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4.2 The classical model for Möbius geometry . . . . . . . . . . . . 54
4.3 s-isothermic surfaces . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 the Steiner formula . . . . . . . . . . . . . . . . . . . . 65

3



4



Preface

This book is the result of a 2 hour a week course I gave at the faculty of
mathematics at Kyushu University, Fukuoka in summer 2008. It started out
as a typeset version of my handwritten preparations that I made available
to the students as a supplement and a compensation for my lazy blackboard
hand writing. But after a couple of weeks I was offered the opportunity of
turning them into these lecture notes.

Discrete differential geometry has its roots in the 1950s when mathemati-
cians like Robert Sauer and Walter Wunderlich started to investigate differ-
ence analogs of curves and surfaces. Later in the 1990s Ulrich Pinkall and
Alexander Bobenko made crucial connections between these discrete objects
and discrete integrable equations studied in mathematical physics. These
integrable equations can be viewed as the second source of discrete differen-
tial geometry in its modern form. From then on the focus somewhat shifted,
when applications of the discrete structures became apparent in computer
graphics and industrial mathematics.

The material covered in this book is by no means a comprehensive overview
of the emerging field of discrete differential geometry but I hope that it can
serve as an introduction. Choosing material in a rapidly growing field like
this is difficult. On the one hand there is already too much to cover in one
course on the other hand, the chosen material can become out of date rather
fast and interesting results can even appear during the ongoing semester.

The choice I made was to roughly follow what one usually finds in in-
troductionary courses in differential geometry of curves and surfaces. This
of course means that many aspects of discrete differential geometry are very
much underrepresented. In the introduction I will give some suggestions for
further reading that will broaden the view on the subject in several directions.

Discrete differential geometry investigates discrete analogs of objects of
smooth differential geometry. Thus, through the notes I refer to various
notions of classical differential geometry. But while knowledge of basic dif-
ferential geometry is of course helpful, most of the material should be under-
standable without knowing the smooth origin of the various notions.

I decided to leave the original segmentation in individual lectures visible.
Although it might not always align with the contents, this is how I prepared
and taught the coures. You will find the number of the current lecture in the
heading of each page.

I am grateful for all the hospitality and encouragement I got from the
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department of mathematics at Kyushu university and I feel that my stay
there in 2008 was way too short. I owe many thanks to my students who
attended the course as well: They gave valuable feedback and found many
errors in the first versions of this text. It goes without saying that I am
responsible for any errors – orthographic and contend wise.

Tim Hoffmann – Munich, 21.3.2008
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Lecture 1 Tim Hoffmann 7

1 Introduction

Motivation

Name of the game

The name “Discrete differential geometry” (DDG) sounds like a “contradictio
in res”1. The term differential in differential geometry (DG) stands for the
usage of calculus and analysis for studying geometry and this clearly needs
smooth and not discrete objects. But differential geometry is not only a set
of techniques but it rather stands for notions and constructions or definitions
as well and discrete differential geometry aims for finding discrete equivalents
for these objects of investigation.

Of course there is not only one valid (or correct) discretization of, say,
a surface. So which is the right one or the best one? There is of course
no answer to this and in discrete differential geometry one often has several
discretizations of the same thing coexisting and which to prefer is a question
of what one intends to do with it. However, originally discrete differential ge-
ometry arose from the observation that certain discretizations are more than
a mere approximation of a smooth object and that they possess interesting
properties of their own.

In some sense discrete differential geometry can be considered more fun-
damental than differential geometry since the later can be obtained form the
former as a limit. Discrete differential geometry is richer since it deals with
more ingredients (like combinatorics) and since some structures get lost in
the smooth limit (e. g. the tangential flow on a smooth regular curve is triv-
ial while on a discrete curve it is not, or the symmetry between surfaces and
their transformations).

The recent interest in discrete differential geometry is partly due to its
applications in computer graphics (texture maps, re-meshing,...), architec-
ture (glass and steel constructions for freeform models usually need planar
face meshes), numerics (partial difference equations), simulations (flows, de-
formations), and physics (lattice models).

Since this course can not cover the many facets of discrete differential
geometry further reading is highly recommended: For a very structural pre-
sentation of the subject that emphasizes the underlying integrable structure
I recommend the book of Bobenko and Suris [BS08]. An introduction into

1A contradiction in the thing itself.
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8 Tim Hoffmann Lecture 1

the architectural aspects can be found in the beautiful book by Pottmann et
al [PAHA07]. The most classical book on the subject should be mentioned
here as well: It is the book “Differenzengeometrie” by R. Sauer [Sau70] which
can be considered as one of the roots of discrete differential geometry.

2 discrete curves in R2 and CP1

2.1 basic notions

We will start very simple, by discretizing the notion of a smooth curve. That
is, we want to define a discrete analog to a smooth map from an interval
I ⊂ R to Rn. By discrete we mean here that the map should not be defined
on an interval in R but on a discrete (ordered) set of points therein. It turns
out that this is basically all we need to demand in this case:

Definition 2.1 Let I ⊂ Z be an interval2 (possibly infinite). A map γ : I →
Rn is called a discrete curve. It is in fact a polygon. γ is said to be periodic
(or closed) if I = Z and if there is a p ∈ Z such that γ(k) = γ(k + p) for all
k ∈ I.

We will write γk = γ(k) and even γ = γk, γ1 = γk+1, and γ1̄ = γk−1. This
looks silly at first but it will turn out handy once we denote shifts in different
directions with γ1(= γ(k+1, l)), γ2 = (γ(k, l+1)), γ12̄(= γ(k+1, l−1)), etc.

In classical differential geometry the next notions one would define for
a curve would be the tangent vector (its derivative) and the arc-length of a
curve. So let us do this for our discrete curve as well.

Definition 2.2 The edge tangent vector of a discrete curve γ : I → Rn is
defined as the forward difference

Sk := γk+1 − γk

(we could have written S := γ1 − γ as well).
Sometimes we will write ∆γk := γk+1 − γk for the forward differences.

Remark. Note that while the edge tangent vector Sk (S for segment) is
labeled like the point γk it should be thought as attached to the edge between
γk and γk+1.

2the intersection of an interval in R with Z
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Lecture 1 Tim Hoffmann 9

Also note that we called the forward differences edge tangent vectors since
we will introduce a second type of tangent vectors (located at the vertices)
later on.

The arc-length of a curve is usually introduced as the integral of the
length of the tangent vector and in our discrete case this turns out to be
exactly the length of the polygon: :

Definition 2.3 arc-length of a discrete curve γ : I → Rn is defined as

L(γ) :=
∑
k∈I

‖∆γk‖.

Example 2.1 The discrete curve γ : N→ R2 ∼= C,

γk = ek(−ε+iδ), ε, δ > 0

is a discretization of the logarithmic spiral (see Fig. 1): t 7→ et(−ε+iδ). It is
(like its smooth counterpart) invariant under a homothety x 7→ e(−ε+iδ)x. Let
us calculate its arc-length: we set ω = (−ε+ iδ).

L(γ) =
∑∞

k=0 |e(k+1)ω − ekω = |eω − 1|
∑∞

k=0 |ekω|

= |eω − 1|
∑∞

k=0(e−ε)k = |e−ε+iδ − 1| 1
1−e−ε .

Figure 1: A discrete logarithmic spiral.

We see that the arc-length of the discrete logarithmic spiral is finite.
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10 Tim Hoffmann Lecture 1

A smooth curve is called parameterized by arc-length, if its derivative is of
unit length everywhere. We adopt this definition as well:

Definition 2.4 A discrete curve γ : I → Rn is called parameterized by
arc-length if ‖∆γk‖ ≡ 1.

Remark.

• Unlike the smooth case we can not reparameterize a curve. A discrete
curve is parameterized by arc-length or it is not.

• Sometimes it is convenient to call a curve with ‖∆γk‖ ≡ c 6= 0 para-
meterized by arc-length as well.

Example 2.2 A regular n−gon inscribed in a circle of radius r = 1
2 sin π

n

is parameterized by arc-length. It can of course be viewed as a discretized
circle. Note however, that a closed arc-length parameterized discrete circle is
not possible for all radii.

Example 2.3 A cycloide is a curve obtained by tracing a point on a circle,
while rolling the circle on an axis. Again we will discretize this in the most
naive way (see Fig. 2):

Figure 2: A discrete cycloide.

We “roll” a regular n-gon on the x-axis and mark the position of a distin-
guished vertex whenever an edge of the n-gon lies on the axis. The resulting
discrete curve is given by:

γk =
k∑
l=0

(
1− e−il

2π
n

)
.
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Lecture 1 Tim Hoffmann 11

In the above example, whenever e−ik
2π
n = 1, we have ∆γk−1 = 0! This

corresponds to the cusps in the smooth cycloide, where it is not regular3.
This motivates the following definition:

Definition 2.5 A discrete curve γ : I → Rn is called regular if any three
successive points are pairwise disjoined.

Remark.

• This implies that for regular discrete curves the edge tangent vectors
do not vanish.

• To archive this it would have been sufficient to ask for any two suc-
cessive points to be disjoined. However, a little later we will define
vertex tangent vectors as well and this definition will ensure their non-
degeneracy as well.

Reparameterization of a curve can be understood in different ways: Firstly
γ̃ : Ĩ → Rn is a reparameterization of γ : I → Rn if there is a diffeomor-
phism φ : Ĩ → I such that γ̃ = γ ◦ φ. Secondly, as a (trivial) tangential
flow. If γ is arc-length parameterized we can look at the flow given by γ̇ = γ′

(Here “dot” denotes the time derivative while “prime” stands for the deriva-
tive with respect to arc-length). The flow for this deformation is simply a
reparameterization γ(s, t) = γ(s+ t), that even preserves arc-length.

The first interpretation has only a trivial discrete analog: If I and Ĩ are
two discrete intervals of the same cardinality, we can pre-compose γ : I → Rn

with the order preserving or the order reversing bijection φ : Ĩ → I to form
γ̃ = γ ◦ φ. The second interpretation however, is interesting:

Definition 2.6 A flow on a discrete curve γ : I → Rn is a continuous
deformation

γt : I ×R ⊇ I × J → Rn

of γ with γ0 = γ, that is given by a vector field v := γ̇ = d
dt
γ : I × J → Rn

describing the evolution

γ̇ =
d

dt
γ.

3A smooth curve is called regular at a given point, if its derivative at that point does
not vanish.

11



12 Tim Hoffmann Lecture 1

Thus, to formulate the notion of a tangential flow, we will need the notion
of a tangential vector at the vertices of a discrete curve (to prescribe the
direction). If the discrete curve γ is arc-length parameterized, the simplest
guess here is to average the edge tangent vectors:

T =
1

2
(∆γ + ∆γ1̄)

(
or Tk =

1

2
(∆γk + ∆γk−1)

)
For arbitrary curves there is a better choice:

Definition 2.7 The vertex tangent vector of a discrete curve γ : I → R2 ∼=
C is given by

T := ∆hγ := 2
∆γ∆γ1̄

∆γ + ∆γ1̄

.

T is the harmonic mean4 of the edge tangent vectors.

Remark.

• The definition works in Rn as well, since any three points will lie in a
common R2.

• The definition is the reason for our definition of regularity. For a regular
discrete curve no vertex tangent vector will neither be zero nor infinite.

• If γ is arc-length parameterized one has

∆hγ = 2
∆γ∆γ1̄

∆γ + ∆γ1̄

= 2
∆γ∆γ1̄(∆γ̄ + ∆γ̄1̄)

‖∆γ + ∆γ1̄‖2
= 2

∆γ1̄ + ∆γ

‖∆γ + ∆γ1̄‖2

=
S + S1̄

1 + 〈S, S1̄〉
.

So in case of an arc-length parameterized curve the vertex tangent
vector points in the same direction as the averaged edge tangent vectors.

• Note however, that an arc-length parameterized curve usually does not
have vertex tangent vectors of constant length!

Definition 2.8 A tangential flow for an arc-length parameterized discrete
curve γ : I → C is a flow whose vector field points in direction of the vertex
tangent vector and that preserves the arc-length parameterization.

4The harmonic mean is the inverse of the arithmetic mean of the inverse quantities.
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Lecture 1 Tim Hoffmann 13

Proposition 2.9 Every tangential flow is a constant multiple of the vertex
tangent vector field:

γ̇ = α∆hγ.

Proof. The condition for the curve to stay arc-length parameterized under
the flow γ̇ reads

0 =
∂

∂t
〈∆γ,∆γ〉 .

Expanding this gives

0 = 2 〈∆γ,∆γ̇〉 = 2
〈
∆γ, α1∆hγ1 − α∆hγ

〉
But 〈

∆γ,∆hγ
〉

=
〈

∆γ, ∆γ+∆γ1̄

1+〈∆γ,∆γ1̄〉

〉
= 〈∆γ,∆γ〉+〈∆γ,∆γ1̄〉

1+〈∆γ,∆γ1̄〉
= 1 and

〈
∆γ,∆hγ1

〉
=

〈
∆γ, ∆γ1+∆γ

1+〈∆γ1,∆γ〉

〉
= 〈∆γ,∆γ1〉+〈∆γ,∆γ〉

1+〈∆γ1,∆γ〉 = 1.

