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Preface

In our course we will consider the volume integral equations in the following form

a0u() + [ < pyyugyydy = £(x),m<3.
Q [x-

Many important classes of the wave scattering problems can be described by equations of
this form; for example, this is the case for problems of electromagnetic and acoustic scattering
on 3D transparent bodies. The corresponding integral operator is compact (m=1) in acoustic
problems and singular (m=3) in electromagnetic problems.

Why do we want to consider integral equations though the initial problems usually are
formulated as boundary value problems for partial differential equations? For that there are two
main reasons.

I. One of the ways for the mathematical investigation (proof of the existence and
uniqueness theorems, etc.) of the initial problem of mathematical physics is the following. We
reduce the initial boundary value problem to an integral equation. Then we establish the
equivalence of the differential formulation of the problem and the corresponding integral
equation. It means that any solution of the integral equation (maybe with some restriction on the
parameters of the problem) satisfies the partial differential equations and boundary condition and
back. Based on the integral inequalities which are usually obtained from the differential
formulation, we prove the uniqueness theorem of our problem. Then using the theory of
solvability of integral equations (Fredholm integral equation or singular integral equation
theories) in appropriate (from the physical point of view) functional space we prove the
existence and uniqueness theorem and others facts for the initial problem of mathematical
physics. In our course we will follow these steps.

I1. We will construct the methods and algorithms for the numerical solution of the initial
problems by using integral equations. At the first glance the partial differential equations are
more appropriate for the numerical solution because after discretization we receive the system of
linear algebraic equations (SLAE) with sparse matrix in comparison with the full matrix which
we obtain in the integral equation case. But for the wave scattering problems the solution must
satisfy the radiation condition at infinity. Therefore for the good accuracy we need to find
numerically the unknown wave field in the domain which is sufficiently greater than scattering
object Q and due to 3D of the initial problem the dimension of the SLAE will be huge. Using
discrete fast Fourier transform techniques and taking into account that the kernels of integral
equations depend only on the difference of arguments we may construct a fast algorithm for the
multiplication of the SLAE matrix and the vector. Then applying iterative methods we can build
the effective methods and algorithms for the numerical solution of the initial problems based on
the integral equations.

The Notes would not appear without Professor Yasuhide Fukumoto inviting me to
Kyushu University. It is my pleasure to thank professor Fukumoto for good hospitality and
excellent collaboration.

Alexander Samokhin
December 2008, Fukuoka
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PART I

Mathematical properties of integral equations

CHAPTER 1

Acoustic scattering problems
1.1 Formulation of the problem

For acoustic and quantum mechanics cases, an appropriate mathematical problem is treated as
follows. Find the scalar field u which satisfies the Helmholtz equation

Au+kZu=t, (1.1)

and the radiation condition at infinity

rli_r)nir[%— ikouﬂ: 0, (1.2)

2

r=|x= \/(xl2 + X2 +X3°)

where k is the wave number, which is the function of coordinates in a bounded 3D domain Q in
Euclidean space E3; k = kg = const outside Q, Imkgy >0, Reky > 0; the source of the field f is

a given function of coordinates; and x;, X, X3 are the Cartesian coordinates.

1.2 Integral equation
From the theory of the Helmholtz equation we have that the integral representation

uo(x) = —[ f(Y)G(R) dy, G(R)ZW’ (13)

R=|x—y|,x=(X1,X2,%3), ¥ = (Y1, Y2,¥3), dy =dy;dy,dy3

satisfies the equation
Aug +ko2ug = f (1.4)

in the domain where f is a Holder- continuous function (see Definition in Section 3.2). It follows
obviously from (1.3) that ug (x) also satisfies the radiation condition at infinity (1.2). The

function G is called Green’s function for the Helmholtz equation.
Rewrite Eq. (1.1) in the following form



Au+kZu=f—(k?-kS)u. (1.5)
Unknown field u (see (1.3)-(1.4)) can be presented as

u() = =] F (NGRYy + [ (1) ~kG Ju(»GR)y, x e Eg . (L6)
Q
Then the initial differential problem can be reduced to the following integral equation for the
unknown field u in the domain Q

10 [ -k Juy BRIy = up(x), xQ. @7
Q
Here ug is the wave field generated by the source function f in the free space with the constant
wave numberkqg. If we find a solution of the integral equation (1.7) in the domain Q then we
may calculate u(x) outside Q by using representation (1.6).

1.3 Uniqueness statement

Assume that the functions f(x) and k(x) are Holder-continuous everywhere. Then any solution

of the integral equation (1.7) satisfies the Helmholtz equation (1.1) and the radiation condition
and back.
Let us prove the uniqueness statement for the initial problem (1.1) - (1.2). From (1.1) we have

AuT (kD) U =1 (1.8)

Here symbol * means the complex conjugation. Let 3, be the ball of radius r which contains
the domain Q. Then from (1.1) and (1.8) we obtain the equality

j(u*f—uf*)dv= [ (0" Au—uau” v+ j(kz—(kz)*)|u|2dv. (1.9)
Q Q Q

r r r

We now apply Green’s formula to the first integral on the right-hand side of (1.9) and consider
its limit as r — oo taking radiation condition (1.2) into account. Considering the imaginary part
of the resultant we finally derive

—im [uf’dv=Im jk2|u|2dv+ Rekg lim j|u|2ds, (1.10)
E3 E3 r—>oosr

where S, is the sphere of radius r.
Relation (1.10) describes the energy conservation law for the wave field. Note that from the

physical meaning of the scattering problems Imk? >0 and Rekqg > 0.
Let us put that source function f equal zero everywhere. From (1.10) we have u=0 in the

domain Q if Im k2(x) >0, xe Q. Then by using integral representation (1.6) we obtain that

u =0 in the whole space. Based on the integral inequalities (which are obtained from (1.1) -
(1.2), although tangled without any explicit physical meaning) we may prove that homogeneous
equation (1.1) with radiation condition has only the trivial solution [4], i.e. u =0 in the whole
space Ej if



Imk?(x) >0, xeQ. (1.11)

Thus, we have proved the following statement: under abovementioned restrictions the solution of
the initial problem (1.1) - (1.2) is unique if it exists.

1.4 Existence statements

To answer the existence question we have to use some results from functional analysis. First, we
have to specify appropriate functional space. Generally speaking, one can choose different
spaces, and the choice governs the results of analysis. It is reasonable to apply the following
criterion: functional space must be sufficiently wide, providing the consideration of all
physically admissible solutions; however, the space should not be too wide, because in this case,
for example, the uniqueness may be violated due to the presence of solutions that have no
physical meaning. The integrals of squared field characteristics stand in the conservation law for
the scattering problems (1.10). Therefore, one may assume that the space of square-integrable
functions L, (Q) is the most appropriate from the physical viewpoint as applied to the analysis of

the integral equations (1.7).
Thus (see Theorem 3.1) we have the following statement.

Theorem 1.1 There exists the unique solution of the initial problem (1.1) — (1.2) if k(x) and (x)
are Holder-continuous everywhere and condition (1.11) is satisfied.

Below we will consider the integral equation (1.7) imposing minimal restrictions on the wave
function k(x); namely we will assume that the function k(x) is only a bounded function of
coordinates in domain Q.

Rewrite (1.7) in the symbolic form

u—S[(k? —-kZ)u]="1, (1.12)

where S is a linear and continuous operator in L, (Q).
First we show that for any f e L, (Q) the following inequality holds

|mjf*(§f)szo. (1.13)
Q
Let f be a differentiable function of coordinates. Then, taking into account (1.3), (1.7) and (1.12),
we see that u=—S f satisfies everywhere the Helmholtz equation (1.4) and condition at infinity

(1.2). Then from (1.10), taking into account that the function f is equal zero outside Q and
k (x)=kq everywhere, we obtain the inequality (1.13). Further, any element f e L,(Q) is a

limit of a sequence of differentiable functions. Therefore, if we pass to the limit and take into
account that the operator S is continuous, we obtain (1.13) for any f € L, (Q).

Theorem 1.2 [11]. Let k(x) be a bounded function of coordinates in Q such that

Im k2(x) >1Im kg, x € Q. Then the solution of the integral equation (1.7) exists and is unique

inL;(Q).

Proof. Let us multiply both side of Eq. (1.12) by (k% —k&)":



(k2 —k&) u = (k? —=k3)"S[(k? —kZ)u] =(k?> —k&)" f. (1.14)

Function ¢ = (k2 — kg) has an inverse function due to Imk? (X) >1Im kg. Then we have that Egs.
(1.12) and (1.14) are equivalent, i.e. any solution of (1.12) is a solution of (1.14) and back. Let
A denote the operator of Eqg. (1.14). For any u € L, (Q) we have

(Au,u) :I§*|u|2dQ - j§*§(5u) u'dQ =

Q Q
[Res udQ-i[Im5|u?dQ- [ (su)* [S(ow|aQ.
Q Q Q

We conclude from (1.13) that

‘(Au,u)‘ > ‘Im(Au,u)‘ZmigIm5(x)(u,u). (1.15)

The theorem now follows from Theorem 4.3 and equivalence of Eq. (1.12) and Eq. (1.14).

