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Introduction

There are two strands of integral geometry. One involves the study of measures
on a set invariant under a group of transformations. This is exemplified by
the Crofton formula expressing the length of a rectifiable plane curve v as an
integral on the set of lines intersecting v, or Buffon’s needle problem about the
probability that a line segment of given length placed randomly on the plane
would intersect a horizontal line of the form y =0, +1,.. ..

The other strand, which is the object of the present set of notes, involves ques-
tions pertaining to integral transforms of functions or differential forms on man-
ifolds X which are usually acted upon by a Lie group G. These functions are
integrated over a collection of orbits of compatible closed subgroups of G. We
wish to determine whether it is possible to recover a function f from its integrals
over these orbits — that is to say, whether this integral transform is injective.
We would also wish, if possible, to recover f by means of an inversion formula.
There are other important questions we can ask about these integral transforms.
For example, if the integrals of f vanish over all orbits not intersecting a given
closed set B in X, is f supported in B? Likewise, are there ways by which we
can characterize the integrals of various types of functions on X?

This strand of integral geometry goes back to the work of P. Funk [4] in 1916,
who showed that a continuous even function on the two-sphere can be recovered
from its integrals over great circles, as well as that of J. Radon in 1917, who
obtained an explicit formula recovering a compactly supported C* function on
R3 from its plane integrals.

The study of Funk’s transform depends crucially on the fact that it is invariant
under rotations on S2, and likewise, Radon’s transform (now called the classical
Radon transform) depends on its being invariant under the group M(3) of rigid
motions on R3. It is therefore natural to ask whether we can develop a group-
theoretic framework covering both types of transforms above, and what possible
conclusions we can extract from this framework. This framework was first in-
troduced by S. Helgason in 1964 using the terminology homogeneous spaces in
duality ([15]). Tt was then generalized and extended by others in non-group-
theoretic settings under the setting of double fibrations. (See, for example [6] or



[14]).

In these notes, we’ll see, through several examples, the power and beauty of
Helgason’s group-theoretic framework. The framework is too general to allow
us to offer explicit formulas, but it does allow us to formulate our questions in
such a way as to make efficient and fruitful study possible.

These are the notes accompanying the series of seven lectures the author gave at
Kyushu University in December 2009 and January 2010. They are appropriate
for any advanced undergraduate or beginning graduate student who is interested
in the interaction of geometry, Lie group theory, and analysis. Because of the
need for brevity, we will assume that the reader has some familiarity with real
and functional analysis as well as some Lie group theory. In the last section,
we will also assume some knowledge of highest weight representations. In any
event, I will try to state the important extraneous results we will need, as well
as provide the appropriate references.

For a more comprehensive (and assuredly better) treatment of the subject,
I would highly recommend Helgason’s upcoming book Integral Geometry and
Radon Transforms [20] or its previous incarnation The Radon Transform [18].

I would like to thank Professor Hiroyuki Ochiai and several Kyushu University
students, especially Tomoya Nakagawa, for their valuable feedback. Most of all
I would like to express my deep gratitude to Professor Takaaki Nomura and the
Department of Mathematics of Kyushu University for their kind hospitality and
their generous support in allowing me the opportunity to present the material
in these notes. I sincerely hope that they will prove useful to the interested
student.



Chapter 1

Homogeneous Spaces in
Duality

1.1 Double Fibrations and Integral Transforms

Let X and E be coset spaces of a group G, with X = G/K and £ = G/H
for subgroups K and H, respectively. Suppose that + = gK and £ = yH are
elements of X and Z, respectively. We say that x and £ are incident if they
intersect as cosets in G. If we put L = K n H, then the incidence relation can
be expressed in terms of the double fibration

G/L (1.1)

X =G/K ==G/H

where p and 7 are the natural projection maps.

Again assuming that © = gK, let ¥ = {£ € E |« and £ are incident}. Then it is
easy to see that ¥ = w(p~(z)) = {gkH |k € K}. Likewise, with £ = vH, the
set £ = {w € X | x and £ are incident} equals p(7=1(¢)) = {yhK |h € H}.

It is also easy to see that the map gL — (gK, gH) is a bijection of the set G/L
onto the set {(z,£) € X x 2|z and £ are incident}. Thus the incidence relation,

which is given by the latter subset of X x =, may be identified with the coset
space G/L.

The incidence relation is clearly invariant under the left action of G: z is incident
to & if and only if g-x is incident to g-&, so that (¢-x)Y = ¢g-% and (v-§)* = v-&.
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For convenience we let 0 = {K} and & = {H} be the identity cosets in X and
=, respectively. Then each Z and each £ is an orbit of a conjugate of K and H,
respectively:

(g-0)" =gK - & = (9Kg ") (9-&) =9gKg '/gLg'

and

(y-&)" =vH-0=(yHy ") - (y-0) =vHy ' /vLy" (1.2)

Lemma 1.1.1. Let Hx = {he€ H|hK v h 'K ¢ KH}. Then the map x — ¥
1s ingective if and only if Hx = H n K.

Proof. Assume that Hx = K n H. We show that x — I is injective. Let
21 = g1 -0 and 2 = go - 0 be elements of X such that ¥; = ¥5. Letting
g = gy g2, we have g -0 = 0, so that {gkH |k € K} = {kH|k € K}. Thus
gH = koH for some kg € K, so that g = kohg, and we obtain hg - 6 = 0; that
is to say, {hokH |k € K} = {kH | k € K}. This implies that ho/K ¢ KH. Since
we also have g~! - & = &, we obtain ho_lK c KH. Thus hg € Hx c K, and so
g € K, and thus z1 = x5.

Conversely, suppose that « — I is injective. Let h € Hx. Then (h-0)Y =
{hkH |k e K} c 5, since hK ¢ KH. Likewise h™1 -6 = (h™!-0)¥ 5, so that
(h-0)¥ D 0. By the injectivity, we obtain h -0 = o, so that h € K. O

Exercise 1.1.2. (a) Show that G = KHK if and only if for every pair of
points x1, o € X, there exists a & € = such that 1 and x5 are incident to

¢.

(b) Show that KH n HK = K u H if and only if any pair of points in X are
incident to at most one £ € E. (Or, equivalently, if and only if any pair of
points in Z are incident to at most one z € X.)

Let us now suppose that G is a Hausdorff topological group and that K and
H are closed subgroups. We equip K and H with the relative topology, and X
and = with their respective quotient topologies. Let p : G — X be the quotient
map. Since p~1(&) = HK, we see that & (and therefore every &) is closed in
X if and only if HK is a closed subset of G. Thus we will assume that HK is
closed. (This is automatic if H or K is compact.) Of course this will also imply
that each ¥ is a closed subset of =.

In order to define the integral transforms associated with the double fibration
above, let us now assume that G is a locally compact group, so that K, H, and
L likewise are, and that G, K, H, and L are all unimodular. We let dg, dk, dh,
and dl denote their respective Haar measures. If any of these groups is compact,
we assume that its Haar measure is normalized.



For any F' € C.(G), let F}, be the function on X defined by

FyaK) = | Plgb)a (1.3)

Then F, is well-defined since the support of F' intersects each coset gK in a
compact set. From the Dominated Convergence Theorem, it is clear that F), is
continuous, with support in p(supp(F)). Thus F, € C.(X). In fact, the map
F — F, maps C.(G) onto C.(X). (See Lemma 1.10, Chapter 1 of [17].)

The coset space X = G/K has a unique natural left G-invariant measure dm
such that

| P@ds= | F@ane (1.4)

for all F' € C.(G). When convenient, we will also denote the measure dm by
dgk, so that equation (1.4) reads

| Floraa- L/K ( | Fw dk) dg

Likewise we have unique left invariant measures du = dgy, dgr,, dhr, and dkr,
on & = G/H, G/L, H/L, and K/L, respectively. We note that the following
integral version of the “chain rule” holds:

f o(gL) dgy, = f <j so(ghL)dhL> dg (1.5)
G/L G/H \JH/L

for all p € C.(G/L).

Since the orbit Eo = H - 0 may be identified with the homogeneous space H/L,
the measure dhy, gives rise to an H-invariant measure mg, on 50. Similarly, by
(1.2), if ¢ =~vH € =, then 515 an orbit of HY = yH~~!, the isotropy subgroup
of ¢ in G. Thus E has a measure ji¢ invariant under H7.

Since H is unimodular, the Haar measure on H can be made compatible with
the Haar measure on H” in the sense that

Fy R = L fyhy™Y) dh,

H~

for all f € C.(H"), with the right hand side independent of the choice of v in
the coset vH. We can likewise make the Haar measure on L compatible with
those of its conjugates L7.

In this manner, the measures m¢ are left-invariant under G in that
me(4) = mye(g - A) (1.6)

9



for all Borel sets A in E .

For each x = gK € X, we likewise have a measure pu, on ¥ C Z invariant
under the subgroup K¢ of G fixing z. If we make the Haar measures on the K9
compatible, then the measures p, are compatible under left multiplication by

G.

Suppose now that f € C.(X). We define its Radon transform to be the function
Rf on = given by

RI©) = | £(&) dme(o) (17)
3
for any £ € =Z. Group-theoretically, if £ = vH, we have
Rf(vH) = f(YhK) dhy, (1.8)
H/L

Note that the right hand side above is independent of the choice of v € G such
that £ = vH. By taking local cross sections from = to G, it is immediate from
the Dominated Convergence Theorem that Rf € C(2).

If p e C.(2), its dual transform is the function on X given by

RUp(e) = [ o()dus(6) (1.9)

Its group-theoretic expression is given by
R¥¢(gK) =f p(gkH) dkr (1.10)

K

Note that if K is compact, R* may be defined for ¢ € C(E).
Note that both R and R* are linear maps.

Lemma 1.1.3. The Radon transform R and its dual R* are formal adjoints in
the sense that

L RE© @ dute) = | @) R*pla) dm(e) (1.11)
for all fe C(X) and ¢ € C.(E).

Proof. Apply the integral chain rule and the Fubini theorem to the function
gL — (fop)(gL) (¢ om)(gL) on G/L. O

Practically all group-invariant integral transforms fit into the double fibration
framework given above. While the framework is too general to offer any specific
conclusions, we can nonetheless consider the following general problems.
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1. Injectivity: Is R injective; that is, is it possible to recover a function
f € Ce(X) (or some other class of functions, such as LP(X)) from its
Radon transforms Rf(£)? If f is not injective, can one describe the kernel
of R?

2. Support: Let B be a closed subset of X. If Rf(£) = 0 for all £ such that
&n B =, does f have support in B? (Note that if B = ¢, this reduces
to the injectivity question above.)

3. Inversion: If R is injective, is there a formula or procedure by which f
can be recovered from Rf? In particular, what is the relation between
any function f € C.(X) and R*Rf (if the latter exists)?

4. Range characterization: Describe the range, under R of certain spaces of
functions in X, such as C*(X), or LP(X).

1.2 Continuity Properties of the Radon and Dual
Transforms

In this section we examine the continuity properties of the Radon and dual
transforms associated with homogeneous spaces in duality. In order to do so,
we will need to consider some pertinent facts about topological vector spaces
and their duals. These facts may be found in any standard text on topological
vector spaces, such as or Rudin’s book [38] or Treves’ book [43].

Let V be a topological vector space, and let V' be its dual space, the vector
space of continuous linear functionals on V. Since we are mainly concerned
with function spaces of smooth complex-valued functions on manifolds, we will
assume that V' and V' are complex. The strong topology on V' is the locally
convex topology defined by the seminorms

1Al := sup [A(v)] (AeV’)
veEB

for all bounded sets B in V. Thus a sequence {\,,} in V' converges to A in the
strong topology if and only if {\,,} converges uniformly to A on every bounded
subset B of V.

The weak topology on V' is the locally convex topology defined by the seminorms
A = |A(v)], for each v in V. Thus the sequence {\,,} converges weakly to A if
and only if the sequence of scalars { A, (v)} converges to A(v) for each v in V.

It is not difficult to show that if V' is endowed with the weak topology, then
the evaluation map
v (A A(v)) (1.12)
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is a linear bijection from V onto the double dual (V')". The weak topology on
(V") gives rise to the weak topology on V.

V is said to be semireflexive if the map (1.12) is a bijection of V' onto the dual
space of V'’ when V’ is equipped with the strong topology.

Let T : V — W be a continuous linear map of topological vector spaces. The
dual map T* : W' — V' is given by T*(\) = Ao T for all A€ W'. It is easy to
see that T* is continuous in the strong dual topologies as well as in the weak
dual topologies.

A Frechét space is a locally convex metrizable topological vector space which is
complete in its metric. This metric may be chosen to be translation-invariant.

The following result will be needed in Theorem 1.2.5 below, which will be im-
portant later in characterizing the range of the dual transform.

Theorem 1.2.1. 1. ([43], Proposition 35.2) Let V be a locally convex topo-
logical vector space. If C is any convex set, then the weak closure and the
strong closure of C' coincide.

2. ([43], Theorem 37.2) Let T : V. — W be a continuous map of Frechet
spaces. Then T is onto if and only if the following conditions are satisfied:

(a) The dual map T* : W' — V' is one-to-one.
(b) The image T*(W') is weakly closed in V.

The first assertion above is in fact an easy consequence of the Hahn-Banach
theorem.

From now on it will be convenient to assume that G is a Lie group, so that
X and E are manifolds, and the orbits £ and ¥ closed submanifolds. Let £(X)
denote the vector space of C* functions on X. We equip £(X) with the topology
of uniform convergence of all derivatives on compact sets. More precisely, for
each linear differential operator D on X with C* coefficients and each compact
subset C' c X, let us put

Iflp.c = sup |Df ()] (1.13)

for each f € £(X). The seminorms || |p,c give rise to a locally convex topology
on £(X). In particular, a basis of neighborhoods of 0 consists of the sets

UD,C,e) = {f e EX)[|flp.c <e} (1.14)

for all D and C. Since X is second countable, the topology on £(X) is generated
by countably many seminorms of the form (1.13), and £(X) is in fact a Frechet
space.

Next let D(X) be the subspace of £(X) consisting of all functions with compact
support. We provide D(X) with the inductive limit topology as follows. For
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each compact set C' c X, let Do (X) be the subspace consisting of all functions
in £(X) supported in C. Then Do (X) is a closed subspace of £(X), and hence
is a Frechet space with the relative topology. The inductive limit topology on
D(X) is the strongest locally convex topology for which the inclusion maps
De(X) — D(X) are continuous.

For details on the topologies of D and £, we again refer the reader to Rudin’s
book [38], where X is replaced by an open subset of R™, but where the main
topological results carry over.

Proposition 1.2.2. The Radon transform f — Rf is a continuous linear map
from D(X) to E(Z).

Proof. For each g € G, we have

Rf(g-%) = | fg-z)dmg(x)
&o
Choose a local cross section of a coordinate neighborhood U of g - £ into a
slice of a coordinate system containing ¢ in G, and let y1,...,y, be the local
coordinates on this slice. Then we can write the above as

Rf(yi,-- . yn) = : F(W1s- - yn) - @) dmg, ()

Since the function = — f((y1,...,yn) - ) is compactly supported on &, the
integral above is well-defined and is C* in (y1,...,yn). The continuity of the
map f — Rf then follows by expressing D in (1.14) in the coordinates y1, ..., yn
and differentiating under the integral sign. |

The same proof, of course, shows that the dual transform ¢ — R*p is a con-
tinuous map from D(E) to E(X).

The duality (1.11) then allows us to define the Radon transform of a compactly
supported distribution. If T' € £'(X), then RT is the distribution on = defined
by

RT(p) =T(R*p) (1.15)
for all p € D(E). If we equip £'(X) and D'(E) with the strong dual topologies,

then the above shows that the map 7' — RT is a continuous map from &'(X)
to D'(E).

Now suppose that K is compact. Then the coset map p : G — G/K is proper.
By (1.10) this means that for all ¢ € £(E), the dual transform R*¢ is well-
defined. Moreover in this case R is now a map from D(X) to D(E). For if
f € D(X) is supported on a compact set C = X, then Rf will have support in
C={te= | € € ¥ for some z € C} = n(p~1(C)), a compact set in =.

The following result is thus an immediate consequence of Proposition 1.2.2.
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Proposition 1.2.3. If K is compact, then the Radon transform f — Rf is a
continuous map from D(X) to D(Z).

As a corollary, from the duality, it follows that R* : D'(Z) — D’'(X) is continu-
ous.

Proposition 1.2.4. If K is compact, the dual transform ¢ — R*p is a con-
tinuous map from E(Z) to E(X).

Proof. Let C be any compact set in X. Then as was shown above, the set C is
a compact subset of Z. Now if p € £(E), the restriction (R*y)|, is determined
completely by the values of ¢ on the set C. Let U be any neighborhood of C' in
X with compact closure. Since the projection 7 : G/L — = is an open map, the
set U = m(p~1(U)) is an open subset of Z with compact closure. Fix a function
¢ € D(E) such that ¢ = 1 on U. If ¢, is a sequence in £(E) converging to 0,
then ¥ ¢, is a sequence in D(Z) which converges to 0. Hence by Proposition
1.2.2 for R*, the sequence R*(v ¢,) converges to 0 in £(X). Let D be any
differential operator on X. Then D(R*(¢) ¢,)) — 0 uniformly on U. But by
our remark above, D(R* (¢ ¢,,)) = D(R*(py)) on C. Hence |R*¢,|p,c — 0.
This shows that R*y,, converges to 0 in £(X), and proves the proposition. O

Again, by duality, we conclude that the Radon transform R : £'(X) — &'(E) is
continuous.

The following theorem, due to Helgason ([19], Chapter 1, Theorem 3.7) provides
an important general characterization of the range of the dual transform R*.

Theorem 1.2.5. Assume that K is compact. Suppose that the range RE'(X)
is closed in E'(Z). Then R*E(E) = N'*, where

N = {T e €'(X)| RT = 0} (1.16)

and

Nt ={fe&X)|T(f)=0 for allT € N'} (1.17)

Proof. Note that Nt is a closed subspace of a Frechét space, and hence is
a Frechét space. Moreover, by the hypothesis and Theorem 1.2.1, the range
RE'(X) is weakly closed in &£'(Z).

The duality (1.15) shows that R*£(Z) c¢ Nt. We put T' = R*, so that the dual
T* maps (N1) to £(£). Now by the Hahn-Banach theorem, any o € (N1)’
extends to a continuous linear functional on £(X). Any two such extensions
agree on N1, so differ by an element of (V+)+. By the Hahn-Banach theorem,
the latter set equals the weak closure of N, which by Theorem 1.2.1, Part 1
coincides with the closure of A. Since N is closed, we obtain (N1)+ = N.
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Hence the dual map T* corresponds to a map of £'(X)/N to £'(2). By (1.15)
we see that T*(a+N) = Ra, for all a € £'(X). Now T* : (N1) = &(X)/N —
&'(2) is injective, and its range T*(£'(X)) = R(E'(X)) is weakly closed in £'(E).
Thus by Theorem 1.2.1, the map T = R* : £(Z) — N is onto. O

1.3 Invariant Differential Operators

Since the Radon transform R is an integral operator, we can try to ask whether
it can be inverted by a differential operator. Now both R and R* are invariant
under left translations by elements of G, so it also makes sense to ask whether
R can be inverted by a differential operator (or even by a pseudodifferential
operator) which is invariant under these left translations.

With this in mind, let us introduce some notation. If 7 is a diffeomorphism of
a manifold M onto a manifold N and f is any function on M, the push-forward
of f with respect to 7 is f7 = f o7~ !. Then of course f is C* if and only if f7
is. Note that (f7)? = f7 if ¢ is a diffeomeorphism from N to a manifold P.

If D is a differential operator on M, its push-forward with respect to 7 is the
differential operator D™ on N given by D7 (yp) = (D(gf_l)) . Again we have

(D7) = D°7. Moreover, if D and E are differential operators on M, it is easy
to see that (DE)™ = DTET. If 7 is a diffeomorphism of M onto itself, we say
that the differential operator D is invariant under 7 if D™ = D.

Suppose that a Lie group G acts smoothly on a manifold M on the left. If g € G,
we let 7(g) denote the diffeomorphism m — ¢ -m. We say that a differential
operator D on M is left G-invariant (or just G-invariant) if D79 = D for all
g € G. Note that the vector space D(M) of G-invariant differential operators on
M is in fact a subalgebra of the (associative) algebra of all differential operators
on M under compositions.

It will be useful for us later on to try to characterize the algebra D(M) for
various G and M.

If G = M, with the left action by G given by left multiplication, then D(G)
can be identified with the complexified universal enveloping algebra U(g) ® C,
where g is the Lie algebra of G. The universal enveloping algebra U (g) is usually
constructed in the following completely algebraic fashion. (For details, see, for
example, Chapter IIT of Knapp’s book [26].)

Let T(g) denote the (associative) tensor algebra of the vector space g: T(g) =
Y., ®"g. By definition, U(g) is the quotient algebra of T'(g) by the two-sided
ideal Z of T'(g) generated by the elements X Y — Y ® X — [X,Y], for all
X,Y eg.
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Then U(g) is an associative algebra, and its multiplication satisfies
XY =YX +[X,Y] (X,Y eq) (1.18)

where we have identified elements of g with their images in U(g). This identi-
fication makes sense since it turns out that the quotient map from 7T'(g) onto
U(g) is injective on g. Now the theorem below provides a precise basis of U(g).

Theorem 1.3.1. (The Poincare-Birkhoff-Witt Theorem.) Let X1,...,X, be
an (ordered) basis of g. Then U(g) has basis given by the monomials

X=X Xin

for all multiindices I = (i1, ...,in)-

For a proof, see Chapter 17 of Humphreys’ book [22] or Chapter IIT of Knapp’s
book [26].

From (1.18), the multiplication in U(g) is almost commutative, in the sense that
DE = ED + (lower order terms) for any D and E in Uf(g).

Moreover, the construction of U(g) shows that it satisfies the following universal
mapping property. If A is any associative algebra, then A can be given a Lie
bracket by setting [a,b] = ab — ba for all a,b € A. Now suppose that ® is
a Lie algebra homomorphism from g into A. Then ® extends uniquely to a
homomorphism from the associative algebra U(g) to the associative algebra A.

By definition, the Lie algebra g of G is the tangent space of G at the identity e.
If X € g, then the left invariant vector field X coinciding with X at e is given
by
~ d 0
Xflg) = 4 Flgexp(tX)) (feC™(@)
t=0

Note that by the definition of the Lie bracket on g, [X, Y]~ = [X,Y] = XY —
Y X for all X and Y in g. By the universal mapping property of U(g), the map
X — X extends to a homomorphism D — D of U(g) into the algebra D(G) of
all left invariant differential operators on G. Explicitly, if Y7,...,Y,, € g, then

~ o~ ok

(Y1 Yn)"fl9) =Y1--- Yo f(g) = mf(gexp(tliﬁ) --exp(trYr)) o)
t,=0

for all f e C*(G).

Theorem 1.3.2. The map D — D is an isomorphism of U(g) onto D(G).

Proof. Fix a basis Xi,...,X,, of g, and consider the map ¢ : (t1,...,t,) —
exp(t1X1) - - - exp(tn Xy,) from R™ into G. If v, is the differential of 1 at the

16



origin 0, then ,(0/dz;) = X;, so ¢ is a diffeomorphism near 0 and thus ¢
is a coordinate system on a neighborhood of the identity element e of G.

Suppose that E € D(G). Then, using the local coordinates above, we see that
at the identity, £ has the form

1l
=>ar 0 w) —— "7 (0) (1.19)

7 t“ oty

for all f € C*(G), where the a; are constants and the sum ranges over a finite
set of multiindices I = (i1, ...,%5). This shows that

- (Z arXy X) £

and by left-invariance,

- (Z arxy X) F(a). (1.20)
I

Thus E = (3, ar X|* -+ Xin)~.

To show that D ~— D is one-to-one, suppose that D = >, a[Xfl < Xl is a
nonzero element of U(g) such that D = 0. Then at the identity, Dis given by
(1.19). Let I be any multiindex for which a; # 0. If we define the function
f near e by foy~ (t1,...,t,) =t ---tin equation (1.19) shows that in fact
(i1!-+-ip)ar = 0, a contradiction. O

The map D — D can be thought of as the infinitesimal version of the right
regqular representation of G. For any g € G, we let 4 denote the right translation
h +— hg. Then define the map n(g) of E(G) by n(g)f = fs* = fory. It
is easy to show that 7 is multiplicative, and it follows (from a straightforward
argument using the fact that continuous functions on compact sets are uniformly
continuous) that, for each f € £(G), the map g — 7(g)f is continuous from G
to £(G). Thus 7 is a representation of G on £(G).

By differentiation, the representation 7 gives rise to a representation dm of g on
E(Q), and we see immediately that for each f € £(G) and each g € G,

Thus dn(X) coincides with the left invariant vector field X; by extension to the
universal enveloping algebra, we have dn(D) = D, for all D € U(g).
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There is also a linear bijection of the symmetric algebra S(g) onto D(G), called
the symmetrization map, and defined as follows. Again, let us first fix a basis
X1,..., X, of g; for a multiindex I, let X’ denote the monomial Xfl <o Xinin
S(g). Now any element P € S(g) has a unique expression P = 3, a;X!. For
this P, let A(P) denote the operator on C*(G) given by

A(P) £(g) = P(@/ots,...,0/ot) fgexp(ti X1+ + ta X)) gy (121)

It is easy to see that A(P) is a differential operator on G which commutes with
left translations, and that the map P +— A(P) is linear. The proof that A is
one-to-one and onto is similar to that in the proof of Theorem 1.3.2, taking into
account the fact that the map

exp(ti X1 + -+, X5) = (t1,...,tn)

is a coordinate system on a neighborhood of e in G. For more details, see [17],
Chapter 2.