Thus one can deduce 0 = α1 − α(= ∆α) and α ∼= const.

13



14 Tim Hoffmann Lecture 2

Remark.

• This is the first justification for our peculiar choice of the vertex tangent
vector.

• In the smooth case a straight line can be characterized by the fact, that
its tangential flow is a translation. This is no longer true in the discrete
case. A regular zig-zag constitutes a counter example. It is a common
phenomenon in discrete differential geometry, that the discretization
has some extra freedom which will vanish in a smooth limit (but which
might allow for non-smooth limits as well).

Figure 3: For this zig-zag the tangential flow is a translation.

2.2 curvature

The curvature of a plane curve is defined to be the inverse of the radius of
its osculating circle5. Thus a way to establish a notion of curvature for a
discrete curve is to define a discrete osculating circle.

We will consider three choices here:
vertex osculating circles:
The vertex osculating circle of a discrete curve at a point γk is given by the
unique circle6 through the point and its two nearest neighbours γk±1 (see
Fig 4).

Defining the osculating circle is through three neighbouring points gives
just the “right” non-locality since it corresponds to involving second deriva-
tives. This choice for an osculating circle also matches our choice for the
vertex tangent vector as the following lemma emphasizes:

Lemma 2.10 The vertex tangent vector at a point γ is always tangential to
the vertex osculating circle at that point.

5The osculating circle in a given point of a smooth regular curve is the best approxi-
mating circle in that point.

6We will consider a straight line to be a (degenerate) circle as well.
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Lecture 2 Tim Hoffmann 15

Figure 4: The vertex osculating circle.

To show this we first prove the following elementary lemma:

Lemma 2.11 Given a triangle ABC, let M be the circumcenter (the center
of the circumscribing circle), and let α = ∠(AB,AC), β = ∠(BC,BA), and
γ = ∠(CA,CB). Then

∠(MB,MC) = 2α

as illustrated in Fig. 5.

A

α

B
β

2α γ C

M

Figure 5: Angles in a triangle.

Proof. The triangle MCA is isosceles so ∠(MC,MA) = π − 2∠(AM,AC).
The same argument holds for MAB giving ∠(MA,MB) = π−2∠(AB,AM).

15



16 Tim Hoffmann Lecture 2

But since ∠(AB,AM) + ∠(AM,AC) = α holds, we have

2α = 2∠(AB,AM) + 2∠(AM,AC) = 2π − ∠(MC,MA)− ∠(MA,MB)

= ∠(MB,MC).

Corollary 2.12 For the radius r of the circumscribing circle and the edges of
the triangle a = |B−C|, b = |C−A|, and c = |A−B|, 2r = a

sinα
= b

sinβ
= c

sin γ

holds.

Proof. (of Lemma 2.10) Given γk−1, γk,, and γk+1 of a regular discrete curve.
We set B = γk−1, A = γk, and C = γk+1. Assume the edge B − C is
parallel to the real axis, then the angle of the tangent to the circumcircle at
A is ∠(−i,MA) = α + 2β using the previous lemma. On the other hand
the argument of ∆hγk = 2 ∆γ∆γ1̄

∆γ+∆γ1̄
is ∠(BC,BA) − ∠(BC,AC) = β − γ =

β − π + (α+ β) = 2β + α− π since ∆γ + ∆γ1̄ is parallel to the real axis. So
the tangent and the vertex tangent vector are parallel.
Remark. This is the second justification for our choice of the vertex tangent
vector.

Let us calculate the curvature that arises from this definition of an osculat-
ing circle: The radius of the vertex osculating circle is given by r = |∆γ+∆γ1̄|

2 sinα
,

so we get for the curvature

κk =
2 sinφk

|∆γk + ∆γk−1|

where φk = ∠(∆γk−1,∆γk).
Note that the sign of the curvature agrees with what one would expect

from the smooth case (a curve bending to the left has positive curvature).
We saw already the the definition has a flaw, namely that arc-length param-
eterized discrete curves cannot have arbitrarily large curvature (at most 2
actually, since the radius is always bigger or equal to 1

2
).

edge osculating circles:
Another choice of osculating circle over coming the above problem is given
by the circle touching three successive edges Sk−1, Sk, and Sk+1 (or their
extensions) with matching orientations (see Fig. 6). More precisely it is

16



Lecture 2 Tim Hoffmann 17

Figure 6: The edge osculating circle.

the circle that has its center at the intersection of the angular bisectors of
∠(−Sk−1, Sk) and ∠(−Sk, Sk+1) and that touches the straight line through
Sk.

We will call this the edge osculating circle. It is not as local as one would
like since it involves four successive points. In addition the definition works
only for planar curves since the three successive edges need to lie in a plane.
Its radius is given by

r =
|∆γ|

tan φ
2

+ tan φ1

2

.

osculating circles for arc-length parameterized discrete curves:
Best would be a mixture of the two notions and in fact for arc-length para-
meterized discrete curves we can take the vertex centre of curvature but the
circle around it that touches the two corresponding edges in their midpoints
(see Fig. 7). Here we can calculate the the radius to be

r =
1

2 tan φ
2

.

Definition 2.13 The curvature of a arc-length parameterized discrete curve
γ is given by

κ = 2 tan
φ

2

with φ = ∠(∆γ,∆γ1̄).

We will now make a slight contact with integrable equations by looking
at how our curvature evolves with the tangential flow – mainly because the

17



18 Tim Hoffmann Lecture 2

Figure 7: The osculating circle for discrete arc-length parameterized curves.

proof is instructive. Exhaustive treatment of the integrable background of
discrete differential geometry can be found in [BS08].

Lemma 2.14 The curvature κ of an arc-length parameterized discrete curve
evolves with the tangential flow γ̇ = α∆hγ as

κ̇

1 + κ2

4

=
α

2
(κ1 − κ1̄).

Proof. For the tangential flow ∆γ̇ = iµ∆γ for some real function µ since
∆γ̇ ⊥ ∆γ and

µ =
〈
α ∆γ1+∆γ

1+〈∆γ1,∆γ〉 − α
∆γ+∆γ1̄

1+〈∆γ,∆γ1̄〉
, i∆γ

〉
= α

(
〈∆γ1,i∆γ〉

1+〈∆γ1,∆γ〉 −
〈∆γ1̄,i∆γ〉

1+〈∆γ,∆γ1̄〉

)
= α

(
sinφ1

1+cosφ1
+ sinφ

1+cosφ

)
= α 1

2
(κ1 + κ).

Now ∆γ
∆γ1̄

= eiφ =
1+i tan φ

2

1−i tan φ
2

= 2+iκ
2−iκ , so κ = 2

i
∆γ−∆γ1̄

∆γ+∆γ1̄
and with that at hand one

can calculate

κ̇ = 4(µ− µ1̄)
∆γ∆γ1̄

(∆γ + ∆γ1̄)2
= (µ− µ1̄)(1 +

κ2

4
).

Remark. Note that φ = 2 arctan κ
2

and φ̇ = κ̇

1+(κ2 )
2 . Thus

φ̇ =
κ̇

1 + κ2

4

=
α

2
(κ1 − κ1̄) = α(tan

φ1

2
− tan

φ1̄

2
).
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Lecture 2 Tim Hoffmann 19

Both versions of the equation can be treated as a (space) discrete integrable
equation - the “0-th” flow of the mKdV hierarchy.

19



20 Tim Hoffmann Lecture 3

Remark. Some words about normals: For planar curves we can easily define
vertex and edge normals by taking i times the corresponding tangent vectors
but our definition of edge osculating circle adds a second version of vertex
normal vector7: The angular bisectors8. In the smooth setup γ′′ = iκγ′ holds
for arc-length parameterized curves. If we discretize γ′′ as ∆∆γ we find

• ∆∆γ = i sinφ∆hγ

• ∆∆γ = iκ1
2
(∆γ + ∆γ1̄)

• The vertex centre of curvature m is given by m = γ + i 1
κ
∆hγ.

Theorem 2.15 The discrete curvature function κ determines a arc-length
parameterized discrete curve up to euclidean motion.

Proof. Given κ fix γ0 and the direction of ∆γ0. Then γ is determined by
the recurrent relation

γk+1 = γk + ∆γk−1
2 + iκ

2− iκ
.

2.3 new curves from old ones: evolutes and involutes

We will now look into generating new discrete curves from old ones. First
we will look into the classical notions of evolutes and involutes, which have
strong connections to discrete versions of the four vertex theorem. The by
far most important construction – the discrete Tractrix – will follow.

Definition 2.16 The sequence of vertex/edge centres of curvature of a reg-
ular discrete curve γ gives rise to a new curve the vertex/edge evolute of
γ.

Remark.

7In the smooth setup one can define the centre of curvature as the intersection point
of infinitesimal neighbouring (arbitrarily close) normal lines.

8Reversing the argument we could introduce a second edge osculating circle by taking
the circle that touches the (possibly extended) edge and has its centre at the intersection
of the two adjacent vertex normal lines.

20



Lecture 3 Tim Hoffmann 21

• the evolute need not be regular

• for the vertex evolute γ̃ holds ∆γ̃ ⊥ ∆γ

• for the edge evolute vertices get mapped to edges and vice versa

Example 2.4 The evolutes of the logarithmic spiral γ are similar logarith-
mic spirals: Since γ is invariant under the homothety z 7→ e−ε+iδz so are its
evolutes.

the next example shows that both notions of evolute are on equal footing.

Example 2.5 • The edge evolute of a cycloide with even “n” is a trans-
lated cycloide again.

• The vertex evolute of a cycloide with odd “n” is a translated cycloide
again.

21



22 Tim Hoffmann Lecture 3

in the “n” is even case the idea of the proof is the following (consult Fig. 8
for an illustration):

Figure 8: Intersection points of the edges.

The argument of an edge of a cycloide is arg(∆γk−1) = arg(1− e−ik 2π
n ) =

π
2
− kπ

n
for k 6= n but we will take a “continuous continuation” and think of

the argument of an edge of length 0 to be π
2
. So for even n ∆γk ⊥ ∆γk+n

2

and the direction of the perpendicular bisectors coincide with the directions
of the edges of the cycloide half a period away. Then we can show, that the
(edge) tangent line through an edge of the cycloide will always go through the
upper left vertex of the rolling n-gon (see above image) and the perpendicular
bisectors will always hit the lower left vertices of the rolling n-gon (again see
above). Thus one can place a copy of the cycloide translated by half a period
below the original one and the perpendicular bisectors of the first will coincide
with the tangent lines of the second since both lines have the same direction
and a common point.

For the odd case one can observe that ∠(−∆γk−1,∆γk) = π − π
n

. Since
this is clearly a constant the edges of the cycloide form isosceles triangles with
their corresponding points of the evolute and since again angular bisectors and
edges half a period away have same argument, what is left to show is that the
edges of the cycloide and of the evolute have same lengths.

Definition 2.17 Let γ be a regular discrete curve. γ̃ is called a (edge/vertex)
involute of γ if γ is (edge/vertex) evolute of γ̃.

22



Lecture 3 Tim Hoffmann 23

Remark. Any regular discrete curve is involute of a 2-parameter family of
discrete curves. To see this for vertex involutes start with any point γ̃0 (this
freedom gives rise to the 2-parameter family) and mirror it at the first edge
of γ to get γ̃1. The curve γ̃ obtained by iterating this is clearly a curve that
has γ as evolute. A similar construction holds for the edge involute.

Note that this is different in the smooth case where one only sees a 1-
parameter family of involutes:

γ̃(s) = γ(s)− (a+ s)γ′(s).

2.4 Four vertex theorems

The following classical global result was first proved by Mukhopadhyaya 1909
(see [Muk09]):

Theorem 2.18 (four vertex theorem) Any regular simply closed convex
curve has at least four vertices (points where κ′ = 0).

This remarkable result has seen many generalizations and many different
proofs (and many discretizations as well) since then. One of them is a theo-
rem by Bose (1932) (O. Musin [Mus04] notes that Kneser had the theorem
ten years before Bose [Bos32]):

Theorem 2.19 Let γ be an oval with no four points lying on a common
circle. Denote by s+ (s−) the number of osculating circles that lie outside
(inside) γ and with t+ (t−) the number of circles that touch γ in three distinct
points from the outside (inside). Then

s+ − t+ = s− − t− = 2

holds.

If one defines a vertex as a point where the osculating circle lies outside or
inside the curve, then a four vertex theorem follows.

The literature on four vertex theorems is vast. We will now look at two
discretizations the first of which (by O. Musin [Mus04]) is a discrete version
of the Bose/Kneser theorem. But first we have to define what a discrete
vertex should be (simply asking for ∆κ = 0 will not do of course).
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Definition 2.20 The (vertex/edge) curvature (or curvature radius) of a reg-
ular discrete curve is said to have a true critical point (vertex) if ∆κ (or ∆r)
changes sign at that point.