The conditions of Theorem 1.2 are more strict than condition of Theorem 1.1 (they are virtually
identical if Imkg =0, which takes place in most real problems). However, no smoothness of the
function k(x) is required in Theorem 1.2; therefore in this case the solution of Eq. (1.7) satisfies
Eq. (1.1) in a generalized sense.



CHAPTER 2

Electromagnetic scattering problems
2.1 Formulation of the problem

Now we will consider the next class of wave scattering — electromagnetic scattering. The
medium in a finite 3D domain Q is characterized by a dielectric permittivity tensor function &
and constant ( & =gy =const ) outside Q; the permeability is constant everywhere,

U = g =const. The problem is to find the electromagnetic field excited in the medium by an
external field with time dependence given by the factor exp(—iwt) . The corresponding

mathematical problem is stated as follows: find unknown vector functions E and H satisfying
Maxwell equations

rotH =—iwé E+J°, rotE =iwmugH (2.1)

and the radiation condition at infinity (1.2), where kg=w./&qug - In (2.1) 7% is the external

current generating the external field E®, H%; and Imeg >0, Im o >0, and Imkg > 0.

2.2 Integro-differential equation

Write equations (2.1) in the equivalent form

rotH = —iwegE +J, rotE =imugH . (2.2)

Here
J=304+7JP, (2.3)

where
JP =—iw(é-¢gol)E (2.4)

is the electric current of polarization which does not equal zero only in domain Q.
We may formally consider equations (2.2) as Maxwell equations in homogeneous medium; i.e.

assuming that the electromagnetic field is produced by current J. Express the solution of (2.2)

that satisfies the radiation condition at infinity in terms of vector potential A using the known
formulas

AX) =[ I (y)G(R)dy, (25)
E = iwugA—- L graddiv A, H =rot A (2.6)
logg

In (2.5) G is the Green function of the Helmholtz equation

exp(ikgR)
4zR
From (2.3) - (2.7) we obtain that unknown electromagnetic field can be presented as

G(R) = (2.7)



E(x)=E%(x) +k& [ —~DE()G(R)dy +graddiv [ (& - E(y)G(R)dy, x € E5 (2.8)
Q Q
H(x) = HO(x) - iweg rotj(ér ~NE(Y)G(R) dy, x € E3, (2.9)
Q

where R=|x—y[; x=(x1,X2,%3); ¥=(V1.V2,Y3); & =&l &q.

In (2.8) - (2.9) E%(x), H () is the electromagnetic field generated by known current J© in the
homogeneous space with parameters ggand uq . If we know the electric field we may calculate
magnetic field by using (2.9).

Because &, =I outside Q we can reduce the initial problem to the volume integro-differential
equation with respect to field E in the domain Q

E(x)—k§ [ —DE()G(R)dy — graddiv [ (& — 1)E(y)G(R)dy = E%x), xeQ.
Q Q
(2.10)
If we have obtained solution to the equation (2.10) in the domain Q then we may calculate
electromagnetic field outside Q by using representation (2.8), (2.9).
Note that we cannot apply grad div under the integral sign in (2.10) because in this case one

must differentiate function G twice with respect to coordinates which yields the term ~1/ R% in
the kernel of the integral equation and the corresponding improper integrals diverge. However,
the rot can be applied under the integral (2.9) because in this case we will have a weak

singularity ~1/ R?.
2.3 Singular volume integral equation

Represent function G(R) as

GR)=Go(R)+G1(R),  Go(R)= TPLCI=E 6= L (2.11)

Then from (2.10), we have

E(6) k3 [ (B¢ ~ DE(Y)G(RYdy ~graddiv [ (3, ~ E)G1(R)dy -

Q Q
[ (&~ DE(y).grad)gradGo (R)dy = E®(x), x<Q, 2.12)
Q

Here the symbol (*,*) denotes the inner product of the vectors.

From (3.13), (3.17) (see Section 3.2), we can reduce Eq. (2.12) to the singular volume integral
equation

E(x) +§<ér (x) - NEW) - p. [ (@ ()~ DE(y),grad ) grad G(R) dy -
Q
k§ [ (@ (y) - DE(Y)G(R)dy =E°(x), xeQ. (2.13)
Q



2.4 Equivalence statement

Singular integral equation (2.13) is obtained from equation (2.10). Therefore, in order to simplify
the analysis, we will sometimes use equation (2.10). Now we shall consider the equivalence of
Maxwell equations (2.1) and the integral equation. We will assume that the electromagnetic field
satisfies the Maxwell equations in the usual sense. Such solutions of the initial problem will be
called classical solutions.

It is clear that every solution to the Maxwell equations satisfying the condition at infinity is a
solution of (2.13). In order to justify the converse statement we will assume that (I) the

components of tensor ¢ are Holder-continuous functions everywhere as well as the considered
solutions of (2.13); and (I1) external field satisfies the Maxwell equations for the homogeneous
space, i.e.

rotHO = —iwegE® + 30, rotEC =imugHP. (2.14)
Introduce the notation

V(%) = [[2r (y) - TTE(Y)G(R) dy. (2.15)
Q
Substituting E(x) and H(x) from (2.8) and (2.9) into the first equation (2.1) and taking into
account (2.14), we have
rotH +iwé E —J%=rot H —imeq rotrotV +iwz E® +iwékd V +iowégraddivV — J° =
=iaw(é—eg)[E? +kEV +graddivV]+imeq [-rotrotV +graddivV +kGV].  (2.16)

Next, vector-function V' specified by (2.15) satisfies the vector Helmholtz equation
AV +Kg?V =—[&, -1 E .
Then taking into account the vector identity

rotrot B=graddivB—AB,
we obtain

[ rotrotV +graddivV + kg V] = —i[é —&l 1E.
&0

Then from (2.16), we have
rotH +iwéE —J% = iw(Z — gy N[-E + E° + k3 V +graddivV] . (2.17)

From (2.8) and (2.15), it follows that the right hand side of (2.17) is identically zero.
Applying the similar reasoning, we can show that the second equation of (2.1) transforms to an

identity as a result of substituting E(x) and H(x) given by (2.8) and (2.9). Then any solution of

integral equation (2.13) satisfies the Maxwell equations provided that the above conditions are
fulfilled.

2.5 Uniqueness statement



Let us prove the uniqueness statement for the initial problem. From second equation of (2.1) we
have

rotE" =—iwusH . (2.18)
Let O, be the ball of radius r which contains the domain Q. Multiplying first equation of (2.1)
by E and equation (2.18) by H , we obtain the equality

- [ E"3%v= j(ﬁ rotE " —E*rotﬁ)dv—iwj E*éﬁdv+ia)y8jﬁ‘2dv. (2.19)

Qr Q Q Q

r r r

We now apply vectorial Green’s formula to the first integral in the right-hand side of (2.19) and
consider its limit as r — oo . Considering the real part of the resultant we finally derive

~Re IE*jodv:mlmIE*éﬁdv+wlmgo HE‘Zdv+

E3 Q E3\Q
o Im ug I‘H‘Zdv+ lim I(Re[é,ﬁ*],ﬁ)ds, (2.20)
E, r-og

where S, is the sphere of radius r and N is the external normal to this sphere; [*,*] denote the

cross product of vectors.

Relation (2.20) describes the energy conservation law for the electromagnetic field. By virtue of
radiation conditions the last term on the right hand side of (2.20) is nonnegative and coincides
with the energy flux of the electromagnetic field to infinity. The first term in the left hand side of
(2.20) and first three terms in the right hand side of (2.20) have the physical meaning of power
loss or generation of energy in matter. We have Imep >0 and Im g >0; therefore, only power

loss may occur in domain E3\ Q.

Let us put the external current J 0 generating the external field, equals zero everywhere. From
(2.20) we have E =0 in the domain Q if the Hermitian tensor (é(x)—é*(x))/(Zi) IS positive
definite at every point of Q. This condition has the following physical meaning: the matter in Q
has the losses. In the isotropic case, the condition means that Im&(x) >0 for allx e Q. Then by

using integral representations (2.8), (2.9) with EO, HO =0, we obtain that the electromagnetic

field equals zero in the whole space.
Based on the theory of elliptic equation [1, 3], we can prove that homogeneous equations (2.1)
with radiation condition has only the trivial solution in the whole space E3, if Hermitian tensor

(é(x) —é*(x))/(Zi) is nonnegative definite at every point of Q, condition (2.25) is satisfied and
£(x) is three times continuosly differentiable function of coordinates. The physical meaning of

the first condition: the matter in Q cannot generate electromagnetic energy. In the isotropic case,
the condition means that Ime(x)>0 forallxeQ.

Thus, we have proved the following statement: under abovementioned restrictions the solution of
the initial electromagnetic problem is unique if it exists.

2.6  Existence statements



To answer the existence question we have to use some results from functional analysis. First, we
have to specify appropriate functional space. The integrals of squared field characteristics stand
in the conservation law for electromagnetic scattering problems (2.20). Therefore, as in the

acoustic case, one may assume that the space of square-integrable vector-functions E2 (Q) with
the inner product

U,V)= UV (x)dx (2.21)
bv)=]
Q

is the most appropriate from the physical viewpoint as applied to the analysis of the integral
equations (2.13).

2.6.1 Classical solutions

Below we will assume that the components of tensor & are Holder-continuous functions
everywhere. Consider singular integral equation in the Hilbert space E2(E3)

~ 1 . A . A
E()+5(E (9-DEX - p. | (e ()~ DE(y). grad)grad G(R) dy -
E3
k§ [(Er(y)-DE(Y)GR)dy =E°(x), xeQ. (2.22)
E3
Tensor-function (&, (x)—f):O if xe E3\Q . Therefore singular volume integral equations

(2.13) and (2.22) are equivalent.
From (3.24) and (3.30), we find (see Section 3.3) that the elements of symbol matrix
® ={d,} of singular operator (2.22) in the Cartesian coordinate system have the following

form
3

o (X, ) = S +§Z em(X) i — o fme MM=123.  (2.23)
=1

Here &, (x) are the components of tensor-function £(x) in the Cartesian coordinate system.
From (2.23) we find

3
det{®] = > 50 (X) B - (2.24)

€0 n,m=1

Now, applying Theorem 3.4 for singular equations (2.22) and the equivalence of equations (2.12)
and (2.22), we obtain the following statement.

Theorem 2.1 [1, 9] The operator of the singular integral equation (2.13) is a Noether operator
in L, (Q) if and only if the following condition is satisfied

3
> eom(X) BB %0, x€Q, B + 53 + p5 =1. (2.25)

n,m=1
It can be proved using Theorem 3.5 that if the inequality

3
M Y enm(X) Bnfm 20, x€Q, B+ 5 + 5 =1.. (2.26)

n,m=1



holds then the singular integral equation (2.13) has the Fredholm property. For isotropic case
(2.26) has the form

Ime(x)>0. (2.27)
Conditions (2.26), (2.27) are satisfied for any passive media (that do not generate energy).
Now from uniqueness statement and Theorem 2.1 we obtain the existence and uniqueness
theorem.

Theorem 2.2 [1, 9] Let Hermitian tensor (E(x)—é*(x))/(Zi) IS nonnegative definite at every
point of Q and conditions (2.25) and (2.26) are satisfied. Then there exists the unique solution of
integral equation (2.13) in L, (Q) if one of the following conditions is fulfilled:

(A) tensor (é(x) — é*(x)) /(21) is positive definite at every point of Q;
(B) £(x) is a three times continuously differentiable function.

This solution also satisfies Maxwell equations (2.1) and radiation conditions at infinity.
2.6.2 Generalized solutions [1, 11]

Below we will consider the integral equation (2.13) imposing minimal restrictions on the
dielectric permittivity tensor function £(x) ; namely we will assume that all the components of
tensor function £(x) are only bounded functions of coordinates in domain Q. In this case,

according to theorem 3.2, the operator of integral equation (2.13) is bounded.
Rewrite integral equation (2.13) in the symbolic form

E- L §((-eo)E)=EC. (2.28)
€0

First we show that for any J e L, (Q) the following inequality holds

|mijj*(§5)szo. (2.29)
&0
Q
Taking into account (2.28), (2.10) and (2.5), (2.6) we see that E =—- L SJ, H=——rotE
logg loug

satisfy everywhere the Maxwell equations (2.2) and condition at infinity (1.2). Then from (2.20),
taking into account that the vector function J is equal zero outside Q and é(x):gof
everywhere, we obtain the inequality (2.29).

Theorem 2.3. Let £(x) be a bounded tensor function of coordinates in Q and Hermitian tensor
function (§(x)—§*(x)—2i Imeg f)/(Zi) be positive definite at every point of Q. Then integral
equation (2.13) has the unique solution in I:z Q).

Proof. Let us multiply both side of Eq. (2.28) by (¢ —¢&q f)*:

(6—891) E = (6=491)"S[(6-8y1)E] =(6-491)" EC. (2.30)



Tensor function & = (€ —¢g f) has an inverse function due to the condition of the theorem. Then

we have that Egs. (2.28) and (2.30) are equivalent. Let A denote the operator of Eq. (2.30).
From (2.28), (2.30) and (2.21) we have for any i € L, (Q)

(Ad,0) = [§"?dQ - [$"S(sm)u"dQ =
Q Q
I[5+5 ]| ?dQ - I( ]I i°dQ - j(éu) [S(cSu)]dQ

Q
We conclude from (2.29) that

‘(Z\u,u)‘ > ‘Im(AU,U)‘Zmigl(x) (UU) = po(U,U), Po > 0. (2.31)

where A(x) is the minimum eigenvalue of Hermitian tensor

600-8"0)  (Ex) - 200 —2i Im q)
2i 2i '
Note that if £(x) =&(x) 1, i.e., the medium is isotropic, then py =min Im(e(x) — &g )
xeQ

59 (x) =

The theorem now follows from Theorem 4.3 and equivalence of Eq. (2.28) and Eq. (2.30).
The conditions of Theorem 2.3 is more strict than condition of Theorem 2.2 (they are virtually
identical if Imgg =0, which takes place in most of real problems). However, no smoothness of

the tensor function £(x) is required in Theorem 2.3 therefore in this case the solution of Eq.
(2.13) satisfies Maxwell equation in generalized sense.

2.7 Spectrum of integral operator [15, 16]

The spectrum of the operator A on the complex plane Z is the set of points A such that the
operator (A— A1) does not have an inverse defined everywhere in the Hilbert space H. The

points A such that the operator (A—/lf) is not Noether belong to the continuous part of the
spectrum of A. The points A such that (A—/lf) is a Fredholm operator and there exists a
nontrivial solution u, Au — Au = 0 belong to the discrete part of the spectrum of A.

2.7.1 Continuous part of spectrum

Rewrite integral equation (2.13) in the symbolic form
AuEu—é((ér—f)u): f. (2.32)

Obviously

A-Al = (- z){ (‘51 M—IH. (2.33)



By comparing (2.32) and (2.33) from Theorem 2.1 we find that the continuous part of the
spectrum of the operator in equation (2.13) contains the set oy of points on the complex plane

given by the formula

3
A= () Bofm. xeQ, SR+ R+ BE=1.. (2.34)

€0 n,m=1

It follows that the point A =1belongs to oy since epn = Snmég ON the boundary of the domain
Q. Note that, by virtue of the Holder continuity of the permittivity tensor function &, (x), the set
oy Is a connected subset of the complex plane.

For isotropic case (&, (x) = & (X) f) we have the following formula

A=¢gr(x), xeQ. (2.35)
2.7.2 Spectrum for low-frequency case

Now we will assume that &, (x) :gr(x)f (we consider isotropic case). In this case integral
equation (2.13) has the form

E(X)+%(5r (x)—1) E(X) - p.v. f((er (y) - E(y),grad)grad G(R) dy -
Q
k§ [ (er () -D E(y)G(R)dy =E°(x), x<Q. (2.36)
Q

From Theorem 3.5 and (2.35) we have the following statement.

Lemma 2.1. The operator of equation (2.36) is Fredholm in the space Ez (Q) if the set oq of
values ¢, (x), x € Q does not contain a closed curve surrounding the point 4 =0 on the complex
plane.

Denote
er (A, X)=(,(X) =)A= 1), A¢oy. (2.37)

It follows from (2.32), (2.33) and (2.37) that the operator (A—if) is Fredholm if the function
&y (4,x) satisfies the assumptions of Lemma 2.1. We denote the boundary of o1by 7, and the
set of all points of the complex plane Z lying on and inside the boundary y; by o™ . If, in

particular, the set oy is a non closed curve, thenc™® = oq = ;. Therefore, taking into account

the preceding considerations and performing simple computations, we obtain the following
assertion.

Lemma 2.2 The operator (A—ﬂf) is Fredholm in the space E2 Q) if AeZ\o™.

In the general case it is impossible to describe the localization domain of the discrete spectrum of
the operator accurately. However, this can be done in a special case which is important in



practice. Consider low-frequency electromagnetic wave scattering problems such that the
diameter of Q is much less than the wavelength, D << A, where A =27z/Kg.

Equation (2.36) can be applied when the wave numberkg =0, i.e., for the static case. Obviously,
all preceding assertions remain valid in the static case. It follows from (2.36) that

(ko) - AN =—kZ [(er ~DE(WGRYy [ (e ~ IV (y),grad)grad Go (R)dy
Q Q
(2.38)

where A(ko) and A(O) are the operators in the integral equations for the stationary and static
cases, respectively, and Gq(R) is determined by (2.11). The second integral operator in (2.38)

does not contain a singular integral since the kernel of this operator has no singularity at x=y and
is a smooth function of the coordinates. Therefore, from (2.38) we obtain
lim HA(ko) - A(O)H - 0. (2.39)

r—oo

From (2.39) we have the following assertion.

Lemma 2.3 The spectrum of the low-frequency integral operator A(ko) tends to the spectrum of

the static operator A(O) as kg > 0.

