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Preface

These lectures were given in a graduate course while I visited Kyushu University
between April and July 2009. Of invaluable help to me as I wrote up these lectures were
the wonderfully detailed class notes taken by Shingo Saito. It was a pleasure to teach
this course. I would like to thank Professor Masato Wakayama for the invitation to visit
Kyushu University and for his generous support. I would also like to thank him and his
wife Chieko for their warm hospitality, due to which my wife, our two year old son and I
felt in Fukuoka like in a home away from home. Several people contributed to us feeling
so welcome, including Professors Kaneko and Gon and their families, and the dean’s
secretary Nakaoka-san, who answered my many questions with amazing helpfulness and
good will. And last but not least, I thank all the people who listened to my lectures, and
especially Shingo Saito, whose detailed following and insightful questions were a great
help throughout this course.

Mihai Ciucu
January 2010

2



Lecture 1

Introduction

A graph G = (V,E) consists of a set V of vertices together with a collection E of
2-element subsets of V called edges. All graphs considered in this course will have a
finite number of vertices.

A perfect matching of a graph is a collection of disjoint edges which cover all vertices.
For instance, the graph pictured in Figure 1.1(a) has a total of three perfect matchings,
indicated in Figure 1.1(b). We denote the number of perfect matchings of a graph G by
M(G).

Figure 1.1(a). A graph on six vertices. Figure 1.1(b). Its three perfect matchings.

Let us look now at a larger example. Suppose we want to find all perfect matchings
of the 12-vertex graph shown on the left of Figure 1.2. We branch in two possibilities
according to whether the top leftmost vertex is matched horizontally or vertically. In
the former case, three other edges (encircled by dotted lines in Figure 1.2) are forced
to be part of the perfect matching, and what is left uncovered is just a 4-cycle, which
clearly has two perfect matchings. The latter case further branches into two, according as
the left topmost vertex is matched horizontally or vertically. Now the vertically matched
instance forces 2 edges, leaving two ways to finish this subcase. The horizontally matched
alternative branches in two more sub-branches; each of them is readily seen to have
exactly two ways of completing them to a perfect matching (see the figure). Thus the
total number of perfect matchings of this graph is 8.

A final example we do “by hand” is the 4× 4 grid graph G4, illustrated in Figure 1.3.
We branch in two according as the top left vertex is matched horizontally or vertically;
by symmetry the two cases can be extended to a perfect matchings in the same number
of ways. Figure 1.3 describes the top branch as it further divides into sub-branches,
depending on how certain vertices are matched. The number of ways to finish the partial
matchings at the tips of the tree is readily found to be as indicated in the picture. We
obtain M(G4) = 36.
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Figure 1.2. A larger graph and its eight perfect matchings.
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Figure 1.3. The 36 perfect matchings of the 4× 4 grid graph G4.

Now here is a useful trick that can be used to get the above answers more quickly. It
turns out (this is a special case of Theorem 10.2 that we will prove later in the course)
that if you have a subgraph G of Z2 that is symmetric with respect to a diagonal lattice
line ℓ, then if you scan the vertices of G on ℓ from left to right and alternately remove
the edges incident to them from above ℓ and from below ℓ, then the resulting subgraph
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G′ is such that

M(G) = 2k M(G′), (1.1)

where 2k is the number of vertices of G on ℓ (this number is even if G admits perfect
matchings, as this requires G to have an even number of vertices in total, and the vertices
off ℓ come in pairs, due to the symmetry of G).

Applying (1.1) to the graph G4 we get

M 2=
4/2

M

But the graph on the right has two connected components, each isomorphic to the
graph in Figure 1 after removal of one forced edge. Thus we recover the answer 22·32 = 36,
which was obtained by “brute force” earlier. A similar application of (1.1) to the graph
in Figure 1.2 provides its number of perfect matchings as 21 M(C4)

2 = 8, as the 4-cycle
C4 clearly has two perfect matchings.

Consider now the following sequence of graphs:

Denoting the n-th graph in this sequence by ADn, we clearly have M(AD1) = 2
and M(AD2) = 8 = 23. By (1.1) and the picture above, a simple perfect matching
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count of the resulting small graph gives M(AD3) = 22 · 42 = 26. One similarly obtains
M(AD4) = 22 · 162 = 210. So it looks like M(ADn) = 2n(n+1)/2 for all n. This is indeed
the case, as we will show in the next lecture (see Theorem 2.1).

We conclude the introduction by mentioning two classical results in the subject of
counting perfect matchings of graphs. The first concerns the m × n grid graph Gm,n,
of which the special case m = n = 4 is illustrated in Figure 1.3. In the mid-1930’s,
physicists considered the problem of modeling the adsorption of a liquid by the face of
a crystal immersed in it. Assuming the crystal face has a square lattice structure and
that the liquid has diatomic molecules whose lengths are equal to the lattice spacing, this
associates to each “fully packed” adsorption configurations a perfect matching of the grid
graph. The solution came 25 years later, when Kasteleyn and independently Temperley
and Fisher proved the following result.

Theorem 1.1. For any positive integers m and n one has

M(G2m,2n) = 22mn
m∏
j=1

n∏
k=1

(
cos2

(
jπ

2m+ 1

)
+ cos2

(
kπ

2n+ 1

))
.

The final result we mention here concerns a family of graphs on the hexagonal lattice.
For any positive integers a, b and c let Ha,b,c be the “honeycomb graph” obtained by
taking an a × b × c × a × b × c array of unit hexagons on the regular hexagonal lattice
(Figure 1.4 illustrates H4,2,3). Around 1900 MacMahon proved a result equivalent to the
following.

Figure 1.4. The 4× 2× 3 honeycomb graph H4,2,3.

Theorem 1.2. For any positive integers a, b and c one has

M(Ha,b,c) =

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
.
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Lecture 2

The Aztec diamond

The graphs ADn introduced towards the end of the previous lecture are called the
Aztec diamond graphs. They were introduced by Elkies, Kuperberg, Larsen, and Propp,
who proved in 1992 the following result.

Theorem 2.1. For all n ≥ 1 we have

M(ADn) = 2n(n+1)/2. (2.1)

The short proof we present here is based on the following two preliminary lemmas.

Lemma 2.2 (Vertex Splitting Lemma). Let G be a graph, v a vertex of it, and
denote the set of neighbors of v by N(v). For an arbitrary partition N(v) = H ∪K, let
G′ be the graph obtained from G \ v by including three new vertices v′, v′′, and x so that
N(v′) = H ∪ {x}, N(v′′) = K ∪ {x}, and N(x) = {v′, v′′}. Then

M(G) = M(G′). (2.2)

Pictorially, we have

M=M
v’’v’ xv

Proof. We set up a bijection between the set M(G) of perfect matchings of G and the
set M(G′) of perfect matchings of G′. Given µ ∈ M(G), look at the vertex w matched
up with v under µ. If w ∈ H, associate to µ the perfect matching of G′ in which v′ is
matched to w, x to v′′, and all remaining vertices are matched up exactly as in µ. If
w ∈ K, associate to µ the perfect matching of G′ in which v′′ is matched to w, x to v′,
and all remaining vertices are matched up exactly as in µ. It is readily checked that this
correspondence is a bijection. �

In the next lemma graphs with weights on the edges appear. For such a weighted
graph G we denote by M(G) the weighted count of its perfect matchings, i.e. the sum of
the weights of its perfect matchings, where the weight of a perfect matching is defined to
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G G′

Figure 2.1. Illustration of the Spider lemma; dashed lines indicate edges weighted 1/2;
circled vertices indicate vertices that have no other neighbors besides the ones shown.

be the product of the weights of the edges in it (note that this specializes to the number
of perfect matchings if all edge weights are chosen to be 1).

Lemma 2.3 (Spider Lemma). Let G be a graph which contains the local configuration
shown on the left of Figure 2.1, i.e. it contains a 4-cycle C whose vertices have degree 3
in G, so that the four vertices outside C that have a neighbor in C are distinct. Let G′

be the graph obtained from G by deleting the vertices of C and including four new edges,
each weighted by 1/2, as indicated on the right of Figure 2.1. Then we have

M(G) = 2M(G′). (2.3)

Proof. Let N be the set consisting of the four vertices of G outside C that have
neighbors in C (i.e., N consists of the four outer vertices in the pattern shown in Figure
2.1). Partition the set of perfect matchings of G and G′ according to the subsets of N
which are matched outside C∪N . All such subsets ofN necessarily have even size (indeed,
and odd such subset of N would leave an odd number of vertices in our patterns to be
matched among themselves, which is impossible). The possible situations are illustrated
in Figure 2.2 (note that when the subset of externally matched vertices of N has size two,
the neighbors in C of these two vertices must be adjacent, otherwise the leftover portions
of our patterns have no perfect matchings). The numbers below each figure represent the
total weight of the perfect matchings of the leftover portions of our local patterns. For
instance, in the top left figure the portion of our local pattern that is still to be covered is
a 4-cycle, so it has two perfect matchings; in the middle row, in the picture on the right
there is just one way to match the leftover two vertices, and that matching has weight
1/2. Since in all instances the number on the left is precisely twice the number on the
right, the statement follows. �

Proof of Theorem 2.1. Consider the following sequence of graphs that starts with ADn

and ends with ADn−1 (the figure illustrates the case n = 4, but all details are the same
in the general case). Let us keep track how the number of perfect matchings changes
when we go from each graph in the sequence to the next.

From the first to the second, the number of perfect matchings stays unchanged, by
repeated application of the vertex splitting lemma (Lemma 2.1). Next we apply the
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Figure 2.2

spider lemma in the places indicated on the third graph. Thus when we arrive at the

fourth graph, we pick up a factor of 2n
2

; the dashed edges indicate edges weighted by
1/2. Next a key point happens: when we delete the forced edges (i.e., edges that are
forced to be part of any perfect matching) in the fourth graph, what we are left with is
ADn−1, with all edges weighted 1/2 (note that all forced edges had weight 1, so their
removal leaves the weighted count of perfect matchings unchanged). To connect back
to ADn−1 with unit weights on edges, note that each perfect matching of ADn−1 has
n(n − 1) edges in it (this is half the number of vertices of ADn−1). Thus the weighted
count of matchings of ADn−1 with weights 1/2 everywhere equals 1

2n(n−1)/2 M(ADn−1).
Putting all this together we obtain

M(ADn) = 2n M(ADn−1), (2.4)

which when applied repeatedly implies (2.1). �
We have seen that the vertex splitting lemma and the spider lemma fit together nicely

to afford the above proof of Theorem 2.1. It turns out they have weighted extensions that
allow one to prove a much more general result — namely, a version of (2.4) with arbitrary
weights on the edges of ADn (see the “Reduction Theorem” of the next lecture). (It is
interesting to note that even for graphs with all edge weights equal to 1, the statement
of the spider lemma involves, in the graph G′, some weights different from 1.)

9



The vertex splitting lemma readily extends to the weighted case.

Lemma 2.4 (Weighted Vertex Splitting Lemma). Let G be a weighted graph, and
construct the weighted graph G′ from it as follows. Take the structure of G′ to be exactly
that defined in Lemma 2.1. Define the weights of edges {x, v′} and {x, v′′} to be 1,
and the weights of all remaining edges of G′ to be the same as they were in G. Then
M(G) = M(G′).
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Proof. It is readily checked that, due to the choice of the edge weights in G′, the
bijection between M(G) and M(G′) described in the proof of Lemma 2.2 is weight
preserving. This implies the statement. �

To extend the spider lemma we need a little more work, but the ideas are the same.