Remark. Note that “point” can be an edge, depending which notion of
curvature is considered.

Definition 2.21 γ : I → C is said to be simply closed if it bounds a topologi-
cal disc (its interior). It is called strictly convex if for all non successive γi, γj
the connecting line (without the endpoints) lies completely in the interior of
γ.

In the following we will say that a circle is full if it contains all the points of
the curve and we will say that it is empty if it contains none in its interior.

Theorem 2.22 (O. Musin’s discrete Kneser Theorem) Let γ : Z →
C be a strictly convex regular discrete curve with more than 3 vertices no
four of which lie on a common circle. Denote by s+ (s−) the number of
vertex osculating circles that are full (empty) and by t+ (t−) the full (empty)
circles that go through 3 non neighbouring points of γ. then

s+ − t+ = s− − t− = 2.

holds.
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Proof. Claim 1: A convex n-gon can be triangulated and there are n − 2
triangles in each triangulation.

proof: Cut the n-gon along an inner edge. Iterate with both halves until all
polygons are triangles. In particular it follows from this, that each triangu-
lation has at least one (in fact even two) triangles with two border edges. So
given a triangulated n-gon one can cut away such a border-triangle to obtain
a triangulated n− 1-gon. This can be done iteratively n− 3 times until only
a triangle is left. So the triangulation of the n-gon contained n− 2 triangles.

Claim 2 (geometry): The set of full (empty) circles through 3 points of a
convex n-gon as in the theorem gives rise to a triangulation.

proof: Start with any full circle through 3 points of the n-gon. The three
points give rise to a triangle. Now for any inner edge of the triangle, the pencil
of circles through its two endpoints contains a full circle (the one we started
with) so it must contain a second one (these two circles are the border cases
of all the full circles that contain the two points only). The second circle gives
rise to a second triangle9 sharing an edge with the first. Thus we always find
a neighbouring triangle that comes from a full circle. Likewise if we have two
full circles through three points, their triangles will not intersect. The two
circles necessarily will intersect (if one lies completely inside the other, the
outer could not have touched the polygon) and the pencil of circles through
the two intersection points will contain only two that touch the polygon.
Moreover the points of touch for them will be separated by the line through
the two intersection points (since the polygon is convex and the circles must
touch in 3 points simultaneously). Thus the triangles formed by them can
not intersect.

Together we can conclude that the triangles given by the full circles
through three points will form a triangulation.

Claim 3: Given a triangulation of a polygon. Denote by s the number of
triangles with two border edges and by t the number of triangles with no
border edge, then s− t = 2 holds.

proof: Denote by r the number of triangles with one border edge. Since the
triangulation contains n − 2 triangles we have s + r + t = n − 2. Since the
triangulation has n border edges we have in addition n = 2s+r or r = n−2s.

9Note that by assumption full circles can only touch in 1, 2, or three points.
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together we know n− 2 = s+ n− 2s+ t which gives the claim

2 = s− t.

Applying the third claim to the triangulation(s) from the second gives a
proof of the theorem.

Corollary 2.23 If one defines a vertex to be a point of the curve that has a
full or empty osculating circle a four-vertex-theorem follows immediately.

Corollary 2.24 If in addition the vertex centres of curvature all lie on the
same side of their neighbouring oriented edges, the vertex curvature has at
least 4 vertices.

This extra condition is automatically satisfied for arc-length parameterized
curves.
Proof. Let the vertex osculating circle at γ be full. Then the radii r1̄, r, and
r1 of the vertex osculating circles at γ1̄, γ, and γ1 satisfy

|∆γ1̄|
2
≤ r1̄ < r, and

|∆γ|
2
≤ r1 < r

(The centres lie somewhere between the centre of the full circle and the edge’s
midpoint). Thus r− r1̄ > 0 and r1− r < 0 and ∆r changes sign (and so does
∆κ). A similar argument can be carried out for an empty circle.

We will now turn to a notion of vertex, that is defined by the cusps in
the curves evolute. The notions and the theorem together with its proof are
essentially from Tabachnikov [Tab00].

Definition 2.25 A set of oriented lines is called generic if no three con-
secutive lines intersect in one point. The caustic of a generic set of lines
l1, . . . , ln is the discrete curve given by the intersection points of lk with lk+1

(for all k). A cusp vertex of the caustic is a point where the orientation of
the edge tangent vectors of the caustic changes with respect to the orientation
inherited form the lines.

Example 2.6 The vertex evolute of a discrete curve is the caustic of its edge
normals while the edge evolute is the caustic of the angular bisectors.
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Figure 9: A closed discrete curve and the caustic of its angular bisectors.

Corollary 2.26 With the conditions of the last theorem, the vertex evolute
of the curve has at least four cusp vertices.

Proof. The proof uses the same argument as the one of the last corollary.
Namely that the centres of curvature neighbouring a full curvature circle’s
centre lie on the side towards the edge on the edge normal lines.

Definition 2.27 Let γ be a closed convex discrete curve of period n. A set of
lines lk passing through the γk is called exact if for the angles α = ∠(l,∆γ1̄)
and β = ∠(−∆γ, l)

n∏
k=1

sinαk =
n∏
k=1

sin βk

holds.

Example 2.7 The angular bisectors of the inner angles are trivially exact.

The next theorem in its full extend is due to Tabachnikov while the special
case of angular bisectors is due to Wegner.
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Theorem 2.28 (Tabachnikov) Let γ be a regular closed convex discrete
curve of period n > 3. Given a generic exact set of lines l1, . . . , ln, then its
caustic has at least four cusp vertices.

Corollary 2.29 (Wegner) A four-vertex-theorem for the edge curvature
radii.

Proof. Given a curve γ and its edge evolute γ̃ we have for the curvature
radii r1̄ = |γ̃1̄ − γ| sin π−φ

2
and r = |γ̃ − γ| sin π−φ

2
. Thus ∆r1̄ = r − r1̄ =

(|γ̃ − γ| − |γ̃1̄ − γ|) sin π−φ
2

holds and the signum of ∆r depends only on the
signum of the caustic of the angular bisectors.
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Proof. Let γ̃ be the caustic of γ. The condition for a set of lines to be exact
has a simple geometric background: The set of lines lk is exact if and only if
a curve δ with its points δk ∈ lk and edges parallel to γ is a closed curve as
well. This is easy to see because |δk − γk|/|δk+1 − γk+1| = sin(αk+1)/ sin(βk)
by construction. Thus δn+1 = δ1 ⇔

∏
k sinαk/

∏
k sin βk = 1. Now take a

parallel curve δ (which we know is closed) and translate the edges between γ
and δ to the origin forming a third curve νk = δk − γk. Again the edges of ν
are parallel to γ. Moreover the Triangles 4νkνk+10 are similar to 4γkγk+1γ̃k
with some factor of similarity λk. One can read of the cusps of γ̃ from the
differences ∆λ: γ̃k is a cusp vertex iff ∆λk−1 and ∆λk differ in sign. Since∑

k ∆λk = 0, we know that it changes sign at least twice. Now assume that
it changes sign exactly twice and suppose that ∆λk > 0 for k = 1, . . . , j − 1
and ∆λk < 0 for k = j, . . . , n (it can never be 0 since the set of lines is generic
by assumption). By “integration by parts” we find∑

k ∆λkγk+1 =
∑

k λk+1γk+1 −
∑

k λkγk+1 =
∑

k λkγk −
∑

k λkγk+1

= −
∑
λk∆γk−1 = −

∑
k ∆νk = 0.

But if we choose the origin on a line crossing the edges γ1, γ2 and γj, γj+1

then all ∆λkγk+1 lie on one side of the line and can therefore not sum up to
zero. Thus the assumption was wrong and there is one more change of sign.
Since the ∆λ sum to zero the number must be even which forces the number
to be at least four.
Remark. Unlike the smooth case, we can not generalize the discrete four
vertex theorems easily to non convex curves. Wegner has counter examples
here.

2.5 curves in CP1

We will now turn to Möbius geometry for a moment, meaning we want to
do geometry invariant under Möbius transformations. They are the group of
transformations generated by (an even number of) inversions on circles10.

z 7→ r2 z − c
|z − c|2

+ c

10hyperspheres in general but we are concerned with plane geometry for now. We will
however, think of straight lines (hyperplanes) as circles (spheres) as well
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gives the inversion on a circle with centre c and radius r. Choosing c = 0
and r = a leaves us with z 7→ a2/z̄ and choosing c = ir gives in the limit
r →∞ the inversion on the real axis:

lim
r→∞

r2 z − ir
|z − ir|2

+ ir = lim
r→∞

r2

z̄ + ir
+ ir = lim

r→∞

r2 + irz̄ − r2

z̄ + ir
= z̄.

In a similar manner we can treat the inversion on any other line. The com-
position of the inversions on two lines will give a rotation around their inter-
section point and if they are parallel it will give a translation.

Combining the above maps gives in general maps of the form

z 7→ az + b

cz + d
, with ad− bc 6= 0

(and an additional complex conjugate if the number of inversions was odd).
In complex analysis Möbius transformations are usually introduced in this
form as fractional linear maps. The zero of the denominator generates a pole
and in turn one can think of a/c as the image of∞ under the map. This shows
that Möbius transformations are in fact mappings from C∗ = C∪ {∞} onto
itself. But C∗ can be seen as CP1 – the complex projective line or the space
of all 1-dim linear subspaces in C2: Each line t

(
a
b

)
in C2 can be identified

with the complex number a/b except for the line t
(
a
0

)
which one identifies

with ∞ (think of each line getting identified with its intersection with the
line

(
t
1

)
which is unique and possible for all lines except the one parallel to(

t
1

)
).

Figure 10: Points in RP 1 correspond to lines in R2.
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If we now identify z with
(
z
1

)
in C2 if z 6= ∞ and z = ∞ with

(
1
0

)
then a matrix M =

(
a b
c d

)
∈ GL(2,C) acts on z ∈ CP1 by M(z) =(

a b
c d

)(
z
1

)
=
(
az+b
cz+d

) ∼= az+b
cz+d

, which is a Möbius transformation. Since

scaling does not matter here we can normalize M to be in SL(2,C). In
homogenous coordinates, Möbius transformations are just linear maps form
SL(2,C).

Now let us find the simplest invariant in Möbius geometry. For
(
α
β

)
and(

γ
δ

)
in C2

det

((
α

β

)
,

(
γ

δ

))
= det

(
M

(
α

β

)
,M

(
γ

δ

))
but this expression is not invariant, since scaling the vectors in C2 will change
the value of the determinant. In fact there is no invariant for two or even three
points in CP1 in general position, since up to scaling one can always map
three distinct vectors to three other distinct ones by a Möbius transformation:
Mv1 = λ1w1,Mv2 = λ2w2,Mv3 = λ3w3 gives 6 equations for 6 unknowns
(λ1, λ2, λ3 and 3 entries in M) and can in general be solved.

For 4 vectors in general position we can form an invariant:

Definition 2.30 The cross-ratio of four vectors v1, . . . , v4 in C2\{0} ∼= CP1

is given by
det(v1, v2)

det(v2, v3)

det(v3, v4)

det(v4, v1)
=: cr(v1, v2, v3, v4).

Since det(
(
a
1

)
,
(
b
1

)
) = b−a, for four finite points a, b, c, d the cross-ratio reads

cr(a, b, c, d)
a− b
b− c

c− d
d− a

.

This is well-defined and invariant under scaling since all four vectors appear
linear in the numerator and in the denominator.

We will now give the cross-ratio some interpretation in the setup of our
curves. If γ is arc-length parameterized we can calculate

cr(γ1̄, γ, γ11, γ1) = S1̄S1

(S1̄+S)(S+S1)
=
((

1 + S
S1̄

)(
S
S1

+ 1
))−1

=
((

1 + 2i−κ
2i+κ

) (
1 + 2i+κ1

2i−κ1

))−1

= −1
16

(2i+ κ)(2i− κ1) = 1
16

(2i(κ1 − κ) + κκ1 + 4)
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So cr(γ1̄, γ, γ11, γ1)− 1/4 = (1/16)(2i∆κ+ κκ1). Now for a smooth curve
κ = γ′′

iγ′
and thus

2iκ′ + κ2 = 2
γ′′′

γ′
− 3

(
γ′′

γ′

)2

=: 2S(γ).

Here S(γ) denotes the Schwarzian derivative. It is not really a derivative
but it measures how far a function is from being a Möbius transformation
(S(M) = 0 and S(M(f)) = S(f) for all Möbius transformations M). We
will define the cross-ratio minus 1/4 to be a discrete Schwarzian derivative.
Note that since cr(1, 2, 4, 3) = 1/4 the discrete Schwarzian derivative of an
arc-length parameterized discrete straight line (or the identity) will be 0 and
since the cross-ratio is invariant under Möbius transformations so will be our
discrete Schwarzian derivative.
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Next we will show that our vertex tangent vector is in fact a Möbius
geometric notion. For this we calculate the Möbius transformation that sends
−1, 0, and 1 to γ1̄, γ, and γ1. In other words we want to find a, b, c, and d
such that

−a+ b

−c+ d
= γ1̄,

b

d
= γ,

a+ b

c+ d
= γ1.