In the static case, the integral equation (2.10) can be represented in the form

E(x) —grad div .[(gr (y) =D E(y)(1/4aR))dy = E®(x). (2.40)
Q

The solution of the homogeneous equation (2.40) satisfies the differential equations
rotE =0, div(s,E)=0 (2.41)

The first equation (2.41) follows from the identity rot grad = 0, and the second equation follows
from the identities grad div=rotrot+A and divrotrot=0 and the differential equation

A A=-J which is valid for the volume potential A(x) = j J(y)(1/47R)dy.

From the first equation in (2.41), we have E = grad ¢ . Then equations (2.41) can be reduced to a
second-order differential equation for the function ¢

div(er grade) =0. (2.42)
Let w be an everywhere-defined differentiable function. We have an obvious identity
div (we, grad @) = w div (e, grad @) + (Qrady/, &, grad @) . (2.43)

Let w = @ . Then, by integrating relation (2.43) over the space and by taking into account (2.42)
and the divergence theorem, we obtain the integral relation



2 . _0p
dofPdo= I 9 gs, 2.44
[zrlorad g dv Rinoosj o (2.44)

R

where Sg is the sphere of radius R centered at the origin and n is the normal to the sphere. Since

@ 1s a harmonic function outside Q, it follows that ¢ dp/on decreases as R at infinity.

Therefore, the limit on the right-hand side in (2.44) is zero, and each solution of the
homogeneous equation (2.40) satisfies the integral relation

J-<~9r|grad(p|2 do=0. (2.45)

It follows from (2.33) and (2.37) that A is a point of the discrete spectrum of the operator (2.40)

if there exists a nonzero solution ¢ of Eq. (2.42) with permittivity £, (1,x) . Moreover, it
follows from (2.45) and (2.37) that the corresponding value of A is given by the formula

2

de|d
zzjgr|gra¢j v (2.46)

I|grad(p| do

It is impossible to find the corresponding functions ¢ . However, using formula (2.46), one can

find the localization domain of points of the discrete spectrum on the complex plane: the points
of the discrete spectrum of the integral operator (2.40) can lie only inside the convex envelope of

the setoy given by formula (2.35). Set o™ lies inside convex envelope of the setoy. Therefore
we arrive to the statement.

Theorem 2.4 Spectrum of the integral operator (2.40) can lie only inside the convex envelope of
the setoy given by formula (2.35).

Theorem 2.4 and Lemma 2.3 provide approximate information about a convex envelope of the
spectrum of the integral operator for the low-frequency case.

2.7.3 Example

Let domain Q in the equation (2.36) be a ball and suppose that function of dielectric permittivity
has the following form in the spherical system of coordinates

&9, d22r20

0 Ly v (e -e) 92y mrad, (2.47)
£0 dy —dp
81+(1—81)r_d1, RZI’Zdl

R—d,



In(2.47) Risaradiusof aball,and R>d; >d, >0.

»
»

1 Re

Figure 2.1: Spectrum of integral operator.

On Fig. 2.1 fat solid line schematically outline the continuous part of spectrum for the case
(2.47). The spectrum of the integral operator for the low-frequency case lies inside the triangle.



CHAPTER 3

Certain results of mathematical analysis
3.1 Some functional analysis

Definition. Set X is called a linear space if for each two elements u and v from X their sum (u+v)
is defined and is also an element of X. Also for each element u € X and number A product Au is

defined which is also an element of X. Moreover, these operations satisfy the following
properties:

1L u+v)+f=u+(v+1), uv,feX;

2.U+V=V+U;

3. In X there is a zero element @, such that for any ue X , we have Qu=4;
u+é=u;

4. (A+p)u=Au+ puu;

5 A(u+Vv)=Au+ Av;

6. (A)u =A(uu);

7. lu=u.

Definition. A norm on a linear space X is a real-valued function whose value at ue X is
denoted by |u, and which has the following properties:

ju20; [u]=0, ifand only it u=0:  Jau]=lalful: [u-+vi<]u] ]
Here u and v are arbitrary elements of X and « is any scalar.

If a linear space has a norm then we have a normed linear space.

If for any fundamental sequence v, m=12,.. from a normed linear space X there exists a
limit ve X, then we have a complete space (a Banach space).

Definition. Let B be a Banach space. Mapping A: B — Biis called a linear operator if for any
u,veB and A, we have

A(AU+ pu)=AAu+ uAu.

Definition. Operator A is said to be bounded in the Banach space B if there is a real number C
such that for any u B |Au| <C|ul.

Minimal value of such numbers C is a norm ||A| of a linear operator.

If a linear operator is bounded then it is continuous. It means that if v = [im v, then
m—»oo

lim Avp =Av.
m-—o0

If in a Banach space B for any elements u,veB we can define the inner product (u,Vv) with the
following properties:

(u+v,w)=Uuw)+(v,w), (au,v)=a(u,v), (u,v)= (v,u)*,



(u,u)>0, (u,u)=0ifandonlyifu=24,

then we have a Hilbert space. In this case |u|=+/(u,u) .
For the Hilbert space L, (Q) of square-integrable functions we have the following inner product

(uv) = u(x)Vv(x) dx. (3.1)
Q

The integral operator acting in the Hilbert space L, (Q) (Q is a bounded 3D domain) has the
following form

()= [“E D uy)ay, xeq. 2)
Q R

Here K(x,y) is a bounded function of the coordinates x and y, R :|x—y|, and 3>m=>0. If
3>m >0 then we have a weakly singular integral operator. All such operators are bounded in

the Hilbert space L, (Q) .
Let us formulate several definitions.

Definition. Let A be a linear operator acting in the Hilbert space H. Then operator A*, which is
also defined in H, is called conjugate to A if the equality

(Af,g)=(f,A"Q)
holds forall f,geH .

The solutions of the homogeneous equation Au =0 will be called zeros of operator A.
Dimension of the subspace of zeros will be denoted by n (A). Then n(A*) is the dimension of

the subspace of zeros of the conjugate operator A" The difference

Ind A=n(A) -n(A")
is called the index of operator A.

Definition. A linear operator acting in the Hilbert space H is called normally solvable if the
domain of images of A is an orthogonal completion to the subspace of zeros of the operator A"

Thus, if A is a normally solvable operator, then the equation Au=f is solvable if and only if its

free term f is orthogonal to all zeros of the conjugate operator A"
Definition. Linear operator A is called the Noether operator if it is normally solvable and its
index is finite.

Definition. Linear operator A is called the Fredholm operator if it is a Noether operator and its
index is equal to zero.

According to this definition, we can formulate a sufficient solvability condition: if A is a
Fredholm operator, then the equation Au=f is uniquely solvable for any f eH if the

homogeneous equation Au =0 has only the trivial solution.



Note that sometimes the Noether operator is called the Fredholm operator and the Fredholm
operator is called the Fredholm operator with the zero index.

Definition. A linear operator K acting in the Hilbert space H is called compact operator if for
every bounded subset M of H, the image K(M) is compact.

Operators of the form (I + K) are Fredholm operators.
Linear integral operator (3.2) is a compact operator in the Hilbert space L, (Q) if m <3.
Let us consider the following integral equation.

a9+ [KEDyydy = (0, xeQ, m<s. (3.3)
5 R

Then we have the following statement.

Theorem 3.1 There exists the unique solution of the integral equation (3.3) in L, (Q) for any
f € L,(Q) if homogeneous equation (f =0) has only the trivial solution.

3.2 Derivatives of a weakly singular integral

Consider the following expression in the Cartesian coordinate system

V(x) = aa ¢ ju(y) dy, n,m=123, (3.4)
Xn OXm Q| y

where U(x) equals zero outside domain Q.
We can write

0 0 1
V(”e%ngamnhx—ydu(”dy

0 —2 (X —

__I|X_y| MU (y)dy. (3.5)
Xn & x—y|

Now we have to be very careful, since should we differentiate one more time, a term with

x— y|_3 will appear under the integral sign. Indeed, denote

Xm — Ym
—Zm_Jm 3.6
a’m |X— y| ( )
and compute explicitly
0 1
- m 5 |= 3 (3anam _5nm)1 (3.7)
Xn|x=y° ) |x-y]

where oppy, is the Kroneker’s symbol and an, n =123, are the Cartesian coordinates of the
points of the unit sphere S. In the spherical system of coordinates



a1 =SIN@cosg, ay =sindsin @, az = Cosé. (3.8)

Then, we arrive at a strongly singular integral. A mathematical trick which we are going to use
now consists of splitting the domain of integration into two parts: one with singularity and one
without. Namely, for every fixed x we represent (3.5) as a sum of two integrals:

0 - 0
V(X)=—o (y)dy + U(y)dy .
M Q\ij<i|x y? ] o x- Lellx y? }

Next, we take a limit ¢ = 0, i.e.

Veo=tim 2 [ 2IU(y)dy+nmi j[ }U(y)dy
x—yl<e

£—00Xp, Q\ |X y| £—00 n\x Yl<s |X ﬂ

(3.9)

This will help us to obtain an explicit expression for the second integral. Notice that for any
& # 0 the first integral does not contain any singularity and we can substitute (3.7) into this
expression. First consider the second integral. We add and subtract U (x) under the integral sign

and arrive at

lim j {a }[U(y) U (x) +U (x)]dy (3.10)
[x=y|

£-0 6M|X ﬂ

lim | 0 [“ }[U(y) U)Jdy+ lim U(x) [ ﬂ[ ~%m } dy .

