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Preface

In differential topology, the study of the topology of fibers, known as fiber topology, extends the
Morse theory, of functions, to that of maps. This establishes a thorough exploration of
topological transitions of inverse images. It has been proven powerful for understanding today’s
data whose size and complexity are overwhelming.

In recent years, fiber topology has been actively pushed forward from mathematical studies
towards computation. While the computational approach for the Morse-case was studied
separately, the two research domains started communication after some years. For more
general cases, theoretical insights have been transferred into numerical algorithms through
direct collaboration with computer scientists. This brought a bi-directional impacts where (i)
mathematics boosts the progress in computation and (ii) computer science also helps
mathematics. Simultaneously, fiber topology has been applied for decision making with multiple
optimization problems.

The organizing board is now confident in adapting the achieved theories and techniques for
industrial and inter-governmental decision making. We have conducted discussions with
world-leading research groups to identify mutual interests that would advance both the society
and techniques. With the proposed meeting, we finish the initial goal setting phase, and move
on to the mission of providing solutions to application problems.

The meeting aids the interaction among mathematics, computation, and applications. For this,
participants gather from broad spectra of research disciplines, including not only mathematics
and computer science, but also operational research, sciences for environmental and
semiconductors.

The operational research, led by Naoki Hamada (KLab), Daisuke Sakurai (Kyushu University
Pan-Omics Data-Driven Research Innovation Center) and Takahiro Yamamoto (Tokyo Gakugei
University) aims at designing benchmark problems for multioptimization problems utilizing
knowledge extracted from fiber topology.

Environmental scientists Hiroshi Yamashita and Bastian Kern (German Aerospace Center,
Germany) have some history of joint-research with Sakurai while he was at Zuse Institute Berlin
(Germany). The current research project focuses on proposing a new tax incentive for balancing
the environmental costs against the operational cost in the aviation industry. Fiber topology is
employed for understanding the high-dimensional space spanned by different kinds of subcosts.

Finally, the application in semiconductor research employs fiber topology for understanding the
potential fields of atomic configurations. For simulation outputs done with Japan’s
next-generation supercomputer Fugaku, we extract the landscape of the high-dimensional
potential fields. Fiber topology gives a concise and parameter-free representation of the
landscape, which is also robust against numerical errors.
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All of the applications pose a challenge to the current state-of-the-art analysis of fiber topology.
Especially, the high spatial dimensionality in the data is something that requires an update to the
numerical methods. The current, rather loose, mathematics found in the computer science
literature meets a more rigorous treatment by Takahiro Yamamoto (Tokyo Gakugei University).

Theorists not only provide solutions, but get feedback about desirable expansions. We discuss
how fiber topology should let us extract information about the energy potential of atomic
configurations, robustness of the assembly schedule against errors, and the impact of the
inter-governmental decisions towards the aviation industry and air pollution.
While our progress in computation has seen a success, there are theoretical questions left, such
as how the mathematical results translate to and from numerical representations.
What directions in mathematical theories benefit numerical ones, and vice versa, is another
question.

The forum was co-sponsored by IMI and Pan-Omics Data-Driven Research Innovation Center. It
was also supported by Kyushu University Kasseika project (令和２年度九州大学活性化制度).
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Thanks For Joining!

• We Are From 
• Math (Singularity Theory)
• CompSci (Visualization)
• Application Areas (Materials, Gaming, Atmosphere)

2

Fiber Topology Meets Applications:
Where We Are Heading

Daisuke Sakurai

Kyushu Univ
2020 January 6
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Thanks For Joining!

• Share Information
• Co-design Future Research 

4

Thanks For Joining!

• Mutual Interest in
• Topology of Fibers, eg

• ConÞguration of
• Local Extrema
• Energy Landscapes

3
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Fiber = Inverse Image

6

f : Rn → Rm

f -1 : Contours (コンタ) ! Fibers (Multi-Fields)

Fibers: f -1(f1,f2)

MeasurementsSpace-Time

[gisgeography.com]

f : R2 → R1

f : R3 → R1

f : R3 → Rm

[paraview.org]

Topology in Visualization
• Algorithms (Hamish Carr, Shigeo Takahashi, S, …)
• Theories (Osamu Saeki, Takahiro Yamamoto, …)
• Collaboration (~2010)

5

[S, Carr, Saeki… IEEE TVCG 2016]Inverse Images in 3D -> 2D maps
Vis for Math[Saeki & Yamamoto 2016]

[S & Yamamoto 2019]

[Saeki, Takahashi, S,… 2014]
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Contour Trees For Visual Analysis

8[Carr et al. 09]

Contour Tree  In
te

ns
ity

Tomography Data
R3!Intensity

Contours Contour Tree

Navigation

Billions of 

Contour Tree:
CompactiÞes Landscape

7
f : R2 →

Topology
(Squeeze

Horizontally)

Contour TreeHeight

H
ei

gh
t

Layout Coordinate
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Reeb Space:
CompactiÞes Multi-Value Landscape

10

f
Topological
"Squeeze"

Reeb space of
c1

c2

R3

f
Minimum c1, c2

c1
c2

Contour Tree for Rn

9

＝R16x3 State Coordinates
Conformation

Toy Model
16 Atoms

Contour
Tree

R16x3

Eg with HC Hege, V Natarajan & M Weber

Sh
ap

e!
D

es
cr

ip
to

r
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Timeline
• Algorithms

• H Carr et al, ’00: Rn→R1
• H Edelsbrunner et al, ’08: Idealized, Rn→Rm
• H Carr & D Duke, ’13: Quantized Approximation
• J Tierny & H Carr, ’17: R3→R2, Geometrical Impl.
• Sakurai & H Carr (In Progress): Rn→R2, Combinatorial Impl.(?)

• Applications of Rn→R2
• For Multiobjective Optimization (with N Hamada, T Yamamoto & R Hagiwara)
• For Molecule ConÞrmation (with HC Hege & M Weber)

12

Math Development (O Saeki)

• Understand Fibers
! Reliable Algorithms

11
[Saeki 2004]

ClassiÞcation &
ConÞguration of Fibers,

Morphs of Maps, É
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Don’t Forget

• Granted by IMI Kyodo Riyo
• Please acknowledge the funding accordingly

14

Coordinate Research Directions

13

Gaming

Pollution

Semiconductors

Singularity 
Theory

Visualization

Multiobjective
Optimization

Molecule 
SimulationVisualization

Fiber 
Topology
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Topology

Overview

• I. Motivation 

• II. Mathematics of Visualisation

• III. Topological Visualisation

• IV. Combinatoric Reduction

•V. Serial Contour Tree Algorithm

•VI. Challenges in Parallel

Topology

Why Topology Is Needed 
… And Why It’s Not Easy

Hamish Carr
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Topology

Optic Throughput

• 20KB 1s

• 1MB 50s ~ 1 m

• 1GB 50,000s ~ 13.9h

• 1TB 50,000,000s ~ 1.5y

• 1PB 50,000,000,000s ~ 1,500y

• 1EB 50,000,000,000,000s ~ 1,500,000y

Topology

Data Is Increasing to Exascale

COMP3811:                    Computer Graphics                                               2015-2016

01a: Physics & Biology

COMP3811:                    Computer Graphics                                               2015-2016

What is Light?

COMP3811:                    Computer Graphics                                               2015-2016

Wavelength & Colour

• Photons carry energy with them

• Proportional to “wavelength”

• “Wavelength” is “colour”

•Our eyes can see:

•wavelengths 350 - 700 nm

• all the colours of the rainbow

700 nm

350 nm

400 nm

500 nm

600 nm

COMP3811:                    Computer Graphics                                               2015-2016

Spectral Distribution

“White” light

COMP3811:                    Computer Graphics                                               2015-2016

Photons Are Rays
• Photons are emitted by a source

• Travel at 2.99 x 1011 m/s

•Apply Newtonian mechanics

•We can model them with rays

Light Source EyeObject
COMP3811:                    Computer Graphics                                               2015-2016

Emission

•Atoms emit photons to lose energy

•Wavelength depends on which atom

Light Source

300 MB/s
20 KB/s

Fugaku:
7.6M cores
442 TFlops
1.77 EB/s

Human Bandwidth Is Not

Summit:
2.4M cores
148 TFlops
0.59 EB/s

TaihuLight:
10.6M cores
93 TFlops
0.37 EB/s
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Topology

Level Sets (Contours)
•A level set is the inverse image of an isovalue

•A contour is a single connected component

Brief Article

The Author

December 16, 2016

f : R1 ! R (1-D scalar)
f : R2 ! R (2-D scalar)
f : R3 ! R (3-D scalar)
f : Rd ! R (d-D scalar)
f : R3 ! R (3-D bivariate)
f : R3 ! R3 (vector)
f : R3 ⇥ R ! R (time-varying scalar)
f : R2�4 ⇥ Rd (in general)

f�1(h) = {x 2 R2 : f(x) = h 2 R}

1

Contour Lines (2D) Isosurfaces (3D)

Topology

A Visualisation Challenge
• 1 EB of data feasible (1018)

• 1 GB limit to comprehension (109)

• 9 orders of magnitude (10-9) data reduction

•More if possible

•Visualisation turns into analysis

•Domain-specific or domain-independent

•Almost always based on mathematics

－10－



Topology

Fiber Surfaces

• Inverse image of a curve

• Provides surfaces for visualization

Topology

Contours to Fibers

• Level sets of a point in range

• Intersection of isosurfaces of two functions

－11－



Topology

Scientific Visualization

Isosurfaces
(Level Sets)

Streamlines Fiber Surfaces

Topology

Streamlines to Gradient Lines

• Streamlines are tangent to a vector field
• !"
!#
= 𝑓𝑓 𝑡𝑡

•Gradient lines are tangent to the gradient field

•Always start at a source (max)

•And end at a sink (min)

• Perpendicular to the contours

－12－



Topology

Topological Visualisation
•Analyse the data topologically

• Then use the analysis to identify features

•And show them to the user

•Or use them for later processing

•Ultimately, use them for decision-making

•More precisely, topology reduces the data size

•And allows selection among the features to do the same

Topology

Selection

•How do we choose what to visualise?

