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Preface 
 
In our course we will consider the volume integral equations in the following form 
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Many important classes of the wave scattering problems can be described by equations of 
this form; for example, this is the case for problems of electromagnetic and acoustic scattering 
on 3D transparent bodies. The corresponding integral operator is compact (m=1) in acoustic 
problems and singular (m=3) in electromagnetic problems.  
Why do we want to consider integral equations though the initial problems usually are 
formulated as boundary value problems for partial differential equations? For that there are two 
main reasons. 
 I. One of the ways for the mathematical investigation (proof of the existence and 
uniqueness theorems, etc.) of the initial problem of mathematical physics is the following. We 
reduce the initial boundary value problem to an integral equation. Then we establish the 
equivalence of the differential formulation of the problem and the corresponding integral 
equation. It means that any solution of the integral equation (maybe with some restriction on the 
parameters of the problem) satisfies the partial differential equations and boundary condition and 
back. Based on the integral inequalities which are usually obtained from the differential 
formulation, we prove the uniqueness theorem of our problem. Then using the theory of 
solvability of integral equations (Fredholm integral equation or singular integral equation 
theories) in appropriate (from the physical point of view) functional space we prove the 
existence and uniqueness theorem and others facts for the initial problem of mathematical 
physics. In our course we will follow these steps. 
 II. We will construct the methods and algorithms for the numerical solution of the initial 
problems by using integral equations. At the first glance the partial differential equations are 
more appropriate for the numerical solution because after discretization we receive the system of 
linear algebraic equations (SLAE) with sparse matrix in comparison with the full matrix which 
we obtain in the integral equation case. But for the wave scattering problems the solution must 
satisfy the radiation condition at infinity. Therefore for the good accuracy we need to find 
numerically the unknown wave field in the domain which is sufficiently greater than scattering 
object Q and due to 3D of the initial problem the dimension of the SLAE will be huge. Using 
discrete fast Fourier transform techniques and taking into account that the kernels of integral 
equations depend only on the difference of arguments we may construct a fast algorithm for the 
multiplication of the SLAE matrix and the vector. Then applying iterative methods we can build 
the effective methods and algorithms for the numerical solution of the initial problems based on 
the integral equations. 
 
 The Notes would not appear without Professor Yasuhide Fukumoto inviting me to 
Kyushu University. It is my pleasure to thank professor Fukumoto for good hospitality and 
excellent collaboration. 
 
Alexander Samokhin 
December 2008,  Fukuoka 
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PART I 
 
Mathematical properties of integral equations 
 
CHAPTER 1 
 
Acoustic scattering problems 
 
1.1     Formulation of the problem 
 
For acoustic and quantum mechanics cases, an appropriate mathematical problem is treated as 
follows. Find the scalar field u which satisfies the Helmholtz equation 
 

                                                             fuku =+Δ 2 ,                                                 (1.1) 
 

2
3

2

2
2

2

2
1

2

xxx ∂

∂
+

∂

∂
+

∂

∂
=Δ , 

 
and the radiation condition at infinity 
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where k is the wave number, which is the function of coordinates in a bounded 3D domain Q in 
Euclidean space 3E ; const0 == kk  outside Q, 0Re,0Im 00 ≥≥ kk ; the source of the field f  is 
a given function of coordinates; and 1x , 2x , 3x  are the Cartesian coordinates. 
 
1.2     Integral equation 
 
From the theory of the Helmholtz equation we have that the integral representation 
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 satisfies the equation 
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in the domain where f  is a Holder- continuous function (see Definition in Section 3.2). It follows 
obviously from (1.3) that )(0 xu  also satisfies the radiation condition at infinity (1.2). The 
function G is called Green’s function for the Helmholtz equation. 
Rewrite Eq. (1.1) in the following form 
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Unknown field u (see (1.3)-(1.4)) can be presented as 
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Then the initial differential problem can be reduced to the following integral equation for the 
unknown field u in the domain Q  
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Here 0u  is the wave field generated by the source function f in the free space with the constant 
wave number 0k . If we find a solution of the integral equation (1.7) in the domain Q then we 
may calculate )(xu outside Q by using representation (1.6). 
 
1.3     Uniqueness  statement 
 
Assume that the functions )(xf  and )(xk  are Holder-continuous everywhere. Then any solution 
of the integral equation (1.7) satisfies the Helmholtz equation (1.1) and the radiation condition 
and back. 
Let us prove the uniqueness statement for the initial problem (1.1) - (1.2). From (1.1) we have 
                                               ***2* )( fuku =+Δ .                                                    (1.8) 
 
Here symbol * means the complex conjugation. Let rΩ  be the ball of radius r which contains 
the domain Q. Then from (1.1) and (1.8) we obtain the equality 
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We now apply Green’s formula to the first integral on the right-hand side of (1.9) and consider 
its limit as ∞→r  taking radiation condition (1.2) into account. Considering the imaginary part 
of the resultant we finally derive 
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where rS  is the sphere of radius r. 
Relation (1.10) describes the energy conservation law for the wave field.  Note that from the 
physical meaning of the scattering problems 0Im 2 ≥k  and 0Re 0 >k . 
 Let us put that source function f equal zero everywhere. From (1.10) we have 0=u   in the 
domain Q if Qxxk ∈> ,0)(Im 2 . Then by using integral representation (1.6) we obtain that 

0=u  in the whole space. Based on the integral inequalities (which are obtained from (1.1) - 
(1.2), although tangled without any explicit physical meaning) we may prove that homogeneous 
equation (1.1) with radiation condition has only the trivial solution [4], i.e. 0=u  in the whole 
space 3E  if 



                                               Qxxk ∈≥ ,0)(Im 2 .                                                  (1.11) 
 
Thus, we have proved the following statement: under abovementioned restrictions the solution of 
the initial problem (1.1) - (1.2) is unique if it exists. 
 
1.4     Existence statements 
 
To answer the existence question we have to use some results from functional analysis. First, we 
have to specify appropriate functional space. Generally speaking, one can choose different 
spaces, and the choice governs the results of analysis. It is reasonable to apply the following 
criterion: functional space must be sufficiently wide, providing the consideration of all 
physically admissible solutions; however, the space should not be too wide, because in this case, 
for example, the uniqueness may be violated due to the presence of solutions that have no 
physical meaning. The integrals of squared field characteristics stand in the conservation law for 
the scattering problems (1.10). Therefore, one may assume that the space of square-integrable 
functions )(2 QL is the most appropriate from the physical viewpoint as applied to the analysis of 
the integral equations (1.7). 
Thus (see Theorem 3.1) we have the following statement. 
 
Theorem 1.1  There exists the unique solution of the initial problem (1.1) – (1.2) if k(x) and f(x) 
are Holder-continuous everywhere and condition (1.11) is satisfied.   
 
Below we will consider the integral equation (1.7) imposing minimal restrictions on the wave 
function k(x); namely we will assume that the function k(x) is only a bounded function of 
coordinates in domain Q.  
Rewrite (1.7) in the symbolic form 
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where Ŝ  is a linear and continuous operator in )(2 QL . 
First we show that for any )(2 QLf ∈ the following inequality holds 
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Let f be a differentiable function of coordinates. Then, taking into account (1.3), (1.7) and (1.12), 
we see that fSu ˆ−= satisfies everywhere the Helmholtz equation (1.4) and condition at infinity 
(1.2). Then from (1.10), taking into account that the function f is equal zero outside Q and 

0)( kxk =  everywhere, we obtain the inequality (1.13).  Further, any element )(2 QLf ∈  is a 
limit of a sequence of differentiable functions. Therefore, if we pass to the limit and take into 
account that the operator Ŝ  is continuous, we obtain (1.13) for any )(2 QLf ∈ . 
 
Theorem 1.2 [11]. Let )(xk  be a bounded function of coordinates in Q such that 

2
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2 Im)(Im kxk > , Qx∈ . Then the solution of the integral equation (1.7) exists and is unique 
in )(2 QL . 
 