Lemma 2.5 (Weighted Spider Lemma). Let G be a weighted graph which contains
the local configuration shown on the left of Figure 2.1, and suppose the weights of the
edges in the 4-cycle C are (clockwise from top left) a, b, c, and d, while the weights of
the four other edges incident to C are 1. Let G′ have the structure described in Lemma
2.3, with the weights of the shown 4-cycle in G′ be (clockwise from top left) c/(ac+ bd),
d/(ac + bd), a/(ac + bd), and b/(ac + bd), and all other edge weights the same as in G.
Then we have

M(G) = (ac+ bd)M(G′). (2.5)

Proof. Rather then simply checking that the specified weights work, let us deduce
them. Denote by A, B, C, and D the weights of the 4-cycle of G′ displayed in Figure 2.3.
Our goal is to choose them in such a way that the reasoning in the proof of Lemma 2.3
leads to two columns of weights that are proportional. These weights are readily seen to
be as indicated in Figure 2.3; note that there are three more cases analogous to the one
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pictured in the middle, where the weights of the selected edge on the left are b, c, and d,
respectively. Imposing the condition that the two columns of weights are proportional,
and denoting the constant of proportionality by k, we obtain the following six equations:

ab+ cd = k

a = kC

b = kD

c = kA

d = kB

1 = k(AC +BD).

The first five of these yield k = ac+bd, A = c/(ac+bd), B = d/(ac+bd), C = a/(ac+bd),
and D = b/(ac+bd). It is readily checked that these values also satisfy the sixth equation.
This completes the proof. �
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Lecture 3

The Reduction Theorem and fortress graphs

We present now the extension of (2.4) to Aztec diamond graphs with arbitrary weights
on their edges.

Let wt be an arbitrary weight function on the edges of ADn. We construct a new
weight wt′ on the edges of ADn−1 as follows. Regard ADn as being composed of n2

“cells” — the n2 4-cycles into which its edges can be partitioned. Change the weight on
each cell of ADn as indicated in Figure 3.11:

xz+yw
z

xz+yw xz+yw

xz+yw

x

w

y

x y

w z

Figure 3.1

Then take the restriction of the resulting weight on ADn to the graph isomorphic to
ADn−1 that can be seen “in the middle” of ADn (see Figure 3.2):

Figure 3.2

This is the weight wt′ on ADn−1 we wanted to construct. Let C be the set of cells of
ADn. If a cell c has its four edge weights x, y, z, and w (in cyclic order), we define the
cell factor ∆(c) to be ∆(c) := xz + yw.

Theorem 3.1 (Reduction Theorem). For all n ≥ 1 and for any weight function wt
on the edges of ADn, the weight wt′ on ADn−1 defined above is such that

M(ADn; wt) =

(∏
c∈C

∆(c)

)
M(ADn−1; wt

′). (3.1)

1We assume here that all resulting denominators in Figure 3.1 are different from 0. This is always

the case if for instance the edge weights are regarded as indeterminates. In concrete numerical examples
it may happen that the weights on some cells produce a denominator equal to 0; such instances require
special attention.
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Proof. Follow the same arguments we gave in the proof of Theorem 2.1 in Lecture 2,
but instead of Lemmas 2.2 and 2.3 use their weighted generalizations given in Lemmas
2.4 and 2.5, respectively. The product on the right hand side of (3.1) arises due to the
n2 applications of the weighted spider lemma (Lemma 2.5). The shuffling of the weights
prescribed by the latter, and the fact that the fifth graph in the proof of Theorem 2.1
(ADn−1) was obtained by deleting the vertices of the “outer ring” of the first graph in
the proof of Theorem 2.1 (ADn), causes the resulting weight on ADn−1 to be precisely
the weight wt′ defined above. �

As a first application of this extension of Theorem 2.1, we consider a new family of
graphs, called fortress graphs. Their definition is apparent by looking at the first few
graphs in this family, as shown in Figure 3.3.

F6

F4

F2

Figure 3.3

In general, F2n consists of (2n)2 4-cycles joined together by edges, with extra pending
edges added along the perimeter according to the rule shown in Figure 3.3.
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As in the case of Aztec diamonds, the number of perfect matchings of F2n also turns
out to be a perfect power. But the base is different.

Theorem 3.2. For all n ≥ 1 we have

M(F2n) = 5n
2

. (3.2)

Proof. In the graph F2n there are n2 opportunities to apply the spider lemma (Lemma
2.3); these locations are indicated in Figure 3.4 in the case n = 2. Apply the spider
lemma at all these places. Note that the resulting graph is AD2n, with edges weighted
by 1 or 1/2, as resulting from the n2 applications of the spider lemma (for n = 2, this
is pictured in Figure 3.5; as indicated there, solid lines denote weights equal to 1, and
dotted lines weights equal to 1/2); denote this weight function by wt1. We obtain

Figure 3.4

1

1/2

Figure 3.5

M(F2n) = 2n
2

M(AD2n; wt1). (3.3)

Apply the Reduction Theorem to the graph on the right hand side above. Since the cells
with edges weighted by 1 contribute cell factors of 2, and those whose edges are weighted
by 1/2 produce cell factors of 1

2 · 1
2 + 1

2 · 1
2 = 1

2 , this yields

M(AD2n; wt1) = 22n
2

(
1

2

)2n2

M(AD2n−1; wt2), (3.4)
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Figure 3.6

1

1/2

Figure 3.7

where the weight wt2 is obtained from wt1 by the procedure illustrated in Figures 3.1–3.2;
in the case of our weights, these figures take the forms shown in Figures 3.6–3.7 (i.e., the
thick contour in Figure 3.7 contains AD2n−1 weighted by wt2, for n = 2).

At this point we start seeing how this proof might be finished. Had the resulting
weight wt2 be the same (or equivalent to) wt1, the equations above would have implied a
recurrence relation that would have solved the problem. This is not the case, but we can
apply the reduction theorem again, for a new chance of this idea to work. Plugging in the
values of our weights in Figure 3.1, we see that this second application of the Reduction
Theorem gives (see Figure 3.8)

4/5

2/5

Figure 3.8

M(AD2n−1;wt2) =

(
5

4

)(2n−1)2

M(AD2n−2; wt3), (3.5)

where wt3 is the weight described in Figure 3.8. After reflecting wt3 across the vertical
symmetry axis of AD2n−2, it becomes proportional to wt1 (more precisely, 4/5 times
wt1). Since each perfect matching of AD2n−2 contains exactly (2n − 2)(2n − 1) edges,
we see that the hope expressed in the previous paragraph is fulfilled, as we get

M(AD2n−2; wt3) =

(
4

5

)(2n−2)(2n−1)

M(AD2n−2; wt1). (3.6)
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Replacing now n by n− 1 in (3.3) gives

M(AD2n−2;wt1) =

(
1

2

)(n−1)2

M(F2n−2). (3.7)

Putting together equations (3.3)–(3.7) we obtain

M(F2n) = 5n
2

M(F2n−2).

Applying this repeatedly one obtains (3.2). �
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Lecture 4

A unifying point of view and a new problem suggested by it: Aztec dungeons

Our consideration of fortress graphs in the previous lecture may look a little arbitrary.
There is however a very simple but quite useful fact that can help motivate the definition
of fortresses. This fact is that often perfect matchings problems can be equivalently
phrased as tiling problems. For instance, suppose we are given a lattice L in the plane,
and a finite lattice region R on it. Define a tile to be the union of any two fundamental
regions of L which share an edge. A tiling of R is by definition a complete covering of R
with such non-overlapping tiles.

Now let G := R∗ be the dual graph pf R, i.e. the graph whose vertices are fundamental
regions of L contained in R, and whose edges connect those pairs of vertices which
correspond to fundamental regions that share an edge. Then by construction the perfect
matchings of G can be identified with tilings of R. Figure 4.1 illustrates the domino tiling
corresponding to a perfect matching of AD2.

Figure 4.1

With this in mind, note that the Aztec diamond graphs are obtained by starting with
the square lattice, and taking duals of regions like the one shown in Figure 4.2.

Figure 4.2
18



Figure 4.3

On the other hand, the fortress graphs are are obtained by starting with the lattice
obtained from the square lattice by drawing in both diagonals in each unit lattice square,
and taking duals of regions like the one shown in Figure 4.3.

How about the triangular lattice? No family of lattice regions on the triangular lattice
seems to be known whose number of tilings is analogous to the power of 2 and power of
5 formulas that we have seen in the previous lectures2. However, on the lattice obtained
from the triangular lattice by drawing in all altitudes in each unit triangle, there is such
a family of regions.

Figure 4.4

Namely, take a contour on this lattice in the shape of a slightly squashed Aztec dia-
mond, as shown in Figure 4.4. If the chosen contour is the Aztec diamond of order n,

2Note that MacMahon’s theorem (Theorem 1.2) does have a nice translation in terms of tilings on the
triangular lattice (more precisely, unit rhombus tilings of hexagonal regions on the triangular lattice),
but the resulting formula is not a perfect power.
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define the dual of the obtained lattice region to be the Aztec dungeon of order n, and
denote it by Dn (D4 is illustrated in Figure 4.5). The number of perfect matchings of
Dn again turns out to be (up to a possible multiple of two) a perfect power — this time
with base 13.

Theorem 4.1. The number of perfect matchings of the Aztec dungeon Dn is given by
the equalities M(D0) = 1, M(D1) = 2, M(D2) = 13, M(D3) = 133, M(D4) = 2 · 135,
M(D5) = 138, and for n ≥ 5 by the recurrence

M(Dn+1) = 134n−8 M(Dn−5). (4.1)

The proof of Theorem 4.1 will follow from the following three preliminary results. The
first of them expresses M(Dn) in terms of a certain weighted count of perfect matchings
of the Aztec diamond graph AD2n−2.

Let A be a given k× l matrix with k and l even. The centers of the edges of the Aztec
diamond graph ADn form a 2n× 2n array. Place a copy of A in the upper left corner of
this array and fill in the rest of the array periodically with period A (i.e., translate A to
the right in the array l units at a time and down in the array k units at a time; if 2n is
not a multiple of k or l some of these translates will fit only partially in the array).

Definition 4.2. Define the weight wtA on the edges of ADn by assigning each edge the
corresponding entry of A in the array described above.

Lemma 4.3. Let N be the matrix

N =


1
2 1 1 1

2
1 0 1 1
1 1 0 1
1
1 1 1 1

2

 . (4.2)

We have
M(Dn) = 2n

2

M(AD2n−2; wtN ). (4.3)

Proof. Consider the graph Dn (this is illustrated in Figure 4.5 for n = 4). This graph
contains many local configurations like the one in the statement of the spider lemma
(Lemma 2.3), providing one with as many opportunities to apply it. By their geometric
orientation, these local configurations can be grouped into three families. The largest
family contains n2 members (these are indicated in Figure 4.6). Apply the spider lemma
at each of these n2 places. The resulting weighted graph is readily seen to be isomorphic
with a weighted subgraph of the square lattice (shown in Figure 4.7 for n = 4).

Furthermore, because of the vertices of degree one, the resulting subgraph of the square
lattice will have some edges around the boundary that are forced to be contained in all
of its perfect matchings (the forced edges are shown in thick lines in Figure 4.7).

Removing all vertices (together with all incident edges) connected by forced edges we
are left with a weighted spanning subgraph of the Aztec diamond of order 2n− 2 (Figure

20



Figure 4.5. The Aztec dungeon D4 and its dual graph.

Figure 4.6. Applying Lemma 2.3 to the graph dual to D4.