5
http://cs.swan.ac.uk/~csbob/teaching/csM07-vis/
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Topology

A 3D Contour Tree
Colours:

Branch Decomposition
(Hierarchy of Features)

Hierarchy Induced by 
Persistence

(isovalue range)

Topology

The Contour Tree

－14－



Topology

Feature Analysis

Protein Comparison
Zhang, Bajaj & Baker, 2004 Vortex Detection

Schneider et al., 2008

Energy Landscapes
Weber et al., 2007

Harvey & Wang 2010
Turbulent Combustion

Bremer et al., 2009

Topology

Indirect Manipulation

－15－



Topology

Reeb Space

• Contract fibers not contours

•Quotient space built up from sheets, not edges

• Sheets have common behaviour – i.e. features

Jacobi Fiber Surfaces for Bivariate Reeb Space Computation

Julien Tierny and Hamish Carr

(a) (b) (c)
Fig. 1. The Reeb space R( f ) of a bivariate function f segments the domain M into regions where fibers, multivariate analogs of
level-sets, are made of a single connected component. This allows the automatic separation of volumetric regions that project to
the same areas in the continuous scatterplot (CSP). In this flow example (streamlines are shown in green and blue in (a), top), the
Reeb space of the velocity and curl magnitudes is used to segment the data into its main features (a). The largest regions of R( f )
are located before the obstacle (in blue, red and green (a), top). While these features are not important for the understanding of the
structure of the turbulent flow, their projections cover most of the CSP (red, blue and green polygons in (b), left). In particular, due to
the symmetry in the data, the blue and green regions nearly coincide in the CSP. Removing these regions from the projection results in
a less cluttered CSP, better revealing the projections of the turbulent features of the flow ((b), right). The user can further inspect these
features with localized CSPs (c). These visualizations are enabled by our new Reeb space computation algorithm, which computes
this segmentation in a minute and a half, while previous techniques either take days to compute or hours to approximate the result.

Abstract— This paper presents an efficient algorithm for the computation of the Reeb space of an input bivariate piecewise linear
scalar function f defined on a tetrahedral mesh. By extending and generalizing algorithmic concepts from the univariate case to the
bivariate one, we report the first practical, output-sensitive algorithm for the exact computation of such a Reeb space. The algorithm
starts by identifying the Jacobi set of f , the bivariate analogs of critical points in the univariate case. Next, the Reeb space is computed
by segmenting the input mesh along the new notion of Jacobi Fiber Surfaces, the bivariate analog of critical contours in the univariate
case. We additionally present a simplification heuristic that enables the progressive coarsening of the Reeb space. Our algorithm is
simple to implement and most of its computations can be trivially parallelized. We report performance numbers demonstrating orders
of magnitude speedups over previous approaches, enabling for the first time the tractable computation of bivariate Reeb spaces in
practice. Moreover, unlike range-based quantization approaches (such as the Joint Contour Net), our algorithm is parameter-free.
We demonstrate the utility of our approach by using the Reeb space as a semi-automatic segmentation tool for bivariate data. In
particular, we introduce continuous scatterplot peeling, a technique which enables the reduction of the cluttering in the continuous
scatterplot, by interactively selecting the features of the Reeb space to project. We provide a VTK-based C++ implementation of our
algorithm that can be used for reproduction purposes or for the development of new Reeb space based visualization techniques.

Index Terms—Topological data analysis, multivariate data, data segmentation

1 INTRODUCTION

As scientific data-sets become more intricate and larger in size, ad-
vanced data analysis algorithms are needed for their efficient visualiza-
tion and exploration. For scalar field visualization, topological analy-
sis techniques have shown to be practical solutions in various contexts
by enabling the concise and complete capture of the structure of the in-
put data into high-level topological abstractions such as contour trees
[8], Reeb graphs [35, 4, 44], or Morse-Smale complexes [20, 47, 11].
Such topological abstractions are fundamental data-structures that en-
able the development of advanced data analysis, exploration and vi-
sualization techniques, including for instance: small seed set extrac-

• Julien Tierny is with Sorbonne Universites, UPMC Univ Paris 06, CNRS,
LIP6 UMR 7606, France. E-mail: julien.tierny@lip6.fr.

• Hamish Carr is with the University of Leeds. E-mail: h.carr@leeds.ac.uk.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

tion for fast isosurface traversal [45, 9], feature tracking [42], transfer
function design for volume rendering [46], similarity estimation [43],
or application-driven segmentation and analysis tasks [29, 22, 19, 21].

However, with the ongoing development of computational re-
sources on the one hand and of sensing devices on the other, multivari-
ate scalar data-sets become more and more common. Such data-sets
represent functions that no longer map points of the domain to the real
line as it is the case for univariate scalar data, but to Euclidean spaces
of higher dimension, each dimension typically representing a variable
under investigation (temperature, pressure, velocity magnitude, etc.).
To enable the extension and the generalization of the topology based
visualization techniques mentioned above to this new type of data, the
core concepts and algorithms of topological data analysis first have
to be generalized to ranges of higher dimension than one, from the
univariate to the multivariate case. This paper addresses this problem
by presenting an efficient algorithm for the computation of the Reeb
space [15], a generalization of the notion of Reeb graph [37], from the
univariate to the bivariate case. Although the bivariate case is a very
specific case of multivariate data, we believe it constitutes an appeal-

Tierny & Carr 2016

Topology

The Reeb Graph

from Werghi, Xiao & Seibert, IEEE TSMC 2005

• For functions on manifolds
• Continuous contraction of contours
• Contour tree is a special case

－16－



Topology

Vector Topology

Hurricanes
Wong et al., 2001

• Based on vector analysis

• Equivalence classes of stream lines

• Features bounded by separatrices

Magnetic Monopoles
Bachthaler et al., 2012 Vortex Breakdown

Hummel et al., 2011

Topology

Morse-Smale Complex

from Edelsbrunner et al., SCG 2001

• Based on Morse Theory

• Equivalence classes of gradient lines

•Divide space into features

Oil/Liquid Mixing
Laney et al., Vis 2006 Cosmological Voids

Sousbie, 2011

－17－



Topology

Merge Tree Computation

•Connectivity of {x: f(x) ≥ h}
•Represented as join tree
•Sorting establishes a filtration

•Connectivity of {x: f(x) ≤ h}
•Represented as split tree
•Reversed filtration
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Join Tree Split Tree Contour Tree
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20

71

81

50
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Join Tree Split Tree Contour Tree

Topology

Combinatorial Reduction
•Our analysis uses continuous mathematics

•Our computers use discrete mathematics

•We rely on mathematical simplifications:

•Meshes, particles, &c. to discretise the mathematics

•Numerics to compute the fields

• Filtrations to enforce sequence

•Most commonly, filtration by function value

－18－



Topology

Simplification / Branch Decomposition
• Large trees have 

millions of edges

• So we prune edges 
in sequence

•With importance 
measure

• Results in a branch 
decomposition

80

90
100

0

20

71

81

50

30

Area

80

90
100

0

20

71

81

50

30

Height

Topology

Transfer Phase 
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Topology
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Topology

Serial vs. Parallel
• Filtrations usually process data in sequential sorted order

•We add edges to the tree one at a time

• Simplification is one edge at a time

• Proofs use linear induction

• So the big question is:

•How do we scale up to parallel systems?

• Petar will discuss this tomorrow

－20－



!.!.!.

!"# $%&'()*$+,"-.%/0"123)&"45/)'6"7+)(42,"89:

!"#$%$%&"'()*+),)'-(./#$/'0*%123 !

!"

#

!""#$%&&$'"($)*++*,()-+.&/'(0&123*202,24&

!"#$%&'()(*(+,&-$$./&0))*"12."(3/ !"#$"%&'(')'*+',-,.

!"#$%&'()*$+&,"'#-,."/)$0&.123)4"/)'$2.)($'$/1.&"')0"5$/)#$6&,$)100%&,1.&"'

!"!"#$%&'()*+)&,-./01*.2(%&3454-&
#""$466%&7489(4&,-./01*.2(%&3454-

!"#$%$%&"'()*+),)!"#$

%&'(#)"#!)*++,!)*-.#

!"#$%&'()*(+($,-
!$ %&'(")*+ ,-."/012345"6)0*75"+89:30";/;<<=>=?@"
#$ ;A/A"BCB&+DE"6)0*75"+89:30";/!FD<FG!H@
>$ ;A("I,&A("6;/%;I,!F+#@
G$ ;A("AEIJ,/"6)0*75"+89:30"!FH!>?K!L@
=$ &801M3*7"N7O17PQ"D10OR17"#<#<"03Q3*04S"*7T"O771U*5O17"M01V0*9"6)0*75"+89:30"?#<=#?W"E7,3XY+/1Z30 M012345@"

－21－



!.!.!.

;<)212,25)<"7+=>"44/5"36

!"#$%$%&"'()*+),)'-(./#$/'0*%123 /

! " #!"#$%&'() $ #!"#$*+&#" % &,##+',#
-./ % 0

1&2
#+'21

-./ % 0
1&3

.4'31
-./ !

!*#01223#4566#6'6578"#"*#'9:265#;4#&<&=;:3"##*#>?6:1>&@#A;=6'=1&@
B# 13#49'>=1;'3#;4#$ &'<#%C ! 7 "!"#$%$&$' "##$ # 7 $

()*)+$,-#./$0&

!"#$%$&$'1").2+#)33*')4/

"

!&<

µ7&3

µ7&3

!)-%./,0%$!)-%./,0%$

µ!"# 12!"$

3(3(-%./,0%$

µ!"# 42!"$

!

%!"#&'(!$" )*+#!$",$ -'. %&'() -'.'&*% -'.'+,-&/0

. %&'()#&'+"1%!$",&"/./"0

.'&*%#&'2 1"'!$",+3&"/0

.'+,-& &'4$ ('5-6+7&8,!$"/901!

)%*+,-*'&.+ /&0%*'&.+ 1.'*'&.+

(#)0':*;<=6>';5<?'=@'ABC;=?BD'?=)5DE)5

!!*#D;@=E:&''F3#>;'3=("#%*#!"#$"%&'(%""#
$*#$&%')&*+$%",,(%""#"*#G@&'>HF3#>;'3=("#
#*#I67566#;4#<676'65&>8#;4#6@6>=5;'#6'6578#@6J6@"#
$*#K&33#;4#&#A&5=1>@6"#%*#L8::6=58#4&>=;5"#
&*#K;:6'=#;4#1'65=1&"#'- M56N96'>8(

!.!.!.

42/ %$21."(3

56*7 8*(9

5(63:2%,
;2,$%

0:/(%)."(3

'%23/)(%.2."(3

<31(%)(%2."(3

'%23/)(%.2."(3

=$/(%)."(3

>6%821$ /.2.$

4
2/

/.
2.

