \alpha \Gamma) \cong\left(\Gamma \cap \alpha^{-1} \Gamma \alpha\right) \backslash \Gamma
$$

and

$$
(\Gamma \alpha \Gamma) / \Gamma \cong \Gamma /\left(\Gamma \cap \alpha \Gamma \alpha^{-1}\right)
$$

b. If $\#(\Gamma \backslash \Gamma \alpha \Gamma)=\#(\Gamma \alpha \Gamma / \Gamma)$, then $\Gamma \alpha \Gamma / \Gamma$ and $\Gamma \backslash \Gamma \alpha \Gamma$ have a common system of representatives.

Proof. \quad a. $\Gamma \longrightarrow \Gamma \backslash \Gamma \alpha \Gamma, \gamma \mapsto \Gamma \alpha \gamma$ induces $\Gamma \cap \alpha^{-1} \Gamma \alpha \backslash \Gamma \longrightarrow$ $\Gamma \backslash \Gamma \alpha \Gamma$.
b. Exercise.

Let $\Gamma \subseteq G$ be a subgroup, $\Delta \subseteq \tilde{\Gamma}$ a monoid with $\Gamma \subseteq \Delta$. Let $R[\Gamma, \Delta]$ be the free \mathbb{Z}-module with basis $[\Gamma \alpha \Gamma], \alpha \in \Delta$. Let $\alpha, \beta \in \Delta$, $\Gamma \alpha \Gamma=\bigcup_{i} \Gamma \alpha_{i}, \Gamma \beta \Gamma=\bigcup_{j} \Gamma \beta_{j}$. Then

$$
[\Gamma \alpha \Gamma][\Gamma \beta \Gamma]=\sum m_{\Gamma \gamma \Gamma}[\Gamma \gamma \Gamma]
$$

with

$$
\begin{aligned}
m_{\Gamma \gamma \Gamma} & =\#\left\{(i, j) \mid \Gamma \alpha_{i} \beta_{j}=\Gamma \gamma\right\} \\
& =\frac{\#\left\{(i, j) \mid \Gamma \alpha_{i} \beta_{j} \Gamma=\Gamma \gamma \Gamma\right\}}{\#(\Gamma \backslash \Gamma \gamma \Gamma)} .
\end{aligned}
$$

One shows: $m_{\Gamma \gamma \Gamma}$ is independent from the choice of representatives $\alpha_{i}, \beta_{j}, \gamma$.
Proposition 3.2.2. $R[\Gamma, \Delta]$ is an associative ring with unit $[\Gamma] . R(\Gamma, \Delta)$ is called a Hecke algebra.

Lemma 3.2.3. Let Γ, Δ be as above and we assume that there is a map $\iota: \Delta \longrightarrow \Delta$ with
(i) $\iota(\alpha \beta)=\iota(\beta) \iota(\alpha)$ and $\iota(\iota(\alpha))=\alpha$ for all $\alpha, \beta \in \Delta$;
(ii) $\iota(\Gamma)=\Gamma$;
(iii) $\iota(\Gamma \alpha \Gamma)=\Gamma \alpha \Gamma$, i.e. $\Gamma \iota(\alpha) \Gamma=\Gamma \alpha \Gamma$.

Then, for each $\alpha \in \Delta, \Gamma \backslash \Gamma \alpha \Gamma$ and $\Gamma \alpha \Gamma / \Gamma$ have a common system of representatives and $R[\Gamma, \Delta]$ is commutative.

Proof. $\Gamma \alpha \Gamma=\cup_{i} \Gamma \alpha_{i}$, so $\Gamma \alpha \Gamma=\Gamma \iota(\alpha) \Gamma=\cup_{i} \iota\left(\alpha_{i}\right) \Gamma$, and thus $\#(\Gamma \backslash \Gamma \alpha \Gamma)=$ $\#(\Gamma \alpha \Gamma / \Gamma)$. This implies the first claim, by 3.2.1.

Now we show that $R[\Gamma, \Delta]$ is commutative.
Consider

$$
\begin{aligned}
& \Gamma \alpha \Gamma=\bigcup \Gamma \alpha_{i}=\bigcup \alpha_{i} \Gamma \\
& \Gamma \beta \Gamma=\bigcup \Gamma \beta_{i}=\bigcup \beta_{i} \Gamma
\end{aligned}
$$

so

$$
\begin{aligned}
\Gamma \alpha \Gamma & =\bigcup \Gamma \iota\left(\alpha_{i}\right), \\
\Gamma \beta \Gamma & =\bigcup \Gamma \iota\left(\beta_{i}\right), \\
{[\Gamma \alpha \Gamma][\Gamma \beta \Gamma] } & =\sum_{\gamma} m_{\gamma}[\Gamma \gamma \Gamma],
\end{aligned}
$$

where

$$
\begin{aligned}
m_{\gamma} & =\#\left\{(i, j): \Gamma \alpha_{i} \beta_{j} \Gamma=\Gamma \gamma \Gamma\right\} / \#(\Gamma \backslash \Gamma \gamma \Gamma) \\
& =\#\left\{(i, j): \Gamma \iota\left(\beta_{i}\right) \iota\left(\alpha_{i}\right) \Gamma=\Gamma \iota(\gamma) \Gamma\right\} / \#(\Gamma \backslash \Gamma \beta \Gamma) \\
& =\text { coefficient of }[\Gamma \gamma \Gamma] \text { in }[\Gamma \beta \Gamma][\Gamma \alpha \Gamma] .
\end{aligned}
$$

Let $n \geq 1$. Now we consider the Hecke algebra for $\Gamma_{0}(N)$.
Lemma 3.2.4. Let $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{Z})$ with $\operatorname{det} \alpha \neq 0$. Then $\alpha \in$ $\widetilde{\Gamma_{0}(N)}$.

Proof. Without loss of generality we may assume $\operatorname{det} \alpha=m \geq 1$. It suffices to consider the case $N=1$.

Let
$\Gamma(m)=\left\{\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in S L_{2}(\mathbb{Z}):\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \bmod m\right\}$.
For $\gamma \in \Gamma(m)$ we have $m \alpha^{-1} \gamma \alpha \equiv m \alpha^{-1} \alpha=\left(\begin{array}{cc}m & 0 \\ 0 & m\end{array}\right) \bmod m$ (where $\left.m \alpha^{-1} \in S L_{2}(\mathbb{Z})\right)$ and thus $\alpha^{-1} \gamma \alpha \in S L_{2}(\mathbb{Z})$ such that $S L_{2}(\mathbb{Z}) \cap$ $\alpha S L_{2}(\mathbb{Z}) \alpha^{-1} \supseteq \Gamma(m)$ and therefore $\alpha \in \widehat{S L_{2}(\mathbb{Z})}$.

Let
$\Delta_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0 \quad \bmod N, \operatorname{gcd}(a, N)=1, \operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)>0\right\}$.
$\Delta_{0}(N)$ is a monoid with $\Gamma_{0}(N) \subseteq \Delta_{0}(N) \subseteq \widetilde{\Gamma_{0}(N)}$ and $R\left(\Gamma_{0}(N), \Delta_{0}(N)\right)=$ $R(N)$ is the Hecke algebra.

Lemma 3.2.5.

(i) Let $\alpha \in \Delta_{0}(N)$. Then there is a diagonal matrix $\widetilde{\alpha} \in \Delta_{0}(N)$ such that

$$
\Gamma_{0}(N) \alpha \Gamma_{0}(N)=\Gamma_{0}(N) \widetilde{\alpha} \Gamma_{0}(N) .
$$

(ii) For all primes l we have

$$
\Gamma_{0}(N)\left(\begin{array}{ll}
l & 0 \\
0 & 1
\end{array}\right) \Gamma_{0}(N)=\Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & l
\end{array}\right) \Gamma_{0}(N) .
$$

(iii) For all primes $l \nmid N$ and $p \mid N$ we have

$$
\begin{aligned}
& \Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & l
\end{array}\right) \Gamma_{0}(N)=\bigcup_{j=1}^{l-1} \Gamma_{0}(N)\left(\begin{array}{ll}
1 & j \\
0 & l
\end{array}\right) \bigcup \Gamma_{0}(N)\left(\begin{array}{ll}
l & 0 \\
0 & 1
\end{array}\right), \\
& \Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma_{0}(N)=\bigcup_{j=0}^{p-1} \Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
j & p
\end{array}\right) .
\end{aligned}
$$

Proof. The proof of Lemma 3.2.5 is straight forward. We only show part (i). Let $\alpha=\left(\begin{array}{c}a \\ a \\ c\end{array}\right) \in \Delta_{0}(N)$ where $(a, N)=1$ and $c=k^{\prime} N$ for some $k^{\prime} \in \mathbb{Z}$. We construct a matrix $\beta=\left(\begin{array}{cc}X & Y \\ k N & z\end{array}\right)$ such that $\beta \alpha$ is upper triangular and $\beta \in \Gamma_{0}(N)$, as follows;
Case 1: If $\left(a, k^{\prime} N\right)=1$ then we define $z=a, k=-k^{\prime}$ and choose $X, Y \in \mathbb{Z}$ such that $a X+k^{\prime} N Y=1$. Thus we define $\beta=\left(\begin{array}{c}X \\ k N \\ k\end{array}\right)$.
Case 2 : Let $\varepsilon=\left(a, k^{\prime}\right)$. Since $(a, N)=1$, we have $(\varepsilon, N)=1$. Define $k=-k^{\prime} / \varepsilon, z=a / \varepsilon$. Then $(z, k N)=1$. Find $X, Y \in \mathbb{Z}$ with $z X-k N Y=1$ and define $\beta=\left(\begin{array}{cc}X & Y \\ k N & z\end{array}\right)$.
Then $\beta \alpha=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & d^{\prime}\end{array}\right) \in \Delta_{0}(N)$. We put $\delta=\left(a^{\prime}, d^{\prime}\right)$. Then

$$
\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & d^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & \frac{d^{\prime}}{\delta}
\end{array}\right) .
$$

Now let $\left(\begin{array}{c}a^{\prime} b^{\prime} \\ 0 \\ 0\end{array}\right) \in \Delta_{0}(N)$ with $\left(a^{\prime}, d^{\prime}\right)=1$. Find $X, Y \in \mathbb{Z}$ with $a^{\prime} X+$ $d^{\prime} Y=-b^{\prime}$. Then

$$
\left(\begin{array}{cc}
1 & Y \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & d^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a^{\prime} & 0 \\
0 & d^{\prime}
\end{array}\right) .
$$

This finishes the proof of (i).
Proposition 3.2.6. $R(N)$ is commutative and for any $\alpha \in \Delta_{0}(N)$, $\Gamma_{0}(N) \backslash \Gamma_{0}(N) \alpha \Gamma_{0}(N)$ and $\Gamma_{0}(N) \alpha \Gamma_{0}(N) / \Gamma_{0}(N)$ have a common system of representatives.