4.8 illustrates the case n = 4; the thick edges have weight 1/2). This can be regarded as
the entire graph AD2n−2 by weighting all missing edges by 0. By the spider lemma, the
obtained weight comes out to be exactly wtN , with the matrix N given by (4.2). This
implies (4.3). �

For a k × l matrix A with k and l even define a new k × l matrix d(A) as follows.
Divide matrix A into 2× 2 blocks [

x w
y z

]
and assume xz + yw ̸= 0 for all such blocks. Replace each such block by[

z/(xz + yw) y/(xz + yw)
w/(xz + yw) x/(xz + yw)

]
and denote the resulting k× l matrix by B. Define d(A) to be the k× l matrix obtained
from B by cyclically shifting its columns one unit up and cyclically shifting the rows of
the resulting matrix one unit to the left.

21



Figure 4.7. A graph embedded in Z2. Figure 4.8. A weight on AD6.

The next simple observation provides a convenient way of keeping track of the evolution
of periodic weights on Aztec diamonds when one applies the Reduction Theorem.

Lemma 4.4. Let A be a k × l matrix with k and l even and consider the weight wtA it
determines on ADn according to Definition 4.2. When applying the Reduction Theorem
to ADn weighted by wtA, the resulting weight on ADn−1 is wtd(A), where d is the matrix
operator defined above.

Proof. This follows from the Reduction Theorem and the above construction of d(A).
The reason we need the cyclic shifts in the construction of d(A) is because on the right
hand side of (3.1) the Aztec diamond of order n − 1 is viewed as being embedded con-
centrically into the Aztec diamond of order n on the left hand side in (3.1), while the
weight wtB is defined by fitting B into the upper left corner of the array formed by the
midpoints of the edges of each Aztec diamond. �

Due to the location of the 0’s in the matrix N given by (3.2), all the edges in an
Aztec diamond that are weighted 0 under wtN are parallel among themselves. By the
pattern in Figure 3.1, this property is preserved whenever we apply the Reduction The-
orem. In particular, in any cell at least one pair of opposite edges is assigned nonzero
weights. Therefore all cell-factors are nonzero and the Reduction Theorem can be applied
successively.

By Lemma 4.4, the successive weights that occur are the weights corresponding via

Definition 4.2 to the iterates d(i)(N), for i = 1, 2, 3, . . . . Therefore, if one of these iterates
would be the same as N—or the same up to a scalar multiplicative factor—then we would
get a recurrence for the number of perfect matchings on the right hand side of (4.3). By
(4.3) this would then translate into a recurrence for M(Dn) and would solve the problem
of computing the latter.

The computation of the iterates d(i)(N) can be done very easily with a computer alge-
22



bra package like Maple. The first few iterates don’t look very promising, but perseverance
pays off: the twelfth(!) iterate turns out to be, up to a scalar multiple, exactly the same
as N . More precisely, one obtains

d(12)(N) = k0N, (4.4)

with

k0 =
34 · 54

24 · 134
. (4.5)

Since at each application of the Reduction Theorem the order of the resulting Aztec
diamond decreases one unit, it follows that

M(AD2n; wtN ) = k1 M(AD2n−12; wtN ), (4.6)

where the constant k1 is the product of all the cell-factors arising in the twelve applications

of the Reduction Theorem, multiplied by k
(2n−12)(2n−11)
0 (the latter factor is due to (4.4)

and to the fact that each perfect matching of ADn contains n(n + 1) edges). To carry
out the computation of k1 by hand would be fairly strenuous, but with the assistance of
Maple it is quite easy. We obtain by (4.6) the following result.

Proposition 4.5. For n ≥ 6 we have

M(AD2n; wtN ) = 224−12n134n−8 M(AD2n−12; wtN ). (4.7)

We are now ready to present the proof of the enumeration of perfect matchings of the
Aztec dungeons.

Proof of Theorem 4.1. By Lemma 4.3 we have

M(Dn+1) = 2(n+1)2 M(AD2n; wtN )

and
M(Dn−5) = 2(n−5)2 M(AD2n−12; wtN ).

Together with (4.7) these two equalities imply (4.1). The stated values for the number
of perfect matchings of the first six Aztec dungeons are easily checked using (4.3) and
applying repeatedly the Reduction Theorem to evaluate the weighted perfect matching
counts of the resulting Aztec diamonds. �
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Lecture 5

An extension of the Reduction Theorem and a new class of graphs it suggests

The main idea we have seen so far is contained in the Reduction Theorem. It turns
out that one can generalize this from weighted Aztec diamond graphs to a larger class of
graphs, which we describe next.

A cellular graph is a graph G defined as follows:

(i) a cell is a 4-cycle
(ii) G is a union of cells that can have common vertices
(iii) at each vertex of G at most two cells meet.

Let G be a cellular graph with an arbitrary weight function on its edges. Group the
cells of G in “lines of cells” as follows. Let H be the graph whose vertex set is the same
as the vertex set of G, with two vertices being connected by an edge in H if and only if
they are opposite vertices in the same cell. Due to condition (iii) above, the edge set of
H is naturally partitioned into a union of disjoint maximal (possibly closed) paths. Call
the cells along such a maximal path of H a line of cells. Call the vertices of G that are
endpoints of maximal paths in H extremal vertices (these are precisely those vertices of
G that belong to a single cell).

Figure 5.1. An example of a cellular graph G and the corresponding graph G′.

Given a cellular graph G with an arbitrary weight function wt on its edges, define
G′ to be the subgraph of G induced by its non-extremal vertices (Figure 5.1 shows an
example; the cells of G are shaded, G′ is the subgraph induced by the vertices inside the
thick contour), and weight the edges of G′ by a new weight wt′ defined as follows: apply
the rule shown in Figure 3.1 in each cell of G, and then restrict the resulting weight to
the edges of G′. Recall that for a cell c with weights x, y, z, w on its edges (in cyclic
order) the cell factor ∆(c) is ∆(c) = xz + yw.

The generalization of the reduction Theorem we referred to above is the following (see
[2] for the proof).
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Figure 5.2. A tricellular graph. Figure 5.3. A 4-regular tricellular graph.

Theorem 5.1. Let G be a cellular graph with an arbitrary weight function wt on its
edges. Let C be the set of cells of G. Then if G′ and wt′ are defined as above, we have

M(G; wt) =

(∏
c∈C

∆(c)

)
M(G′; wt′). (5.1)

In the above definition of a cellular graph, choosing cells to be 4-cycles may seem a
little arbitrary. What if we look at graphs consisting of triangular cells? Can we say
something about their number of perfect matchings? It turns out that the answer to this
question is in the affirmative.

Define tricellular graphs by the same definition we used above for cellular graphs, with
the sole modification that cells are now 3-cycles, i.e. replace (i) by

(i′) a cell is a 3-cycle

and keep (ii) and (iii) unchanged. Figure 5.2 illustrates an example of a tricellular graph.
A graph is call k-regular if there are k edges incident to each of its vertices. Figure 5.3

shows an example of a tricellular graph which is also 4-regular (the dotted lines are the
edges of a cell which has not been shaded for clarity). It turns out that in such graphs
the number of perfect matchings is determined by the number of vertices. We have the
following result.

Theorem 5.2. Let G be a 4-regular tricellular graph. Then the number of perfect match-
ings of G is given by

M(G) = 2
|V (G)|

3 +1. (5.2)

A related kind of graphs, called 3-regular terminal graphs, are graphs G for which

• V (G) is a disjoint union of vertices of triangular cells
• E(G) consists of the edges of the triangular cells, plus some edges connecting vertices

of different cells
• G is 3-regular

An example of a 3-regular terminal graph is shown in Figure 5.4.

Theorem 5.3. Let G be a 3-regular terminal graph. Then

M(G) = 2
|V (G)|

6 +1. (5.3)
25



Figure 5.4. A 3-regular terminal graph embedded in the torus.

We will prove Theorem 5.3 first. It will imply Theorem 5.2. We need two basic ideas
in our proof. The first one involves the Ising model of statistical physics and a simple
and elegant trick that physicists call its “high temperature expansion.” The second idea
is the Fisher construction which relates the Ising model to perfect matchings.

The Ising model is a classical model in statistical physics, and it can be described as
follows. Let G be a finite graph (it may help the reader to think of G as a concrete graph,
for instance the n×n grid graph on a torus; but all definitions and arguments that follow
work for arbitrary graphs).

Let N be the number of vertices (also called sites) of G, and label them by 1, 2, . . . , N .
Assign the value σi to vertex i, with σi ∈ {+1,−1}, for i = 1, . . . , N . Such an assignment
is called a state and is denoted by {σ}. The Ising model gives each such state a certain
energy E(σ). The probabilities of occurrences of different states are then defined by
requiring them to depend in a certain way on these energies (see (5.6)). We motivate
below the definition of energies E(σ) employed by the Ising model.

+1

−1

+1

−1

−1

+1

+1

−1
(a) (b)

Figure 5.5.

Let {σ} be a state. Note that as far as an edge is concerned, only the four possibilities
shown in Figure 5.5 can happen. The two possibilities in Figure 5.5(a) have the same
value at the endpoints of the edge, and the two in Figure 5.5(b) have opposite values.
Suppose we want to favor the situation of identical endpoints. Recall from physics the
basic fact that lower energy states have higher probability. Thus to make identical values
at the endpoints of an edge more likely than opposite values, we need to give lower
energy to the configurations in Figure 5.5(a) than to the ones in Figure 5.5(b). One of
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the simplest choices that accomplishes this is to let edge {i, j} have energy −kσiσj , where
k > 0. Define then the energy of a state as the sum of the energies of its edges:

Energy({σ}) :=
∑

edges{i,j}

−kσiσj . (5.4)

Recall that by Boltzmann’s law the probability of a state is proportional to the exponen-
tial of minus its energy:

Probability({σ}) ∼ e−Energy({σ}). (5.5)

By (5.4) and (5.5) we are led to

Probability({σ}) ∼
∏

edges{i,j}

ekσiσj , (5.6)

which determines the probabilities of individual states. These are the probabilities used
in the Ising model.

The main object of study in the Ising model is the partition function, defined as

Z :=
∑
{σ}

∏
edges{i,j}

ekσiσj . (5.7)

The high temperature expansion of the Ising model is a way of rewriting the partition
function (5.7) as a sum over even sub graphs of G (i.e., subgraphs in which every vertex
degree is an even number).

Interestingly, the crucial idea in accomplishing this is the following very simple identity.

Lemma 5.4. For σi, σj = ±1, one has

ekσiσj = cosh(kσiσj)(1 + tanh(k)σiσj). (5.8)

Proof. We have

ekσiσj =
ekσiσj + e−kσiσj

2
+

ekσiσj − e−kσiσj

2

= cosh(kσiσj) + sinh(kσiσj)

= cosh(kσiσj)(1 + tanh(kσiσj))

= cosh(kσiσj)(1 + tanh(k)σiσj).

Note that all the power of this sequence of equalities comes at the last equality sign, which
holds due to the obvious fact that for σiσj = ±1 one has tanh(kσiσj) = tanh(k)σiσj . �
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Now use identity (5.8) to rewrite the partition function (5.7) as

Z =
∑

σ1=±1,...,σN=±1

∏
{i,j}∈E(G)

cosh(kσiσj)(1 + tanh(k)σiσj)

= (cosh(k))|E(G)|
∑

σ1,...,σN=±1

∏
{i,j}∈E(G)

(1 + vσiσj), (5.9)

where v := tanh(k).
Expand the product in the summand above as a sum of 2|E(G)| terms. Each such term

is obtained by selecting either 1 or vσiσj in each of the |E(G)| factors of the product
in (5.9), and then multiplying together the selections we have made. Thus the terms in
the expansion of the product are in bijection with subsets of the edge set E(G): given a
collection H of edges of G, the corresponding term in the expansion of the product is

v|H|
∏

{a,b}∈E(H)

σaσb.