2
S—)O‘X_y‘< aXn |X y| c—0 ‘X y‘<g Xn |X_y|
Definition. Function u is said to be Holder-continuous in a domain D if the inequality

lu(y) —u(x)|<C|x- y|5, C =const,5 >0
is valid for any x,yeD.

Suppose that U (x) is a Holder-continuous function in Q.
The first integral of the last expression (3.10) contains a difference [U (y)-U (x)].
Then, we would have the following

. 0 -
[ lim ] o LX ¥ }[U(y) U()]dy |<

x—y|<e

C lim _[ 0 [_ ]|x y| dy = C lim j |3Olnam;inm|dy:0
c—0 aXn |X y| 8—)0‘)( y‘<€ |X y|

x-yl<e

(3.11)



The zero at the end follows from the fact that the resulting integral is weakly singular for 6 >0
(since 3—06 < 3) and that the domain of integration tends to zero in the limit. Hence, we are left
with the last integral of (3.10) which we transform in the following way (we use the Gauss
theorem here, since the domain of integration is a ball and has a spherical boundary S, with

normalv, = -, Where «,, are determined by (3.8)):

0 a
U (x) lim j [ }dy =U (x) lim j [ m ]d =
géo\x y\<ga n |X Y| ¢0 |x— y\<gay” |X Y|

2
U(x) lim j ”“m ds =U (x) lim &2 | j%sinededgpz—wx)‘l—”&nm.
6‘—)0 |X y e—0 00 & 3

(3.12)

Thus, from (3.9)-(3.12), it follows that the total expression for the two spatial derivatives of a
weakly singular integral (3.5) is

o 0 U . 1 4
V(x) = [P ay—iim [ L Bagen - om V@)t~ UG,
Q\\x—y\<g|X_Y|
(3.13)

Now we will show that the limit of the integral in expression (3.13) exists. Let Q(x) be a ball
with the center at the point x € Q, Q < Q(x) . Because function U(x) does not equal zero only in
the domain Q we can write for all x e Q

. 1

lim 3 [Bernam = 5om JU (v) dy =
-0 Q\\x—y\<€ |X— y|

. 1

lim 3 [3anam _5nm]U (y)dy:
e—>0

Q(x)\|x-y|<e |X - y|

. 1
lim
c—0

3 Banam —Sim] U (y) -U (x)]dy +

Q)\x-yle | X= VI

U tim [ — ey ~ Sy - (3.14)
—0 Q(x)\\x—y\<g|x_ y

At first we will calculate the last integral (3.14) by using spherical system of coordinates with the
origin at the point x. We have

. 1
lim
-0

3 [30‘nam _5nm]dy =,
Q(x)\\x—y\<g|x_ Y|



Rl 2w
lim [=| [ [Banam —dum]sinedode | dr, (3.15)

g—)Ogl’ 00

where R is a radius of the ball Q(x).

Obviously, from (3.8) it follows that integral (3.15) equals zero.
Consider the first integral in the last expression (3.14). Since U(x) is a Holder-continuous

function we have

5
U () -U)]=0x y)x-y[°,
where ¢(x,y) is a bounded function of coordinates. Then

im L Bagan -6 ][U(y)=U)]dy =

3
Q(x)\|x-y|<e |X - Y|

1
[ ——5—5 Banam —dum]e(x ) dy. (3.16)
a(x) XY

The integral in (3.16) exists in the usual sense. So, the limit of the integral in expression (3.13)
exists. This integral is also known as the principal value (p.v.) of a strongly singular integral

. 1
[30‘n05m _5nm]U (y)dy = ||m0 —3[30‘n05m _5nm]U (y)dy
&> Q\\x—y\<g|X—Y|

(3.17)
3.3 Elements of the theory of singular volume integral equations [2]

Let Q be a domain in E3. This domain may be finite, infinite and, in particular, coincide with E3.
We will consider the following singular integrals

Ve =pu. Jun- YD dy=tim  fug) ey, (3.18)
e R Q\(R<2)

Here R = |x— y| is the distance between points x and y and « = (x— y)/R is a point on a unit
sphere S centered at the origin.

Point x is called a pole of the singular integral, f (x,«) the characteristic, and u(y) the density.
Everywhere below, we will assume that the characteristic satisfies the condition

j f(x,)dS =0. (3.19)
S

It easy to verify that integral (3.18) does not exist if condition (3.19) is violated.

Below, we will consider singular integrals as operators in a Hilbert space L, (E3) .



Theorem 3.2. Let characteristic f (X, a) satisfy condition (3.19) and the inequality

2
[|f(x.@)"ds < C = const (3.20)
S
be valid for every point x. Then, if ue Ly(E3), singular integral (3.18) exists at almost all

points x € Eg; in addition, v € L, (E3) and singular operator is bounded inL, (E3).

Definition. A linear operator A considered in a Hilbert space L, (E3) and defined as

(Au)(u) = a()u(x) + pv. [ %u(y)d(y)ﬂl{u)(x), (3.21)
Ej

where K is a compact operator in Ly (E3), will be called the singular integral operator in
Lo (E3).

We will assume below that characteristic is a Holder-continuous function with respect to x and
f(x,a) =0 if xe E3\Q where Q is a finite domain in E3.

The analysis of solvability of linear equations with singular operator (3.21) is much more
complicated than in the case of integral equations with a Fredholm kernel. Therefore, the
corresponding theory was elaborated substantially later and in less detail. Singular integral
equations are analyzed using the notion of the symbol of a singular operator A. The symbol is
defined as a function @ 5 (x, #) of points x € Eg and S €S, where S is the unit sphere.

The symbol must satisfy the following three conditions:

(1) the symbol of every compact operator is zero;

(11) the symbol of the sum of two singular operators equals the sum of their symbols;

(111) the symbol of the product of two singular operators equals the product of their symbols.

The symbol is defined using several different formulas. We will present one of them, which is

the most convenient for the analysis of specific singular integral equations.

For most applications characteristic can be represented as f (x,«) = f1(x) fo(a). The symbol of

the singular integral operator (3.21) is given by the formula

F| pv. | f2(\f‘)U(y)dy

DaGLH) =200+ ()P g (3.22)
A . Flu] IETTE |
where F denotes the Fourier transform
FIVX)] k) = jexp(ikx)v(x) dx (3.23)

Es

Here kx =KyX; +KoXy +ksXz and dx = dxpdxodxs .
In many cases, the singular integral is a result of derivation of a weakly singular integral



V0 =22 fu Wy (3:24)

0 0
OXpy OX R
n m Q

Then, according to (3.13) and (3.17) we obtain

V() = p. Jun Y (3“’:;”“ =) gy 27 4 () (3.25)
Q

The function

1
Vo(x) = | —=U(y)dy (3.26)
EJ; 47R

satisfies the Laplas equation
AVy =-U. (3.27)

Then, we have the following relationships

Flaf U@ dy|=-IkPF| [ u)dy|=FI-U],

E3 ES
1 FU)
FI [ oumdy|=—7,
2
_E347ZR k|
o 0 1 k.k
F U(y)dy |=——""TFU]=- F[UT. 3.28
axname[MR () dy | == 2 FUI=~/n/inFIU) (3.28)

Finally, from (3.24)-(3.28), we find that the symbol of the singular operator

(o)) = po [uy) 100 —om) gy (329)
Q

has the following form
A A
symbol (Ag) = ®g (x, ) = =47 f (X) ffim + 5 F(X)om- (330)
The following statement is valid.

Theorem 3.3. Let Abe a singular integral operator of the form (3.21). Then A is a Fredholm
operator in L, (E3) if and only if the symbol does not degenerate, i.e.,

inf  |d(x,B)>0. (3.31)
xeEg, fesS

Consider a system of singular integral equations



3 ~
D Amum = fr; n=123, (3.32)
n=1

where up, f,, € Ly (E3) and Anm are singular integral operators (3.21).
System (3.32) can be represented as a vector operator equation

Ad=T.
Here Gand f are vector-functions and
X A1 Ao A
A=A Ay A (3.33)
Az1 Azp Agz

IS a matrix singular operator.
We denote the symbol of operator A,y by @ m (X, ). The matrix

D11 (X, ) P12(X,B) P13(X, )
O(x,B) =| ©o1(X, B) P22(X,B) D23(X,B) (3.34)
D31(X, B) @32(x, ) DP33(x p)

will be called the matrix symbol or simply the symbol of matrix operator A .

Theorem 3.4. Let Abe a matrix singular integral operator of the form (3.33). Then Ais a
Noether operator in I:2 (E3)if and only if matrix symbol does not degenerate, i.e.,

inf  |detd(x,8)|>0 (3.35)
xeE;, pes

Unlike the case of one equation, the index of system (3.32) may not be equal to zero.
The following theorem establishes sufficient conditions for the Fredholm property.