$

-"+%2."(3

="886/"(3>(*": /.2.$

!"#$%&'(

<31(%)(%2."(3

!"#$%&'(

!"# $%&'()4/53+77

!"#$%$%&"'()*+),)'-(./#$/'0*%123 $

! " #

$

-%.%/0 10230&4/5&0
-%.%/0 64&/%47'6&0##5&0

)8#"75/0 90&"
:%;$ <4=552

+4# #/4/0
>5&?4=0'#/4/0

>"7%@ #/4/0

:)1&;9<0=
>9-/0-2.9-4=&;9<0=

!

"

#

6?+0;42.?&9@&A47$:BCD&519?0**

)8#"75/0

-%&#/ 6&%.=%370# A47=B
CD54./52'E0=$4.%=#F

-%.%/0

D54./52 E0=$4.%=#
G

>/4/%#/%=47'1$0&2"@H.42%=#

－22－



!.!.!.

@)2135/45/",251)21)!"# $%&'(D)&"45/)46"7+)/+"3,251

!"#$%$%&"'()*+),)'-(./#$/'0*%123 .

! !"#$%&#'"()&%)"*+,$-4'/01'234567589:95#

I.
=&
04
#0
'"
?'<

JI
II

I.
=&
04
#0
'"
?'<

JI
II

)23%".4(*"&5 *+*-(,3,
5(&5 " )*+,!/6!!!789:::!
-.6 &+#$'8#*%'&*-8#%3,,$%3(236

&5 " /01 *+,!
-.6!;<! 435."#.,&'&.+8%*'382 " )0/3)/78!
-.6!;! 435."#.,&'&.+8%*'384 " )0/3)/71=8
>*%%&3%8?*,78.1 @8

A@8B2C*D*52&=8E:FG

9! : ;" <
=#$%&
'( < =)&*

'(

=+$%
'( "#$

9" : ;" <
=$$%&"
'( < =)&*

'(

=#$%&
'( "!$

9, :
=$$%
'( < =&"

'(

=$$%&"
'( "%$

9* : ;" <
=%-&,
'( < =)&*

'(

=$$%&"
'( "&$

9. :
=%-&
'( < =&"

'(

=%-&,
'( "'$

9/ :
=%-
'( < =&"

'( 0! "

=%-&
'( "($

!!"#
$% " !&"#'

$% " !""#'(
$% " !""#

$% " !#)'*
$% " !#)'

$% " !#)
$% # $!!"#+ ")$

%!!"#
$% " &!&"#'

$% " !""#'(
$% " !""#

$% " !,'-
$% # %$!!"#+ "*$

'(!"#
$% " )!&"#'

$% " *!""#'(
$% " %!""#

$% " %!#)'*
$% " !#)'

$% " !#)
$% " +!,'-

$%

" %!.'*
$% " &!.'(

$% " &!'(
$% # $ '!!"#+ " %!.'*+ " &!.'(+ " !'(+

"+$

!!"#
$% " !&"#'

$% " !""#'(
$% " !""#

$% " !#)'*
$% " !#)'

$% " !#)
$% " !,'-

$% " !.'*
$%

" !.'(
$% " !'(

$% " !.(
$% # !$% # ,-./ "#,$-

I17Q50*O75 417TO5O17

&[8OXO:0O89 417Q5$

OK
0

IK
0*
P

KK
0

0&
P

!.!.!.

42/ %$21."(3

56*7 8*(9

5(63:2%,
;2,$%

0:/(%)."(3

'%23/)(%.2."(3

<31(%)(%2."(3

'%23/)(%.2."(3

=$/(%)."(3

>6%821$ /.2.$

4
2/

/.
2.

$

-"+%2."(3

="886/"(3>(*": /.2.$

!"#$%&'(

<31(%)(%2."(3

!"#$%&'(

$?-,2.4697237)@/97,"-)!/5A,6)B2C?-",251

!"#$%$%&"'()*+),)'-(./#$/'0*%123 -

! " #

$

-%.%/0 10230&4/5&0
-%.%/0 64&/%47'6&0##5&0

)8#"75/0 90&"
:%;$ <4=552

+4# #/4/0
>5&?4=0'#/4/0

>"7%@ #/4/0

:)1&;9<0=
>9-/0-2.9-4=&;9<0=

!

"

#

6?+0;42.?&9@&A47$:BCD&519?0**

)8#"75/0

-%&#/ 6&%.=%370# A47=B
CD54./52'E0=$4.%=#F

-%.%/0

D54./52 E0=$4.%=#
G

>/4/%#/%=47'1$0&2"@H.42%=#

－23－



!.!.!.

@)2135/45/",251)21)!"# $%&'(D)B?/E"3+)/+"3,251

!"#$%$%&"'()*+),)'-(./#$/'0*%123 Q

FCG+###$/

FCG+###($/

! O*K:'#5&?4=0'%#'#/4870
5.@0&'/H3%=47';&"P/$'=".@%/%".B

! +4&< #5&?4=0'%#'#/4870'
5.@0&'*$ =4&&%0&';4#'=".@%/%".B

! O+4K: #5&?4=0'%#'#/4870
5.@0&':$ =4&&%0&';4#'=".@%/%".B

! 6)1@4?0&10?9-*21)?2.9-

!.!.!.

@)2135/45/",251)21)!"# $%&'(D)B?/E"3+)/+"3,251

!"#$%$%&"'()*+),)'-(./#$/'0*%123 )

! " #!"#$
%&'() $ #!"#$

*+&#" % &,##+',#
-./ % 0

1&2
#+'21

-./ % 0
1&3

.4'31
-./ !

+4K&%=$'#5&?4=0'2"@07

*L:K&%=$'#5&?4=0'2"@07

ET3*X"6:*03@"Q80\*43

ET3*X"6:*03@"Q80\*43

FCG+###$/

FCG+###($/

M03&0#0./4/%N0'#5&?4=0'2"@07#

./&*(&')01+2%)'"%)&+03+,'&4*"+,(%3&2"+%"201,'%(2')01+(15"%+&+2"%'&)1+6%07'8+2015)')01

!*#01223#4566#6'6578"#"*#'9:265#;4#&<&=;:3"##*#>?6:1>&@#A;=6'=1&@

H@8I$,*0* 3'8*-@=8JJHK HI LE:FMN8:M:O:9

B# 13#49'>=1;'3#;4#$ &'<#%C

! 6)1@4?0&10?9-*21)?2.9-

－24－



!.!.!.

@)2135/45/",251)21)!"# $%&'(D)F1,+/-"9+/)=2EE?7251

!"#$%$%&"'()*+),)'-(./#$/'0*%123 S

# 9*87&:).7&';%55/#%"*

%.

FCG+###$/

FCG+###($/

!.!.!.

@)2135/45/",251)21)!"# $%&'(D)B?/E"3+)/+"3,251

!"#$%$%&"'()*+),)'-(./#$/'0*%123 R

" 4/&5)67'&7)68%"*

!!!""#$!!"
!!!""#$!!"6!"%&"#$"%&

#'(#)*+#,$#-./%0+ $%

A4&8".'=".=0./&4/%".'".'/$0';&"P/$'#5&?4=0

" &)14'7)&8%)9':&;##/&;'"<'="9;>/9;''
" "#$!!" 4'?@#"&:8%"*':&"A)A%9%8.'"<'="9;>/9;''

I.
=&
04
#0
'"
?'<

JI
II

CQQQLRF

CQQQRF

－25－



!.!.!.

@)2135/45/",251)21)!"# $%&'(D)F1,+/-"9+/)=2EE?7251

!"#$%$%&"'()*+),)'-(./#$/'0*%123 !!

I.
=&
04
#0
'"
?'<

JI
II

CQ
QQ
LR
F

CQ
QQ
RF

!!"#$%&%'()*!%+#"*,-$'%*.(/0'-#(%+

!.(/0'-#(%+*/%1"'
?6@#$%&(8&?&/".$&)$%&A&@(3(B*2,$%C&!"!#! D/".$E

EF&#<*9152.9-

A4
7 >

GF&H.@@)*.9- IF&E&$J&819K2+

T6A6&=1'7#9'=1@#!+#@&8653#<6A;31=1;'

!$%!#
D5.24L.4=&@.=;

6)M*21420
ENO
EOO
NO

&###!'P-;Q&&&&&

IOOEOO GOO
&!!$%#' P-;QO

EGO"

" R&'383S52*+?&+?78
'.#".,'8-*(3%8T U/0 -*(3%

!.!.!.

@)2135/45/",251)21)!"# $%&'(D)F1,+/-"9+/)=2EE?7251

!"#$%$%&"'()*+),)'-(./#$/'0*%123 !+

59 69

J! &+8+PQ*; 2*,8*5KC;BL5 52*%?3@8
M! &+8+PQ*; 2*,86=NB;BL5 52*%?3@

B##.,&'38'3+43+5(%&&&'()*+,-.

%&
&&

()
*/
" !

"%
01

)

%&
&&

'(
)*+

,
-.

%&
&&

()
*/
" !

"%
01

)

,&+?-3

'%&#-3

'%&#-3

,&+?-3
%&&&()*/"!"%01)

%&
&&

'(
)*+

,
-.

>. &+8+P'(#38Q*; B. &+8+P'(#38Q*;# 9*87&:).7&';%55/#%"*

－26－



!.!.!.

@)2135/45/",251)21)!"# $%&'(D)F1,+0/",+=)C5=+-

!"#$%$%&"'()*+),)'-(./#$/'0*%123 !/

FCG+###$/

FCG+###($/

10230&4/5&0 <JIII'&4/%"

;@8H@8V&52'3+0*" 3'8*-@=8J>Q8E::W

!.!.!.

@)2135/45/",251)21)!"# $%&'(D)F1,+0/",+=)C5=+-

!"#$%$%&"'()*+),)'-(./#$/'0*%123 !$

－27－



!.!.!.

B?CC"/9

!"#$%$%&"'()*+),)'-(./#$/'0*%123 !.

I./0;&4/0@'2
"@07

!.!.!.

B?CC"/9

!"#$%$%&"'()*+),)'-(./#$/'0*%123 !-

ST30&%20./#

－28－



Overview

1. In Situ Computation
2. Parallel Contour Tree Analysis
3. In Situ Contour Tree Pipeline

Data Parallel 
Hypersweeps for In Situ 

Computation
Petar Hristov

Gunther Weber
Hamish Carr
Oliver Ruebel
James Ahrens
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Evolution of Algorithms at Scale

• Reeb Graph (1940s).

• Sweep and Merge Algorithm (2000s).

• Parallel Peak Pruning (2010s).

• Distributed Parallel Peak Pruning (2020s).

Visualization at Scale

In Situ Visualization Summary

• Uses a supercomputer.

• Happens during data generation.

• Requires robust data reduction tools.

• Parallel and distributed algorithms are 

mandatory.