The symmetrization map A turns out to be independent of the choice of basis
Xiq,..., X, of g. To see this, let X be any element of g, so that X = Zj a;X;.
Then for any k € Z™", the definition (1.21) shows that

MXF) f(9) = Mar X1 + - + anXn)* f(9)

0 2 \"
(al_ +...+an67> f(geXp(thl +"'+tan))

ot (t;=0)

dk

= o flgexp(s(a1 X1+ - + anXy)))
s=0

dk
= — f(gexpsX)

dsk s=0
= X" f(9)

Thus, N
MXF) = X*F (1.22)

for all k£ and all X € g. Now let Y7,...,Y} be any elements of g. If we apply the
relation (1.22) to X = ;Y7 + -+ + Y} and equate the coefficients of ¢; - - -ty
on both sides, we see that

1 ~ ~
AL Ye) = D Yoy Yo, (1.23)
ceS,

where the right hand sum is taken over the symmetric group G5, While A
is not multiplicative, equation (1.23) shows that A(Y;---Y;) = Y1---Y, +
(lower order terms). Hence it follows by degree induction that for any P and @
in S(g), there exists an R € S(g), with deg R < deg P + deg @, such that

APQ) = A(P)M@Q) + A(R)
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for any P and @ in S(g).

Suppose that G is a Lie group acting smoothly on a manifold M on the left,
with the action given by (g, m) — g-m. For each g € G, recall that 7(g) denotes
the left translation m — g - m. The left reqular representation of G on £(M) is
given by

Ag) f(m) = f7 () = f(g~" - 2) (9eG, zeM) (1.24)

A is easily shown to be multiplicative and, using local coordinates on M, it is
not too hard to verify that for each f e E(M), g — A(g)f is continuous from G
to E(M). Thus A is a representation of G.

The left regular representation A induces a representation dA of g on (M) given
by
d
INX) f(2) = % flexp(—tX) -2) (1.25)
t=0
Each dA(X) is a smooth vector field on M, and it follows from general theory
that
dA[X,Y] = [dA(X),dA\(Y)] (1.26)

for all X, Y € g. We can verify equation (1.26) directly as follows. Fix z €
M. For f € £E(M), define the function F on G by F(g) = f(g~! - x). Then
dn(X) f(g~'-x) = XF(g), and so

(dNX) dAY) —dA(Y) dA(X)) f(z)

= 7 (f(exp(—sY) exp(—tX) - z) — f(exp(—tX) exp(—sY) - 7))

0s Ot (s,t)=(0,0)
= (XY F)(e) — (Y X F)(e)
— X YT F(e)

=d\X,Y] f(x)

Thus d is a Lie algebra homomorphism from g to the Lie algebra of smooth
vector fields on M. By the universal mapping property, d\ extends to a ho-
momorphism, which we will also denote by d\, from U(g) to the algebra of
differential operators on M. We call d\ the infinitesimal left reqular represen-
tation of U(g) on E(M).

Explicitly, if X4,...,X,, € g and f € E(M), then
AN(X1 - Xon) f(2) =

= ——— flexp(—tmXm) - -exp(—t1X1) - ) (1.27)
6t1 . atm (t;=0)

Note that when M = @, then an argument similar to that of the proof of

~

Theorem 1.3.2 (or by using the inversion map f — f(g) = f(g~')) shows that
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the map D — dA(D) is an isomorphism of U(g) onto the algebra of all right-
invariant differential operators on G.

Let us now return to the double fibration (1.1), with G a Lie group. From their
group-theoretic expressions (1.8) and (1.10), we see that the Radon transform
R and its dual R* intertwine the left regular representations A and v of G on
X and Z, respectively:

R(Mg) f) =
R*(v(9) )

v(g) Rf (1.28)
AMg) R*¢

for all f e D(X), ¢ € D(E), and g € G.

Now for every Z € g and f € D(X), the difference quotient

AMexptZ) — A(e)
t

f

converges to dA(Z) f as t — 0 in the topology of D(X). Hence by Proposition
1.2.2, we conclude that R(d\(Z) f) = dv(Z) Rf, and by extension to the uni-
versal enveloping algebra, R(dA(U) f) = dv(U) Rf, for all U € U(g). Thus the

following diagram commutes.

D(X) —2 v £(E)

U

dX(U) v(U) (1.29)

D(X) v £(3)

Most of the transforms R we will study in these notes are injective. If this is
the case, then ker(dv) c ker(d\). In fact, if U € ker(dv), then dv(U) = 0, so for
any f € D(X), we have 0 = dv(U) (Rf) = R(dA(U) f). But since R is injective,
we obtain dA(U) f =0 for all f € D(X), so dA(U) = 0.

It is in general a difficult problem to determine ker(d\) or ker(dv). If ker(dv) &
ker(d)), then any function ¢ in the range of R satisfies the nontrivial differential
equations

dv(U)p =0 (1.30)
for all U € ker(d\)\ ker(dv). These equations are therefore necessary conditions
for any smooth function on Z to be in the range of R. As we will see in Chapter

4, these equations are often sufficient to characterize the range as well.
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1.4 Regularization

In extending certain properties of classes of C* functions in R™ to measures or
distributions, it is often useful to regularize; that is to say, to take the convolu-
tion of a distribution with an approximate identity. The result is a C* function
which converges to the measure or distribution in question.

In this section we discuss the analogue to this procedure in the case of Lie groups
and homogeneous spaces. Let us first consider some representation-thoeretic
generalities.

Let G be a unimodular Lie group, with Lie algebra g and bi-invariant measure
dg. Suppose that 7 is a representation of G on a locally convex topological
vector space V. Then, by hypothesis, 7 is a group homomorphism from G
to GL(V), the group of linear homeomorphisms of V', such that 7 is strongly
continuous. This means that for each v € V', the map g — 7(g) v is continuous
from G to V.

For each X € g, let V(X) denote the subspace of V' consisting of all vectors v
for which the limit
m(exp(£X)) = (e)

dm(X)v :=lim v
t—0 t

exists. Then let V(1) be the intersection of the subspaces V(X), for all X € g.
Since dn(X)m(g)v = 7(g) dr(Ad(g~ 1) X) v, we see that w(g) V1) = V) for all
g € G. Next, for each j > 1 we define V) inductively by V@) = (V-1)1)
and then put V* =1, 174528

If V' is complete (i.e., Cauchy sequences in V converge), then we can define
w(f)v for each f € C.(G), by

ﬂﬁv=Lf@ﬂ@v@

Note that 7(g) 7(f)v = n(fL9) v, and that if f € D(G), then
m(X)7(f)v = m(dAX)f)v
It follows that w(f)v € V* whenever f € D(G) and ve V.

Now consider any countable basis {U,,} of neighborhoods of e € G such that
Ups1 © Upy,. For each m let f,, be a nonnegative function supported on U,,
such that SG fm(g)dg = 1. Then for any v € V, the strong continuity of 7
implies that

ﬂﬁav—v=ﬁgﬁmﬂﬂmv—vwg~o

in the topology of V', as m — oo0. This shows that V* is dense in V. We call
{fm} an approximate identity in G.
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The map X +— dn(X) is a representation of g on V*, and by the universal
mapping property of U(g), dr extends to a representation of the associative
algebra U(g) on V*.

Exercise 1.4.1. Let V = C(G), the vector space of continuous functions on
G, endowed with the topology of uniform convergence on compact sets. Show
that V* = £(G), and dr the infinitesimal left regular representation of U(g) on

E(g)-

Let V' be the dual space of V. For each g € G, we define the map *w(g) : V! — V'
by tn(g) A = Aom(g). It is straightforward to verify that the map g — ‘w(g) is
a group homomorphism from G to GL(V'), where V' is given either the strong
or the weak topology.

If V is semireflexive, then ‘7 turns out to be strongly continuous ([1]). Hence
‘1 is a representation of G on V', called the representation contragredient to =.

V' is also easily verified to be complete (in both its weak and strong topologies),
so that if V is semireflexive, then we can define the operator

ta(f) = L £(9) 'n(g) dg (f € C.(G)) (1.31)

on V.

Now let V = £(G), and let 7 be the left regular representation 7(g)p = @%s.
Then V = V¥, and the algebra of right-invariant differential operators on G is
dr(U(g)). If f e D(G), then w(f) is the convolution operator

(F)elg) = f * olg) = L F(w) p(ug) du = L Flay ™) ely) dy

Note that the support of f ¢ lies in supp(f) supp(p).
If T € D'(G), then w(f) T is the convolution f T

F7(0) = | @) dg (¢ € D(G)) (132)
If we put f(g) = f(g~ 1), then we obtain
o1 = [ | Foe wagare =170y (33)
G JG
Since G is unimodular, the above can also be written

L L Flgu=") ¢ (g) du dT ()
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Now since the left regular representation is strongly continuous, the function
g~ {5 f(gu)dT (u) is continuous, and the above equals

J; (L f(gul)dT(u)> ©(g)dg (1.34)

(This is the result of a simple application of the Fubini theorem for distributions;
see [43], §40.) The equation (1.34) therefore shows that f * T is a continuous
function on G.

For each X € g, the function

m(exp(tX)) — w(e)

” f

converges to dm(X) f as t — 0 in the topology of D(G). From this one sees that

d
i T'(exp(tX)g)l,—o

exists and equals (dm(X)f) = T(g). Repeating this, we see that f T is a C*
function on G.

If {f;n} is an approximate identity in G, then for each ¢ € D(G), fm * @ — ¢
uniformly on G as m — oo. Since

D(fm*‘p)=fm*D90

for every D € D(G), we see that f, * ¢ — ¢ in D(G) as m — oo. Hence by
(1.33), we see that fp, * T — T weakly in D'(G) for all T € D'(G). Thus T may
be approximated by C* functions in D'(G).

Now suppose that H a closed subgroup of G and X = G/H is the corresponding
homogeneous space. Let us assume that H is unimodular, so that G/H has a
left G-invariant measure dgy, unique up to constant multiple.

Let # : G — G/H be the coset map, and let 7(g) : g1H — gg1H be left
translation by g € G. If f € E(G/H), let f = f o7 be its pullback to G.

If F € D(G), then just as with (1.3), we put

F,(gH) = L F(gh)dh

Then F is compactly supported and is C*, so that F € D(X). Using a a proof
similar to that of Proposition 1.2.2, it can also be shown that the map F — F
is continuous from D(G) to D(X).

Exercise 1.4.2. Using partitions of unity and local cross sections of G/H into
G, show that F' — F, maps D(G) onto D(X).
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For appropriate choices of the measures dg and dgg, we have, just as with (1.4),

f Floydg= [ F.gH)dgn  (FeD(G))
G G/H

From this it follows that

f f9) F(g)dg = f(gH) Fr(gH) dgu (1.35)
G G/H

for all f € £(X) and F € D(G).

Suppose that T' € D'(X). We can use (1.35) to define the pullback T
T(F)=T(Fy,) (F € D(GQ)) (1.36)

By the remarks preceding Exercise 1.4.2, we see that Te D'(G).

Let A\ be the left regular representation of G on D(X). If T € D'(X) and
f € D(G), then

NNT = | F9) 70 dg (1.37)
G
We note that (A(f)T)~ = f =T, and since
(f = T)(gh) = f+T™ = f+T(g)

for all g € G and h € H, we see that f*f is the pullback of a smooth function on
X. Thus A\(f) T € £(X); we will also denote this function by f = T. Its support

is supp(f) - supp(7).
Now suppose that {f,,} is an approximate identity in G. If F' € D(G), then
(fn # T)(Fr) = (fin # T) (F) = T(F) = T(Fy)

By Exercise 1.4.2, we see that f,, * T — T weakly in D’(X). Thus T can be
approximated weakly by smooth functions on X.
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Chapter 2

The Classical Radon
Transform

2.1 The Incidence Relation

The classical Radon transform integrates suitable functions on R™ over hyper-
planes in R™. As we mentioned in the introduction, this transform dates back
to Johann Radon’s paper in 1917, and so the methods used to study it pre-
date the double fibration framework. Nonetheless, it will be useful to keep this
framework in mind while studying the transform.

Now it can be shown that any isometry, or rigid motion, of R" is of the form
x — k-x+v, where k € O(n) and v € R™. We denote this isometry by 7(k, v), and
we note that these isometries satisfy the composition rules 7(k,v) o 7(k',v") =
7(kk',v + k - v'). From this, we see that 7(k,v)™! = 7(k~!, k=1 - v). If we
let M(n) denote the group of all isometries of R™, then M(n) is the Cartesian
product O(n) x R™ equipped with the group law

(k,v) - (K',0") = (kK v+ k- 0) (2.1)

We say that M(n) is the semidirect product of its subgroups O(n) and R™, and
write M(n) = O(n) x R®. We also equip M(n) with the product manifold
structure. From the above, we see that M(n) is a Lie group, and that O(n) and
R™ are the subgroups consisting of all rotations and translations, respectively,
on R™.

We also note that the subgroup of orientation-preserving isometries is SO(n) x
R™.

Now M(n) acts transitively on R™, and the subgroup fixing the origin 0 is O(n),
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so R™ = M(n)/O(n).

Let us now consider the space Z,, of unoriented (n — 1)-dimensional planes in
R". Let £ € Z,, and let w be one of its two unit normal vectors. If p is the
directed distance from the origin to ¢ along w, then

{={zeR"|{w,z) =p}

We write £ = £(w, p) and note that £(w, p) = £(—w, —p). In this way we obtain a
two-to-one map of S~ ! xR onto =,,, and we give Z,, the quotient differentiable
structure. In particular, we can identify C™ functions on =,, with C* functions
@ on S ! x R such that ¢(w, p) = ¢(—w, —p) for all w e S*! and p € R.

Now M(n) acts smoothly and transitively on Z,, via

(ka U) : g(va) = €(k "w,p+ <k : w7U>) (2'2)

In particular, the translate v+ &(w, p) is the hyperplane &(w, p+<{w, v)), and the
rotated plane k - £(w, p) is just £(k - w, p).

Let & be the (n — 1)-plane x,, = 0. Then the isotropy subgroup H of M(n) at
& is (O(n — 1) x Zy) x R~ where O(n — 1) x Zs is the group of matrices of

the form
k 0
0 +1

where k € O(n — 1). We can thus write H = M(n — 1) x Zs, where M(n — 1)
is the motion group of &y and Zs is the group generated by the reflection on &j.
Thus E,, can be identified with the homogeneous space M(n)/H.

R™ itself, of course, is the homogeneous space M(n)/O(n), with O(n) being the
subgroup of M(n) fixing the origin.

Next let us verify that the incidence relation between the homogeneous spaces
R™ = M(n)/O(n) and E,, = M(n)/H coincides with the usual incidence relation
between points and planes: for g and v in M(n), z = ¢g-0 and £ = - & are
incident if and only if the point x lies in £&. Suppose that x lies in €. Since
& = H -0, we must have g -0 = yh - 0 for some h € H, so vh = gk for some
k € O(n). Conversely, if x and ¢ are incident, then gk = vh for some k € O(n)
and he Hysox =g-0=~vh-0e~v-& =¢.

Thus, under this incidence relation, the set é can be identified with £ itself. On
the other hand, if 0 is the origin, the orbit 0 = O(n) - & coincides with the set
of all (n — 1)-planes through 0, and by translation, we see that for each x € R",
we have T = {x + k-& |k € O(n)}.

From (2.1) it is easy to see that the motion group M(n) is unimodular, with Haar
measure given by f — § f(k,v) dk dv, where dk is the normalized Haar measure
on O(n) and dv the Lebesgue measure on R™. Tt follows that H = M (n—1) x Zs
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is also unimodular, and of course so is the compact group L = O(n) n H =
O(TL — 1) X ZQ.

The Lebesgue measure on EO = E is invariant under the subgroup H fixing &y,
so we will take this to be the measure dmg,. By translation by an appropriate
g € M(n), we can likewise take, for £ € E,, dm¢ to be the Lebesgue measure on
. For simplicity, we will denote dm¢ by dm. For f € C.(R™), it follows that
the Radon transform R is given by

RF(€) = L £ () dm(z) (2.3)

It is possible to define Radon transform (2.3) for f € L*(R™), since by Fubini’s
Theorem, the integrals are convergent for almost all £ € Z,,.

The dual transform is given by
R*p(x) = J olr+k-&)dk (2.4)
O(n)

Using our earlier notation, we also have ¥ = {{(w,{w,z))|w € S""1} so ¥ is
parametrized by w € S"1. The map k — k, = (k,xr — k- z) is a Lie group
isomorphism of O(n) onto the subgroup of M (n) fixing x. Since k;-§{(w,{w, z)) =
&(k - w,{k-w,z)), the normalized measure on I invariant under the group of all
rotations about z is just a multiple of the area measure dw on S™~'. The dual
transform can thus be written as

R*(p(x) = Q_n - (,0(0.), <w,x>) dw, (25)

where ©,, is the area of S"1: Q,, = 27™/2/T'(n/2).

From (2.2) one sees that the measure

p € Ce(En) = ¢(w, p) dw dp
Sn—1xR

is invariant under the action of M (n). The duality (1.11) is then given by

f Rf@.p)ow.p)dodp =0 | f@) R*o(@)de,  (26)
Sn—1xR R
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for f € C.(R™) and ¢ € C(Z,). In fact,

| meneendd=| | ( | dmm) olu,p) dp o
Sn—1xR Sn—=t JR \ Kz,wy=p
~ [ | @ e o) deas
Sn—1 JRrn
[ s e ) dods
n Sn—l
=, [ flz)R*o(x)ds
R
In light of this, we define the Radon transform of a compactly supported distri-

bution T on R™ by
RT(p) = T(R*p) (2.7)

for any ¢ € E(5,).

2.2 The Projection-Slice Theorem and the In-
version Formula

Let us recall that the Fourier transform of a function f € L'(R™) is given by

fw =] r@eear (veR") 28)

For fixed y, we observe that the exponential e =¥ is constant on hyperplanes
orthogonal to y. Thus we can relate the Fourier transform to the Radon trans-
form by integrating (2.8) along such hyperplanes. Explicitly, let us write y = sw,
for se R and w e S”!. Then

Y — —is{z,w)
Flsw) f L L fwe dm(z) dp

= JR (nyw_pf(x) dm($)> =173 dp

= J Rf(w,p)e™ P dp (2.9)
R

Equation (2.9) is known as the Projection-Slice Theorem. It expresses the inti-
mate relation between the Fourier and the Radon transform; essentially it says
that the Fourier transform is a one-dimensional Fourier transform of the Radon
transform. It immediately implies that R is injective on L!(R™). It also enables
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us to invert the Radon transform on, say S(R"), by employing the well-known
inversion formula for the Fourier transform.

Another consequence of (2.9) is that Radon transforms preserve convolutions.
More precisely, suppose that f and g belong to L!(R™). Then it is easy to show
that f « g € L'(R"), and (2.9) shows that

R(f * g)(w.p) = f Rf(w,p —t) Rg(w. ) dt (2.10)

This equation can also be verified directly by a simple application of Fubini’s
Theorem.

To facilitate our derivation of the inversion formula, let us now recall the
Schwartz class S(R™) of rapidly decreasing functions on R™. By definition,
S(R™) consists of all f € E(R™) satisfying the estimates

Il = sup (L4 [z|V) |07 f(2)] < oo (2.11)
zER™,|I|<k
for all k, N € Z*. In the inequality above, I represents a multiindex (i1, ..., ),

1] is the sum 4 + - - - +4,, and 0! is the differential operator o/!/(dz%* - - - dzir).

Since the Fourier transform interchanges partial differential operators and mul-
tiplication by polynomials, it is not hard to show that it maps S into itself (it
is in fact a bijection by the formula below). Moreover, for any f € S(R™), we
have the Fourier Inversion Formula

fo) = @ry | ey (212)

There are several different formulas which invert the classical Radon transform
R. For even dimensions, one of them involves the Hilbert transform, which we
now define as follows.

Consider the linear mapping p.v.[1/t] from S(R) to C given by

p.v. [%] h = lim h®) g (2.13)

e—0t [t|>e

(The p.v. stands for “principal value.”) The right hand limit above exists even
though 1/t is not locally integrable; in fact,

pv. H h=LIMdt

t t

It is not difficult to show that p.v.[1/t] is an element of S’'(R); that is to say, is
a tempered distribution on R.

29



Exercise 2.2.1. Show that p.v.[1/t] is the distribution derivative of the tem-
pered distribution log |¢| (which we note is locally integrable and vanishes at
infinity), given by

mmew=Lh@k%Mﬁ

Since p.v.[1/t] is a tempered distribution, it makes sense to take its Fourier
transform on R.

Lemma 2.2.2. Let sgn(t) be the signum function on R given by

1 ift>0
sgnt) = {—1 if t <0

Then the Fourier transform of p.v.(1/t) is —mi sgn(t).

Proof. Let F denote the (distributional) Fourier transform of p.v.[1/t]. Now the
product ¢ (p.v.[1/t]) equals the constant function 1, and this corresponds under
the Fourier transform to the distribution derivative ¢ F’. On the other hand, the
Fourier transform of 1 is the Dirac distribution 27 dg, so we obtain F’ = —27 ¢ dg.
This implies that F' = —27¢ H(t) + C, where H (t) is the Heaviside function and
C' is some constant. But since p.v.[1/t] is an odd distribution in R, so is F.
This means that C' = mi; that is to say F(t) = —mwisgn(t). O

The Hilbert Transform of a function g € S(R) is the convolution Hg = g *
p.v.[1/t]. Thus

Hg(p) = lim 79(17 — ) d

t (2.14)
e—0 [t|>e t

By Lemma 2.2.2, the Fourier transform of Hg is the function (Hg)~(y) =
—mi g(y) sgn(y)-

Finally, let us introduce the space of Schwartz-class functions on =,,. By defini-
tion, a function p € C*(S™ 1 xR) belongs to S(S™ ! x R) if for every k, N € Z*
and every C'” linear differential operator D on S" !, we have
v |2

sup (1+ )™ | £ D) < o

(w,p) p
The space S(Z,,) then consists of the even functions in S(S™ ! xR). The partial
Fourier transform of ¢ is its Fourier transform in the p variable

o0

¢H¢M@=f o, p) e P dp

—o0

The partial Fourier transform maps S(S"~! x R) into itself, and S(Z,,) into
itself. Moreover, the projection-slice theorem says that the Fourier transform of
f € S(R™) is the partial Fourier transform of its Radon transform.
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Let f € S(R™). If we change to polar coordinates (w, s) — sw in R™, a straight-

forward application of the chain rule shows that its Fourier (w,s) — f(sw)
belongs to S(S"~! x R). By Projection-Slice and our observation above, we
now see that Rf € S(=,).

With these preliminaries out of the way, let us now invert the Radon transform
R. Put y = sw in (2.12) to obtain

(27r)n f(:L') _ stn_l J‘f f(sw) el‘g(z,w) s 1ds dw

1 o
QJ f( ) is{x,w) s 1dsdw
gn—1

1 .
5 f j f zs<x77w> s Ldsdw
1 T is{z,w) s 1
=3 f( w)e ds dw
gn—1
1 ~ zs(m w)y n—1
5 f sw) (=8)" " dsdw
1 s is{z,w) | |n—1
=3 (sw)e W2 st ds dw (2.15)
gn—1J_
Now if n is odd, then |s|""! = s

! and so the right hand side above becomes

1 N
3 f f(sw) e @ "1 ds dw
Sn=tJ—ow

L A i ' 5
- - - R —ips g is{z,w) ds d
2T Lnil Lﬂ (L/, P flw,p)e p) e s dw,

by the Projection-Slice Theorem. Then by the Fourier inversion formula for one
variable, we obtain
071—1

Q) f@) = (e [ SR ) e

Note that (0"~!/0p" 1)Rf(w,p) is an even function in S(S™ ! x R), and so
belongs to S(=,).

Taking (2.4) into account, in the odd case (2.15) now becomes

F(@) = en R* (;;n__lRf) () (2.16)
where
Cn = Qn/2(2mi)" L (2.17)

When n is even, (2.15) equals
1 - -
3 J J f(sw) e™*@«? "= son(s) ds dw
Ssn—1 J_op
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But for each w, the function s — f(sw)s" ! sgn(s)e™*®> belongs to L'(R),
and so by the Fourier inversion formula and Lemma 2.2.2 the inner integral
above equals

2nH (a"jTRf) (w, ()

Thus, again by (2.4), we obtain

f(z) = cn R (H%Rf) () (2.18)

where ¢, is also given by (2.17). Note that when n is even and ¢ € C*(E,),
then (0" 1¢/0p™~1) is an odd function in S(S™! x R), but the convolution
H(0" 1p/dp™ 1) is even, and thus can be seen to represent a smooth function
on =,.

The following theorem summarizes our calculations above.

Theorem 2.2.3. For any ¢ € S(Z,), let

n—1
%(p(w,p) ifn is odd
Ap(w,p) =1 P/ 0 (2.19)
H (WSD) (w,p) ifnis even
If f € S(R™), the Radon transform Rf is inverted by
f(x) = cn R*(ARS)(2) (2.20)

where ¢, is given by (2.17).

For n odd, we can also express the Radon inversion formula (2.20) by means of
invariant differential operators.

Exercise 2.2.4. Let D be any linear differential operator on R™, with C*
coefficients, invariant under the action of M(n). Use the following steps to show
that D is a polynomial in the Laplacian L:

D=aL'+---+aL +ag.

1. Since D invariant under translations, it has constant coefficients.

2. For each v € R", let D, denote the directional derivative D, f(z) =
(d/dt)f(x + tv)|t=o. The map v — D, extends to an isomorphism of
the symmetric algebra S(R™) onto the algebra of constant coefficient dif-
ferential operators on R™.

3. The dot product in R™ identifies the dual space (R™)* with R", via v €
R™ — v* = (v, - ). This extends to a map D — D* identifying the
symmetric algebra S(R™) can be identified with S((R™)*), the algebra of
all polynomial functions on R". We have (9/dz;)* = e} = ;.
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4. Under this identification, we have (k- v)* = (v*)™® for all V' € R™ and
k € O(n). Thus the algebra D(R™) of M(n)-invariant differential operators
on R™ may be identified with the algebra I(R™) of polynomial functions
on R™ invariant under the action of O(n).

5. Let p € I(R™). Then p is constant on each sphere centered at the origin 0. p
is therefore determined by its restriction to the xi-axis, where it is an even
polynomial function of x1. Thus p(21,0,...,0) = apx? +--- +a12? + ao.

6. The polynomial afz|* + --- + aiz|?* + ag is also constant on spheres
centered at the origin — hence is O(n)-invariant — and coincides with p on
the x;-axis. Hence it equals p.

7. Let D € D(R") = S(R"). Then D* = Y _ja;|z[¥, and hence D =

. ,
D=0 L7

Since functions on =,, correspond to even functions on S”~! x R, there is a
well-defined differential operator [] on Z,, given by
62
Op(w,p) = @w(w,p) (p € E(En)) (2.21)

From (2.2) we see that [] is invariant under M(n). It can be shown that any
M(n)-invariant differential operator on Z, is a polynomial in [J. (See [9] or

[10].)

Let us denote the left regular representations of M(n) on E(R™) and £(Z,,) by
A and v, respectively. Then since the Radon transform R commutes with the
left action by M (n), we have

R(f™)(w,p) = (RF)"(w,p)
= Rf(w,p—(w,v))
for all f € S(R™) and v € R™.

If we replace v by —tv above and take the derivative with respect to t at ¢t = 0,
we obtain

maﬂwm=@@%mmm

where D, f is the directional derivative of f in the direction of v. When v = e;,
this gives

R(51) @) = s 5 RiGenn)

Differentiating both sides above again with respect to z; and summing, we see
that

R(Lf)(w,p) = O(RS)(w,p)
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Conversely, if p € £(Z,,), then we can differentiate both sides of the formula for
R*p in (2.5) with respect to x; to obtain

0
61'1'

0
R (p(l') = Q_n Gn Wi a_p(p(wa<w7x>) dw

Taking 0/dx; again and summing, we conclude that

L(R*¢)(x) = R*(Op)(x)

From this, we see that the Radon inversion formula (2.16) for n odd can be
written as

n—1

f(z) = e, R*(O= Rf)()
= ¢, L7 (R*Rf)(z) (2.22)

This formula says that when n is odd, the value of f(x) is determined by the
values of R*Rf on an arbitrarily small neighborhood of . (R*R is said to be
locally invertible.) This is not at all the case when n is even.

Application: The Wave Equation. Let us apply the inversion formula (2.20) to
solve the initial value problem for the wave equation in R™. Given functions
fy g € S(R"), we want to find solutions u(x,t) € C*(R™ x R) to the wave

equation
2

Lyu(x,t) = x,t) (2.23)

o™
satisfying the initial conditions u(z,0) = fo(x) and u(x,0) = f1(z).

General theory says that the solution of this initial value problem is unique.
In order to write the Radon transform solution, we first make the following
observation, which can be checked by a simple computation. Let h be any
smooth function on R. Then for any w € S*~1, the function

(@,1) = h({w,z) +1)
satisfies the wave equation (2.23).

Now given fy and f; as above, put

n—1 n—2
T — Rfo(w,p) + o — R f1(w, p) if n is odd
_ 0})” 1 apn 2
Sf(wap) - an—l an—2
H|——Rfo ] (w,p)+H|{ =—=Rf1) (w,p) ifniseven
apn 1 apn 2

We now claim that the function
u(z,t) =c J Sf(w,{w,zy+t)dw (2.24)
Snfl
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where ¢ = 1/1(27i)" ! solves the problem above.

From our observation, we know that the right hand side of (2.24) satisfies the
wave equation. Therefore we just need to check that the initial conditions are
satisfied. For simplicity, let us assume that n is odd, as the argument for n even
is similar.

According to (2.24), we have

n—1 n—2

0 0

u(z,0) = ¢ J ) meo(w,@J,x)) dw + ¢ J ) mRﬁ(w,(w,x)) dw
sn—1 OP sn—1 OP

The first integral equals fo(z) by the Radon inversion formula (2.16), and since

n is odd, the integrand on the right is an odd function of w, so the integral

vanishes.

On the other hand,

on 0n—1

ut(z,0) = ¢ j 5 Rfo(w,{w,z))dw +c j ———Rfi(w, (W, z)) dw
Sn—1 6p Sn—1 6p

and in this case the first integral on the right vanishes and the second integral

equals fi(x), again by (2.16).

General theory also says that solutions to the wave equation (2.23) propagate
at unit speed. In particular, if the initial data fo and f; have support in the
ball B.(0), then u(z,t) will have support in the cone |z| < €+ |¢|.

When n is odd, the solution (2.24) is in fact supported in the shell |t| — e <
|| < |t| + €. (This is known as Huygens’ principle.) To see this, suppose that
||| < |t| —e. Then Kw,z)+t| > |t| — w,z)| = |t| — ||z| > €. Thus the plane
&(w, {w,zy +t) does not intersect B((0), and hence Rf;(w, (w,z) +1t) = 0.
Since Sf consists of derivatives of the initial data fy and fi, it follows that
Sf(w, {w,xy+t) =0 and thus u(z,t) = 0.

2.3 Filtered Backprojection

By far the most important application of Radon transforms lies in imaging,
and more specifically, medical imaging. Tomography is the study of useful and
efficient algorithms which are applied to recover functions (such as the mass
density function) from its various integral transforms.

The field of medical tomography was founded by Alan Cormack, who established
its theoretical basis in two papers published in the Journal of Applied Physics in
1963 and 1964 ([2]). For this work, he was awarded the Nobel Prize in Medicine
in 1979 together with Godfrey Hounsfield, whose team developed the first CT
(computerized tomography) scanner in 1971.
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Let us consider the following simple model used in CT scanning. Suppose that
f(z) represents the mass density at the point z in a planar cross section of a
human head, as shown in the figure below. Let ¢ be a line representing an X-ray
beam. If I(x) denotes the beam intensity at the point x, then I is attenuated
along a short segment Az along ¢ according to the relation

—5 = f(z) Az

If Iy represents the initial intensity of the beam and I; the intensity recorded
at the detector, it follows from the above that

1og% = Lf(x)dx

Detector

Source

Figure 2.1: X-ray beam /¢ going through a human head

Thus the problem is to reconstruct the density f(z) from the measured data
Iy/I; along all lines ¢, or more realistically, along a large but finite set of lines
¢. This is, of course, just the inversion problem for the Radon transform on R2.

Rather than using (a discrete version of) the Radon inversion formula (2.20), the
most common method for reconstructing X-ray images is the method of filtered
backprojection. Its main advantage is its ability to cancel out high frequency
noise. The key result is the convolution formula in Proposition 2.3.1 below.

If o, ¢ € §(E,,), their convolution ¢ # ) is the well-defined function on =,, given
by

0% P(w,p) = wa,p—tww,w dt

(See (2.10).)
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Proposition 2.3.1. Let f € S(R") and ¢ € S(Z,,). Then

R*(p = Rf) = (R*¢) = [ (2.25)

Proof. For any = € R™, we have

weern@ =g [ ([ deton-nrien ) a

—0

( [ et -n ( [ s dm(y>> dp> s

(], pteroa =) sy ) a

P

- 2~ 9]~

3
0 ?
i

LH plw,{w,z — 1)) dw) fly)dy

'O|H

|
%b <2
7N

n

=| R'o(x—vy)fly)dy

R*¢) « f(x)

Il
—

|
Let ¢ € S(Z,,). There is a constant C such that |p(£)| < C for all £ € E,,, and
so by (2.5), | R*p(z)| < C for all z.
Exercise 2.3.2. Prove that R*¢(x) = O(|x|~!) and that this is the best

possible estimate.

Thus R*p may be viewed as a tempered distribution. The following lemma
gives the relation between the Fourier transform of R*¢ and the partial Fourier
transform of ¢.

Lemma 2.3.3. Let ¢ € S(2,). Then the Fourier transform of R*y is given by

(R0 (a) = 2E a3 (5. 1ol (2.26)

for all x # 0 in R™.

Proof. We begin by considering the following variant of the projection-slice the-
orem (2.9). If f € S(R™), then

flsw) = 2m) ™" | Jly)e*® dy
R

- o | " R(P(w,p) e dp

-0
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By the Fourier inversion formula in R, we then obtain

R(Pw.p) = @0y [ flsw) e as

—0

Thus by (2.7),

(R*¢)™(f) = R*@(f)

B (273:_ L L [ (sw) Bw, 5) + f(—sw) B(w, —s)] ds dw
20 sy dsde
T, Ln_l . f(sw) §(w, s) ds d (2.27)

For the last equality we used the fact that $(w, —s) = $(—w, s). The right hand
side of (2.27) thus equals

2 [.] " F5w) (53w, ) 5" ds do

-2 [ ) (bt (5501 )

proving the lemma. O

Lemma 2.3.3 above holds, with essentially the same proof, for ¢ € L'(Z,), since
the partial Fourier transform 3(w, s) exists for almost all (w, s) € S~ x R.

In applying (2.25) to recover f, we choose ¢ so that R*p is an approzimate
identity and is band-limited (i.e., its Fourier transform is compactly supported).
Thus we want to put ¢ = ¢4, a function parametrized by ¢, such that ( R*p;)~
is compactly supported and

R*¢y — 0o

in §'(R™) as t — o0.
One choice for ¢; would be the function on R™ such that

(R*@1)™(y) = XB:(0) (%), (2.28)
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where the right hand side is the characteristic function of the open ball B;(0).
Then clearly (R*¢:)~ — 1, and hence R*p; — J§p as t — o0. In this case, let
us determine ¢; explicitly.

Lemma 2.3.4. Let F(x) = xp,(0)- Then

ﬁ(rw) = (2n)%r™

w3
<
w3
—
3
N2

(2.29)

for allr >0 and we S™ 1.

Here J, is the Bessel function

© 1./2 2k+p
kZ::O E'(k + p)!

with (k + p)! given by I'(k + p + 1) when p is not an integer.

Proof. Since F is radial, so is F. Thus we need only calculate F (—rey,), which

equals
Qn 1

1 _
e dg = 7 J et (1 —12 i dt
JBl(O) n—1J, ( )

Now according to [12], equation 3.387(2), the right hand integral equals

#2230

and from this equation (2.29) follows. O

If Fy = xB,(0), then Fy(z) = x5, (0)(x/t), so it follows from (2.29) that
(F)~ (rw) = (27r)% tzr 2 Jn (rt)
Thus if ¢ is to satisfy (2.28), we must have

o oy T ]
o) = B gy

To calculate ; itself, we make use of the relation (2.26). This gives

Q" | |n—1

W S X(—t,t)(s)

@t(wa 8) =

Thus

Q t 1
— n n—1 _ips d
wt(wap) 2(277)” J;t |S| € 5

Q. (!
= f 5" cos(ps) ds



When n = 2, this equals

t? <sin(pt) 1 —cos(pt)>

2r \ pt (pt)?

In the method of filtered backprojection, the density f(x) is approximated us-
ing the left hand side of (2.25). First, an appropriate “filter” ¢ is chosen to
convolve with the data Rf, and then the dual transform R* is applied (this is
the “backprojection.”)

2.4 The Support Theorem

In this section we consider for the classical Radon transform the following fun-
damental problem regarding supports of functions. Let us retain the notation
of Chapter 1. Let B be a closed subset of X, and suppose that f is a function
on X integrable over all orbits £ such that Rf(£) = 0 for all £ € = such that &
is disjoint from B. Is f supported in B?

The problem of whether f — Rf is injective is a special case of the support
problem above, if we put B = (.

In the case of the classical Radon transform, with X = R” and = = &,,, it is
easy to see that we need to require that B be convex. If we assume that f
decreases reasonably rapidly, and that B is a closed ball, then we obtain the
following support result due to Helgason.

Theorem 2.4.1. Let f be a continuous function on R™ such that for allk € 77T,

sup [Jz|*|f(z)| < o (2.30)

zeR™

If Rf(&) = 0 for all hyperplanes £ such that d(0,&) > R, then f has support on
the closed ball Br(0).

The case n = 1 being trivial, we can assume that n > 1.

Fix any € > 0 and let ¢. be an approximate identity supported on B(0). Then
the convolution f # ¢. belongs to £(R™) and satisfies the estimate (2.30). In
addition, by (2.10), we see that R(f * ¢.)(w,p) = 0 whenever |p| > R +¢€. If we

can prove that f # ¢, has support in Bgy.(0), then letting ¢ — 0 we see that f
has support in Br(0).

Thus it suffices to assume that f e E(R™).

We first deal with the simplest case possible, in which f is a radial function.
Thus there is an even C* function F on R such that f(z) = F(]|«||). Then the
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Radon transform Rf is also radial: this means that there exists an even C'*
function G on R such that Rf(w,p) = G(p). Integrating f in polar coordinates,
it follows that F' and G are related by the equation

60 =t | TR + ) s ds
= Qs r F(t) (2 = p?)™ tdt (2.31)

This is an integral equation of Abel type for which there are standard methods
of solution [44], which we give below.

In case n is odd, the integral equation (2.31) can be solved using a differential
operator. In fact, if we apply the differential operator d/d(p?) = (1/2p) d/dp to
both sides (n — 3)/2 times, we obtain

We note that differentiating inside the integral sign is permissible because of
the decay assumption (2.30) on F.

Applying (1/p) d/dp one more time to the last equation above allows us to solve
for F in terms of G:

F(p) = (—% d%) N G(p) (2.32)

Since, by hypothesis G(p) = 0 whenever p > R, it follows that F(p) = 0
whenever p > R.

For the general solution of (2.31), we put H(p) = G(p)/Qn—1 and let m =
(n — 3)/2. Thus we want to solve the integral equation

H(p) =f F(t) (t* —p*)™tdt (2.33)

for F. Fix s > 0, then multiply both sides above by (p? — s2)™ p and integrate
with respect to p from s to co:

[ 106 =i = [ (] F0@ =y o) 0= iy
- LL F(t)t (f[(t2 ) (p? - 32)]mpdp> it

The change of order of integration is justified due to the decay assumption on
F' and since the inner integral converges and is clearly bounded by a power of
t. To evaluate it, we use the substitution (t? — s?)v = t? + s2 — 2p?, so that

(P~ )"~ ) = (12 = 22 (1 =0?)

41



and therefore

[ = - pay - T [ a-ma

s _ Tm+1T(3)

_ 12 2)2m+l
4m+1r(m+%)( )

Thus

L(m+ 1T (3)

o0
—_— F(t) (2 = s?)?™ T tadt
P |, PO e =)

r H(p) (p* — s*)" pdp =

Since 2m +1 =n — 2 € Z*, we obtain

~ 2T (m + 3) 1 d\""? 2 _ 2ym
F(S)_F(m+1)r(§) 2m +1)! (?E) J Hp) (" = 7)™ pdp

_ ) (_l i)nl f/ G(p) (0 — %)= pdp (2.34)

7% (n—2)! s ds

By hypothesis, G(p) = 0 for p > R, so we see from the above that F(s) = 0 for
s > R. This proves the support theorem in the case when f is radial.

Let us now prove the main assertion in Theorem 2.4.1. For this, we will need
to make use of the mean value operator in R™. For any r > 0, we let M" denote
the operator on C'(R™) given by

M"f(x) = Qin s flz +rw)dw (x e R™) (2.35)

for all f € C(R™). Thus M" f is the average value of f on the sphere S, (z) with
center x and radius . Now, up to constant multiple, dw is the unique measure
on S"~! invariant under the left action of O(n) (or SO(n)). Hence we can also
write the above as

M f(z) = L( k) ik (2.36)

for any y such that ||ly| = r.

Suppose that f € £(R™) and satisfies the estimate (2.30). Fix zy € R™ and
define the function G on R" by

G(xz) = MW f(a) (2.37)

Then G is radial and satisfies the same estimate since for any m € Z*,

Jae[™ | M1 f ()| < J [f (o + k- )| (Jwo + & - 2 + o)™ d

(n)
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so sup, ||z]|™ |G(z)| < .

Next we observe that RG(€) = 0 whenever d(0,&) > R + |x¢|. In fact, for such
£ we have

RG(E) = Leg L(n)f(xo +k-2)dkde

=f Rf(zo + k- €) di (2.38)
O(n)

But then
d(0,z0 + k- &) = d(0,€) — |xoll > R

and so, by the hypothesis on Rf, the integrand in the right hand side of (2.38)
vanishes. Thus RG(§) = 0.

By the support theorem for radial functions, we conclude that G(x) = 0 whenver
||| > R + |zo|- Thus we have proved that

f f(zo+k-x)dk =0 (2.39)
O(n)

for all z such that [z > R + |zol|. Now any sphere enclosing the closed ball
BRr(0) is of the form S,(z¢), where r > R + [|zo|. Thus (2.39) shows that the

integral of f over any sphere enclosing Br(0) vanishes.

Lemma 2.4.2. Suppose that f € E(R™) satisfies the decay property (2.30). If
f (@) dm(z) = 0
S
for any sphere S enclosing Br(0), then f(x) = 0 for all x outside Br(0).

To prove the lemma, we note that the hypothesis on f implies that
| r@de= [ s@as
B Rn
for any ball B containing Bx(0) in its interior. Thus §, f(z) dz is constant for
all balls containing Bg(0).

Let B = B,(z) be any such ball. A slight perturbation of B leaves the value of
the {, f(z) dz unchanged, and hence

0
0=—-— J flx+y)dy
B, (0)

N ascj

= J 0if(x +y)dy
B,(0)

= J 0;f(y) dy
B, (z)
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for each j, where 0;f denotes the partial derivative of f with respect to its jth
argument. Let e; denote the jth standard basis vector and let fe; be the vector
field (0,..., f,...,0) with f in the jth place. Then by the divergence theorem
the last integral above equals

f (f 5 - n)(w) dm(y)
Sr(x)

where n is the outward unit normal to the sphere S,.(x) at y. This shows that

J flz+rw)wjdw =0
S'n.fl

But by hypothesis,
J flz+rw)dw =0
Snfl

Thus
J flz+rw)(x; +rwj)dw =0
S'n.fl

and so

J f(y)y;dm(y) =0
S

for all spheres S enclosing Br(0). Now f(y) y, satisfies the estimates (2.30) so
applying our argument inductively we conclude that

L f)ply)dm(y) =0

for any such sphere S, and for any polynomial p(y) on R™. Since the set of
restrictions of polynomials p(y) to S,(x) is dense in L?(S,(x)), this shows that
f =0o0n S and proves our lemma, as well as Theorem 2.4.1.

Note that we can replace the ball Br(0) in Theorem 2.4.1 by any compact
convex set B, since any such set is the intersection of the closed balls containing
it.

Corollary 2.4.3. Suppose that f and g are continuous functions on R™ satis-

fying the estimates (2.30). If Rf(£) = Rg(&) for all £ outside a compact convex
set B, then f = g outside B.

The Support Theorem requires that f satisfy decrease properties such as (2.30),
as there are counterexamples when f decreases less rapidly at infinity. For
example, consider the function on R? given by

flz,y) = (z +iy)™°

when (x,y) is outside the unit disk, with f smooth on all of R?. (Such an f is
possible.) Then f € L'(R?) and by Cauchy’s theorem, Rf(£) = 0 for all lines ¢
outside the unit disk.
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Convolution with an approximate identity in M(n) allows us to formulate a
support theorem for £'(R™).

Corollary 2.4.4. Let T € £'(R") such that RT has support in {{ € =, d(0,§) <
R}. Then T has support in the closed ball Br(0). In particular, R is injective
on &' (R™).

Proof. Let {f} be an approximate identity in M(n). For any € > 0, f,, * RT =
R(fm # T) has support in {¢ € Z,,|d(0,§) < R + €} when m is sufficiently
large. Since f,, * T € D(R™), the support theorem shows that it has support in
Bryc(0). Since f,, * T converges weakly to T, we see that T is supported in
BR.c(0). This proves the corollary, since € is arbitrary. O

If f e C(R™) satisfies (2.30), Corollary 2.4.3 shows us that there is a unique
solution to the following exterior problem: determine f(z) for all  outside a
compact convex set B from its integrals Rf(£) for all £ disjoint from B. While
the Radon inversion formula (2.20) takes into account the integrals R f(€) for all
hyperplanes &, it is often desirable to recover f(z) outside B only from Radon
data outside B. For example, B may contain a beating heart, a pacemaker, or
some metallic object which completely absorbs X rays.

In practice, one recovers f from the exterior data Rf(£) through reconstruction
algorithms using singular value decompositions and other methods, which we
will not discuss in these notes. See, for example, [34] for one such algorithm.

The Support Theorem also shows that a function f can be recovered from
limited angle data. More precisely, a compactly supported function f on R™ can
be recovered from its Radon transforms Rf(w,p), where the normal vectors w
are allowed to vary only inside a spherical cap in S™~!.

Theorem 2.4.5. For any wo € S™ 1 and any number o such that 0 < o < 1,
let Cy(wg) be the spherical cap {w,woy > . Suppose that f € C.(R™) satisfies
Rf(w,p) =0 for all p > 0 and all w € Cy(wp). Then f(x) =0 for all x in the
half space {x,wpy > 0.

Proof. We can assume that wy is the north pole e,,. Let Br(0) be an open ball
containing the support of f. Fix ¢ > 0, and for any s > 0 consider the ball
B = Bsi(—se,). We can choose s so large that for all w ¢ C,(e,) and all
p > 0, any hyperplane &(w, p) disjoint from B is also disjoint from Bgr(0). (See
Figure 2.2 below.)

We now claim that Rf(£) = 0 for all hyperplanes ¢ disjoint from B. Since B
contains Bc(0), any such hyperplane is of the form ¢ = £(w,p) with w € S?1
and p > e. If w e Cy(ey), our claim is true by hypothesis. If w ¢ Cy(ey), the
our claim is also true by the observation in the previous paragraph.
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§(w,p)

Br(0
Bs+e(_5€n) ( )

Figure 2.2: w ¢ Cy(en) and &(w, p) disjoint from B

Thus, by the Support Theorem, we conclude that f(x) = 0 for all 2 outside B.
Lettin s — o, it follows that f(z) = 0 for all  in the half plane {(z,e,) > e.
Then letting € — 0, we obtain our desired conclusion. O

As a corollary, we see that if f € C.(R™) such that Rf(w,p) = 0 for all p and
all w € Cy(wp), then f(x) =0 for all .

In limited angle tomography, algorithms for recovering a function f are analyzed
given tomographic data Rf(w,p), where w is limited to some open subset of
Sn=1. See [3], [13], or [33] for methods and analysis behind aspects of this
important problem.

2.5 Moment Conditions and Range Characteri-
zation

The Projection-Slice Theorem shows that the classical Radon transform R is
injective on L'(R™), and hence on S(R™). Our objective in this section is to
characterize the range RS(R™).

Solet f € S(R™). For any w € S" !, the function @ — {x,w) is constant on each
hyperplane orthogonal to w. This fact allows us to obtain necessary conditions
on the range of R.
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For any k € Z*, we have

L0

) o0
Rf(w,p)p*dp = J p* U f(x) dm(%)) dp
—0 —w {z,w)=p
= | Jf@){z,w)de
RTL
The right hand side above is a homogeneous polynomial Py (w) of degree k in w.

A function ¢ € S(R™) is said to satisfy the Helgason moment conditions if, for
every k € Z*, there exists a homogeneous polynomial function P;, of degree k
on R™ such that .,
| cwnpt i = (2.40)
-0
Let Sp(E,) denote the vector space of all ¢ € S(E,,) satisfying the Helgason
moment conditions. We have shown that RS(R™) c Sg(E,).

Theorem 2.5.1. RS(R") = Su(E,).

Proof. Suppose that ¢ € Sg(Z,). We want to produce an f € S(R™) such that
Rf = . If such an f does exist, the projection-slice theorem tells us what it
must be.

Explicitly, let us take the one-dimensional Fourier transform of ¢ along its
second argument. Define the function ® € S(=,,) by

o0
O(w, s) = f p(w,p)e """ dp (241)
o
Since ®(w,s) = P(—w,—s), there exists a function F on R™\{0} such that
F(sw) = ®(w, s) for all w and all s # 0. Since s and n — 1 of the coordinates
of w act as local coordinates on small open sets on R™\{0}, we see that F €

C”(R™\{0}).

Because of the moment conditions (2.40) for & = 0, ®(w,0) is homogeneous of
degree 0, and hence constant, in w. Thus we can put F(0) = ®(w,0), and the
relation F(sw) = ®(w, s) is true for all s and w.

It is easy to show that F'is continuous at 0. In fact, suppose that thereisane > 0
and a sequence sjw; in R™ converging to 0 but with |F(s;w;) — F(0)] > €. By
taking a subsequence of the w;, we can assume that w; — wg for some wy € sn—l
Then since s; — 0, it follows that F(sjw;) = ®(wj,s;) = ®(wo,0) = F(0), a
contradiction.

We would now like to prove that F' € S(R™). Once we establish this, the rest of
the proof is an easy consequence of the projection-slice theorem. In fact, let f

be the inverse Fourier transform of F":
1

= AEACK)
16) = o | Py a
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Then

F(sw) = f(sw)

= r Rf(w,p)e "*dp

—0

Comparing with (2.41), we see that Rf = ¢, as desired.

Now we already know that F' € C*(R™\{0}) n C(R™). Let us now show that F'
is smooth at 0. This is the most technical part of the proof.

For this, it will suffice to prove that all partial derivatives of F', of all orders,
are bounded on the punctured ball B;(0)\{0}. We will do so by expressing each
mth order partial derivative

omF
—_— 2.42
0.Ti1 s 0.Tim ( )
in polar coordinates. Let € be a fixed small positive number. We will prove that
(2.42) is bounded on the conical sector consisting of all points © = sw where
0 < s <1 and w, > €. As the punctured ball is the union of finitely many such
sectors, this will be enough to prove the smoothness of F' at the origin.

On our given sector, we can use wq,...,wWn—1,S as local coordinates. Then by
the chain rule,

6 6 nl 5ij - wiwj 6
67]' = Wwj % + Z (75 ) £ (243)

i=1

forl<j<n-—1,and

o ) 2 a0 Nw @
E_(l w? w2 ) (é’s Z - M) (2.44)

From this, it is straightforward to prove, by induction on m, that in these
coordinates, the partial derivative (2.42) is of the form

ZAJ7k(w1,...,wn_1) é"J"LkF

s _ : (2.45)
T s Owi® -+ w7 dsk

In the above, Ay is a C” function of (w1, ...,w,—1), and the sum ranges over
all multiindices J = (j1,...,Jn—1) and all nonnegative integers k such that
|J| + k < m. From (2.43) and (2.44), and because of the fact that (1 —w? —

co—w? )2 > € it is not hard to see that the Ay are bounded in the sector.
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Now by the moment conditions we have

* S (—ips)*
F(sw) =J# o(w,p) <Z ( lf! ) +em(—ip8)> dp

k=1

" (—i)k Py (sw *©
- % S L [ ) em(—ips)
DI

-0

where e,, (—ips) = 3/_, (—ips)*/k!. Since the sum on the right hand side above
is a polynomial of degree < m — 1 in z = sw, its mth order derivatives vanish.
Thus we need only apply (2.45) to the integral on the right hand side above.
But

e aa—i J el en=insdo - | " plw) (i) (M) i

(=ips)™—*
Hence
1 ol I+k b .
sm—k aw? o &Uff__fé’sk J‘_% o(w, p) em(—ips) dp

= F LY <7em_k(_ips)> dp

— Owlt - AW (—ips)m—Fk
Now the fraction e, k(it)/(it)™ * is a bounded C* function of ¢ and since
0 € S(S"! x R), we have the estimate
ol

J1 Jn—1
Owi' -+ 0w,

CJ,m

<
1+ |p[?

o(w,p) (—ip)™

where Cj,, is a positive constant independent of the w;. This shows that
the derivatives (2.42) are bounded on the sector, and completes the proof that
F e &ERM).

Finally we prove that F' € S(R™). For this, it is enough to verify the rapid
decrease condition (2.11) on the sector = sw with s > 0 and w,, > e. On
this sector, we can express the mth order partial derivative (2.42) in polar
coordinates by (2.45). The functions A;j(w) are bounded in this sector, and
for any nonnegative N we have

olI+k

Owi' + -+ wlr dsk

” M F oN :
= (=) J — o —— ((—ip) w,p)e P°d
=" P TR ((=ip)* @) (w,p) p

Since ¢ € S(E,), the absolute value of the right hand integral has a bound
independent of s. This proves that F' € S(R™).

This completes the proof of Theorem 2.5.1. (|
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We can now combine Theorem 2.5.1 above and the support Theorem 2.4.1 to
give a precise characterization of the range of D(R™) under the classical Radon
transform. Let Dy (E,) = D(E,) N Sp(En).

Theorem 2.5.2. RD(R") = Dy (E,).

Let us recall from (2.7) that the Radon transform of a distribution 7" € £'(R™)
is defined by
RT(9) = 0, T(R*) (2.46)

for all ¢ € D(E,). Thus RT € £'(Z,). We identify distributions on =,, with
even distributions on S®~! x R; i.e., distributions ¥ on S™ ! x R such that

U(p) = ¥(p*), where p*(w,p) = p(—w, —p).

Convolution with an approximate identity in the motion group M(n) allows
us to characterize the range of the Radon transform on compactly supported
distributions.

Theorem 2.5.3. Let £,(E,) be the set of all U € E'(E,) which satisfy the
following moment conditions: for each k € Z*, there is a homogeneous degree k
polynomial P, on R™ such that

J h(w) p* 4 (w, p) = f h(w) P (w) dow (2.47)
Snr—1xR Sn—1

for all h € E(S™™1). Then RE'(R™) = E(Z,).

Proof. Suppose that T e &'(R"). Let k € Z* and h € £(S™~1). Then by (2.46),
we have

j h(w)pk d(RT)(w,p) = j j h(w) {w, z)k dw dT ()
Sn=1xR Rn Jgn—1

_ Ln_l h(w) ( JR R dT(:c)) dw

by the Fubini theorem for distributions. The inner expression
{w, z)* dT ()
RTI,
is clearly a homogeneous degree k£ polynomial in the coordinates of w. This
shows that RT € £y (E,).

For the converse, we first observe that if ¥ is a compactly supported C™ function
on Z,, then the moment conditions (2.40) and (2.47) are equivalent. Now
suppose U € £4,(Z,,). Then for any g € M(n), the translate ¥7(9) also belongs
to i (Ey). In fact, if 0 € O(n), then

J h(w) p* dO™) (w, p) = J h(w) Pe(o™t - w) dw
Sn—1IxR Sn—t
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and if y € R™, then

f h(w) p* AT (w, p) = f h(w) (p + (o, 5))* ¥ (w, p)
Sn=lxR Sn=1xR

- ) (Z (’f) P(w) (. y>kl> du

=0

Let {h,,} be an approximate identity in M(n). Then, by the above, the h,, * ¥
are C” functions satisfying the Helgason moment conditions (2.40). Thus by
Theorem 2.5.2 there exist functions f,, € D(R™) such that h,, * U = Rf,,. If
¥ has support in {£ € E,,|d(0,&) < R}, then for all sufficiently large m, f,, has
support in the closed ball Br1(0) in R”.

By the Radon inversion formula, f,,, = ¢, R*(A(hy, # ¥)), where A is the oper-
ator (2.19). Now A can be extended to a weakly continuous map from £'(Z,) to
D'(E,). By the remark after Proposition 1.2.3, R* is weakly continuous from
D'(Z,) to D'(R™). From this we see that the sequence f,, converges weakly in
D'(R™) to the distribution T' = ¢,, R*(AW)). Clearly T has support in Br41(0).
Since R is weakly continuous from &'(R™) to £'(E,), and since f,, — T and
hy # W — U, we conclude that RT = W, as desired. ([l

It will now be useful to formulate the moment conditions (2.40) in terms of

spherical harmonics. For any [ € Z*, let us assume that {Ylm}iglz)l is an or-
thonormal basis, in L?(S™1), for the area measure dw, of the vector space of
degree [ spherical harmonics. We can assume that the Y}, are real-valued.

Any function ¢ € £(S™! x R) has a spherical harmonic expansion

d(l)
P(@,p) = D1 " Gim(p) Yim (@) (2.48)

1=Z0m=1
where

n®) = [ o) Vi) (2.49)

The series (2.48) converges in the topology of £(S"~! x R). Hence it converges
absolutely and uniformly on compact sets and can be differentiated term by
term in p and w (see [41]).

Exercise 2.5.4. Suppose that g € D(R) such that

0
f g(p)p*dp =0
—0
for all k < I. Show that g(p) = d'f(p)/dp' for some f € D(R). Does this result
hold for g € S(R)?
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Proposition 2.5.5. Suppose that ¢ € D(Z,,) has spherical harmonic expansion
(2.48). Then ¢ € R(D(R™)) if and only if there exist even functions fi, € D(R)

such that l
d
gim = d_plflm

for all I, m.

Proof. If ¢ € R(D(R™)), then satisfies the moment conditions (2.40). Since
p(w,p) = p(—w, —p), (2.49) gives

gim(=p) = (1) gim(p) (2.50)

Now for each k € Z*, we have

d(l) »
Ln-l e, p)ptdp =3 3 Yim(w) f 9um(p) " dp

1=0m=1 -

Since the left hand side is a homogeneous polynomial of degree k in w, it follows
that

r Gim(p) P dp =0 (2.51)

—0

for all [ > k.

From Exercise 2.5.4, we see that each g, is the lth derivative of a function
fim € D(R), and in view of (2.50), we can take just its even part and assume
that fi,, is an even function on R.

Conversely, suppose that ¢ € D(E,,) has spherical harmonic expansion (2.48),
where gin(p) = d' fim/dp! for even functions f;,,, € D(R). Then (2.51) holds,
and so

o0 d(l)
f pw,p)pdp="D, D) tim Yim(w) (2.52)

-0 0<I<k m=1
k—I even

where

o0
Alm = f glm(p) pk dp

Ly
= J; fim(p) p* " dp

The right hand side of (2.52) is a homogeneous degree k polynomial in w, since
if £ —1[ is even, then

k=1

Yim (W) = Yim(w) (W% +o +W721) B

Thus ¢ satisfies the moment conditions (2.40), so by Theorem 2.5.2, ¢ € R(D(R™)).
O
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The characterization above of the range RD(R™) by spherical harmonics in turn
allows us to determine the null space N of the dual transform on £(Z,,). Suppose
now that ¢ € £(Z,,) such that R*y = 0. By the duality (2.6) between the Radon
and dual transforms, we have

F(a) R* (@) dw = - Riw.p)olw.p)dpdo (253)
Rn™ n JSn—lxR

for all f € D(R™). Since R*y = 0, the right hand side above equals 0 for all f.

Let us expand % according to (2.48):

d(l)
w,p) = Y, Y} him(p) Yim (@) (2.54)

lez+ m=1

Since the right hand side of (2.53) vanishes for all ©» = Rf (for f € D(R™)), it
follows that

re I
| o) Sy =0 (2:55)

for all even F € D(R), and hence for all F' € D(R). This implies that d’hy,, /dp’ =

0, and s0 hym (p) is a polynomial in p of degree < 1. Since hym(—p) = (—1)! him (D),
we see that hy,, consists of terms with the same parity as (.

Conversely, if ¢ € £(Z,) has expansion (2.54) where each hyy, is a polynomial
of degree < [, then the relation (2.55) will hold for all F' € D(R), and this will
in turn imply that the right hand side of (2.53) vanishes. Thus R*y = 0.

We summarize our result about N as follows.

Proposition 2.5.6. Let ¢ € £(Z,) have the spherical harmonic expansion
(2.54). Then ¢ € N if and only if him(p) is a polynomial of degree <.

Finally, we can use the description of the null space N above to show that the
range RE'(R™) of the Radon transform on compactly supported distributions on
R™ is a closed subset of £'(Z,,). This range was characterized earlier in Theorem
2.5.3.

Proposition 2.5.7. Let ¥ € £'(Z,). Then ¥ € RE'(R™) if and only if ¥ () =0
for all e N

Proof. By Theorem 2.5.3, RE'(R™) = £ (E,,). Suppose that ¥ € £, (E,). Let
1 € N and consider the expansion (2.54) of v in spherical harmonics, where
each hyp,(p) is a polynomial in p of degree < [. This expansion converges in
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E(Ey), so by (2.47),

V) = [ Vi) ) ¥, )

d(l)

2 Vo) P e

leZ+ m=1

where Py, (w) is a polynomial in w of degree < [. Since P, is a sum of spherical
harmonics of degree < [, we see that the right hand side above equals 0.

Conversely, suppose that ¥ € £'(Z,,) such that () = 0 for all ¥ € N. Fix
keZ*, and let h € £(S"1). We expand h in spherical harmonics

d(1)
h(w)= D1 D" aim Yim(w)

ezt m=1

Then from the hypothesis we see that

I
i ]
VN
195} 2
3
L
=
=
=
3
S
QU
33
N——
“
L
X
=
=
3
E
=
QL
sy
T
=

where

A=Y %U' Vi) 8 d(.0) ) Vi)
Sn—1xR " , "

i<k m=1
k—1l even

For k — I even, each Y,,,(n) can be thought of as a homogeneous polynomial
of degree k in 1. Thus Px(n) is a homogeneous polynomial in 7. Since h is
arbitrary, this shows that ¥ € £}, (E,). O

Proposition 2.5.7 can also be proved using approximate identities in M(n).

Theorem 2.5.8. (Hertle [21]) R*E(E,,) = ER™).

Proof. This is an immediate consequence of Theorem 1.2.5, since R is injective
on &'(R™) and RE'(R™) is a closed subspace of £'(E,,). O
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Additional notes on the dual transform. It turns out that while the dual trans-
form is not injective on £(E,,), it is in fact injective on S(=,), and can be

inverted by the formula
cn = R(AR*p) (2.56)

where ¢, is given by (2.17). See [39] or the interesting paper be Madych and
Solmon [28] for this result.
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Chapter 3

The d-plane Transform on
Rn

3.1 The Space of d-planes and the Incidence Re-
lation

In this chapter we study the transform which integrates functions on R™ over
d-planes. The classical Radon transform is obviously a special case of this,
corresponding to the case d = n — 1. In the case d = 1, the transform is often
of special interest and is called the X-ray transform.

The affine Grassmannian G(d,n) is the set of unoriented d-planes in R™. Thus,
in particular, G(n — 1,n) = Z,,. The motion group M(n) acts transitively on
G(d, n); if we let g denote the d-dimensional subspace Rej+---+R eg4, then the
isotropy subgroup Hy of M(n) at og is O(0g) X 09, where O(oyp) is the subgroup
of O(n) fixing oy and the second factor oy in the semidirect product represents
the translations in R™ by points in og. If we identify oy with R?, then the
isotropy subgroup becomes Hy = [O(d) x O(n — d)] x R? = M(d) x O(n — d).

Thus G(d,n) = M(n)/(M(d) x O(n —d)), and so its dimension is n(n + 1)/2 —
d(d+1)2—(n—d)(n—d—1)/2 =(d+1)(n—d). In particular, dimR" =n <
dim G(d,n) unlessd =0ord =n —1.

For each £ € G(d,n), let w(§) be the parallel d-plane through the origin. The
parallel translation £ +— 7(§) is then a mapping from G(d,n) onto the Grass-
mann manifold Gg,, of d-dimensional subspaces of R™. If we let o = 7(), then
the orthogonal complement o intersects ¢ at exactly one point z. We put

§= (o), (3.1)
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and note that since 77 () can be naturally identified with the vector space o+,

the space G(d, n) is a vector bundle of rank n — d over Gg .

;{x}zgﬁal

Figure 3.1: £ = (0, x)

Consider the double fibration

R™ = M(n)/O(n) G(d,n) = M(n)/H,

where L = O(n) n Hqg = O(d) x O(n—d). Then the set of all d-planes £ incident
to the origin 0 is the orbit O(n) - 0, the set of all d-planes through the origin.
Thus £ € G(d, n) is incident to 0 if and only if 0 lies in £. By left translation, we
see that £ € G(d,n) is incident to z € R™ if and only if z lies in £&. Thus we can
identify E with ¢ itself, while ¥ is the set of all d-planes & containing x. This
set is an orbit of the subgroup O(x) on M(n) fixing z, and is diffeomorphic to
Ga,n-

The Lebesgue measure on 6y = o9 < R™ is invariant under the isotropy subgroup
Hg, so we will take this to be the measure dm,, in (1.6). If £ € G(d,n), then
by left translating by an appropriate element of M(n), we see that dmg will be
the Lebesgue measure on €.

Thus the Radon transform corresponding to the above incidence relation be-
tween R™ and G(d,n) just integrates a function f on R™ over all d-planes:

RY(€) = L £(z) dme (=) (3.2)
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We call the map f — Rf the Radon d-plane transform. If £ = (o, z), we can
write the left hand side above as Rf(o, ).

From Figure 3.1 we see that

Rf(0,x) = j F(x + ) dmo (y) (3.3)

for all 0 € Gy, and all x € o1, If f € L'(R"), then Fubini’s theorem implies

that for each 0 € Gy, the d-plane transform Rf(c,z) exists for almost all

x€ot.

There is a projection-slice theorem for the d-plane transform, which is given as
follows. For any y € R", choose any o € Gg4,,, such that y € ot. Then

fy) = | flw)e™ @ dw
R

= J [z +u) e Y dm(u) da
ol Jo
= J Rf(o,x)e " @V dy (3.4)
ol
where dm(u) = dm,(u) is Lebesgue measure on o, and the dx in the last integral

refers to Lebesgue measure on o+t.

It follows immediately from (3.4) that the d-plane transform f — Rf is injective
on L*(R™).

A similar computation shows that if f € S(R™), then Rf satisfies the forward
moment conditions: for every k € Z™, there is a homogeneous polynomial P, of
degree k on R™ such that if y € R™, then

Py) = || Ri(o.0) Gt de (35)

for all o € G4, such that y € o+. (See Section 4.1 below.)

While it is possible to recover a function f € S(R™) from its d-plane transform
Rf through (3.4), we can obtain a more direct inversion method when d is even.
For this, we will need to make use of the polar coordinate form of the Laplace
operator on R".

If we write any point « # 0 € R™ as ¢ = rw, with 7 > 0 and w € S"~1, then

0? n-1239 1

L= ﬁ + T or + 7’_2 LSn—l (36)

where Lgn—1 is the Laplace-Beltrami operator on the Riemannian manifold
Sm=1. (See Section 5.2 below or [17], Chapter 2.)
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In particular, if f is a radial C? function on R", with f(rw) = F(r), then

n—1

(Lf)(rw) = F"(r) + F'(r) (3.7)

Recall now the mean value operator M" on R™ defined in (2.35), which takes
the average of functions over spheres of radius r:

M"f(x) = J;)( )f(z+k-(rel))dk

1
Q_n . flx+rw)dw

We recall, for instance, that f € C2(R™) is harmonic if and only if M"f = f.

In the first equation above, we can replace re; by any y € R™ such that |ly| = r,
so we can write the left hand side as M%) f(z).

Proposition 3.1.1. Given a function f € C*(R™), let F(x,y) = MO f(z).
Then

Ly F(x,y) = Ly F(z,y) (38)
and hence ) 2 W10 )
LT (@) = (5 4 "5 1) M A@) (3.9

The relation (3.9) is known as the Darbouz equation.

Proof. Note that since L is M(n)-invariant,

L, F(z,y) = L, fo( Gk
=J Ly fx+k-y)dk
O(n)
=J Li(e+k-y)dk (3.10)
O(n)
=f Lyf(x+k-y)dk
O(n)
=Lyf fla+k-y)dk
O(n)

This proves (3.8). Equation (3.9) then follows from (3.7). O

Note that the expression (3.10) shows that L(M" f)(x) = M"(Lf)(z).

The following theorem gives an inversion formula for the d-plane transform when
d is even.
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Suppose that d is even. If f € S(R™), then

Theorem 3.1.2.
can f(x) = (La)? (R*Rf)(x) (3.11)
where ( )
s T(2
Can = (—4m)2 N (3.12)

Proof. For x € R™, let us first calculate R*Rf(x):

R*Rf(z) = J;) Rf(zx +k-o9)dk

(n)
=J J flx+k-y)dm(y)dk
O(n) Joo

(since R commutes with the left action of M(n))
=f f flx+k-y)dkdy
oo JO(n)

= [ 3109 1) dn(y)
(3.13)

100
=Qq f M f(x)ri=tdr
0
Put F(r) = M" f(z). If we apply the Laplace operator to both sides above and

use the Darboux equation (3.9), we obtain
100

—1
L, (R*Rf)(z) = Qq J (F”(r) + 2 F'(r)) rd=ldr
0 T
If d = 2, then an integration by parts shows that the right hand side above
equals (2 —n)Qq F(0) = (2 —n)Qq f(x). If d > 4, integrating by parts twice
o0

yields
—(n—d)(d—2)Qq j F(r)yri=3dr

0
Repeating this procedure gives us
(n=2)][(d—2)(d—4) - - 2] Qaf (),

Li (R*Rf)(x) = (~1)? [(n—d)(n—(d~2)) -+
O

which is precisely the formula (3.11).
When n is odd, then n — 1 is even, and the inversion formula (2.22) for the

classical Radon transform is a special case of (3.11).
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3.2 Fractional Powers of the Laplacian and Riesz
Potentials

In this section we define fractional powers of the negative Laplacian. Our pri-
mary purpose is to obtain the inversion formula for the Radon d-plane transform
on R™ when d is odd. The key to defining such fractional powers is the identity

(=L H)~(©) = €™ F(©) (€ eR™) (3.14)

valid for all f € S(R™) and all p € Z*. Note that if £ # 0, the map £ — |£]?? =
e?P €l is holomorphic on C. Thus the idea is to extend the equation (3.14) to
an arbitrary complex parameter p by defining an appropriate integral operator
on f when p is complex.

For a € C, consider the function t¢ on R given by

t* ift>0
o = 3.15
+ {0 ift <0 (3.15)

Then t¢ is locally integrable if and only if Re o > —1. The resulting distribution
clearly belongs to S'(R), and depends holomorphically on « in the sense that
for any h € S(R), the map

a—t9(h)

is holomorphic on the half plane {o € C|Rea > —1}. (This is most easily seen
using Morera’s theorem on the right hand side as a function of «.) We will call
t$ a weakly holomorphic distribution-valued function of a.

Next we show that the map a — t can be extended to a weakly meromorphic
distribution-valued function on the whole complex plane, with poles at a =
—1,—2,... For this, we note that if h € S(R), then

1/ m g (k=1) 1 m oy (k—1)
t5(h) =L (;l%f)(?tk*) tadt+f ( Z:: h 1( ) £ dt

k:l

m (k=1) (0 1
Z—OE—i)-k)_l_J (h(t

N
|
D3
>
> =
I L
| =
=l o
i
-
N——
~
Q
oW
~

+ r h(t)t™ dt (3.16)



For small ¢, the right hand side is clearly bounded in absolute value by Cj, t™
for some constant C}, (depending on h). Thus the integrand in the first integral
in (3.16) is dominated in absolute value by Cj, t™R°® for small ¢. This integral
therefore converges absolutely for Rea > —m — 1, and we may define % (h)
by the right hand side of (3.16) for « in this half plane, provided that a #
—1,...,—m.

Since m is arbitrary, we obtain a meromorphic function a +— t$(h) on C with
simple poles at « = —1, —2,.... The right hand side of (3.16) also shows that for
fixed «, the map h — t% (h) is continuous on S(R) and is therefore a tempered
distribution on R.

From (3.16) we see that the residue of o +— t at the simple pole & = —k is the
point distribution
6(]9*1)
(—1)k-1 h (3.17)

where §y is the Dirac delta function at 0.

Next, for a complex parameter «, let us consider the function |z|* on R™\{0}.
This function is locally integrable if Rea > —n and therefore gives rise to a
tempered distribution on R™. If f € S(R™), we have

n
e

J t f(tw) " dw dt
Snfl

2| *(f) = j 2 £ () de
0

o0
:an t* L MEF(0) dt
0

= Q, t7T (M £(0)) (3.18)
In accordance with (3.16), the right hand side above can be extended to a
meromorphic function of «, with simple poles at « = —n,—n — 2, —n — 4, .. ..
The apparent simple poles at « = —n — 1,—n — 3,... do not exist since the
residue at &« +n — 1 = —Fk for k even is given by
1 d(kfl)
———M"'£(0) (3.19)

k— 1) @D o

which vanishes since ¢t — M* f(0) is an even C* function of ¢. Now it is not hard
to see that linear map f — F(t) = M?f(0) is continuous from S(R") to S.(R),
the subspace of even functions in S(R). Thus (3.18) shows that a +— |z is a
weakly meromorphic function on C, with values in S’(R™).

From (3.19) we see that the residue of o — ||z[|* at the simple pole a = —n is
Q, 4o, where §p now denotes the Dirac delta function at 0 € R™.

63



Proposition 3.2.1. The Fourier transform of the tempered distribution |z|*

is given by

nto 5 T (n+a
2

L5 e 3.20
Fa (3.20)

(l=[*)™ =

foraeC, a¢ —n — 27T,

Note that the simple poles of €] ™™~ on the right hand side above are cancelled
by those of I’ (—%)

Proof. By the well known fact that the Fourier transform of the Gaussian e~ llel?
n _lgl?

is ™2 e~ "2, we can start with the relation

2 n on ~ 2112
(271')” f(f) e*tHfH d§ =2 2 (x) 67% da,
Rn Rn

valid for all f € S(R™). Let us multiply both sides above by +*5* 1 and integrate
with respect to ¢ on (0,00). Then by Fubini’s theorem, we obtain

o0 0 2
2" 3 f(g)f L f(x)J e~ 3 dt de
Rn 0 R™ 0

The inner integral on the left hand side above equals

n+a h—a
r(52) el

whereas the inner integral on the right equals

o0
=z | e tuFldu=2"T(=2) |z
2
0

‘We obtain
et (a0
I'(-%)

The above calculations are valid for —n < Rea < 0. Since f is arbitrary, we
have established the relation (3.20) for such a. By analytic continuation, (3.20)
then follows in general. O

[ s g = [ fe et as

For v € C,, = C\{n + 2Z™"}, the Riesz potential I7 is the operator defined by
I"f = Hp(y) f* |z (3.21)

for f € S(R™), where H, () is the constant

(3.22)



Note that the simple poles of |[z]|Y~" are cancelled out by those of I' ().
By Proposition 3.2.1 and the definition (3.21), we obtain
(L7 1)~ (&) = g™ £ (&) (§eR™) (3.23)
for all f e S(R"™) and v € C,. In particular,
I f =, (3.24)

a fact which can also be verified directly from the remark above about the residue
of |z|* at @« = —n. The Riesz potentials also commute with the Laplacian, and
in fact

(L) If=D((-L)f)=1""7f (f € S(R™))
for v and v — 2 in C,, since the Fourier transform of all three functions above
equals [|€]*77 f(€).

If p e —(1/2)C,,, we now define the complex power (—L)? of the negative Lapla-
cian by

(=L =17% (3.25)
Then by Proposition 3.2.1 we see that
(=LY 1)~ (&) = [ f () (3.26)

for all f € S(R™). This generalizes the same relation when p is a nonnegative
integer.

Proposition 3.2.2. Suppose that Rea > 0, Re3 > 0 and Re(a+3) <n. Then
I 17(f) = I°°9(f)
for all f € S(R™).

Proof. Note that because Re f > 0, the integral

| s@=n 1y (3.21)

converges absolutely for all f € S(R™).

We now observe that, while I” f is not necessarily in S(R™), it does satisfy the
estimate

17 f ()] < C (14 Jz])tedm (3.28)

for some constant C. This is because we can break up the integral (3.27) into
two parts

f f@—y) ly|*" dy = f f@ =) [y]° " dy
R lyll<3 |

+ j fla—y) |ylP Ty (3.29)
lyll=% =]
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The second integral is bounded above in absolute value by

B
2

Now for any M > 0, there is a constant Cs such that |f(2)] < Car(1+ |2]) =M.
Moreover, if [ly| < 3|z, then |z —y| = i|lz|. Thus the first integral in (3.29)
is bounded above in absolute value by

RO (3.30)

— —n C'M Qn —
Cur (1+ /2~ lyle = dy = = 5 L+ [=/2]) M w/2) e
lyl<z Il €

(3.31)
If we put M = n and combine this with (3.30), we obtain the estimate (3.28).

From this and the hypotheses on o and (3, it follows that the integral
| st = gl ay

converges absolutely for each z € R”. Thus I*I” f(z) is well-defined. Its value
is given by

1P $) = (@) 1,9 [ ool ([ s = as ) a

= Hu() Hn(0) fR f(2) (JR le = y*~" ly — =)~" dy) dz (3.32)
The change of order of integration is justified because the first iterated integral
above converges absolutely, because of the estimates (3.29)—(3.31), in which we
can replace f by |f].

Suppose that x # z. If we put © — 2z = rw, for r > 0 and w € S™7!, then the
inner integral above equals

Ta+ﬂ72n f
n

B—n

a—n

y—z
r

y—z
r

_ pa+Bon J lw — o= [o]*=" dv, (3.33)
RTL

dy

w —

with the last integral above converging due to the assumptions on a and g. Its
value, which we denote by C,, («, 3), is clearly independent of the unit vector w.
Thus, by (3.32) and (3.33), we have

I°IP f(z) = Cp(e, B) % 1978 f(2) (3.34)
It remains to show that
Hy(a + )
Cn(a,B) = T, (0) Ha () (3.35)



For this, consider the class $*(R™) consisting of all f € S(R™) such that
f@yal - zinde =0 (3.36)
RTL

for all multiindices J = (j1,...,Jn) € (ZT)™.

The Fourier image of §* is the class Sp(R™) consisting of all F' € S(R™) all of
whose partial derivatives, of all orders, vanish at the origin. If f € §*, the Taylor
remainder theorem for R™ shows that (I°f)~(¢) = [€]~7 f(£) also belongs to
So, and so we see that I°f € S*. Thus I°I° f € §*, and so by (3.23),

(117 )~ (&) = [&777 J(€) = (1°*P 1)~ ()

Thus I¢1°f = [**8 f for all f € S*. Comparing with (3.34), we obtain (3.35).
This proves Proposition 3.2.2. O

The following result allows us to invert the Radon d-plane transform on R™ for
d odd.

Proposition 3.2.3. Suppose that 0 < k < n. Then I"*I*f = f for all f €
S(R™).

Proof. We can assume that k£ > 0.

From Proposition 3.2.2 we know that I*I¥f = I®**f if o lies in the strip
0 < Rea < n—k. Fix x € R". By the definition (3.21), the map a > % f(x)
is a holomorphic function of a in the half plane Rea < n — k. Thus it suffices
by (3.24) to prove that the map

o 1978 f(z) (3.37)

extends to a holomorphic function on the same half plane. For this, we write
I*f = f1 + fo, where f; € D(R™) and f> is a function which vanishes on the
ball Bi(x). Thus

1" f(2) = I fi(2) + 1° fo()

The first term on the right is holomorphic for o € C,,. As for the second term,
we have

1%y () = Ho(o) f fale = y) Jy]* " dy (3.38)

lyl=1

By (3.28), I* f satisfies the estimate
[I°f(2)] < C L+ 2 (zeR") (3.39)
for some constant C'. Hence fs satisfies a similar estimate.

It follows that (for fixed ) the integral (3.38) converges absolutely and uniformly
for all « in any compact subset of the half plane Re « < n—k. Thus by Morera’s
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theorem, it is a holomorphic function of « on the half plane. Since H,(«) is
likewise holomorphic there, we see that « — I% fy(x) is a holomorphic function
of a on the half plane. O

Remark: According to Ortner ([32], Satz 9), Propositions 3.2.2 and 3.2.3 can be
generalized to the following result. If v, u € C, such that Re(y + u) < n, then

PIvf = ey (3.40)
for all f € S(R™).

We can now provide an inversion formula for the Radon d-plane transform for
all d.

Theorem 3.2.4. Fix an integer d, with 1 < d < n—1. Let R be the Radon
d-plane transform on R™ and let R* be the its dual transform. Then

Canf = (—L)? R*Rf (3.41)
for all f € S(R™), where

71—‘(%) (3.42)

Proof. If f € S, then according to (3.13)

R*Rf(z) = Qq f/v M f(z)r?tdr
0

Q4 ” d—1
=— flz+rw)yr* dwdr
O o Jonn
Q —n
ot [ s ol ay
n JRn»
= — I 4
o o 1) (3.43)
Since (—=L)¥ = I, the result follows from Proposition 3.2.3. O

Note that the inversion formula (3.41) reduces to (3.11) when d is even.

3.3 Shifted Dual Transforms

In this section we develop an alternative method for inverting integral transforms
based on “shifting” the incidence relation between dual homogeneous spaces.
This arises from a curious interplay between two different incidence relations
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between X and =. For a systematic study of shifted transforms, see Rouviere’s
paper [36].

Let us assume, as in Section 1.2 that X = G/K and E = G/H are homogeneous
manifolds in duality, and that K is compact. We further assume, as in Lemma
1.1.1, that the maps x — I and £ — & are injective. Let R and R* be the
associated Radon and dual transforms.

Let o = {K} and & = {H} be the identity cosets in G/K and G/H, respectively.
Let v € G and put {& = - &. Then the isotropy subgroup of G at & is
H, = yH~y!, and we can write £ = G/yH~y~'. Replacing H by vH~y ™! gives
us a new incidence relation between X and =, which we call the shifted incidence
relation. Under the shifted incidence relation, the set of all £ € = incident to
x = g-o is the orbit gK - &, C =, and the set of all z € X incident to £ = g1 - &,
is the orbit g1 H, -0 c X.

Example 3.3.1. Let X = R™ and Z = G(d,n), the manifold of d-planes in
R™. If o0 is the origin 0 and & is the d-plane Re; + - -+ + Reg in R™, then from
Section 3.1, we have K = O(n) and H = M(d) x O(n — d). Now fix r > 0, let
T =Tey, and let v = (e, x), translation by x. Then &, is the d-plane re, + .
Under the shifted incidence relation, the set of all £ incident to 0 € R™ is the
orbit O(n) - (r e, +&o) € G(d, n), the set of all d-planes in R™ at distance r from
0. By M(n)-invariance, we see that the shifted incidence relation is given by

x is incident to ¢ < d(z,§) =r
Going back to our general setup, we call the Radon transform R, and and dual
transform RY corresponding to this shifted incidence relation the shifted Radon

and dual transforms, respectively. If f € D(X), let us calculate the shifted dual
transform of Rf at the origin o in X:

R*Rf(0) = jK Rf(k- &) dk
- jK S0y dm(y) d

- fK F (k7 -y) dk dm(y) (3.44)

The function

f#(x) = L( f(k-z)dk (reX) (3.45)

is K-invariant, and since K is compact, its support, which lies in K - supp f,
is compact, so f# € D(X). Let D#(X) denote the space of all K-invariant
functions in D(X). The map f — f# projects D(X) onto D¥(X). Now the
inner integral in (3.44) equals f# (v -y), and thus

RERf(0) = Rf*(v - &) (3.46)
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The relation (3.46) shows that the inversion problem for R reduces to finding
an inversion formula (or procedure) for the Radon transform of K-invariant
functions. To see why, we first note that if ' € D#(X), then RF € D¥#(Z), the
subspace of all all K-ivariant functions in D(Z) . Thus RF is a function on the
set K\G/H of K-orbits in =. If £ € E, let [{] = K - £ be its K-orbit.

Now suppose that T is an inversion formula or procedure which recovers F (o)
from RF if F is any K-invariant function:

F(o) = Tig(RF(€)) (F e DH(x)) (3.47)
If f € D(X), then according to (3.46),

flo) = f#(0)
= Tyeo] (RF7 (7 - &)
— Ty, ) (R*R(0)) (3.48)

Since both R and R} are invariant under left translations by elements of G, it
follows that

f(z) = T}y (RERf (2)) (3.49)
for all z € X.

A K-invariant inversion formula of the type (3.47) is sometimes relatively easy
to obtain since there may be submanifolds A and B on X and Z transversal to
the K-orbits in each space. If F' is K-invariant on X, then as mentioned earlier
its Radon transform RF is K-invariant on = so F' and RF are determined on
A and B respectively. Thus the transform F' — RF becomes a transform from
functions on A to functions on B.

Let us now apply the method of shifted dual transforms to invert the Radon
d-plane transform on R™ when 1 < d < n—1. The method will actually apply to
rapidly decreasing functions, and not just compactly supported functions. Let
us therefore first consider a radial function F' € S(R™), so that there exists an
even function H € S(R) such that F(x) = H(|z|) for all z € R™. Then for any
d-plane £, RF(§) depends only on d(0,&); if d(0,&) = r, we have

RE(€) = Oy r H((? + )5tV dt
0
=y JL H(u) (u® — 7“2)% udu (3.50)

If we denote the left hand side above by )ik (r), we obtain an integral equation
(for H) which generalizes (2.31). If d is even, H(r) can be recovered by a
differential operator:

G %) o (% d%) a H(r) = (-1)2Qy (%)!H(r)
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for r > 0. Thus, if we put &, = re, + &, this implies that

F(0) = lim (-iif RF(&,) (3.51)

r—0+ 27r dr

For general d, (3.50) is an integral equation of Abel type. Let us first assume
that d > 2. As before, denote the left hand side of (3.50) by H(r), put m = 452
and H;(u) = Qqu H(u). The resulting equation is

A = f ) (4 — )™ (3.52)

The method of (2.34) then gives the solution

Hi(t) = om <_i> o <_% %)mﬂ fﬁ(r) (r? — £2)™  dr

where
T (0t 3)
2m)!IT(m+1)T (3)

Cm

The function H can thus be recovered from H by

H(t)=L< L d>dfﬁ(r)(r2—t2)%rdr

(d—2)' Qg1 \ 2t dt
Thus
F(0) = 21! li L d drRF( ) (r? tZ)% d (3.53)
T @2y o0\ 2t at) ), &) (r rar e

When d = 1, equation (3.50) becomes
~ s 1
H(r) =J H(u) (u? —r*)72 udu

and the technique of (2.34) needs to be slightly modified. For ¢ > 0, we have

Jjﬁ(r)rdr - f H(u)u ( tu 7%;? r2> du
zfﬂ(u)mudu,
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and so the right hand side is essentially the same as that for d = 3. Denote the
left hand side above by G(t). Then by (3.53),

8 1
H(S>:ﬁ(‘2—s£) f G (¢ — 53 tat
8
LA G H(r — %)
2 ( 2s ds) J J Jrdr (£ = %)% tdt

8 3
S (e Hr)(? — )3 rd
32 ( 2s ds) f (% = %)z rdr

This gives

1 d
25 ds

F(0) = = 1im (

37‘[‘2 s—0

) LRF(&T)(T — )2 rdr (3.54)

We can now obtain an inversion formula based on (3.48)—(3.49) for the d-plane
transform for arbitrary f € S(R™). Since K = O(n) here, we see that any K-
orbit in 2 = G(d, n) is just the set of all d-planes at a given distance r from 0.
Thus the set of K-orbits is parametrized by r. Each K-orbit contains a unique
d-plane &, = re, + &. If we put v, = re;, we can denote the shifted dual
transform R’ by R}.

el

The function f# in (3.45) then equals the mean value
[#(w) = M1 f(0)

from (2.35). Denoting the right hand side above by F(x), (3.46) becomes
RIRf(0) = RF(&)

From (3.50) we therefore obtain

R*R(0) =Qdf MU£(0) (12 — )7 u du
If d is even, we can invert R using (3.51):
1 d 1d\7T
' - e *
ca f(0) = 7‘—>O+ (7’ dr) ? (27’ dr) Ry Rf(0)

ca = (=1)% Qq ((d - 2)/2)!

By left translation, we obtain

where

ca f(x) = lim (% di) 0 (2%%) R*Rf(z) (3.55)



For arbitrary d > 2, we can use (3.53) to recover f:

d—

d ,o
waf© =ty (-5 %) [ ®RNO =T rar

where

(d—2)! Q414

Qd = 9d+1

The general formula is then

1 d\* (~* d—2
aaf@) =t (-5 %) | @ERN@ 6 -F rar

for all z € R"™.

Finally, if d = 1, equation (3.54) gives

; AN * 2 2\3
cf(0) =lim [ —— — (RFRf)(0)(r* —s%)2 rdr
50 2s ds s
where o = 372 /8. Thus, for any z € R",
r) =t (~ D) [ R @6 - ) ra
cfle) = lim | —5-— | z)(r’ —s*)2 rdr
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Chapter 4

John’s Equation and the
Range of the d-plane
Transform

If 1 <d <n—1, the d-plane transform R is overdetermined in the sense that it
maps functions from R™ to finctions on G(d,n), a higher dimensional manifold.

It is therefore of interest to determine or classify the set of n-dimensional man-
ifolds P of G(d,n) such that the map f — Rf(£), for £ € P, is injective. Given
such “admissible” manifolds, it is possible to reconstruct f(x) by means of a
general inversion formula, which is local in the case when d is even. Research on
this important topic is still ongoing, and we refer the reader to the important
paper [7], as well as a gentler introduction in [37].

In the present chapter, we will go in a different direction. By considerations of
dimension, one expects the range RS(R™) of the d-plane transform to consist
of functions satisfying certain differential equations. These equations were first
obtain by Fritz John in 1938 [23] for the X-ray transform on R3. For arbitrary
d and n, the equations were given in terms of local coordinates on G(d, n) in [7].
However, the proof in this paper omitted many details. A complete proof was
obtained by Richter [35], who also provided a range characterization using the
infinitesimal left regular representation of M(n) on G(d,n). While Richter made
extensive use of local coordinates, we will prove his result using group-theoretic
methods.
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4.1 Characterization by Moment Conditions

Recall the parametrization of G(d,n) in Section 3.1. Suppose that f € D(R™).
Then it is easy to show that Rf satisfies certain moment conditions. Fix k € Z*
and let z € R". For any o € G4, such that = 1 o, we have

twGata= [ ([ s6raa) @ata

- [ Bfe) @t

(See Figure 3.1 in the preceding chapter.) Since the left hand side is a polynomial
in = independent of o, we see that the image ¢ = Rf is a function in D(G(d, n))
which satisfies the following moment conditions:

For every k € Z™, there is a homogeneous degree k polynomial P, on R™ such
that

fL o(o,x") (', z)k dz’ = Py(x) (4.1)
for all (o,z) € G(d,n).

Let Dy (G(d,n)) denote the vector subspace of D(G(d,n)) consisting of those
functions satisfying the moment conditions above. If R is the Radon d-plane
transform, we have thus shown that RD(R") < Dy(G(d,n)). We now show
that this is an equality.

Theorem 4.1.1.
RD(R") = Du(G(d, n))

Proof. Suppose that ¢ € Dy(G(d,n)). The assertion is that there is an f €
D(R™) such that ¢ = Rf.

As in Chapter 2, let 2, = G(n — 1,n), the manifold of codimension one hy-
perplanes in R™. The idea is to produce a function ¢ € D(Z,) which satisfies
the Helgason moment conditions (2.40). To this end, let (w,p) € S"~! x R and
consider any o € G4, such that w 1 0. Define

valo) = [ . el d (42)
o' wh=p
The integral on the right is taken over the (n — d — 1)-plane in o+ consisting
L

of all 2/ such that (&', w) = p. (It is thus a Radon transform of ¢(o,-) on o-.)
Note that for each o and w, the function p — v, (w, p) belongs to D(R). By the
moment conditions (4.1) and (4.2) it follows that for any k € Z*, we have

o0

Yo (w,p)p* dp = J oo, 2") (o', w)* da’

—o ol

= Pr(w) (4.3)
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The right hand side is independent of the choice of o such that o 1 w. It implies
that if o and o’ are in G4, such that w € o+ n (¢/)*, then

o0
| weton) = oot dp =0
o
for all k € Z*. But if F' € C.(R) satisfies {, F(p)p*dp = 0 for all k € Z", then
F=0. Hence y(w,p) = or(w,p).

We conclude that there is a function ¢ on S™ ! x R such that 9 (w, p) = 1, (w,p)
for any o € G4, such that w € ot. It is clear that 1) is even in (w,p), and so
gives a function on Z,,. Using local cross sections w +— ¢ from S™~! to Ga,n, we
can see that ¢ € £(Z,), and hence ¥ € D(E,,).

Let R. denote the classical Radon transform. By Theorem 2.4.1 and Theorem
2.5.1, the moment conditions (4.3) for ¢ imply that there is a function f € D(R™)
such that R. f = . Hence for each o € G4, we obtain
Y(w,p) = Re f(w,p)
= o Rf(o,2")dz’
a'\wy=p

Comparing the integral above with (4.2), and noting that the the (classical)
Radon transform on o is injective, we conclude that Rf(co,z) = (o,xz). O

4.2 Invariant Differential Operators on G(d,n)
and the Range Characterization

From the group law (2.1), we see that the Euclidean motion group M(n) is
isomorphic to the Lie subgroup of GL(n + 1,R) consisting of the matrices

( ]S 11’ ) (4.4)

where k € O(n) and v € R". When convenient, we will identify M (n) with
this group. Thus the Lie algebra m(n) of M(n) may identified with the Lie
subalgebra of gl(n + 1, R) consisting of the matrices

(v ©)

with T € so(n) and v € R™. Under these identifications, the adjoint representa-
tion is just conjugation: Ad(g) X = gXg~'. From this, we see that the adjoint
representation on m(n) is given by

Ad (k,v) (T,w) = (kTk™, —=kTk v + kw) (4.5)
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and the Lie bracket by
[(T,w), (T"w)] =TT —T'T, Tw — T'w) (4.6)

If E;; is the elementary n x n matrix (d;x6;;), then so(n) has basis consisting of
the elementary skew-symmetric matrices X;; = E;; — E;; (1 <4< j <n), and
m(n) has basis consisting of the X;; and the standard basis ey, ..., e, of R™.

Let A be the left regular representation of M(n) on £(R™), and d\ the corre-
sponding infinitesimal representation of the universal enveloping algebra U(m(n)).
Since

X1 X1

x; (cost)x; — (sint)z;
exp(—tX;) - : = :

xj (sint)x; + (cost)z;

T, T,

we see that dA(X,;) is the differential operator on R™ given by

0 0
Moreover,
0
The motion group M(n) acts on G(d,n) via
k-(o,2) =(k-o,k-x) (k€ O(n)) (4.9)
v (0,2) = (0,2 + Pry.(v)) (veR™) (4.10)

where Pr, 1 denotes the orthogonal projection of R onto o.

It will now be convenient to define the Schwartz space S(G(d,n)). Let v be
the left regular representation of M(n) on £(G(d,n)), with dv the correspond-
ing infinitesimal representation. By definition, S(G(d,n)) is the vector space
consisting of all functions ¢ € £(G(d,n)) such that for all U € U(m(n)) and
NeZ™",

lelon = sup [(dv(U))(E)] (1+d(0,6)" <o (4.11)
£eG(d,n)

The seminorms above give rise to a Fréchet space topology on S(G(d,n)), but
we will not be making use of this topology directly. It is clear that D(G(d,n)) c
S(G(d,n)).
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From (4.11) one can show that Rf € S(G(d,n)) whenever f € S(R™). In fact,
by (4.7)-(4.8), and since R intertwines dA(U) and dv(U),

(V) RS )] (14 [a])? < [ A1+ )] (1 + ) dy
< f O (Lt +yl) MM 1+ )™ dy

For sufficiently large M it is clear that the last expression above is less than
some constant independent of (o, z) € G(d, n).

Since G(d, n) is a vector bundle with a natural inner product on its fibers, we
can take the Fourier transform on these fibers. If ¢ € S(G(d,n)), its partial
Fourier transform is the function Fgp on G(d,n) given by

Fap(o,y) = f p(o,x)e OV dy (4.12)

O'J‘
It is easy to see that Fap € E(G(d,n)).

The following lemma describes how dv(U(m(n))) transforms under the partial
Fourier transform.

Lemma 4.2.1. Let X € so(n) and v e R™. If p € S(G(d,n)), then

(i) (Faldv(X)p))(o, x) = (dv(X)Fap)(o, )
(i) (Fa(dv(v)e))(o,x) = —iv, ) (Fap)(0, z)

Proof. By (4.10), Fa(v(k)p) = v(k)(Fap) for any k € O(n). Differentiating, we
get (i). For (ii), we note that exptv = tv in M(n), so

Fa(v(tv)p)(o,z) = J o(o,2' — Proitv) e &2 dy!
G-J_
_ e*i<PI‘gJ_ (tv),z>~7d<’0(o_7 :C)
= O Fyp(o2)

Differentiating both sides above proves (ii). O

In particular we have the the transformation rules

(dv(Xji)Fap)(o,x) = Fa(dv(X;k)p) (o, x)
Faldv(ej)p)(o,x) = —ix; Fap(o, ) (4.13)

From this one can deduce that Fy¢ € S(G(d,n)) whenever ¢ € S(G(d,n)).

The projection-slice theorem (3.4) can be written

f(x) = Fa(R[)(o,2), ((0,z) € G(d, n)) (4.14)
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valid for all f € S(R™).

Next let us show briefly why the moment conditions (4.1) fail to characterize
the range RS(R™) when d < n — 1. For simplicity, we let n = 3 and d =1 (so
that R is the X-ray transform on R?), although our example easily generalizes.
We show that there exists a function ¢ € S(G(1,3)) satisfying the moment
conditions but which is not in the range RS(R™). For this, let ¢ be a nonzero
function in D(G(1, 3)) such that, for some € > 0, ¢(£) = 0 for all £ such that
d(0,€) < € and such that

1/1((7/’ 61) 7> 1/1(0’”5 61)

where o’ is the y-axis Res and ¢” the z-axis Res. 1) exists since the set of lines
(0,e1) is a compact set bounded away from 0 and D(G(1,3)) separates points.
Since F1S(G(1,3)) = S(G(1,3)), let ¢ be the function in S(G(1,3)) such that
Fap =1

Now for each (o, x) € G(1,3), we have

vlort) = | plow)e Wy

Taking the derivative of both sides with respect to t k times and evaluating at
t =0, it follows that

dk
0= ﬁ’lﬂ(O‘, t(E)

t=0
= fL (o, y) (i {x, )" dy

This shows that ¢ satisfies the moment conditions (4.1) with all Py equal to 0.
Now if ¢ = Rf for some f € S(R?), then the projection-slice theorem implies

~

that f(e1) = ¥(o’,e1) = ¥(c”, e1), a contradiction.

It turns out that the range RS(R™) can be described by an M(n)-invariant
system of second order differential equations. These equations arise from the
kernel of the infinitesimal left regular representation of U(m(n)) on R™. For any
indices 7, 4,0 in {1,...,n}, let

Viji = i Xji + e; X1, + €1 Xi5 € U(m(n)) (4.15)

Note that if any of the indices ¢, j, or [ coincide, then V;;; = 0. It is immediate
from (4.7)—(4.8) that d\(V;j;) = 0 for all 4, j,1. By (1.29) the diagram

SR") — S(G(d,n))

dA(V) dv (V) (4.16)

S®R") — S(G(d,n))
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commutes for all Ve U(m(n)). Thus any function ¢ in the range RS(R™)
satisfies the necessary differential equations

dv(Viji)e =0 (4.17)
for all 4, j,1. It turns out that these equations are sufficient as well.

Let Sp(G(d,n)) denote the subspace of S(G(d,n)) consisting of all functions ¢
such that dv(V;;) ¢ =0 for all 4, 7, 1.

Theorem 4.2.2. If R is the d-plane transform, then
RS(R") = Sp(G(d,n))

To prove Theorem 4.2.2 we first calculate how the operators V;j; transform
under the adjoint action of M(n).

Lemma 4.2.3. Let k = (k,s) € O(n) and v € R™. Suppose 1 < i,j,l <n. Then

kui kuj kul

Ad(k) ‘/ijl = 2 det kri krj ki Vurs (418)
u<s<r ke ksj ke

Ad(v) Vigi = Vig (4.19)

Proof. Identifying M(n) with the group consisting of the matrices (4.4), the
adjoint representation is just conjugation: Ad(g) X = gXg~!. Thus by a routine
computation

Ad(k)e; = D kjiej,  Ad(R) Xji = . kajkp Xor
j=1

s,r=1
Hence
Ad(k) V;jl = 2 kuiksjkrl (eu Xsr +es Xru + er Xus)
= Z kuiksjkrl Vausr
For each fixed u < s < r above, we have Vy,,s = =V, etc., proving (4.18).

For (4.19), write v = X", v, e,. Then Ad(v) X, = Xj; + vje; — v e; and
Ad(v) e; = e; for all 4, 7,1. Therefore
Ad(v) Viji = ei(Xji +vj e —viej) +e; (X +ve; —vie)
+e(Xij +viej —vje;)

ijl-
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We now proceed with the proof of Theorem 4.2.2. Suppose that ¢ € Sp(G(d, n)).
If o is to be the Radon transform of a function f € S(R™)), the projection-slice
theorem (3.4) tells us that the partial Fourier transform Fgp(o, ) must equal

the Fourier transform f(z). Thus our next objective is to prove that there is a
function F' € S(R™) such that

Fap(o,x) = F(x) (4.20)

for all (o,2) € G(d,n). Given this function F, let f € S(R™) be its inverse
Fourier transform, so that f = F. Then according to projection-slice,

F(z) = Fa(Rf)(o,x)
for all (o, ). Since Fy is injective, (4.20) shows that ¢ = Rf.
For simplicity, let us denote F4p by .
Lemma 4.2.4. There exists F' € E(R™\{0}) n C(R™) such that ¢¥(o,z) = F(x)
for all (o,z) € G(d,n).

Proof. Fix x € R™. Define O(x%) to be the subgroup of all k € O(n) such that
k-2 = x. (Note that O(0+) = O(n).) Let so(x*) be its Lie algebra. Then
so(z!) consists of all infinitesimal rotations about 0 fixing x.

Since ¢ satisfies the differential equations (4.17), we see by (4.13) that ¢ satisfies
the first order system

(z; dl/(le) +x; dv(Xy) + o dV(Xij)) Y(o,x) =0 (4.21)
In particular, if we put i =1 and 5,1 > 1, and x = rej, then we obtain
dv(Xj;)y(o,re1) =0 (4.22)

for all » > 0 and o € Gg,, orthogonal to e;. The subgroup O(ei) of O(n)
consists of the matrices

(é 2) (ke O(n—1))
1

Its Lie algebra so(e;) ~ so(n — 1) has basis {X;; |1 < i < j < n}. Moreover,
O(et) acts transitively on the set of all ¢ € G4, orthogonal to ej; this set is
a connected submanifold of G4, diffecomorphic to Ggn—1. Hence (o, re;) is
constant in o in the sense that

P(o,rer) = Yo’ req) (4.23)

for all 0,0’ orthogonal to e;.

82



Next fix € R™, x # 0. Let v = ||z| and choose k € O(n) such that x = k- (rey).

Now the function ¢; = ¢"*™) = p(k~1)y satisfies the system (4.17). In fact
by (1.27),

dv(Viji))er(€) = dv(Vig) o7 (6)
= (dv(Ad(k)Vij2)g) (k- €)

By Lemma 4.2.3, Ad(k)V;;; is a linear combination of operators Vs, so the
right hand side above vanishes.

Now let 1 = Fy(p1). Then ¢ satisfies (4.23). But by (4.10), ¢ = YT,
and thus

T D (0, rer) = ) (0 ren)

for all o, o/ orthogonal to re;. This implies that

Y(o,2) =P(o’, 2) (4.24)
for all o, o’ orthogonal to z.

Next let w € S*~! and for » > 0, put = r7w. We can then take the limit of
both sides of (4.24) as r — 0 to obtain

¥(0,0) = (o', 0) (4.25)
for all w e S, and all 0 and o’ in G4, orthogonal to w.

Let us now prove that the relation (4.25) in fact holds for any o and ¢’ in Gg,y,.
For this, choose any w and w’ in $" ! such that w L o and w’ L ¢/. If w = +u/,
then o and ¢’ are both orthogonal to w so ¥(o,0) = ¥ (o’,0) by (4.25). So let
us assume that w and w’ are linearly independent.

Let W be the linear span of w and w’ in R™. Since d < n — 2, we can fix a
d-dimensional subspace ¢” of W+. Since ¢ and ¢” are orthogonal to w, we have
¥(0,0) = 1¥(0”,0) by (4.25). Likewise, since ¢’ and ¢” are orthogonal to w’, we
obtain ¥ (o’,0) = (c”,0). This shows that ¥(c,0) = ¢(c’,0).

The relations (4.24) and (4.25) now show that there exists a function F' on R"
such that F(z) = ¢(o,x) for all (o,z) € G(d,n). This function F is C* on
R™\{0}. To show this, we first claim that for any 2o # 0 in R", there exists
a smooth map z — o(x) from a neighborhood U of z( into Gg4, such that
x L o(x) forall x e W.

For this, let wy = z0/|xo| and choose a neighborhood g of wy in S*~! for
which there exists a smooth section s : 9 — O(n) with s(w) - €, = w. If we
recall that oy = Re; + - - - + Regy, we see that the map

o s/|z]) - a0
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is well-defined and C* from a neighborhood U of zg to G4, with o(z) L x for
all x € U. Hence the map

z = (o(z),x)

is C* from U to G(d,n). It follows from this that F' € C™(R™\{0}).

To prove that F' is continuous at 0, suppose, to the contrary, that for some
€ > 0 there exists a sequence z; converging to 0 such that |F(z;) — F(0)| > €
for all j. Choose a sequence o; in G4, with o; L x;; since Gg,5, is compact, we
may assume that o; converges to an element og € Gg. Then F(z;) — F(0) =
¥(oj,2;) —¥(00,0) = 0, a contradiction.

This finishes the proof of Lemma 4.2.4. O

The following lemma, which is of independent interest, is the most crucial part
of the proof of Theorem 4.2.2.

Lemma 4.2.5. Assume that d < n — 1. Suppose that F is a function on R™
such that there exists a function ¢ € E(G(d,n)) with F(x) = (o,z) for all
(0,x) € G(d,n). Then F € E(R™).

Remark: The example

2
Y(w,p) =pwi =z <£>
|

shows that Lemm 4.2.5 does not hold when d =n — 1.

Proof. The proof of Lemma 4.2.4 shows that F' € £(R™\{0}) n C(R™). Thus we
just need to prove that F' is C* on a neighborhood of 0.

For this, we intend to show that for each v € R", there exists a function ¥, €
E(G(d,n)) such that the directional derivative

D,F(x) = —dA(v)F(z) = ¥,(0, x) (4.26)

for all (o,2) € G(d,n) with & # 0. Since D,F and ¥, satisfy the hypothesis
of the present lemma, the proof of Lemma 4.2.4 shows that D, F(x) can be
extended continuously to the origin. Thus all first order partial derivatives
O0F/0x; can be extended continuously to the origin. An elementary induction
then proves that all partial derivatives of ' can be extended continuously to
the origin.
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Now by (4.10),

dv(v)y(o,x) = %1/} (0,2 —tPry.(v))

t=0

d
= EF(SC —tPry1(v))

t=0

d
= EF(gc —tv + t Pr,(v)) _

0
= d\(v)F(z) — d\(Pry(v))F(x)

Thus the directional derivative D, F(z) equals

—dA(v)F(z) = —dv(v)Y(o, ) — dA(Prs(v))F ()
= —dv(v)yY(o,z) + (VF(z),Pr,(v)) (4.27)

We need to introduce some additional notation. First, let X be the n x n
skew-symmetric matrix with vector entries X;; € so(n) for 1 <i,j < mn:

0 X12 Xln
—X12 0 Xon
X =
_)(hl '_)(%z 0

Next, let dv(X)i (o, z) denote the n x n matrix (dv(X;;)¥ (o, z)). Suppose that
(0,x) € G(d,n) with z # 0. For any w € o, we claim that

(Av(X)(o,2)) w = (VF(2),wpa (4.28)
To prove this, we first note that by (4.10), dA(X;;)F (z) = dv(X;;)(o, z) for all
i,7. Thus we have the matrix equation dA\(X)F(z) = dv(X)v (o, z), where the
left hand side denotes the n x n matrix (dA(X;;)F(x))1<i,j<n
Therefore the ith entry of the left hand side of (4.28) is
(@K F(@)w), = 3 dA(Xy)F(x) w,
j=1
- OF oF
=N (ng@-n i @) v
j=1
0 0F <
=X; 2 E(x)wj — axz Z TjWj
j=1 j=1
- OF
=T Z %j(fﬂ) Wy,
j=1



since w L x. This is the ith entry on the right hand side of (4.28).
Since we are assuming that x # 0, let us choose any i such that x; # 0. Then
if we apply (4.28) to the last term in (4.27) with w = Pr,(v), we obtain

D,F(z) = —dv(v)y(o,x) xi Z Pr,(v)),; dv(X;;)(o, ) (4.29)

Let W, (o, z) denote the right hand side above. Since the first term on the right
above belongs to £(G(d,n)), Lemma 4.2.5 will be proved if we can show that
the second term above

Ba(012) = 5 3} (Pro(v) dv(Xs)b(o, ) (1.30)

extends to a C” function on G(d,n).

Let uq,...,uq be any orthonormal basis of o, considered as column vectors,
with u; = (us;)f=,. If U is the n x d matrix whose columns are the u;, then
Pr,(v) = UtUv, and using local cross sections from o to U (which belongs to
the Stiefel manifold St(k,n)) it is easy to see that the map o — Pr,(v) is C*
on Gg,,. The sum on the right hand side of (4.30)

Y, (Pro(v); dv(Xij)i(o, )
j=1
is therefore a smooth function on G(d, n).
Moreover, (4.28) shows that if z; and x,, are both nonzero, we have

xi 7 (Pro(v)), dv(Xi)p(o,z) = xi 1 (Pro(v); dv(Xpm;)ib(o,x)  (4.31)

m i1

<.
[

so that

'Ms

<
Il
—

(Pro(v)); dv(Xm;)¥(o, ) = &m Z Pro(v)); dv(Xij)i(o,x)  (4.32)

By continuity, the relation (4.32) above holds for all (¢, z) € G(d,n). From this
we see that

2 =0 = > (Pro(v); dv(X;;)1p(o,z) = 0. (4.33)
j=1
From (3.1), G(d,n) is a finite union of trivial bundles W,, with the local coor-
dinate representation:

Wa * (07 ‘T) = (y(a),aca)

Here « is a choice of n—d indices i1, . .. ,in_qgin {1,...,n}, To = (i, ..., Ti,_,),
and y(o) is a local coordinate system for o € 7(Wy) € Gg,p.-
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To prove that ®, € £(G(d, n)), it suffices to prove that W, |, € E(W,) for each
. Suppose first that ¢ is one of the indices ¢1,...,%,_4. Since z; is a local
coordinate in Wy, it follows from (4.30) and (4.33) that ®,, is a C* function on
We. Suppose, on the other hand, that 4 is not one of the indices i1,...,%,—4-
Then choose any m in {i1,...,in,—q}. According to (4.31) and (4.33), on W,,
®, is given by the smooth function

i Y} (Pro(v); dv(Xomg (o, 2)

Since ., is now a coordinate on Wy, this proves that ®, € £(G(d,n)) and
finishes the proof of Lemma 4.2.5. O

Lemma 4.2.6. Let the function F be as in Lemma 4.2.4. Then F € S(G(d,n)).

The proof of this lemma is somewhat technical and the reader may safely skip
it. We include it for completeness.

Since ¢ € S(G(d,n)) and (o, z) = F(x) for all (o,2) € G(d,n), we see that for
any N € Z*,

sup [z |F(z)] < o0

TER™
Let v € R™. According to (4.26), there exists a function ¥, € £(G(d,n)) such
that directional derivative D, F(z) equals ¥, (o, z) for all (o, z). Our aim is to
show that ¥, € S(G(d,n)). If we can prove this, then we obtain the estimate

sup [z |DyF(z)] < o0
zER™

for all N € Z*. We can then apply the same reasoning, replacing F' by D,F,
and ¥ by W, to arrive at similar estimates for the second order partials of F'.
We can then use induction on successive partials of F' to prove the lemma in
general.

Now by (4.29) and (4.30), ®, = —dv(v)y + ®,. Since dv(v)y € S(G(d,n)), the
lemma will be proved if we can show that ®, € S(G(d, n)).

We now express G(d,n) as a finite union of local trivial bundles. For any d-
multiindex I : 1 € i1 < -+ < ig < nin {1,...,n}, let p; be the orthogonal
projection of R™ onto R? given by ps(z1,...,7,) = (2i,,...,2i,). Then let
Ga.n.1 be the open subset of G4, consisting of those o such that p;(o) = R9.

Let 7 : (0,z) — o be the projection of the vector bundle G(d, n) onto its base
Gan. For the d-multiindex I above, let G(d,n); = 7 Y (Gan.1)-

Let I' be the (n — d)-multiindex complementary to I, with I’ : 1 <} <--- <

i _4 < n, and let py(z) = xp be the corresponding orthogonal projection of
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R™ onto R*~?. Then the map

TI: G(d, TL)] — Gd,n,[ X Rnid
(0.2) > (027 (4.34)

is a local trivializing map of the vector bundle G(d,n).

The open sets Ga,5,1 cover Ga,n. Since G, is compact, there exists an open
cover {Wr} of G, such that Wy © Gg, g for each I. Put 2y = 7Y (Wy). E;
is of course a sub-bundle of the trivial bundle G(d, n);.

For any I, we now define the functions of rapid decrease on Z; as follows. Let
S(Zr1) be the set of all ¥ € £(=;) such that for any N € Z*, for any differential
operator D on G4, and any constant coeflicient differential operator E on
R"~¢ the following condition holds

sup prHN |Ey Dy(T o 7‘;1)(0‘, xp)| < oo (4.35)

(O’,II/)EWI xRn—d

‘We now claim that
S(G(d,n)) ={P e E(G(d,n))| Y|z, € S(Er) for all I} (4.36)

This is an alternative characterization of S(G(d,n)) and is in fact the one used
in [8] and [35]. We will postpone for later the proof of the equivalence (4.36),
which involves a few tedious calculations.

Assuming the equivalence (4.36), we note that the sum on the right hand side
in (4.30)

i(0,2) = 3 (Pro(v); dv(Xij)(o,2) (4.37)

belongs to S(G(d,n)). This is because dv(X;;)y € S(G(d,n)) for all ¢, j and,
for fixed v, the map o + (Pr,(v)); is a smooth, hence bounded, function on
the compact set Gy p.

Now fix a d-multiindex I, choose any i, 1 < i < n, and consider the restriction
®,|z,. By the equivalence (4.36), this restriction belongs to S(=r). Thus, for
any differential operator D on Gg,n, D;®;(0,z) belongs to S(E7). From this
and from the estimate (4.35), we see that the family of functions on R" ¢ given
by {Do(®; 0 77 ") (0, )| 0 € Wy} forms a bounded set in S(R"~%).

Next let ¢ and m be any two indices such that ¢, m € I’. The relation (4.32) can
be written

2 (B 077 )(oy2p) = T (P07 ) (0, 21) (4.38)

for all (o,x7) € W x R"~4. Applying the differential operator D (which acts
on the first argument o) to both sides, we get

2; Dy (@ 077 M) (0, 20) = Ty Do (@ 077 1) (0, 21) (4.39)
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This last relation inplies that
i =0 = Dy(®;07; ) (0,21) =0
on Wr x R»—4,

At this point we invoke a simple version of a result by Langebruch ([27], Theorem
1.6), which we state as follows:

Theorem 4.2.7. Fiz 1 <i < n and let S;(R™) be the closed subspace of S(R™)
consisting of all f € S(R™) which vanish on the hyperplane x; = 0. Let L;
be multiplication by x;. Then L; is a linear homeomorphism from S(R™) onto
Si(R™).

Note that one consequence of Langenbruch’s theorem is the non-obvious result
that if z; f € S(R™), then f e S(R™).

Going back to the proof of Lemma 4.2.6, we know that since D, (®;07; ') (0, y) €
S(Zr), the family of functions

{Do(®i 017 ')(0,7) |0 € Wr}
is a bounded set in S(R"~9).

By (4.33), the family above is in fact a bounded subset of S;(R"¢). Now
according to Theorem 4.2.7, multiplication by 1/x; is a continuous map from
S;(R"%) onto S(R"~%). Hence the collection

{(1/2:) Do (@i 077 1)(0,+) |0 € Wi}

is a bounded subset of S(R"~9). But (1/x;) Dy (®; 0 77 (0, 2) = Do ((1/2:)®; 0
77 1 (0, x1). If we apply the usual seminorms defining S(R?), we conclude that

sup |z | By Do ((1/2;)®; 07;1)(0, xp)| < oo (4.40)
(o,2)eW xR4

Finally we note that

1 _ —
—(®ior (o 2r) = (®ulz,) o 7 (0, 20)

(4.40) therefore shows that the restriction ®,|z, belongs to S(Zr). Hence by
the correspondence (4.36), ®, € S(G(d,n)).

It finally remains to prove the correspondence (4.36). As a first step, we will
show that for any C* function ¥ on Z;, the derivatives dv(U)¥, for U € g, can
be expressed as a finite sum

(dv(U)®) o7, (o, 2r) = D paler) (Ba)s, (Da)o (¥ or; " )(oyzp)  (4.41)
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where p,(z/) is a polynomial, E, is a constant coefficient differential operator
on R*¢ and D,, is a differential operator on Gan,1-

Now we note that there is a constant C such that if (o, x) € Er, then
lz] < Cr er| (4.42)

To prove (4.42), we may, for simplicity, assume that I = {1,...,d} and I’ =
{d+1,...,n}. Let F be any n x d matrix whose columns form an orthonormal

basis of o, and write
Iy
()

where F; is the upper d x d part of F. Since x € o+

, we have

0= 'Fzx

X
= (‘Fr tFp) ( .T]I )

= tF]:L'[+ tF]/:c]/
Now since (o, x) € Zy, the matrix Fy is nonsingular. Hence
tm =1t
.T]=—(( F]) Fp) Xy

The matrix ((*F;)~! *Fp/) depends only on o; since o € Wy, which has compact
closure, its operator norm of ((*F;)~'*Fy/) is bounded, and the estimate (4.42)
follows.

Suppose then that ¥ € £(G(d,n)) such that, for each I, the restriction ¥z,
belongs to S(Z;). Since Wi < Gg,p,1, the equation (4.41) and the estimate
(4.42) shows that ¥ € S(G(d, n)).

Next we show that if ¥ is any C* function on G(d,n);, then the derivatives
ED, (¥ o7, ") (o,z1), for any differential operator D on G(d,n);, can be ex-
pressed as a finite sum in terms of the action of the universal enveloping algebra
as follows:

{ED,(¥or; )} ori(o,y) = Z hg(o,y) dv(Us)¥(o,y) (4.43)
B

Here Ug € U(m(n)) and each hg is a C* function on G(d,n)r, whose restric-
tion restriction to each fiber (o,-) is a polynomial of fixed degree k in y, with
coefficients depending smoothly on o.

Suppose now the ¥ € S(G(d,n)). We apply the conversion equation (4.43) to
the restriction of ¥ on Z;. Now Wy has compact closure in G4 5, 1, and so there
exists a exists a constant R such that |hg(o, y)| < R(1+||y[)¥ for all (o,y) € Z;.
This estimate on h shows that the restriction of ¥ to each Z; belongs to S(Z7).
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Thus we need only verify the conversion equations (4.41) and (4.43). They
can be derived by tedious but straightforward calculations. First, let us derive
(4.41). To do this, we just need to derive it for U € m(n). If we express any
U € U(m(n)) as an algebraic combination of elements of m(n), (4.41) will follow

by iteration.

For simplicity, we again assume that I = {1,...,d} and I’ ={d + 1,...,n}.

Let U = v € R". Note that

e = o, (U ) )

Xy

vr
v =
v

ot _( wvr—Fr'Frvr — Fr'Fpop
v F( F)U_ (’U[/—F]ItF[’U[—F]ItF[/U]I

It follows that

and if we write

the projection of v on o is

(dv(U)¥) o 7‘;1 CATD

d
= a (o Tfl) (o,2p —t (v — (Fp "Fr)vr — (Fp "Frovp))

t=0

(4.44)

Now both Fy tFr and Fy 'Fp depend only on o. It is easy to see that the right

hand side above equals the expression

> () (W o) o,ar),
—d+

s
j=d+1 J

where the a;; are C* functions of . The expression above is of course of the

form (4.41).

Next let U = X € so(n). Then

(dv(U)®) o 777 (0, 217)

dt

Xy

d
= S(Wor ) (exp(—X) - o, 1)

t=0

+ %(\II 07;1)(0,p11(exp(—tX)- ( N
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where p;r denotes the projection & — zp of R® onto R”~?. The first term on
the right is obviously of the form D, (¥ o 77 ')(o, /), where D is a differential
operator acting on the first argument. The second term corresponds to a vector
field acting on x, with coeflicients depending smoothly on ¢ and linearly on
xp. Both terms can thus be seen to be of the form of the right hand side of
(4.41).

To derive (4.43), we can again assume that I = {1,...,d}. It is sufficient
to consider the operators D and FE separately, and in fact, to assume that
these are C” vector fields on Gg4,,; and R™ 4. The reason is that we can
apply induction on the order of the operator E D,, keeping in mind that if
hg(o,y) is a polynomial in y with smooth coefficients depending on o, then so
is dv(U) h(o,y), for any U € U(m(n)).

So let ¥ € £(Z;). Fix a vector v € R"¢ and let E = E, be the corresponding
directional derivative in R"~%. Let us again assume that F is any n x d Stiefel
matrix whose columns form an orthonormal basis of o. Then

{E(Wor ")} ori(o,y)

d
— (o, yp + sv)
ds

s=0
d t _1 ’ ’
~ Ly F7" Fo(yr + sv) )
ds Yy + sv 5=0
d tF Fro
—E\Il(a,y—i-s( v )s:O
d
= —U(o,y + s7:(v)) (4.45)
ds s=0
Now the orthogonal projection P,. from R"~% = {(0,...,0,24+1,...,7,) |7, €

R} onto o is a bijection. If G is a Stiefel n x (n — d) matrix whose columns
form an orthonormal basis of o+, then if w € R" ¢, we have

0 _ t 0 _ G[ tG[I’LU
PO-L<w>—G G(w>_(GptGpw> (4.46)
where we have written
_( G1
= )

where G is the lower (n — d) x (n — d) part of G. By our choice of I, G is
nonsingular on Gg .1, so if we put

o) = Py ( 3 )

we obtain w = (G !G) ! v. We can write the linear operator (G !G)~! on
R"~4 as A(o), with the matrix coefficients depending smoothly on . Thus the
right hand side of (4.45) equals
d
75 2(0y + s Por(Alo)w))| = dv(A(o)w) ¥(o,y),
s s=0
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which is an expression of the form (4.43).

Next we verify (4.43) for E = 1 and D, a vector field on G4, 1. Such a
vector field is a smooth linear combination of the vector fields induced by the
infinitesimal O(n)-action on Ggq,. Thus for fixed X € so(n), it suffices to
calculate

(D,(W o)) omi(oy) = (0 ) exp(sX) - 0,yr)

s=0
for (o,y) € Z;. By (4.44), the right hand side above equals
d —t —1t ’ ’
s I $—0

Put

_( —exp(sX)F)T exp(sX)F)p
A(O’,S)y—( p » p ryr )

and B(o,s)y = exp(—sX) A(o,s)y. Since A(o,s)y € (exp(sX) - o)*, we have
B(o,s)y € 0. Moreover, B(o,0)y = y. Thus (4.47) equals

dislll(exp(sX) -o,exp(sX) - B(o, s)y)

s=0

- d%?/f(exp(sX) -0,exp(sX) - y) + d%\IJ(J,B(U,s)y)

s=0 s=0

The first term on the right above is just —dv(X)¥(o,y), which is certainly of
the form (4.43). By use of (4.46), we can write the second term as

dis\P(o, P, (C(0,s)y)) (4.48)

s=0

where C(c, s)y € R*~?. Now C(0, s)y depends smoothly on o and s, and linearly
on y. Thus its derivative with respect to s at s = 0 is a vector in R"~¢ of the form
2. Cj(o)(y) e, where each Cj(0)(y) is a linear function of y, with coefficients
depending smoothly on . Thus (4.48) equals

= 2G5 (@) w)dv(e;)¥ (0,y).

which is also of the form (4.43).

This finishes the proof of Lemma 4.2.6, and completes the proof of Theorem
4.2.2.

We can also formulate the range theorem for the d-plane transform in terms of
a single fourth order M(n)-invariant differential equation. Consider the element

D= > V (4.49)

1<i<g<i<n
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of U(m(n)). We claim that D is an Ad (M(n))-invariant element of U(m(n)).
From this it will follow that dv(D) is an M(n)-invariant differential operator on
G(d,n).

It is clear from Lemma 4.2.3 that Ad (v)D = D for all v € R™. Thus to prove
the claim, we just need to show that Ad(k)D = D for all k € O(n). Now
let W be the subspace of U(m(n)) spanned by the Vj;; and let W e U(m(n))
the subalgebra generated by W. Let T be the (well-defined) linear map of
V = A3R" onto W given by T(e; A e; A v) = Vijy (1 < i,j,1 < n). Next
let ¥ = A3k : ASR™ — A3R™ be the orthogonal transformation on V = A3R"
induced by k. Then by (4.18),

ToW =Ad(k)oT (4.50)

Extend T to a homomorphism of the tensor algebra @V onto W and extend \
to an algebra homomorphism on ®V. Then (4.50) also holds for T : QV — w.
Letting w;ji = e; Aej Ae € A3R™, we have

2
T( D wijl®wijl> =V
Jj<k<l<m i<j<l

Since ¥ is an orthogonal transformation on V, the sum » w;j; ® wij is ¥-
invariant in ®V. Hence by (4.50), >’ le is Ad(k)-invariant in W.

Since G(d,n) = M(n)/(M(d) x O(n — d)) is the quotient of unimodular groups,
there exists a measure on G(d,n), unique up to constant multiple and invariant
under the action of M(n). We fix the measure p to satisfy

j ©(&) du(€ j f (0, ) do™(x)do, (p e D(G(d,n))) (4.51)

G(d,n) Gan ai

Then by the formal duality (1.11) of R and R*, or by direct computation,
ooy BI@ o (@) = | 1) R*a) (152)

for all f € D(R™), ¢ € E(G(d,n)). If D is a differential operator on G(d,n),
the adjoint operator with respect to p will be denoted D*. Since pu is preserved
under the M(n)-action, we have dv(X)* = —dv(X) for all X € m(n). From this
it follows that dv(Vij)* = dv(Vij).

Let ¢ € S(G(d,n)). If ¢ satisfies dv(Vij)¢ = 0, then of course dv(D)yp = 0.
Conversely, if dv(D)p = 0, then

- ¥ | oy @VE2) © (40) du©

i<j<l G

f (v (Vi) ) ©)F du(c)
(d,n)

i<j<l G
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This implies that dv(Vi;;)¢ = 0. Thus we have proved that
peSp(G(d,n)) < dv(D)p =0

It follows from Theorem 4.2.2 that the range of R consists precisely of the
functions annihilated by the single fourth order operator dv(D):

Theorem 4.2.8.

RS(R"™) = {p € S(G(d,n)) | dv(D)yp = 0}.

Theorem 4.2.8 has a natural generalization to Radon transforms on affine Grass-
mannians. (See [11].)

4.3 The Range of the Dual d-plane Transform

In Theorem 2.5.8 we proved that if R* is the classical dual transform, then
R*E(G(n — 1,n)) = E(R™). Our objective in this section is to generalize this
result to the dual d-plane transform. Thus we wish to prove:

Theorem 4.3.1. Let R* be the dual d-plane transform. Then

R*€(G(d,n)) = E(R™).

The proof of Theorem 4.3.1 is easier when d is even, since R* R is inverted by a
power of the Laplacian. To prove the theorem for all d, we will need to invoke a
few results on Riesz potentials from Ortner’s paper [32], which we will mention
along the course of the proof.

For each 0 € Gy, let L,1 denote the Laplacian on the fiber ol. Define the
operator [] on G(d,n) by

(@)lor = Lot (#l51)
for p € £(G(d,n)), where ¢| . denotes the restriction of ¢ on ot.

Then it is easy to check directly that
R(Lf)(o,x) = O(Rf)(0,x) (4.53)

for all f € S(R™). For instance, if we put U = 37, 5 € U(m(n)), then the
relation above follows from (4.16) and the fact that L = dA(U), OO = dv(U).

We note that is easy to check that U is Ad M(n)-invariant. This implies that O
is an M(n)-invariant differential operator on G(d,n).

95



The paper [10] shows that the algebra D(G(d,n)) of M(n)-invariant differential
operators on G(d,n) has [ = min(d 4+ 1,n — d) algebraically independent gener-
ators, of orders 2, 4, ... The operator [] and the range-characterizing operator
D = YV defined in (4.49) turn out to be the generators of order 2 and 4,
respectively.

Now by Propositions 1.2.3, 1.2.4 and the remark after, we know that the d-plane
transform can be extended to distributions. More precisely, the basic duality of
R and R* gives us continuous map R : &'(R") — £'(G(d,n)) given by

RT(p) = T(R*p) (v € E(G(d,n)))
and R* : D'(G(d,n)) — D'(R™) given by

(R*W)(f) = U (Rf) (f € D(R™))

We now define a “fiber Riesz potential” on G(d,n) as follows. Suppose that
¢ € S(G(d,n)). In accordance with (3.21), the fractional power (—[1)*¢ is
defined by

(-O)*e(o,2) = I (0, 2)

= Hoa-20) [ plon)le =y 000t y)  (450)

interpreted for k¥ = 0 by analytic continuation. Here the constant H,,_4(—2k)
is given by (3.22).

Suppose that O is an open subset of Gg,, which admits a local cross section
o = n(c) of O(n), so that n(c) - o9 = 0. If we identify og- with R"~% then we
obtain a local trivialization of the vector bundle G(d,n) over O:
I:0 xR - 771(0)
(0,2) = (0,1(0) - 2) (4.55)

The Riesz potential (4.54) can thus be written

(~D)* (T (0, ) = Hya(~2K) j

R~

¢ o (o,u) |z —u| "2~ =D gy
d

Thus, under the parametrization I', the operator (—[)* is given by convolution
with a tempered distribution in R”~¢. Hence (—[1)*y € £(G(d,n)) and the map
¢ = (—=[)* is continuous from S(G(d,n)) to E(G(d,n)).

Lemma 4.3.2. Let ¢ € S(G(d,n)) and k = 0. Then there exists a constant C
such that
(=D (0, 2)| < C (1 + |a]) =2k~

for all (o,z) € G(d,n).
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This lemma is a consequence of Lemma 1 of [32], which generalizes the estimate
(3.28).

From the lemma, it follows that the partial Fourier transform F,((—[)*¢) is
therefore given by an absolutely convergent integral for ¢ € S(G(d,n)). By
(3.26) it satisfies

Fa((—=O*¢)(0,u) = [ul]** (Fap)(o,u) (4.56)
Lemma 4.3.3. Let f € S(R™). Then for any k =0,

R((-L)* f) = (-D)*(Rf) (4.57)

Proof. If k € Z™", this follows from (4.53), so we assume k ¢ Z*. By Lemma 1
of [32], (=L)kf(z) = O(|z| ™ %) as |z| — o0, so R((—L)*f) is well-defined.
The relation 4.57 follows, since the partial Fourier transform of both sides is
Jul®* £ (w). O

The lemma above allows us to express the inversion formula (3.41) for the d-
plane transform in the following way. If f € S(R™), then by (3.40) and (3.43),
we have

fla) =14 f)(x)

= L) | (=) Il dy

= o Ha(d) R*R() (@)
d

— L R*R((-L)

Cd,n

- L R(-D)fRN)(@) (4.58)

Cd,n

el
2

(=)

where cq,, is the constant Qq(H,(d) Q)7 .

Since (—[J)* is a radial convolution operator (or an integral power of the Lapla-
cian) on the fibers of G(d, n), it is easy to see from (4.51) that

f (—O)* () (€ diu(€) = f o€ (DO du(e)  (459)
G(d,n)

G(d,n)

for all k = 0 and all ¢, 1) € D(G(d,n)). Thus for any T € £'(G(d,n)), we can
define the distribution (—[1)*7T € D’'(G(d,n)) by the formula ((—[0)*T)(y¢) =
T((—0)*p), for any ¢ € D(G(d,n)). Since the map ¢ — (—[1)¥¢ is continuous
from D(G(d, n)) to £(G(d,n)), the adjoint map T+ (—{J)*T is continuous from
E'(G(d,n)) to D'(G(d,n)).

97



Lemma 4.3.4. For any g € M(n), ¢ € D(G(d,n)), and T € E'(G(d,n)), we
have

v(9) (-D)*0) = (-0)*(v(9) ») (4.60)

and
v(g) (-0)*T) = (-D)*(v(9) T) (4.61)

Proof. If g = k € O(n), then (4.60) is obvious from the definition of (—[])*. If
g € R™, then (4.60) will follow if we take the partial Fourier transform of both
sides and use Lemma 4.2.1 (ii) and (4.56). (4.61) then follows by applying both
sides to a test function ¢ € D(G(d, n)). O

Let D be the element >}, ., VZ?l € U(m(n)). The following lemma is a distri-

bution version of Theorem 4.2.8.

Lemma 4.3.5.

RE'(R™) = {¥ € £(G(d,n)) | dv(D) ¥ = 0}

Proof. We use an approximation argument as follows. Let {¢,}52_; be an
approximate identity in M(n). If T and ¥ are distributions on R™ and G(d, n),
respectively, we define the regularizations A(¢,) T and v(¢n,) ¥ by (1.37). In
particular, if 7' € £'(R™), then A(¢p,)T € D(R™) and A(¢m )T — T weakly in
E'(R™) as m — oo. Since R : &'(R™) — £'(G(d,n)) is continuous (with respect
to either the weak and strong topologies), we obtain

dv(D) (RT) = lim dv(D)R(#(6)T)

=0
where we have used (4.17).

On the other hand, suppose that ¥ € £'(G(d, n)) satisfies dv(D) ¥ = 0. Then
U is the weak limit of v(¢y,) ¥ in £'(G(d,n)), and by the M(n)-invariance of
dv(D), we obtain

dv(D) v(¢m) ¥ = v(pm) dv(D) ¥
= 0.

Thus by Theorem 4.2.8 and the support theorem for the d-plane transform
(which follows easily from the classical support theorem), we conclude that
V(pm) ¥ = Rfp, for some f,, € D(R™). From the inversion formula (4.58) we
have .,

Can fm = B*((=00)7 (v(dm) ¥)) (4.62)
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Now by Lemma 4.3.4, (—[0)% (/(¢m) ¥) = v(¢m)((—=0)2 ), which converges
to (—[)2 ¥ in D'(G(d,n)). Since R* is continuous, f,, converges to the distri-
bution T’ = ¢} R*((—) ¥) in D'(R™).

Now the functions v(¢,,) ¥ are all supported on a common compact subset of
G(d,n), so by the support theorem, the functions f,, are all supported in a
common compact subset of R". Thus T € &'(R") and {f;} converges to T in
the (weak) topology of £&'(R™). Since R is continuous from £'(R™) to £'(G(d, n)),
it follows that

U= lim v(¢n) ¥ = ny_r)n/ Rfm =RT

m—a0

the convergence being in £'(G(d,n)). This completes the proof of the lemma.
|

Lemma 4.3.5 shows that the range RE'(R™) is a closed subset of £'(G(d,n)). It
is not hard to show, using approximate identities in R™ for example, that R is

injective on £'(R™). From this, we see that Theorem 4.3.1 is a consequence of
Theorem 1.2.5.
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Chapter 5

Radon Transforms on
Spheres

5.1 The Duality

In this chapter, we study the generalization of Funk’s transform to the n-
dimensional sphere S™. The problem is to invert, and find the range of, the
Radon transform which integrates a function f € £(S™) over all d-dimensional
great spheres. (We could assume that f is merely continuous, but we get a richer
set of results by assuming smoothness.) Now the integral of an odd function
on S™ over any great sphere is zero. Thus we can recover only the even part of
a function from its great sphere integrals. We will therefore assume from the
outset that our functions are even.

We endow S™ with the Riemannian metric inherited from R?*1. If we consider
the elements of R*t! as column vectors

Zo
Z1
Tn

the matrix multiplication (k,z) +— k - x is a transitive action of the orthogonal
group O(n + 1) on S™. Each k € O(n + 1) acts as an isometry on S™, and the
isotropy subgroup K of O(n + 1) at the north pole eq is the subgroup consisting

of the matrices
1 0
(o &) (k' € O(m))
which we identify with O(n). Thus S = O(n + 1)/0(n).

101



Since we’ll be integrating even functions on S™, we can just as well work with
functions on real projective space RP", but we will stick with S™.

Now any d-dimensional great sphere in S™ is the intersection of S™ with a
unique (d + 1)-dimensional subspace of R™, so the space of such great spheres is
the Grassmannian Gg41,,+1. This is acted upon transitively by O(n + 1), and
the isotropy subgroup @ at the subspace oy = Reg + - -+ + Rey consists of the
matrices

0 k"

which we identify with O(d+ 1) x O(n —d). Thus Gg+1,n+1 = O(n+1)/(0(d +
1) x O(n — d).

( K0 ) (ke O(d+1), ¥ € O(n —d)) (5.1)

Our Radon transform should therefore correspond to the double fibration

On+1)/(KnQ) (5.2)

Sn/ \

Gd+1,n+1
where K n @ = O(d) x O(n — d).

Exercise 5.1.1. Prove that z = gK € S" and 0 = YH € G441,n+1 are incident
if and only if z lies in o.

The orbit 59 = Q - eg is the d-dimensional great sphere og n S™. Since the
elements of H act as isometries on S”, the Riemannian measure on this great
sphere is invariant under the action of H. By left translation by an appropriate
element of O(n), it is clear that if 0 € Ggi41 n+1, then 6 = 0 n S™ and that
the Riemannian measure on ¢ is invariant under the subgroup of O(n) fixing o.
Thus the Radon transform associated with the double fibration (5.2) integrates
any function f € C(S™) over d-dimensional great spheres, with respect to the
Riemannian measure on those spheres.

For convenience we put Ggi1,n+1 = Eq and view the elements of =4 as the
d-dimensional great spheres in S™.

If £ = g-ep € S”, then the orbit £ = gO(n) - o¢ consists of all d-dimensional
great spheres containing x. It is clear that the mapping x — T is two to one,
with (—z)Y = Z.

Let f be an even continuous function on S™. Then its Radon transform is given
by

Rf(0) = f (@) dm(z) (0 € Ey) (5.3)

where dm(x) denotes the Riemannian measure on the great d-sphere o. Thus
when d = 1, dm(x) is just the arc length on the great circle . If ¢ € C(Z,),
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then its dual transform at x € S™ is
Rple) = [ plo)dute) (5.4)
oDx

where du(o) is the normalized measure on the set of all o € Z4 containing x
invariant under the subgroup K, of O(n) fixing z. If z = g - ¢, we have

R*o(z) = L ogh - o0) dk (5.5)

where dk is the normalized Haar measure on O(n).

5.2 The Laplace-Beltrami Operator on 5"

Let us first recall some general facts about the Laplace-Beltrami operator on a
Riemannian manifold M. For details, see, for example Helgason’s book Groups
and Geometric Analysis [17], Chapter II, Section 2.

Let g be the Riemannian metric tensor on M. If f € £(M), then its gradient is
the unique smooth vector field grad f on M such that

glgrad f,Y) =Y f (5.6)
for any smooth vector field on M.

Next, let V be the Riemannian connection corresponding to g. V is the unique
affine connection on M such that (i) the torsion tensor is zero:

VxY - VyX = [X,Y] (5.7)

for all smooth vector fields X and Y in M, and (ii) g is invariant under parallel
translations, which amounts to

Z(g(X,Y)) = g(VzX,Y) +g(X,VzY) (5.8)
for all smooth vector fields X, Y, Z on M.

We arrive at V as follows. Assuming (i) and (ii) for the moment, permute X, Y’
and Z cyclically in (5.8):

X(g(Y,2)) = g(VxY,Z) + g(Y.VxZ) (5.9)
Y(9(Z, X)) = 9(VyZ,X) +9(Z,VyX), (5.10)
subtract (5.10) from the sum of (5.8) and (5.9) and use (5.7) to obtain

29(VzX,Y) = X(g(Y, 2)) =Y (9(Z, X)) + Z(9(X,Y))
—g([X, Y], 2) + 9(IY, Z], X) + ¢([2, X],Y)  (5.11)
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So define VzX by (5.11). By direct computation, it can be checked that V is
an affine connection on M satisfying properties (i) and (ii); (5.11) itself, which
follows from (i) and (ii), guarantees the uniqueness of V.

The relation Vyy X = fVy X for all f e £(M) and all smooth vector fields X
and Y on M shows that, for fixed X, (Vy X)(p) depends only on the tangent
vector Y.

If X is any smooth vector field on M, then its divergence div X is the function
on M given at pe M by

div X (p) = trace(v — V,X) (veT,M) (5.12)

where T),M denotes the tangent space to M at p.

The gradient and the divergence have the following local expressions. Let
(U,x1,...,2,) be a coordinate chart in M. If p € U, then T, M has basis
{0/0x;}7_1. Put gij(p) = gp(0/0xi, 0/0x;). The n x n symmetric matrix (g;;(p))
is positive definite, and we put g(p) = det(g;;(p)), (¢”(p)) = (g:;(p))~*. It is
easy to check that on U

gradf= > g¥ of 9 (5.13)

1<ij<n 0.%'1 é’xj
by noting that the inner product of both sides with 0/dxy, is 0f /0xy.

The Christoffel symbols Ffj are the smooth functions on U defined by

6 n
T s ZF”é’xk (5.14)

From (5.7), we have I'f; = I'%; for all i,j, k, and (5.11) gives

o0 _ das , O _
0z 0x; é’xk 22 Tk gri (5.15)

Let X be a smooth vector field on U, and write X = "' | f; d/0z;. Then by
(5.12) and (5.14),

divX = Z ofi +ijr;1j (5.16)
,J
Proposition 5.2.1. If X =} f; 0/0x;, then
dlvx—iii VES) (5.17)
g & ox '



Proof. The right hand side of (5.17) equals

ofi | ag
Z 0901 Z fz
Thus by (5.17) we just need to prove that

1 07 <&y
g B 1
% or, ; g (5.18)

Now according to Exercise 5.2.2 below,

1 09 Kl agkl
1
= 2 (5.19)

To relate the right hand side above to (5.18), we make use of (5.15). In partic-
ular, we replace the indices j, k,1 in (5.15) by I, j, k, respectively, we obtain

Ogir 0915 69kl
99k _ 95 | GIKL _ o Nprog
oxy 09% 0x; Z Lj 9rk

Adding this to (5.15) gives

091

0xj = ; (F;k grl + FZ grk)

which in turn yields
S gh Ok =+ 3T =2 3T
g —axj = jk j = ij
k,l k l i

Using (5.19), this proves (5.18). O

Exercise 5.2.2. Prove Equation (5.19).

The Laplace-Beltrami operator in M is the second order differential operator
fe&M)w— Lf=div(gradf) (5.20)

On a chart (U, x1,...,%y), (5.13) and (5.17) shows that the Laplacian is given
by
of
L ” 5.21
= \[Z ox; ( ox; ) (5:21)

For example, if M = R", then g;; = d;; and Lf is the usual Laplacian of f.

If o is a diffeomorphism of M, the push-forward of the affine conne(ftion V by
¢ is the affine connection V¥ on M given by V{Y = (Vo1 Y¥ )?, where
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X9 = (¢ 1) X. If ¢ is an isometry, then (5.7), (5.8), and the uniqueness
of V show that V¥ = V. Then (5.12) shows that div(X¥) = (divX)¥. In
addition, (5.6) shows that grad f¥ = (grad f)¥. From this it follows that the
Laplace-Beltrami operator is invariant under any isometry ¢ of M:

L(f%) = (L)?

It turns out that any diffeomorphism of M preserving the Laplacian is in fact
an isometry; see [19], Chapter II.

Fix p € M. From general theory, we know that the Exponential map is a
diffeomorphism of a neighborhood V' of 0 in T),M onto a neighborhood U of
pin M. We can assume that V is a ball |v| < R, with R sufficiently small,
so that U = {q € M |d(p,q) < R}. Fix any orthonormal basis v1,...,v, of
Tp,M and consider the isometry 7 : e; — v; of R™ onto T,M. Then the map
Y 1 (r,w) — Exp(n(rw)) is a diffeomorphism of (0, R) x S"~1 onto U\{p}. If
q € U\{p}, we call y"1(q) = (r,w) the geodesic polar “coordinates” of q.

It is a well-known fact that if R is small and if v is any unit vector in T}, M, then
the geodesic t — Exp(tv), for 0 < ¢ < R, intersects the sphere S,.(p), for 0 < r <
R, at aright angle. Hence if we choose local coordinates 64, .. .,0,_1 on S™, then
the Riemannian metric tensor with respect to the coordinates (7,61, ...,60,-1)
on U is of the form

dr® + > gij(r, 01, ..., 0, 1) db; O,

.3

Let us now consider the case when M = S". If p € S™, then the geodesics
through p are the great circles passing through p, and if 0 < r < 7, the sphere
Sy(p) = {w e S™|d(p,w) = r} is the (n — 1)-dimensional sphere of constant lati-
tude {p,w) = cosr. The Riemannian metric tensor in geodesic polar coordinates
at p is thus of the form

g =dr?+sin®r Y hi(01,..., 0, 1)d0; db;
]

Thus, if f € £(S™ 1) is constant on the spheres S,.(p), then by (5.21),

0? 0
Lf= (W+(n—1) cotrﬁ) f (5.22)

The differential operator on the right hand side above, which we denote by
A(L), is called the radial part of L:

2

W+(n—1) cotr% O0<r<m) (5.23)

In the next section we will see that it figures prominently in the inversion of the
Radon transform on S™.

A(L) =
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Now since the elements of O(n + 1) act as isometries (specifically rotations and
reflections) on R”, and since O(n + 1) preserves S™, the elements of O(n + 1)
are also isometries on the submanifold S™. It turns out that any isometry o of
S™ is given by w +— k- w for some k € O(n + 1). We shall skip the proof of this,
which is easy, but we won’t need it later. We shall also skip the proof of the
following result, which may be found in [17], Chapter II.

Proposition 5.2.3. Let D be a differential operator on S™, invariant under
all elements 0 € O(n + 1). Then D is a polynomial in the Laplace-Beltrami
operator:

D=an L™ +am 1 L™ '+ +a1L+ag

where the a; are complex constants.
On S™, the Laplacian is a differential operator coming from the infinitesimal
left action of an invariant element in the universal enveloping algebra of so(n).

For this we temporarily generalize a bit and consider a semisimple (and not
necessarily compact) Lie group G with Lie algebra g. Then by definition, the
Killing form on g, given by

B(X,Y) = tr (adX o adY) (X,Y eg)

is nondegenerate. Fix a basis Xi,..., X, of g, put b;; = B(X;, X;), and let
(b) = (b;;)~*. The Casimir operator of g is the element

Q=> 07X, X;
.
of U(g).
Exercise 5.2.4. Show that (2 is independent of the choice of basis of g.

The Adjoint representation of G on g extends to a representation of G on the
universal algebra U(g), given on monomials by

Ad(g)(Y1---Yy) = (Ad(g)V1) - -- (Ad(9)Y>)
forge Gand Y1,...,Y,. €g.

Let
U(g)® = {DeU(g|Ad(g)D = D for all g € G}

For G semisimple, the algebra U(g)“ is well known. (See [16], Chapter II.) For
us, we will just need the fact that Q € U(g)®. This will, of course, follow from
Exercise 5.2.4, but we can also prove this directly as follows. Put

Ad(9) Xj = ey X
i=1
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Then since B(X,Y) = B(Ad(g)X, Ad(g9)Y), we have

by = Z Cri bri ¢l
il

If C = (ci;) and B = (b;;), this means that ‘C BC' = B. Thus B~! = CB~'C,
and so

Ad(g)Q = Zbij chiclj XXy

Gkl
= >0 b er) Xu X,
Wl i
= > XX,
k.l
=0

Suppose that G acts smoothly on a manifold M on the left via (g, m) — g -m.
As in Section 1.3, let A denote the left regular representation of G on £(M):

and let d\ be the corresponding infinitesimal left regular representation of U(g),
which on any monomial Y7 ---Y;. € U(g) is given by
ar
dA(Yy -+ Yy) f(m) = =———f(exp(—t,Y;) - - -exp(—t1Y1) - m)

atl et 0tr (tj=0)

If 7(g) is the left translation m — g -m by g € G, it follows that
dAANU)T9 = d\(Ad(g) U)

for all g € G and U € U(g). Thus if U € U(g)®, d\(U) is a differential operator
on M invariant under the left action of G.

It is a well-known fact that the Killing form on g = so(n + 1) is B(X,Y) =
2(n + 1) tr(XY"). Hence the basis X;; of so(n + 1) is an orthogonal basis with
respect to B, and so

;= > X} (5.24)

0<i<j<n

is a multiple of the Casimir operator €2. Thus, if A is the left regular representa-
tion of O(n + 1) on S™ = O(n + 1)/O(n), then dA(21) is an O(n + 1)-invariant
second order differential operator on S™. We claim that dA(£21) coincides with
the Laplace-Beltrami operator L on S™. We will prove this directly, although
it also follows from Proposition 5.2.3 and the fact that both L and dA(;)
annihilate constant functions.
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For this we first consider the local coordinates x = (zo,...,x,) € S™ —
(1,...,2,) on the open hemisphere zy > 0. Since

Zo

x;cost —x;sint
exp(—tX;;) -z =

x;sint + x; cost

Ln

we see that
0 0

— oy —
aiCj ]axi

n 3 0 . ,
(1—2].:135?) o ifi=0<j<n

in the given local coordinates. If f € £(S™), this implies that

2
j=1 é’acj

T if0<i<j<n

A\ (Xi;) =

dA (1) f(eg) = (0,...,0) + lower order terms

On the other hand, the vectors 8/, form an orthonormal basis of the tangent
space T.,S™. Thus at eq, (g;;) is the identity n x n matrix, and by (5.21), we
see that

n 59
Lf(ep) = ; %(0, ...,0) + lower order terms
Thus dA(21)f(eo) and Lf(eg) agree up to lower order derivatives of f at eg.

Since dA(1) and L annihilate constants, the difference (dA(21) — L) f(eo) must
be a directional derivative of f at eg; i.e., a tangent vector applied to f. But
since dA(Q1) and L are left-O(n + 1)-invariant, dA\(€;) — L is an O(n + 1)-
invariant vector field on S™. Such a vector field is, in particular, invariant under

all rotations preserving each point in S™. The only such vector field is 0. This
shows that L = dA\(Qy).

Let 7 = 0. The mean value operator M" on functions on S™ is defined as follows.
Choose any point y € S™ such that d(eg,y) = r. Then the set of all points at
distance r from the point & = g - eg is the orbit gO(n) - y. If f € C(S™), the
function M7 f is defined by

M f(z) = L flgk - ) dk (5.25)

()

where the right hand integral is taken with respect to the normalized Haar
measure on O(n).

The following is the analogue of the Darboux equation (3.9) on the n-sphere.
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Proposition 5.2.5. If f € £(S™), then
Ly (MY f(2)) = Ly (M0 f (2)) (5.26)

and
2

LM"f)(z) = (M"Lf)(x) = (% +(n—1) cotr 6_67"> M" f(x) (5.27)

Proof. Let x = ¢g-eg. Then since L = dA(Q1),
Lo (MU0 £) () = dA(@) (MU0 f)(g - o)

_ L( ) gk ) di (5.28)
- f (A1) )T (y) dk
O(n)
- f (A1) S77) (y) dk
O(n)
=J L(f7@0™) () dk
O(n)

=L, J fr((gk)*l)(y) dk
O(n)

(Mo f (),

-,
proving (5.26). Again, since L = dA();), we note that (5.28) can also be written
as

f Lf(gh-y)dk = (MTLf)(x),
O(n)

proving the first equation in (5.27). The second equation in (5.27) follows from
applying (5.22) to the right hand side of (5.26), since y — M® oY) f(z) is
O(n)-invariant. O

Let A(L) denote the differential operator
0? 0
52 +(n-1) cotrg.
This is the “radial part” of the Laplace-Beltrami operator on S™ acting on any

great circle through the north pole, acting as a transversal manifold to the action
by O(n).

5.3 Radon Inversion

Let us now invert the Radon transform R in (5.3), which integrates even func-
tions f € £(S™) over d-dimensional great spheres. We shall see that when d
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is even, f can be recovered by applying a polynomial in the Laplace-Beltrami
operator L to R*Rf.

Theorem 5.3.1. Assume that d is even. Let P, 4(t) be the polynomial Py, 4(t) =

(t—1-(n—=2))(t—3-(n—4))---(t—(d—1)-(n—d)) Then for any even function
fe&(S™), we have

end f(x) = Ppa(L) R*Rf(x) (xesS™) (5.29)
where

Cna = (-1)22(2- 4+ (d=2))((n—2)(n—4) -+ (n — d))Q

Proof. Since R, R*, and L are O(n + 1)-invariant, it suffices to derive the in-
version formula above for & = ep. For this, let us first calculate R*Rf(eq).
Now

R*Rf(eq) = f Ri(k - o0) dk

J fkydm()dk:

LOJ f(k-y)dkdm(y)

= [ weon feq) dmy)
a0
—de M" f(eo) sin®trdr
J F(r) sin® 1 rdr, (5.30)

where we have put F(r) = Q4 M" f(eg). Now according to Proposition 5.2.5,
L(R*Rf)(eo) = R*R(L[)(eo)
=Qq f MT"Lf(eo) sin®trdr
0

T s A2
= f (; 5 +(n—1) cotr a—i) F(r) sin®rdr (5.31)

0
Repeated use of (5.31) thus shows that for any polynomial P(t),

P(L)(R*Rf)(eo) = L P(A(L)) F(r) sin® ™ rdr
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Now by integration by parts,

LR*Rf(eo) = L (P + (= 1) cotr F'(r)) sinrdr

=(n—d) J F'(r) sin® 27 cosrdr (5.32)
0

If d = 2, the right hand side above equals

(n —2) [(F(r) cosT)|g + Lﬂ F(r) sinrdr]
and thus
(L = (n = 2))R*Rf(eo) = —(n = 2)(F(0) + F(m))
= —2(n —2)Qq f(eo)

which is (5.29). If d > 2, (5.32) equals
—(n — — " r) sin? 3 rdr n — — ) r) sin®rdr
(n=ad=2 | Fe) dr+(n=add=1) | P d
so that
(L—(n—d)(d—1))R*Rf)(e0) = —(n —d)(d — 2) J: F(r) sin®3rdr (5.33)

By (5.30), the right hand side is a multiple of R§Rof(eo), where Ry is the
Radon transform on S™ which integrates over (d —2)-dimensional great spheres.
If d = 4, we obtain

(L =3(n—4)(L —(n—=2))R*Rf(eo) = 4(n — 4)(n — 2) Qq f(eo),
which gives (5.29); if d > 4, we have

(L= (n—d)(d—1))(L —(n—d+2)(d—3)) R*Rf)(eo)
= (0= d)n—d+2)(d-2d—1) [ Fir) s rar
0

Repeating this calculation proves the formula (5.29) in general. O

We can also obtain an inversion formula for R by using the method of shifted
dual transforms. In accordance with the script in (3.46) let us first consider
the problem of recovering f(o0) from its Radon transform R when f is a smooth
function on S™ invariant under O(n). For such a function f, it is clear that
f(z) depends only on the distance d(o,x), or more precisely on its restriction
to any great circle passing through the north pole eg. Hence there exists a
smooth 2m-periodic even function h on R such that f(xz) = h(d(o,z)). Now
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the Radon transform Rf is also O(n)-invariant. Since O(n) is transitive on all
d-dimensional great spheres at a fixed distance from the north pole o, Rf (o)
depends only on d(eg, o) . Hence there exists a continuous function g on [0, /2],
smooth on (0,7/2), such that Rf (o) = g(d(o, o)) for all o € Eg.

Let 0 € 24, let a = d(ep, o), and pick a point z in o closest to eg. The point x
is unique if « < /2. If y € 0, let § = d(x,y) and let v = d(eg,y). Any great
circle from ey to = is orthogonal, at z, to any great circle from x to y. Thus
according to the spherical law of cosines,

cosy = cos« cos 3

Using geodesic polar coordinates on o centered at x, it is easy to see that

TC

g(a)=9df h(v) sin®" ! 3 dp

0

=Qq JW h(arccos(cos a cos 3)) sin? ! g dp (5.34)
0

To simplify things, we define the functions G and H by
G(cosa) = g(a),  H(cosy) = Qah(7)

Note that G is continuous on [0, 1] and smooth on (0, 1), whereas H is continuous
on [—1,1] and smooth on (—1,1). Note also that H is even since f is an even
O(n)-invariant function on S™. The relation (5.34) then becomes

G(cosa) = f H(cos o cos 3) sin®™! dp
0
and putting u = cos a,

G(u) = fl H(ut) (1 -8 dt

=yl H(v) (u®> —v%)2 ' dv (5.35)

—Uu

for 0 < u < 1. We would like to recover H(1) = Qg4 h(0) = Qg4 f(0) from this
integral equation. When d is even, we obtain

H(u) + H(—u) = — io(iifl (' G(u)

Since H is an even function,




f(o) = 1d lim li0<ii)2 (udlg(arccosu»] (5.36)

415 u—o1— | du

For general d, the method of (2.33)—(2.34) gives

s da 1 s
f u? G(u) (52 — UQ)%_l du = M H(v) (82 _ U2)d_1 dv.

0 2 () )
Hence
24-1 (4L g s
H 2 1 Balihedl J L¥e 2 _ 21y
W L'(g) KT (3) s—1>nlﬂ—dso< s S) o (u) (5™ —u”) u
and thus

.d 1d\"' e, 2 2vd—1
f(o) =cq lim il G u® g(arccosu) (s° —u*)*" " du

s—>1— ds sds 0
d (1d\“" (2
=cq lim —o (——) f gla) (s? = cos? )4t cos? a sinada
s—1= as sds arccos s
(5.37)
where gl
I (2L
oy = (72)3
2T(d) 72

Now for each real r, let a,. be the matrix

cosr —sinr 0
—sinr CcoST 0

ar = exp(—r Xo1) = ) eO(n+1)
0 0 1

and let 0, = a,-0¢. The isotropy subgroup of o, in O(n+1) is H, = aTHa;l. Let
consider the “shifted” incidence relation corresponding to the double fbration

O(n +1)/L, (5.38)
Sn / Gd+1,n+1 = O(n)/H’l“

where L, = O(n) n H,.. Under this new incidence relation, the set of all 0 € 24
incident to o is the orbit O(n)-o,. This coincides with the set of all 0 € 24 such
that d(o,0) = r. By O(n + 1)-invariance, we see that

z is incident to 0 < d(z,0) =7
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Let R} denote the shifted dual transform corresponding to this shifted incidence
relation.

Now since O(n) is transitive on the set of all 0 € Z4 at a fixed distance r from
o0, we see that the O(n)-orbits are parametrized by r. Suppose that f € £(S™).
Let d be even. If we put u = cosr, then according to the general shift formula
(3.49) and (5.36)

4_1
1 . d 1 d\? _
f(.’L') = d uli)nll_ l% © (% @) (ud ! R:rccosuRf(w» (539)

B 82

If d is odd, then from (5.37) we obtain

d (1d\"" (2
f(x) =cq 1i1{1 —o <_d_> J RXRf(z) (s*—cos? a)?™t cos? o sin o dov
so1-ds \ sds a
(5.40)

I'CCOS S

5.4 The Range of the Great Sphere Transform

In this section we characterize the range of the transform R in (5.3), which in-
tegrates even functions on S™ over d-dimensional great spheres. We will assume
some knowledge of spherical highest weight modules. There are many books
which introduce this topic, such as [17], [25], [42].

Now when d = n — 1, it is not hard to show that R is a linear bijection from
the subspace &.(S™) of even functions in £(S™) onto itself, or from E(RP™) onto
itself.

In fact each codimension one great sphere £ in S™ corresponds to an antipodal
point pair {w, —w} in S™ at maximum distance from £ (or perpendicular to the
linear span of £). This identifies Gy, p+1 with G141 = RP". The inclusion
incidence relation between points and codimension one great spheres is then
equivalent to an incidence relation between points in S™ and points in RP":

x € S™ is incident to {w, —w} <= v Lw

This incidence relation still corresponds to the double fibration (5.2) with d =
n — 1 and with @ the subgroup consisting of all elements of O(n + 1) preserving
the x,, axis. Under this equivalent incidence relation, the Radon transform is
given by

RF@) = [ f@)dm(a) (feC(s™) (5.41)
where we can think of Rf as an even function on S™. The dual transform is

given by

R¢(r) = 5 p(w) dm(w) (p € C(RP")) (5.42)

wlx
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In the above we can likewise think of ¢ as an even function on S™. The factor
Q.1 is present because the set ¥ is assumed to have measure one. Thinking of
the transform R this way, we see that R* = Q! R.

Now if n is odd, we can write the inversion formula (5.29) as
cn f(x) = (R*R(P(L)[)) (=) (5.43)

where ¢, is a constant depending on n and P(L) is a polynomial in the Laplace-
Beltrami operator L. Here we have used the fact that R*R commutes with
P(L), since L = dA(€1), with Qy given by (5.24). The formula (5.43) together
with (5.42) shows that R maps E.(S™) onto itself; since R is already injective and
continuous, the open mapping theorem shows that it is a linear homeomorphism
from the Fréchet space &.(S™) onto itself.

More generally, for each | € Z*, let H; denote the vector space of degree I
spherical harmonics on S™. We have the orthogonal decomposition

L*(S™) = éHl (5.44)
1=0

The elements of H; are the restrictions of the degree [ harmonic polynomials
(with complex coefficients) in R"™1, and the the left regular action of O(n + 1)
on each H; is irreducible. Moreover, since dim H; # dim H,,, whenever [ # m,
the H; are inequivalent O(n + 1) modules. If f € £.(S™), then f can be written
as a “Fourier” series of even degree harmonics

f= Z for (5.45)
1=0

where fo9; is the component of f in Hg and by [41] the sum above converges
in the topology of £(S™). Now since R maps E.(S™) to £.(S™) and commutes
with the left action of O(n + 1), we see from Schur’s lemma that R is a constant
multiplication operator cg; on each Hsg;. To calculate cop, let @9, be the zonal
spherical harmonic in Hg;. Since g is constant on (n — 1)-spheres of constant
latitude, and since ¢(eg) = 1, (5.41) shows that

car = ca1 pai(eo)
(Rea1)(eo)
= SQQZ(O; T1,.. '7:Cn)7
where (0,21, ...,2,) is any point in S™ [|{zo = 0}. But according to [29] §5.3,
M(n—1I(20+1) »=t
C 2
Tmra—1) Cx @)

SDQl(:L'Oa'Tla s 7*/1;77,) =

where C) () is the Gegenbauer polynomial of degree m and type A. From the
same reference, we have



Using the duplication formula for the Gamma function, we then obtain

I (%) T(20+1)
22T (I+ %) T(+1)
2T (5) T (1+3)
2 20+ 1) (1+2)

Cy] = (—1)l

= (-1

This shows that cg; # 0 and that c;ll is bounded above in absolue value by a
polynomial in [.

If f is given by (5.45), then the function

belongs to £.(S™) and satisfies Rg = f. Thus R is onto. Since R is also one-to-
one, it is a bijection, and by the open mapping theorem, a homeomorphism.

Now if d < n — 1, then dim Gg41p41 = (d+ 1)(n —d) > n, so R is “overde-
termined” in the sense that it maps functions of n variables into functions of
> n variables. It turns out that the range RE(S™) is characterized by a system
of second order differential equations akin to (4.17), or by a single fourth order
O(n + 1)-invariant differential equation. Let us now proceed to show this.

For simplicity, let U = O(n + 1) and u = so(n + 1). As usual, U(u) will denote
the universal enveloping algebra of u. We will also shift our coordinates in what
follows, so that any point z in R™*! or S™ will have coordinates (1, ..., Zp11)-

For 1 <j,k <n+1, let Ej; denote the (n + 1) x (n + 1) elementary matrix
(0rj0sk)1<r,s<n+1- Let X, be the elementary skew-symmetric matrix Ej; — Eg;.
Then u has basis {X;x | 1 < j < k < n+ 1}. For each quadruple of indices
7.k, l,min {1, e ,n+1}, let V}klm = Xijlm_leka+ijXkl € U(u) Note
that Vjrim = 0 if any of the indices j, k, [, m coincide, and that Vjim = —Vjiem,
etc. Now let

E = Z‘/ﬁclm € U(u)a

where the sum ranges over all 1<j<k <l <m <n + 1. We let 3(U(u)) denote
the subalgebra of U(u) consisting of its Ad(U)-invariant elements.

Lemma 5.4.1. The element E satisfies the following properties:

(1). Ee3(U(u))
(2). E € ker(d)\)

Proof. The proof of assertion (1) above is completely analogous to the proof at
the end of Section 4.2 that Y Vi3, is Ad M(n)-invariant.

i<j<l
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To prove assertion (2), it suffices to prove that each Vjum, € ker(d)). Let
i:S™ — R""! be the inclusion map, and for g € C(R"*1), let g = g o i be its
restriction to S™. Let w denote the left regular representation of U = O(n + 1)
on R"*1. Since the map i commutes with the left action of O(n + 1) on R**+!
and S™, we have d\(D)g = dw(D)g for all g € £(R"*!), D € U(u). The map
g — g is onto, so it suffices to prove that Vjii,, € ker(dw). But this is immediate,

i o) = a0 il
since dw(Xji) = ;75 — Tk 52; O

Let L%(S™) = L?(RP") denote the Hilbert space of even L? functions on S™ and
consider its L? Fourier decomposition

L2(S") = ) Hax (5.46)
TEN
as well as the decomposition
L*(Gasrini1) = O, Fu (5.47)
w'eNo

Here A; = 2Z%; the components in (5.46) are of course just the spaces of even
degree spherical harmonics. The index set Ay is the set of equivalence classes
of irreducible unitary @Q-spherical representations of O(n + 1), where @ is the
subgroup O(d + 1) x O(n — d) consisting of the matrices of the form (5.1).
Since Gg+1,n+1 IS a compact symmetric space, each component F- occurs with
multiplicity one.

Since R is injective, R must be a bijection of H, onto RH, for each m € A;.
Thus RH, must be one of the F,/, and so we can take A; to be a subset of A,
and, for simplicity, put RH, = Fx.

Suppose that D € 3(U(u)). If A is the set of all equivalence classes of irreducible
unitary representations of O(n +1) and 7 € A, then according to Schur’s lemma
dm(D) acts as a scalar ¢;(D) € C on the representation space V:

dr(D) = cx(D) - Iy,

As usual, let A and v be the left regular representations of U on functions on
S™ and Gg+1,n+1, respectively. Since E € ker(d)), we must have ¢, (E) = 0 for
all m € Al.

Lemma 5.4.2. ¢/ (E) #0 for all 7" € A3\A;.

Proof. We first parametrize A; and As by means of compatible sequences of
integers as follows. Set v = rank(Ggt+int+1) = min(d + 1,n — d) and m =

rank(so(n + 1)) = [241] . For d + 1 < m, we set

H: — Xj,d+1+j j=1aad+1
! Xaj_1,2; j=d+2,...,m
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and for d + 1 > m we set

H: — Xj,d+1+j j=1aan_d
! Xoj—(n—d)y—1,2j—(n—d) j=n—-d+1,....m

Then Hi, ..., H,, span a maximal toral subalgebra t of g = so(n + 1). For a
real or complex vector space, let V/ denote its dual and V¢ its complexification
if V is real. Let g,b denote the complexifications of u and t, respectively, and
let A = A(g, ) denote the set of roots of the complex semisimple Lie algebra
g = so(n + 1,C) with respect to h. We write the corresponding root space
decomposition as g = h + > - 9°.

Defining e; € §’ by e;(Hy) = —id;x, the root system A(g, h) is the set {+e;+ey |
1<j<k<m}ifn+1=2mandtheset {+ejLe; | 1 <j<k<mlu{te; |
1<75< m} ifn+1 =2m+1. We order the rootsin A sothate; > es > --+ > ¢,
(>0ifn+1=2m+1).

Now let £, q denote the Lie algebras of K and @ respectively. We have the
Cartan decompositions

where p, and m, are the orthogonal complements of £ and m, respectively, with
respect to the Killing form on u. The spaces a, = RH; and b, = Z;zl RH;
are maximal abelian in p, and g, respectively. From [42], the highest weights
corresponding to representations m € A; are given by A = \je1, where \; € 2Z%
(these correspond to the spherical harmonics of degree \1); the highest weights
corresponding to representations 7’ € Ay are given by

~
= Z Aj€; (5.48)
j=1

where A\; € 2Z and Ay =2 X = -+, 2 0 (unless v = m = "TH, in which

case A1 = A2 = -+ = |\p].) Thus, in particular, p is the highest weight of a
representation 7’ € Ao\A; if and only if Ay # 0.

Now let «, 8 denote the positive roots a = e; —ea, 8 = e +es. It can be readily
verified that g = CX,, where

Xo = (X12 + Xiq2,k43) + (X1 k43 + Xopy2)

Similarly, g~®, ¢” and g7 are generated by the vectors X_o,Xp and X_g,
respectively, where

X o= (=X12 = Xpyoke3) +i( X1 r3 + Xopy2)
Xp = (Xi2 = Xpy2,643) +i(=X1k43 + X2 k42), (4)
X p=Xp=X12— Xps2k+3) + (X1 k13 — X2 kt2)-
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It follows that

X1o = E[X - X_o+Xp+X_g]
Xikis = %[X +X o — X+ X g
Xojppe = %[X + X o+ X5 — X_g]
Xk+2,k+3 = E[X —X_o — Xp — X_5]

Since X1, commutes with X4g, it follows that

Vi k2,643 = X12Xky2, k43 — X1 k2 X2 k43 + X1 k43 X2 k42
1
= e = X oo X+ X | [Xa = X0 = X5 = X)) = HiHy
1

16

= —HiHy — £[XaX 0+ X oXa] = S[XsX 5+ X 5X]

1 1 1 1
= —H\H — g [Xo, X_o] = 5[X5. X p] = X _aXa = ;X X5

—[Xa+ X o —Xp+ X p][Xa +X_a+Xs—X_5]

Now let 7’ be a representation in Ay with highest weight p = > =1 Ajej, and
let v be a nonzero highest weight vector in V. By direct calculation from (4),
we have

[Xo, X_o] = 4i(Xipt2 — Xopys) = 4i(Hy — Ha),
[Xﬁ,X,ﬁ] = —4’L'(X17k+2 + X27k+3) = 4i(H1 + HQ).

Thus
' (Viapso s )v = —dn (Hy Ha)v — 3dw'(H1 — H)u+ %dw’(Hl + Ho)o

= [~ () p(Hz) ~ & (u(HY) = p(Ho)) + £ (u(Hy) 4 a(Eo) o

Let { , ) denote the unitary structure of V.. Since dn’(Vjpm) is self-adjoint
with respect to ( , ),

e (BE)Xv,v) = {dr’ (E)v, v)
= > ldr' (Vikim)o|®

Jj<k<l<m

y (5.49), |dn' (V12 k+2k+3)v] = |A2](A1 + 1)|v]|. Hence cp(E)v,v) > 0 if
A2 # 0, 80 ¢/ (E) # 0 whenever 7’ € A\Ay. (In particular, E ¢ ker(dv).) This
completes the proof of the lemma. O
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We are now ready to give a characterization of the range RE(S™).

Theorem 5.4.3. R(E(S™)) = R(E.(S™)) = {p € E(Gar1,n+1) | dv(E)¢ = 0}.

Proof. Since E € ker(d\)\ ker(dv), the condition dv(E)¢ = 0 is clearly necessary
for the range. Conversely, let us assume ¢ € E(Ga41.n+1) satisfies dv(E)¢ = 0.
By [41], the series ¢ = > .\ ¢ converges in the topology of E(Ga+1,n+1)-
Since ¢ (E) = 0 for all m € Ay,

0=dv(E)p = ), cx(BE)opm = D cu(BE)gm

T'EN2 m'eN2\A1

Each of the coefficients ¢,/ (FE) in the last sum above is nonzero by Lemma 2, so
in fact ¢ = 0 for all 7’ € A\A;. Hence ¢ = ZﬂeAl ¢x. Now for each m € Ay,
let fr be the function in H, such that Rf; = ¢,. Supposing 7 has highest
weight Aje1, then by [40] and Lemmas 4.1 and 4.2, the L? norm of R on H, is

Cd\/r(%)rwg—d) (= \), (5.50)

Ne===yiypeay

where ¢4 is a constant depending only on d. In turn, (5.50) is bounded below
by CA~?. Thus from [41] it follows that the sum f =Y __\ fr is convergent in
E:(S™). Since R is continuous in £(S™), we have

Rf= > Rfx= >, s =0
weN TeN
This completes the proof of the theorem.
O

Corollary 5.4.4. R(E(S™)) = R(E.(S™)) = {¢ € E(Gas1,n+1) | AW (Vjrim )9 =
0 for all 4, k,1,m}.

Proof. The proof of Lemma 5.4.1 shows that Vjim, € ker(d)), so it follows that
dv(Virm)Rf = 0. Conversely, if ¢ € E(Gat1,n+1) satisties dv(Vjgim )¢ = 0 for
all 7, k,1,m, then of course dv(FE)¢ = 0 so ¢ = Rf for some f € £(S™). O

Theorem 5.4.3 is generalized in [24] and [11], where a range theorem for the
Radon transform R : £(G,,n) — E(Gy,n) (with respect to the inclusion incidence
relation) is given in terms of Pfaffian-type elements of the universal enveloping
algebra U (so(n)).
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