It turns out that c 6= 0 and thus we can choose d = 1 giving us a = γ − γ1̄ −
γ1̄

γ1−2γ+γ1̄

γ1−γ1̄
, b = γ, and c = −γ1−2γ+γ1̄

γ1−γ1̄
.

Now the derivative of M(z) = az+b
cz+d

is M ′(z) = ad−bc
(cz+d)2 and its value at 0

is

M ′(0) =
(γ − γ1̄)(γ1 − γ1̄)− γ1̄(γ1 − 2γ + γ1̄) + γ(γ1 − 2γ + γ1̄)

γ1 − γ1̄

= 2
(γ1 − γ)(γ − γ1̄)

γ1 − γ1̄

= ∆hγ.

Reading this in a differential geometric way it says that the unit tangent
vector of the real axis at 0 is mapped to our vertex tangent vector at γ and
by composition of Möbius transformations we see that the differential dM
of a Möbius transformation M sends the vertex tangent vectors of a discrete
curve γ to the vertex tangent vectors of M(γ).

To investigate discrete curves γ ∈ CP1 (and in particular flows on them)
we will usually lift them intoC2: Γk = λk

(
γk
1

)
(in case γk =∞ set Γk = λk

(
1
0

)
)

and in order to fix the scale freedom λ we will require det(Γk,Γk+1) = 1.11

Define
uk := det(Γk−1,Γk+1).

Then one finds Γk+1 = ukΓk − Γk−1 and

Qk := cr(γk−1, γk, γk+2, γk+1) =
1

ukuk+1

.

Since det(Γ,Γ1 − Γ1̄) = 2, Γ and Γ1 − Γ1̄ are linear independent and any
flow Γ̇ on Γ can be written as

Γ̇ = αΓ +
β

u
(Γ1 − Γ1̄).

11this is a discrete version of Keppler’s 2nd law: the line joining a planet and its sun
sweeps out equal areas in equal intervals of time - or for the orbit p(t): det(p(t), p′(t)) =
const. Discretizing the derivative as a difference gives our normalization.
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the condition for such a flow to preserve our normalization reads

0 =
d

dt
det(Γ,Γ1) = α− β + α1 + β1.

So we can require (α1 + α) = −(β1 − β).

Lemma 2.31 The quantities u and Q evolve under a flow Γ̇ = αΓ + β
u
(Γ1−

Γ1̄) with

u̇ = u(α1 + α1̄ + β1 − β1̄) + 2

(
β1̄

u1̄

− β1

u1

)
Q̇

Q
= 2 ((Q− 1)(β1 − β) +Q1β11 −Q1̄β1̄) .

Proof. A straight forward calculation.

Lemma 2.32 Given a discrete curve γ, if its lift Γ evolves with Γ̇ = αΓ +
β
u
(Γ1 − Γ1̄), then

γ̇ = β∆hγ.

Proof. Insert and expand using the fact that γ is the quotient of the two

components of the vector Γ =
(

Γ(1)

Γ(2)

)
: γ = Γ(1)/Γ(2).

The simplest flow one can think of is β ≡ 0 resulting in α1 = −α. This
flow corresponds to the initial freedom of choosing the scaling of Γ0 and is
clearly not visible on the curve γ in CP1. Next we can choose β = const,
say β = 1/2 and for simplicity α = 0. This gives for the curve Γ and the
quantities u and Q

Γ̇ = 1
2u

(Γ1 − Γ1̄)
u̇ = 1

u1̄
− 1

u1
− 2αu

Q̇ = Q(Q1 −Q1̄)

the evolution equation for Q being the well known Volterra model (see
[FT86]). For the curve γ in CP1 the flow reads γ̇ = 1/2∆hγ. In case of
an arc-length parameterized curve this is our tangential flow.12

12The notion of arc-length parameterization is not a Möbius invariant one but if it
happens that the curve is arc-length parameterized with one choice of∞, then it will stay
so under this flow and choice.
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Next we choose β = (Q+Q1̄) and get

Q̇
Q

= 2 ((Q− 1)(Q1 −Q1̄) +Q1(Q11 +Q1)−Q1̄(Q1̄ +Q1̄1̄))

γ̇ = 1
16

(2i(κ1 − κ) + κκ1 + 4) + (2i(κ− κ1̄) + κ1̄κ+ 4)) ∆hγ.

Here we assumed again that γ is arc-length parameterized and up to some
scaling and a constant tangential flow part one can think of this as a discrete
version of γ̇ = S(γ)γ′ where S(γ) denotes the Schwarzian derivative. In the
smooth case the curvature then solves the mKdV equation κ̇ = κ′′′ + 3

2
κ2κ′:

With γ̇ = S(γ)γ′ = (κ
2

2
+ iκ′)γ′ and κ = γ′′

iγ′
we find:

γ̇′ = (κ′κ+ iκ′′)γ′ + (κ
2

2
+ iκ′)γ′′

= i(κ′′ + κ3

2
)γ′,

γ̇′′ = i(κ′′′ + 3
2
κ2κ′)γ′ − (κ′′ + κ3

2
)κγ′,

κ̇ = −i
(
γ̇′′γ′−γ′′γ̇′

(γ′)2

)
= −i

(
i(κ′′′ + 3

2
κ2κ′)− (κ′′κ+ κ4

2
) + κ(κ′′ + κ3

2
)
)

= κ′′′ + 3
2
κ2κ′

Therefore one can think of the evolution of the discrete κ as a discrete
mKdV equation [HK04]. It can be computed to be

κ̇

1 + κ2

4

=
1

4
(κ1 − κ1̄) +

1

6

(
(
κ2

4
+ 1)(κ11 + κ)− (

κ2

4
+ 1)(κ+ κ1̄1̄)

)
.

Remark. One can conjecture with good reason (again see [HK04]) that a

hierarchy of flows can be generated by iterating βnew1 − βnew = Q̇old

Qold
as we

have in essence done above. the conjecture here is that Q̇old

Qold
can always be

“integrated” to give a closed (locally defined) expression for βnew.

We are now about to introduce a Lax-pair for the equations that arise
from the flow evolutions. That is, we will describe them as compatibility
conditions for a linear matrix problem.

The matrix F T = (ΓΓ1̄) (T stands for the matrix transposed here) clearly
evolves by

F t
1 = F T

(
u 1
−1 0

)
=: F TLT
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since Γ1 = uΓ− Γ1̄ and for a flow Γ̇ = αΓ + β
u
(Γ1 − Γ1̄) we get

Ḟ T = F T

(
α + β 2β1̄

u1̄

−2β
u

α1̄ − β1̄

)
=: F TV T .

So we have the matrix problem Fk+1 = LkFk and Ḟk = VkFk and the com-
patibility condition for this system is (using Lk = Fk+1F

−1
k ):

L̇k = Ḟk+1F
−1
k − Fk+1F

−1
k ḞkF

−1
k = Vk+1Fk+1F

−1
k − Fk+1F

−1
k VkFkF

−1
k

= Vk+1Lk − LkVk.

This set of equations in essence gives us back the condition on α and the
time evolution of u. the matrices L and V are called a Lax-pair.
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2.6 Darboux transformations and time discrete flows

Lemma 2.33 Let a, b, and d ∈ CP1 in general position be given and choose
µ ∈ C. Then there is a unique c ∈ CP1 with cr(a, b, c, d) = µ and the map
sending d 7→ c given a and b is a Möbius transformation.

Proof. Since cr(0,∞, x, d) = −∞
∞−x

x−d
d−0

= d−x
d

there is a unique x = 1−µ that
satisfies cr(0,∞, x, 1) = µ and since there is a unique Möbius transformation
M sending a, b, and d to 0,∞, and 1, c = M−1(x) is the unique number
satisfying cr(a, b, c, d) = cr(M(a),M(b),M(c),M(d)) = cr(0,∞, x, 1) = µ.
If one fixes any Möbius transformation M sending a and b to 0 and ∞
independent of d then µ = d−x

d
can again be solved for x giving the Möbius

transformation N : d 7→ d(1−µ). Thus the map sending d to c is M−1◦N ◦M
and indeed a Möbius transformation. Note that it is unique although we had
freedom in the choice of M .

Corollary 2.34 The quantity Qk = cr(γk−1, γk, γk+2, γk+1)determines the
discrete curve γ uniquely up to Möbius transformations.

Proof. Given γ0, γ1, and γ2 We can iteratively reconstruct γ by the above
lemma given Q. Choosing different initial points γ̃0, γ̃1, and γ̃2 gives a curve
that is related to the first one by applying the Möbius transformation that
is fixed by the condition M(γi) = γ̃i, i = 1, 2, 3.

Definition 2.35 Let γ be a regular discrete curve in CP1. Given µ ∈ C
and an initial point γ̃0 the unique discrete curve γ̃ satisfying

cr(γk, γk+1, γ̃k+1, γ̃k) = µ

for all k is called a Darboux transform of γ.

Remark. There is a 4 (real) parameter family of Darboux transforms for a
given curve.
Now assume γ is a closed curve with period n. Then for any Darboux trans-
form γ̃, the map sending γ̃0 to γ̃n is a Möbius transformation H. It depends
on the curve γ and the parameter µ of the Darboux transformation but not
on the initial point γ̃0. Generically a Möbius transformation has two fix-
points (corresponding to the two eigenlines of the SL(2,C)-matrix).13 So
if (and only if) we choose γ̃0 to be one of the two fix-points the Darboux
transform γ̃ will be closed again. All together:

13The two fix-points may coincide: A translation only fixes ∞. If a Möbius transforma-
tion has three fix-points it is already the identity.
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Lemma 2.36 For each parameter µ ∈ C there are in general two distinct
Darboux transforms.14

We can read them as history and future of a time-discrete evolution.
The next lemma shows how the quantity Q changes under this evolution.

Lemma 2.37 Let γ̃ be a Darboux transform of γ with parameter µ and define
sk = cr(γk−1, γ̃k, γk+1, γk). Then

Q̃k = Qk
sk+1

sk+1

and
(1− µ)Qk =

sk+1

(1− sk)(sk+1 − 1)
.

For use in the proof we will state some identities for the cross-ratio under
permutation of the arguments in Fig. 11.
It should be read in the following way: the four vertices are symbolizing the
four arguments, the arrows show their order as arguments in the cross-ratio,
the dashed line and the not drawn edge connecting the start and end points
will form the differences in the denominator, while the two solid lines give
rise to the differences in the numerator of the cross-ratio expression.
Proof. Using the above identities one finds

(1− µ) = cr(γk, γ̃k+1, γk+1, γ̃k)

Qk = cr(γk−1, γk, γk+2, γk+1)

Q̃k = cr(γ̃k−1, γ̃k, γ̃k+2, γ̃k+1)

1
1−sk

= cr(γk−1, γk, γ̃k, γk+1)

sk+1

sk+1−1
= cr(γk, γ̃k+1, γk+1, γk+2)

Multiplying the first two and the last two equations gives the second claim.
For the first claim define s̃k = cr(γ̃k−1, γk, γ̃k+1, γ̃k). One finds sks̃k = 1 and

14The set of closed Darboux transforms is in fact a Riemann surface. The map form it
into the complex µ-plane is a branched double cover.
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Figure 11: Cross-ratios for permutations of the arguments.

by symmetry

(1− µ)Q̃k = s̃k+1

(1−s̃k)(s̃k+1−1)
=

1
sk+1

(1− 1
sk

)( 1
sk+1

−1)
= 1

(1− 1
sk

)(1−sk+1)

= sk
(sk−1)(1−sk+1)

= sk
sk+1

sk+1

(1−sk)(sk+1−1)
= sk

sk+1
Qk(1− µ).

Remark.

• This time discrete evolution can easily be identified with the time dis-
crete Volterra model [HK04].

• µ ∼= 1 should be viewed as a time discrete version of our β ≡ const flow
(the CP 1 version of the tangential flow).

• We can create lattices with prescribed cross-ratio from given Cauchy
data (like a stair case path or a pair of lines with m = const and
n = const).
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The next lemma [HJHP99] will give us a Bianchi permutability theorem
as well as a way to Darboux transform whole lattices.

Lemma 2.38 (Hexahedron lemma) Given a quadrilateral x1, . . . , x4 ∈ C
with cross-ratio cr(x1, x2, x3, x4) = µ. Then for any λ ∈ C there is a unique
quadrilateral y1, y2, y3, y4 ∈ C to each initial y1 such that

cr(y1, y2, y3, y4) = µ = cr(x1, x2, x3, x4)
cr(y1, y2, x2, x1) = λµ = cr(y3, y4, x4, x3)
cr(y2, y3, x3, x2) = λ = cr(y4, y1, x1, x4).

Proof. Evolve y1 around x1, x2, x3, x4 using the unique cross-ratio evolution
to generate y2, y3, and y4 and check for the two unused cross-ratios.