Proof.  Let us multiply both side of Eq. (1.12) by *2
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Function )( 2

0
2 kk −=δ  has an inverse function due to 2

0
2 Im)(Im kxk > . Then we have that Eqs. 

(1.12) and (1.14) are equivalent, i.e. any solution of (1.12) is a solution of (1.14) and back. Let 
Â  denote the operator of Eq. (1.14). For any )(2 QLu∈ we have 
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We conclude from (1.13) that 
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The theorem now follows from Theorem 4.3 and equivalence of Eq. (1.12) and Eq. (1.14). 
The conditions of Theorem 1.2 are more strict than condition of Theorem 1.1 (they are virtually 
identical if 0Im 0 =k , which takes place in most real problems). However, no smoothness of the 
function )(xk is required in Theorem 1.2; therefore in this case the solution of Eq. (1.7) satisfies 
Eq. (1.1) in a generalized sense. 



CHAPTER 2 
 
Electromagnetic scattering problems 
 
2.1     Formulation of the problem 
 
Now we will consider the next class of wave scattering – electromagnetic scattering. The 
medium in a finite 3D domain Q is characterized by a dielectric permittivity tensor function ε̂  
and constant ( const0 == εε ) outside Q; the permeability is constant everywhere, 

const0 == μμ . The problem is to find the electromagnetic field excited in the medium by an 
external field  with time dependence given by the factor )exp( tiω− . The corresponding 
mathematical problem is stated as follows: find unknown vector functions E

r
 and H

r
 satisfying 

Maxwell equations 
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and the radiation condition at infinity (1.2), where 000 μεω=k . In (2.1) 0J

r
 is the external 

current generating the external field 00 , HE
rr

; and ,0Im 0 ≥ε  0Im 0 ≥μ , and 0Im 0 ≥k . 
 
2.2     Integro-differential equation 
 
Write equations (2.1) in the equivalent form 
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is the electric current of polarization which does not equal zero only in domain Q. 
We may formally consider equations (2.2) as Maxwell equations in homogeneous medium; i.e. 
assuming that the electromagnetic field is produced by current J

r
. Express the solution of (2.2) 

that satisfies the radiation condition at infinity in terms of vector potential A
r

 using the known 
formulas 
 
                                                   ∫= dyRGyJxA )()()(

rr
,                                               (2.5) 

                          .rot,divgrad1

0
0 AHA

i
AiE

rrrrr
=−=

ωε
ωμ                                    (2.6) 

 
In (2.5) G is the Green function of the Helmholtz equation 
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From (2.3) - (2.7) we obtain that unknown electromagnetic field can be presented as  
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where  yxR −= ;  ),,( 321 xxxx = ; ),,( 321 yyyy = ; 0/ˆˆ εεε =r . 

In (2.8) - (2.9) )(),( 00 xHxE
rr

is the electromagnetic field generated by known current 0J
r

 in the 
homogeneous space with parameters 0ε and 0μ . If we know the electric field we may calculate 
magnetic field by using (2.9). 
Because Ir ˆˆ =ε  outside Q we can reduce the initial problem to the volume integro-differential 
equation with respect to field E

r
 in the domain Q 
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If we have obtained solution to the equation (2.10) in the domain Q then we may calculate 
electromagnetic field outside Q by using representation (2.8), (2.9). 
Note that we cannot apply grad div under the integral sign in (2.10) because in this case one 
must differentiate function G twice with respect to coordinates which yields the term ~ 3/1 R  in 
the kernel of the integral equation and the corresponding improper integrals diverge. However, 
the rot can be applied under the integral (2.9) because in this case we will have a weak 
singularity ~ 2/1 R . 
 
2.3     Singular volume integral equation 
 
Represent function G(R) as 
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Then from (2.10), we have 
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Here the symbol ( )*,*  denotes the inner product of the vectors. 
From (3.13), (3.17) (see Section 3.2), we can reduce Eq. (2.12) to the singular volume integral 
equation  
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2.4     Equivalence statement 
 
Singular integral equation (2.13) is obtained from equation (2.10). Therefore, in order to simplify 
the analysis, we will sometimes use equation (2.10). Now we shall consider the equivalence of 
Maxwell equations (2.1) and the integral equation. We will assume that the electromagnetic field 
satisfies the Maxwell equations in the usual sense. Such solutions of the initial problem will be 
called classical solutions.  
It is clear that every solution to the Maxwell equations satisfying the condition at infinity is a 
solution of (2.13). In order to justify the converse statement we will assume that (I) the 
components of tensor ε̂  are Holder-continuous functions everywhere as well as the considered 
solutions of (2.13); and (II) external field satisfies the Maxwell equations for the homogeneous 
space, i.e.  
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 from (2.8) and (2.9) into the first equation (2.1) and taking into 
account (2.14), we have 
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Next, vector-function V

r
 specified by (2.15) satisfies the vector Helmholtz equation 
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Then taking into account the vector identity 
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Then from (2.16), we have 
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From (2.8) and (2.15), it follows that the right hand side of (2.17) is identically zero. 
Applying the similar reasoning, we can show that the second equation of (2.1) transforms to an 
identity as a result of substituting )(xE

r
 and )(xH

r
 given by (2.8) and (2.9). Then any solution of 

integral equation (2.13) satisfies the Maxwell equations provided that the above conditions are 
fulfilled.  
 
2.5     Uniqueness statement 



 
Let us prove the uniqueness statement for the initial problem. From second equation of (2.1) we 
have 
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Let rΩ  be the ball of radius r which contains the domain Q. Multiplying first equation of (2.1) 

by *E
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 and equation (2.18) by H
v

, we obtain the equality  
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We now apply vectorial Green’s formula to the first integral in the right-hand side of (2.19) and 
consider its limit as ∞→r . Considering the real part of the resultant we finally derive 
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where rS  is the sphere of radius r and nv  is the external normal to this sphere; [*,*] denote the 
cross product of vectors.  
Relation (2.20) describes the energy conservation law for the electromagnetic field.  By virtue of 
radiation conditions the last term on the right hand side of (2.20) is nonnegative and coincides 
with the energy flux of the electromagnetic field to infinity. The first term in the left hand side of 
(2.20) and first three terms in the right hand side of (2.20) have the physical meaning of power 
loss or generation of energy in matter. We have 0Im 0 ≥ε  and 0Im 0 ≥μ ; therefore, only power 
loss may occur in domain QE \3 . 

Let us put the external current 0J
r

 , generating the external field, equals zero everywhere. From 
(2.20) we have 0=E

r
 in the domain Q if the Hermitian tensor ( ) )2(/)(ˆ)( * ixx εε −)  is positive 

definite at every point of Q. This condition has the following physical meaning: the matter in Q 
has the losses. In the isotropic case, the condition means that 0)(Im >xε  for all Qx∈ . Then by 

using integral representations (2.8), (2.9) with 0, 00 =HE
rr

, we obtain that the electromagnetic 
field equals zero in the whole space. 
Based on the theory of elliptic equation [1, 3], we can prove that homogeneous equations (2.1) 
with radiation condition has only the trivial solution in the whole space 3E , if Hermitian tensor 

( ) )2(/)(ˆ)( * ixx εε −)  is nonnegative definite at every point of Q, condition (2.25) is satisfied and 
)(ˆ xε is three times continuosly differentiable function of coordinates. The physical meaning of 

the first condition: the matter in Q cannot generate electromagnetic energy. In the isotropic case, 
the condition means that 0)(Im ≥xε  for all Qx∈ . 
Thus, we have proved the following statement: under abovementioned restrictions the solution of 
the initial electromagnetic problem is unique if it exists. 
 
2.6     Existence statements 
 



To answer the existence question we have to use some results from functional analysis. First, we 
have to specify appropriate functional space. The integrals of squared field characteristics stand 
in the conservation law for electromagnetic scattering problems (2.20). Therefore, as in the 
acoustic case, one may assume that the space of square-integrable vector-functions )(2 QL

r
 with 

the inner product  
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is the most appropriate from the physical viewpoint as applied to the analysis of the integral 
equations (2.13). 
 