Proof. Let $\alpha=\left(\begin{array}{c}a \\ c \\ c\end{array}\right) \in \Delta_{0}(N)$ and $\iota(\alpha):=\left(\begin{array}{cc}a & c \\ N b & d\end{array}\right)$. Then $\iota: \Delta_{0}(N) \longrightarrow$ $\Delta_{0}(N)$ satisfies (i) to (iii) in 3.2.3 (the third property follows from Lemma 3.2.5).

Proposition 3.2.7. $S_{2}\left(\Gamma_{0}(N)\right)$ is in a natural way a $R(N)$-right-module.
For $\alpha \in \Delta_{0}(N)$ and $f \in S_{2}\left(\Gamma_{0}(N)\right)$ we define the action $\left.f\right|_{[\Gamma \alpha \Gamma]}$ by

$$
\left.f\right|_{\lceil\Gamma \alpha \Gamma]}=\left.\sum_{i} f\right|_{\alpha_{i}}
$$

where

$$
\Gamma \alpha \Gamma=\bigcup_{i} \Gamma \alpha_{i} .
$$

Proof. For $\gamma \in \Gamma_{0}(N)$ we have $\left.\left(\left.\sum_{i} f\right|_{\alpha_{i}}\right)\right|_{\gamma}=\left.\sum_{i} f\right|_{\alpha_{i} \gamma}$. As $\alpha_{i} \gamma$ is a system of representatives of $\Gamma \backslash \Gamma \alpha \Gamma$, we have that $\left.\sum_{i} f\right|_{\alpha_{i}}$ is Γ-invariant.
Write $\left.f\right|_{\alpha_{i}}=\sum_{n=1}^{\infty} a_{n}^{(i)} q_{h_{i}}^{n}$. Then $\left.\sum f\right|_{\alpha_{i}}=\sum_{n \geq 1} a_{n} q_{h}^{n}$ for some h. But $\left.\sum f\right|_{\alpha_{i}}$ is $\Gamma_{0}(N)$-invariant and thus $h=1$.

Let l be a prime with $l \nmid N$. Define

$$
T_{l}:=\sum_{\substack{\text { det } \alpha=l \\
\left[\Gamma_{0}(N) \alpha \Gamma_{0}(N)\right]}}\left[\Gamma_{0}(N) \alpha \Gamma_{0}(N)\right]=\left[\Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & l
\end{array}\right) \Gamma_{0}(N)\right] .
$$

For a prime p with $p \mid N$, let

$$
U_{p}:=\sum_{\substack{\text { det } \alpha=p \\\left[\Gamma_{0}(N) \alpha \Gamma_{0}(N)\right]}}\left[\Gamma_{0}(N) \alpha \Gamma_{0}(N)\right]=\left[\Gamma_{0}(N)\binom{10}{0 p} \Gamma_{0}(N)\right] .
$$

By 3.2.5 (c) we have

$$
\Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & l
\end{array}\right) \Gamma_{0}(N)=\bigcup_{j=1}^{l-1} \Gamma_{0}(N)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \bigcup \Gamma_{0}(N)\left(\begin{array}{ll}
l & 0 \\
0 & 1
\end{array}\right)
$$

and for $p \mid N$:

$$
\Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma_{0}(N)=\bigcup_{j=0}^{p-1} \Gamma_{0}(N)\binom{1 j}{0} .
$$

For $f(z)=\sum_{n \geq 1} a(n) q^{n} \in S_{2}\left(\Gamma_{0}(N)\right)$ we have

$$
\begin{aligned}
\left.f\right|_{T_{l}}= & \sum_{n \geq 1} a(n) \sum_{j=0}^{l-1} \frac{1}{l} \exp \left(2 \pi i \frac{z+j}{l}\right)+l \sum_{n \geq 1} a(n) q^{n l} \\
= & \sum_{n=1}^{\infty} a(n l)+l a\left(\frac{n}{l}\right) q^{n} \\
& \text { with } a\left(\frac{n}{l}\right)=0 \text { for } \frac{n}{l} \notin \mathbb{Z}, \\
\left.f\right|_{U_{p}}= & \sum_{n=1}^{\infty} a(n p) q^{n} .
\end{aligned}
$$

f is called an eigenform iff f is an eigenvector for T_{l}, U_{p} for all $l \nmid N$ and $p \mid N$. If f is an eigenform, then $U_{p} f=\lambda(p) f, T_{l} f=\lambda(l) f$.

Lemma 3.2.8. Let $f(z) \in S_{2}\left(\Gamma_{0}(N)\right)$ be an eigenform. Then the L series associated to $f, L(f, s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ has a representation as Euler-product:

$$
L(f, s)=a_{1} \prod_{p \mid N}\left(1-\lambda(p) p^{-s}\right) \prod_{\nmid N}\left(1-\lambda(l) l^{-s}+l^{1-2 s}\right) .
$$

f is called normalized if $a_{1}=1$. In this case, we have $\lambda(p)=a_{p}$, $\lambda(l)=a_{l}$.

Proof.

$$
\begin{aligned}
\left(1-\lambda(l) l^{-s}+l^{1-2 s}\right) L(f, s) & =\sum_{n=1}^{\infty}\left(a_{n}-\lambda(l) a_{\frac{n}{l}}+l a_{\frac{n}{l}}\right) n^{-s} \\
& =\sum_{\substack{n=1 \\
\operatorname{gcd}(n, l)=1}}^{\infty} a_{n} n^{-s} .
\end{aligned}
$$

In general, $S_{2}\left(\Gamma_{0}(N)\right)$ does not have a basis consisting of eigenforms. To study the existence of eigenforms in $S_{2}\left(\Gamma_{0}(N)\right)$ we introduce a hermitian inner product on $S_{2}\left(\Gamma_{0}(N)\right)$.
$v=\frac{\mathrm{d} x \mathrm{~d} y}{y^{2}}$ defines a measure on \mathbb{H} (where $z=x+i y$). We show that v is $G L_{2}^{+}(\mathbb{R})$-invariant:

Let $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}^{+}(\mathbb{R})$.
Then

$$
\begin{aligned}
\frac{\mathrm{d}(\alpha z)}{\mathrm{d} z} & =\frac{\operatorname{det}(\alpha)}{j(\alpha, z)^{2}}, \\
\frac{\mathrm{~d}(\overline{\alpha z})}{\mathrm{d} \bar{z}} & =\frac{\operatorname{det}(\alpha)}{j(\alpha, \bar{z})^{2}}, \\
\frac{1}{y^{2}} \mathrm{~d} x \wedge \mathrm{~d} y & =\frac{1}{y^{2}} \frac{i}{2} \mathrm{~d} z \wedge \mathrm{~d} \bar{z},
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{i}{2} \frac{1}{\operatorname{Im}(\alpha z)^{2}} \mathrm{~d}(\alpha z) \wedge \mathrm{d} \overline{\alpha z} & =\frac{i}{2} \frac{1}{\operatorname{Im}(z)^{2}} \frac{|j(\alpha, z)|^{4}}{(\operatorname{det} \alpha)^{2}}\left(\frac{\mathrm{~d} \alpha z}{f z}\right)^{2}\left(\frac{\mathrm{~d} \overline{\alpha z}}{\mathrm{~d} \bar{z}}\right) \mathrm{d} z \wedge \mathrm{~d} \bar{z} \\
& =\frac{i}{2} \frac{1}{\operatorname{Im}(z)^{2}} \mathrm{~d} z \wedge \mathrm{~d} \bar{z}
\end{aligned}
$$

Let $\mathcal{F}:=\left\{z \in \mathbb{H}:|z|>1,-\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2}\right\}$ be a fundamental domain for $S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$. If $\bigcup_{i} \Gamma_{0}(N) \alpha_{i}=S L_{2}(\mathbb{Z})$, then $\mathcal{D}=\cup_{i} \alpha_{i} \mathcal{F}$ is a fundamental domain for $\Gamma_{0}(N) \backslash \mathbb{H}$.

Definition 3.2.9. Let $f, g \in S_{2}\left(\Gamma_{0}(N)\right)$. Then

$$
\langle f, g\rangle=\int_{\mathcal{D}} f(z) \overline{g(z)} \mathrm{d} x \mathrm{~d} y
$$

is called the Peterson scalar product on $S_{2}\left(\Gamma_{0}(N)\right)$.

Indeed, we have
(i) $|\langle f, g\rangle|<\infty$.

It suffices to show $\int_{\mathcal{F}}|f(z) \overline{g(z)}| \mathrm{d} x \mathrm{~d} y<\infty$. As $|f(z)|,|g(z)|=$ $O\left(e^{-2 \pi y}\right)$ we have

$$
\int_{\mathcal{F}}|f(z) \overline{g(z)}| \mathrm{d} x \mathrm{~d} y \leq C \int_{\frac{1}{2}}^{\infty} e^{-4 \pi y} \mathrm{~d} y<\infty .
$$

(ii) Independence from the choice of representatives α_{i}.

For $\alpha \in G L_{2}^{+}(\mathbb{R})$, we have

$$
\begin{aligned}
\int_{\alpha \mathcal{F}} f(z) \overline{g(z)} \mathrm{d} x \mathrm{~d} y & =\int_{\mathcal{F}} f(\alpha z) \overline{g(\alpha z)} \operatorname{Im}(\alpha z)^{2} y^{-2} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{\mathcal{F}}\left(\left.f\right|_{\alpha}\right)(z) \overline{\left(\left.g\right|_{\alpha}\right)(z)} \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Proposition 3.2.10. The Hecke operators T_{l}, for $l \nmid N$, are Hermitian with respect to \langle,$\rangle . Hence S_{2}\left(\Gamma_{0}(N)\right)$ has a basis of eigenforms of T_{l}, $l \nmid N$.