Thus we can write∑
σ1,...,σN=±1

∏
{i,j}∈E(G)

(1 + vσiσj) =
∑

σ1,...,σN=±1

∑
H subgraph ofG

v|E(H)|
∏

{a,b}∈E(H)

σaσb

=
∑

H subgraph ofG

v|E(H)|
∑

σ1,...,σN=±1

∏
{a,b}∈E(H)

σaσb

=
∑

H subgraph ofG

v|E(H)|
∑

σ1,...,σN=±1

N∏
i=1

σ
dH(i)
i

=
∑

H subgraph ofG

v|E(H)|

( ∑
σ1=±1

σ
dH(1)
1

)( ∑
σ2=±1

σ
dH(2)
2

)
. . .

( ∑
σN=±1

σ
dH(N)
N

)
,

(5.10)

where dH(i) denotes the degree of vertex i of G in the subgraph H (in these equations
the collection H of edges of G is viewed as a subgraph of G whose vertex set is V (G) and
whose edge set is H). However, one clearly has∑

σ=±1

σd =

{
2, if d is even,

0, if d is odd.
(5.11)

Thus the only non-zero summands in (5.10) are those corresponding to subgraphs H
in which all degrees are even; we call such subgraphs even subgraphs. Putting (5.9)–
(5.11) together we obtain the rewriting of the partition function called high temperature
expansion.
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Lemma 5.5 (High Temperature Expansion). The partition function of the Ising
model on any finite graph G can be rewritten as

Z = 2|V (G)|(cosh(k))|E(G)|
∑

H even subgraph ofG

v|E(H)|. (5.12)
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Lecture 6

The Fisher construction and the proofs of Theorems 5.2 and 5.3

Even subgraphs of a given graphG (i.e., subgraphs in which all vertex degrees are even)
are also called polygons of G (the motivation being that even subgraphs are unions of
edge-disjoint cycles; see Lecture 7). An interesting consequence of the high temperature
expansion (Lemma 5.5) is that we can determine the number of polygons of any finite
graph.

Proposition 6.1. Let G be a finite connected graph. Then the number of polygons of G
is equal to 2|E(G)|−|V (G)|+1.

Proof. By (5.7) and (5.12) we have∑
{σ}

∏
edges{i,j}

ekσiσj = 2|V (G)|(cosh(k))|E(G)|
∑

H even subgraph ofG

v|E(H)|. (6.1)

Let k → ∞ in (6.1). As cosh(k) = ek+e−k

2 and v = tanh(k) = ek−e−k

ek+e−k , we have that

cosh(k) ∼ ek

2 and v → 1 as k → ∞. Therefore, as k → ∞ the right hand side of (6.1) has
the asymptotics

RHS of (6.1) ∼ 2|V (G)|
(
ek

2

)|E(G)|

(# polygons of G). (6.2)

How about the left hand side? Clearly, as k → ∞, each term in the sum on the left
hand side of (6.1) grows slower or at most at the same rate as ek|E(G)| (since σiσj = ±1).
This maximum growth rate is attained only if all products σiσj are equal to 1. Since G
is connected, this happens for precisely two states: when all σi’s equal 1, and when all
equal −1. We thus obtain that as k → ∞ the left hand side of (6.1) has the asymptotics

LHS of (6.1) ∼
∏

edges{i,j}

ek(+1)(+1) +
∏

edges{i,j}

ek(−1)(−1) = 2(ek)|E(G)|. (6.3)

Setting equal the right hand sides of (6.2) and (6.3) and solving for the number of polygons
of G we obtain equation (6.1). �

The proof of Theorem 5.3 will follow from the above proposition when combined with
the following classical construction due to Fisher.

Proposition 6.2 (Fisher’s Construction). Let G be a cubic graph, and let F =
F (G), the Fisher graph of G, be the graph obtained from G by “inflating” each vertex into
a 3-cycle (i.e., for each edge e of G, include in V (F ) two vertices for the two endpoints of
e, an edge in E(F ) connecting them, and then include an edge in E(F ) between any two
vertices of V (F ) corresponding to coinciding endpoints of edges in G; see Figure 6.1).
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Figure 6.1. The possible local configurations in P ∗ (left)
and the corresponding configurations in µP (right).

Then there is a bijection between the set of polygons of G and the set of perfect matchings
of F .

Proof. Given a polygon P ofG, let P ∗ be the complement of P inG (i.e., V (P ∗) = V (G)
and E(P ∗) = E(G) \E(P )). Since G is cubic and the possible vertex degrees in P are 0
and 2, it follows that all vertex degrees in P ∗ are either 1 or 3.

Thus, there are only two different ways the neighborhood of a vertex can look in P ∗;
they are shown on the left in Figure 6.1. For each of them, consider the corresponding
edge configuration around a 3-cycle in the graph F shown on the right of Figure 6.1.
Note that the latter are all compatible, in the sense that if C and C ′ are neighboring
3-cycles in F , then the result of the correspondence in Figure 6.1 around C contains the
inter-triangular edge connecting C to C ′ if and only if the result of the correspondence
in Figure 6.1 around C ′ contains the inter-triangular edge connecting C to C ′. This, and
the fact that on the right of Figure 6.1 each vertex of a 3-cycle is contained in precisely
one selected edge, implies that the set of edges resulting by applying this correspondence
around each vertex of P ∗ forms a perfect matching µP of F . The map P → µP is readily
invertible. Indeed, given a perfect matching µ of F , contract the 3-cycles to single vertices
to obtain a subgraph of G all of whose vertex degrees are 1 or 3; then take the complement
of the latter in G to obtain a polygon Pµ of G. It is immediate to check that P → µP

and µ → Pµ are inverses of one another. �
We can now easily deduce the statement of Theorem 5.3.

Proof of Theorem 5.3. Let G be a 3-regular terminal graph, and let H be the graph
obtained from G by contracting its triangular cells to single vertices. Then clearly H is
cubic and G is the Fisher graph F (H). We then have

M(G) = M(F (H)) = # polygons of H = 2|E(H)|−|V (H)|+1, (6.4)

where the second equality holds by Proposition 6.2, and the third one by Proposition 6.1.
To see that the right hand side of (6.4) agrees with that of (5.3), note that∑

x∈V (H)

deg(x) = 2|E(H)|,
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and since H is cubic this implies 3|V (H)| = 2|E(H)|. Furthermore, since G = F (H),
it follows that |V (G)| = 3|V (H)|. Thus the exponent on the right hand side of (6.4) is
|V (G)|/2− |V (G)|/3 + 1, and (5.3) follows. �

Next, we deduce Theorem 5.2 from Theorem 5.3. To do this, we need one more idea,
phrased in the following result.

Figure 6.2. The circled vertices have no other neighbors besides the ones shown.

Figure 6.3.

Lemma 6.3 (Funny spider lemma). Let G be a graph containing the local configuration
shown on the left of Figure 6.2, i.e. a 3-cycle C whose vertices have degree 3, so that
the three vertices outside C that have neighbors in C are distinct. Let G′ be the graph
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obtained from G by “cutting out” this local configuration and replacing it with the one on
the right of Figure 6.2. Then M(G) = M(G′).

Proof. Partition the setM(G) of perfect matchings of G into classes according to which
of the three outer vertices in the 3-legged spider on the left of Figure 6.2 are matched
to the outside. Since there are 3 internal vertices, the number of outer vertices matched
to the outside must be even. We thus obtain a partition of M(G) into four classes: one
corresponding to the top entry in the left column of Figure 6.3, two to the middle entry
and its reflection across its vertical symmetry axis, and one to the bottom entry of this
column. Partition M(G′) in an analogous way, using the entries of the right column of
Figure 6.3. As indicated in Figure 6.3, there is a bijection between corresponding classes
of these two partitions. These combine to give a bijection between M(G) and M(G′). �

Figure 6.4.

Figure 6.5. Figure 6.6.

Proof of Theorem 5.2. Let G be a 4-regular tricellular graph (an example is illustrated
in Figure 6.4). Let G′ be the graph obtained from G by doing vertex splitting at every
vertex, in such a way that same cell neighbors of a vertex remain on the same side after
vertex splitting (when G is as shown in Figure 6.4, G′ is the graph pictured in Figure 6.5).
Note that in G′ there are many opportunities to apply the funny spider lemma (Lemma
6.3), and the effect of each application is to replace two paths of length two by two single
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edges. If one could apply the funny spider lemma in a consistent way so that each path
of length two is involved precisely once, the resulting graph G′′ would be the 3-regular
terminal graph obtained from G by stretching out each vertex into an edge connecting two
triangular cells, and we could apply Theorem 5.3. Note that this consistent application
of Lemma 6.3 is achieved if there exists a way to pair up the paths of length two in G′

in disjoint pairs, so that in each pair the paths of length two are incident to a common
3-cycle (such a pairing for our example is indicated in Figure 6.6). But such a pairing is
equivalent to a perfect matching of G ! Since the existence of a perfect matching of G is
guaranteed by Lemma 7.4 in the next lecture, the idea mentioned above can be put into
practice, and we obtain

M(G) = M(G′) = M(G′′). (6.5)

However, by Theorem 5.3 we have

M(G′′) = 2
|V (G′′)|

6 +1 = 2
|V (G)|

3 +1, (6.6)

as G′′ has twice as many vertices as G. By (6.5) and (6.6) the proof is complete. �
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Lecture 7

A different proof of the formula for the number of polygons of a graph

A key point in our proofs of Theorems 5.2 and 5.3 was Proposition 6.1, which states
that the number of polygons of any finite graph G is 2|E(G)|−|V (G)|+1. Given the simple
form of the answer, it is surprising that we had to derive this by using the Ising model.

As it turns out, there exists a more direct proof of Proposition 6.1, which we present
in this lecture. Let us say right away, however, that merits of the Ising model argument
remain. We will show another application of it in the next lecture. For that application,
the Ising model argument seems to be the most direct approach.

The alternative proof of Proposition 6.1 mentioned above concerns the cycle space of
a graph. The presentation below follows [9] (but our proof of Lemma 7.1 is more direct).

Let G be a finite graph, and let E(G) be the set of subsets of the edge set E(G) of G.
Endow E(G) with a vector space structure over the field F2 with two elements as follows.
Given A,B ⊆ E(G) and α, β ∈ F2, define

αA+ βB (7.1)

to consist of those edges e for which αχe(A) + βχe(B) = 1 in F2, where χe(S) is 1 if S
contains e, and 0 otherwise.

Let C(G) be the subspace of E(G) spanned by the cycles of G.

Lemma 7.1. Let G be a connected multigraph. Then dim F2 C(G) = |E(G)| − |V (G)|+1.

Proof. Let T be a spanning tree of G (which exists, as G is connected). T has |V (G)|−1
edges. Let e be one of the other ν := |E(G)| − |V (G)| + 1 edges of G. The endpoints
of e are connected by a unique path Pe in T . Define Ce := Pe ∪ e. Then Ce is a cycle
of G. Let e1, . . . , eν be the edges in E(G) \ E(T ). Write Ci for Cei . We prove that
{Ci : i = 1, . . . , ν} is a basis of C(G). This will clearly imply the statement of the lemma.

To check linear independence, assume that α1C1 + · · ·ανCν = 0. For any fixed i
between 1 and ν, the only cycle containing ei is Ci. Thus the above equality implies
αi = 0, which verifies linear independence.

To complete the proof we need to show that any linear combination L of cycles of G
is in the span of {Ci : i = 1, . . . , ν}. We prove this by induction on |L \ E(T )|.

If |L \ E(T )| = 0, L is a subset of the edges of T . We claim that this implies L = ∅.
Indeed, suppose L ̸= ∅. By Lemma 7.2, L viewed as a subgraph of G has all vertex
degrees at least 2. But then we can start at some vertex of L and travel along edges so
that we leave from each vertex v visited for the first time along an edge different from the
edge that led to v. This implies the existence of a cycle in L, contradicting L ⊆ E(T ).