2.6.1   Classical solutions 
 
Below we will assume that the components of tensor ε̂  are Holder-continuous functions 
everywhere. Consider singular integral equation in the Hilbert space )( 32 EL

r
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Tensor-function 0)ˆ)(ˆ( =− Ixrε  if QEx \3∈ . Therefore singular volume integral equations 
(2.13) and (2.22) are equivalent. 
From (3.24) and (3.30), we find (see Section 3.3) that the elements of symbol matrix 

}{ nmΦ=Φ  of singular operator (2.22) in the Cartesian coordinate system have the following 
form 
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Here )(xlmε  are the components of tensor-function )(ˆ xε  in the Cartesian coordinate system. 
From (2.23) we find 
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Now, applying Theorem 3.4 for singular equations (2.22) and the equivalence of equations (2.12) 
and (2.22), we obtain the following statement. 
 
Theorem 2.1 [1, 9] The operator of the singular integral equation (2.13) is a Noether operator 
in )(2 QL

r
 if and only if the following condition is satisfied 
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It can be proved using Theorem 3.5 that if the inequality 
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holds then the singular integral equation (2.13) has the Fredholm property. For isotropic case 
(2.26) has the form 
                                                 0)(Im ≥xε .                                                              (2.27) 
Conditions (2.26), (2.27) are satisfied for any passive media (that do not generate energy). 
Now from uniqueness statement and Theorem 2.1 we obtain the existence and uniqueness 
theorem. 
 
Theorem 2.2 [1, 9] Let Hermitian tensor ( ) )2(/)(ˆ)( * ixx εε −)  is nonnegative definite at every 
point of Q and conditions (2.25) and (2.26) are satisfied. Then there exists the unique solution of 
integral equation (2.13) in )(2 QL

r
if one of the following conditions is fulfilled: 

(A) tensor ( ) )2(/)(ˆ)( * ixx εε −)  is positive definite at every point of Q; 
(B) )(ˆ xε is a three times continuously differentiable function. 

This solution also satisfies Maxwell equations (2.1) and radiation conditions at infinity. 
2.6.2   Generalized solutions [1, 11] 
 
Below we will consider the integral equation (2.13) imposing minimal restrictions on the 
dielectric permittivity tensor function )(ˆ xε ; namely we will assume that all the components of 
tensor function )(ˆ xε  are only bounded functions of coordinates in domain Q. In this case, 
according to theorem 3.2, the operator of integral equation (2.13) is bounded. 
Rewrite integral equation (2.13) in the symbolic form  
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0
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rrr
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                                         (2.28) 

 
First we show that for any )(2 QLJ

rr
∈  the following inequality holds 
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Taking into account (2.28), (2.10) and (2.5), (2.6) we see that JS
i

E
rr ˆ1

0ωε
−= , E

i
H

rr
rot1

0ωμ
=  

satisfy everywhere the Maxwell equations (2.2) and condition at infinity (1.2). Then from (2.20), 
taking into account that the vector function J

r
 is equal zero outside Q and Ix ˆ)(ˆ 0εε =  

everywhere, we obtain the inequality (2.29). 
 
Theorem 2.3. Let )(ˆ xε  be a bounded tensor function of coordinates in Q and Hermitian tensor 

function ( ) )2(/ˆIm2)(ˆ)( 0
* iIixx εεε −−)  be positive definite at every point of Q. Then integral 

equation (2.13) has the unique solution in )(2 QL
r

. 
 
Proof.  Let us multiply both side of Eq. (2.28) by *

0 )ˆˆ( Iεε − : 
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Tensor function )ˆˆ(ˆ 0 Iεεδ −=  has an inverse function due to the condition of the theorem. Then 

we have that Eqs. (2.28) and (2.30) are equivalent. Let Â  denote the operator of Eq. (2.30). 
From (2.28), (2.30) and (2.21) we have for any )(2 QLu

rr
∈  
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We conclude from (2.29) that 
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where )(xλ  is the minimum eigenvalue of Hermitian tensor 
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Note that if Ixx ˆ)()(ˆ εε = , i.e., the medium is isotropic, then ( ).)(Immin 00 εε −=
∈

xp
Qx

 

The theorem now follows from Theorem 4.3 and equivalence of Eq. (2.28) and Eq. (2.30). 
The conditions of Theorem 2.3 is more strict than condition of Theorem 2.2 (they are virtually 
identical if 0Im 0 =ε , which takes place in most of real problems). However, no smoothness of 
the tensor function )(ˆ xε  is required in Theorem 2.3 therefore in this case the solution of Eq. 
(2.13) satisfies Maxwell equation in generalized sense. 
 
2.7     Spectrum of integral operator [15, 16] 
 
The spectrum of the operator Â  on the complex plane Z is the set of points λ  such that the 
operator )ˆˆ( IA λ− does not have an inverse defined everywhere in the Hilbert space H. The 
points λ  such that the operator )ˆˆ( IA λ−  is not Noether belong to the continuous part of the 
spectrum of Â . The points λ  such that )ˆˆ( IA λ−  is a Fredholm operator and there exists a 
nontrivial solution u, 0ˆ =− uuA λ belong to the discrete part of the spectrum of Â . 
 
2.7.1   Continuous part of spectrum 
 
Rewrite integral equation (2.13) in the symbolic form  
 
                                        ( ) .)ˆˆ(ˆˆ fuISuuA r =−−≡ ε                                                 (2.32) 
 
Obviously 
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By comparing (2.32) and (2.33) from Theorem 2.1 we find that the continuous part of the 
spectrum of the operator in equation (2.13) contains the set 1σ  of points on the complex plane 
given by the formula 
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λ Qxx mnnm

mn
.               (2.34) 

 
It follows that the point 1=λ belongs to 1σ  since 0εδε nmnm = on the boundary of the domain 
Q. Note that, by virtue of the Holder continuity of the permittivity tensor function )(ˆ xrε , the set 

1σ  is a connected subset of the complex plane. 
For isotropic case ( Ixx rr ˆ)()(ˆ εε = ) we have the following formula 
 
                                         Qxxr ∈= ,)(ελ .                                                             (2.35) 
 
2.7.2   Spectrum for low-frequency case 
 
Now we will assume that Ixx rr ˆ)()(ˆ εε =  (we consider isotropic case). In this case integral 
equation (2.13) has the form 
 

( ) −−−−+ ∫
Q

rr dyRGyEyvpxExxE )(gradgrad),()1)((..)()1)((
3
1)(

rrr
εε

.,)(.)()()1)(( 02
0 QxxEdyRGyEyk

Q
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rr
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From Theorem 3.5 and (2.35) we have the following statement. 
 
Lemma 2.1. The operator of equation (2.36) is Fredholm in the space )(2 QL

r
if the set 1σ  of 

values Qxxr ∈),(ε  does not contain a closed curve surrounding the point 0=λ on the complex 
plane.  
 
Denote 
                                 1),1/())((),( σλλλελε ∉−−=+ xx rr .                             (2.37) 
 
It follows from (2.32), (2.33) and (2.37) that the operator )ˆˆ( IA λ− is Fredholm if the function 

),( xr λε +  satisfies the assumptions of Lemma 2.1. We denote the boundary of 1σ by 1γ  and the 

set of all points of the complex plane Z lying on and inside the boundary 1γ  by +σ . If, in 

particular, the set 1σ  is a non closed curve, then 11 γσσ ==+ . Therefore, taking into account 
the preceding considerations and performing simple computations, we obtain the following 
assertion. 
 
Lemma 2.2  The operator )ˆˆ( IA λ−  is Fredholm in the space )(2 QL

r
 if +∈ σλ \Z . 