Corollary 2.39 (Bianchi permutability) Given a regular discrete curve
γ in CP1 let γ̂ be a Darboux transform of γ to the parameter λ and γ̃ be a
Darboux transform of γ to the parameter µ. Then there is a unique curve ˆ̃γ
that is a λ-Darboux transform of γ̃ and a µ-Darboux transform of γ̂.

Proof. Choose ˆ̃γ0 to have cr(γ0, γ̃0, ˆ̃γ0, γ̂0) = λ
µ
. Then by the previous lemma

there is a unique ˆ̃γ1 that gives cr(γ1, γ̃1, ˆ̃γ1, γ̂1) = λ
µ

and cr(γ̂0, γ̂1, ˆ̃γ1, ˆ̃γ0) = µ

and cr(γ̃0, γ̃1, ˆ̃γ1, ˆ̃γ0) = λ. This clearly can be extended along the whole
triplet of curves.

Corollary 2.40 (Darboux transformation for meshes) Given a map z :
Z2 → C with all elementary quadrilaterals having cr(z, z1, z12, z2) = µ then
for each initial point z̃0,0 and each λ ∈ C there is a map z̃ : Z2 → C such
that

cr(z̃, z̃1, z̃12, z̃2) = µ,
cr(z, z1, z̃1, z̃) = λ,
cr(z, z2, z̃2, z̃) = λµ.

Proof. One can interpret the sequence γk = zk,0 as a discrete curve and
γ̂k = zk,1 as a µ-Darboux transform of it. Then starting with z̃0,0 we can
create a λ-Darboux transform for γ. The Binachi permutability now states
that ˆ̃γk = z̃k,1 is given uniquely such that ˆ̃γk = z̃k,1 is a λ-Darboux transform
of γ̂k = zk,1 and a µ-Darboux transform of γ̃k. Iterating this defines the map
z̃ uniquely and satisfies the stated cross-ratio conditions.
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Lecture 8 Tim Hoffmann 41

Figure 12: A Tractrix and Darboux transform of the straight line.

Remark. We can relax the conditions here: if z : Z2 → C has cross-ratios
cr(zk,l, zk+1,l, zk+1,l+1, zk,l+1) = αk

βl
then for λ ∈ C and an initial z̃0,0 we find

a unique map z̃ : Z2 → C with

cr(z̃k,l, z̃k+1,l, z̃k+1,l+1, z̃k,l+1) = αk
βl

cr(zk,l, zk+1,l, z̃k+1,l, z̃k,l) = βl
λ

cr(zk,l, zk,l+1, z̃k,l+1, z̃k,l) = αk
λ

Now we will turn back and discuss what the Darboux transformation is in
the euclidian picture.

Definition 2.41 Let γ be a smooth arc-length parameterized curve. γ̂ is
called a Tractrix of γ if v := γ̂ − γ satisfies

• |v| = const,

• γ̂′ ‖ v.

If γ̂ is a Tractrix of γ the curve γ̃ := γ+2v = γ+2(γ̂−γ) is called a Darboux
transform of γ.

Fig. 12 shows the Tractrix and Darboux transform of a straight line.

Lemma 2.42 The Darboux transform of an arc-length parameterized curve
is again parameterized by arc-length.

Proof. Since |v| = const, v ⊥ v′ holds. Now

〈γ̃′, γ̃′〉 = 1 + 4 〈v′, γ′〉+ 4 〈v′, v′〉 = 1 + 4 〈v′, γ̂′〉 = 1

since γ̂′ ‖ v ⊥ v′.
Note that γ̂ is a Tractrix of γ̃ as well.
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42 Tim Hoffmann Lecture 8

Definition 2.43 Let γ be a arc-length parameterized discrete curve. Then
γ̃ is called a Darboux transform of γ if |γ̃1 − γ̃| = 1, |γ̃ − γ| = l = const and
γ, γ1, γ̃1, and γ̃ do not form a parallelogram. γ̂ = 1/2(γ̃ + γ) is then called a
discrete Tractrix of γ (and γ̃).

Remark.

• It is easy to see that the definition implies ∆γ+∆γ̃ ‖ (γ̃−γ)+(γ̃1−γ1).

• cr(γ, γ1, γ̃1, γ̃) = 1
l2

. For the absolute value of the cross-ratio this is
obvious. For its argument, observe that the triangles (γ, γ1, γ̃) and
(γ̃, γ1, γ̃1) are similar giving that the arguments of (γ − γ1)/(γ1 − γ̃1)
and (γ̃1 − γ̃)/(γ̃ − γ) sum to a multiple of 2π.
So indeed the euclidean Darboux transform is a special case of the one
we formulated for the CP1 picture.

• One can show that the Darboux transformation commutes with the
tangential and (m)KdV flows: If γ and a Darboux transform γ̃ evolve
with one of these flows they stay related by a Darboux transformation
for all times.

3 discrete curves in R3

When describing curves and surfaces in R3 we will frequently switch models
for R3 depending on whether we do euclidean or Möbius (or other) geometry.
when doing euclidean geometry a quaternionic description turns out to be
the most useful.

3.1 R
3 and the Quaternions

Definition 3.1 The Quaternions H are the 4-dimensional real vector space
spanned by 1, i, qj,and k furnished with a multiplication given by

ij = k, jk = i, ki = j, i2 = j2 = k2 = −1.

There is a representation of H in the complex 2 × 2-matrices gl(2,C) =
Mat(2,C) via

1 ∼=
(

1 0
0 1

)
, i ∼= −iσ1 = −i

(
0 1
1 0

)
, j ∼= −iσ2 = −i

(
0 −i
i 0

)
,
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k ∼= −iσ3 = −i
(

1 0
0 −1

)
.

The matrices σk are sometimes called Pauli spin matrices. In analogy to the
complex numbers one defines for q ∈ H, q = α + βi+ γj+ δk

• Re(q) = α

• Im(q) = q − Re(q) = βi+ γj+ δk

• q̄ = q − 2Im(q) = α− βi− γj− δk

• |q| =
√
qq̄ =

√
α2 + β2 + γ2 + δ2

and finds

q−1 =
q̄

|q|2
.

Note that in contrast to the complex case Im(q) is not a real number (unless
it is 0) but lies in the imaginary quaternions ImH := span{i, j,k}.
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We will identify the real 3-dim vector space ImH with R3. For v, w ∈ R3

we will denote the usual euclidean inner product with 〈v, w〉 = v1w1 +v2w2 +
v3w3 and the vector product with v×w = (v2w3− v3w2, v3w1− v1w3, v1w2−
v2w1). Using the identification we now find for v, w ∈ ImH ∼= R3

vw = −〈v, w〉+ v × w

thus the quaternionic product incorporates both scalar and vector product
in R3 in one multiplication formula.

Clearly R4 ⊃ S3 = {a ∈ H | |a| = 1} and using our matrix representation
of H we also see {a ∈ H | |a| = 1} = SU(2) Now for a unit quaternion
a = cos ω

2
+ sin ω

2
v with v ∈ ImH, |v| = 1 the map

x 7→ axa−1

on ImH is a rotation around the axis v by the angle ω

axa−1 = cosω x+ sinω v × x+ (1− cosω) 〈v, x〉 v.

However the correspondence is not one-to-one since a and −a represent the
same rotation. The map furnishes a group homomorphism S3 = SU(2) →
SO(3) with kernel {∓1} showing that SU(2) is a double cover of SO(3) (see
e.g. [EHH+92]). More generally one finds

Theorem 3.2 (Hamilton) For any map F ∈ O(3) there is a ∈ S3 such
that F (x) = axa−1 if F is orientation preserving and F (x) = ax̄a−1 if F is
orientation reversing.

Again we only cite the analog theorem for O(4) by Cayley:

Theorem 3.3 (Cayley) Any orthogonal transformation F ∈ O(4) can be
written as either F (x) = axb or F (x) = x 7→ ax̄b, a, b ∈ S3 depending on
whether F is orientation preserving or orientation reversing.

Example 3.1 We will introduce the notion of a moving frame for curves in
this example. The idea is to attach an (orientation preserving) orthogonal
transformation to every point of the curve that maps the first unit basis vector
to the tangent vector of the curve. The image of the remaining vectors of the
standard orthonormal basis will then span the normal space at that point. We
will make use of our above considerations and describe the transformations
with quaternions:
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Let γ : I → R3 be a smooth arc-length parameterized curve. F : I → S3

is called a (smooth) frame for γ if

F−1iF = γ′.

It is called parallel if in addition

(F−1jF )′ ‖ γ′

holds. If we write A := F ′F−1 then the parallelity condition gives that A ∈
span{j,k}:

F−1iF ‖ (F−1jF )′ = −F−1F ′F−1jF + F−1jF ′F−1F = F−1 (jA− Aj)F.

So i ‖ jA− Aj or A ∈ span{j,k}. Knowing this we can write A = Ψk with
Ψ ∈ C ∼= span{1, i}.

Definition 3.4 Ψ is called the complex curvature of γ.

The same can be done in the discrete domain:

Definition 3.5 Let γ : I → R3 be an arc-length parameterized discrete
curve. F : I → S3 with F−1iF = ∆γ is called a discrete frame. F is called
a parallel frame if in addition Im(F−1

k−1jFk−1F
−1
k jFk) ‖ Im(∆γk−1∆γk) holds.

Again we can define A by Fk+1 = AkFk and one finds that

A = cos
φ

2
− sin

φ

2
e

P
n iτnk

with τ = ∠(B1, B), B = ∆γ1̄×∆γ
‖∆γ1̄×∆γ‖ and φ = ∠(∆γ1̄,∆γ) as before. Now we

can renormalize F such that A = 1 + Ψ
2
k.

Definition 3.6 Ψ is called the (discrete) complex curvature of γ. τ is the
discrete torsion.

The absolute value if the discrete complex curvature is the curvature we al-
ready defined for plane curves.15 Note that both smooth and discrete complex
curvature are defined up to a unitary factor only (the constant of integration
/summation for the exponent).

15One can actually show that the smooth complex curvature is given by Ψ = κei
R
τ in

terms of the curvature κ and the torsion τ .
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3.2 Möbius transformations in higher dimensions

We will now collect a few facts about Möbius geometry in space. Therefore
we will for now treat hyperplanes as hyperspheres in the same way we already
did with lines and circles in the plane.

Definition 3.7 The Möbius group is the group of transformations of Rn ∪
{∞} that is generated by inversions on hyperspheres (or planes).

Remark. Note that the stereographic projection can be viewed as an inver-
sion on a sphere restricted to S2.

The cross-ratio was the simplest invariant in plane M/”obius geometry
and we can almost transfer this result to arbitrary dimensions: there is always
a 2-sphere through 4 points in Rn. It is unique if the points are in general
position otherwise the points lie on a circle already. Now this sphere (or
any sphere containing the circle) can be viewed as the Riemann sphere of
complex numbers. On that we can compute a cross-ratio and assign it to the
4 points. The only ambiguity is the orientation of that 2-sphere: It is not
fixed by the 4 points and a change of orientation will change the cross-ratio
into its complex conjugate.

Definition 3.8 The cross-ratio of four points in Rn is given by the real part
and absolute value of the complex cross-ratio of the four points on the sphere
through them interpreted as the Riemann sphere.

In R4 = H the cross-ratio for q1, q2, q3, and q4 can be computed via real part
and norm of

qcr(q1, q2, q3, q4) := (q1 − q2)(q2 − q3)−1(q3 − q4)(q4 − q1)−1.

Lemma 3.9 qcr is invariant under M/”obius transformations up to a con-
jugation with a non vanishing quaternion.

Proof. qcr is clearly invariant under translations and scaling. So we can
restrict our proof to the case of the inversion qi 7→ q−1

i and q1 6= 0. But

qcr(q−1
1 , q−1

2 , q−1
3 , q−1

4 ) = (q−1
1 − q−1

2 )(q−1
2 − q−1

3 )−1(q−1
3 − q−1

4 )(q−1
4 − q−1

1 )−1

= q−1
1 (q1 − q2)(q2 − q3)−1(q3 − q4)(q4 − q1)−1q1

= q−1
1 qcr(q1, q2, q3, q4)q1.
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Remark. If q1, q2, q3, and q4 are co-planar we can rotate and translate the
plane into span{1, i}. Here the quaternionic cross-ratio coincides with the
complex one.
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4 discrete surfaces in R3

4.1 isothermic surfaces

We will now consider isothermic surfaces. The class of isothermic surfaces
covers a wide range of classical surfaces including quadrics, surfaces of revo-
lution, and minimal as well as cmc (constant mean curvature) surfaces.

When discretizing isothermic surfaces we will follow the “historic route”
(as in [BP96]) first and then give an alternative description that allows a
more direct formulation of these discrete surfaces. But first we will collect
some basic facts about isothermic surfaces in the smooth setup.

Definition 4.1 Let f : R2 3 G → Rn be an immersion16. f is called a
conformal if fx = ∂f

∂x
and fy = ∂f

∂y
satisfy fx ⊥ fy and ‖fx‖ = ‖fy‖.

f is called isothermal if in addition fxy = ∂2f
∂x∂y
∈ span{fx, fy}.