－30－



Parallel Peak Pruning

• Instead of incremental computation
• Compute monotone paths in parallel
• Essentially, up the gradient lines

•Use them to identify peaks
• Strip out all peaks at once
• Repeat recursively

Parallel Algorithm Principles

•Use local independent operations.
• Rely on parallel primitives – test, scan, sort.
•Avoid synchronisation and global invariants.

•Avoid data transfers between devices.

－31－
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Upwards Path Compression

•Use pointer-doubling to compress paths
• Establishes peaks as roots in union-find
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An Ascending Forest

• Every vertex chooses an uphill neighbour
• Peaks loop back to themselves
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Governing Saddles

•Highest candidate is peak’s governing saddle
• Found by sorting edges

From Saddle Candidate 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Peak for Upper End 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 22 22 22 22 22

Lower End 15 11 10 10 8 7 7 7 5 5 5 3 3 2 2 15 11 11 11 10

From Saddle Candidate 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Peak for Upper End 22 22 22 22 13 13 13 13 24 24 24 24 24 24 24 24 24 24 24 24

Lower End 8 8 5 2 10 8 7 3 23 20 18 18 18 17 14 12 12 12 12 9

From Saddle Candidate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak for Upper End 24 24 24 24 24 24 24 24 24 24 24 24 22 22 22 22

Lower End 9 9 9 9 6 6 4 4 1 1 0 0 21 19 19 16

Peak 24 24 24 24 24 22 22 22 22 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 13

Vertex 24 23 20 18 17 22 21 19 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 13

Join Neighbour 23 20 18 17 15 21 19 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 10

�1

Nodes Coloured 
By Peak

Edges Coloured 
By Peak

Saddle Candidates 
in Bold
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Contour Tree Phase

• Essentially the same as the serial
• But batched, alternating upper / lower leaves
•Vertex deletion is lazy: we set a flag

• Then use path compression to remove them
• This allows parallel transfer of leaves

Ascents Chosen

15 10

0

8

114 6

12 7 3

9

4 5 11

2

Second Pass

• Single peak is base case for recursion
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Simplification via Hypersweep

Parallel Tree Contraction
Miller 1989

Hyperstructure Idea

Join Tree Superstructure Cancellation Pairs /
Branch Decomposition

Join Tree Hyperstructure
4

10
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In Situ Pipeline - Feature 
Visualisation

1. “VOIDGA: A View-Approximation Oriented Image Database Generation Approach”, Lukasczyk 2018

In Situ Visualization Pipeline

1. “Parallel Peak Pruning”, Carr et al. 2017
2. “Simplifying Flexible Isosurfaces with Local Geometric Measures”, Carr et al. 2004
3. “Multi-Resolution Computation and Presentation of Contour Trees”, Pascucci et al. 2004
4. “Topology-Controlled Volume Rendering”, Weber et al. 2007
5. “An Image-Based Approach to Extreme Scale in Situ Visualization and Analysis”, Ahrens et al. 2014
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Performance & 
Evaluation

Visualizing a Laser Simulation

WarpX Simulation:
Data Type = Scalar Field
Data Size = 7GB
Data Dimensions = 6791 x 371 x 371

Problems with multiple Isosurfaces:
• Manual selection of isovalues.
• Occlusion of connected components.
• Noise and unwanted features.

Multiple isosurfaces (Cluttered) Top ten individual contours (Clear)

Contour Tree analysis:
1. Compute the Contour Tree
2. Simplify the Contour Tree
3. Extract contours using the Contour Tree

Advantages of contour tree analysis
• Limited user interaction.
• Automatic removal of noise.
• Supports multiple importance metrics.
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Contents 

●Multiobjective optimization 
○ Problem definition 
○Multimodality of test problems 

 
●Relation to fiber topology 
○ Local Pareto set and singular set 
○ Singular fiber of locally Pareto-optimal value 

 
●Design of multimodal test problems 
○ Fiber of local Pareto set of 𝑓𝑓:ℝ� → ℝ� 
○ Triangulation 

  

Reiya Hagiwara (Kyushu U.) 
Naoki Hamada (KLab Inc., RIKEN AIP) 
Takahiro Yamamoto (Tokyo Gakugei U.) 
Daisuke Sakurai (Kyushu U.) 

Design of Multimodal Test Problems 
in Multiobjective Optimization 
Using Fiber Topology 
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Applications 

● Product design 
○ Airplane 
○ Wind power turbine 

● Machine learning / AI 
○ Training / hyper-parameter tuning of ML models 
○ Game AI 

● Planning / Operations 
○ Water distribution 
○ Assembly line 

 
● Software 
○ modeFRONTIER 
○ Optimus 
○ iSight 
○ and more 

[MONOist 2014] [EC-Competition 2019] 

3 

A problem of optimizing multiple functions 
 
E.g. minimize

𝑓𝑓� ��, �� � �� � 1 � � �� � 1 �

𝑓𝑓� ��, �� � �� � 1 � � �� � 1 � 
 
      subject to � 2 � �� � 2  𝑖𝑖 � 1,2  
 
Goal: Find the Pareto set / Pareto front 
 
[Definition] A point � is Pareto optimal if 
there exists no point � such that: 
● 𝑓𝑓� � � 𝑓𝑓� �  for all 𝑖𝑖, 
● 𝑓𝑓� � � 𝑓𝑓� �  for some �. 

Pareto set 

Pareto front 

better 

worse 

Multiobjective optimization 

－40－
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1. Generate random points 
 

For more details, see 
[Zhou+ 2011] Multiobjective evolutionary algorithms: A survey of the state of the art , Swarm and Evolutionary Computation 1(1), pp. 32-49. 

How EMO works 

Pareto set 

Pareto front 

5 

-  

● Practical problems involve simulation/experiments 
○ Function values are computed by CFD, multi-agent 

simulation, physical experiments, etc. 
○ Closed form expression of functions is unknown 
○ Function values at a specified point is available 

● Evolutionary multiobjective optimization (EMO) 
○ Derivative-free, monte-carlo search 
○ Approximate PS/PF with finite points 

� � ? 
(simulations, 

experiments, etc.) 

� �  � 

－41－
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For more details, see 
[Zhou+ 2011] Multiobjective evolutionary algorithms: A survey of the state of the art , Swarm and Evolutionary Computation 1(1), pp. 32-49. 

How EMO works 

Pareto set 

Pareto front 

7 

 
 
 
 

 
 
 
 

2. Evaluate points 
 

For more details, see 
[Zhou+ 2011] Multiobjective evolutionary algorithms: A survey of the state of the art , Swarm and Evolutionary Computation 1(1), pp. 32-49. 

How EMO works 

Pareto set 

Pareto front 

－42－
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5. Remove  
 

For more details, see 
[Zhou+ 2011] Multiobjective evolutionary algorithms: A survey of the state of the art , Swarm and Evolutionary Computation 1(1), pp. 32-49. 

How EMO works 

Pareto set 

Pareto front 

9 

 
 
 
 

 
 
 
 

4. Generate points around the current ones 
 

For more details, see 
[Zhou+ 2011] Multiobjective evolutionary algorithms: A survey of the state of the art , Swarm and Evolutionary Computation 1(1), pp. 32-49. 

How EMO works 

Pareto set 

Pareto front 
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Performance comparison of EMO 

● Practical problems 
○ Real but publicly unavailable 
○ Diverse use-cases,  
○ Slow computation (hours ~ days) 
  Hard to use for performance comparison 

 
● Test problems 
○ Artificial but publicly available 
○ Known features, de facto standard problems 
○ Fast computation (seconds ~ minutes) 
  Easy to use for performance comparison 

11 

 
 
 
 

 
 
 
 

Repeat the steps to find a good approximation 
 

For more details, see 
[Zhou+ 2011] Multiobjective evolutionary algorithms: A survey of the state of the art , Swarm and Evolutionary Computation 1(1), pp. 32-49. 

How EMO works 

Pareto set 

Pareto front 
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How test problems are made: DTLZ 

● Split variables 
� � ���, … , ����, ��, … , ��� 
 
 
 
 
 
 
 
 
● Compose functions 
Polynomials, sin/cos, etc. 

Pareto front 

position vars. distance vars. 

13 

Test problems: History 

● 1990~1999: No standard problem 
○ Researchers made their own test problems 

● Early 2000s: ZDT [Zitzler+ 2000] 
○ de facto standard of 2-objective test problems 

● Late 2000s: DTLZ [Deb+ 2001], WFG [Huband+ 2006] 
○ n-objective extensions of ZDT 

● 2010s: Inverted-DTLZ [Jain+ 2013], Minus-WFG [Ishibuchi+ 
2017] 
○ EMOs that have good performance on DTLZ/WFG are 

bad on Inverted-DTLZ/Minus-WFG 
○  
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Modality: three definitions 

● Definition by local Pareto optima [folklore] 
○ A problem is multimodal if it has a local Pareto 

optimum that is not globally Pareto optimal. 
 

● Definition by component modality [Huband+ 2006] 
○ A problem is multimodal if an objective 

function has multiple local optima. 
 

● Definition by local Pareto set [Kerschke+ 2016] 
○ A problem is multimodal if its local Pareto set 

consists of multiple connected components. 
 

Local PS Global PS 
Multimodal 
or unimodal? 

15 

How test problems are characterized 

● Several features / recommendations [Huband+ 2006] 

○ They are described in natural language 
○ No mathematical definition agreed 
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Relation to singularity theory 

[Lovison 2013] 

Pareto critical set 

Singular set 

Local Pareto set 

⊂
  

⊂
 

Pareto set 

⊂
 

source  
target  

maximize 

If source dim. � target dim. 

17 

Research questions 

●What is a good definition of multimodal problems? 
○ Is it defined in terms of fiber topology? 
 

● How to design multimodal test problems? 
○  
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Conclusions 

●Fiber topology for multimodal test problems 
○ For ℝ� → ℝ�, the problem enables us to control 
� The number of modes 
� The location of each mode 
� The shape of each mode 

 
●Future work 
○ Benchmarking of EMO methods 
○High-dimensional extension 

  

19 

Local Pareto sets of �:ℝ� → ℝ� 

ℝ� ℝ� 
� 
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Practical problems: Few disclosed cases 

●Most of them are hidden 
● Few problems are 

disclosed in competitions 
○ BBComp 
� Problems are open 
� Solutions are closed 

○ EC-Comp 
� Problems are open 
� Solutions are open 
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> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 2

DLR at a glance

• Research institution
• Space Administration

• Project Management Agency

Eco-efficient Flight Trajectory Exploration by Using the Chemistry-climate 
Model EMAC
Hiroshi Yamashita and Bastian Kern
Institute of Atmospheric Physics, German Aerospace Center (DLR)

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 1
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National and international networking

Worldwide

Europe

Clients and partners: Governments and ministries, agencies and organisations, industry and 
business, science and research 

Germany

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 3

Locations and employees

More than 9000 employees work in 
54 institutes and facilities at 30 sites 
across Germany.