 
In the general case it is impossible to describe the localization domain of the discrete spectrum of 
the operator accurately. However, this can be done in a special case which is important in 



practice. Consider low-frequency electromagnetic wave scattering problems such that the 
diameter of Q is much less than the wavelength, λ<<D , where 0/2 kπλ = . 
Equation (2.36) can be applied when the wave number 00 =k , i.e., for the static case. Obviously, 
all preceding assertions remain valid in the static case. It follows from (2.36) that 
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Q
r

Q
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2
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rrr
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                                                                                                                                    (2.38) 

where )(ˆ 0kA and )0(Â are the operators in the integral equations for the stationary and static 
cases, respectively, and )(0 RG  is determined by (2.11). The second integral operator in (2.38) 
does not contain a singular integral since the kernel of this operator has no singularity at x=y and 
is a smooth function of the coordinates. Therefore, from (2.38) we obtain  
                                                    0)0(ˆ)(ˆlim 0 =−

∞→
AkA

r
.                                       (2.39) 

 
From (2.39) we have the following assertion. 
 
Lemma 2.3  The spectrum of the low-frequency integral operator )(ˆ 0kA  tends to the spectrum of 

the static operator )0(Â  as 00 →k . 
 
In the static case, the integral equation (2.10) can be represented in the form 
 
               ∫ =−−

Q
r xEdyRyEyxE )())4/1)(()1)((divgrad)( 0rrr

πε .                            (2.40) 

 
The solution of the homogeneous equation (2.40) satisfies the differential equations 
 
                                                  0)(div,0rot == EE r

rr
ε                                         (2.41) 

 
The first equation (2.41) follows from the identity 0gradrot = , and the second equation follows 
from the identities Δ+= rotrotdivgrad and 0rotrotdiv =  and the differential equation 

JA
rr

−=Δ  which is valid for the volume potential ( )dyRyJxA ∫= π4/1)()(
rr

. 

From the first equation in (2.41), we have ϕgrad=E
r

. Then equations (2.41) can be reduced to a 
second-order differential equation for the function ϕ    
 
                                                       0)grad(div =ϕε r .                                             (2.42) 
 
Let ψ  be an everywhere-defined differentiable function. We have an obvious identity 
 
           )grad,grad()grad(div)grad(div ϕεψϕεψϕψε rrr += .                             (2.43) 
 
Let ϕψ = . Then, by integrating relation (2.43) over the space and by taking into account (2.42) 
and the divergence theorem, we obtain the integral relation   
 



                                     ∫ ∫ ∂
∂

=
∞→

RSR
r dS

n
d ϕϕυϕε limgrad 2 ,                                   (2.44) 

 
where RS  is the sphere of radius R  centered at the origin and n is the normal to the sphere. Since 

ϕ  is a harmonic function outside Q, it follows that n∂∂ /ϕϕ  decreases as 3−R  at infinity. 
Therefore, the limit on the right-hand side in (2.44) is zero, and each solution of the 
homogeneous equation (2.40) satisfies the integral relation 
 

                                                           ∫ = 0grad 2 υϕε dr .                                       (2.45) 
 
It follows from (2.33) and (2.37) that λ  is a point of the discrete spectrum of the operator (2.40) 
if there exists a nonzero solution ϕ  of Eq. (2.42) with permittivity ),( xr λε + . Moreover, it 
follows from (2.45) and (2.37) that the corresponding value ofλ is given by the formula 
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υϕε
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d
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2

2

grad

grad
.                                       (2.46) 

 
It is impossible to find the corresponding functionsϕ . However, using formula (2.46), one can 
find the localization domain of points of the discrete spectrum on the complex plane: the points 
of the discrete spectrum of the integral operator (2.40) can lie only inside the convex envelope of 
the set 1σ  given by formula (2.35). Set +σ lies inside convex envelope of the set 1σ . Therefore 
we arrive to the statement. 
 
Theorem 2.4 Spectrum of the integral operator (2.40) can lie only inside the convex envelope of 
the set 1σ  given by formula (2.35). 
 
Theorem 2.4 and Lemma 2.3 provide approximate information about a convex envelope of the 
spectrum of the integral operator for the low-frequency case. 
 
 
 
 
 
 
2.7.3   Example 
 
Let domain Q in the equation (2.36) be a ball and suppose that function of dielectric permittivity 
has the following form in the spherical system of coordinates  
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In (2.47) R is a radius of a ball, and 021 >>> ddR . 
 
 

 
Figure 2.1: Spectrum of integral operator. 

 
On Fig. 2.1 fat solid line schematically outline the continuous part of spectrum for the case 
(2.47). The spectrum of the integral operator for the low-frequency case lies inside the triangle. 
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CHAPTER 3 
 
Certain results of mathematical analysis 
 
3.1     Some functional analysis 
 
Definition. Set X is called a linear space if for each two elements u and v from X their sum (u+v) 
is defined and is also an element of X. Also for each element Xu∈ and number λ  product uλ  is 
defined which is also an element of X. Moreover, these operations satisfy the following 
properties: 
 

1. )()( fvufvu ++=++ ,  Xfvu ∈,, ; 
            2. uvvu +=+ ; 

3. In X there is a zero elementθ , such that for any Xu∈ , we have  0u=θ ; 
   uu =+θ ; 

            4. uuu μλμλ +=+ )( ; 
5. vuvu λλλ +=+ )( ; 

            6. )()( uu μλμλ = ; 
            7. 1u=u. 
 
Definition. A norm on a linear space X is a real-valued function whose value at Xu∈  is 
denoted by u , and which has the following properties: 
 

0≥u ;  0=u , if and only if   u=θ ;    uu αα = ;   vuvu +≤+ . 
 
Here u and v are arbitrary elements of X and α is any scalar. 
 
If a linear space has a norm then we have a normed linear space. 
 
If for any fundamental sequence  ,...2,1, =mvm   from a normed linear space X there exists a 
limit Xv∈ , then we have a complete space (a Banach space).  
 
Definition. Let B be a Banach space. Mapping A: BB → is called a linear operator if for any 

Bvu ∈,  and μλ,  we have 
( ) AuAuuuA μλμλ +=+ . 

 
Definition. Operator A is said to be bounded in the Banach space B if there is a real number C 
such that for any Bu∈  .uCuA ≤  
 
Minimal value of such numbers C is a norm A  of a linear operator. 
If a linear operator is bounded then it is continuous. It means that if m

m
vv lim

∞→
=   then 

.lim AvvA m
m

=
∞→

 

 
If in a Banach space B for any elements Bvu ∈,  we can define the inner product ),( vu  with the 
following properties: 

),(),(),( wvwuwvu +=+ ,   ),(),( vuvu αα = ,   *),(),( uvvu = , 



0),( ≥uu ,        0),( =uu  if and only if θ=u , 
 
then we have a Hilbert space.  In this case ),( uuu = . 
For the Hilbert space )(2 QL  of square-integrable functions we have the following inner product 

                                                   ∫=
Q

xdxvxuvu *)()(),( .                                           (3.1) 

 
The integral operator acting in the Hilbert space )(2 QL  (Q is a bounded 3D domain) has the 
following form  

                                            ( ) Qxdyyu
R

yxKxuA
Q

m ∈= ∫ ,)(),()( .                             (3.2) 

 
Here ),( yxK  is a bounded function of the coordinates x and y, yxR −= , and 03 ≥> m . If  

03 >> m  then we have a weakly singular integral operator. All such operators are bounded in 
the Hilbert space )(2 QL .  
Let us formulate several definitions. 
 
Definition.  Let A be a linear operator acting in the Hilbert space H. Then operator *A , which is 
also defined in H, is called conjugate to A if the equality 
 

),(),( *gAfgfA =  
holds for all Hgf ∈, . 
 
The solutions of the homogeneous equation 0=Au  will be called zeros of operator A.  
Dimension of the subspace of zeros will be denoted by )(An . Then )( *An  is the dimension of 

the subspace of zeros of the conjugate operator *A . The difference  
 

)()(Ind *AnAnA −=  
is called the index of operator A. 
 
Definition. A linear operator acting in the Hilbert space H is called normally solvable if the 
domain of images of A is an orthogonal completion to the subspace of zeros of the operator *A . 
 
Thus, if A is a normally solvable operator, then the equation Au=f  is solvable if and only if its 
free term f  is orthogonal to all zeros of the conjugate operator *A . 
Definition. Linear operator A is called the Noether operator if it is normally solvable and its 
index is finite. 
 