Remark.

• A surface is called isothermic if it admits isothermal parameterization17.

• One can rephrase the above definition of isothermal as a conformal
parameterization by curvature lines.

• since all directions in the plane (or on a sphere) are curvature directions
any conformal parameterization of a 2-plane or 2-sphere is isothermal.

Lemma 4.2 If f is a surface in isothermal parameterization and M is a
Möbius transformation, then M ◦ f is isothermal again.

Proof. We only have to check that inverting f leaves it isothermal, since
the conditions to be isothermal are invariant with respect to scaling and
translations.

Let f̃ = f
‖f‖2 then we find

f̃x =
fx‖f‖2 − 2f 〈f, fx〉

‖f‖4
, and f̃y =

fy‖f‖2 − 2f 〈f, fy〉
‖f‖4

16An immersion is a smooth map whose differential is injective in every point.
17It is slightly confusing, that classically conformal coordinates are called isothermic,

while a surface is called isothermic if it allows for isothermal coordinates.
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Since ‖f̃x‖2 = 1
‖f‖8 (‖f‖4‖fx‖2 − 4‖f‖2 〈f, fx〉2 + 4‖f‖2 〈f, fx〉2) = ‖fx‖2

‖f‖4 =
‖fy‖2
‖f‖4 = ‖f̃y‖2 we see that f̃ is conformal. The fact that f̃xy ∈ span{f̃x, f̃y}
can be computed easily as well.

Lemma 4.3 If f is isothermal then f ∗ given by

f ∗x :=
fx
‖fx‖2

, f ∗y := − fy
‖fy‖2

is isothermal again.

Proof. let us set e2u := ‖fx‖2 = ‖fy‖2. Then

2uye
2u = (e2u)y = 2 〈fx, fxy〉 .

and
2uxe

2u = (e2u)x = 2 〈fy, fxy〉 .

giving fxy = uyfx + uxfy. Now

f ∗xy = (e−2ufx)y = e−2u(uxfy − uyfx) = f ∗yx

showing that we can indeed locally integrate f ∗x and f ∗y into a surface f ∗.
This f ∗ is automatically conformal and the above formula shows that f ∗xy ∈
span{f ∗x , f ∗y } = span{fx, fy} as well.

Definition 4.4 f ∗ is called the dual isothermic surface of f .

The next lemma gives us the crucial information that will lead to a dis-
cretization of isothermal parameterized surfaces [BP96]:

Lemma 4.5 Let f be a smooth immersion and

f1 = f + ε(−fx − fy) + ε2

2
(fxx + fyy + 2fxy)

f2 = f + ε(+fx − fy) + ε2

2
(fxx + fyy − 2fxy)

f3 = f + ε(+fx + fy) + ε2

2
(fxx + fyy + 2fxy)

f4 = f + ε(−fx + fy) + ε2

2
(fxx + fyy − 2fxy)

be the quadrilateral given by the truncated Taylor expansion of f(x± ε, y± ε)
at some point (x, y). Then
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• cr(f1, f2, f3, f4) = −1 +O(ε)⇔ f is conformal

• cr(f1, f2, f3, f4) = −1 +O(ε2)⇔ f is isothermal.

Proof. First we can translate the quadrilateral to have f1 = 0 and scale it
by 1/(2ε) giving f1 = 0, f2 = fx − εfxy, f3 = fx + fy, f4 = fy − εfxy, then we
can invert sending f1 to infinity and leaving

f2 =
fx − εfxy
‖fx − εfxy‖2

, f3 =
fx + fy
‖fx + fy‖2

, f4 =
fy − εfxy
‖fy − εfxy‖2

.

Now cr(f1, f2, f3, f4) = −f3−f4

f2−f3
and we need to find out what the conditions

on the parameterization are if f2 − f3 = f3 − f4 + O(εk) or equivalently
2f3 = f2 + f4 + O(εk), k ∈ 1, 2. Expanding with the denominators of the
right hand side of

2
fx + fy
‖fx + fy‖2

=
fx − εfxy
‖fx − εfxy‖2

+
fy − εfxy
‖fy − εfxy‖2

+O(εk)

and omitting terms that are of ε-order greater than 1 gives

2 fx+fy
‖fx+fy‖2 (‖fx‖2 − 2ε 〈fx, fxy〉)(‖fy‖2 − 2ε 〈fy, fxy〉)

= (fx − εfxy)(‖fy‖2 − 2ε 〈fy, fxy〉) + (fy − εfxy)(‖fx‖2 − 2ε 〈fx, fxy〉) +O(εk)

. The constant part yields

2
fx + fy
‖fx + fy‖2

‖fx‖2‖fy‖2 = fx‖fy‖2 + fy‖fx‖2

which gives that f must indeed be conformal. Using this the linear term
reads

−2(fx+fy) 〈fx + fy, fxy〉 = −2fx 〈fy, fxy〉−fxy(‖fy‖2 +‖fx‖2)−2fy 〈fx, fxy〉

giving that fxy ∈ span{fx, fy} and thus showing that f needs to be isother-
mal.

Since all essential properties of isothermic surfaces are phrased in terms of
their isothermal parameterization it seems natural to discretize this parame-
terization and not arbitrarily parameterized isothermic surfaces. This basi-
cally fixes our combinatorics to quad-meshes (planar graphs with all faces

50



Lecture 10 Tim Hoffmann 51

being quadrilaterals) or at a regular neighbourhood to pieces of Z2. This is a
design decision led by the hope that we will be able to find discrete analogs
of all the above properties (and more) of smooth isothermic surfaces.

The last lemma then motivates the definition of discrete isothermic sur-
faces as maps with cross-ratio equal to -1 for all elementary quadrilaterals.

Definition 4.6 F : Z2 → Rn is called discrete isothermic if the cross-ratio
of all elementary quadrilaterals is -1.
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Remark. We will also call F : Z2 → Rn discrete isothermic if

cr(Fk,l, Fk+1,l, Fk+1,l+1, Fk,l+1) =
αk
βl

< 0, αk, βl ∈ R.

This corresponds to a parameterization f with |fx| = α
s
, |fy| = β

s
, fx ⊥ fy, s

a real function, and fxy ∈ span{fx, fy}.

Example 4.1

• Any map z : Z2 → C with cross-ratio -1 as discussed earlier constitutes
a discrete isothermic map. Since isothermal maps in the plane are just
conformal maps these discrete maps are called discrete conformal or
discrete holomorphic maps. Examples include the identity and z(k, l) =
eαk+iβl, β = 2π

n
; α = 2 arcsinh(sin β

2
).

• Starting with Fk,0 and F0,l the cross-ratio evolution gives rise to a
unique F : Z2 → Rn.

The following two lemmata show that our discretization indeed fulfills what
we would expect from a proper discretization: It shares essential properties
with the smooth counterpart.

Lemma 4.7 Let F be discrete isothermic and M be a Möbius transforma-
tion. Then M ◦ F is discrete isothermic again.

Proof. This is obvious, since the defining property of given cross-ratios is
invariant with respect to Möbius transformations.

Lemma 4.8 Let F be discrete isothermic. Then F ∗ given by

F ∗k+1,l − F ∗k,l :=
αk

‖Fk+1,l − Fk,l‖2
(Fk+1,l − Fk,l),

F ∗k,l+1 − F ∗k,l :=
βl

‖Fk,l+1 − Fk,l‖2
(Fk,l+1 − Fk,l)

is discrete isothermic again. It is called the dual.
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Proof. Looking at one quadrilateral we can identify the plane containing
it with C and subsequently work in the complex numbers. Set a = F1 − F ,
b = F12−F1, c = F2−F12, and d = F−F2. Then ac

bd
= α

β
and a+b+c+d = 0.

Using a∗ = F ∗1 − F ∗ = α
ā
, and likewise b∗ = β

b̄
, c∗ = α

c̄
, and d∗ = βd̄ we find

a∗c∗

b∗d∗
=
α2

β2

b̄d̄

āc̄
=
α

β
.

If the dual edges a∗, b∗, c∗, and d∗ form a quadrilateral its cross-ratio will be
the same as the one of the original quadrilateral. What is left to show is that
a∗+ b∗+ c∗+ d∗ = 0. Conjugating the left hand side and multiplying it with
ac results in

αc+ β
ac

b
+ αa+ β

ac

d
= αc+ β

α

β
d+ αa+ β

α

β
b = 0.

This shows that we can integrate the dual edges into closing quadrilaterals.

Remark. As in the smooth case dualizing is a duality: F ∗∗ = F up to
translation.

Example 4.2 Minimal surfaces are known to be isothermic and the dual
surface is their Gauß map (it maps into the unit sphere and thus is a con-
formal map into S2). In fact minimal surfaces can be characterized by this
property and the dual of any conformal map into S2 is minimal. We can use
this characterization to construct discrete minimal surfaces:

1. Start with a discrete holomorphic map.

2. map it onto S2 with a stereographic projection

3. dualize

The resulting discrete isothermic surface is called a discrete minimal surface.
At the moment we can justify this only by construction but we will soon
see that there is a notion of discrete mean curvature that vanishes for these
surfaces as well.). The above mentioned identity map will lead to a discrete
Enneper surface18 (see Fig. 13) and the discrete exponential map gives a
discrete Catenoid19 (see Fig. 14):
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Figure 13: A discrete Enneper surface.

Note that the procedure outlined here is essentially a discrete version of the
well known Weierstraß representation for minimal surfaces (see e. g. [EJ07])
and as in the smooth case one can write the whole procedure in one formula:
given z : Z2 → C discrete holomorphic, set

F1 − F =
1

2
Re

(
1

z1 − z
(1− z1z), i(1 + z1z), z1 + z)

)

F2 − F =
1

2
Re

(
1

z2 − z
(1− z2z), i(1 + z2z), z2 + z)

)

4.2 The classical model for Möbius geometry

We will now turn to an interesting description of Möbius geometry in space.
In the plane we turned to the projective description in homogeneous coordi-
nates to linearize the Möbius group and now we again seek for a model where
the Möbius transformations become linear maps. Avery thorough treatment

18The Enneper surface was introduced 1863 in an explicit parameterization by Alfred
Enneper.

19The catenoid was found 1744 by Leonard Euler. It was the first minimal surface that
was discovered.
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Figure 14: A discrete Catenoid surface.

of various models for Möbius geometry can be found in the Book of Udo
Hertrich-Jeromin [HJ03].

We will identify points p ∈ Rn with light-like lines (1-dim subspaces) in
a Minkowsky Rn+2. But we will also find that hyperspheres (or planes) have
a simple description in this model (as space-like unit vectors).

ConsiderRn+2 together with an inner product 〈x, y〉 = −x0y0+
∑n+1

k=1 xkyk.
Then v ∈ Rn+2 is called space-like / light-like / time-like if 〈v, v〉 is greater
than / equal to / less than 0. The light-like vectors form a double cone the
light cone. They can not be normalized, since they have length 0.

Now identify p ∈ Rn with

p̂ :=

(
1 + ‖p‖2

2
, p,

1− ‖p‖2

2

)
.

It is easy to check that 〈p̂, p̂〉 = 0 and p̂ is indeed light-like. If on the other
hand 〈q, q〉 = 0 for some q ∈ Rn+2 we find a p ∈ Rn with p̂ = λq by

p =
1

q0 + qn+1

(q1, . . . , qn).

(note that p might be ∞).
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Next let s be an oriented hypersphere s in Rn with center c and radius
r. Oriented means here that the radius can be negative. We will identify s
with

ŝ =
1

2r

(
1 + (‖c‖2 − r2), 2c, 1− (1− ‖c‖2 − r2)

)
and a plane with the normal form 〈v, n〉 = d, ‖n‖ = 1 is mapped to

ŝ = (d, n,−d).

Again it is easy to check that 〈ŝ, ŝ〉 = 1 and ŝ is a space-like unit vector in
both cases.

If q ∈ Rn+2 is a space-like unit vector we can find the radius of the sphere
it represents by r = 1

q0+qn+1
and its center by c = r(q1, . . . , qn) (if q0+qn+1 = 0

the sphere is actually a plane with normal n = (q1, . . . , qn) and normal form
〈v, n〉 = q0).
Remark. The geometry behind these identifications is the following: Using
a stereographic projection one can map Rn into Sn ⊂ Rn+1. Thus points
and hyperspheres in Rn correspond to points and hyperspheres in Sn but
the hyperspheres in Sn can be identified with the tip of the cone in Rn+1

that touches Sn in that hypersphere. Now embed Rn+1 in Rn+2 by as {1}×
Rn+1. Then Sn gets mapped into the light cone in Rn+2 and the points that
represent hyperspheres get mapped to vectors outside the light cone (and
thus can be normalized to length 1).
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To see why this model is useful we state the following lemma:

Lemma 4.9 In the above setting

• a point p lies in a sphere s: p ∈ S ⇔ p̂ ⊥ Ŝ

• for two spheres s1 and s2: cos∠(s1, s2) = 〈ŝ1, ŝ2〉

• For a sphere s the map x̂ 7→ x̂− 2 〈x̂, ŝ〉 ŝ is the inversion on s

• for two points p and q: 〈p̂, q̂〉 = −1
2
‖p − q‖2 (note that this only holds

for the normalization we have chosen for p̂ and q̂. In general one can
choose the scaling of p̂ and q̂ freely).