International offices in Brussels, 
Paris, Tokyo and Washington D.C.

StadeBremerhaven
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> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 6

DLR Oberpfaffenhofen

Pictures via Wikimedia Commons: Andreas Steinhoff; Bayreuth2009, CC BY 3.0; Kauk0r, CC BY-SA 3.0; Maximilian Dörrbecker 
(Chumwa), CC BY-SA 2.5; Ximonic, Simo Räsänen (post-processing) & Tauno Räsänen (photograph), CC BY-SA 3.0

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 5

• Aeronautics
• Space research and technology
• Transport
• Energy
• Security (cross-sectoral area)
• Digitalisation (cross-sectoral area)

Areas of research:

Image: 
Nonwarit/Fotolia
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The DLR Institute of Atmospheric Physics

Physics and chemistry of the global atmosphere: 0-120 km 
altitude

Socially relevant issues related to the atmosphere in aviation, 
space travel, transport and energy

Climate protection, mobility of the future, digitalization & artificial 
intelligence, energy system transformation

Both basic and application-oriented questions

Broad spectrum of methods

Internationally competitive and in some areas internationally 
leading

Competent contact for DLR, society, industry and politics 

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 7

DLR Oberpfaffenhofen
Employees: 1,959
Area: 249,508 m²
Research institutes and facilities:
• Microwaves and Radar Institute
• Institute of Communications and Navigation
• Remote Sensing Technology Institute
• Institute of Atmospheric Physics
• Institute of Robotics and Mechatronics
• Institute of System Dynamics and Control
• German Remote Sensing Data Center
• Flight Experiments Facility 
• Complex Plasmas Research Group
• Space Operations and Astronaut Training
• Galileo Control Centre
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Organization

close cooperation with

a) b)

a) New appointment as of 01.07.2021; W2 appointment procedure with LMU ongoing

a) b)

Earth System
Modelling

Prof. Robert Sausen

YIG MACClim

J.-Prof. Hella Garny

ESM – Evaluation 
and  Analysis

Prof. Veronika Eyring

Atmospheric Trace
Species 

Dr. Anke Roiger

Transport 
Meteorology

Dr. Thomas Gerz

Lidar

Dr. Andreas Fix

Lidar/Radar-Synergy

Dr. Silke Groß

Logistics
Sonja Koch
Stefanie Zähnle
Controlling

Institute of 
Atmospheric Physics
Prof. Markus Rapp
Director

Cloud Physics

Prof. Christiane Voigt

Quality Management

Dr. Arthur Schady

Passive Cloud-
Remote Sensing
Dr. Luca Bugliaro

a)

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 9

The institute at a glance

Founded 1.7.1962  (1924)

End of 2019 150 employees (51f, 99m)

thereof ~ 37 PhD students

18 Lectureships/professorships at 9 
universities/colleges 

Overall budget 2019: 18,8 M€ (~ 2256 M¥)

Basic funding : 13,2 M€

(48% Aerospace, 39% Aviation, 11% Traffic, 2% Energy)

Third-party funds : 5,6 M€ (ESA, EU/ERC, BMBF, BMWi, DFG, HGF, 
Airbus,…)

－54－



(Numerical) Modelling in a nutshell

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 12

• There is no second Earth (to experiment with)

• A mathematical model

 based on physical equations

 coupled system of (non-linear) partial differential equations

 solved numerically on a “supercomputer”

https://www.dkrz.de/about/media/galerie/Media-DKRZ/hlre-3

(Numerical) Modelling in a nutshell

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 11

a) b)a) b)

• There is no second Earth (to experiment with)

NOAA/NASA
https://www.nasa.gov/image-feature/new-weather-
satellite-sends-first-images-of-earth

Wikimedia, user Hellerick
https://commons.wikimedia.org/wiki/
File:Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg
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Modular Earth Submodel System (MESSy)

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 14

https://www.messy-
interface.org/

> 20 partner institutes

Framework to couple 
scientific codes to 
numerical weather 

prediction and climate 
models

CHANNEL IMPORTTRACER TIMER

Modular Earth Submodel System Infrastructure

GRID …SWITCH

CLaMSECHAM

...… … …...

COSMO CESM1

…

MECO(n)

ICON

… …

M
ESSy

infrastructure

EMAC = ECHAM/MESSy Atmospheric Chemistry

(Numerical) Modelling in a nutshell

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 13

• There is no second Earth (to experiment with)

• A mathematical model

 based on physical equations

 coupled system of (non-linear) partial differential equations

 solved numerically on a “supercomputer”

• Climate projection (vs. weather forecast)

• no forecasts, but climate projections  statistical analyses

• boundary value problem (vs. initial value problem)

• model produces realistic weather systems from internal variability
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● scalable development
● coexistence of alternatives
→ “community”-ansatz

“communication” between 
individual components 
through mutual access of 
distributed objects via 
standard interfaces

S
T
D
.

I
N
T
E
R
F
A
C
E

memory-/
object-

manage-
ment

flow-
control

input/
output

…

MESSy
infrastructure

“dynamics”

“physics”

“chemistry”

“diagnostics”

...

expandability without
intervention in other
components

MESSy
submodels

Climate projections with EMAC

> Eco-efficient Flight Trajectories > Yamashita, Kern  •  IMI Workshop > 06.01.2021DLR.de  •  Chart 15

Total ozone column (DU), Antarctic, October

Dohmse et al., ACP, 2018

• Model simulations with 2 PByte output
• Contribution to Chemistry Climate Initiative (CCMI)
• Data for WMO Ozone Assessment and 

Intergovernmental Panel on Climate Change (IPCC)
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• Aviation and climate impact

• Climate-optimized routing

• Research objectives and methodologies

• EMAC/AirTraf model components

• 1-day air traffic simulations over the North Atlantic with different 
aircraft routing options

• Multi-objective optimization in EMAC/AirTraf

• Summary – research topics for further collaborations

Contents

2nd part

Application study
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Lee et al. 2009

Aviation emissions and climate change

ICAO 2020

• Strong growth in air traffic: +5 %/yr (1945 - 2019)
• World passenger traffic collapsed due to COVID-19 Pandemic, 

but it is recovering

Growth of air transport
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~0.03 K von 0.7 K
 5%

Main contributions from:
• CO2
• Contrails
• NOx (O3 and CH4)

PMO=„Primary mode ozone“
Results from less CH4  less HO2  less O3 production

Grewe et al. 2016

• Air traffic contributes around 5 % to anthropogenic warming

Impact of aviation on global surface temperatures

Grewe et al. 2017

Aviation and radiative forcing for 2005
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• To investigate an eco-efficient aircraft routing strategy that reduces the 
climate impact of global air traffic over the next few decades

• To estimate its mitigation gain for different aircraft routing strategies

0 - Great circle
1 - Flight time
2 - Fuel use
3 - NOx emission
4 - H2O emission
5 - Contrail formations
6 - Simple operating cost
7 - Cash operating cost
8 - Climate impact

Methodologies

Research objectives

Aircraft routing options

• Chemistry-climate model EMAC (ECHAM5/MESSy 2.54)  

• Submodel AirTraf 2.0
- 9 routing strategies (called options)
- Trajectory optimization (3D)
- Geographic location, altitude, time of 

released non-CO2 emissions/contrails
are considered

- Simplifications:
- Only cruise flight phase
- No potential conflicts of flight trajectories
- No operational constraints from ATC

Roeckner et al., 2006
Jöckel 2010, 2016

Yamashita, Kern et al. 2020

• “Climate cost function (CCF) identifies 
climate sensitive regions for emissions (CO2, 
H2O, ozone, Methane, contrails) and 
estimates climate impacts

• Climate-optimal route was calculated by air 
traffic simulator SAAM by Eurocontrol: 

- −19 % less climate impact
- 1 % longer flight time
- 14 % more fuel
- 22 % more NOx
- 10 % more costs

Frömming, et al. 2013
Grewe, et al. 2014, 2017
Matthes, et al. 2012,2017

Climate-opt

Cost-opt

Climate-optimized routing
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• A trajectory (candidate) is created by B-spline curve with 11 design 
variables: 6 (geographical location), 5 (altitude)

• Waypoints are automatically generated
• GA evaluates single objective function and finds out one optimal 

trajectory to minimize objective function value

Flight trajectory optimization

Yamashita, et al, 2016

Optimal
trajectoryCandidates

Yamashita et al. 2016

Control point

Objective function

EMAC/AirTraf model components

Chemistry

Contrail

P, T, , Winds,etc.

• Optimized flight trajectories
• Flight performance measures:
- Flight distance, flight time, fuel use, NOx
emission, H2O emission, contrail distance, 
operation cost, climate impacts (ATR20s) 
• Radiative forcing (surface temperature

change)

Roeckner et al., 2006, Jöckel 2010, 2016

Aviation data

Base model
ECHAM5/MESSy 2.54 (EMAC)

Submodel AirTraf 2.0
Aviation data

- ICAO engine performance data
- Aircraft data (BADA 3.9)
- Flight plan, fuel price, etc.