Definition. Linear operator A is called the Fredholm operator if it is a Noether operator and its 
index is equal to zero. 
 
According to this definition, we can formulate a sufficient solvability condition: if A is a 
Fredholm operator, then the equation Au=f is uniquely solvable for any Hf ∈  if the 
homogeneous equation 0=Au    has only the trivial solution. 



Note that sometimes the Noether operator is called the Fredholm operator and the Fredholm 
operator is called the Fredholm operator with the zero index. 
 
Definition. A linear operator K acting in the Hilbert space H is called compact operator if  for 
every bounded subset M of H, the image K(M) is compact. 
 
Operators of the form )( KI +  are Fredholm operators. 
Linear integral operator (3.2) is a compact operator in the Hilbert space )(2 QL  if 3<m . 
Let us consider the following integral equation. 
 

                               Qxxfdyyu
R

yxKxu
Q

m ∈=+ ∫ ,)()(),()( ,   3<m .                      (3.3) 

 
Then we have the following statement. 

 
Theorem 3.1  There exists the unique solution of the integral equation (3.3) in )(2 QL  for any 

)(2 QLf ∈  if homogeneous equation )0( =f  has only the trivial solution. 
 
 
3.2     Derivatives of a weakly singular integral 
 
Consider the following expression in the Cartesian coordinate system 
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where U(x) equals zero outside domain Q. 
We can write 
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Now we have to be very careful, since should we differentiate one more time, a term with 
3−− yx  will appear under the integral sign. Indeed, denote 
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and compute explicitly 
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where nmδ  is the Kroneker’s symbol and 3,2,1, =nnα , are the Cartesian coordinates of the 
points of the unit sphere S. In the spherical system of coordinates 
 



                       .cos,sinsin,cossin 321 θαϕθαϕθα ===                                       (3.8) 
 
Then, we arrive at a strongly singular integral. A mathematical trick which we are going to use 
now consists of splitting the domain of integration into two parts: one with singularity and one 
without. Namely, for every fixed x we represent (3.5) as a sum of two integrals: 
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Next, we take a limit 0→ε , i.e. 
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(3.9) 
 
This will help us to obtain an explicit expression for the second integral. Notice that for any 

0≠ε  the first integral does not contain any singularity and we can substitute (3.7) into this 
expression. First consider the second integral. We add and subtract )(xU  under the integral sign 
and arrive at 
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Definition. Function u is said to be Holder-continuous in a domain D if the inequality  

 
0,const,)()( >=−≤− δδ CyxCxuyu  

is valid for any Dyx ∈, . 
 
Suppose that )(xU  is a Holder-continuous function in Q. 
The first integral of the last expression (3.10) contains a difference [ ])()( xUyU − . 
Then, we would have the following 
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The zero at the end follows from the fact that the resulting integral is weakly singular for 0>δ  
(since 33 <−δ ) and that the domain of integration tends to zero in the limit. Hence, we are left 
with the last integral of (3.10) which we transform in the following way (we use the Gauss 
theorem here, since the domain of integration is a ball and has a spherical boundary εS with 
normal nn αυ −= , where nα  are determined by (3.8)): 
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Thus, from (3.9)-(3.12), it follows that the total expression for the two spatial derivatives of a 
weakly singular integral (3.5) is 
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Now we will show that the limit of the integral in expression (3.13) exists. Let )(xΩ  be a ball 
with the center at the point Qx∈ , )(xQ Ω⊂ . Because function U(x) does not equal zero only in 
the domain Q we can write for all Qx∈  
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At first we will calculate the last integral (3.14) by using spherical system of coordinates with the 
origin at the point x. We have 
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where R is a radius of the ball ).(xΩ  
Obviously, from (3.8) it follows that integral (3.15) equals zero. 
Consider the first integral in the last expression (3.14). Since )(xU  is a Holder-continuous 
function we have 
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where ),( yxϕ  is a bounded function of coordinates. Then 
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The integral in (3.16) exists in the usual sense. So, the limit of the integral in expression (3.13) 
exists. This integral is also known as the principal value (p.v.) of a strongly singular integral 
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3.3   Elements of the theory of singular volume integral equations [2] 
 
Let Q be a domain in 3E . This domain may be finite, infinite and, in particular, coincide with 3E . 
We will consider the following singular integrals 
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Here yxR −=  is the distance between points x and y and ( ) Ryx /−=α is a point on a unit 
sphere S centered at the origin. 
Point x is called a pole of the singular integral, ),( αxf  the characteristic, and u(y) the density. 
Everywhere below, we will assume that the characteristic satisfies the condition 
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S
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It easy to verify that integral (3.18) does not exist if condition (3.19) is violated. 
Below, we will consider singular integrals as operators in a Hilbert space )( 32 EL .  
 



Theorem 3.2. Let characteristic ),( αxf satisfy condition (3.19) and the inequality 
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be valid for every point x. Then, if )( 32 ELu∈ , singular integral (3.18) exists at almost all 
points 3Ex∈ ; in addition, )( 32 ELv∈ and singular operator is bounded in )( 32 EL . 
 
Definition. A linear operator Â  considered in a Hilbert space )( 32 EL  and defined as 
 

      ∫ ++=

3

))(ˆ()()(),(..)()())(ˆ( 3
E

xuKydyu
R
yfvpxuxauuA α ,                                  (3.21) 

 
where K̂  is a compact operator in )( 32 EL , will be called the singular integral operator in 

)( 32 EL . 
 
We will assume below that characteristic is a Holder-continuous function with respect to x and 

0),( =αxf  if QEx \3∈  where Q is a finite domain in 3E . 
The analysis of solvability of linear equations with singular operator (3.21) is much more 
complicated than in the case of integral equations with a Fredholm kernel. Therefore, the 
corresponding theory was elaborated substantially later and in less detail. Singular integral 
equations are analyzed using the notion of the symbol of a singular operator Â . The symbol is 
defined as a function ),( βxAΦ  of points 3Ex∈  and S∈β , where S is the unit sphere.  
The symbol must satisfy the following three conditions: 
(I)  the symbol of every compact operator is zero; 
(II) the symbol of the sum of two singular operators equals the sum of their symbols; 
(III) the symbol of the product of two singular operators equals the product of their symbols. 
The symbol is defined using several different formulas. We will present one of them, which is 
the most convenient for the analysis of specific singular integral equations. 
For most applications characteristic can be represented as )()(),( 21 αα fxfxf = . The symbol of 
the singular integral operator (3.21) is given by the formula 
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where F denotes the Fourier transform 
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Here 332211 xkxkxkxk ++=  and 321 dxdxdxdx = . 
In many cases, the singular integral is a result of derivation of a weakly singular integral 
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Then, according to (3.13) and (3.17) we obtain 
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The function 

                                          ∫=

3

)(
4

1)(0
E

dyyU
R

xV
π

                                                  (3.26) 

 
satisfies the Laplas equation 
                                                     UV −=Δ 0 .                                                            (3.27) 
 
Then, we have the following relationships 
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Finally, from (3.24)-(3.28), we find that the symbol of the singular operator 
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has the following form 
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The following statement is valid. 
 
Theorem 3.3. Let Â be a singular integral operator of the form (3.21). Then Â  is a Fredholm 
operator in )( 32 EL if and only if the symbol does not degenerate, i.e., 
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Consider a system of singular integral equations 
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where )(, 32 ELfu nn ∈  and nmÂ  are singular integral operators (3.21). 
System (3.32) can be represented as a vector operator equation 
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is a matrix singular operator. 
We denote the symbol of operator nmÂ  by ),( βxnmΦ . The matrix 
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will be called the matrix symbol or simply the symbol of matrix operator Â  . 
 
Theorem 3.4. Let Â be a matrix singular integral operator of the form (3.33). Then Â is a 
Noether operator in )( 32 EL

r
if and only if matrix symbol does not degenerate, i.e., 
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Unlike the case of one equation, the index of system (3.32) may not be equal to zero.  
The following theorem establishes sufficient conditions for the Fredholm property.  
 