Theorem 3.5. Let Abe a matrix singular integral operator of the form (3.33) satisfying the
condition of Theorem 3.4. Then A is a Fredholm operator in I:Z(E3) if there is a smooth curve

in the complex A -plane that joins 1 =0 and A4 = and has no common points with the set of
eigenvalues of the symbol matrix.



PART Il
Numerical methods for integral equations

Introduction

To solve the integral equation numerically, one reduces it to a system of linear algebraic
equations (SLAE). The solution of that system must approximate the solution of the original
problem with a prescribed accuracy. Let h be a typical length on which the solution u varies only
slightly. The specific values of h are determined by the desired accuracy of the solution. As a
rule, a priory estimates of h necessary for obtaining the desired accuracy of the solution are
known in specific problems. Then the dimension N of SLAE can be estimated as

N = (mesQ/h?’). It turns out that N is very large, N>>1000. Then it is virtually impossible to

use direct methods since this would require performing T~N3 arithmetic operations and storing

N2 entries of the matrix of the SLAE in computer memory.

It is clear that we must apply an iteration method. Number T of arithmetic operations that
guarantees the required accuracy of solution and memory volume required for the
implementation of the algorithm are the main efficiency criteria for any numerical algorithm.
Multiplication of matrix SLAE by vector is the most laborious operation of the iteration method.
Therefore, the number of multiplications for the implementation of a particular algorithm will be
called the number of iterations. The value of T is estimated by the formula

T=L(T,+T,)

Here, L is the number of iterations, Tp is the number of arithmetic operations required for
multiplication of a matrix by a vector, and Tg is the number of arithmetic operations required for
other computations. As a rule To<<TA.

Our main purpose is the minimization of the values Ta and L.



CHAPTER 4

Iteration methods
4.1 Simple iteration method
In the Banach space B, we consider the linear operator equation

Au=f, (4.1)

where A is a bounded operator.
Rewrite Eq. (4.1) in the equivalent form

u-B, =f/u. (4.2)

Here éﬂis the linear operator given by the formula éﬂ = (/1 = A)/,u and = 0 is an arbitrary

complex number.
The successive approximations

Uns1=B,Up+ f/u, n=01.. (4.3)

converge to the solution of Eq. (4.2) and hence of Eq. (4.1) for any ug, f € B provided that
po(u) =supln (1) I<L 7 (1) ea(B). (4.4)

One can readily show that there is a one-to-one correspondence between points of the spectrum
G(A) of the operator A and points of the spectrum G(B ) of the operator B ; this

correspondence is given by the formula
n=Wu-A)lu Aec(A), nea(B,). (4.5)

The iterations (4.3) can be represented in the simpler form
Un4+1 =Up _i('&un - f), n=01,... (4.6)
y7;

One can prove the following statement [8].

Theorem 4.1. A necessary and sufficient condition for the existence of complex number x such
that the iterations (4.6) converge to the solution of Eq. (4.1) for arbitrary ug, f € B is that the

origin of the complex plane lies outside a convex envelope of the spectrum of A.

The convex envelope is illustrated in Fig. 4.1.



Spectrum

Convex
envelope

Figure 4.1: Spectrum and its convex envelope.

The iteration converges to the solution at the rate of a geometric progression; i.e.
Jun —ul<Clpo()]", C=const, (4.7)
where, by (4.4) and (4.5), pg(x) is given by the formula

) .
po(u) =%, Lea(h). (4.8)

Obviously, the best convergence of the iterations is attached at the value of x for which the
function pg (1) takes the minimum value. By S, we denote the disk on the complex plane with

N

center ¢ and the least radius R which contains all points of the spectrum of A .
Obviously, R :sup|y—/1|, Ae a(A). From the origin, we draw the tangents to the disk S, and

denote the angle between them by « . Then it follows from (4.8) that pq(u«) =sin(a/2). Thus
we have proved the following assertion.

Theorem 4.2 Let the origin of the complex plane lie outside the convex envelope of the spectrum
of A . Let Sy be the disk which contains all points of the spectrum of A and is “‘seen” from the

origin at minimal angle g . Then the best convergence of the iterations (4.6) to the solution of
Eq. (4.1) is attained at the complex value uq which is the center of the disk Sy . The iterations

converge to the solution at the rate of a geometric progression with the
denominator pg =sin(aq /2).

The convex envelope of the spectrum of an integral operator on a complex plane depending on
the form of the dielectric permittivity function has been defined in Chapter 2 in the case of low-
frequency electromagnetic scattering problems. It follows from Theorems 4.1 and 4.2 and
relation (2.35) that the simple iteration method can be used for Eq. (2.36) for arbitrary real
media; moreover, we can readily evaluate the optimal iterative parameter ug . Numerical
experiments have shown that this method is a very effective for the numerical solution of low-

frequency scattering problems.
4.2 Minimal residual iteration method

Consider equation (4.1) with a linear bounded (in general case non-selfadjoint) operator A in the
Hilbert space H. Define the sequence {u,}, u, € H by the formula



Uny1 =Up —7n (Aun - f); n=01,... (4.9)

with the complex iteration parametersz,, .
Denote

hy = Aup, — f . (4.10)
Then multiplying both side of (4.9) by A we obtain the relationship

hn1=hn _TnAhn - (4.11)

Therefore, we determine iteration parameters z,, so as to provide the minimum of the functions

[nsal [P - AN |
A N

(4.12)

Represent h,, as a sum of two elements; one of them is a projection of h, on eIementAhn and

the other is orthogonal to Ahn. This decomposition is uniquely determined from the obvious
formulas

hy = 7qAhy +dp,
_ (hy,Ahy)

=— = . A3
(Ahp, Ahp) @19

n

Here (f, g) denotes the inner product of f,g e H .
Substituting (4.13) into (4.12) and taking into account that(,&hn ,d,) =0, we have

21 ~ 2
|Tn _T|

y2() =

(4.14)

Now it is clear that (4.14) reach the minimum at the complex z = z,,. The corresponding value of
7n (7y) IS given by the expression

A (2
(b Ay )
hn, hn ) (Ahy, Ahy )
Note that y,(z,) <1, equality takes place only when (hj, Ahn) =0, i.e., elementsh,, and Ahn

are orthogonal.
Let us prove the following statement [1, 9].

rn(zn) = 1_( (4.15)

Theorem 4.3. Let A be a linear bounded operator acting in the Hilbert space H. Assume that
foranyveH

(Av,v)‘ >po(v,v), po >0. (4.16)




Then (1) there exists the unique solution to equation (4.1) in H; (lI) the norm of the inverse
operator A1 s estimated asHA_lH <1/ pg; (1) iterations (4.9), (4.10) and (4.13) converge to

the solution of (4.1) for any initial approximationug € H ; and (IV) the rate of convergence is
estimated by

n

2
Jug — ] sp_lo 25| JAuo -1 (4.17)
0

where M is the upper estimate for the norm of operator A, i.e., |A| <M.

Proof. We have

hall _ o | [ha-af ]

— : (4.18)
Mol [hn—1 n-2]  [Ino]
From (4.12), (4.15) and (4.18), it follows that
n-1
ol o ol (019
m=0

(4.15) yields an inequality

P4
ym(tm) < [1-—==0q<1, (4.20)
Mo

which is valid for any m. Note that by virtue of (4.15) pg/Mg<1. From (4.19) and (4.20), it
follows that residuals h,, tend to zeroas n — .

Since‘(,&v,v)‘ SHAVH |v|| for Vv e H , (4.16) yields

HAVH > po M- (4.21)
From (4.9), (4.10), (4.13) and (4.21), we obtain

M
Junsa —un] < =5 Il
Po
Now for arbitrary m>n,

n
M

Jum —un| =|Um —um-1) ++ Una —up)| Sq—_zo Iho
1-9 pg

This means that {u,} is a fundamental sequence in H; therefore due to the completeness of the
Hilbert space, u, tends to a limit u € H . Since A is a continuous operator because A is a linear



and bounded and lim h, =0, the equality Aun — f =hp, implies that u = lim u, is a solution
n—co n—

to equation (4.1).
Thus, (4.1) has a solution in H for any f € H, and according to (4.21), this solution is unique.

Using inequality (4.21) we conclude that AL is a bounded operator and HA_1H <1/ pg.

We have X
[l = HA“n - fH:

Aup — Au” > pofun —ul.

These relationships are considered in combination with (4.19) and (4.20) ensure the validity of
(4.17). The theorem is proved.

Note that Theorem 4.3 specifies not only the applicability of the method for solving linear
operator equations but also a method that facilities the proof of the existence and uniqueness of
solution for particular problems (see, for example Theorems 1.2 and 2.3).

It follows from Theorem 4.3 and inequalities (1.15) and (2.31) that the minimal residual method
can be used for integral equations (1.7) and (2.13). Numerical experiments have shown that this
method is an effective tool for the numerical solution of scattering problems.

4.3 Multistep minimal residual iteration method

Consider a generalization of the minimal residual iteration method. The iterative parameter z,, in

(4.9) is defined from the orthogonal condition of the (n+1)-st residual h,,; to the element Ahn.
Consider the sequence {u,}, u, € H, which is defined by the formulas

m
-1
un+1:un _ZTnIA hn! nzoalv--a
=1
m =const, m=>1.