Fuel/emissions calc.
- Total energy model
- DLR fuel flow correlation method

Optimizer
- Genetic algorithms (ARMOGA1.2.0)

Coupled submodels
- CONTRAIL 1.0
- ACCF 1.0

Sasaki, 2009

Deidewig 1996, Schaefer 2012

Fuel
Emissions

Cost

AirTraf

Optimizer
GA

EMAC
Atmospheric Chemistry Model

ACCF

Aircraft routing option

Van Manen, 2017,2019; Yin, 2018,2020
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Routing options Great circle Cost/Climate/Others options
ECHAM5 Resolution T42/L31ECMWF (2.8  2.8)

Duration / Time step Dec.01.2015 - Dec.02.2015 / 12 min

Waypoints 101

Flight altitude change Fixed FL350 FL290 - FL410

Flight plan 103 Transatlantic flights by REACT4C Project
(Eastbound 52/Westbound 51)

Aircraft / Engine type A330-301 / CF6-80-E1-A2 (2GE051)

EIH2O [g(H2O)/kg(fuel)] 1,230 (IPCC 1999)

Load factor 0.62 (ICAO 2009)

Fuel price [USD/USG] 1.545 (IATA 2017)

Unit time cost [USD/h] 2710.0 (Boeing 2015)

Mach number 0.82 (A330-301, Eurocontrol 2011)

Optimization − Min. f (single-objective optimization)
Design variable − 11 (Location 6/Altitude 5)

Generation number − 100

Population size − 100

1-day air traffic simulations over the North Atlantic

• Cost option
- Min. Cash Operating Cost (international flights [USD])

• Climate option
- Submodel ACCF 1.0
- Min. climate impact over 20 yrs [K] estimated by algorithmic Climate

Change Functions aCCFs Van Manen, 2017,2019; Yin, 2018,2020

Liebeck, 1995

Flight segment i

Formulations of objective functions
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Mitigated

Distribution maps
Dec. 1 2015, 103 North Atlantic flights (A330-301)

Yamashita, Kern et al. 2020

eastbound westbound

Optimized flight trajectories
Dec. 1 2015, 103 North Atlantic flights (A330-301)

Yamashita, Kern et al. 2020
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Multi-objective
optimization problem
e.g. Min. f1 = Operating cost

Min. f2 = Climate impact
Subject to constraints

Multi-objective optimizer
ARMOGA of AirTraf
submodel

Air Traffic simulations for
eco-efficient routing strategy

Higher-level 
information

Choose one solution
(decision-making)

Step 2

St
ep

1

Multiple-trade-off 
solutions found

AirTraf initialization

f2
f2

f1f1

Eco-efficient
solution

Multi-objective flight trajectory optimization in AirTraf

Deb 2001

Yamashita, Kern et al. 2020
COC

Climate

Flight characteristics
Dec. 1 2015, 103 North Atlantic flights (A330-301)

• Trade-off exists between operational cost and climate impact
• Climate-optimized routing can reduce expected climate impact (ATR20), 

compared to cost-optimized routing
- Climate option: −67.9 % ATR20, +9.8 % COC

+9.8 %

−67.9 %

0.13 [US Mil$/10-7K]

COC

Climate
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Non-dominated solutions

Min. f1 = Flight time [s]
Min. f2 = Fuel use [kg(fuel)]
Min. f3 = Climate impact (ATR20) [K]
Flight route: from JFK (New York) to CDG (Paris), flight alt. at FL290 (fixed)
Target day: 01 June 2015
Departure time (local time): from 07:00 to 17:00 (every 2h)

1534 optimal solutions

1403 optimal solutions

07:00

13:00

09:00

15:00

11:00

17:00

1384 optimal solutions 813 optimal solutions

679 optimal solutions 951 optimal solutions

Benchmark test
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1. To detect some unique points of the nondominated solutions and 
visualize the structure of nondominated fronts

2. To examine how much nondominated fronts vary under different 
weather conditions

3. To develop a decision-making method in EMAC/AirTraf

Summary – research topics for further collaborations
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§ 0-1 Takahiro YAMAMOTO

INTEREST: To study TOPOLOGY or GEOMETRY of spaces M , in

particular manifolds, by using singularity of smooth maps f : M → Rk,

(dimM ≥ k).

KEY WORDS: Stable maps, Generic maps, Singular Points, Singular

Fibers

Favorit formulas: [Kamenosono -Y(’08)] For a stable map f : Σg →
S2, we have

g = N +
c

2
+ (1+ I)−m(f).

[Saeki -Y(’06)] For a stable map f : M → R3 of a closed oriented

4-mfd, we have

σ(M) = ||III8(f)||.

— Elimination of bdry singularities — 1/31

Elimination of B2 singularities

Takahiro YAMAMOTO

Department of Mathematics, Tokyo Gakugei University

8 January, 2021

Fiber Topology Meets Applications

Kyushu University/ ZOOM

— Elimination of bdry singularities — 0/31
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§ 0-2 Introduction

In this talk, mfd.s and maps are smooth of class C∞ unless otherwise
stated.

A smooth stable map, stable map for short is a smooth map s.t. any
maps close to the map are equivalent to the map, f : M → P of a cpt
mfd M with bdry into a surface P without bdry admits singularities
which consists of

folds, cusps, bdry folds, B2 (and bdry cusps if dimM ≥ 3).

In this talk, we





give a set of local moves for stable maps f : M → P , and

study the question: Given M , a stable map f : M → R2,

can f be deformed to a stable map g s.t. g has NO B2 singularities.

! It is a fundamental problem if generic singularities are eliminated by generic

homotopy in singularity theory of smooth maps.

— Elimination of bdry singularities — 3/31

Joint Works with Computer Sci.:

(By O. Saeki, S. Takahashi, D. Sakurai, H. Wu, K. Kikuchi, H. Carr, D. Duke, Y)

(1) Visualizing Multivariate Data Using Singularity Theory, The Im-

pact of Applications on Mathematics, Proceedings of Forum of Math-

ematics for Industry 2013, 51–65.

(2) Interactive Visualization for Singular Fibers of Functions f : R3 →
R2, IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER

GRAPHICS, VOL. 22, NO. 1, 945–954, JANUARY 2016.

! Contributed by classifying singular fibers of stable maps M3 → R2 of cpt 3-mfds

with boundary...

(D. Sakurai, Y) (3) Visually Evaluating the Topological Equivalence of

Bounded Bivariate Fields, accepted for publication in the Springer

book on Topological Data Analysis following the TopoInVis 2019

workshop.

! Contributed by constructing the theory and calculating example by using ”jc-

net”.

— Elimination of bdry singularities — 2/31
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§ 1. Preparation and Main-Theorem

Let M : a closed (i.e. compact without boundary) manifold (dimM ≥
2).
For a C∞ map f : M → N , denote by

S(f) = {p ∈ M | rank(∂fi/∂xj)(p) < min{dimM,dimN}}
the set of singular points of f , where f = (f1, . . . , fn) denotes local
form of f around p.

History of Elimination of singularities of C∞ maps M → N by
generic homotopy, i.e. generic deformation of maps:
Whitney (’44): Whitney umbrellas of f : Mn → R2n−1.
Levine (’66) n > 2; Eliashberg (’72) n = 2: Cusps of f : Mn → R2.
Cf. Ando (’85): Morin singularities of f : M → Rn.

Saeki (’06): Definite folds of f : Mn → S2, n ≥ 2

!!Today: B2s of f : M → R2, where M is a cpt. mfd with bdry.

— Elimination of bdry singularities — 5/31

Contents:
§ 1. Preparation
§ 2. Local moves for M → P

§ 3. Main-Theorem and Outline of a proof of Main-Theorem

How to eliminate B2 singularities (The case of dimM = 2):
B2

Here are pictures of a cup taken from different angles. The picture on the left is

taken from an oblique angle, and the object has TWO B2 points. The pictures on

the right shows the object viewed from directly above, and the picture in the middle

is at in-between angle of the pictures on both sides. In the middle picture, the pair

of B2 points comes in collision, and the object eventually has NO B2 points in the

left picture.

— Elimination of bdry singularities — 4/31
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Proposition 1.2 (dimM = 2)� �
M : a cpt surface with bdry, P : a surface without bdry.

f : M → P is stable
iff⇔ it is locally one of the following:

p p p p
p

regular
f = (x, z)

fold
f = (x, z2)

cusp
f = (x, z3 + xz)

bdry regular
f = (x, z)

B2

f = (x, z2 + xz)

� �
! If a C∞ map f : M → R2 is stable, then f |∂ is also stable.

! S(f) consist of finite number of circles and arcs.

— Elimination of bdry singularities — 7/31

Let M : a mfd with bdry and P : a mfd without bdry,

f : M → P is stable
def⇔ ∃N(f) ⊂ C∞(M,P ): a nbd of f with respect to the Whitney C∞

topology

s.t.

for any g ∈ N(f), f and g are equivalent,

where f and g are equivalent if there exist s ∈ Diff(M) and t ∈ Diff(P )

s.t. t ◦ f = g ◦ s.

! Any s ∈ Diff(M) preserves ∂M .

— Elimination of bdry singularities — 6/31
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Proposition 1.3 (dimM = 3)� �
M : a cpt mfd with bdry, P : a surface without bdry.

f : M → P is stable
iff⇔ locally it is one of the following:

(1) ∀p ∈ M , nbds of p in their level sets are one of the items belows:
p p

p
p p

regular
f = (x, y)

def. fold
f = (x, y2 + z2)

indef. fold
f = (x, y2 − z2)

cusp
f = (x, y3 + xy + z2)

bdry def. fold
f = (x, y2 + z)

indef. bdry fold

f = (x, y2 − z)

bdry cusp

f = (x, y2 − z)

def. B2

f = (x, y2 + z2 + xz)

indef. B2

f = (x, y2 − z2 + xz)

where the black dot, the black square, and the black dot sur-

rounded by a square represent an isolated point; however, we

use distinct symbols in order to distinguish their corresponding

map germs. The squares represent points on the boundary.

(2) . . .� �

— Elimination of bdry singularities — 9/31

Example: stable maps of cpt surf.s with bdry into the plane

M

ι1

x

yz

ι2 ι3 ι4

πxz

fi : M → R2 (i = 1,2,3,4) defined by fi = πxz ◦ ιi are stable maps of

torus with one bdry component. f1, f2 and f3 have NO B2 points.

f3 has NO singular point. f4 has TWO B2 points.

— Elimination of bdry singularities — 8/31
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f : X → Y : cont. map between topological spaces, x, x′ ∈ X

x ∼ x′ def⇔ ∃y ∈ Y s.t. x and x′ are in the same conn. comp. of f−1(y)

! ∼ is an equiv. relation.

Then, the Reeb space of f is defined by Wf := X/ ∼. In particular,

if f is a function, then Wf is called the Reeb graph of f .

Black and Green arcs of Wf correspond to circle pre-images and arc

pre-images respectively.

— Elimination of bdry singularities — 11/31

Proposition 1.3 (dimM = 3):Conti.� �
M : a cpt mfd with bdry, P : a surface without bdry.

f : M → P is stable
iff⇔ it satisfies the following conditions:

(1) . . .

(2) ∀q ∈ f(S(f) ∪ S(f |∂)), nbds of q in f(S(f) ∪ S(f |∂)) is one of

the items belows:

q q q q q q q
q

� �
! S(f) and S(f |∂) consist of finite number of circles and arcs, and finite number

of circles respectively.

! If a C∞ map f : M → P is stable, then f |∂ is also stable.

! For a regular value q ∈ P , the pre-image f−1(q) consists of finite number of

circles and arcs.

! Stable maps f : M → P of cpt n-mfd.s (n ≥ 4) with bdry into surf.s without bdry

are also characterized as well.