Theorem 3.5. Let Â be a matrix singular integral operator of the form (3.33) satisfying the 
condition of Theorem 3.4. Then Â  is a Fredholm operator in )( 32 EL

r
if there is a smooth curve 

in the complex λ -plane that joins 0=λ  and ∞=λ  and has no common points with the set of 
eigenvalues of the symbol matrix. 



PART II 
 
Numerical methods for integral equations 
 
Introduction 
 
To solve the integral equation numerically, one reduces it to a system of linear algebraic 
equations (SLAE). The solution of that system must approximate the solution of the original 
problem with a prescribed accuracy. Let h be a typical length on which the solution u varies only 
slightly. The specific values of h are determined by the desired accuracy of the solution. As a 
rule, a priory estimates of h necessary for obtaining the desired accuracy of the solution are 
known in specific problems. Then the dimension N of SLAE can be estimated as 

)/( 3hmesQN ≈ . It turns out that N is very large, N>>1000. Then it is virtually impossible to 

use direct methods since this would require performing T∼N3 arithmetic operations and storing 
N2 entries of the matrix of the SLAE in computer memory. 
It is clear that we must apply an iteration method. Number T of arithmetic operations that 
guarantees the required accuracy of solution and memory volume required for the 
implementation of the algorithm are the main efficiency criteria for any numerical algorithm. 
Multiplication of matrix SLAE by vector is the most laborious operation of the iteration method. 
Therefore, the number of multiplications for the implementation of a particular algorithm will be 
called the number of iterations. The value of T is estimated by the formula 
 
                                                                  )( 0TTLT A +≈                                                  
 
Here, L is the number of iterations, TA is the number of arithmetic operations required for 
multiplication of a matrix by a vector, and T0 is the number of arithmetic operations required for 
other computations. As a rule T0<<TA.  
Our main purpose is the minimization of the values TA and L. 



CHAPTER 4 
 
Iteration methods 
 
4.1     Simple iteration method 
 
In the Banach space B, we consider the linear operator equation 
 
                                                                                fuA =ˆ ,                                                       (4.1) 
where Â  is a bounded operator. 
Rewrite Eq. (4.1) in the equivalent form 
 
                                                              μμ /ˆ fBu =− .                                              (4.2) 
 
Here μB̂ is the linear operator given by the formula ( ) μμμ /ˆˆˆ AIB −=  and 0≠μ  is an arbitrary 
complex number. 
The successive approximations  
 
                                                ,...1,0,/ˆ1 =+=+ nfuBu nn μμ                                          (4.3)  
 
converge to the solution of Eq. (4.2) and hence of Eq. (4.1) for any Bfu ∈,0  provided that 
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One can readily show that there is a one-to-one correspondence between points of the spectrum 

)ˆ(Aσ  of the operator Â  and points of the spectrum )ˆ( μσ B of the operator μB̂ ; this 
correspondence is given by the formula 
                                    )ˆ(),ˆ(,/)( μσησλμλμη BA ∈∈−= .                               (4.5) 
 
The iterations (4.3) can be represented in the simpler form 
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1 =−−=+ nfuAuu nnn μ

                                        (4.6) 

 
One can prove the following statement [8]. 
 
Theorem 4.1. A necessary and sufficient condition for the existence of complex number μ  such 
that the iterations (4.6) converge to the solution of Eq. (4.1) for arbitrary Bfu ∈,0  is that the 

origin of the complex plane lies outside a convex envelope of the spectrum of Â . 
 
The convex envelope is illustrated in Fig. 4.1. 
 



 
 

Figure 4.1: Spectrum and its convex envelope. 
 

The iteration converges to the solution at the rate of a geometric progression; i.e.  
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n μρ  ,                                   (4.7) 
 
where, by (4.4) and (4.5), )(0 μρ is given by the formula 
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Obviously, the best convergence of the iterations is attached at the value ofμ  for which the 
function )(0 μρ takes the minimum value. By μS  we denote the disk on the complex plane with 

center μ  and the least radius R which contains all points of the spectrum of Â . 
Obviously, ).ˆ(,sup AR σλλμ ∈−=  From the origin, we draw the tangents to the disk μS  and 

denote the angle between them by α . Then it follows from (4.8) that ).2/(sin)(0 αμρ =  Thus 
we have proved the following assertion. 
 
Theorem 4.2 Let the origin of the complex plane lie outside the convex envelope of the spectrum 
of Â  . Let 0S   be the disk which contains all points of the spectrum of Â  and is “seen” from the 
origin at minimal angle 0α . Then the best convergence of the iterations (4.6) to the solution of 
Eq. (4.1) is attained at the complex value 0μ  which is the center of the disk 0S . The iterations 
converge to the solution at the rate of a geometric progression with the 
denominator ).2/(sin 00 αρ =  
 
The convex envelope of the spectrum of an integral operator on a complex plane depending on 
the form of the dielectric permittivity function has been defined in Chapter 2 in the case of low-
frequency electromagnetic scattering problems. It follows from Theorems 4.1 and 4.2 and 
relation (2.35) that the simple iteration method can be used for Eq. (2.36) for arbitrary real 
media; moreover, we can readily evaluate the optimal iterative parameter 0μ . Numerical 
experiments have shown that this method is a very effective for the numerical solution of low-
frequency scattering problems. 
4.2    Minimal residual iteration method 
 
Consider equation (4.1) with a linear bounded (in general case non-selfadjoint) operator Â  in the 
Hilbert space H. Define the sequence Huu nn ∈},{  by the formula 
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with the complex iteration parameters nτ .  
Denote 
                                                             fuAh nn −= ˆ .                                              (4.10) 

Then multiplying both side of (4.9) by Â  we obtain the relationship  
  
                                                         nnnn hAhh ˆ1 τ−=+ .                                          (4.11)  
 
Therefore, we determine iteration parameters nτ  so as to provide the minimum of the functions 
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Represent nh  as a sum of two elements; one of them is a projection of nh  on element nhÂ  and 

the other is orthogonal to nhÂ . This decomposition is uniquely determined from the obvious 
formulas  
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Here (f, g) denotes the inner product of Hgf ∈, . 
Substituting (4.13) into (4.12) and taking into account that ,0),ˆ( =nn dhA  we have 
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Now it is clear that (4.14) reach the minimum at the complex nττ = . The corresponding value of 

)( nn τγ is given by the expression 
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Note that ,1)( ≤nn τγ  equality takes place only when ,0)ˆ,( =nn hAh i.e., elements nh  and nhÂ  
are orthogonal. 
Let us prove the following statement [1, 9]. 
 
Theorem 4.3. Let Â  be a linear bounded operator acting in the Hilbert space H. Assume that 
for any Hv∈    
 
                                             ( ) ( ) 0,,,ˆ 00 >≥ pvvpvvA .                                         (4.16) 

 



Then (I) there exists the unique solution to equation (4.1) in H; (II) the norm of the inverse 

operator 1ˆ −A  is estimated as 0
1 /1 pA ≤− ; (III) iterations (4.9), (4.10) and (4.13) converge to 

the solution of (4.1) for any initial approximation Hu ∈0 ; and (IV) the rate of convergence is 
estimated by 
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where 0M  is the upper estimate for the norm of operator Â , i.e., 0MA ≤ . 
 
Proof.  We have 
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From (4.12), (4.15) and (4.18), it follows that 
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(4.15) yields an inequality  
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which is valid for any m. Note that by virtue of (4.15) .1/ 00 ≤Mp  From (4.19) and (4.20), it 
follows that residuals nh  tend to zero as ∞→n .  

Since ( ) vvAvvA ˆ,ˆ ≤  for Hv∈∀ , (4.16) yields 
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From (4.9), (4.10), (4.13) and (4.21), we obtain 
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                02
0

0
11 1

)(...)( h
p

M
q

quuuuuu
n

nnmmnm −
≤−++−=− +− .  