Proof. In all four cases the proof is just a simple calculation:

• For a point p and a sphere s with radii r and centre c

〈p̂, ŝ〉 =
1

2
(r − 〈c− p, c− p〉

r
) = 0⇔ ‖c− p‖ = r ⇔ p ∈ s

holds.

• For two intersecting spheres s1 and s2 with centers c1 and c2 and radii
r1 and r2 respectively, the intersection angle φ is given by the cosine
law

‖c1 − c2‖2 = r2
1 + r2

2 − 2r1r2 cosφ

giving

cosφ =
r2

1 + r2
2 − ‖c1 − c2‖2

2r1r2

.

On the other hand

〈ŝ1, ŝ2〉 =
1

2r1r2

(r2
1 + r2

2 − 〈c1 − c2, c1 − c2〉).

• The inversion on s is given by

x 7→ r2 x− c
‖x− c‖2

+ c

Now first we find that I(x̂) := x̂− 2 〈x̂, ŝ〉 ŝ is an orthogonal map:

〈I(x̂), I(x̂)〉 = 4 〈x̂, ŝ〉2 〈ŝ, ŝ〉 − 4 〈x̂, ŝ〉 〈x̂, ŝ〉+ 〈x̂, x̂〉 = 〈x̂, x̂〉 .
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therefore I sends light-like vectors onto light-like vectors. So

I(x̂) = λ(
1 + |q|2

2
, q,

1− |q|2

2
)

for some point q and a factor λ. One easily finds that λq = |x−c|2
r2 (c +

r2

|x−c|2 (x− c)) and λ = |x−c|2
r2 and concludes that

q =
r2

|x− c|2
(x− c) + c

as claimed.

• The last claim is again a direct calculation

〈p̂, q̂〉 = −1 + |p|2

2

1 + |q|2

2
+〈p, q〉+1− |p|2

2

1− |q|2

2
= −1

2
〈p− q, p− q〉 .

Remark.

• Möbius transformations are orthogonal maps in this model.

• Since Is(x̂) = x̂− 2 〈x̂, ŝ〉 ŝ is orthogonal it maps spheres into spheres.

• Is(ŝ) = −ŝ.

• Is(t̂) = t̂⇔ ŝ ⊥ t̂

• all the above extends to hyperplanes naturally.

• A circle in R3 can be defined as the intersection of two distinct spheres
containing it c = s1 ∩ s2 so c = {p ∈ R3 | 〈p̂, ŝ1〉 = 〈p̂, ŝ2〉 = 0}.
Thus a circle is uniquely defined by the time-like 3-dim subspace that
is perpendicular to ŝ1 and ŝ2. As a consequence all spheres that contain
c are given as linear combinations of ŝ1 and ŝ2. the 3-dim subspace is
of course fixed by prescribing 3 light-like vectors in it, showing that a
circle is determined by three points on it.

The next theorem shows how this model of Möbius geometry helps rewriting
the condition for isothermality.
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Theorem 4.10 A smooth surface f : G ⊃ R2 → Rn is isothermic with

‖fx‖2 = α(x)e2u, ‖fy‖2 = β(x)e2u, fx ⊥ fy, fxy ∈ span{fx, fy}

if and only if
(e−uf̂)xy = λe−uf̂

for some function λ.

Proof. Let f be an isothermic surface in a parameterization as stated in
the theorem. Then fxy = uyfx +uxfy since ‖fx‖2 = 〈fx, fx〉 = α(x)e2u(x,y) ⇒
2 〈fx, fxy〉 = 2‖fx‖2uy and the analog for ‖fy‖. Now

f̂ = (1+‖f‖2
2

, f, 1−‖f‖2
2

)

(e−uf̂)x = −uxe−uf̂ + e−u(〈f, fx〉 , fx,−〈f, fx〉)
(e−uf̂)xy = −uxye−uf̂ + uxuye

−uf̂ − uxe−u(〈f, fy〉 , fy,−〈f, fy〉)
−uye−u(〈f, fx〉 , fx,−〈f, fx〉) + e−u(〈f, fxy〉 , fxy,−〈f, fxy〉)

= (uxuy − uxy)e−uf̂ .

If on the other hand ĝ : G ⊂ R2 → Rn+2 with ĝxy = λĝ is given,
set e−u := ĝ0 + ĝn+1 (note that we can assume ĝ0 + ĝn+1 > 0!). Then
λe−u = λ(ĝ0 + ĝn+1) = (ĝ0 + ĝn+1)xy = (uxuy − uxy)e−u. So λ = uxuy − uxy.
Setting f̂ = euĝ we find

f̂xy = uyf̂x + uxf̂y

This implies in particularfxy = uyfx + uxfy and (f̂0)xy = 〈fx, fy〉+ 〈f, fxy〉 =

〈fx, fy〉+ uy 〈f, fx〉+ ux 〈f, fy〉 = uy(f̂0)x + ux(f̂0)y which gives fx ⊥ fy.
Finally set α := ‖fx‖2e−2u. Then

αy =
2 〈fx, fxy〉 e2u − 2 〈fx, fx〉uye2u

e4u
= 0

so α = α(x) and like wise β = β(y).

Definition 4.11 A map f : G ⊂ R2 → Rn, n > 1 is said to solve the
Moutard equation if

fxy = λf

holds for some function λ.

We see that isothermic surfaces are in one to one correspondence to so-
lutions to the Moutard equation in the light-cone.
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Considering this observation, it seems a natural approach to discretize
the Moutard equation and interpret solutions to it that lie in the light-cone
as discrete isothermic nets. If we denote ∆1F := F1−F and likewise ∆2F :=
F2−F then ∆1∆2F = ∆2∆1F = (F12−F2)− (F1−F ) = F12 +F − (F1 +F2)
is clearly a discretization of the mixed second derivative. Since ∆2∆1F is
defined on a quadrilateral rather than on a vertex comparing it with λF is not
symmetric. A symmetric choice for the right hand side is λ(F12+F+F1+F2).
Now a discrete version of the Moutard equation is

F12 + F − (F1 + F2) = λ(F12 + F + F1 + F2)
⇔ (F12 + F )(1− λ) = (F1 + F2)(1 + λ)
⇔ F12 + F = 1+λ

1−λ(F1 + F2)

The next definition is due to Nimo and Schief (see [NS98]):

Definition 4.12 F : Z2 → Rn, n > 1 is said to solve the discrete Moutard
equation if there exists λ : Z2 → R such that

F12 + F =
1 + λ

1− λ
(F1 + F2)

holds (the diagonal averages are parallel).

Lemma 4.13 The restriction of the discrete Moutard equation to quadrics
of constant length c ∈ R is admissible (and determines λ).

Proof. Let 〈F, F 〉 = 〈F1, F1〉 = 〈F2, F2〉 = c. Then

〈F12, F12〉 = λ2 〈F1 + F2, F1 + F2〉 − 2λ 〈F1 + F2, F 〉+ c = c

if λ = 0 or

λ = 2
〈F1 + F2, F 〉

〈F1 + F2, F1 + F2〉
and

F12 = 2
〈F1 + F2, F 〉

〈F1 + F2, F1 + F2〉
(F1 + F2)− F

(F12 is F mirrored on F1 + F2 or −F12 is F inverted on F1+F2

‖F1+F2‖ .)

Note that c = 0 is allowed here. Note also that x 7→ 2 〈F1+F2,x〉
〈F1+F2,F1+F2〉(F1+F2)−x

sends F1 to F2 and vice versa and is an orthogonal transformation.
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Lemma 4.14 F : Z2 → Rn, n > 1 is discrete isothermic with

cr(Fk,l, Fk+1,l, Fk+1,l+1, Fk,l+1) = −αk
βl

with αβ > 0, if and only if a scaled version of F̂ solves the discrete Moutard
equation in one component of the light cone.

Proof. Let F̂ be a solution to the discrete Moutard equation in the light cone
of Rn+2 with first components > 0 and F its projection to Rn. Obviously
F̂12 is a linear combination of F̂ , F̂1, and F̂2. So the four points lie in a com-
mon 3-space giving that the corresponding points in Rn are concircular (and
therefore have a real cross-ratio). Moreover the notes above on orthogonality
of the map that constitutes the discrete Moutard equation show that〈

F̂ , F̂1

〉
=
〈
F̂2, F̂12

〉
, and

〈
F̂ , F̂2

〉
=
〈
F̂1, F̂12

〉
is true for any solution of the discrete Moutard equation. Thus one can define

αk :=
〈
F̂k,0, F̂k+1,0

〉
=
〈
F̂k,l, F̂k+1,l

〉
βl :=

〈
F̂0,l, F̂0,l+1

〉
=
〈
F̂k,l, F̂k,l+1

〉
All αk and βl have the same sign, since we assumed F̂ to lie in one component
of the light-cone. Now

|cr(Fk,l, Fk+1,l, Fk+1,l+1, Fk,l+1)|2 =

〈
F̂ , F̂1

〉
〈
F̂1, F̂12

〉
〈
F̂12, F̂2

〉
〈
F̂2, F̂

〉 =
α2
k

β2
l

.

To see that the cross-ratio is negative we can compute

(1− cr(Fk,l, Fk+1,l, Fk+1,l+1, Fk,l+1))2 =

〈
F̂ , F̂12

〉
〈
F̂12, F̂2

〉
〈
F̂2, F̂1

〉
〈
F̂1, F̂

〉

=

(α+β)2

〈F̂1,F̂2〉
〈
F̂1, F̂2

〉
β2

= (1 +
α

β
)2 = (1 + |cr(Fk,l, Fk+1,l, Fk+1,l+1, Fk,l+1)|)2.
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So the cross-ratio needs to be negative and F is discrete isothermic.
If on the other hand F is discrete isothermic map in Rn with cross-

ratio −αk
βl

we can scale its lift F̂ ∈ Rn+2 point-wise in such a way that〈
F̂k,l, F̂k+1,l

〉
= αk and

〈
F̂k,l, F̂k,l+1

〉
= βl. Now given F̂ , F̂1, F̂12, and F̂2

with
〈
F̂ , F̂1

〉
=
〈
F̂2, F̂12

〉
= α and

〈
F̂ , F̂2

〉
=
〈
F̂1, F̂12

〉
= β we know that

they are linear dependent (since the corresponding F ’s are concircular) and

µF̂12 = F̂ + νF̂1 + ηF̂2

must hold for some µ, ν, and η.

0 = µ2
〈
F̂12, F̂12

〉
= 2(να + ηβ + νη

〈
F̂1, F̂2

〉
)

⇒ −νη
〈
F̂1, F̂2

〉
= να + ηβ

α =
〈
F̂12, F̂2

〉
= 1

µ
(β + ν

〈
F̂1, F̂2

〉
)

⇒ ηα
µ

= −να
β =

〈
F̂12, F̂1

〉
= 1

µ
(α + η

〈
F̂1, F̂2

〉
)

⇒ νβ
µ

= −ηβ

So together one concludes

η = −µν and ν = −µη ⇒ µ = ±1 and ν = ∓η

and F̂12 − F̂ = λ(F̂1 − F̂2) or F̂12 + F̂ = λ(F̂1 + F̂2). But we already saw
that the second solution corresponds to a negative cross-ratio of F (and thus
the first would give a positive cross-ratio). Thus we finally conclude that the
scaled F̂ solves the Moutard equation.
Remark. The scaling factor that makes F̂ a solution to the Moutard equation
can be interpreted as a discrete version of the metric factor e−u.
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4.3 s-isothermic surfaces

We will now briefly discuss solutions to the discrete Moutard equation in the
space-like unit sphere. This sphere is sometimes called deSitter space.

Definition 4.15 A map F̂ : Z2 → Rn+2 with
〈
F̂ , F̂

〉
= 1 is called a (dis-

crete) s-isothermic map iff F̂ solves the discrete Moutard equation.

Lemma 4.16 s-isothermic maps are Möbius invariant.

Proof. By definition.
s-isothermic maps are build from spheres (which are represented by points in
deSitter space) that have for each quadrilateral a common orthogonal circle
or a common pair of points: The four spheres of a quadrilateral are collinear,
so they span a 3-space. The orthogonal compliment of that 3-space is a 2-
dimensional subspace, that – if space-like – describes a circle (the 1-dim set
of space-like unit vectors in the 2-space give all the spheres that contain the
circle), but if time-like contains exactly two light-like directions that give two
points contained in all four spheres (remember: a point lies on a sphere iff
their vectors in Minkowski R5 are perpendicular). In the limiting case of the
2-space being light-like the touching light-like direction should be counted as
a double point.