— Elimination of bdry singularities — 10/31
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Reeb space Wf of a stable map f : M → P of a 3-mfd with bdry into
a surf. is a polyhedron locally characterized by the following manner:

Cusps and bdry cusps

B2

! Gray regions and Green regions of Wf correspond to circle pre-images and arc

pre-images respectively.

! There are 27 other types corresponding to multi-germs of folds and bdry folds.

— Elimination of bdry singularities — 13/31

In order to study Reeb spaces of a stable map f : M → P of a 3-mfd

with bdry into a surf., we recall the the behaviour of level set near a

singular point p ∈ S(f) ∪ S(f |∂):

∅ ∅

∅

— Elimination of bdry singularities — 12/31
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(mono-germs) dimM = 2,3,

lip
τt = (x, z3 + z(x2 − t)± y2)

beak
τt = (x, z3 − z(x2 − t)± y2)

Swallow-tail
τt = (x, z4 + tz2 + xz ± y2)

B2-lip
τt = (x, z2 + z(x2 − t)± y2)

B2-beak
τt = (x, z2 − z(x2 − t)± y2)

B3

τt = (x, z3 + xz + tz2 ± y2)

dimM = 3

Bdry Lip
τt = (x, z3 + z(x2 − t))

Bdry beak
τt = (x, z3 + z(x2 − t))

Bdry Swallow-tail
τt = (x, z3 + z(x2 − t))

def C3

τt = (x, z3 + z(x2 − t))

indef C3

τt = (x, z3 − z(x2 − t))

— Elimination of bdry singularities — 15/31

§ 2 Local moves

Consider a C∞ homotopy τ as a path τ : [0,1] → C∞(M,P2), τ(t) = τt.

By using the parametrized transversality theorem, we call a C∞ ho-

motopy τ a generic homotopy if it satisfies the following condition:

∃t1, . . . , tk ∈ (0,1) such that

(1) ∀t ∈ (0,1) \ {t1, . . . , tk}, τt is a stable map,

(2) ∀ti, (i = 1, . . . , k), ∃1yi ∈ P2 and

∃Si ⊂ τ−1
ti

(y): a finite set, s.t. τti : (N,Si) →
(P2, yi) is equivalent to one of the germs below: f = τ0

g = τ1

! For ti−1 < t < ti < t′ < ti+1, the deformation of τt into τt′ is given by the local

moves given below.

— Elimination of bdry singularities — 14/31
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def/indef B2-beak: ft = (x, z2 − z(x2 − t)± y2)

— Elimination of bdry singularities — 17/31

def/indef B2-lip: ft = (x,±z2 + z(x2 − t)± y2)

— Elimination of bdry singularities — 16/31
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def-C3: ft = (x, yz + y3 + xy + tz)

indef-C3: ft = (x, yz − y3 + xy + tz)

— Elimination of bdry singularities — 19/31

def/indef-B3: ft = (x,±z3 + xz + tz2)

— Elimination of bdry singularities — 18/31

－77－



§ 3 Main-Theorem and Outline of a proof of Main-Theorem:

Let Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}. Then, ∂Hn = {xn = 0}.

Lemma 1.4(Characterization of B2 Singularity)� �
f : (H2,0) → (R2,0) a smooth map germ.

(n = 2): f is B2 singularity
iff⇔






f is fold if we ignore the bdry,

f |∂ is immersion,

S(f) � ∂ at 0.

(n = 3): f is B2 singularity
iff⇔






f is fold if we ignore the bdry,

f |∂ is fold,

S(f) � ∂ at 0.
� �
! For a stable map f : M → P of an n-mfd (n = 2,3) with bdry into a surf. B2

singularities are initial and terminal points of an arc component of S(f). It implies

that # of B2 singularities of f is EVEN.

— Elimination of bdry singularities — 21/31

(multi-germs): τt(S(τt) ∪ S(τt|∂))

— Elimination of bdry singularities — 20/31
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Main-Theorem A� �
M : a cpt n-mfd (n = 2,3) with bdry, ∂M = ∂1 ∪ · · · ∪ ∂k,

f : M → P : a stable map.

(n = 2): f is homotopic to a stable map g : N → P2 having NO B2

points, namely, f is homotopic to a stable map g : N → P2 which is

SUBMERSION on a sufficiently small nbd of ∂.

(n = 3): Then, f is homotopic to a stable map g : N → P2 s.t.




if χ(∂j)
(2)
≡ 0, then g has NO B2 points on ∂j,

if χ(∂j)
(2)
�≡ 0, then g has ONE B2 point on ∂j.

In particular, if χ(∂j)
(2)
≡ 0 for ∀∂j, then f is homotopic to a stable

map g : M → P2 which is SUBMERSION on a sufficiently small

nbd of ∂M .� �
! The Theorem implies that g is obtained by applying local moves above finitely

from f .

! We had obtained similar type theorem for the cases dimM ≥ 4.

— Elimination of bdry singularities — 23/31

Lemma 1.5� �
M : a cpt n-mfd (n = 2,3) with bdry, P : a surf. without bdry

f : M → P : a stable map,

S(f |∂) = S1 ∪ · · · ∪ S�, ∂M = ∂1 ∪ · · · ∪ ∂k the decomposition of

S(f |∂), ∂M into connected components resp. Then, we have the

items below:

If dimM = 2, then #{B2} is even on ∀∂j.
If dimM = 3, then

(1) #{B2} +#{bdry cusps} is even on ∀Si,

(2) #{B2} and χ(∂j) have the same parity on ∀∂j.� �
! It yields that if dimM = 3 and ∃∂j ⊂ ∂M s.t. χ(∂j) is odd, then any stable map

f : M → P has at least ONE B2 point on ∂j ⊂ ∂N .

! For the cases dimM ≥ 4, there are topological constraints of # of B2 as well.

— Elimination of bdry singularities — 22/31
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S1 ∪ · · · ∪S� = S(f1|∂), pi1, . . . , pik ∈ Si: B2 points which are ordered

Step 2� �
f1 ∼homotopic f2,

where f2 is a stable map s.t. there are



NO bdry cusps among pij and pij+1

, and

NO double point among f(pij) and f(pij+1
)

for each j = 1, . . . , k − 1.� �
! def/indef-C3-homotopy replace an def/indef-B2 point with a bdry cusp point.

— Elimination of bdry singularities — 25/31

To obtain a stable map g : M → P having NO B2 pt.s, f is deformed

by local moves given above following four steps below.

Step 1� �
dimM = 2: Put f1 = f .

dimM = 3:

f ∼homotopic f1,

where f1 is a stable map which have NO def-B2 points.� �
! def-B3-homotopy replace a def-B2 point with a indef-B2 point.

— Elimination of bdry singularities — 24/31
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Step 4 (dimM = 3)� �
f3 ∼homotopic f4,

where f4 is a stable map s.t.

if χ(∂j)
(2)
≡ 0, then #{B2} points is ZERO or TWO on ∀Si ⊂ S(f4|∂j),

if χ(∂j)
(2)
�≡ 0, then ∃1Si′ ⊂ S(f4|∂j),

s.t. #{B2} points is ONE on Si′,
#{B2} points is ZERO or TWO on ∀Si ⊂ S(f4|∂j) \ Si′.� �

Then, by applying Steps 2 and 3 to f4, we obtain the desired stable

map g : M → P2.

To apply STEP 4, there are two cases for f3:

— Elimination of bdry singularities — 27/31

Then, for each B2 point pi, f2(S(f2)∪S(f2|∂)) around pi is locally one

of the items below:

Step 3� �
f2 ∼homotopic f3,

where f3 is a stable map having NO B2 points if dimM = 2,

f3 is a stable map s.t. #{B2} points is at most ONE

on ∀Si ⊂ S(f3|∂) if dimM = 3.� �
! Applying def/indef-B3-homotopy and def/indef-B2 beaks.

— Elimination of bdry singularities — 26/31
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Case (2): γλ ⊂ S(f): arc whose bdry are pλ1 ∈ ∂j1 and pλ2 ∈ ∂j2,

γµ ⊂ S(f): arc whose bdry are pµ1 ∈ ∂j1 and pµ3 ∈ ∂j3.

Assume that for pλ1 and pλ2, pµ1, pµ3, there are bdry cusps in the

sufficiently small nbhd of pλ1 and pλ2, pµ1, pµ3 resps. Then, by using

C3-homotopy and Sw.-homotopy if necessary, we obtain the following

Lemma.

Lemma 3.2� �
Let η be an embedded curve transversal to S(f3|∂) with η(0) = pλ1,

η(1) = pµ1 s.t. there are NO bdry cusps on η((0,1)). Then, ∃ a

homotopy s.t. the homotopy does NOT change f3 on N \N(η) and

it change f3 to a stable map which has no cusps on N(η).� �

�

— Elimination of bdry singularities — 29/31

Case (1) γ ⊂ S(f): an arc whose bdry is a pair of B2 points

p1, p2 ∈ ∂j s.t. p1 ∈ Sj1 and p2 ∈ Sj2 (Sj1, Sj2 ⊂ S(f |∂j)).

Assume that for p1 and p2,
∃bdry cusps in the sufficiently small nbd

of p1, p2 resp. Then, by using C3-homotopy if necessary, we obtain

the following lemma.

Lemma 3.1� �
Let η be an embedded curve transversal to S(f3|∂) with η(0) = pλ,

η(1) = pµ s.t. there are NO bdry cusps f3 on η((0,1)). Then, ∃ a

homotopy s.t. the homotopy does NOT change f3 on N \N(η) and

it change f3 to a stable map which has no cusps on N(η).� �

— Elimination of bdry singularities — 28/31
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Thank you for your attention!

— Elimination of bdry singularities — 31/31

Main-Theorem B� �

Let M be a 3-mfd with bdry s.t. χ(∂j)
(2)
≡ 0 for ∀∂j ⊂ ∂M ,

f : M → R2 a stable map.

Then, f is homotopic to a stable map which have

NO B2 points and NO bdry cusp points.� �

— Elimination of bdry singularities — 30/31
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§1. Broken Lefschetz
Fibrations

§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

Simplifying Indefinite
Fibrations on 4–manifolds

Osamu Saeki (Kyushu Univ.)

Joint work with İnanç BAYKUR (Univ. of Massachusetts)

Fiber Topology Meets Applications
at Kyushu University

January 8, 2021
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Lefschetz Pencil
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

4 / 29

Lefschetz pencil (LP) is a LF M 4 \B → S2 for a finite set B �= ∅, where it
has complex local model

(z1, z2) �→ z1/z2 ∈ C ∪ {∞} = S2.