 
This means that }{ nu  is a fundamental sequence in H; therefore due to the completeness of the 

Hilbert space, nu  tends to a limit Hu∈ . Since Â  is a continuous operator because Â  is a linear 



and bounded and ,0lim =
∞→

n
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h  the equality nn hfuA =−ˆ  implies that n
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uu
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= lim  is a solution 

to equation (4.1). 
Thus, (4.1) has a solution in H for any Hf ∈ , and according to (4.21), this solution is unique. 

Using inequality (4.21) we conclude that 1ˆ −A  is a bounded operator and 0
1 /1 pA ≤− . 

We have 
                                uupuAuAfuAh nnnn −≥−=−= 0ˆˆˆ . 

 
These relationships are considered in combination with (4.19) and (4.20) ensure the validity of 
(4.17). The theorem is proved.  
Note that Theorem 4.3 specifies not only the applicability of the method for solving linear 
operator equations but also a method that facilities the proof of the existence and uniqueness of 
solution for particular problems (see, for example Theorems 1.2 and 2.3). 
It follows from Theorem 4.3 and inequalities (1.15) and (2.31) that the minimal residual method 
can be used for integral equations (1.7) and (2.13). Numerical experiments have shown that this 
method is an effective tool for the numerical solution of scattering problems. 
 
4.3   Multistep minimal residual iteration method 
 
Consider a generalization of the minimal residual iteration method. The iterative parameter nτ  in 

(4.9) is defined from the orthogonal condition of the (n+1)-st residual 1+nh  to the element nhÂ . 
Consider the sequence Huu nn ∈},{ , which is defined by the formulas  
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Here }{ nlτ  is the set of the iterative parameters used to pass from n-th to )1( +n -st layer. 

Because the residuals are related by ∑
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1 ˆτ , we define the iterative parameters 

from the orthogonal condition of 1+nh  to the subspace, which is generated by the elements 

}ˆ,...,ˆ{ n
m

n hAhA (the Krylov subspace). The iterative procedure is completely defined by the 
formulas [1, 6, 10] 
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                                             .,...,1,...;1,0 mln ==                                                   (4.23) 
 
Iterative procedure (4.23), which may be named as multistep minimal residual method (for shot 
it is called as GMRES method) converge to the solution of (4.1) if condition (4.16) is satisfied. 
It is clear that the use of one layer in (4.23) with m > 1 leads to a larger decrease of the residual 
than that in m sequential iterations (4.9), (4.10) and (4.13). The more general assertion holds, 
namely, the more m in the iterative procedure the faster the convergence. Let k be the number of 
layers in (4.23). Then the quantity L=km defines the amount of multiplications of a matrix by a 
vector in the algorithm and hence L is the number of iterations in this case (see Introduction to 
Part II). However, the increase in the convergence rate is due to the increase in the amount of 
memory required. Therefore, when solving a particular problem it is necessary to take into 
account available computational resources (e.g., speed and memory), and maybe other 
restrictions. Note that the use of even small m=2, 3 leads to sharp increase in the convergence 
rate as compared with (4.9), (4.10) and (4.13).  
In most real applications the quantity L lies from 20 to 1000. 
 
 
 
 



CHAPTER 5 
 
Discretization methods 
 
5.1     Galerkin method  
 
Consider Eq. (4.1) with the linear bounded operator Â  acting in the Hilbert space H.  Let 

HH N ⊂  be the finite-dimensional Hilbert space with the basis{ } NnN
n ,...,1,)( =υ . We seek 

the approximate solution to Eq. (4.1) by the Galerkin method as 
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where unknown coefficients )(N

nα  are defined from the system of N linear algebraic equations, 
namely, 
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Equations (5.2), (5.3) are obtained from the requirement: residual of the approximate solution 

fuAh NN −= ˆ  must be orthogonal to the subspace NH . 
Formulate the following condition. 
 
Condition A. The sequence of the subspace }{ NH is ultimately dense in H if for any   

Hu∈ there exist the elements ,...,2,1,~ =∈ NHu NN  such that 
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where ),( Nuε is the bound of the discrepancy, 0),( →Nuε   as  ∞→N . 
 
The following theorem holds [1, 17]. 
 
Theorem 5.1. Let for any Hu∈  inequality (4.16) and Condition A hold. Then the solution to 
the system of linear equations (5.2), (5.3) can be found by the iterative method of minimal 
residuals. Moreover, Nu converges to the solution of Eq. (4.1), i.e. 0lim =−
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N
uu . 
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N bb =  be an element of the space of N-dimensional vectors NE  and let 
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where 0q  is the least eigenvalue of the Hermitian positive definite matrix 

( ) NmnN
m

N
nnm ,...,1,,, )()( == υυβ . 

Hence, by Theorem 4.3, the solution to (5.2), (5.3) exists, is unique, and can be obtained by the 
iterative method of minimal residuals. 

We multiple (5.2) by ( )*)(N
mα and sum the resultant with respect to m, taking (5.1), (5.3) into 

account. We have  
                                                   ( ) ( )NNN ufuuA ,,ˆ =                                                 (5.4) 
whence by (4.16) we have 
                                                     fpuN
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If Condition A is satisfied, then the solution u to Eq. (4.1), which exists and is unique in H by 
Theorem 4.3, can be represented as 
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From (4.1), (4.16) and (5.4) we get 
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Since NN Hu ∈~ , then ( ) 0~,ˆ =− NN uuAf . Therefore, taking into account (5.5), we find 
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whence by (5.6)  0lim =− Nuu  as ∞→N . 
The theorem is proved. 
The finite-dimensional subspaces of functional spaces )(2 QL  or )(2 QL

r
 satisfying Condition A 

can be constructed in various ways for the Hilbert spaces NH , in which the operators of Eqs. 
(1.7) and (2.13) act, e.g., for the spaces of the piecewise-constant functions or vector-functions. 
Inequalities of the form (4.16) hold for the operators of Eqs. (1.7) and (2.13). Therefore, the 
Galerkin method can be used to solve numerically integral equations (1.7) and (2.13), and the 
system of linear algebraic equations by the iterative method of minimal residuals. 
For applying Galerkin method we need to calculate inner products of the form  
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2
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LVUA ,                                                            (5.7) 

where U and V are known functions and Â  is the operator of equation. It is easy to calculate 
(5.7) in acoustic case. For electromagnetic case it is not so clear. But, fortunately, inner product 



in functional space )(2 QL
r

 is defined as integral (2.21). Therefore, we may use the integral 
equation (2.10) and apply grad div under the integral sign. Indeed, by using Eisnstein summation, 
we obtain 
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where 321 ,, ααα are determined by formula (3.6) or (3.8). 
Last integral in (5.8) exists in the usual sense. The inner products from others integral operators 
of (2.10) are calculated in a similar manner. 
 
5.2     Collocation method 
 
The kernel of the integral operator depends only on the difference of Cartesian coordinates of x 
and y. Therefore, in the discretization, it is desirable to take account of this fact so as to obtain a 
matrix of the SLAE with the corresponding symmetry properties [1, 14]. 
Introduce a grid in the rectangular Cartesian coordinate system such that the domain Q is entirely 
placed in the parallelepiped Π  with dimensions, hNl , l=1,2, 3, where h is the grid step along 
the Cartesian coordinates. The parallelepiped Π  is divided by the grid into cells (elementary 
cubes) Π (p), ),,( 321 pppp = , 1,...,0 −= ll Np . We define domain Q~  as the union QN  of the 

elementary cubes centers of which lie inside domain Q. It is obviously that NNNNNQ =≤ 321 . 
Then the choice of the grid is defined by the domain shape and by the requirements that the 
desired solution, external field, and the parameters of the medium vary slightly inside the cells 
(elementary cubes). The node points, at which the values of functions are given, are positioned at 
the cell centers )( px  with the coordinates 
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Then integral equation is approximated by a system of linear algebraic equations with respect to 
the values of unknown field taken at the nodes situated in domainQ . 
This approximation for the integral equation (1.7) (acoustic case) or integral equation (2.13) 
(electromagnetic case) has the following form 
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where 
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For integral equation (1.7) B(p-q) and v(q) are given by the formulas 
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Here 
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For the singular integral equation (2.13) (electromagnetic case) )( pu and )(0 pu  are the vectors, 
B(p-q)  and v(q) are 3x3 matrix. Expressions for B(p-q) and v(q) are given by the formulas 
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In (5.16) R is determined by (5.14) and nα , according (3.6), are given by formula 
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In order to determine )0(nmB , we will consider auxiliary relationship. In [5], it is shown that 
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 in a 3D domain V, 
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where γ̂  is a dyad specified by the shape of the boundary of domain V. If V is a parallelepiped, 
Cartesian axes are parallel to its edges, and point x is situated at the origin, then γ̂  is a diagonal 
dyad of the form 
                                                            nmnnm δγγ = . 
 