Proof. If $\Gamma \subseteq S L_{2}(\mathbb{Z})$ has finite index, then define

$$
\int_{\Gamma \backslash H} f(z) \overline{g(z)} v(\mathrm{~d} z):=\int_{\mathcal{D}} f(z) \overline{g(z)} v(\mathrm{~d} z)
$$

with \mathcal{D} a fundamental domain for $\Gamma, f, g \in S_{2}(\Gamma)$. Define

$$
(f, g):=\frac{1}{\left[S L_{2}(\mathbb{Z}): \Gamma\right]} \int_{\Gamma \backslash \mathbb{H}} f(z) \overline{g(z)} v(\mathrm{~d} z)
$$

which is independent from Γ.
Choose a common system of representatives of right- and left-cosets of $\Gamma_{0}(N)\left(\begin{array}{cc}1 & 0 \\ 0 & l\end{array}\right) \Gamma_{0}(N)$:

$$
\Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & l
\end{array}\right) \Gamma_{0}(N)=\bigcup_{i} \Gamma_{0}(N) \alpha_{i}=\bigcup_{i} \alpha_{i} \Gamma_{0}(N)
$$

For $\alpha \in M_{2}(\mathbb{Z})$ with $\operatorname{det}(\alpha) \neq 0$, put $\alpha^{\prime}=\operatorname{det}(\alpha) \cdot \alpha^{-1}$. Then α_{i}^{\prime} is a system of representatives of $\Gamma_{0}(N) \backslash \Gamma_{0}(N)\left(\begin{array}{ll}1 & 0 \\ 0 & l\end{array}\right) \Gamma_{0}(N)$. We have

$$
\begin{aligned}
\left\langle T_{l} f, g\right\rangle & =\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]\left(T_{l} f, g\right) \\
& =\left(\sum_{\iota}\left(\left.f\right|_{\alpha_{i}}, g\right)\right)\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N)\right] \\
& =\frac{\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]}{\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N) \cap \alpha_{i}^{-1} \Gamma_{0}(N) \alpha_{i}\right]} \int_{\Gamma_{0}(N) \backslash \mathbb{H}}\left(\left.f\right|_{\alpha_{i}}\right)(z) \overline{g(z)} v(\mathrm{~d} z) \\
& =\sum_{i} \#\left(\Gamma_{0}(N) \backslash \Gamma_{0}(N)\binom{10}{0} \Gamma_{0}(N)\right) \int_{\Gamma_{0}(N) \backslash \mathbb{H}}\left(\left.f\right|_{\alpha_{i}}\right)(z) \overline{g(z)} v(\mathrm{~d} z) \\
& =\sum_{i} \#\left(\Gamma_{0}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & l
\end{array}\right) \Gamma_{0}(N) / \Gamma_{0}(N)\right) \int_{\Gamma_{0}(N) \backslash \mathbb{H}} f(z)\left(\overline{\left.\left.g\right|_{\alpha_{i}}\right)(z)} v(\mathrm{~d} z)\right. \\
& =\left\langle f, T_{l} g\right\rangle .
\end{aligned}
$$

Definition 3.2.11.

$$
\begin{aligned}
\operatorname{Im}\left(\oplus_{p \mid N} S_{2}\left(\Gamma_{0}\left(\frac{N}{p}\right)\right)\right) & \longrightarrow S_{2}\left(\Gamma_{0}(N)\right) \\
f & \longmapsto f(z) \text { or } f(p z)
\end{aligned}
$$

is called the space of old forms, denoted by $S_{2}\left(\Gamma_{0}(N)\right)^{\text {old }}$. Then $S_{2}\left(\Gamma_{0}(N)\right)^{\text {new }}=$ $\left(S_{2}\left(\Gamma_{0}(N)\right)^{\text {old }}\right)^{\perp}$ is called the space of new forms.

Proposition 3.2.12. $S_{2}\left(\Gamma_{0}(N)\right)^{\text {new }}$ is invariant under U_{p}, T_{l} for all $p \mid N, l \nmid N$ and has a basis of eigenforms.

Let $W_{N}:=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$. For $\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Delta_{0}(N)$ we have $W_{N}\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) W_{N}^{-1}=$ $\left(\begin{array}{cc}d & -c \\ -b N & a\end{array}\right)$. Therefore W_{N} is in the normalizer of $\Gamma_{0}(N)$ and for $f \in$ $S_{2}\left(\Gamma_{0}(N)\right)$, we have $\left.f\right|_{W_{N}} \in S_{2}\left(\Gamma_{0}(N)\right)$.

Definition 3.2.13. The map

$$
\begin{aligned}
w_{N}: S_{2}\left(\Gamma_{0}(N)\right) & \longrightarrow S_{2}\left(\Gamma_{0}(N)\right) \\
f & \left.\longmapsto f\right|_{W_{N}}
\end{aligned}
$$

is called Atkin-Lehner involution.
Note: $W_{N} W_{N}=\left(\begin{array}{cc}-N & 0 \\ 0 & -N\end{array}\right)$ acts as identity on $S_{2}\left(\Gamma_{0}(N)\right)$; hence w_{N} is really an involution.

Proposition 3.2.14.

a. w_{N} commutes with all Hecke operators for $l \nmid N$.
b. w_{N} leaves $S_{2}(\Gamma(N))^{\text {new }}$ invariant. More precisely: if f is a new form then $w_{N}(f)= \pm f$.

Proposition 3.2.15. Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ and define $\Lambda(f, s):=(2 \pi)^{-s} \Gamma(s) L(f, s)$. Then $\Lambda(f, s)$ has an analytic continuation to \mathbb{C}. If $w_{N}(f)= \pm f$, then $\Lambda(f, s)$ satisfies the functional equation $\Lambda(f, 2-s)=\mp N^{s-1} \Lambda(f, s)$.

Proof. Without loss of generality, we may assume $w_{N}(f)= \pm f, f(z)=$ $\sum_{n=1}^{\infty} a_{n} q^{n}$ with $q=\exp (2 \pi i z), a_{1}=1, a_{n}=O(n)$ (following Lemma 3.1.9). Then:

$$
\begin{aligned}
N^{\frac{s}{2}} \Lambda(f, s) & =\sum_{n=1}^{\infty} a_{n}\left(\frac{2 \pi n}{\sqrt{N}}\right)^{-s} \int_{0}^{\infty} e^{-t} t^{s} \frac{\mathrm{~d} t}{t} \\
& =\sum_{n=1}^{\infty} \int_{0}^{\infty} a_{n} e^{-\frac{2 \pi n t}{\sqrt{N}}} t^{s} \frac{\mathrm{~d} t}{t}
\end{aligned}
$$

as $\sum_{n=1}^{\infty} \int_{0}^{\infty}\left|a_{n}\right| e^{-\frac{2 \pi n t}{\sqrt{N}}} t^{\sigma} \frac{\mathrm{d} t}{t}$ converges for $\sigma>2$.
For $\operatorname{Re}(s)>2$ we have

$$
\begin{aligned}
N^{\frac{s}{2}} \Lambda(f, s) & =\int_{0}^{\infty} t^{s}\left(\sum_{n=1}^{\infty} a_{n} e^{-\frac{2 \pi n t}{\sqrt{N}}}\right) \frac{\mathrm{d} t}{t} \\
& =\int_{0}^{\infty} t^{s} f\left(\frac{i t}{\sqrt{N}}\right) \frac{\mathrm{d} t}{t} \\
& =\int_{1}^{\infty} t^{s} f\left(\frac{i t}{\sqrt{N}}\right) \frac{\mathrm{d} t}{t}+\int_{0}^{1} t^{s} f\left(\frac{i t}{\sqrt{N}}\right) \frac{\mathrm{d} t}{t}
\end{aligned}
$$

and $f(i t)=O\left(e^{-2 \pi t}\right)$ for $t \geq \frac{1}{2}$. Hence both integrals are uniformly absolutely convergent on any vertical section. Thus we have

$$
\begin{aligned}
N^{\frac{s}{2}} \Lambda(f, s) & =\int_{1}^{\infty} t^{s} f\left(\frac{i t}{\sqrt{N}}\right) \frac{\mathrm{d} t}{t} \pm \int_{1}^{\infty} t^{-s} f\left(\frac{i}{\sqrt{N} t}\right) \frac{\mathrm{d} t}{t} \\
& =\int_{1}^{\infty} t^{s} f\left(\frac{i t}{\sqrt{N}}\right) \frac{\mathrm{d} t}{t} \pm \int_{1}^{\infty} t^{-s}\left(\left.f\right|_{W_{N}}\right)\left(\frac{i t}{\sqrt{N}}\right)\left(\frac{i t}{\sqrt{N}}\right)^{2} N \frac{\mathrm{~d} t}{t} \\
& =\int_{1}^{\infty} t^{s} f\left(\frac{i t}{\sqrt{N}}\right) \frac{\mathrm{d} t}{t} \mp \int_{1}^{\infty} t^{2-s}\left(\left.f\right|_{W_{N}}\right)\left(\frac{i t}{\sqrt{N}}\right) \frac{\mathrm{d} t}{t},
\end{aligned}
$$

and thus $N^{\frac{s}{2}} \Lambda(f, s)=\mp N^{1-\frac{s}{2}} \Lambda(f, 2-s)$. We have used that $f\left(\frac{i}{t \sqrt{N}}\right)=$ $f_{W_{N}}\left(\frac{i t}{\sqrt{N}}\right)(i t)^{2}$.

One can also consider modular forms and cusp forms for the modular group

$$
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0(N), a \equiv d \equiv 1(N)\right\}
$$

In this case we denote the spaces $M_{k}\left(\Gamma_{1}(N)\right)$ and $S_{k}\left(\Gamma_{1}(N)\right)$. Furthermore, given a character χ of $(\mathbb{Z} / N \mathbb{Z})^{\times}$we let $M_{k}(N, \chi)$ and $S_{k}(N, \chi)$
be the subspaces of $M_{k}\left(\Gamma_{1}(N)\right)$ and $S_{k}\left(\Gamma_{1}(N)\right)$ consisting of f such that

$$
\left.f\right|_{k} \gamma=\chi(d) f
$$

for $\gamma=\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Gamma_{0}(N)$. (Implicit in the notation $\chi(d)$ is the usual identification of characters of $(\mathbb{Z} / N \mathbb{Z})^{\times}$with Dirichlet characters modulo N.) Another way to describe the subspaces $M_{k}(N, \chi)$ and $S_{k}(N, \chi)$ is to say that they are the χ-eigenspaces for the "diamond operator" $\left.f \mapsto f\right|_{k}\langle d\rangle$. In this approach d denotes an element of $(\mathbb{Z} / N \mathbb{Z})^{\times}$, and the operator $\langle d\rangle$ is defined by setting

$$
\left.f\right|_{k}\langle d\rangle=\left.f\right|_{k} \gamma
$$

for any $\gamma \in \Gamma_{0}(N)$ which reduces modulo N to a matrix with d as lower right-hand entry. In view of the isomorphism

$$
\begin{aligned}
\Gamma_{0}(N) / \Gamma_{1}(N) & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
\text {coset of }\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right) & \longmapsto d \quad \bmod N,
\end{aligned}
$$

the diamond operators give a well-defined action of $(\mathbb{Z} / N \mathbb{Z})^{\times}$on $M_{k}\left(\Gamma_{1}(N)\right)$ and $S_{k}\left(\Gamma_{1}(N)\right)$, and consequently we have eigenspace decompositions

$$
M_{k}\left(\Gamma_{1}(N)\right)=\oplus_{\chi} M_{k}(N, \chi)
$$

and

$$
S_{k}\left(\Gamma_{1}(N)\right)=\oplus_{\chi} S_{k}(N, \chi)
$$

where χ runs over Dirichlet characters modulo N. Note that if χ is the trivial character then $M_{k}(N, \chi)$ and $S_{k}(N, \chi)$ coincide with $M_{k}\left(\Gamma_{0}(N)\right)$ and $S_{k}\left(\Gamma_{0}(N)\right)$ respectively.

It is possible to extend Proposition 3.2.15 (analytic continuation of L-function) for cusp forms in $S_{k}\left(\Gamma_{1}(N)\right)$.

4. Modular elliptic curves

4.1.

Definition 4.1.1. Let E be an elliptic curve defined over \mathbb{Q}. Then E is called modular if there is a non-constant morphism

$$
\pi: X_{0}(N) \rightarrow E
$$

of algebraic curves defined over \mathbb{Q}, where N is the conductor of E.
We formulate equivalent conditions for the modularity of E.
As $\operatorname{dim} H^{0}(E, \Omega)=1$, there is an invariant differential form $\omega \in$ $H^{0}(E, \Omega)$ which is unique up to constants. Over \mathbb{C}, we have

$$
\pi^{*} \omega=c f(z) \mathrm{d} z, \quad c \in \mathbb{C}, c \neq 0
$$

where f is a normalized cusp form. Let $J_{0}(N)$ be the Jacobian variety of $X_{0}(N)$. For a construction of Jacobians over \mathbb{C}, see the beginning of
chapter 5. By the universal property of Jacobian varieties, there exists a non-trivial morphism

$$
J_{0}(N) \rightarrow E
$$

such that the diagram of morphisms

commutes.
Let k be a field, $\mathrm{Ab}^{0}(k)$ be the category of abelian varieties up to isogeny.

$$
\begin{gathered}
\mathrm{Ob}\left(\mathrm{Ab}^{0}(k)\right)=\operatorname{Ob}(\operatorname{Ab}(k))=\text { abelian varieties } \\
\operatorname{Hom}^{0}(A, B)=\operatorname{Hom}_{\mathrm{Ab}^{0}(k)}(A, B)=\operatorname{Hom}_{k}(A, B) \otimes \mathbb{Q}
\end{gathered}
$$

Lemma 4.1.2. $\mathrm{Ab}^{0}(k)$ is a semisimple \mathbb{Q}-linear abelian category. For $A \in \operatorname{Ob}\left(\operatorname{Ab}^{0}(k)\right), \operatorname{End}^{0}(A)=\operatorname{End}(A) \otimes \mathbb{Q}$ is a finite-dimensional semisimple \mathbb{Q}-algebra.

The Hecke operators $T_{l}, l \nmid N$ define correspondences in $X_{0}(N)$, resp. $J_{0}(N)$ which are compatible with the action of T_{l} on $S_{2}\left(\Gamma_{0}(N)\right)$, in the sense of the following

Lemma 4.1.3. The diagram (use Proposition 3.1.8)

is commutative.
Let Π_{N} be the subalgebra of $\operatorname{End}^{0}\left(J_{0}(N)\right)$ which is generated by Hecke correspondences $\left(T_{l}\right)_{*}$. Then Π_{N} is a commutative semisimple \mathbb{Q}-algebra. Now we consider the set $\operatorname{Sub} J_{0}(N)$ of abelian subvarieties of $J_{0}(N)$ (which are direct summands of $J_{0}(N)$ by Lemma 4.1.2). For $A \in \operatorname{Sub} J_{0}(N)$, let $\rho(A)=\left\{t \in \Pi_{N}: \operatorname{Im}(t) \subset A\right\}$. Then $\rho(A)$ is an ideal. Conversely, let for an ideal $I \subset \Pi_{N}$,

$$
\varphi(I):=\operatorname{Im}(I) \in \operatorname{Sub} J_{0}(N)
$$

We have $\rho(\varphi(I)) \supset I$ and $\varphi(\rho(A)) \subset A$. If $\mathfrak{p} \in \operatorname{Spec} \Pi_{N}$ is a prime ideal, we have $\rho(\varphi(\mathfrak{p}))=\mathfrak{p}$. Define $A_{\mathfrak{p}}:=J_{0}(N) / \varphi(\mathfrak{p})$. As \mathfrak{p} is an ideal, the Π_{N}-action on $J_{0}(N)$ induces a homomorphism $\Pi_{N} \rightarrow \operatorname{End}\left(A_{\mathfrak{p}}\right)$.

Proposition 4.1.4. Let E be an elliptic curve defined over \mathbb{Q}. Then E is modular if and only if there exists $N \in \mathbb{N}$ (the conductor of E) and $\mathfrak{p} \in \operatorname{Spec} \Pi_{N}$ with $E \cong A_{\mathfrak{p}}$.

It is obvious that the existence of an isomorphism $E \cong A_{\mathfrak{p}}$ implies the modularity of E, using diagram (4.1.1).

Let now E be modular, $E \cong A_{\mathfrak{p}}$ for some $\mathfrak{p} \in \operatorname{Spec} \Pi_{N}$. Let $E(\mathfrak{p})=$ Π_{N} / \mathfrak{p}. As $H^{0}(E, \Omega)$ is \mathbb{Q}-vector-space of dimension 1 and also a $E(\mathfrak{p})$ module, we have $E(\mathfrak{p})=\mathbb{Q}$. Let $a: \Pi_{N} \rightarrow \mathbb{Q}$ be the corresponding ring homomorphism, i.e. $a\left(T_{l}\right)=T_{l} \bmod \mathfrak{p}$. Let $\omega \in H^{0}(E, \Omega)$ be a generator such that $\pi^{*} \omega=c f(z) \mathrm{d} z=c \omega_{f}$, for a normalized cusp form f, then we have

$$
a(l) f(z)=f \mid T_{l},
$$

i.e. f is an eigenform under all Hecke operators T_{l} for $l \nmid N$ with eigenvalue $a(l):=a\left(T_{l}\right)$.

There exists a model of E over $\operatorname{Spec} \mathbb{Z}[1 / N]$, i.e. an elliptic curve \mathcal{E} over Spec $\mathbb{Z}[1 / N]$, with $\mathcal{E}_{\eta} \cong E(\eta=\operatorname{Spec} \mathbb{Q}) . \mathcal{E}$ is uniquely determined. We define the L-function of E

$$
\begin{aligned}
L(E, s) & =\prod_{\nmid N} L\left(E_{\mathbb{F}_{l}}, l^{-s}\right)^{-1} \\
& =\prod_{\nmid N}\left(1-a_{l} l^{-s}+l^{1-2 s}\right)^{-1}
\end{aligned}
$$

with $a_{l}=1+l-\sharp E_{l}\left(\mathbb{F}_{l}\right)\left(E_{l}:=\mathcal{E} \times \mathbb{F}_{l}\right)$. We have seen in Chapter I, that $\left|a_{l}\right| \leq 2 \sqrt{l}$. Using this fact it can be shown that $L(E, s)$ converges absolutely and uniformly for $\operatorname{Re}(s)>3 / 2$.

Proposition 4.1.5. Let E be a modular elliptic curve over $\mathbb{Q}, E \cong A_{\mathfrak{p}}$ for $\mathfrak{p} \in \operatorname{Spec} \Pi_{N}$, and f the corresponding eigenform. Then E has a model over Spec $\mathbb{Z}[1 / N]$ and we have

$$
L(E, s)=L(f, s)
$$

up to finitely many Euler-factors. Hence $L(E, s)$ has an analytic continuation to \mathbb{C} and satisfies a functional equation with respect to $s \rightarrow$ $2-s$ (see Theorem 1 in the introduction).

Finally we can describe modularity purely in terms of Galois representations. To E, we can associate a canonical Galois representation on its Tate-module $T_{p}(E)$ for any prime p. Let $T_{p}(E):=\lim _{\leftrightarrows} E_{p^{n}}(\overline{\mathbb{Q}}) \cong \mathbb{Z}_{p}^{2}$. The $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-action on $E(\overline{\mathbb{Q}})$ induces a p-adic Galois representation

$$
\rho_{p, E}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{GL}\left(T_{p}(E)\right)=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) .
$$

It has the following properties:

- $\operatorname{det} \rho_{p, E}=\chi_{p}$ (the cyclotomic character).
- $\rho_{p, E}$ is unramified outside $p N$, i.e. for all primes $l \nmid p N$, the inertia group I_{l} satisfies $I_{l} \subset \operatorname{Ker}\left(\left.\rho_{p, E}\right|_{G_{Q_{l}}}\right)$.
Likewise, by the theory of Eichler and Shimura, one can associate to a normalized newform f in $S_{2}\left(\Gamma_{0}(N)\right)$ a Galois representation

$$
\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(O_{f}\right),
$$

where O_{f} is the ring of integers in a p-adic field K_{f} obtained by the completion (at a prime above p) of a number field generated by the Fourier coefficients $a_{n}(n \geq 1)$ of f, such that for all primes $l \nmid p N, \rho_{f}$ is unramified at l and satisfies the two conditions

- Trace $\left(\rho_{f}\left(\operatorname{Frob}_{l}\right)\right)=a_{l}$,
- $\operatorname{det}\left(\rho_{f}\left(\mathrm{Frob}_{l}\right)\right)=l$.

Definition 4.1.6. A Galois representation

$$
\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(O_{K}\right)
$$

(where O_{K} is the ring of integers in a p-adic field K) is called modular, if there exists a cusp form $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
\rho_{f}=\rho .
$$

Proposition 4.1.7. The Galois representation $\rho_{p, E}$ associated to a modular elliptic curve E over \mathbb{Q} is modular for all primes p.
One shows that the characteristic polynomial $\chi_{\rho_{p, E}}\left(\operatorname{Fr}_{l}\right)$ of the l Frobenius, acting on $T_{p}(E) \otimes \mathbb{Q}_{p}$, satisfies

$$
\begin{aligned}
\chi_{\rho_{p, E}}\left(\operatorname{Fr}_{l}\right) & :=\operatorname{det}\left(X I-\rho_{p, E}\left(\operatorname{Fr}_{l}\right)\right) \\
& =X^{2}-a_{l} X+l
\end{aligned}
$$

where $a_{l}=a_{l}(f)$ is the Fourier coefficient of the eigenform f associated to E. This follows from Eichler-Shimura Theory ([2] and [3]).

Final remark. The modularity conditions given in Definition 4.1.1, Proposition 4.1.4, Proposition 4.1.5 and Proposition 4.1.7 are all equivalent.

References

[1] G. Cornell, J. H. Silverman, G. Stevens, Modular Forms and Fermat's Last Theorem, chapter 3, Springer-Verlag, 1997.
[2] P. Deligne, M. Rapoport, Les schemas de modules de courbes elliptiques, in: Modular Functions in one variable II, Springer Lecture Notes in Mathematics 349, 1973, 193-316.
[3] F. Diamond, J. Shurman, A First Course in Modular Forms, Springer, 2005.
[4] W. Fulton, Algebraic Curves, Math. Lecture Note Series, W.A.Benjamin, 1969.
[5] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. Springer, 1977.
[6] N. Katz, B. Mazur, Arithmetic Moduli of Elliptic Curves, Princeton University Press, 1985.
[7] A. W. Knapp, Elliptic Curves, chapters IX to XI, Princeton University Press, 1992.
[8] J. Milne, Étale Cohomology, Princeton University Press, 1980.
[9] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Grundlehren, Springer, 1976.
[10] T. Saito, Fermat Conjecture (in Japanese), Iwanami Shoten, 2009.
[11] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Princeton University Press, 1971.
[12] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.

5. p-ADIC REGULATORS AND p-ADIC INTEGRATION THEORY

(Special LECTURE)
5.1. Review of classical Abel-Jacobi maps. Let X be a compact Riemann surface of genus g and base point $0 \in X$. Let $x_{i} \in X$, $i=1, \ldots, N$. We consider a formal linear combination

$$
\alpha=\sum_{i=1}^{N} n_{i}\left(\left[x_{i}\right]-[0]\right), \quad n_{i} \in \mathbb{Z}
$$

which we call a zero-cycle of degree 0 on X.
A classical problem in complex function theory which was studied by Abel is to decide when there exists a meromorphic function $f \in \mathbb{C}(X)^{*}$ with $\operatorname{div}(f)=\alpha$, i.e. when α is a principal divisor.

Let $\operatorname{Div}(X)$ be the divisor group of X and let $C_{1}(X)$ be the abelian group generated by continuous maps $\gamma:[0,1] \rightarrow X$.

Let $\delta: C_{1}(X) \rightarrow \operatorname{Div}(X)$ be the map defined by $\delta(\gamma)=\gamma(1)-\gamma(0)$ and $Z_{1}(X)=$ Ker δ be the group of 1-cycles (closed paths) which has the first homology group $H_{1}(X, \mathbb{Z})$ as a factor group. For $\gamma \in C_{1}(X)$ and $\omega \in H^{0}\left(X, \Omega^{1}\right)$ the integral $\int_{\gamma} \omega$ is well-defined.

Now let $\gamma \in Z_{1}(X)$. As global holomophic 1-forms are closed, Stokes' Theorem implies that $\int_{\gamma} \omega$ only depends on the homology class of γ in $H_{1}(X, \mathbb{Z})$. Hence one gets a linear, injective map

$$
H_{1}(X, \mathbb{Z}) \longrightarrow H^{0}\left(X, \Omega^{1}\right)^{*} .
$$

As $H_{1}(X, \mathbb{Z})$ has rank $2 g$, its image defines a lattice in the g-dimensional \mathbb{C}-vector space $H^{0}\left(X, \Omega^{1}\right)^{*}$, hence the quotient $H^{0}\left(X, \Omega^{1}\right)^{*} / H_{1}(X, \mathbb{Z})$ is a complex torus.

For a zero-cycle α of degree $0, \alpha=\sum_{i=1}^{N} n_{i}\left(\left[x_{i}\right]-[0]\right)$ choose paths γ_{i} from 0 to x_{i}. Then the image of $\sum n_{i} \int_{\gamma_{i}}$ in $H^{0}\left(X, \Omega^{1}\right)^{*} / H_{1}(X, \mathbb{Z})$ only depends on the zero-cycle α.

Let $Z_{0}(X)$ be the abelian group of zero-cycles of degree 0 . Then the map

$$
\begin{aligned}
\rho_{X}: & Z_{0}(X) & \longrightarrow J(X)=\frac{H^{0}\left(X, \Omega^{1}\right)^{*}}{H_{1}(X, Z)} \\
& \sum n_{i}\left(\left[x_{i}\right]-[0]\right) & \longmapsto\left(\omega \mapsto \sum n_{i} \int_{0}^{x_{i}} \omega\right)
\end{aligned}
$$

is well-defined.
The Theorems of Abel and Jacobi describe the properties of ρ_{X}.

Theorem 5.1.1.

a. (Abel) $\operatorname{Ker} \rho_{X}$ equals the set of principal divisors, so ρ_{X} induces an injection

$$
A_{0}(X)=Z_{0}(X) / \text { principal divisors } \hookrightarrow J(X) .
$$

b. (Jacobi) ρ_{X} is an isomorphism.

Moreover, the quotient $J(X)$ has the structure of an abelian variety, called the Jacobian variety of X. It has dimension g.

More generally, let X / \mathbb{C} be a smooth proper variety with $\operatorname{dim} X=d$ such that $X(\mathbb{C})$ is a compact complex manifold. Again we can consider the Abel-Jacobi map

$$
\rho_{X}: A_{0}(X) \longrightarrow \frac{H^{0}\left(X, \Omega^{1}\right)^{*}}{H_{1}(X, \mathbb{Z})}=\operatorname{Alb}_{X}(X)
$$

defined in the same way, with values in the Albanese variety of X, which is an abelian variety associated to X in a canonical way and satisfies a universal property.
The analogue of the Abel-Jacobi theorem does not hold in general as was noticed by Mumford.
Theorem 5.1.2. If $H^{2}\left(X, \mathcal{O}_{X}\right) \neq 0$, then $\operatorname{Ker} \rho_{X}$ is large (contains a ∞-dimensional \mathbb{Q}-vector space).
Conjecture 5.1.3. If $H^{2}\left(X, \mathcal{O}_{X}\right)=0$, then ρ_{X} is an isomorphism.
One can also consider Abel-Jacobi maps in other codimensions. Let $\mathrm{Ch}^{i}(X)$ be the Chow group of codimension i-cycles modulo rational equivalence. One has a cycle class map with values in Betti cohomology

$$
\mathrm{cl}_{B}: \operatorname{Ch}^{i}(X) \longrightarrow H_{B}^{2 i}(X(\mathbb{C}), \mathbb{Z})
$$

Let $\operatorname{Ch}^{i}(X)_{0}=\operatorname{Kercl}_{B}$.
In analogy to

$$
\operatorname{Alb}(\mathbb{C})=\frac{H^{2 d-1}(X(\mathbb{C}), \mathbb{C})}{\left(H^{2 d-1}(X(\mathbb{C}), \mathbb{Z}(d))+\mathrm{Fil}^{d}\right)}
$$

one can consider the so called intermediate Jacobians

$$
\operatorname{Jac}_{X}^{i}(\mathbb{C})=\frac{H^{2 i-1}(X(\mathbb{C}), \mathbb{C})}{H^{2 i-1}(X(\mathbb{C}), \mathbb{Z}(i))+\mathrm{Fil}^{i}}
$$

which are no longer abelian varieties in general. (Note that $\mathbb{Z}(i)=$ $\mathbb{Z}(2 \pi \sqrt{-1})^{\otimes i}$ for $i \in \mathbb{N}$ and Fil ${ }^{i}$ denotes the Hodge-filtration.) Let $j \in \mathbb{N}$ be such that $i+j=d$.

By duality between cohomology and homology one has an isomorphism

$$
\operatorname{Jac}_{X}^{i}(\mathbb{C}) \cong \frac{F^{j+1} H^{2 j+1}(X(\mathbb{C}), \mathbb{C})^{*}}{H_{2 j+1}(X(\mathbb{C}), \mathbb{Z})}
$$

The generalized Abel-Jacobi map

$$
\rho^{(i)}: \operatorname{Ch}^{i}(X)_{0} \longrightarrow \operatorname{Jac}_{X}^{i}(\mathbb{C})
$$

can be described via integration as follows.
Let Z be a codimension i-cycle in $\operatorname{Ch}^{i}(X)_{0}$ and Γ a topological chain with boundary Z.

Then $\rho_{X}^{(i)}(\mathbb{Z})(\omega)=\int_{\Gamma} \omega$ for any holomorphic $j+1$-form ω.
In the following we describe p-adic analogues of these maps, so called p-adic Abel-Jacobi maps which often occur as syntomic regulator maps by using p-adic integration theory.
5.2. Abelian varieties over p-adic fields. Let A / K be an abelian variety over a p-adic field K with good reduction. Consider the Kummersequence on \bar{K}-valued points

$$
0 \longrightarrow A(\bar{K})_{p^{n}} \longrightarrow A(\bar{K}) \xrightarrow{p^{n}} A(\bar{K}) \longrightarrow 0 .
$$

The long exact Galois cohomology sequence induces a map

$$
A(K) \otimes \mathbb{Q}_{p} \xrightarrow{\partial} H^{1}\left(K, V_{p}\left(A_{\bar{K}}\right)\right)
$$

where $V_{p}\left(A_{\bar{K}}\right)$ is the p-adic Tate-module of $A\left(\otimes \mathbb{Q}_{p}\right)$. The image of ∂ is the Bloch-Kato group $H_{f}^{1}\left(K, V_{p}\left(A_{\bar{K}}\right)\right)$, defined in (B-K). As $A(K)$ is a p-adic Lie group one has an exponential map

$$
\operatorname{Lie}(A(K)) \xrightarrow{\exp } A(K) \otimes \mathbb{Q}
$$

on the Lie algebra $\operatorname{Lie}(A(K))$ which can be canonically defined with $H^{1}\left(\hat{A}, \mathcal{O}_{\hat{A}}\right) \cong H_{\mathrm{dR}}^{1}(\hat{A}) / \mathrm{Fil}^{1}$ where \hat{A} is the dual abelian variety. This quotient can be identified with $H_{\mathrm{dR}}^{2 d-1}(A) / \mathrm{Fil}^{d}$ which - by Poincaré duality - is isomorphic to ($\left.\mathrm{Fil}^{1} H_{\mathrm{dR}}^{1}(A)\right)^{*}$.

The map $\partial \circ \exp : H_{\mathrm{dR}}^{2 d-1}(A) / \mathrm{Fil}^{d} \xrightarrow{\cong} H_{f}^{1}\left(K, V_{p}\left(A_{\bar{K}}\right)\right)$ is the BlochKato exponential map (B-K), denoted here by Exp and is defined for any (de Rham) p-adic Galois-representation. Let $x \in A(K)$. Then $\operatorname{Exp}^{-1}(\partial(x))(\omega)$ for $\omega \in H^{0}\left(A, \Omega^{1}\right)$ can be described using p-adic integrals:

One has (for Log being a local inverse of Exp)

$$
\begin{aligned}
\operatorname{Exp}^{-1}(\partial(x))(\omega) & =\log (x)(\omega) \\
& =F_{\omega}(x)
\end{aligned}
$$

where F_{ω} is a Coleman integral of ω satisfying $F_{\omega}(0)=0$. The theory of Coleman integrals is reviewed in the next sections. For $\omega \in H^{0}\left(A, \Omega^{1}\right)$ one way to define F_{ω} is via the formula

$$
F_{\omega}(x):=\log (x)(\omega) .
$$

5.2.1. We will need some elementary definitions and properties in Milnor K-theory.

For a field F, let $K_{0}(F)=\mathbb{Z}, K_{1}(F)=F^{*}$, $K_{2}(F)=F^{*} \otimes_{\mathbb{Z}} F^{*} /\langle a \otimes(1-a), a \neq 0,1\rangle$.

The image of $a \otimes b$ in $K_{2}(F)$ is call the Steinberg symbol and denoted by $\{a, b\}$. The relation $\{a, 1-a\}=0$ in $K_{2}(F)$ is called Steinbergrelation. Now let F be a discretely valued field with valuation v and residue field k

The map

$$
\begin{aligned}
T_{v}: K_{2}(F) & \longrightarrow K_{1}\left(k^{*}\right)=k^{*} \\
\langle a, b\rangle & \longmapsto(-1)^{v(a) v(b)} \frac{\overline{a^{v(b)}}}{b^{v(a)}}
\end{aligned}
$$

is called the tame symbol.

Let, for a smooth scheme Z over a Dedekind ring R, K_{2} be the Zariski sheaf associated to the presheaf

$$
K_{2}(U)=\frac{\mathcal{O}(U)^{*} \otimes \mathcal{O}(U)^{*}}{\left\langle a \otimes(1-a), a, 1-a \in \mathcal{O}(U)^{*}\right\rangle} .
$$

Then one has the following.
Theorem 5.2.2 (Bloch-Gersten-Quillen). The complex

$$
\oplus_{x \in Z^{0}} K_{2}(k(x)) \xrightarrow{T_{y}} \oplus_{y \in Z^{1}} k(y)^{*} \xrightarrow{\operatorname{div}} \oplus_{z \in Z^{2}} \mathbb{Z}
$$

computes the Zariski-cohomology of the sheaf K_{2}. Moreover, $H_{\text {zar }}^{2}\left(Z, K_{2}\right) \cong$ $\operatorname{Ch}^{2}(Z):=\operatorname{coker}($ div $)$.
5.3. p-adic integration on curves. Let C / \mathbb{Z}_{p} be smooth and proper and $U \subset C$ be an affine open such that $Z:=C_{\mathbb{F}_{p}} \backslash U_{\mathbb{F}_{p}}$ is a finite set of closed points. To U one can associate a basic wide open V in the sense of Coleman $((\operatorname{Col} 1),(\operatorname{Col} 2))$ which coincides with the affinoid Dagger space $] U_{\mathbb{F}_{p} p} \overbrace{\hat{C}_{\mathbb{Q}_{p}}}^{+}$in the rigid analytification \hat{C} of C. Let for $r<1, D_{r}$ be the disc of radius r. Let V_{r} be the curve obtained by removing from \hat{C} discs D_{r} in the tubes of the finitely many points $e \in Z$. Then $V=\lim _{\longleftarrow} V_{r}$. For $e \in Z$ let V_{e} be the annuli end at e.

Then $A\left(V_{e}\right)=\left\{f=\sum_{n \geq-\infty} a_{n} z_{e}^{n}, f\right.$ converges for $r<\left|z_{e}\right|<1$ for some $r>$ $0\}$. Here z_{e} is a local parameter at e.

Define $A_{\log }\left(V_{e}\right)=A\left(V_{e}\right)\left[\log z_{e}\right]$ and for $x \in U\left(\mathbb{F}_{p}\right)$, let $\mathcal{U}_{x}=\left\{\left|z_{x}\right|<\right.$ $1\}=] x{\hat{C_{\mathbb{Q}_{p}}}}$ and $A\left(\mathcal{U}_{x}\right)=\left\{f=\sum_{n \geq 0} a_{n} z_{x}^{n}, f\right.$ converges for $\left.\left|z_{x}\right|<1\right\}$.

With the definition $\mathrm{d} \log z_{e}=\frac{\mathrm{d} z_{e}}{z_{e}}$ one sees that any 1 -form is locally integrable.

The idea of Coleman-integration is to construct a canonical subspace $A_{\mathrm{Col}}(V) \subset \prod_{x \in U\left(\mathbb{F}_{p}\right)} A\left(\mathcal{U}_{x}\right) \times \prod_{e \in Z} A_{\log }\left(V_{e}\right)$ such that any Coleman 1form ω, i.e. $\omega \in A_{\mathrm{Col}}(V) \otimes \Omega^{1}(V)=: \Omega_{\mathrm{Col}}^{1}(V)$, becomes integrable (globally), unique up to constants, i.e. one obtains an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{C}_{p} \longrightarrow A_{\mathrm{Col}}(V) \xrightarrow{\mathrm{d}} \Omega_{\mathrm{Col}}^{1}(V) \longrightarrow 0 \tag{5.3.1}
\end{equation*}
$$

We describe the first step in this construction, namely we associate to $\omega \in \Omega^{1}(V)$ a unique $F_{\omega} \in A_{\text {Col, } 1}(V)$ (unique map up to constants) as follows: consider the class $[\omega] \in H_{\mathrm{MW}}^{1}\left(\mathcal{U}_{\mathbb{F}_{p}}, \mathbb{Q}_{p}\right)$ in the MonskyWashnitzer cohomology which is equipped with a cannonical action of Frobenius Φ. It comes from lifting the Frobenius from $\mathcal{U}_{\mathbb{F}_{p}}$ to the affinoid Dagger-space $] \mathcal{U}_{\mathbb{F}_{p}}\left[{ }^{+}(\mathrm{GK})\right.$. There exists a polynomial $P \in \overline{\mathbb{Q}}_{p}[T]$ with roots which are not roots of unity such that $P\left(\Phi^{*}\right) \omega=\mathrm{d} \eta$ for some $\eta \in A(V)$.

Then Coleman shows that there is a unique $F_{\omega} \in \prod_{x \in U\left(\mathbb{F}_{p}\right)} A\left(\mathcal{U}_{x}\right) \times$ $\prod_{e \in Z} A_{\log }\left(V_{e}\right)$ (unique up to constants) such that $P\left(\Phi^{*}\right) F_{\omega}=\eta$, hence
one obtains an exact sequence

$$
\begin{aligned}
0 \longrightarrow \mathbb{C}_{p} \longrightarrow A_{\mathrm{Col}, 1}(V) & \xrightarrow{\mathrm{d}} \Omega^{1}(V) \longrightarrow 0 \\
F_{\omega}=\int \omega & \longmapsto \omega .
\end{aligned}
$$

The subspace $A_{\text {Col }}(V)$ together with a map $\int: \omega \mapsto F_{\omega}$ from $A_{\mathrm{Col}}(V) \otimes_{A(V)} \Omega^{1}(V)$ to $A_{\mathrm{Col}}(V)$ is uniquely determined by the following properties:

1. \int is primitive for the differentials $\mathrm{d}: \mathrm{d} F_{\omega}=\omega$.
2. Frobenius-equivariance:

$$
\int\left(\Phi^{*} \omega\right)=\Phi^{*}\left(\int \omega\right)
$$

3. If $g \in A(V)$, then $F_{\mathrm{d} g}=g+\mathbb{C}_{p}$.

Lemma 5.3.2. For $g \in A(V)$ we have $F_{\mathrm{d} \log g}=\log g$.
Then define $F_{\log g \cdot \omega}=F_{F_{d \log g \cdot \omega}}$.
Let now $f, g \in \overline{\mathbb{Q}}_{p}(C)$. Assume $f, g \in \mathcal{O}(U)^{*} / \mathbb{Z}_{p}$. Assume $\operatorname{div}(f) \cap$ $\operatorname{div}(g) \neq \emptyset$. Suppose $\operatorname{ord}_{x_{0}}(g) \neq 0$ for any $\overline{\mathbb{Q}}_{p}$-rational point x_{0}. Choose $F_{\log g \cdot \omega}$ and choose F_{ω} such that $F_{\omega}\left(x_{0}\right)=0$ (for $\omega \in H^{0}\left(C, \Omega^{1}\right)$. Then choose $\int F_{\omega} \mathrm{d} \log g$ such that the integration by parts formula holds:

$$
F_{\log g \omega}+\int F_{\omega} \mathrm{d} \log g=\log g F_{\omega}
$$

As the logarithm is bounded on K^{*} for any discretely valued field K we see that $\lim _{x \rightarrow x_{0}}\left(\log g F_{\omega}\right)(x)=0$. Then define

$$
F_{\log g \omega}\left(x_{0}\right)=\left(-\int F_{\omega} \mathrm{d} \log g\right)\left(x_{0}\right)
$$

Let $\operatorname{div} f=\sum n_{i}\left(x_{i}\right)$. Define

$$
\int_{(f)} \log g \cdot \omega=\sum_{i} n_{i} F_{\log g \omega}\left(x_{i}\right) .
$$

We have seen that $F_{\log g \omega}$ extends to a functions $C\left(\mathbb{C}_{p}\right) \rightarrow \mathbb{C}_{p}$ by continuity.

Define $r_{C}(\{f, g\})(w)=\int_{(f)} \log g \cdot \omega$.
Theorem 5.3.3 (Coleman-de Shalit). (Col-dS) $r_{C}(\{f, g\})$ is bilinear, skew-symmetric and satisfies the following
a. r_{C} factors through $K_{2}\left(\overline{\mathbb{Q}}_{p}(C)\right)$ to give a homomorphism

$$
r_{C}: K_{2}\left(\overline{\mathbb{Q}}_{p}(C)\right) \longrightarrow \operatorname{Hom}\left(H^{0}\left(C, \Omega_{C / \overline{\mathbb{Q}}_{p}}^{1}\right), \overline{\mathbb{Q}}_{p}\right),
$$

b. depends only on $\operatorname{div}(f), \operatorname{div}(g)$,
c. is $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$-equivariant,
d. is functorial in C : if $u: C^{\prime} \rightarrow C$ is a finite morphism, then

$$
r_{C}\left(u^{*} f, u^{*} g\right)=u^{*} r_{C}(f, g) .
$$

Coleman and de Shalit apply this construction to CM-elliptic curves E and relate the above regulator r_{E}, evaluated at certain Steinbergsymbols $\{f, g\}$ where f and g are \mathbb{Q}-rational functions with divisors supported at torsion points of E to the value of the p-adic L-function $L_{p}(E, s)$ at $s=0$.

In a series of papers ((B1) - (B4)) A. Besser studies rigid syntomic regulators with values in certain (modified) syntomic cohomology groups H_{ms}^{i}. In particular, for $f, g \in \mathcal{O}(U)^{*}$, where $U \subset C_{\mathbb{Z}_{p}}$ is as above he defines $r_{\mathrm{syn}}(f), r_{\mathrm{syn}}(g) \in H_{\mathrm{ms}}^{1}(U, 1)$ and their cup-product $\left.r_{\mathrm{syn}}\{f, g\}\right) \in H_{\mathrm{ms}}^{2}(U, 2)$. One of his main results is to relate the Colemande Shalit regulator (defined via p-adic integrals) to syntomic regulators. More precisely he shows the following ((B2)):

Theorem 5.3.4. The following diagram

is commutative. Here the first right vertical arrow is induced by Poincaré duality.

The proof of this Theorem relies on the one hand on Serre's cup product formula which says that for two 1 -forms of the second kind ω, η giving rise to globally defined cohomology classes in $H_{\mathrm{dR}}^{1}(C)$.

One has

$$
\omega \cup \eta=\sum_{x \in C} \operatorname{Res}_{x}\left(F_{\omega} \cdot \eta\right)
$$

and on the following residue formula ((B2)).
Proposition 5.3.5. Let $f, g \in \overline{\mathbb{Q}}_{p}(C)$, $\omega \in H^{0}\left(C, \Omega_{C / \mathbb{Q}_{p}}^{1}\right)$ and $\eta(f, g)$ be the image of $r_{\mathrm{syn}}(\{f, g\})$ under the isomorphism $H_{\mathrm{ms}}^{2}(U, 2) \cong H_{\mathrm{MW}}^{1}\left(\mathcal{U}_{\mathbb{F}_{p}}, \mathbb{Q}_{p}\right)=$ $H_{\mathrm{rig}}^{1}\left(\mathcal{U}_{\mathbb{F}_{p}}, \mathbb{Q}_{p}\right)$.

Then

$$
\sum_{\substack{V_{e} \text { annuli } \\ \text { end at } e}} \operatorname{Res}_{e}\left(F_{\omega} \cdot \eta(f, g)\right)=\sum_{x \in C} \log T_{x}\{f, g\} F_{\omega}(x)+\int_{(f)} \log g \cdot \omega .
$$

Here T_{x} is the previously defined tame symbol and $\int_{(f)} \log \cdot \omega$ the integral defined via the function $F_{\log g \cdot \omega}$.

As is explained by Besser the left hand side in the above formula is "morally" the cup-product " $\log f \mathrm{~d} \log g$ " $\cup \omega$ which does not have a meaning in the p-adic setting, but is defined in the context of complex regulators, defined by Bloch and Beilinson.
5.4. p-adic regulators on surfaces. Let X be a smooth proper surface over a p-adic field K with good reduction, so there exists a smooth proper model \mathcal{X} over \mathcal{O}_{K}, the ring of integers in K, with generic fiber X and closed fiber Y.

Let $H_{\text {zar }}^{i}\left(\mathcal{X}, \mathcal{K}_{2}\right)$ (resp. $\left.H_{\text {zar }}^{i}\left(X, \mathcal{K}_{2}\right)\right)$ be the Zariski- K-cohomology on X (resp. X) and $\operatorname{Pic}(Y)$ the Picard group of Y.

Localization in algebraic K-theory yields an exact sequence (Mi):

$$
\begin{equation*}
H_{\mathrm{zar}}^{1}\left(X, \mathcal{K}_{2}\right) \longrightarrow H_{\mathrm{zar}}^{1}\left(X, \mathcal{K}_{2}\right) \xrightarrow{\partial} \operatorname{Pic}(Y) . \tag{5.4.1}
\end{equation*}
$$

Note that an element in $H^{1}\left(X, \mathcal{K}_{2}\right)$ is represented by a finite formal sum $\sum_{i=1}^{n}\left(C_{i}, f_{i}\right)$, where C_{i} is a curve on $X, f_{i} \in k\left(C_{i}\right)$ and $\sum_{i=1}^{n} \operatorname{div}\left(f_{i}\right)=0$. This follows from Theorem 5.2.2. One has a similar description for $H_{\text {zar }}^{1}\left(\mathcal{X}, K_{2}\right)$.

If for an abelian group $M, \hat{M}=\underset{n}{\lim } M / p^{n}$ denotes its p-adic completion, then 5.4.1 induces an exact sequence

$$
\begin{equation*}
0 \longrightarrow H_{\mathrm{zar}}^{1}\left(\widehat{\mathcal{X}_{, \mathcal{K}_{2}}}\right) \otimes \mathbb{Q}_{p} \longrightarrow H_{\mathrm{zar}}^{1}\left(\widehat{X, \mathcal{K}_{2}}\right) \otimes \mathbb{Q}_{p} \xrightarrow{\partial} \operatorname{Pic}(Y) . \tag{5.4.2}
\end{equation*}
$$

The following lemma follows from Bloch-Ogus theorey and the theorey of Merkurjev-Suslin relating K_{2} of a field to its Galois cohomology (see (CT-R)):
Lemma 5.4.3. There is an isomorphism

$$
H_{\mathrm{zar}}^{1}\left(X, \mathcal{K}_{2} / p^{n}\right) \cong \operatorname{Ker}\left(H_{\mathrm{et}}^{3}\left(X, \mathbb{Z} / p^{n}(2)\right) \longrightarrow H_{\mathrm{et}}^{3}\left(k(X), \mathbb{Z} / p^{n}(2)\right)\right)
$$

where the right hand side is also known as the first coniveau filtration on $H_{\mathrm{et}}^{3}\left(X, \mathbb{Z} / p^{n}(2)\right)$.
Using lemma 5.4.3 one gets the étale p-adic regulator map

$$
\begin{equation*}
H^{1}\left(\widehat{X, \mathcal{K}_{2}}\right) \otimes \mathbb{Q}_{p} \stackrel{c_{\mathrm{et}}}{\hookrightarrow} H_{\mathrm{et}}^{3}\left(X, \mathbb{Q}_{p}(2)\right) \cong H^{1}(\operatorname{Gal}(\bar{K} / K), V) \tag{5.4.4}
\end{equation*}
$$

where $V:=H_{\mathrm{et}}^{2}\left(\bar{X}, \mathbb{Q}_{p}(2)\right)$ and the last isomorphism is induced by the Hochschild-Serre spectral sequence and uses a weight-argument from the Weil-conjectures.

Let

$$
H_{f}^{1}(K, V):=\operatorname{Ker}\left(H^{1}(\operatorname{Gal}(\bar{K} / K), V) \longrightarrow H^{1}\left(\operatorname{Gal}(\bar{K} / K), B_{\text {cris }} \otimes V\right)\right)
$$

where $B_{\text {cris }}$ is Fontaine's ring of p-adic periods. Then 5.4.2-5.4.4 induce a commutative diagram

$$
\begin{array}{llccc}
0 & \longrightarrow & H_{\mathrm{zar}}^{1}\left(\widehat{X, \mathcal{K}_{2}}\right) \otimes \mathbb{Q}_{p} & \longrightarrow & H_{\mathrm{zar}}^{1}\left(\widehat{X, \mathcal{K}_{2}}\right) \otimes \mathbb{Q}_{p} \\
0 & \int_{\mathrm{syn}} & & \left(c_{\mathrm{et}}\right. \tag{5.4.5}\\
0 & H_{f}^{1}(K, V) & \longrightarrow & H^{1}\left(\operatorname{Gal}\left(\frac{K}{K} / K\right), V\right) .
\end{array}
$$

Here the vertical maps are injections and we can identify - using a well-known isomorphism between syntomic cohomology and $H^{1}(K, V)$ and the compatibility of syntomic with étale regulators proven by Niziol (see also (L-S)) - the left vertical map with the syntomic regulator, although the syntomic cohomology $H_{\text {syn }}^{3}\left(\mathcal{X}, S_{\mathbb{Q}_{p}}(2)\right)$ will not occur explicitly in this section.

On $H_{\text {zar }}^{1}\left(X, \mathcal{K}_{2}\right)$ one has so-called decomposable elements arising by cup-product from $\operatorname{Pic}(X) \otimes \mathcal{O}_{K}^{*}$.

One has a map

$$
\operatorname{Pic}(X) \otimes \mathcal{O}_{K}^{*} \longrightarrow N S(X) \otimes \mathcal{O}_{K}^{*} \longrightarrow H_{f}^{1}\left(K, \mathbb{Q}_{p}(1) \otimes \operatorname{NS}(\bar{X})\right)
$$

where $\operatorname{NS}(X)$ denotes the Neron-Severi group.
Assume that $\operatorname{NS}(\bar{X})=\mathrm{NS}(X)$. Then we get the map

$$
\operatorname{Pic}(X) \otimes \mathcal{O}_{K}^{*} \longrightarrow \operatorname{NS}(X) \otimes H_{f}^{1}\left(K, \mathbb{Q}_{p}(1)\right)
$$

which fits into a commutative diagram (L)

$$
\begin{array}{rlll}
\operatorname{Pic}(\mathcal{X}) \otimes \mathcal{O}_{K}^{*} & \longrightarrow & H_{\mathrm{zar}}^{1}\left(\widehat{\left(\mathcal{X , \mathcal { K } _ { 2 }}\right) \otimes \mathbb{Q}_{p}}\right. \tag{5.4.6}\\
\downarrow & & \downarrow r_{\text {syn }} \\
\mathrm{NS}(X) \otimes H_{f}^{1}\left(K, \mathbb{Q}_{p}(1)\right) & \hookrightarrow & H_{f}^{1}(K, V) .
\end{array}
$$

The left vertical map comes from a boundary map of the Kummer sequence $K^{*} \rightarrow H^{1}\left(K, \mathbb{Q}_{p}(1)\right)$. The image of the decomposable elements generates $\mathrm{NS}(X) \otimes H_{f}^{1}\left(K, \mathbb{Q}_{p}(1)\right)(\mathrm{L})$.

As mentioned in section 5.2, the Bloch-Kato exponential map (B-K) is defined for any (de Rham-) Galois-representation. In our situation, Exp induces an isomorphism (using B_{dR}-comparison isomorphism)

$$
\begin{equation*}
H_{\mathrm{dR}}^{2}(X) / \mathrm{Fil}^{2} \cong H_{f}^{1}(K, V) \tag{5.4.7}
\end{equation*}
$$

By Poincaré duality, $H_{\mathrm{dR}}^{2}(X) / \mathrm{Fil}^{2} \cong\left(\operatorname{Fil}^{1} H_{\mathrm{dR}}^{2}(X)\right)^{*}$ so we can interpret a syntomic cohomology class as a linear form on $\mathrm{Fil}^{1} H_{\mathrm{dR}}^{2}(X)$.
Lemma 5.4.8. $r_{\text {syn }}$ maps the decomposable elements (i.e. $\left.\operatorname{Pic}(X) \otimes \mathcal{O}_{K}^{*}\right)$ in $F_{i l}{ }^{1} H_{\mathrm{dR}}^{2}(X) / \mathrm{Fil}^{2}$ under the isomorphism Exp^{-1} (5.4.7).