In case that the four spheres do touch, the orthogonal circle is inscribed
in the quadrilateral formed by the centres of the four spheres.
Remark.

• Four cyclically touching spheres in R3 always have a circle through the
four touching points.

• Four cyclically touching circles in R3, that do not lie on a common
sphere have a unique orthogonal sphere.

Definition 4.17 (and Lemma) Let F be s-isothermic with centres c and
radii r. F ∗ given by

c∗1 − c∗ =
c1 − c
r1r

, c∗2 − c∗ = −c2 − c
r2r

r∗ =
1

r
is s-isothermic again and called a dual surface of F .
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Proof. we have to show, that F ∗ is well defined and s-isothermic.
If F is s-isothermic then its lift F̂ solves a Moutard equation and we have

1

r
+

1

r12

= λ

(
1

r1

+
1

r2

)
,

c

r
+
c12

r12

= λ

(
c1

r1

+
c2

r2

)
and |c|2 + r2 + |c12|2 + r2

12 = λ (|c1|2 + r2
1 + |c2|2 + r2

2) which fixes λ. Now

0 = (c∗1 − c∗) + (c∗12 − c∗1)− (c∗12 − c∗2)− (c∗2 − c∗)

⇔ 0 = c1−c
r1r
− c12−c1

r12r1
+ c12−c2

r12r2
− c2−c

r2r

⇔
(

1
r

+ 1
r12

)
c1
r1
− 1

r1

(
c
r

+ c12

r12

)
= −

(
1
r12

+ 1
r

)
c2
r2

+ 1
r2

(
c12

r2
+ c

r

)
⇔

((
1
r

+ 1
r12

)
− λ

(
1
r1

+ 1
r2

))
c1
r1

= −
((

1
r12

+ 1
r

)
− λ

(
1
r1

+ 1
r2

))
c2
r2

⇔ (0) c1
r1

= − (0) c2
r2

So F ∗ is well defined. Since F and F ∗ are dual to each other the condition
that the edges of F sum to 0 is equivalent to F ∗ being a solution to the
moutard equation.

Example 4.3 Following the method in example 4.2 we can produce discrete
s-isothermic minimal surfaces by means of a discrete Weierstraß method.
The discrete holomorphic map is replaced here by a circle pattern that can
be thought of as a s-isothermic surface in the plane. This kind of discrete
holomorphic map can be generated by means of a variational principle from
given combinatorics [BS04]. Fig. 15 shows a s-isothermic Enneper surface
and Fig. 16 shows a s-isothermic Catenoid. A full treatment of s-isothermic
minimal surfaces can be found in [BHS06].

4.4 curvatures

There are many possible approaches towards notions of curvature for discrete
surfaces. The one we will follow here emerged in the last years and it turns
out, that it covers astonishingly many cases of special surfaces that have
already been discretized. It uses the Steiner formula and is covered in detail
in [BPW].
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4.4.1 the Steiner formula

Definition 4.18 Let f be a smooth immersion with unit normal field N . A
parallel surface f t is given by f t = f + tN . For sufficiently small t, f t is a
smooth immersion again and N t = N .

Definition 4.19 Let f be a smooth immersion with normal field N . The
area A(f) of f is given by

A(f) =

∫
det(fx, fy, N) dxdy =

∫
ωf

where ωf is the “volume form” of f .

Lemma 4.20 Let f be a smooth immersion with normal field N , mean cur-
vature H and Gauß curvature K. If f t is a smooth parallel surface for f
then

A(f t) =

∫
(1 + 2tH + t2K) det(fx, fy, N) dxdy = A(f) + 2tH(f) + t2K(f)

where H(f) and K(f) are the integrals over mean and Gauß curvature of f .

Proof. Using the coefficients a, b, c, d of the Weingarten operator20 as read
from Nx = afx + cfy and Ny = bfx + dfy, we calculate the derivatives of f t

to be:
(f t)x = fx + tNx = (1 + at)fx + ctfy
(f t)y = fy + tNy = btfx + (1 + dt)fy

Now

A(f t) =
∫

det((f t)x, (f
t)y, N) dxdy

=
∫

det((1 + at)fx + ctfy, btfx + (1 + dt)fy, N) dxdy

=
∫

(1 + at)(1 + dt) det(fx, fy, N) + cbt2 det(fy, fx, N) dxdy

=
∫

(1 + 2tH + t2K) det(fx, fy, N).

20The Weingarten operator is the linear operator that represents the second fundamental
form of a surface with respect to the first.
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Here is an alternative proof: Since N t = N we find that Kω = Ktωt

(note that the focal points are the same) so 1
(k1)t

= 1
k1

+ t and 1
(k2)t

= 1
k2

+ t.
Now

A(f t) =
∫
ωt =

∫
K
Ktω =

∫
k1k2( 1

k1
+ t)( 1

k2
+ t)ω

=
∫

(1 + (k1 + k2)t+ (k1k2)t2)ω =
∫

(1 + 2tH + t2K)ω.

Remark. one can use this to show for example

Kt =
K

1 + 2tH + t2K

H t =
H − tK

1 + 2tH + t2K
.

If the immersion f is of constant positive Gauß curvature K ≡ const and
t = ± 1√

K
then

H t =
H ∓

√
KK

1 +±2 H√
K

+ 1
= −
√
K

2
.

So parallel surfaces in distance t = ± 1√
K

are of constant mean curvature.

Definition 4.21 A line congruence net is a map F : Z2 → R3 with planar
faces together with a map l from Z2 into the set of straight lines in R3 such
that Fi,j ∈ li,j and li,j intersects li+1,j and li,j+1 for all i, j ∈ Z.

Lemma 4.22 A line congruence net has a 1-parameter family of parallel line
congruence nets Ft that have parallel faces and share the lines F t

i,j ∈ li,j.

Proof. Write l0,0 = F0,0 + tN0,0. Fixing t0 we set F t0
0,0 := F0,0 + t0N0,0.

Now if F t0
i,j is known, then there is a unique F t0

i+1,j ∈ li+1,j such that F t0
i+1,j −

F t0
i,j ‖ Fi+1,j − Fi,j and analogously for the other lattice direction. Since F

has planar faces the closing condition around quadrilaterals is automatically
satisfied.
Remark. Note: If one thinks of the lines l as normal lines the definition forces
the net to be something like a discrete curvature line parameterization: F t

1−
F t ‖ F1−F and F t

2−F t ‖ F2−F implies, that the “Weingarten operator” is
diagonal. However, to really have a discrete curvature line parameterization
the normal directions should meet additional conditions.

To derive a discrete Steiner formula, we will need some results on planar
quadrilaterals with parallel faces.
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Definition 4.23 (and lemma)
The oriented area of a triangle ∆ = (p1, p2, p3) is A(∆) = 1

2
[p2 − p1, p3 − p1]

with [pi, pj] = det(pi, pj, N) and N the normal of the plane containing the
triangle. The oriented area of an n-gon g with vertices (p0, . . . , pn−1) is

A(g) =
1

2

n−1∑
i=0

[pi, pi+1]

with the understanding that pn = p0.
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Figure 15: A s-isothermic Enneper surface.
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Figure 16: A s-isothermic Catenoid.
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Proposition 4.24 For a given polygon the set of all polygons with parallel
edges forms a vector space.

Proof. Given an n-gon (p1, . . . , pn) any other n-gon (q1, . . . , qn) with parallel
edges can be described by q1 and the scaling factors λi from qi+1 − qi =
λ(pi+1 − pi), i = i, . . . , n − 2. Sums and scalar multiples for the polygons
correspond to sums and scalar multiples for these coordinates.
The following definition can be found in [PAHA07].

Definition 4.25 Let P = (p1, . . . , pn) and Q = (q1, . . . , qn) be polygons with
parallel edges then

A(P,Q) :=
1

4

n−1∑
i=1

([pi, qi+1] + [qi, pi+1])

is called the mixed area of P and Q.

Lemma 4.26 1. A(P,Q) is a symmetric bilinear form on the vector space
of polygons with parallel faces.

2. A(P ) is a quadratic form thereon

3.
A(P + tQ) = A(P ) + 2tA(P,Q) + t2A(Q).

Proof. Direct computation. A(P,Q) = A(Q,P ) by definition. Also by
definition A(P ) = A(P, P ). Finally:

A(P + tQ) = 1
2

∑
[pi + tqi, pi+1 + tqi+1]

= 1
2

∑
([pi, pi+1] + t[pi, qi+1] + t[qi, pi+1] + t2[qi, qi+1])

= A(P ) + 2tA(P,Q) + t2A(Q).

Now given a line congruence net (F, l) we define a normal map (generically
not of unit length) by choosing one normal Ni,j such that Fi,j + Ni,j ∈ li,j
and determine the length of all other normals by the condition that F + N
should be a parallel mesh. But if F + N is a parallel mesh, then N has
parallel quadrilaterals as well (see Fig. 17), so

A(F + tN) = A(F ) + 2tA(F,N) + t2A(N).
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Figure 17: A line congruence net and its Gauß map.

Definition 4.27 Let (F, l) be a line congruence net with normal map N .
The mean curvature H and the Gauß curvature K are given by

A(F + tN) = (1 + 2tH + t2K)A(F )

for each quadrilateral.

Remark. H and K depend on the scaling of N . Still surfaces of constant
curvatures are well defined.

Minimal surfaces: Since H = A(F,N)
A(F )

. F is minimal iff A(F,N) ≡ 0.

Definition 4.28 Two quadrilaterals P and Q with parallel edges are said to
be dual to each other if

A(P,Q) = 0.

Proposition 4.29 Two quadrilaterals P = (p1, . . . , p4) and Q = (q1, . . . , q4)
with parallel edges are dual to each other iff

p1 − p3 ‖ q2 − q4, and p2 − p4 ‖ q1 − q3.
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Proof. Let a, b, c, d and a∗, b∗, c∗, d∗ denote the edges of P and Q respectively.
For R = P + tQ we know

A(R) = 1
2
[R2 −R1, R3 −R2] + 1

2
[R4 −R3, R1 −R4]

= 1
2

([a+ ta∗, b+ tb∗] + [c+ tc∗, d+ td∗]) .

Now A(P,Q) is 1/2 the term linear in t therein so

4A(P,Q) = [a∗, b] + [a, b∗] + [c∗, d] + [c, d∗]

= [a∗, a+ b] + [a+ b, b∗] + [c∗, c+ d] + [c+ d, d∗]

= [a+ b, b∗ − a∗ + c∗ − d∗] = 2[a+ b, b∗ + c∗].

So A(P,Q) = 0 ⇔ a + b ‖ b∗ + c∗. The same argument works the other
diagonal as well.

Lemma 4.30 Each planar quadrilateral has a dual one. It is unique up to
translation and scaling.

Proof. Let m be the intersection of the diagonals of the quadrilateral
p1, p2, p3, p4 and let v = p1−m

‖p1−m‖ and w = p2−m
‖p2−m‖ . We can assume that m = 0.

Then
p1 = αv, p3 = γv
p2 = βw, p4 = δw

Now we define
q1 = − 1

α
w, q3 = − 1

γ
w

q2 = − 1
β
v, q4 = −1

δ
v

and find

q2 − q1 = − 1
β
v + 1

α
w = 1

αβ
(βw − αv) = 1

αβ
(p2 − p1)

...

So p and q have parallel edges.
To show uniqueness we assume that q̃ is an other dual quadrilateral. By

translation and scaling we can achieve, that the intersections of the diagonals
of q and q̃ coincide and that q̃1 = q1. Since q̃2− q̃1 ‖ q2− q1 and q̃2 and q2 lie
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on the same diagonal they must coincide as well. Iteratively it follows that
q̃3 = q3 and q̃4 = q4.
Remark. Note that although every planar quadrilateral has a dual one this
is in general not true for entire meshes. Meshes that are dualizable are called
Koenigs nets [BS].

Lemma 4.31 The dual of a quadrilateral with cross-ratio cr(�) = −α
β

is
dual in the above sense.

Proof. exercise.
It follows that the discrete (isothermic) minimal surfaces are minimal in

the H ∼= 0 sense.

Theorem 4.32 the line congruence net F with normal N has constant mean
curvature H 6= 0 iff there exists a dual surface in constant distance

F ∗ = F + dN.

F ∗ with normal N has mean curvature −H and the surface F + d
2
N has

constant Gauß curvature K = 4H2.

Proof. We find A(F,N) = HA(F ) ↔ 1
H
A(F,N) = A(F, F ) ↔ A(F, F −

1
H
N) = 0. So d = − 1

H
and F + dN needs to be dual. Since F = F ∗ − dN it

follows that F ∗ has mean curvature −H. Finally

K(F +
d

2
N) =

A(N)

A(F + d
2
N)

=
A(N)

A(F ) + dA(F,N) + d2

4
A(N)

= 4H2.

This notion of discrete cmc surfaces coincides with the one introduced in
an algebraic way by Bobenko and Pinkall [BP99].

With this we end our introduction in discrete differential geometry. The
interested reader may find more on most of the subjects in the cited literature
and especially in the books mentioned in the introduction.
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