Let L be a linear combination of cycles with |L \ E(T )| > 0, and let e ∈ L \ E(T ).
Write

L = Ce + (L+ Ce). (7.2)

Since L + Ce has fewer edges outside T than L, it is in the span of {Ci : i = 1, . . . , ν}
by the induction hypothesis. Thus by (7.2) the induction step works, and the proof is
complete. �
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Lemma 7.2. Let G be a connected multigraph, and identify each polygon on G with its
edge set. Regarded this way, the set of polygons on G is precisely C(G).

Proof. One readily checks that for any polygon P and cycle C, P + C is a polygon.
Using this it readily follows that the sum of any number of cycles is a polygon (use
induction on the number of cycles).

To prove the converse, fix a spanning tree T of G, and let P be a polygon on G. We
prove that E(P ) ∈ C(G) by induction on |E(P ) \ E(T )|. When |E(P ) \ E(T )| = 0, P is
a subgraph of T . If P ̸= ∅, the fact that all degrees in P are even implies that P has
a cycle. This is then a cycle of the tree T , a contradiction showing that we must have
P = ∅ in this case.

Let now P be a polygon with |E(P ) \ E(T )| > 0, and assume that all polygons that
have fewer edges outside T than P does are in C(G). Let e ∈ E(P )\E(T ). The induction
step follows by writing P = Ce+(P +Ce) (where Ce is defined as in the proof of Lemma
7.1), and noticing that P + Ce is a polygon with fewer edges outside T than P . �

Second proof of Proposition 6.1. By Lemma 7.2, the number of polygons of G equals
|C(G)|. However, by Lemma 7.1, each element in the cycle space C(G) can be written
uniquely in the form

α1C1 + · · ·ανCν ,

where ν = |E(G)| − |V (G)|+ 1, C1, . . . , Cν are the cycles defined in the proof of Lemma
7.1, and αi ∈ {0, 1}, for i = 1, . . . , ν. Thus |C(G)| = 2ν , and the proof is complete. �

We present now the result on the existence of a perfect matching that we used in the
previous lecture when we proved Theorem 5.2.

In the proof of Lemma 7.4 we will employ the following classical result due to T. Gallai.
A 3-edge connected graph is a connected graph that stays connected after the removal of
any two of its edges.

Theorem 7.3 (Gallai). Every 3-edge connected 4-regular graph on an even number of
vertices has a perfect matching.

Lemma 7.4. Any connected 4-regular tricellular graph with an even number of vertices
has a perfect matching.

Proof. The only possible way to disconnect a connected tricellular graph by removing
two edges is if the two deleted edges are in the same cell (deleting at most one edge per
cell keeps all cells, and thus the graph, connected). Deletion of two edges of the same
cell results in disconnecting the graph if and only if their common vertex is a cut-vertex
of the graph (i.e., its removal disconnects the graph).

We prove the statement of the lemma by induction on the number of vertices. As
|V (G)| is even by hypothesis and since 3t = 2|V (G)| (where t is the number of triangular
cells of G), it follows that |V (G)| is a multiple of 6. Any 4-regular tricellular graph on
6 vertices is isomorphic with the one shown in Figure 7.1, which clearly has a perfect
matching.

Let G be a connected 4-regular tricellular graph with an even number of vertices having
more than 6 vertices. If G has no cut-vertex, we are done by Theorem 7.3. So let v be
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Figure 7.1.

a cut-vertex of G: G \ v consists of two disconnected parts, which we call Gl and Gr

(from left and right; see Figure 7.2). Without loss of generality we may assume that the
number of vertices of Gl is even, and that of Gr is odd.

w

z
v

x

y

G Gl r

Figure 7.2.

Let G̃r be the graph obtained fromGr\xy by identifying vertices x and y, the neighbors

of v that belong to Gr. Then G̃r has a perfect matching µr by the induction hypothesis.
Define G̃l to be the graph obtained from Gl \zw by adjoining two new vertices a and b

which form two new triangular cells together with the neighbors z and w of v that belong
to Gl (see Figure 7.3). Then G̃l has a perfect matching µl by the induction hypothesis
(it has fewer vertices than G, as G has at least three vertices outside Gl, namely v, x,
and y).

a b

w

z

Figure 7.3. The graph G̃l.

Since µl is a perfect matching, one of the following is necessarily true: (i) one of the
ab edges is in µl; (ii) aw, bz ∈ µl; or (iii) az, bw ∈ µl. In case (i), µl \ ab is a perfect
matching of Gl. In case (ii), (µl \ {aw, bz}) ∪ zw is a perfect matching of Gl; case (iii)
is equivalent to case (ii). Thus µl generates a perfect matching µ′

l of Gl.

Depending on whether the vertex of G̃r obtained by identifying x and y is matched
by µr to a former neighbor of x or to a former neighbor of y, G̃r generates a perfect

37



matching µ′
r of Gr \ y or Gr \ x, respectively. Then µ′

l ∪ µ′
r ∪ vy (resp., µ′

l ∪ µ′
r ∪ vx is a

perfect matching of G. This completes the proof. �
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Lecture 8

Dimer coverings of 4-regular tricellular graphs
with exactly two monomers: Part I

So far we have looked at the situation when disjoint edges (“dimers”) cover completely
the vertex set of a graph. It is interesting to change this point of view and consider the
situation when the dimer covering is not quite complete, but leaves uncovered say precisely
two vertices (“monomers”).

This question was first considered by Fisher and Stephenson in the early 1960’s, in the
context of square grid graphs. Figure 8.1 shows a dimer covering of the 4× 4 grid graph
which leaves two vertices uncovered.

Figure 8.1. Two monomers in a sea of dimers.

Natural questions one can ask include:

(i) If we fix two vertices a and b of a graph G, how does M(G \ {a, b}) relate to M(G)?

(ii) How does M(G \ {a, b}) vary as a and b run over V (G)?

For large subgraphs G of Z2, the answer to (ii) above turns out to be given by a close
parallel to two dimensional electrostatics. Namely, if a and b have opposite colors in the
chessboard coloring of Z2, then in the limit as G grows infinitely large, while a and b stay
relatively close to its “center,” M(G \ {a, b}) decays proportionally to d(a, b)−1/2, while
if a and b have the same color, then M(G \ {a, b}) grows proportionally to d(a, b)1/2, as
d(a, b) → ∞ (here d denotes the Euclidean distance); note that if one assigns charge +1
to the white vertices and charge −1 to the black ones, the exponents above equal 1/2
times the product of the charges of the missing vertices. Details about this are presented
in [4], [6], [7], and [8].

In the case of 4-regular tricellular graphs, the situation turns out to be completely
different. As we will see in this lecture and the next, M(G \ {a, b}) turns out to be
constant in this case as a and b run over V (G). More precisely, we have the following
result.

Theorem 8.1. Let K be a 4-regular tricellular graph, and let a and b be two vertices of
K that are not neighbors. Let H be the cell graph of K: The vertices of H are the cells
of K, and two such cells are connected by an edge in H whenever they share a common
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vertex in G (in case two cells of G share k > 1 vertices, the corresponding vertices of
H are connected by k parallel edges). Let ea and eb be the edges of H corresponding to
a and b, respectively. Assume that K \ {a, b} has a perfect matching, and that H has a
perfect matching containing ea and eb. Then

M(K \ {a, b}) = 1

4
M(K). (8.1)

It turns out that it is possible to modify both Fisher’s construction and the high
temperature expansion of the Ising model in a way that will allow us to deduce (8.1)
in a way analogous to our first proof of Theorem 5.2. In addition we will also need the
following modified version of the funny spider lemma (Lemma 6.3).

Figure 8.2. The circled vertices have no other neighbors besides the ones shown.

Lemma 8.2 (Modified funny spider lemma). Let G be a graph containing the local
configuration shown on the left of Figure 8.2, i.e. a 3-cycle C whose vertices have degree
3, so that the three vertices outside C that have neighbors in C are distinct, plus a vertex
of degree 1 inside C connected to a vertex of C. Let G′ be the graph obtained from G by
“cutting out” this local configuration and replacing it with the one on the right of Figure
8.2. Then M(G) = M(G′).

Proof. As in the proof of Lemma 6.3, partition the set M(G) of perfect matchings of
G into classes according to which of the three outer vertices in the local pattern on the
left of Figure 8.2 are matched to the outside. Since there are now 4 internal vertices, the
number of outer vertices matched to the outside must be odd. We thus obtain a partition
of M(G) into four classes: one corresponding to the top entry in the left column of Figure
8.3, two to the middle entry and its reflection across its vertical symmetry axis, and one
to the bottom entry of this column. The latter class is actually empty, as it follows
from the bottom left picture in Figure 8.3 (the thick edge is forced, and then the central
vertex cannot be matched). Partition M(G′) in an analogous way, using the entries of
the right column of Figure 8.3. As indicated in Figure 8.3, there is a bijection between
corresponding classes of these two partitions. These combine to give a bijection between
M(G) and M(G′). �

We present next the modified version of the Fisher construction that we will need for
our proof of Theorem 8.1.
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Figure 8.3.

Figure 8.4.

For a 4-regular graph G, define its Fisher graph F (G) by replacing each vertex by a
“city” of six vertices, as indicated in Figure 8.4. We refer to the two central vertices in
each city as the inner vertices of that city.

Given two vertices a and b of G, we say that a collection P of edges of G forms an a,
b near polygon of G if a and b are incident to an odd number of edges of P , and every
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other vertex of G is incident to an even number of edges of P .

For a graph with an even number of vertices, a near perfect matchings is a collection
of disjoint edges that leaves precisely two vertices uncovered.

Lemma 8.3 (Modified Fisher construction). Let G be a 4-regular graph, and let a
and b be two of its vertices. Then if F (G) is the Fisher graph of G defined above, there is
a bijection between the set of a, b near polygons of G and the set of near perfect matchings
of F (G) in which precisely one inner vertex in each of the cities corresponding to a and
b is left uncovered.

Figure 8.5(a) Figure 8.5(b)

Proof. The left column of Figure 8.5(a) shows the possible ways (up to rotations by
multiples of 90◦) of choosing an odd number of edges around a vertex of degree 4. The
left column of Figure 8.5(b) shows the possible ways of choosing an even number of edges
around a vertex of degree 4.

Note that in the Fisher graph F (G) of G there are two types of edges: edges that
correspond to the edges of G (which have endpoints in different cities), and edges that
connect vertices in the same city; call the former inter-city edges, and the latter inner
edges.
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Let P be an a, b near polygon of G, and let µ1 be the set of inter-city edges of the
Fisher graph F (G) that correspond to the edges of P . Define the set µ2 of inner edges of
F (G) as follows. For each city c of F (G), consider the edges of µ1 incident to c, look up
the corresponding pattern in the right columns of Figures 8.5(a) and (b), and include in
µ2 the inner edges of c that this pattern specifies. Note that all vertices shown in the right
column of Figure 8.5(b) are incident to precisely one thick edge, and, with the exception
of a single inner vertex (which is not incident to any thick edge), the same is true for
the vertices shown in the right column of Figure 8.5(a) (in addition, one readily checks
that the displayed choices of inner edges are the unique choices with these properties).
It follows that µP := µ1 ∪ µ2 is an a, b near perfect matching of F (G).

Conversely, if µ is a near perfect matching of F (G) which leaves precisely one inner
monomer uncovered in each of the cities corresponding to a and b, then clearly µ contains
an odd number of inter-city edges incident to each of the cities corresponding to a and b,
and an even number of inter-city edges incident to any other city. Thus the set of edges
of G corresponding to the inter-city edges of µ forms an a, b near polygon Pµ.

It follows by construction that PµP
= P . The equality µPµ = µ follows from the

uniqueness of the choices of the inner edges in the right columns of Figures 8.5(a) and
(b) mentioned towards the end of the third paragraph of this proof. �
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Lecture 9

Dimer coverings of 4-regular tricellular graphs
with exactly two monomers: Part II

We need one more fact before giving the proof of Theorem 8.1. It is an analog of
Proposition 6.1.

Proposition 9.1. Let G be a finite connected graph, and let a and b be two vertices of
G. Then the number of a, b near polygons of G is equal to 2|E(G)|−|V (G)|+1.

Proof. Consider the Ising model on G, and let Za,b be defined by

Za,b :=
∑
{σ}

σaσb

∏
edges{i,j}

ekσiσj (9.1)

(note that this is obtained from the partition function (5.7) by sticking in the prefactor
σaσb in front of the summand). The very same arguments that proved (5.10) give

Za,b =∑
H subgraph ofGv|E(H)|

( ∑
σ1=±1

σ
dH(1)
1

)
· · ·

 ∑
σa−1=±1

σ
dH(a−1)
a−1

( ∑
σa=±1

σdH(a)+1
a

) ∑
σa+1=±1

σ
dH(a+1)
a+1



· · ·

 ∑
σb−1=±1

σ
dH(b−1)
b−1

( ∑
σb=±1

σ
dH(b)+1
b

) ∑
σb+1=±1

σ
dH(b+1)
b+1

 · · ·

( ∑
σN=±1

σ
dH(N)
N

) .

(9.2)

Using now (5.11) it follows that

Za,b = 2|V (G)|(cosh(k))|E(G)|
∑

H a, b near polygon ofG

v|E(H)|. (9.3)

As in the proof of Proposition 6.1, let k → ∞ on both sides of equation (9.3). The
asymptotics of the right hand side is given by the expression in (6.2), with the number of
polygons replaced by the number of a, b near polygons. The dominant terms as k → ∞
on the left hand side of (9.3) are those terms in the sum (9.2) for which all exponents are
1 and σaσb = 1. This happens for precisely two states, the all 1 and all −1 states; their
contribution is the same as in (6.3). Setting equal the k → ∞ asymptotics of the two
sides of (9.3) and solving for the number of a, b near polygons completes the proof. �
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Proof of Theorem 8.1. Let K be a 4-regular tricellular graph with the properties in
the hypotheses of Theorem 8.1 (an illustrative example is shown in Figure 9.1). Let Ka,b

be the graph obtained from K by adding two new vertices a′ and b′, with a′ adjacent
only to a and b′ only to b. Then we clearly have

M(K \ {a, b}) = M(Ka,b). (9.4)

Figure 9.1. An illustrative example of the graph Ka,b.

Let Kup,up
a,b be the graph obtained from Ka,b by drawing the new edge aa′ (resp., bb′)

inside the upper of the two cells containing a (resp., b), and then doing vertex splitting
at each original vertex; for the graph shown in Figure 9.1, Kup,up

a,b is illustrated in Figure

9.2. Three other graphs, Kup,down
a,b , Kdown,up

a,b and Kdown,down
a,b , can be defined analogously.

By the vertex splitting lemma (Lemma 2.2) we have

M(Ka,b) = M(Kup,up
a,b ). (9.5)

Note that around the 3-cycles of Kup,up
a,b there are several different opportunities to

apply the funny spider lemma (Lemma 6.3) or the modified funny spider lemma (Lemma
8.2). The effect of each of these is to replace two paths of length 2 incident to that
3-cycle by paths of length 1. We claim that it is possible to choose a way to apply one of
these two lemmas around every 3-cycle of Kup,up

a,b in such a way that all paths of length

2 connecting different 3-cycles (from here on referred to simply as 2-paths) are converted
into paths of length 1 (i.e., single edges); for the illustrated example, one such way of
applying the two lemmas is indicated in Figure 9.3.

Indeed, if a 3-cycle C doesn’t contain any of the two new edges, Lemma 6.3 can be
applied in three different ways around C — each such way being determined by a pair of
2-paths incident to C. On the other hand, if C contains a new edge, Lemma 8.2 can be
applied in only one way around C, determined by pairing up the 2-paths not incident to
the new edge. Thus, to achieve what we claimed, we need a perfect matching of the graph
whose vertices are the 2-paths of Kup,up

a,b , with two such vertices connected by an edge iff

the corresponding 2-paths are incident to the same 3-cycle (except around the 3-cycles
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Figure 9.2. The graph Kup,up
a,b for the example in Figure 9.1.

Figure 9.3. Applying the funny spider lemma and the modified funny spider lemma.
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containing a new edge, where only the two 2-paths not incident to any of the new edges
are connected by an edge). However, the graph just described is isomorphic to the graph
obtained from K by deleting two of the edges incident to a and two of those incident to
b! The existence of a perfect matching of the latter follows from our assumption that
K \ {a, b} has a perfect matching. This proves our claim. Denoting by K̃up,up

a,b the graph

obtained from Kup,up
a,b by replacing all 2-paths by single edges, we obtain

M(Kup,up
a,b ) = M(K̃up,up

a,b ). (9.6)

Let K̃up,down
a,b , K̃down,up

a,b and K̃down,down
a,b be the graphs obtained by the same procedure

for the other choices for drawing the two new edges inside cells of K. Clearly (9.6) holds
with any of them on the right hand side. Thus, by (9.4) and (9.5)–(9.6) and their analogs
we obtain

4M(K \ {a, b}) = M(K̃up,up
a,b ) +M(K̃up,down

a,b ) +M(K̃down,up
a,b ) +M(K̃down,down

a,b ). (9.7)

Denote by K̃ the graph obtained from K by separating its cells so they become vertex
disjoint, and including new edges between vertices that used to coincide in K. Denote
by fa and fb the new edges of K̃ corresponding to a and b, respectively. By definition,
we have

M(K̃up,up
a,b ) +M(K̃up,down

a,b ) +M(K̃down,up
a,b ) +M(K̃down,down

a,b )

= # {near perfect matchings of K̃ in which precisely one endpoint

of each of ea and eb is left uncovered} (9.8)

(see also Figure 9.4).
We use now the hypothesis that the cell graph H of K has a perfect matching con-

taining the two edges ea and eb. It implies that the 3-cycles of K̃ can be grouped into
disjoint pairs of neighbors so that the two 3-cycles bordering fa are paired together, and
the two 3-cycles bordering fb are paired together. But two neighboring 3-cycles form a
pattern isomorphic to a city in a Fisher graph of a 4-regular graph (one choice for this
pairing in the case of our illustrative example is shown in Figure 9.5). Denoting by K̄

the graph obtained from K̃ by contracting all such cities to single vertices, we obtain by
(9.7), (9.8) and the modified Fisher construction of Lemma 8.3 that

4M(K \ {a, b}) = # a, b near polygons of K̄. (9.9)

By Proposition 9.1, the right hand side of (9.9) is 2|E(K̄)|−|V (K̄)|+1. Since 6-vertex cities

in K̃ are contracted to single vertices in the definition of K̄, we have |V (K̃)| = 6|V (K̄)|.
We also clearly have |V (K̃)| = 2|V (K)|, implying |V (K̄)| = 1

3 |V (K)|. As K̄ is 4-regular,

it follows that 4|V (K̄)| = 2|E(K̄)|, hence |E(K̄)| = 2|V (K̄)| = 2
3 |V (K)|. Therefore the

right hand side of (9.9) equals 2
|V (K)|

3 +1, and (8.1) follows by Theorem 5.2. �
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Figure 9.4. The graph K̃up,up
a,b .

Figure 9.5. Pairing the 3-cycles of K̃up,up
a,b into Fisher cities.
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Lecture 10

A factorization theorem for perfect matchings

In this lecture we justify the trick (1.1) we used in the first lecture to get the number of
perfect matchings of some special graphs in a quicker way. Equation (1.1) is a particular
case of a more general result which we present below.

Let G be a plane graph. We say that G is symmetric if it is invariant under the
reflection across some straight line. Figure 10.1 shows an example of a symmetric graph.
Clearly, a symmetric graph has no perfect matching unless the axis of symmetry contains
an even number of vertices (otherwise, the total number of vertices is odd); we will assume
this throughout this lecture.

A weighted symmetric graph is a symmetric graph equipped with a weight function
on the edges that is constant on the orbits of the reflection. The width of a symmetric
graph G, denoted w(G), is defined to be half the number of vertices of G lying on the
symmetry axis.

l aa b b a b
1 1 2 2 3 3

Figure 10.1 Figure 10.2

Let G be a weighted symmetric graph with symmetry axis ℓ, which we consider to be
horizontal. Let a1, b1, a2, b2, . . . , aw(G), bw(G) be the vertices lying on ℓ, as they occur from
left to right. Let us call a reduced subgraph of G a graph obtained from G by deleting
at each vertex ai either all incident edges above ℓ (we refer to this operation for short as
“cutting above ai”) or all incident edges below ℓ (“cutting below ℓ,” for short). Figure
10.2 shows a reduced subgraph of the graph presented in Figure 10.1 (the deleted edges
of the original graph are represented by dotted lines).

Recall that the weight of a perfect matching µ is defined to be the product of the
weights of the edges contained in µ. The matching generating function of a weighted
graph G, denoted M(G), is the sum of the weights of all perfect matchings of G. The
matching generating function is clearly multiplicative with respect to disjoint unions
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of graphs. Therefore there is no loss of generality in assuming that the graphs under
consideration are connected.

Lemma 10.1. All 2w(G) reduced subgraphs of a weighted symmetric graph G have the
same matching generating function.

Proof. It is enough to prove the statement of the lemma for two reduced subgraphs
that differ only around a single vertex ai. Let G1 and G2 be two reduced subgraphs
obtained by identical cutting operations except that for the former we made a cut above
ai, while for the latter we cut below ai (for some i ∈ {1, 2, . . . ,w(G)}). Let µ be a perfect
matching of G1 and let µ′ be the perfect matching of G obtained from µ by reflection
across ℓ. Then ν = µ ∪ µ′ (where the union is a multi-set union) is a 2-factor of G
(i.e., each vertex of G is incident to precisely two edges of ν) that is symmetric about ℓ.
Therefore, ν is a disjoint union of even-length cycles. Consider the cycle C containing ai,
and let C ′ be the reflection of C across ℓ. Since ν is symmetric about ℓ, C ′ is a cycle of
ν. Note that C ′ ̸= C would imply that C is disjoint from C ′, contradicting ai ∈ C ∩ C ′.
Therefore C ′ coincides with C, and C is symmetric with respect to ℓ. Thus, since all
vertices of C have degree two, C has only one vertex on ℓ besides ai. We claim that this
vertex is one of b1, b2, . . . , bw(G).

Indeed, it follows otherwise that the set of vertices encircled by C has an odd number
of elements on ℓ. Since this set is symmetric about ℓ, it follows that it has an odd number
of elements, contradicting the fact that the 2-factor ν is a disjoint union of even-length
cycles.

Define µ′′ to be the perfect matching of G obtained from µ by replacing µ ∩ C by
µ′ ∩C. Then clearly µ′′ is a perfect matching of G2 and the correspondence µ 7→ µ′′ is a
weight-preserving bijection between the perfect matchings of G1 and those of G2. �

Let G be a weighted symmetric graph that is also bipartite (i.e., its vertices can be
colored black or white so that every edge has a white and a black endpoint). Suppose
that the set of vertices lying on ℓ is a cut set (i.e., removing these vertices disconnects
the graph). In such a case we say that ℓ separates G. Let us color the vertices in the two
bipartition classes black and white. For definiteness, choose the leftmost vertex on the
symmetry axis ℓ to be white. We define two subgraphs G+ and G− as follows. Perform
cutting operations above all white ai’s and black bi’s and below all black ai’s and white
bi’s. Note that this procedure yields cuts of the same kind at the endpoints of each edge
lying on ℓ. Reduce the weight of each such edge by half; leave all other weights unchanged.
Since ℓ separates G, the graph produced by the above procedure is disconnected into one
component lying above ℓ, which we denote by G+, and one below ℓ, denoted by G−.
Figure 10.3 illustrates this procedure for the graph pictured in Figure 10.1 (the edges
whose weight has been reduced by half are marked by 1/2).

Theorem 10.2 (Factorization Theorem). Let G be a planar bipartite weighted sym-
metric graph separated by its symmetry axis. Then

M(G) = 2w(G) M(G+)M(G−).
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aa b b a b
1 1 2 2 3 3

1/2 1/2

Figure 10.3

Proof. First, we show that we can reduce to the case when there are no edges between
any of the vertices of G lying on ℓ. To see this, we construct a new graph G̃ as follows.
Cut the graph G along ℓ so that we obtain two copies of each vertex lying on ℓ, and
two copies of each edge contained in ℓ. Assign half the weight of the original edge to
each copy; keep the original weights for all other edges. Finally, insert a new vertex
between the two copies of each vertex formerly on ℓ, and join it to both copies by an edge
weighted 1. It is clear that we can carry out this construction such that the resulting
graph is symmetric (this is illustrated in Figure 10.4 in the case of the graph G shown in

Figure 10.1). Denote it by G̃, and let ℓ̃ be its symmetry axis. We claim that G and G̃
have the same matching generating function.

l
~

1/21/2

1/21/2

Figure 10.4

Indeed, apply in reverse the weighted vertex splitting lemma (Lemma 2.4) to G̃ around

each vertex on ℓ̃. Wherever there was an edge e of G along ℓ, two parallel edges of half
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the weight of e are produced by this process. These are clearly equivalent to a single edge
weighted by the weight of e, and we obtain M(G̃) = M(G).

l
~

1/21/2

1/21/2

Figure 10.5

Note that each vertex of G̃+ lying on ℓ̃ has degree 1, hence any perfect matching of G̃+

must contain the edge incident to this vertex (see Figure 10.5). Also, by construction,

all edges of G̃+ incident to such vertices have weight equal to 1. Therefore, M(G̃+) is

equal to the matching generating function of the subgraph of G̃+ obtained by deleting the
vertices matched by the forced edges of weight 1. However, this subgraph is isomorphic to
G−, and we obtain that M(G̃+) = M(G−). Similarly, we deduce that M(G̃−) = M(G+).

Thus, it is enough to prove the statement of the theorem for a graph G whose vertices
lying on ℓ don’t have any edge between them. According to Lemma 10.1, it is enough
to show that M(G+)M(G−) is the matching generating function of some (hence any) of
the 2w(G) reduced subgraphs of G. We prove this for the reduced graph H obtained by
cutting above the white ai’s and below the black ai’s. For this, it suffices to show that
every perfect matching of H is also a perfect matching of G+ ∪ G−, i.e., that in every
perfect matching µ of H the white bi’s are matched upward and the black bi’s downward.
Let x and y be the number of white and black vertices of G lying above ℓ, respectively.
Let x1 and y1 (resp., x2 and y2) be the number of white and black ai’s (resp., bi’s). We
then clearly have

2x+ x1 + x2 = 2y + y1 + y2 (10.1)

(as the number of white vertices in G must equal the number of black vertices in G in
order for G to have any perfect matchings) and

x1 + y1 = w(G) = x2 + y2. (10.2)

Let α and β be the number of white and black bi’s matched upward in µ, respectively.
We need to show that α = x2 and β = 0.
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Consider the set of edges of µ that lie above ℓ. Among their endpoints, x+α are white
and y + y1 + β are black, so x+ α = y + y1 + β. We therefore obtain

x2 ≥ α ≥ α− β = y − x+ y1. (10.3)

However, by relations (10.2) and (10.1) we have

x2 − y1 =
1

2
((x2 − y1) + (x1 − y2)) =

1

2
(2y − 2x) = y − x,

so we actually have equality in (10.3). This implies α = x2 and β = 0, as desired. �
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Lecture 11

Temperley’s trick and an application

In this lecture we present a very useful connection between perfect matchings and
spanning trees. It holds for any planar graphs, but it will be enough for us to present
the special case of subgraphs of the grid graph Z2.

Let G be a finite connected weighted subgraph of the grid Z2 such that all finite faces
are unit squares. Color the vertices of G black. Divide each edge of G in two by inserting
green vertices at their midpoints; weight both newly formed edges by the weight of the
original edge. Divide each face of G in four by inserting a red vertex at its center and
joining it to the green vertices on its boundary by edges of weight 1. Let G̃ be the graph
on the black, green and red vertices obtained in this fashion.

Theorem 11.1 (Temperley). If v is a black vertex on the boundary of G̃, then there
is a weight-preserving bijection between the spanning trees of G and the perfect matchings
of G̃ \ {v}.

Proof. Regard G as being the graph on the black vertices of G̃; let T be a spanning
tree of G (see Figures 11.1 and 11.2). For any black vertex x ̸= v, let x′ be the first green
vertex encountered along the unique path joining x to v in T .

Figure 11.1

Next, note that if we include an extra red vertex u for the infinite face of G, the red
vertices are the vertices of a spanning tree T ∗ (dual to T ) of the dual graph of G. For
any red vertex y ̸= u, let y′ be the first green vertex encountered along the unique path
joining y to u in T ∗.

The collection µT consisting of the edges {x, x′}, {y, y′} with x (resp., y) running over
black vertices different from v (resp., red vertices different from u) is clearly a perfect

matching of G̃ \ {v}. Furthermore, the weight of µT is equal to the weight of T .

Conversely, let µ be a perfect matching of G̃\{v}. Let Tµ be the subgraph of G formed
by the edges containing some member of µ. Since the members of µ contained in edges
of G are precisely those incident to black vertices, Tµ has V (G)− 1 edges.
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v

Figure 11.2

To show that Tµ is a spanning tree of G it is therefore enough to prove that Tµ contains
no cycle. Suppose this is not the case and let C be a cycle without self-intersections. By
induction on the length of C we see that the number of vertices of G̃ encircled by C is
odd. Since the removed vertex v belongs to the boundary of the infinite face, it follows
that C encircles an odd number of vertices of G̃\{v}. However, these cannot be matched
by µ, a contradiction. Therefore, Tµ is a spanning tree of G, and its weight is clearly
equal to the weight of µ.

Since the maps T 7→ µT and µ 7→ Tµ are readily checked to be inverse to one another,
we obtain the statement of the lemma. �

One nice application of Temperley’s trick is a solution to the dimer model on odd
square grids with a vertex removed from the boundary. We present this below. Another
application will be shown in the next lecture.

Figure 11.3

Let Gn be the n× n grid graph (G6 is pictured on the left in Figure 11.3). Denoting
by t(G) the number of spanning trees of G, we have by Theorem 11.1 that

M(G2n−1 \ v) = t(Gn), (11.1)
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where v is any vertex on the boundary of G2n−1 having the same color as the corners in
the chessboard-style coloring of its vertices.

We will also employ the following classical result, called the Matrix Tree Theorem.

Theorem 11.2 (Kirchhoff). Let G be a finite graph, and let A be its adjacency matrix.
Let D be the diagonal matrix whose entries record the degrees of the vertices of G. Set
M := D−A. Then if M ′ is obtained from M by deleting the row and column corresponding
to an arbitrary vertex of G, we have

t(G) = det(M ′). (11.2)

By (11.1), in order to find M(G2n−1 \ v) it is enough to determine t(Gn). This in
turn equals the number of spanning trees of the planar dual G∗

n of the grid graph Gn

(we have already used this fact in the proof of Theorem 11.1). Apply Theorem 11.2 to
G∗

n, choosing to delete the row and column indexed by the vertex v∗ corresponding to
the infinite face of Gn. It is readily seen that the resulting matrix M ′ is 4In−1 − An−1,
where In−1 is the identity matrix of order n− 1 and An−1 is the adjacency matrix of the
grid graph Gn−1. We thus obtain

t(Gn) = det(4In−1 −An−1). (11.3)

The evaluation of the determinant on the right hand side of (11.3) follows immediately
once the eigenvalues of An (also called the eigenvalues of Gn) are determined. To do this,
note that Gn = Pn ⊕Pn, where Pn is the path on n vertices and ⊕ denotes the cartesian
product of graphs (by definition, G1 ⊕G2 is the graph on V (G1)× V (G2) which has an
edge between (v1, v2) and (v′1, v

′
2) iff v1 = v′1 and v2 and v′2 are adjacent in G2, or v2 = v′2

and v1 and v′1 are adjacent in G1).

Lemma 11.3. Let λ1, . . . , λn be the eigenvalues of the graph G1, and µ1, . . . , µm the
eigenvalues of the graph G2. Then the eigenvalues of G1 ⊕G2 are λi + µj, i = 1, . . . , n,
j = 1, . . . ,m.

Proof. It is readily seen that the adjacency matrix of G := G1 ⊕G2 is obtained from
the adjacency matrix of G1 by replacing the 1’s by I, the order |V (G2)| identity matrix,
and putting the adjacency matrix AG2 of G2 on the diagonal. Thus λI −AG is obtained
from λI −AG1 by substituting −I for the −1’s, and λI −AG2 for the λ’s.

Since λI−AG2 and I commute, one sees that the matrix achieving the diagonalization
of AG1 to diag(λ1, . . . , λn) generates a block-diagonalization of λI−G to diag(λI−AG2 −
λ1I, . . . , λI −AG2 − λnI). This implies that

pG(λ) = det(λI −AG) = det
n∏

i=1

(λI −AG2 − λiI)

=
n∏

i=1

det((λ− λi)I −AG2) =
n∏

i=1

pG2(λ− λi) =
n∏

i=1

m∏
j=1

(λ− λi − µj),

the last equality being due to the fact that the eigenvalues of G2 are µ1, . . . , µm. �
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Recall that the eigenvalues of the path Pn on n vertices are 2 cos kπ
n+1 , k = 1, . . . , n.

Lemma 11.3 implies then that the eigenvalues of the (n − 1) × (n − 1) square grid are
2 cos kπ

n + 2 cos lπ
n , k, l = 1, . . . , n− 1. Therefore we have

det(4In−1 −An−1) =
n−1∏
k=1

n−1∏
l=1

(
4− 2 cos

kπ

n
− 2 cos

lπ

n

)
. (11.5)

By (11.1), (11.3) and (11.3) we obtain the following result.

Theorem 11.4. If v is any vertex on the infinite face of the (2n− 1)× (2n− 1) square
grid graph G2n−1 having the same color as the corners under the chessboard coloring of
the vertices, then

M(G2n−1 \ v) =
n−1∏
k=1

n−1∏
l=1

(
4− 2 cos

kπ

n
− 2 cos

lπ

n

)
.
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Lecture 12

Spanning trees of even and odd Aztec rectangles and Aztec rectangles with holes

Suppose the corners of a (2m+ 1)× (2n+ 1) chessboard are black. The graph whose
vertices are the unit squares of the board, and whose edges connect diagonally adjacent
unit squares, has two connected components. The one whose vertices correspond to the
white squares is denoted ADm,n and is called the even Aztec rectangle of order (m,n); the
other is called the odd Aztec rectangle of order (m,n), and is denoted ODm,n (for m = 5
and n = 3 these are illustrated in Figure 12.1). For m = n the even Aztec rectangle
becomes the Aztec diamond graph we have seen several times in this course.

Figure 12.1. (a) The even Aztec rectangle AD5,3.(b) The odd Aztec rectangle OD5,3.

Stanley conjectured that
t(ADn,n) = 4 t(ODn,n) (12.1)

for all n ≥ 1, where t(G) denotes the number of spanning trees of the graph G. This
was first proved by Knuth by an algebraic method (finding explicitly the spectrum of the
graphs). We present here a short combinatorial proof of (12.1) in the case of odd n, as
a direct consequence of the factorization theorem (Theorem 10.2) and Temperley’s trick
(Theorem 11.1).

Theorem 12.1. For all odd integers m,n ≥ 1 we have t(ADm,n) = 4 t(ODm,n).

Proof. Let T(ADm,n) be the graph obtained by Temperley’s construction from ADm,n

by choosing v to be the rightmost vertex of ADm,n on its southwest-northeast going
symmetry axis (for m = 5 and n = 3 this is shown in Figure 12.2(a)). Applying the
factorization theorem (Theorem 10.2) to it we obtain

M(T(ADm,n)) = 2m M(G+
1 )M(G−

1 ), (12.2)
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_ _

2

+
2G

G

Figure 12.3. The effect of the Factorization Theorem on the graphs corresponding
by Temperley’s construction to: (a) AD5,3; (b) OD5,3.

where G+
1 and G−

1 are obtained from T(ADm,n) as described in the paragraph before the
statement of Theorem 10.2; for m = 5, n = 3, they are illustrated in Figure 12.3(a).

Before we handle the odd diamond ODm,n similarly, it will be convenient to change
slightly its definition, namely by removing its four leaves. This clearly leaves the number
of its spanning trees—and thus the statement of Theorem 12.1—unchanged.

Figure 12.2. Graphs corresponding by Temperley’s construction to: (a) AD5,3; (b) the
graph obtained from OD5,3 by removing its four vertices of degree 1.

Let T(ODm,n) be the graph obtained by Temperley’s construction from this leafless
odd diamond by choosing v to be the rightmost vertex on its southwest-northeast going
symmetry axis (for m = 5 and n = 3 this is pictured in Figure 12.2(b)). Applying the
factorization theorem to it we obtain

M(T(ODm,n)) = 2m−1 M(G+
2 )M(G−

2 ), (12.3)

where G+
2 and G−

2 are obtained analogously from T(ODm,n); for m = 5, n = 3, they are
illustrated in Figure 12.3(b).
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H1

K1

H

K

2

2

Figure 12.4. The effect of the Factorization Theorem on: (a) the top part of Figure 4(a);
(b) the top part of Figure 4(a).

Note that G−
1 has two vertices of degree 1, and the edges incident to them must be

present in all its perfect matchings. However, the graph obtained from G−
1 by removing

the vertices matched by these two forced edges on the one hand, and G−
2 on the other

hand, are readily seen to be the results of Temperley’s construction applied to isomorphic
graphs, with different choices for the removed vertex v (see Figure 12.3). Thus, (12.2)
and (12.3) imply

M(T(ADm,n))

M(T(ODm,n))
= 2

M(G+
1 )

M(G+
2 )

. (12.4)

Furthermore, G+
1 and G+

2 both admit symmetry axes that are diagonal lattice lines (going
northwest-southeast). Apply Theorem 10.2 to each of them (for m = 5, n = 3, this is
illustrated in Figure 12.4). We get:

M(G+
1 ) = 2(n+1)/2 M(H1)M(K1) (12.5)

M(G+
2 ) = 2(n−1)/2 M(H2)M(K2), (12.6)

where H1 (resp., K1) and H2 (resp., K2) are the resulting subgraphs above (resp., below)
the symmetry axes in G+

1 and G+
2 , respectively. However, one readily sees that the

graph obtained from H1 after removing its one forced edge is isomorphic to H2 (being
its rotation by 180◦), and the graph obtained from K1 after removing its forced edge is
isomorphic to K2 (as it is obtained by reflecting across the horizontal the 90◦ rotation
of K2). Thus (12.5) and (12.6) imply M(G+

1 ) = 2M(G+
2 ), and hence by (12.4) we

have M(T(ADm,n)) = 4M(T(ODm,n)). The statement of the Theorem follows now by
Theorem 11.1. �

We conclude by presenting another application of the Factorization Theorem, which
generalizes the Aztec diamond theorem (Theorem 2.1).

Let m be even and suppose m ≤ n. Color the vertices of the even Aztec rectangle
ARm,n black and white in chessboard fashion, so that all edges have endpoints of different
colors. Then the vertices lying on the horizontal symmetry axis ℓ are contained in the
larger color class. Label them consecutively by 1 through n (see Figure 12.5(a)). For any
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1 2 3 5 6 74

Figure 12.5(a). The labeling of vertices on ℓ. Figure 12.5(b). AR4,7({2, 3, 6}).

subset S of [n] := {1, . . . , n} of size n−m define ARm,n(S) to be the graph obtained from
ARm,n by deleting the vertices with labels in S; an example is shown in Figure 12.5(b).

Note that for odd m, the vertices lying on ℓ are contained in the smaller biparti-
tion class, and therefore the graphs obtained by the above procedure have no perfect
matchings.

Theorem 12.2. For m ≤ n and m even we have

M(ARm,n(S)) =
2m(m+4)/4

(0! 1! · · · (m/2− 1)!)2

∏
1≤i<j≤m/2

(t2j−1 − t2i−1)(t2j − t2i),

where [n] \ S = {t1, . . . , tm}, t1 < · · · < tm.

Before giving the proof we need some preliminary results. Let m ≤ n and let A be an
m× n matrix. We say that A is an alternating sign matrix if

(i) all entries are 1, 0 or −1
(ii) every row sum equals 1
(iii) in reading every row from left to right and every column from top to bottom the

nonzero entries alternate in sign, starting with a +1.

Let ASMm,n(S) be the set of m×n alternating sign matrices whose column sums are
zero precisely for the column indices belonging to S (note that |S| = n−m). We denote
by N+(A) and N−(A) the number of 1’s and −1’s in A, respectively.

A monotone triangle of size n is an n-rowed triangular array of non-negative integers
such that

(T1) all rows are strictly increasing
(T2) the numbers are non-decreasing in the polar directions +60◦ and −60◦.

Let us weight every monotone triangle T by 2s(T ), where s(T ) is the number of elements
of T that are strictly between their neighbors in the row below, and let f(t1, . . . , tn) be
the sum of the weights of all the monotone triangles with bottom row t1, . . . , tn. Then a
classical result of Mills, Robbins and Rumsey states that

f(t1, . . . , tn) =
2n(n−1)/2

0! 1! · · · (n− 1)!

∏
1≤i<j≤n

(tj − ti). (12.7)
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Figure 12.6. A bijection between alternating sign matrices in
ASMm,n(S) and monotone triangles with bottom row [n] \ S.

Figure 12.7. The graph AR3,5({2, 5}).

Proof of Theorem 4.1. Given a matrix A ∈ ASMm,n(S), let B be the matrix whose
kth row is the sum of the first k rows of A, for k = 1, . . . ,m (see Figure 12.7 for an
example). The defining properties of A imply that B is a 0, 1 matrix. Thus, the number
of 1’s in row k of B clearly equals the kth row sum of B, which in turn is equal to the
sum of the entries in the first k rows of A. As all row sums of A equal 1, it follows that
row k of B has precisely k 1’s. Let T be the triangular array that records the positions
of the 1’s in the rows of B (see Figure 12.7). Then it is not hard to show that A 7→ T
is a bijection between ASMm,n(S) and the set of monotone triangles with bottom row
[n] \ S, and that N−(A) = s(T ). We obtain therefore∑

A∈ASMm,n(S)

2N−(A) = f(t1, . . . , tm). (12.8)

Suppose k ≤ l and label the bottom n vertices of ARk,l consecutively from left to

right by 1, . . . , l. Let S be an (l − k)-element subset of [n] and denote by ARk,l(S) the
graph obtained from ARk,l by deleting the vertices with labels in S (see Figure 12.7 for
an example).

Shade the faces of ARk,l in a chessboard fashion so that the edges on the boundary
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Figure 12.8.

belong to shaded faces. By a cell we mean a 4-cycle of ARk,l with shaded interior.

Let µ be a matching of ARk,l(S). Write in each cell one of the numbers 1, 0 or −1,
corresponding to the cases when the cell contains 2, 1 or 0 edges of µ. Let A be the k× l
matrix generated in this fashion.

It turns out that the map µ 7→ A maps the set of perfect matchings of ARk,l(S) to

ASMk,l(S), and that each matrix A ∈ ASMk,l(S) corresponds to precisely 2N+(A) perfect
matchings (there are clearly this many choices of µ on the 1-cells, and it turns out that
any of these choices uniquely determine µ; see [2] for details). We therefore obtain that

M(ARk,l(S)) =
∑

A∈ASMk,l(S)

2N+(A). (12.9)

Thus, since N+(A)−N−(A) = k, we have by relations (12.7)–(12.9) that

M(ARk,l(S)) =
2k(k+1)/2

0! 1! · · · (k − 1)!

∏
1≤i<j≤k

(tj − ti), (12.10)

where [n] \ S = {t1, . . . , tk}, t1 < · · · < tk.
Apply now the factorization theorem to ARm,n(S), with ℓ chosen to be the horizontal

symmetry axis. From the definition of the two subgraphs involved in the factorization
theorem, it follows that ARm,n(S)

+ is isomorphic to ARm/2,n(S ∪ {t1, t3, . . . , t2n−1}),
and ARm,n(S)

− is isomorphic to ARm/2,n(S ∪ {t2, t4, . . . , t2n}) (see Figure 12.8). The
result follows then from relation (12.10). �
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Notes. The solution of the dimer model on the square lattice (Theorem 1.1) is due
independently to Kasteleyn (see [15]) and to Temperley and Fisher (see [23] and [11];
see also [17, Problem4.29]). The enumeration of perfect matchings of honeycomb graphs
(Theorem 1.2) is due to MacMahon, who phrased it in the equivalent language of plane
partitions (see [18]).

The Aztec diamond theorem (Theorem 2.1) is due to Elkies, Kuperberg, Larsen and
Propp, who proved it in [10]. Lemma 2.3 (the spider lemma) was discovered by Greg
Kuperberg. The enumeration of fortress graphs (Theorem 3.2) is due to Bo-Yin Yang
([25]). Theorem 3.1 and Theorem 4.1 are presented along with other “perfect powers”
enumeration results in [3]. Theorem 5.1 is proved in [2].

The high temperature expansion is part of the classical statistical physics literature
(see for instance [19]). The Fisher construction (Proposition 6.2) is due to Fisher, who
used it in [13] to give a new solution to planar Ising models. Theorem 7.3 was proved by
Gallai in [14].

The monomer-monomer correlation mentioned in Lecture 8 was introduced by Fisher
and Stephenson in [12]. Its generalization and the parallels to two dimensional electro-
statics are discussed in [4], [6], [7], and [8]. The modified Fisher construction (Lemma
8.3) is due to Moessner and Sondhi ([21]).

The factorization theorem together with several applications is presented in [1]. The
connection between spanning trees and perfect matchings stated in Theorem 11.1 is due
to Temperley (see [24], and for a generalization [17, Problem4.30]). The matrix tree
theorem (Theorem 11.2) is attributed to Kirchhoff (see [17, Problem4.9]). Lemma 11.3
is found in [17, Problem11.7]). Theorem 12.1 is presented in [5], and Theorem 12.2 in [1].
The result expressed in equation (12.7) is due to Mills, Robbins and Rumsey (see [20]).
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