For the proof see (L).
Corollary 5.4.9. An element $z \in H^{1}\left(\mathcal{X}, \mathcal{K}_{2}\right)$ is regulator-indecomposable (i.e. $\left.r_{\mathrm{syn}}(z) \notin \mathrm{NS}(X) \otimes H_{f}^{1}\left(K, \mathbb{Q}_{p}(1)\right)\right)$ if there exists a 2-form $\omega \in$ $H^{0}\left(X, \Omega^{2}\right)=\operatorname{Fil}^{2} H_{\mathrm{dR}}^{2}(X)$ such that $r_{\mathrm{syn}}(z)(\omega) \neq 0$.

If $\omega=\eta_{1} \cup \eta_{2}$ where $\eta_{1} \in \operatorname{Fil}^{1} H_{\mathrm{dR}}^{1}(X), \eta_{2} \in H_{\mathrm{dR}}^{1}(X)$ (so ω is a cup-product of two 1 -forms) and if $z \in H^{1}\left(\mathcal{X}, \mathcal{K}_{2}\right)$ is represented by a finite formal sum $z=\sum_{i=1}^{n}\left(C_{i}, f_{i}\right)$ then Besser (B4) has recently proven a formula for $r_{\text {syn }}(z)\left(\eta_{1} \cup \eta_{2}\right)$ using generalized residues (that he calls triple indices, defined in $(\mathrm{B}-\mathrm{dJ})$), involving $\log f_{i}$ and the Coleman integrals of η_{1} and η_{2}. If η_{1} and η_{2} are both global holomorphic 1-forms in $H^{0}\left(X, \Omega^{1}\right)$ one can describe his formula as follows.

Proposition 5.4.10.

$$
r_{\text {syn }}(z)\left(\eta_{1} \cup \eta_{2}\right)=\sum_{i=1}^{n} \sum_{e} \operatorname{Res}_{e}\left(\int F_{\pi_{i}^{*} \cdot \eta_{1}} \pi_{i}^{*} \eta_{2}\right) \mathrm{d} \log f_{i} .
$$

Here $\pi_{i}: Z_{i} \rightarrow X$ is a normalization of the curve C_{i}, the functions f_{i} are invertible on some open affine $\mathcal{U}_{i} \subset Z_{i}$ and the residues are taken at annuli ends attached to the basic wide opens V_{i} associated to \mathcal{U}_{i}. Then $\int F_{\pi_{i}^{*} \cdot \eta_{1}} \pi_{i}^{*} \eta_{2}$ is a Coleman-integral in $A_{\mathrm{Col}}\left(V_{i}\right)$.

Proposition 5.4.10 should be compared with Theorem 5.1.4 and the Abel-Jacobi map for abelian varieties in section 5.2.

An interesting case where this formula can be applied is the case of a self-product of an elliptic curve $\mathcal{E} / \mathbb{Z}_{p}$.

There are elements in $H^{1}\left(\mathcal{E} \times \mathcal{E}, \mathcal{K}_{2}\right)$ which turn out to be regulatordecomposable (see (L)) and there are elements constructed by Mildenhall and Flach (see (Mi)) which are candidates for being regulatorindecomposable. In the following we will discuss these elements.

Let E be an elliptic curve defined over \mathbb{Q} and $X_{0}(N) \xrightarrow{\pi} E$ a modular parameterization, with N being the conductor of E.

We recall the element defined by Flach/Mildenhall in $H^{1}\left(X_{0}(N) \times\right.$ $\left.X_{0}(N), \mathcal{K}_{2}\right)\left(\right.$ resp. $\left.H^{1}\left(E \times E, \mathcal{K}_{2}\right)\right)$. Let l be a prime that does not divide N. Then we have the Atkin-Lehner involution

$$
W_{l}: X_{0}(l N) \longrightarrow X_{0}(l N)
$$

which on $Y_{0}(l N)$ can be described as follows:
Identify a point $\left(A, C_{l N}\right) \in Y_{0}(l N)$, where A is an elliptic curve and $C_{l N}$ a (cyclic) subgroup of order $l N$. with a cyclic isogeny of degree l between elliptic curves equipped with a subgroup of order N

$$
\lambda_{l}:\left(A, C_{N}\right) \longrightarrow\left(A / C_{l}, C_{l N} / C_{l}\right)
$$

where C_{N}, C_{l} are the unique subgroups of orders N and l in $C_{l N}$.
W_{l} sends the isogeny λ_{l} to its dual λ_{l}^{*}. Cusps on $X_{0}(N)$ are equivalence classes of $\mathbb{P}_{\mathbb{Q}}^{1}$ under the action of $\Gamma_{0}(N)$. For each $0<d \mid N$ let $t=\operatorname{gcd}\left(d, \frac{N}{d}\right)$. Then there are $\phi(t) \operatorname{cusps}\binom{a}{d}$ with $a \in(\mathbb{Z} / t \mathbb{Z})^{*} .\binom{a}{d}$ is the class of a cusp $\frac{x}{y}$ with $x \equiv a \bmod t, y \equiv d \bmod N$. Notation: $P_{d}^{a}:=\binom{a}{d}$.

Above each cusp P_{d}^{a} of $X_{0}(N)$ with $d \mid N$ there are two cusps in $X_{0}(l N)$, namely P_{d}^{a} and $P_{l d}^{a}$ that are swapped under W_{l}.

Then we have the map

$$
\epsilon: X_{0}(l N) \longrightarrow X_{0}(N) \times X_{0}(N),
$$

$\epsilon=\left(d_{1}, d_{1} \circ W_{l}\right)$, where d_{1} is the degeneracy map. The image of ϵ is the graph of the l-Hecke operator on $X_{0}(N) \times X_{0}(N)$ and is called T_{l}.

On $X_{0}(l N)$ we have the modular unit

$$
g_{l, N}:=\prod_{d \| N} \frac{\Delta_{d}}{\Delta_{l d}} \in\left(\mathcal{O}(\mathrm{y}(l N)) / \mathbb{Z}\left[\frac{1}{l N}\right]\right)^{*}
$$

where for $M \in \mathbb{N}, \Delta_{M}(z)$ is equal to $\Delta(M z)$ and is a modular form for $\Gamma_{0}(M)$ induced by the discriminant form Δ; this is a unique cusp form of weight 12 for $S L_{2}(\mathbb{Z})$. The divisor of Δ_{M} at the cusp is well-known.

It is shown by Mildenhall and Flach that

$$
(*) \quad \operatorname{ord}_{P_{d}^{a}}\left(g_{l, N}\right)=-\operatorname{ord}_{P_{l d}^{a}}\left(g_{l, N}\right) \neq 0 .
$$

This implies that $\epsilon_{*}\left(\operatorname{div} g_{l, N}\right)=0$; hence $\left(T_{l}, g_{l, N}\right)$ defines an element in $H^{1}\left(X_{0}(N) \times X_{0}(N), \mathcal{K}_{2}\right)$ which is integral away from $N \cdot l$. (Its properties at the prime l where they satisfy an Eichler-Shimura identity are crucial in the papers of Mildenhall/Flach, but we don't need them here.)

Let p be a prime not dividing $l \cdot N$. Then $\pi_{*}\left(T_{l}, g_{l, N}\right)$ is an element in the cohomology $H^{1}\left(\mathcal{E} \times \mathcal{E}_{\mathbb{Z}_{p}}, \mathcal{K}_{2}\right)$ and we conjecture that for a given prime p there always exists an $l \neq p, l \nmid N$ such that $r_{\text {syn }}\left(\pi_{*}\left(T_{l}, g_{l, N}\right)\right)$ is indecomposable in $H_{\text {syn }}^{3}\left(\mathcal{E} \times \mathcal{E}_{\mathbb{Z}_{p}}, S_{\mathbb{Q}_{p}}(2)\right)$.

To prove this conjecture, one has to apply Besser's triple index formula (proposition 5.4.10) to compute

$$
r_{\mathrm{syn}}\left(\pi_{*}\left(T_{l}, g_{l, N}\right)\right)\left(\omega_{1} \cup \omega_{2}\right)
$$

where ω is an invariant form of E, so $\omega \in H^{0}\left(E, \Omega^{1}\right), \omega_{1}=\pi_{1}^{*} \omega$, $\omega_{2}=\pi_{2}^{*} \omega$ with $\pi_{i}: E \times E \rightarrow E$ the canonical projections.
Remark. We note that, by different methods, indecomposable elements in $H^{1}\left(\mathcal{X}_{\mathbb{Z}_{p}}, \mathcal{K}_{2}\right)$ were constructed by Asakura and Sato (A-S), when \mathcal{X} is a model of an elliptic K_{3}-surface.

References

[A-S] M. Asakura and K. Sato, Beilinson's Tate conjecture for K_{2} and finiteness of torsion zero-cycles on elliptic surfaces, Preprint (2009).
[B1] A. Besser, Syntomic regulators and p-adic integration I: rigid syntomic regulators, Israel Journal of Math. 120 (2000), 291-334.
[B2] A. Besser, Syntomic regulators and p-adic integration II: K_{2} of curves, Israel Journal of Math. 120 (2000), 335-360.
[B3] A. Besser, A generalization of Coleman's integration theory, Inv Math 120 (2) (2000), 397-434.
[B4] A. Besser, On the syntomic regulator for K_{1} of a surface, Preprint (2007).
[B-dJ] A. Besser and R. de Jeu, The syntomic regulator for K_{4} of curves, Preprint (2005).
[B-K] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives. In: Grothendieck Festschrift Vol. I Progress Math. 86, Birkhäuser (1990), 333-400.
[Col-dS] R. Coleman and E. de Shalit, p-adic regulators on curves and special values of p-adic L-functions, Invent. Math. 93 (1988) 239-266.
[Col1] R. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent. Math. 69 (1982), 171-208.
[Col2] R. Coleman, Torsion points on curves and p-adic abelian integrals, Annals of Math. 121 (1985), 111-168.
[CT-R] J.-L. Colliot-Thélène and W. Raskind, K_{2}-cohomology and the second chow group, Math. Annalen 270 (1985), 165-199.
[GK] E. Grosse-Kloenne, Rigid analytic spaces with overconvergent structure sheaf. Journal Reine Angew. Math. 519 (2000), 73-95.
[L] A. Langer, On the syntomic regulator for products of elliptic curves, Preprint (2010).
[L-S] A. Langer and S. Saito, Torsion zero cycles on the selfproduct of a modular elliptic curve, Duke Math. J. vol. 85 (1996), 315-357.
[Mi] S. Mildenhall, Cycles in a product of elliptic curves, and a group analogous to the class group, Duke Math. J. 67 (1992), 387-406.

Andreas Langer
University of Exeter
Mathematics
Exeter EX4 4QF
Devon, UK

