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Preface

These are the proceedings of the workshop “New technologies for non-destructive and
non-invasive inspections and their applications”, held at IMI, Kyushu University, from Oc-
tober twenty eighth to October thirty first, 2019. In this workshop, the following researches
were reported and lively discussions were had on them.

• Dr. Kenji Hashizume : Development and operation of the non-destructive inspection
methods for infrastructures

• Prof. Cheng Hua : Mathematical modeling and analysis of Rayleigh wave

• Takashi Takiguchi : An overview of ultrasonic imaging and its development

• Prof. Daisuke Kawagoe : Regularity of solutions to the stationary transport equation
and its application to the optical tomography

• Prof. Makoto Maruya : 3D reconstruction of the asteroid Ryugu as an inverse problem

• Prof. Kazumi Tanuma : Perturbations of Rayleigh waves in anisotropic elasticity and
Bleustein-Gulyaev waves in piezoelectricity

On the first day of the workshop, Doctor Kenji Hashizume introduced the inspection
deveices for the infrasturcures developed by West Nippon Expressway Engineering Shikoku
Company Limited, as well as their applications to non-destructive inspections and to pre-
diction of the potholes on the road. It is surprising that his talk necessarily contains new
technology developed by West Nippon Expressway Engineering Shikoku Company Limited
every year. Now our research team is studying how to apply the device Eagle developed
by West Nippon Expressway Engineering Shikoku Company Limited for a non-destructive
ispection of stone statues in China. It is a serious problem in China that old stone statues
collapse naturally and there are a number of such statues.

In the morning on the second day, Professor Cheng Hua gave a presentation on the
Rayleigh waves in the viscoelastic media. It was one of the main topics in this workshop to
study how to establish a non-destructive inspection technique for the concrete cover in RC
(reinforced concrete) structures by application of the Rayleigh waves. In his talk, Prof. Hua
studied the uniqueness problem of the Rayleigh waves in the viscoelastic media. It must be
solved bofore the application to non-destructive inspections are discussed and it could be a
basic theory for applications of the Rayleigh waves.

In the afternoon, the organizer overviewed the development of ulrtasonic imaging tech-
nique (USI). For the time being, the USI has been being developed by applying the idea by G.
N. Hounsfield for the first practicalization of the X-ray computerized tomography. The ori-
ganizer reviewed such development and posed some open problems for further development
of USI.
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In the morning on October 30th, Professor Daisuke Kawagoe presented his research on
the regularity of solution of the transport equation and its application to optical tomog-
raphy. In this talk, he theoretically succeeded in taking out the Radon transform of the
absorption coefficients of infra-red ray in the human tissue by observation of the infra-red
laser transportation, which is a very nice and interesting result. From the viewpoint of
practical application, a very important problem is left open; how to practicalize his idea. It
was one of the main topic in this workshop to study new non-destructive inspection (NDI)
or non-invasive inspection (NII) techniques without X-ray nor magnetic resonance. Being
excellent techniques for non-destructive or non-invasive inspections, X-ray tomography and
MRI have shortcomings such as the expensive cost in both the devices themselves and their
protection facilities, harmful side effects of the X-rays and strong magnetic fields to human
bodies and to the environment and so on. Therefore, it is required to develop new, cheaply
running, safe and reliable NII and NDI techniques. The talks by Prof. Kawagoe and the
origanizer are very closely related to this topic.

In the afternoon, Professor Makoto Maruya introduced his research on remote sensing.
He belongs to Hayabusa 2 project. He introduced the idea applied for the reconstruction of
the 3D image of the asteroid Ryugu. On this problem, many improvements were proposed
by the audience and we decided to begin the research to improve this 3D reconstruction.
He also introduced an algorithm for G S. We created several problems to improve the
algorithm for , which are being studied.

On the final day, Professor Kazumi Tanuma presented his research in the Rayleigh waves
in anisotropic elasticitic media and in Bleustein-Gulyaev waves in piezoelectric media. In his
research, Prof. Tanuma treated the Rayleigh waves in in anisotropic elasticitic media as the
Rayleigh waves in isotropic elasticitic media and their small perturbations. The same idea
was applied for the study of the Bleustein-Gulyaev waves in piezoelectric media. His idea
can be of help in the study to apply Rayleigh wave in a non-destructive inspection technique
for the concrete cover in RC structures, since concrete is a anistropic viscoelastic medium.

In this workshop, we have created new research tasks to be solved by industry-academia
and interdisciplinary collaboration, which are being studied now. We wish that we would
have more opportunities to hold such workshops to study these important problems. We
also hope that such collaboration be much more popular.

At the end of Preface, I would express my gratefulness to Ms. Chiemi Furutani and
Mika Tomonaga, the secretaries of this workshop, for their kind help.

January 31, 2020

Takashi Takiguchi
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Development and operation of the non-destructive inspection 
methods for infrastructures 

 
 

Kenji Hashizume 
 
 

West Nippon Expressway Engineering Shikoku Company Limited 

3-1-1 Hanazono-cho, Takamatsu-shi, Kagawa 760-0072, Japan 

Email: kenji.hashizume@w-e-shikoku.co.jp 

 
In this talk, we introduce the latest trend about our inspection devices and the 
techniques, which are introduced into the inspection of expressway. We suggest 
the development of the devices, which enable objective evaluation and record 
for inspection of bridge, tunnel and pavement. We also introduce how we 
manage roads by the devices we have developed. 
 

Key Words:  inspection，non-destructive，infrared，light cutting method 
 
 
1. Introduction 
In order to secure the social durability of infrastructure, the following matters 

are indispensable. (1) To maintain and manage the organized infrastructure 
efficiently and effectively. (2) To prevent the outbreak of risk events of damage 
due to aging of infrastructure. Therefore, it is important to inspect and repair the 
infrastructure efficiently and effectively.  
Accordingly the efficient and effective inspection and repairing would be very 
important. For the given purpose, the efficient and effective inspections and 
maintenance practice shall be necessary.  The inspection method using the 
non-destructive inspection devices for the bridges, tunnels, and pavements 
inspections with objective evaluations and keeping their records is now 
proposed. In this talk, we suggest the development of the devices, which enable 
objective evaluation and record for inspection of bridge, tunnel and pavement. 
We also introduce how we manage roads by the devices we have developed. 
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of the EMS (Environment Measuring System)(Figure-2) mounted on the 
inspection bridges. 

 
iii. