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The Pattern Formation Problem for Autonomous Mobile Robots

Preface

Given today’s technological advances and decreasing manufacturing cost, mobile robots
are expected to be utilized in the near future in a wide range of applications to assist hu-
mans, in places like factories, hospitals, museums and households. Since roughly speaking a
robot, just like a computer, is hardware (wheels, motors, manipulators, sensors, etc.) con-
trolled by software, a useful robot must have hardware capable of performing the required
physical actions and software capable of analyzing the sensor output and determining a
good course of action for achieving the given goal efficiently in a given (possibly unknown)
environment. Consequently, there are two general aspects of robotics research, one on hard-
ware and one on software. In this note we focus on the latter, and give a brief overview of
a research topic in mobile robot algorithm design that has received considerable attention
in recent years — formation of geometric patterns by autonomous mobile robots under
distributed control.

Motion coordination and self-organization of mobile robots under distributed control
have been a common research area in automatic control, robotics and computer science.
Engineering motivations for investigating self-organization arise in designing algorithms for
distributed systems such as mobile sensor networks and autonomous robot teams, where
mobile agents are deployed to perform search, monitoring, exploration, etc., adaptively in
an unknown environment.

To motivate the pattern formation problem, consider the following scenario. Suppose
that a school teacher wants her 100 children in the playground to form a circle. She could
use “centralized control” by drawing a circle on the ground as a guideline or even giving
each child a specific position to move to. Alternatively, she could use “distributed control”
and obtain a fairly good approximation of a circle by asking each child to move adaptively,
based on the movement of other children and his/her knowledge of the shape of a circle.
We wish to solve such pattern formation problems for autonomous mobile robots, using the
latter distributed approach. To simplify the discussion, we model each robot as a mobile
automaton that repeats a “Look-Compute-Move” cycle in discrete time steps indefinitely.
The robots are anonymous (i.e., they have no ID’s and use the same algorithm), and may
even be oblivious (i.e., they have no memory to remember the past). They do not have a
common x-y coordinate system. Given a group of n such robots and a target geometric
pattern F , does there exist an algorithm (to be executed by the robots individually) that
guarantees that the robots eventually form F in a finite number of steps regardless of their
initial configuration? Work on this topic was initiated by Sugihara and Suzuki in 1990,
followed by a first formal study in 1999 by Suzuki and Yamashita. We give an overview of
some of the major results, including a recent one. For the benefit of the reader who wishes
to study the subject further, a recent survey article by Y. Katayama and M. Yamashita is
included in the appendix.

There are strong links between the area of robot algorithm design and some branches of
mathematics and computer science, in particular computational geometry and distributed
computing. Though it is perhaps true that a robot algorithm must ultimately be tested on a
physical system, we hope that the reader of this article, presumably a mathematics student,
will be convinced that through abstraction and formal reasoning, he/she can potentially
contribute to the utility of robots in the future.

Ichiro Suzuki
January 2009
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Figure 1: Hollow circles are the initial positions of 50 robots. Solid circles are their final
positions after the execution of Tanaka’s algorithm. Small dots represent their intermediate
positions.

1 Introduction

The problem of forming an approximation of a circle having a given radius R by identical
mobile robots was first discussed by Sugihara and Suzuki [15] (see also [16]). Assuming
that the positions of the robots are the only information available, they proposed a simple
heuristic distributed algorithm for circle formation (to be executed independently by all
robots) that, according to simulation results, sometimes brings the robots to a pattern
reminiscent of a Reuleaux’s triangle rather than a circle. Tanaka [18] later proposed a
different algorithm and demonstrated, using simulation, that his algorithm does not have
this shortcoming and generates a better approximation of a circle. In essence, in his
algorithm each robot regards the midpoint p of the positions of its nearest and furthest
neighbors as the center of the circle to be formed, and adjusts its position so that it will
be approximately at distance R from p, and if this condition is already satisfied, then it
moves away from its nearest neighbor. Fig. 1 shows the behavior of 50 robots executing his
algorithm starting from an initial distribution generated randomly. This extremely simple
algorithm demonstrates the potential of the distributed method for pattern formation.

The pattern formation problem for anonymous mobile robots has gained much attention
in recent years [2] [3] [12] [13] [14]. The problem was discussed formally, together with
related convergence and agreement problems, for the first time in [17] for both oblivious
robots and non-oblivious robots, in what we call the semi-synchronous (SSYNCH or Suzuki-
Yamashita) model and the fully-synchronous (FSYNCH) model. Briefly, each robot r,
represented by a point, repeats an instantaneous “Look-Compute-Move” cycle, where in
the Look phase it observes the locations of all robots, in the Compute phase it computes
its next location, and in the Move phase it moves to that location. All observations
and computations of r are done in terms of r’s own local coordinate system. (The local
coordinate systems of two robots may not agree.) All robots always execute the cycles
simultaneously in the FSYNCH model, while in the SSYNCH model, that is not necessarily
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the case. An oblivious robot is one without memory to remember what it has observed in
the past, and hence whose action at any given cycle depends only on what it sees in that
cycle. A non-oblivious robot has memory to store what it observes, and hence its action
can depend not only on what it currently observes, but also on what it has observed in the
past. The robots are anonymous, without identifiers and all executing the same algorithm.

Our goal is to understand the power and limitations of the distributed approach for
pattern formation, using the abstract model outlined above. Let us first formalize the
model and the problem.

2 The formal model

Let R = {r1, r2, . . . , rn} be a set of n ≥ 2 robots situated in a two dimensional space R2

having a global x-y coordinate system Z, where R is the set of real numbers. The robots
have no identifiers, and the subscript “i” of ri is used only for convenience of explanation.
The robots do not have access to Z, and for each 1 ≤ i ≤ n, ri observes and computes
positions only in its local coordinate system Zi. We assume that Z and Zi’s are all right-
hand systems, and specify Zi by a pair (oi, di), where oi and di (oi 6= di), respectively,
denote the coordinates (in Z) of the origin (0, 0) and (1, 0) of Zi. Robot ri knows Zi, but
it does not know (oi, di) as coordinates in Z. For any point p (given in Z), [p]Zi

denotes
the coordinates of p in Zi. Thus for instance, [oi]Zi

= (0, 0) and [di]Zi
= (1, 0).

We assume discrete time 0, 1, 2, . . ., and denote by pi(t) the position of ri at time
t. We assume that the robots’ initial positions p1(0), p1(0), . . . , pn(0) are all distinct.
Each robot is modeled as a point, and we allow two or more robots to occupy the same
position simultaneously, creating a multiplicity. We assume that the robots can detect
multiplicities and their sizes (i.e., the number of robots located there). We denote by
P (t) = {p1(t), p2(t), . . . , pn(t)} the multiset of positions of the robots at time t, and let

[P (t)]Zi
= {[p1(t)]Zi

, [p2(t)]Zi
. . . , [pi−1(t)]Zi

, [pi(t)]
∗

Zi
, [pi+1(t)]Zi

, . . . , [pn(t)]Zi
},

be the sight of ri (i.e., what ri observes in Zi) at t, where the symbol “∗” for [pi(t)]Zi

signifies that ri is aware of its own position. Intuitively, if [P (t)]Zi
= [P (t)]Zj

, then P (t)
looks identical to ri and rj in their respective local coordinate systems, from their respective
positions.

At each time t ≥ 0, every robot is either active or inactive. We use At to denote the
set of active robots at t, and call the sequence A = A0, A1, . . . an activation schedule. We
assume that every robot becomes active infinitely many times. An inactive robot does not
move; i.e., pi(t+1) = pi(t) if ri 6∈ At. An active robot ri ∈ At executes the following Look-
Compute-Move cycle instantaneously as an atomic action: (1) obtain its sight [P (t)]Zi

,
(2) compute its next position using a given function ψ, and (3) move to that position.
Function ψ takes as input the sequence of sights that ri has obtained so far, including the
current sight [P (t)]Zi

. Specifically, if 0 ≤ t1 < t2 < · · · < tm = t are the times when ri has
been active, and if q = ψ([P (t1)]Zi

, [P (t2)]Zi
, . . . , [P (tm)]Zi

), then pi(t + 1) = q′, where q′

is the point in Z such that [q′]Zi
= q. That is, ri moves to point q of Zi, which is q′ in

Z. To impose an upper bound on the “speed” of a robot, we require the distance between
ri’s current location pi(tm) and q′ to be at most the unit distance 1 of Zi. (Equivalently,
q must be within distance 1 of [pi(tm)]Zi

in Zi.) We assume that all active robots reach
their intended destinations without colliding with other robots.

In short, robot ri observes the robot positions as a sight only when it is active, and
its next position depends only on ψ and the sights that it has obtained so far, where
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all observations and computations are done in Zi. Function ψ is said to be oblivious
if ψ([P (t1)]Zi

, [P (t2)]Zi
, . . . , [P (tm)]Zi

) = ψ([P (tm)]Zi
) always holds, i.e., the move of a

robot depends only on its current sight. A robot that uses an oblivious function is said to
be oblivious.

Note that the robots are anonymous in the following sense: (1) function ψ is common
to all robots, (2) the identifier “i” of robot ri is not an argument of ψ, and (3) [P (t)]Zi

contains only the positions of the robots (but not their identities).
The model of the robots described above is called the semi-synchronous (SSYNCH or

Suzuki-Yamashita) model [17]. If every robot appears in At for every t, then it is called
the fully-synchronous (FSYNCH) model.

3 The problem

Let F be a multiset of n points in Z that describes a target formation (or pattern) of
the n robots in R. Note that whether the robots can form F using a given function ψ
depends not only on their current positions but also on their local coordinate systems
(because each ri operates in Zi). We represent robot positions pi of ri, 1 ≤ i ≤ n, together
with their local coordinate systems as a configuration I = {(pi, Zi)|1 ≤ i ≤ n}, and
use notation P (I) = {pi|1 ≤ i ≤ n} to refer to the robot positions in I. In particular,
I(t) = {(pi(t), Zi)|1 ≤ i ≤ n} and P (I(t)) = P (t), respectively, are the configuration and
robot positions at time t. Note that a robot can observe P (t) in its own local coordinate
system, but not I(t) since the robots’ local coordinate systems are “not visible.”

A function ψ is said to solve the formation problem for pattern F starting from initial
configuration I(0), if for any activation schedule A, there exists a time instant t such
that, for all t′ ≥ t, P (t′) is similar to F in the sense that P (t′) matches F after suitable
transformation, rotation and uniform scaling. If such ψ exists, we say that the robots can
form pattern F starting from I(0). In contrast, ψ solves the convergence problem for F
and I(0) if for any activation schedule A, the resulting sequence P (0), P (1), . . . of robot
positions converges to a multiset P that is similar to F . If such ψ exists, we say that the
robots can converge to pattern F starting from I(0).

4 Preliminaries

Whether a given pattern can be formed in the above sense depends critically on the degree
of symmetry that exists in the robots’ initial configuration I(0). It is convenient to define
symmetry using rotation.

Let I = {(pi, Zi)|1 ≤ i ≤ n} be a configuration, where Zi = (oi, di) for each i. Let γo,θ

be a function (rotation) that rotates a given point in R2 counterclockwise around a point
o ∈ R2 by an angle θ. We extend γo,θ by γo,θ((pi, Zi)) = (γo,θ(pi), (γo,θ(oi), γo,θ(di))), and
then extend it again to a rotation of I (around o by θ) by γo,θ(I) = {γo,θ((pi, Zi))|1 ≤
i ≤ n}. Now, let Γo(I) be the set of rotations γo,θ around o, 0 ≤ θ < 2π, such that
γo,θ(I) = I. Then Γo(I) forms a cyclic group under composition, and we denote its order
by σo(I) = |Γo(I)|. Clearly, σo(I) is a divisor of n for any o.

Example 1 Let p1 = (0, 0), p2 = (1, 0), p3 = (1, 1) and p4 = (0, 1), and oi = pi (i =
1, 2, 3, 4). Let o = (1/2, 1/2). See Fig. 2 for illustration.

3



I1

x
1

y

1

o
xy x

y

yx

y

x

I2

x
1

y

1

o
xy

x

y

yxy

x

I3

x
1

y

1

o

x

y

x

y

x

y

x

y

I4

x
1

y

1

o
xy x

y

yx

y

x
x

y

Figure 2: Illustration for Example 1.

First, consider I1 = {(pi, Z
1
i )|i = 1, 2, 3, 4}, where Z1

i = (oi, d
1
i ) and d1

i = (1/2, 1/2)
(i = 1, 2, 3, 4). Rotation γ(k) of angle kπ/2 around o maps I1 to I1 for k = 0, 1, 2, 3. Thus
σo(I1) = 4.

Next, consider I2 = {(pi, Z
2
i )|i = 1, 2, 3, 4}, where Z2

i = (oi, d
2
i ), d

2
1 = (1/2, 1/2),

d2
2 = (3/2,−1/2), d2

3 = (1/2, 1/2) and d2
4 = (−1/2, 3/2). Rotation γ(k) of angle kπ around

o maps I2 to I2 for k = 0, 1. Thus σo(I2) = 2.
Consider I3 = {(pi, Z

3
i )|i = 1, 2, 3, 4}, where Z3

i = (oi, d
3
i ), d

3
1 = (0, 1/2), d3

2 = (1, 1/2),
d3
3 = (1, 3/2) and d3

4 = (0, 3/2). Observe that no rotation γ of an angle in (0, 2π) around
o maps I3 to I3. Thus σo(I3) = 1.

Finally, consider I4, which is identical to I1 except that there is a fifth robot at o. The
reader can verify that regardless of the orientation of the local coordinate system of the
robot at o, no rotation γ of an angle in (0, 2π) around o maps I4 to I4. Thus σo(I4) = 1.
2

Let σ(I) = maxo∈R2 σo(I) and call it the symmetricity of I. Symmetricity σ(I) is
well-defined, since I has a trivial rotation γo,0 of 0 radian about any point o that maps I
to itself. If σ(I) ≥ 2, then the center o that achieves σ(I) = σo(I) is unique and is the
center of C(P (I)), where for any point set S, C(S) denotes the smallest enclosing circle of
S. If σ(I) = 1, then though any point o can be used as the center of rotation, we adopt
the convention to choose as o the center of C(P (I)), unless otherwise stated.

For n ≥ 2 and a divisor m of n, let us define the following classes of patterns.

1. FFS,NO(n,m) = the set of patterns that n non-oblivious robots can form in the
FSYNCH model from any initial configuration with symmetricity m.

2. FSS,NO(n,m) = the set of patterns that n non-oblivious robots can form in the
SSYNCH model from any initial configuration with symmetricity m.
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3. FFS,O(n,m) = the set of patterns that n oblivious robots can form in the FSYNCH
model from any initial configuration with symmetricity m.

4. FSS,O(n,m) = the set of patterns that n oblivious robots can form in the SSYNCH
model from any initial configuration with symmetricity m.

Our goal is to characterize these classes.

5 A necessary condition

We adopt the following convention: Any point is a regular 1-gon with center o for any o,
a pair of points whose middle point is o is a regular 2-gon with center o. Furthermore, m
points located at o may be viewed as forming a regular m-gon with center o.

The next proposition characterizes the structure of I in terms of σ(I).

Proposition 1 [17] Let I = {(pi, Zi)|1 ≤ i ≤ n} be a configuration. If σ(I) = σo(I) = m,
then the n robots in R can be partitioned (not necessarily uniquely) into k = n/m subsets
of size m each, such that:

1. For any robots ri and rj in the same subset, there exists a rotation γo,θ ∈ Γo(I) such
that γo,θ((pi, Zi)) = (pj , Zj).

2. The robots in the same subset form a regular m-gon with center o.

3. The robots in the same subset have identical sights in I.

4. Let Q be any of the subsets of m robots. For any point q ∈ R2, the set of points q̃i
such that [q̃i]Zi

= q, over all robots ri ∈ Q, forms a regular m-gon with center o.

Suppose σ(I(0)) = σo(I(0)) = m for initial configuration I(0) = {(pi(0), Zi)|1 ≤ i ≤ n}.
We observe the following, based on Proposition 1. At time 0 the robots are partitioned
into k = n/m subsets, each forming a regular m-gon with center o. In the FSYNCH
model in which all robots become active simultaneously at all times, for any subset Q of
m robots, the robots in Q observe the same sight and compute the same point q (using
the same ψ). Each robot ri in Q then moves to q in Zi (which is q̃i in Z of Proposition 1),
and their new positions at time 1 form a regular m-gon with center o. By repeating this
argument, we observe that the robots in Q continue to form a regular m-gon with center
o in all configurations reachable from I(0). Therefore in the FSYNCH model, starting in
I(0), only those patterns F consisting of k regular m-gons with center o can be formed.
The same conclusion holds for the SSYNCH model, in which all robots can become active
simultaneously at all times. To summarize the above argument (see Lemma 1), let us
introduce a measure ρ of the degree of symmetry in any point set.

Let P = {p1, p2, . . . , pn} be a multiset of n points. For any point o ∈ R2, consider a
partition of P into k regular m-gons with a common center o, where k = n/m. We call
such a partition regular. (P has a trivial regular partition into n regular 1-gons with an
arbitrary point as the common center.) Let ρo(P ) be the maximum m such that there is a
regular partition of P into regularm-gons with center o, and define ρ(P ) = maxo∈R2 ρo(P ).
(In fact, if P has a regular partition into regular m-gons, where m ≥ 2, then the common
center coincides with the center of C(P ). When discussing a regular partition of P into n
regular 1-gons, we adopt the convention to use the center of C(P ) as the common center.)
Note that for any m, if P has a regular partition into regular m-gons, then m divides ρ(P ).
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Figure 3: Illustration for Example 2. Numbers in parentheses indicate multiplicities.

Example 2 See Fig. 3 for illustration. First, consider P1 consisting of four points whose
coordinates are all (1/2, 1/2). Any partition of P into 4/m m-sets for m = 1, 2, 4 is regular.
Then ρ(P ) = ρo(P ) = 4, where o = (1/2, 1/2).

Second, consider P2 consisting of four points whose coordinates are (0, 0), (1, 0), (1, 1), (0, 1).
There are two regular partitions (besides the trivial one); partitioning into two regular 2-
gons {{(0, 0), (1, 1)}, {(1, 0), (0, 1)}}, and one regular 4-gon {{(0, 0), (1, 0), (1, 1), (0, 1)}}.
Then ρ(P ) = ρo(P ) = 4, where o = (1/2, 1/2).

Third, consider P3 consisting of five points whose coordinates are (0, 0), (1, 0), (1, 1),
(0, 1), (1/2, 1/2). Except for the trivial partition into regular 1-gons, there are no regular
partitions, and hence ρ(P ) = ρo(P ) = 1, where o = (1/2, 1/2) by the above convention.

Finally, consider P4 consisting of six points whose coordinates are (0, 0), (1, 0), (1, 1),
(0, 1), (1/2, 1/2), (1/2, 1/2). There is a unique regular partition consisting of three 2-
gons besides the trivial one; {{(0, 0), (1, 1)}, {(1, 0), (0, 1)}, {(1/2, 1/2), (1/2, 1/2)}}. Thus
ρ(P ) = ρo(P ) = 2, where o = (1/2, 1/2). 2

Let us introduce, for any n ≥ 2 and any divisor m of n:

P(n,m) = the set of patterns F of n points such that m divides ρ(F ).

Then we have:

Lemma 1 [17] For n ≥ 2 and a divisor m of n,

FFS,NO(n,m),FSS,NO(n,m),FFS,O(n,m),FSS,O(n,m) ⊆ P(n,m).

That is, in both SSYNCH and FSYNCH models, there exists a function ψ that solves the
formation problem for F starting from I(0) only if σ(I(0)) divides ρ(F ).
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Proof. See the above argument. 2

We conclude this section by introducing the following notation. For any configuration
I with robot positions P (I), let ρo(I) = ρo(P (I)) and ρ(I) = ρ(P (I)), for representing the
degree of symmetry in P (I) ignoring Zi’s. Clearly, σo(I) divides ρo(I), and σ(I) divides
ρ(I).

6 Pattern formation by non-oblivious robots

Lemma 1 applies to both oblivious and non-oblivious robots. The next lemma shows that
non-oblivious robots can form all patterns mentioned in that lemma.

Lemma 2 [17] For n ≥ 2 and a divisor m of n,

P(n,m) ⊆ FFS,NO(n,m),FSS,NO(n,m).

That is, in both SSYNCH and FSYNCH models, there exists a non-oblivious function ψ
that solves the formation problem for F starting from I(0) if σ(I(0)) divides ρ(F ). (ψ does
not depend on I(0).)

Proof. We give only a proof outline. It suffices to consider the SSYNCH model, since
any pattern that can be formed in the SSYNCH model starting from I(0) can be formed
in the FSYNCH model starting from I(0) using the same function, i.e., FSS,NO(n,m) ⊆
FFS,NO(n,m).

Since describing ψ purely as a function is not only tedious but also unintuitive, we
instead describe the robots’ moves under ψ. The reader is reminded that the robots can
memorize what they observe since they are non-oblivious.

For simplicity of explanation, we assume that each robot ri is located at the origin oi of
its coordinate system Zi at time 0. The same result holds even without this assumption.
Let us first introduce a basic scheme.

Broadcasting a directed line: Suppose that each robot ri has (privately) chosen a
directed line ℓi that passes through its initial position. The robots can simultaneously
“broadcast” the locations and directions of ℓ1, ℓ2, . . . , ℓn, as follows. All robots ri moves
repeatedly along their respective lines ℓi in the positive direction. It can then be shown
that if ri has observed rj , j 6= i, at four or more distinct locations, then rj has observed
ri at two or more distinct locations, and hence, both ri and rj know each other’s chosen
directed lines. There are two issues here.

1. Since the robots are indistinguishable by their appearances, if two robots get “too
close” to each other, then other robots (based on two sights they obtain at different
times) may not be able to figure out their moves correctly. We cope with this by
letting each ri memorize the distance ai > 0 (in Zi) to its nearest neighbor when
it becomes active for the first time and move at most distance ai/2

k+1 in the k-th
move. Then each ri will stay in the interior of the (ai/2)-neighborhood of its initial
position, and thus all robots can correctly determine which robot has moved to which
position even after they remain inactive for a long time.
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2. If we allow ri to simply stop moving as soon as it has observed rj at four or more
distinct locations, then rj may not be able to observe ri at four or more distinct
locations. This means that rj may never finish the broadcast. To cope with this, we
let any robot ri that has observed all other robots at four or more distinct locations
change directions and move back to its initial position along ℓi. Robot rj , j 6= i, when
it observes that ri has changed directions, knows that ri has already seen rj at four
or more distinct locations and knows ℓj . To summarize, for 1 ≤ i ≤ n, ri repeatedly
moves along ℓi in the positive direction, and changes directions and returns to its
initial position along ℓi (disregarding the distance constraint in each step mentioned
above) when for each j 6= i, either

(a) ri has seen rj at four or more distinct locations, or

(b) ri observes that rj has changed directions (ri knows ℓj by the time this occurs).

2

Using the above scheme three times, the robots first broadcast their local coordinate
systems.

Broadcasting Zi: To broadcast Zi = (oi, di), robot ri broadcasts three directed lines
one by one, first the x-axis, then the y-axis, and finally line Li through oi in direction
f(di), where di is the minimum distance between any two initial positions of the robots
measured in Zi, and for x > 0, f(x) = (1 − 1/2x) × π/2 is a monotonically increasing
function with range (0, π/2). Note that the three directed lines have distinct orientations.
Specifically, robot ri broadcasts its x-axis and returns to oi as described above, and then
starts broadcasting its y-axis. Eventually all robots finish broadcasting their x-axes and
start broadcasting their y-axes. When the broadcast of the y-axes are finished, each ri
knows the initial positions of all robots (as the intersections of their x- and y-axes) and
hence, knows the direction f(di) of line Li that it now broadcasts. Once again, each robot
returns to its initial position when the broadcast is completed. 2

At this moment, the robots know their initial configuration I(0) = {(pi(0), Zi)|1 ≤
i ≤ n}. Thus every robot ri can compute the sight [P (0)]Zj

of rj , j 6= i, in I(0) and
m = σ(I(0)) = σo(I(0)), where o is the center of C(P (0)). Since the robot positions are all
distinct in I(0), using any fix total order over sights we can uniquely partition the set R of
robots into k = n/m ordered subsets R1,R2, . . . ,Rk, each forming a regular m-gon with
center o. (All robots can compute this ordered decomposition and memorize the index s
of Rs to which they belong.) At the same time, since by assumption m = σ(I(0)) divides
ρ(F ), and since the points in F are given as coordinates in Z, we can uniquely partition F
into k ordered subsets F1, F2, . . . , Fk, each forming a regular m-gon with a common center.
(Although F may contain multiplicities, the decomposition is unique, in the sense that for
each index s, the coordinates of the points in Fs are uniquely determined. Again, all robots
can compute this ordered decomposition.) See Fig. 4 for illustration.

Based on these two ordered decompositions, for each s, 1 ≤ s ≤ k, the robots in Rs

move to suitable positions to form regular m-gon Fs. Obviously, there exists a scheme
that computes such positions for any I(0) and F such that σ(I(0)) divides ρ(F ). For
instance, first we translate F so that the center of the regular decomposition F1, F2, . . . , Fk

coincides with o. If F1, F2, . . . , Fn are all multiplicities of size m located at o, then all
robots simply move to o. Otherwise, let s′ be the smallest index such that Fs′ is not point
o with multiplicity m. The robots in Rs′ need not move any further, since they already
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Figure 4: Sample ordered partitions of F = {f1, f2, . . . , f12} with ρ(F ) = 4 into subsets of
size m; (a) m = 4, F1, F2, F3, (b) m = 2, F1, F2, . . . , F6, (c) m = 1, {f1}, {f2}, . . . , {f12}.

form an m-gon similar to Fs′ . Each robot in Rs′′ , s′′ 6= s′, computes the positions of the
corners of Fs′′ relative to the location of Fs′ , and moves to the closest corner (breaking ties
in some deterministic manner). 2

By Lemmas 1 and 2, we obtain the following theorem that characterizes the class of
geometric patterns that non-oblivious robots can form in the SSYNCH and FSYNCH
models.

Theorem 1 [17] For n ≥ 2 and a divisor m of n,

FFS,NO(n,m) = FSS,NO(n,m) = P(n,m).

7 Pattern formation by oblivious robots

In the proof of Lemma 2, we took full advantage of the robots’ non-obliviousness, namely,
their ability to memorize sights they observed in the past. We now investigate what
patterns can be formed by n oblivious robots that do not have such memory. It is helpful
to first discuss the point formation problem, in which the given pattern F represents a
single point of multiplicity n. This problem is often referred to in the literature as the
rendezvous problem [8] [10].

First, let us consider the point convergence problem for n = 2, i.e., two oblivious robots
r1 and r2 must converge to a single point (but they are not required to occupy the same
point in finite time). Clearly the following oblivious function ψ achieves this goal in the
SSYNCH model (and hence, in the FSYNCH model as well). (Again, we describe ψ as
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robots’ actions.) Here, “a robot moves toward point p” means “a robot moves to the point
p′ closest to p that is reachable in one step.” Of course, p = p′ if p is reachable in one step.

Function ψ1: Each time ri becomes active, it moves toward the midpoint of its current
position and that of the other robot rj . 2

Note that function ψ1 solves point formation for n = 2 in the FSYNCH model, since
both robots always move toward the midpoint of their positions simultaneously. In contrast,
ψ1 does not solve point formation in the SSYNCH model, because if only one robot becomes
active at every time instant, then the two robots executing ψ1 will never occupy the same
point. In fact, we have the following theorem (the claim for the case m = 2 was first proved
in [17]).

Theorem 2 [17][20] For m = 1, 2 and any pattern F describing a single multiplicity of
size two, F 6∈ FSS,O(2,m). That is, in the SSYNCH model, there is no oblivious function
ψ that solves point formation for n = 2.

Proof. Suppose that there exists an oblivious function ψ that solves point formation for
two robots r1 and r2. Note that since ψ is oblivious, the robots’ moves depend only on
their current sights.

We first show that there must exist a configuration I = {(pi, Zi)|i = 1, 2} of distinct
positions p1 and p2 such that either (1) ψ moves r1 from p1 to p2, and r2 from p2 to p2, or
(2) ψ moves r1 from p1 to p1, and r2 from p2 to p1. (That is, ψ moves exactly one robot to
the position of the other, if both robots become active simultaneously.) To see this, assume
that such a configuration does not exist. Consider an activation schedule A under which r1
and r2, located at distinct positions p1 and p2 at time t− 1, respectively, occupy the same
position q at time t. Now we show that we can modify A and obtain another activation
schedule in which the robots never occupy the same position simultaneously. There are
two cases.

Case 1: Both r1 and r2 are active at time t− 1 in A.
By assumption, q 6= p1 and q 6= p2. So if only one robot, say r1, becomes active at
t− 1, then at time t, r1 is located at q and r2 at p2, where q 6= p2.

Case 2: Exactly one robot is active at t− 1 in A.
Suppose that r1 is active at t − 1 but r2 is not. Then q = p2. So if both robots
become active at t − 1, then at time t, r1 is located at p2 and r2 at some point q′,
where by assumption, q′ 6= p2.

Using this argument repeatedly, we can construct an infinite sequence of moves in which the
robots never occupy the same position simultaneously. (We can do so in such a way that
both robots become active infinitely many times, since either of the robots can be chosen
to be inactive in Case 1.) So ψ does not solve point formation. This is a contradiction.

So, consider an initial configuration I(0) = I in which r1 and r2 are located at p1

and p2, respectively, and ψ moves r1 from p1 to p2, and r2 from p2 to p2. See Fig. 5(a).
(The argument for the case in which ψ moves r2 to the positions of r1 is similar.) Now,
by modifying Z1 suitably, we can construct another configuration I ′ having the same
distribution {p1, p2} as I in which r1 and r2 have the same sight, i.e., [{p1, p2}]Z1

=
[{p1, p2}]Z2

, as shown in Fig. 5(b). Then in I ′, ψ moves r1 from p1 to p1, and r2 from p2 to
p2. This means neither robot moves from its current position. Therefore ψ does not solve
point formation. This is a contradiction. This completes the proof of the claim for m = 2,
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Figure 5: (a) In I, r1 moves to r2’s position and r2 does not move. (b) In I ′, neither r1
nor r2 moves.

since σ(I ′) = 2. We omit the proof for the case m = 1, which is slightly more technical.
The reader is referred to [20]. 2

Of course, by Theorem 1 two non-oblivious robots can form a point in the SSYNCH
model, through a broadcast of their local coordinate systems. (Note that σ(I(0)) = 1 or
2 and ρ(F ) = 2 for any initial distribution I(0) of two robots and pattern F denoting a
single point of multiplicity 2.) The following is a simpler solution for non-oblivious robots
that does not require the broadcast [6]: Each robot, when it becomes active, memorizes
its current position and moves toward the position of the other. Eventually, the robots get
close enough so that they are mutually reachable in one step. Once this happens, if only
one robot becomes active, then (according to the above action) that robot moves to the
position of the other and forms a point. If both robots become active simultaneously, then
they swap positions (recall that robots never collide with each other), but next time they
become active (not necessarily simultaneously), they realize that in the previous step they
were both active and saw each other’s position. So they move to the midpoint of their
previous positions and form a point.

Interestingly, as the next theorem shows, point formation for oblivious robots is solvable
in the SSYNCH model if n ≥ 3 (and hence in the FSYNCH model as well).

Theorem 3 For any n ≥ 3 and any divisor m of n, and for any pattern F describing a
single multiplicity of size n, F ∈ FSS,O(n,m). That is, there exists an oblivious function
ψ that solves point formation in the SSYNCH model for the case n ≥ 3.

Proof. Again, we describe ψ in terms of the robots’ moves. The idea is the following.
The robots, initially located at distinct positions, first create a single multiplicity (a point
occupied by two or more robots) at some location p. Then the robots not located at p move
toward p (and eventually reach there) without creating any other multiplicity. A point has
been formed when all robots are at p.

A configuration with a single multiplicity can be obtained if the robots, each time they
become active, move (or remain stationary) according to the following rules. (The rules
collectively cover all situations that arise under various values of m.) Since the robots’
actions are based only on their current positions, this strategy can be implemented by an
oblivious function.
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Case 1: n = 3. Let p1, p2 and p3 be the positions of the robots. We write |pipj | to denote
the distance between pi and pj . The line segment between pi and pj is denoted pipj .

1.1: If p1, p2 and p3 are collinear with p2 in the middle, then the robots at p1

and p3 move toward p2 while the robot at p2 remain stationary. Then eventually a
multiplicity is created at p2.

1.2: If p1, p2 and p3 form an isosceles triangle with |p1p2| = |p1p3| 6= |p2p3|, then the
robot at p1 moves toward the foot of the perpendicular drop from its current position
to p2p3 in such a way that the robots do not form a regular triangle at any time,
while the robots at p2 and p3 remain stationary. Then eventually the robots become
collinear (Case 1.1).

1.3: If p1, p2 and p3 form a triangle with distinct side lengths, say, |p1p2| > |p1p3| >
|p2p3|, then the robot at p3 moves toward the foot of the perpendicular drop from
its current position to p1p2, while the robots at p1 and p2 remain stationary. Then
eventually the robots become collinear (Case 1.1).

1.4: If p1, p2 and p3 form a regular triangle, then every robot moves toward the
center of the triangle. If 1.4 continues to hold, then eventually either the robots
meet at the center, or the triangle they form becomes non-regular (Case 1.2 or 1.3).

Case 2: n ≥ 4. Let C denotes the smallest enclosing circle of the current robot positions.

2.1: If there is exactly one robot r in the interior of C, then r moves toward the
position of the robot on the circumference of C that is closest to r (breaking ties in
any deterministic manner). All other robots remain stationary. Then 2.1 continues
to apply and r repeatedly moves toward that robot, eventually reaching there and
creating a multiplicity.

2.2: If there are two or more robots in the interior of C, then these robots move
toward the center of C while all other robots remain stationary (so that the center of
C remains unchanged). Then eventually at least two robots reach the center, creating
a multiplicity.

2.3: If there are no robots in the interior of C, then every robot moves toward the
center of C. Then either (i) two or more robots occupy the center of C, creating a
multiplicity, (ii) Case 2.1 or 2.2 applies, or (iii) 2.3 applies again for the smallest
enclosing circle of the new robot positions that is now smaller than C.

2

The impossibility of point formation (or rendezvous) for two oblivious robots (Theo-
rem 2) has motivated researchers to consider the problem further under additional assump-
tions on the robots’ capabilities, such as a compass that may not be reliable [7] [14] [19].
For the benefit of the reader who is interested in this subject, a comprehensive survey of
the recent progress on the rendezvous problem by Katayama and Yamashita [8] is included
in the appendix.

At this point, the most important question that remains to be answered is the following:
What is the class of patterns that n oblivious robots can form in the SSYNCH model
(and hence in the FSYNCH model as well), starting from an initial configuration with
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symmetricity m? Surprisingly, it turns out that n oblivious robots can form any pattern
that non-oblivious robots can, with a single exception of a point for the case n = 2 identified
in Theorem 2.

Theorem 4 [20]

1. For any n ≥ 3 and any divisor m of n,

FFS,O(n,m) = FSS,O(n,m) = P(n,m).

2. For m = 1, 2,
FFS,O(2,m) = P(2,m)

and
FSS,O(2,m) = P(2,m) \ POINT2,

where POINT2 is the set of patterns describing a single multiplicity of size two.

That is, point formation for two robots in the SSYNCH model is the only problem
that non-oblivious robots can solve but oblivious robots cannot. The proof of this recent
result is quite involved, and we shall not attempt to present it in detail in this note. The
interested reader is referred to [20]. The following is a brief summary of the argument.

Let I(0) be an initial configuration of n ≥ 2 oblivious robots located at distinct loca-
tions. Let F be a pattern of n points such that m = σ(I(0)) divides ρ(F ). If n = 2, then
there are only two types of target patterns F , (i) a regular 2-gon (i.e., two points at dis-
tinct locations), and (ii) a point of multiplicity two (i.e., two points at the same location).
The robots already form a regular 2-gon in I(0), since they occupy distinct locations. The
impossibility of forming a point in the SSYNCH model is given in Theorem 2.

Assume n ≥ 3. Recall that ρ(I(0)) measures the degree of symmetry in P (0) disregard-
ing Zi’s, and σ(I(0)) divides ρ(I(0)). It turns out that if ρ(I(0)) = 1, then the robots can
form any pattern F , as shown in the next lemma.

Lemma 3 Let F = {f1, f2, . . . , fn} be any pattern consisting of n ≥ 3 points. There exists
an oblivious function ψ for n robots to form F starting from any initial configuration I(0)
of distinct robot positions such that ρ(I(0)) = 1.

Proof. The proof for the case n = 3 is relatively simple. Let I(0) = {(pi, Zi)|1 ≤ i ≤ 3},
where p1, p2, p3 are all distinct. In this case the condition ρ(I(0)) = 1 is equivalent to
saying that p1, p2, p3 do not form a regular triangle. In the following, for convenience
of presentation, we continue to use p1, p2, p3 to denote the positions of robots r1, r2, r3,
respectively, even after one or more moves. There should be no confusion.

Case F contains a multiplicity (i.e., f1 = f2, f2 = f3 or f1 = f3): Suppose one
robot, say r2, is equidistant from the other two, and hence (since △p1p2p3 is not a regular
triangle) either |p1p2| = |p2p3| < |p1p3| or |p1p3| < |p1p2| = |p2p3| holds. Robot r2
arbitrarily (but deterministically) selects a robot (r1 or r3), say r1, and moves toward r1
slightly, so that |p1p2| < |p2p3| < |p1p3| or |p1p3| < |p1p2| < |p2p3| holds after the move.
Now we have reached a configuration in which no two edges of △p1p2p3 are of the same
length. Assume without loss of generality that |p1p2| < |p2p3| < |p1p3|. Then robots r1
and r2 are uniquely identified as the closest pair, and r1 is further identified as the one
that forms the furthest pair with the third robot r3. Now, robot r2 moves toward r1, while
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r1 and r3 remain stationary. This move yields a new configuration in which r1 and r2
are closer while preserving the relation |p1p2| < |p2p3| < |p1p3|. Thus we can repeatedly
(identify r1 and r2 as above and) execute this move until r1 and r2 share a position. When
that happens, a formation with a multiplicity of size two has been reached. If F has a
multiplicity of size two, then the current formation is similar to F . If gathering of all three
robots is required, i.e., f1 = f2 = f3, then the robot who recognizes that the other two
have gathered at a single point moves to that point.

Case f1, f2 and f3 are all distinct: Assume without loss of generality that |f1f2| ≤
|f2f3| ≤ |f1f3|. First, as in the previous case, the robots reach a configuration in which
no two edges of △p1p2p3 are of the same length. Assume without loss of generality that
|p1p2| < |p2p3| < |p1p3|. From now on robots r1 and r2 remain stationary. We associate
r1 (at p1) and r2 (at p2) with f1 and f2, respectively, and move r3 (in multiple steps
if necessary) to a position p such that △p1p2p is similar to F . There are at most two
candidates for p, and if there are two, then r3 chooses the one closer (breaking the tie in
some deterministic manner). While moving toward p, if its next location is not p, then
r3 always chooses its next location p3 so that |p1p2| < |p2p3| < |p1p3| continues to hold,
so that r3 will continue to be identified as the only robot that is allowed to move. By
repeating this, r3 eventually reaches p.

The following is an outline of the proof for the case n ≥ 4. Using the assumption
ρ(I(0)) = 1, we define a unique total order r1, r2, . . . , rn on R, based on their distances
from the center of C(P (0)) and an ordering on their sights under artificially assigned
“mutually visible” local coordinate systems. The points in F are also uniquely ordered as
f1, f2, . . . , fn based primarily on their distances from the center of C(F ) (with ties broken
appropriately; see Fig. 4(c)). Then one by one and in the order i = 1, 2, . . . , n, robot ri
moves to a point suitable to represent fi. Since the robots are oblivious (and hence their
action depends only on their current sights), this must be done in such a way that the
ordering of the robots is maintained to a large extent and the partially formed portion of
F is clearly recognizable. The entire process is quite complicated, and we omit the details
here. 2

Finally, let us give a brief outline of the case ρ(I(0)) ≥ 2. If ρ(I(0)) > ρ(F ), then
the robots first “reduce” the ρ value of their configuration by moving appropriately (a
robot’s move reflects its local coordinate system). Using the assumption that σ(I(0))
divides ρ(F ), we can show that eventually the robots reach a configuration J in which
m = ρ(J) = ρo(J) divides ρ(F ). Once such a configuration is reached, the robots partition
themselves into k = n/m ordered groups, R1,R2, . . . ,Rk, each forming a regular m-gon
with center o. Simultaneously, they partition the points in F into k ordered regular m-
gons, F1, F2, . . . , Fk with a common center (see Fig. 4). Then, one by one and in the order
i = 1, 2, . . . , k, the robots in group Ri attempt to move to points suitable to represent Fi.
Again, since the robots are oblivious, this must be done in such a way that the ordered
partition of the robots and the partially formed portion of F is clearly recognizable. If
during the operation the ρ value of the configuration changes, then new ordered partitions
of R and F are computed and the robots continue to form the unfinished portion of F
based on the new partitions (or Lemma 3 is used if ρ becomes 1). See [20] for details.
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8 Concluding remarks

We gave a brief overview of the pattern formation problem for autonomous mobile robots in
the plane and presented some of the key results known so far. There are several directions
for future research. In the model adopted here, the robots have unlimited vision range,
they do not block the vision of others, and their moves are instantaneous. Related work
on the subject under different assumptions includes the case of robots with limited vision
range [1], “fat” robots that block the vision of others [4], and the asynchronous (ASYNCH
or CORDA) model in which the robots’ moves are not instantaneous and a robot may
be seen by others while it moves continuously to its target location [11]. The rendezvous
problem has also been considered on a graph, where a robot hops from a vertex to another
in discrete time steps [9].
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Appendix

A recent survey article on the point formation problem by Y. Katayama and M. Yamashita,
“How to rendezvous,” Journal of the Society of Instrument and Control Engineers, Vol.
46, No. 11, 2007, pp. 853–859, is reproduced in the following pages. We wish to thank the
authors of the article and The Society of Instrument and Control Engineers for their kind
permission.
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