(Blowing-up the points in B, we get a LF M 4�(�|B|CP 2) → S2.
Conversely, blowing-down (−1)-sections for a LF, we get a LP.)

Donaldson, Gompf, Late 90’s
∃Lefschetz pencil ⇐⇒ ∃symplectic structure

Symplectic structure: ω ∈ Ω2(M 4), dω = 0, non-degenerate (ω2 > 0)

�Symplectic structures are “HARD” to find.

Lefschetz Fibration
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

3 / 29

In this talk, manifolds and maps are differentiable of class C∞.

Definition 1.1
M 4, Σ2: closed (= compact w/o boundary) oriented manifolds

A singularity of a smooth map M 4 → Σ2 that has the normal form

(z, w) �→ zw

w.r.t. “C∞ complex coordinates” compatible with the orientations, is called a
Lefschetz singularity.

A smooth map M 4 → Σ2 is a Lefschetz fibration (LF) if it has only
Lefschetz singularities.
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Near-symplectic Structures
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

6 / 29

Auroux-Donaldson-Katzarkov, 2005
∃broken Lefschetz pencil ⇐⇒ ∃near-symplectic structure

Near-symplectic structure: ω ∈ Ω2(M 4), dω = 0, ω2 ≥ 0,
ω vanishes along a 1-dim. submanifold Zω “transversely”.

Example 1.4 Ω = dt ∧ dQ+ ∗ (dt ∧ dQ) on R4 with coordinates
(t, x1, x2, x3) is such an example with ZΩ = t-axis.
Here, Q(x1, x2, x3) = x2

1 + x2
2 − x2

3 and ∗ is the Hodge star operator.

Near-symplectic structures are “EASY” to find.

In this talk, I will explore BLF and BLP from singularity theoretical
viewpoints.

Broken Lefschetz Fibration
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

5 / 29

Definition 1.2 A singularity that has the (real) normal form

(t, x1, x2, x3) �→ (t, x2
1 + x2

2 − x2
3)

is called an indefinite fold singularity.

Definition 1.3 (Auroux-Donaldson-Katzarkov, 2005)
f : M 4 → Σ2 is a broken Lefschetz fibration (BLF) if it has at most
Lefschetz and indefinite fold singularities.
Broken Lefschetz pencil (BLP) is similarly defined.

Zf : set of indefinite fold sing. ← closed 1-dim. submanifold of M 4
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Indefinite Fibration
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

8 / 29

A singularity of M 4 → Σ2 is a fold if it is locally given by
(t, x1, x2, x3) �→ (t,±x2

1 ± x2
2 ± x2

3).
A singularity is a cusp if it is locally given by
(t, x1, x2, x3) �→ (t, x3

1 + tx1 ± x2
2 ± x2

3).

Whitney, Thom, ∼1950’s
Any smooth map can be approximated by a map with only fold and cusp
singularities. (Such f : M 4 → Σ2 is called a generic map.)

f is an indefinite generic map if its folds and cusps are all indefinite.

f : M 4 → Σ2 is an indefinite fibration (IF) if it has at most indefinite folds,
indefinite cusps, and Lefschetz singularities.

§2. Indefinite Fibrations

§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections
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Main Objective
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

10 / 29

Main objective of this talk is to provide explicit “algorithms” to simplify
the topology of IFs to get nice fold images as follows:

BLF with directed embedded fold image.

S2

Various Classes of Maps
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

9 / 29

BLFs Indefinite Generic Maps

Indefinite Fibrations (IFs)

no cusps no Lef. sing.

near-symplectic geometry singularity theory
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§3. Moves

§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

New Proof of ADK Theorem
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

11 / 29

As a result, we can give a purely topological proof to the following.

Theorem 2.1 (Auroux-Donaldson-Katzarkov, 2005)
M 4: closed oriented 4-manifold.
(1) Z �= ∅: closed oriented 1-dim. submanifold of M 4

s.t. [Z] = 0 in H1(M
4;Z)

=⇒ ∃fiber-connected BLF f : M 4 → S2 with simplified fold image
s.t. Zf = Z.

(2) ∃near-symplectic form ω with Zω �= ∅
=⇒ ∃fiber-connected BLP g on M 4 with simplified fold image s.t.
Zg = Zω.

In particular, every closed oriented 4-manifold admits a BLF.
Our “algorithms” are based on sing. theory and give explicit constructions of
BLF and BLP that are simplified.
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Normal Orientation
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

14 / 29

vanishing cycle

f(Zf )

Fold image

The image of indefinite folds is normally oriented.

Fibers of an IF
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

13 / 29

Σ2

M 4

f

f(Zf)

Image of a Lefschetz singularity
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Moves for Indefinite Fibrations
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

16 / 29

Definition 3.1 A move for an IF f : M 4 → Σ2 is a smooth 1-parameter
family ft : M

4 → Σ2, t ∈ [0, 1], of “mostly” IFs, with f0 = f , which modifies
the base diagram only in a nbhd of a point in Σ2.
(Except for finitely many t’s, ft is an IF.)

Definition 3.2 A move is always-realizable if, given a local configuration
of a base diagram, we can always find a 1-parameter family as above that
realizes the relevant base diagram change.

Base Diagram
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

15 / 29

For an IF f : M 4 → Σ2, base diagram is the pair (Σ2, f(Zf ∪ Lf)).

Σ2

f(Zf)

f(Lf ) (Image of Lefschetz singularities)

Image of a cusp
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Moves II
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

18 / 29

!R20

R20

!R21

R21

R22

!R22

Reidemeister II type moves

Moves I
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

17 / 29

∅
Birth

Death !Fold Merge

Cusp Merge

Flip

Unflip

Wrinkling

!Unwrinkling
!Sink

Unsink

Blue arrows are always-realizable, while brown arrows are not.
Cusp Merge is “always-realizable” as long as the fibers are connected.
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§4. Constructions

§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

Moves III
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

19 / 29

!R30

R33

!R31

R32

Reidemeister III type moves

C

!C−1

push

!pull
Cusp-fold crossing & push/pull moves �
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Directed Embedded Fold Image
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

22 / 29

Lemma 4.2 There exists an explicit “algorithm” consisting of
always-realizable moves, which turns any given directed IF into a
directed one with embedded fold image.

Using certain always-realizable moves, we can arrange so that each
“component” winds exactly once.

Then, we can reduce crossings using Reidemeister type moves. �

Directed Fold Image
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

21 / 29

Lemma 4.1 There exists an explicit “algorithm” consisting of
always-realizable moves, which makes any given IF directed.

�
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§5. Trisections

§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

Simplified BLF
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

23 / 29

Then, we get the following.

Theorem 4.3 M 4: closed ori. 4-manifold,
Z �= ∅: [Z] = 0 in H1(M ;Z).
=⇒ ∃fiber-connected BLF f : M 4 → S2 with directed, embedded
fold image s.t. Zf = Z.

Proof starts with a generic map M 4 → S2 which may not be indefinite.

Theorem 4.4 (S., 2006)
∀f : M 4 → S2 is homotopic to an indefinite generic map without
definite folds.

In other words, we can eliminate definite folds by homotopy.

We can now apply our “algorithms”. �
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Simplified Trisection
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

26 / 29

Our explicit “algorithm” for simplifying an IF leads to the following.

Theorem 5.1 Every M 4 admits a simplified trisection (ST), i.e. a
trisection with trivial Cerf graphics.

Image of a simplified trisection

Trisection
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

25 / 29

Gay–Kirby (2013) showed that every connected closed orientable 4-manifold
M 4 admits a generic map into R2 whose image is as follows.

Each box represents an arbitrary Cerf graphic as in the right.
Then, the three half lines divide the image into three parts and their inverse
images are all diffeomorphic to �(S1 ×D3).

Every 4-manifold admits such a trisection.
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Bridging SBLFs and STs
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

28 / 29

Our explicit constructions lead to the following.

Theorem 5.2 Suppose M 4 admits a g-SBLF, with k ≥ 0 Lefschetz
sing., and � ∈ {0, 1} components of Zf .
=⇒ ∃ (g′, k′)-ST of M 4 with

g′ = 2g + k − �+ 2 and k′ = 2g − �.

Conversely, suppose M4 admits a (g′, k′)-ST.
=⇒ ∃ g-SBLF with k Lefschetz sing. and one Zf component, where

g = g′ + 3 and k = 5g′ − 3k′ + 8.

In fact, given an explicit SBLF (or ST), we can EXPLICITLY construct an
associated ST (resp. SBLF).

Genera of BLF and ST
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

27 / 29

g
k

Simplified (g, k)-trisection = (g, k)-ST

g
g − 1

S2

Simplified BLF with genus g = g-SBLF
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Ending
§1. Broken Lefschetz Fibrations §2. Indefinite Fibrations §3. Moves §4. Constructions §5. Trisections

29 / 29

Thank you for your attention !

References:
- R.I. Baykur and O. Saeki, Simplified broken Lefschetz fibrations
and trisections of 4-manifolds, Proc. Natl. Acad. Sci. USA 115
(2018), 10894-10900.
- R.I. Baykur and O. Saeki, Simplifying indefinite fibrations on 
4-manifolds, to appear in Trans. Amer. Math. Soc.
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Triangulation of spatiotemporal meshes

• Contour tree requires spatial triangulation

• Thanks to in-situ analysis, very fine temporal resolution!

• We want to triangulate spatiotemporal meshes without 
breaking pre-defined spatial triangulation

2

An Efficient Triangulation 
for Extruded Spatiotemporal 

Prism Meshes

Akito Fujii

Kenji Ono

Daisuke Sakurai

1
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Our proposed spatiotemporal triangulation!

• Implicit :
• On-the-fly from the information in the node
• Ex. crystalline triangulation

• Features : 
• Arbitrary dimension
• Arbitrary spatial triangulation
• Extrude to time direction
• Fast
• Parallelism

• Assume temporally static meshes

4

Extrude

[Carr et.al. 2006, IEEETVCG]

Constructing spatiotemporal mesh is difficult

• Delaunay-based triangulation : difficult to implement
• CGAL does not offer implementation even for 3D
• Processing for numerical errors

• special module such as Arbitrary-precision arythmetic is necessary

• Slow
• Parallelism is difficult

• A lot of communication at the boundary of data

3
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Conclusion

•We propose triangulation algorithm for extruded 
prism meshes
• This algorithm can apply meshes in arbitrary dimensions

• Low cost
• Cost does not depend on the number of vertices
• We do not have to store triangulation of meshes
• Look up table for the triangulation only depends on the 

number of dimension
• Easy to implement

6
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