Here ,3,2,1,)4/1( =Ω= nnn πγ  and nΩ  are the doubled solid angles between the faces 
perpendicular to axes 321 ,, xxx . Obviously 1321 =++ γγγ . If the domain V is a cube then, like 
for the ball, we have 3/1321 === γγγ . 
Taking the latter into account, we find 
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Note that the use of a multiindex numbering for the unknowns and the right-hand side permits 
one to represent the symmetry properties of the matrix of the SLAE in a transparent form; 
furthermore, the number of distinct entries of the matrix is ∼N. Next, since the nodes are placed 
at cell centers, it follows that the accuracy of the approximation of the integral operator is ~ 2h .  



CHAPTER 6 
 
Fast algorithms 
 
6.1    Discrete Fourier transform 
 
Consider a complex-valued function of discrete argument )(nf , where ,....2,1,0 ±±=n  Assume 
that )(nf  is a periodical function with period N, i.e.  
 
                                     .)()( nfornfNnf ∀=±                                                     (6.1) 
 
Discrete Fourier transform from function )(nf  is defined by the formula 
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where )(~ kf is also a periodical function with period N. 
If we know function )(~ kf  then we may reconstruct function )(nf  by using inverse discrete 
Fourier transform 
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In the general case the number of arithmetic operations required for calculating discrete Fourier 

transform (without calculating values ⎟
⎠
⎞

⎜
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N
i π2exp ) is estimated as 
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6.2    Discrete Fast Fourier transform 
 
Let 21 NNN = , where 1N  and 2N  are integer numbers. Represent k and n from formula (6.2) 
as 212 Nkkk +=  and 121 Nnnn += , where, 1,0, 111 −= Nnk ; 1,0, 222 −= Nnk . Then from 
(6.2) we obtain 
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Let 1N  be a prime number. It is obvious from (6.5) that the number of arithmetic operations 

)(NTF  required for calculating Fourier transform (without calculating values ⎟
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estimated as 
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Rewrite (6.6) in the following form 
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Let N be represented as multiplication of prime numbers, i.e. 
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Then, from (6.7)-(6.9), we obtain that the number of arithmetic operations for fast Fourier 
transform (FFT) technique (6.5) is estimated as 
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If N is a power of 2, we have 
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6.3    Multiplication of the matrix by vector 
 
Let us consider a matrix 
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The matrix of the form (6.12) is called the circulant matrix. 
Consider the multiplication of the matrix (6.12) by an N-dimensional vector ur  
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Introduce periodical function of the argument )(nA  and put 1,0,)( −==− NnanA n . Then we 
may rewrite (6.13) as 
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Apply Fourier transform to both sides of (6.14). For the right-hand side of (6.14) we have 
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Consider the second sum in the last expression of (6.15). Denoting mnq −= , we have 
 

∑ ∑
−

=

−−

−=
⎟
⎠
⎞

⎜
⎝
⎛=−⎥⎦

⎤
⎢⎣
⎡ −

1

0

1
)(2exp)()(2exp

N

n

mN

mq
qAkq

N
imnAmnk

N
i ππ . 

 
Then, taking into account 
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Then from (6.15) and (6.16) we have 
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Finally, from (6.14), (6.17) we obtain 
 
                                           .1,0),(~)(~)(~ −== NkkukAkv                                      (6.18) 
 
Thus, we can use (6.18) for the fast multiplications of the matrix (6.12) by vector due to FFT 
(one direct FFT and one inverse FFT). 
6.4    Fast algorithms for integral equations [1, 17] 
 
The matrix of the system of linear equations (5.10) has the special form of a Toplitz matrix. If 
we use the Galerkin method (5.1)-(5.3) on the rectangular grid with the same basis functions 
inside each cell (elementary cube) then the matrix of the system of linear equations also has the 
structure (5.10). 
It follows from (5.10) that the main computing expenses on multiplication of the matrix of the 
system by the vector are connected with computing sums 
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Let us complete a definition of )(qV by zero at the nodes of Π  which do not belong Q . Then we 
can rewrite (6.19) as 
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where the function of the discrete argument )( pB  is defined for  
 

)1()1( 111 −≤≤−− NpN ;  )1()1( 222 −≤≤−− NpN ;  )1()1( 333 −≤≤−− NpN . 
 
To decrease the amount of operations we apply the direct and inverse fast Fourier transform. Let 

2Π  denote the parallelepiped with the dimensions hN12 , hN22  and hN32 . We continue the 
function (or matrix function) of the discrete argument ),,( 321 pppB  to all integers 321 ,, ppp , 
assuming that it is periodic with respect to each variable with the periods 321 2,2,2 NNN , 
respectively. We complete a definition of the function (or vector function) of the discrete 
argument ),,( 321 pppV setting it zero at all nodes of 2Π  which do not belong toΠ . Let us write 
the expression 
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It is obviously that )( pW  in (6.21) coincides with (6.20) for Π∈p . If we perform the discrete 
Fourier transform with respect to each variable in both sides of (6.21), we obtain (see (6.18)) 
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When calculating Π∈ppW ),( , from formula (6.22), the main computing expenses without 
taking into the account the definition of ( )kB~  are connected with the fast direct and inverse 
Fourier transform of the functions (or vector functions in electromagnetic case) of the discrete 
arguments. In the direct Fourier transform the function (or vector function) )( pV  is only nonzero 
in 2Π  for Π∈p . On the other hand, when we apply the inverse Fourier transform, the function 
(or vector function) )( pW  must be defined only at the points Π∈p . Taking this into account, 
we find that the amount of arithmetical operations required to find Π∈ppW ),(  is estimated by 
the formula 
 
                   ( ))3()2()1(

321 (4)(2(~ NLOGNLOGNLOGNNNTB ++ ,                (6.23) 
 
where )3()2()1( ,, NNN  are the quantities 321 ,, NNN  numbered in the decreasing order. If 

321 ,, NNN  are the powers of 2, then we have 
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Thus (see Introduction to Part II)), the considered algorithm is cost-effective for the solution of 
volume integral equations by using Galerkin or collocation methods and iterative techniques. 
 



Exercises 
 

1. Show that the representation (1.3) satisfies radiation condition at infinity (1.2). 
 
2. Reduce Eq. (2.12) to the singular volume integral equation (2.13). 
 
3. Show that from (2.19) we obtain (2.20). 
 
4. Obtain the equality (2.24). 
 
5. Show that if the tensor ( ) )2(/ˆIm2)(ˆ)( 0

* iIixx εεε −−)  is positive definite at every point 

of Q then tensor function )ˆˆ(ˆ 0 Iεεδ −=  has an inverse function (see Theorem 2.3). 
 
6. Obtain formula (2.34). 
 
7. Prove Lemma 2.2. 
 
8. Why do we have (2.46)? 
 
9. Prove Theorem 4.1. 
 
10. Find the best iteration parameter in (4.6) where the convex envelope of the spectrum is a 

triangle. 
 
11. Prove relation (4.5) 
 
12. Obtain formula (4.15). 
 
13. Find the elements nmA  from (5.3) for piece-wise constant basis functions and integral 

operator (1.7). 
 
14. Obtain formulas (5.16) and (5.18). 
 
15.  Show that the inverse discrete Fourier transform is given by formula (6.3). 
 
16. Construct FFT algorithm for the general case (6.8). 
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