(4.22)

Here {rj, } is the set of the iterative parameters used to pass from n-th to (n+1)-st layer.

m ~

Because the residuals are related by h,,; =h,, — anl Al hy, , we define the iterative parameters
=1

from the orthogonal condition of hy,,; to the subspace, which is generated by the elements

{Ahn,...,Amhn}(the Krylov subspace). The iterative procedure is completely defined by the
formulas [1, 6, 10]

hr(]o) =h, :Aun— f, ur(]o) =Up,

(hr(]| - An{ —1))
- 2
Ay H

k
P = > =




o) =0 D o, 0 =D qAu, g =,
n=01..; I=1..,m (4.23)

Iterative procedure (4.23), which may be named as multistep minimal residual method (for shot
it is called as GMRES method) converge to the solution of (4.1) if condition (4.16) is satisfied.

It is clear that the use of one layer in (4.23) with m > 1 leads to a larger decrease of the residual
than that in m sequential iterations (4.9), (4.10) and (4.13). The more general assertion holds,
namely, the more m in the iterative procedure the faster the convergence. Let k be the number of
layers in (4.23). Then the quantity L=km defines the amount of multiplications of a matrix by a
vector in the algorithm and hence L is the number of iterations in this case (see Introduction to
Part I1). However, the increase in the convergence rate is due to the increase in the amount of
memory required. Therefore, when solving a particular problem it is necessary to take into
account available computational resources (e.g., speed and memory), and maybe other
restrictions. Note that the use of even small m=2, 3 leads to sharp increase in the convergence
rate as compared with (4.9), (4.10) and (4.13).

In most real applications the quantity L lies from 20 to 1000.



CHAPTER 5

Discretization methods

5.1 Galerkin method

Consider Eq. (4.1) with the linear bounded operator A acting in the Hilbert space H. Let

Hyn < H be the finite-dimensional Hilbert space with the basis{u,(]N)}, n=1..,N. We seek
the approximate solution to Eq. (4.1) by the Galerkin method as

N
un = Zar(]N)u,(]N), (5.1)
n=1

where unknown coefficients arﬂN) are defined from the system of N linear algebraic equations,
namely,

N

> oM Aly = (f ,ur(n'\')) (5.2)
n=1

AN = (Ao (V) (5.3)

Equations (5.2), (5.3) are obtained from the requirement: residual of the approximate solution
hy = Auy — f must be orthogonal to the subspace H .
Formulate the following condition.

Condition A. The sequence of the subspace {Hy} is ultimately dense in H if for any
u e H there exist the elements Uy € Hy, N =1.2,..., such that

lu—y|= inf Ju-af<e@N),
weH

where &(u, N) is the bound of the discrepancy, e(u,N) -0 as N — .

The following theorem holds [1, 17].

Theorem 5.1. Let for any u € H inequality (4.16) and Condition A hold. Then the solution to
the system of linear equations (5.2), (5.3) can be found by the iterative method of minimal
residuals. Moreover, uy converges to the solution of Eq. (4.1), i.e. lim |u—uy|=0.

N —>o©

Proof. Let b(N) :{br(,N)} be an element of the space of N-dimensional vectors Ey and let

AN) = {Ar(]r’}'])} be a linear operator in Ey, . By (5.3) and (4.16) we have

N o
> AR (B0 )

n,m=1

‘(A(N)b(N),b(N))E ‘:
N




N N
[A{Zbrﬂ’\')urﬁ”)} [Zb&N’U&N)N 2/70q0(b(N)ab(N))EN
H

n=1 m=1

where Qg is the least eigenvalue of the Hermitian positive definite matrix

Prom = (USN),Ur(nN)), nm=1..,N.

Hence, by Theorem 4.3, the solution to (5.2), (5.3) exists, is unique, and can be obtained by the
iterative method of minimal residuals.

We multiple (5.2) by (ar(nN)) and sum the resultant with respect to m, taking (5.1), (5.3) into
account. We have

(AUN,UN)Z(f,UN) (5.4)
whence by (4.16) we have

June]< po ]l (5.5)

If Condition A is satisfied, then the solution u to Eq. (4.1), which exists and is unique in H by
Theorem 4.3, can be represented as

UZJN + XN LTN EHN,
lim |xn [ =0. (5.6)

N —o0

From (4.1), (4.16) and (5.4) we get

p0||u—uN||2 S‘(A(U—UN),(U—UN))‘Z‘(f ~ Aup ,u—uN)‘:‘(f ~ Aup ,u)‘:
‘(f — Auy, iy )+(f — AUy, XN 1

Since Uy € Hy, then (f - AuN Uy ): 0. Therefore, taking into account (5.5), we find

A

2 1 A
u-—u < |[fll+—|f Xn |
Ju—un] po{” || - || II}II N

whence by (5.6) lim|u—uy|=0as N — .

The theorem is proved.

The finite-dimensional subspaces of functional spaces L, (Q) or Ez (Q) satisfying Condition A
can be constructed in various ways for the Hilbert spacesH p , in which the operators of Egs.
(1.7) and (2.13) act, e.g., for the spaces of the piecewise-constant functions or vector-functions.
Inequalities of the form (4.16) hold for the operators of Egs. (1.7) and (2.13). Therefore, the
Galerkin method can be used to solve numerically integral equations (1.7) and (2.13), and the

system of linear algebraic equations by the iterative method of minimal residuals.
For applying Galerkin method we need to calculate inner products of the form

(Au V), (5.7)

where U and V are known functions and A is the operator of equation. It is easy to calculate
(5.7) in acoustic case. For electromagnetic case it is not so clear. But, fortunately, inner product



in functional space L,(Q) is defined as integral (2.21). Therefore, we may use the integral

equation (2.10) and apply grad div under the integral sign. Indeed, by using Eisnstein summation,
we obtain

grad,div, [UW) = dyV (| =] (3“““mR‘35””" Unn () Ve (9)xdy

. 4
Q L@ Q90

(5.8)

where oy, a9, azare determined by formula (3.6) or (3.8).

Last integral in (5.8) exists in the usual sense. The inner products from others integral operators
of (2.10) are calculated in a similar manner.

5.2 Collocation method

The kernel of the integral operator depends only on the difference of Cartesian coordinates of x
and y. Therefore, in the discretization, it is desirable to take account of this fact so as to obtain a
matrix of the SLAE with the corresponding symmetry properties [1, 14].

Introduce a grid in the rectangular Cartesian coordinate system such that the domain Q is entirely
placed in the parallelepiped IT with dimensions, N h, 1=1,2, 3, where h is the grid step along

the Cartesian coordinates. The parallelepiped IT is divided by the grid into cells (elementary
cubes) IT(p), p=(p1, P2, P3), P| =0,...,N; —1. We define domain Q as the union Nq of the

elementary cubes centers of which lie inside domain Q. It is obviously thatNg < NyNpN3 =N.

Then the choice of the grid is defined by the domain shape and by the requirements that the
desired solution, external field, and the parameters of the medium vary slightly inside the cells
(elementary cubes). The node points, at which the values of functions are given, are positioned at
the cell centers x(p) with the coordinates

h h h
X1(D)=I01h+§, xz(p)=p2h+§, x3(p) = P3h+§ : (5.9)
Then integral equation is approximated by a system of linear algebraic equations with respect to
the values of unknown field taken at the nodes situated in domain Q.

This approximation for the integral equation (1.7) (acoustic case) or integral equation (2.13)
(electromagnetic case) has the following form

u(p)— > B(p-a)v(q)u(@) =ug(p), x(p)eQ . (5.10)
y(9)eQ
where

u(p) =u(x(p)); Uo(P) =Uo(X(P)); u(a) =u(x(@)) 511

For integral equation (1.7) B(p-q) and v(q) are given by the formulas

B(p-a)= [G(R)dy, (5.12)
Hq

V(@) = [k§ (y(a)) - k§1 (5.13)

Here



R =(y1 =X (P2 + (y2 - X2 (p))? + (¥3 X3 (p))? . (5.14)

For the singular integral equation (2.13) (electromagnetic case) u(p)and ug(p) are the vectors,
B(p-g) and v(q) are 3x3 matrix. Expressions for B(p-q) and v(q) are given by the formulas

Vink (@) = &mi (¥(9)) = Omk (5.15)

3 2k ik 1
Bun (P—0) = [ G(R)|| =5~ 2 —k§ |anam +| ki +—2-=5 [ dy,  p=a,
i, R® R R R

(5.16)

In (5.16) R is determined by (5.14) and «,, according (3.6), are given by formula

:Xn(p)—Yn n=123.
X(p) -]

qn

In order to determine B, (0), we will consider auxiliary relationship. In [5], it is shown that

when J = const in a 3D domain V,

graddiv, j ﬁi dy =77, (5.17)
Vv T

where 7 is a dyad specified by the shape of the boundary of domain V. If V is a parallelepiped,
Cartesian axes are parallel to its edges, and point x is situated at the origin, then 7 is a diagonal
dyad of the form

Ynm = ¥nOnm -

Here y, =1/47)Q,,n=123, and Q, are the doubled solid angles between the faces
perpendicular to axes xq,X»,X3. Obviously y; + 72 + 3 =1. If the domain V is a cube then, like
for the ball, we have y; =y, =y3 =1/3.

Taking the latter into account, we find

2
B (0) = —%+ | {k@ G(R)(l—a§)+;—;R[3<D(R)a§ —CD(R)]} dy, By (0)=0,n=m,
IT

p

exp(ikgR) —1-1kgR

®(R) =1+ (1-ikqR) .
(koR)

(5.18)

Note that the use of a multiindex numbering for the unknowns and the right-hand side permits
one to represent the symmetry properties of the matrix of the SLAE in a transparent form;
furthermore, the number of distinct entries of the matrix is ~N. Next, since the nodes are placed

at cell centers, it follows that the accuracy of the approximation of the integral operator is ~ h?.



CHAPTER 6

Fast algorithms
6.1 Discrete Fourier transform

Consider a complex-valued function of discrete argument f (n), where n=0,+1,+2,.... Assume
that f (n) is a periodical function with period N, i.e.

f(ntN)=f(n) forVn. (6.1)
Discrete Fourier transform from function f (n) is defined by the formula

F[f]= f(k)_ Z exp(l—knj f(n); k=0,N-1 (6.2)

n=0

where F(k) is also a periodical function with period N.

If we know function f~(k) then we may reconstruct function f(n) by using inverse discrete
Fourier transform

L= fn)=t Zexp[ |—knj f(k); n=0,N-1. (6.3)

In the general case the number of arithmetic operations required for calculating discrete Fourier

transform (without calculating values exp(i%knj ) is estimated as
Te ~N?
= . (6.4)
6.2 Discrete Fast Fourier transform

Let N =N;N,, where N; and N, are integer numbers. Represent k and n from formula (6.2)
as k=ko +kyNo and n=n; +nyNq, where, k;,ny =0,N; —1; ko,np =0,N, —1. Then from
(6.2) we obtain

N, -1 N, -1
fk)=flkk)= Y > exp[ (kz +k1N2)(n1+n2N1)j f(n.ny) =
n,=0 n, =0 Ny
N, -1 N, -1
> exp(iz—”klnlﬂ 27 kznll > exp(iz—”kznz)Jf(nl,nz). (6.5)
n, =0 Ny NyN2 ny =0 N,

Let Ny be a prime number. It is obvious from (6.5) that the number of arithmetic operations
Tg (N) required for calculating Fourier transform (without calculating values exp(i%knj ) is

estimated as



T (N) ~ NoN{ + Ny T (No). (6.6)
Rewrite (6.6) in the following form

TeE(N) _ N1+TF(N2) .

6.7
. N, (6.7)
Let N be represented as multiplication of prime numbers, i.e.
(.
N = N;'N2 N (6.8)
Denote
m
LOG(N) = > I Ny . (6.9)

k=1

Then, from (6.7)-(6.9), we obtain that the number of arithmetic operations for fast Fourier
transform (FFT) technique (6.5) is estimated as

Tee ~ N LOG(N). (6.10)
If N is a power of 2, we have

Tee ~ Nlogo(N). (6.11)
6.3 Multiplication of the matrix by vector

Let us consider a matrix

ap a ap aN -1
an-1 Qg a aN-2

A= aN_2 aN_l ao aN_3 . (612)
a1 ap as )

The matrix of the form (6.12) is called the circulant matrix.
Consider the multiplication of the matrix (6.12) by an N-dimensional vector U

V=A0. (6.13)

Introduce periodical function of the argument A(n) and put A(-n) =a,, n=0,N —1. Then we
may rewrite (6.13) as

N-1
v(n)= > A(n—-m)u(m), n=0,N-1. (6.14)
m=0

Apply Fourier transform to both sides of (6.14). For the right-hand side of (6.14) we have



N-1 N-1N-1 .

F[ > A(n- m)u(m)} => > exp[i—knjA(n —m)u(m) =
m=0 n=0m=0 N

N-1 N-1

m=0 N n=0 N

Consider the second sum in the last expression of (6.15). Denotingg = n—m, we have

N -1 N-1-m
> exp[izN—”k(n - m)} An-my= > exp[izl\l—”kqj A(Q) .

n=0 g=—-m

Then, taking into account

A(q+N)=A(q), exp(i ZN—”k(q + N)j = exp(i%kqj

we arrive at

N-1
> exp[i %k(n - m)} A(n-m) = AKK). (6.16)
n=0

Then from (6.15) and (6.16) we have

N-1 _
F[ > An- m)u(m)} = A(K)T(k); k=0,N-L1. (6.17)
m=0

Finally, from (6.14), (6.17) we obtain
V(k) = A(K)GT(k), k=0N-1 (6.18)

Thus, we can use (6.18) for the fast multiplications of the matrix (6.12) by vector due to FFT
(one direct FFT and one inverse FFT).
6.4 Fast algorithms for integral equations [1, 17]

The matrix of the system of linear equations (5.10) has the special form of a Toplitz matrix. If
we use the Galerkin method (5.1)-(5.3) on the rectangular grid with the same basis functions
inside each cell (elementary cube) then the matrix of the system of linear equations also has the
structure (5.10).

It follows from (5.10) that the main computing expenses on multiplication of the matrix of the
system by the vector are connected with computing sums

W(p)= > B(p-q)V(a), x(p)eQ. (6.19)
y(9)eQ

Let us complete a definition of V (q) by zero at the nodes of TT which do not belong Q. Then we
can rewrite (6.19) as



N, -1 N, -1 Ny-1
W(pL, P2, p3)= >, > D B(p -0, p2 -0z, P3—03 V(0. 02,03),  (6.20)
0;=0 g,=0 g5=0

where the function of the discrete argument B(p) is defined for
~(Np =)< pp <(Np-1); —(N2-1)<py <(Np-1); —(N3g-1)<p3=<(N3-1).

To decrease the amount of operations we apply the direct and inverse fast Fourier transform. Let
IT, denote the parallelepiped with the dimensions 2N{h, 2N,h and 2N3h. We continue the

function (or matrix function) of the discrete argument B(py,p2,p3) to all integers p1,p2,P3,
assuming that it is periodic with respect to each variable with the periods 2N;,2N,,2N3,

respectively. We complete a definition of the function (or vector function) of the discrete
argument V (py, po, p3) setting it zero at all nodes of IT, which do not belong toIT. Let us write

the expression

2N, -1 2N, -1 2N, -1

W(p1.P2.P3)= D>, D> > B(pi—0, P2 -0z, P3—d3 )V (a.02,03). (6.21)
;=0 0,=0 0q3=0

It is obviously that W (p) in (6.21) coincides with (6.20) for p e IT. If we perform the discrete
Fourier transform with respect to each variable in both sides of (6.21), we obtain (see (6.18))

W (kg kz,k3) = B(kg, Kz, kg V (kg ka, k3) (6.22)

When calculating W (p), p eIT, from formula (6.22), the main computing expenses without

taking into the account the definition of §(k ) are connected with the fast direct and inverse

Fourier transform of the functions (or vector functions in electromagnetic case) of the discrete
arguments. In the direct Fourier transform the function (or vector function) V (p) is only nonzero

in IT, for p e IT. On the other hand, when we apply the inverse Fourier transform, the function
(or vector function) W (p) must be defined only at the points p € IT. Taking this into account,
we find that the amount of arithmetical operations required to find W (p), p € IT is estimated by
the formula

Tg ~ Ny N, N3(LOG(N(1) +2LOG(N(2))+4LOG(N(3)), (6.23)

where N&O N® NG are the quantities N;,N,, N3 numbered in the decreasing order. If
N1, N5, N3 are the powers of 2, then we have

Tg ~ Ny N, N3(I0g2(N(1) +2l0g,(N @) +4log,(N® ) (6.24)

Thus (see Introduction to Part I1)), the considered algorithm is cost-effective for the solution of
volume integral equations by using Galerkin or collocation methods and iterative techniques.



Exercises

10.

11.

12.

13.

14

15.

16.

Show that the representation (1.3) satisfies radiation condition at infinity (1.2).
Reduce Eq. (2.12) to the singular volume integral equation (2.13).

Show that from (2.19) we obtain (2.20).

Obtain the equality (2.24).

Show that if the tensor (é(x) —é*(x) —2ilmegg f)/(Zi) is positive definite at every point

of Q then tensor function 5= (€ —¢g f) has an inverse function (see Theorem 2.3).

Obtain formula (2.34).
Prove Lemma 2.2.

Why do we have (2.46)?
Prove Theorem 4.1.

Find the best iteration parameter in (4.6) where the convex envelope of the spectrum is a
triangle.

Prove relation (4.5)
Obtain formula (4.15).

Find the elements A, from (5.3) for piece-wise constant basis functions and integral
operator (1.7).

. Obtain formulas (5.16) and (5.18).

Show that the inverse discrete Fourier transform is given by formula (6.3).

Construct FFT algorithm for the general case (6.8).
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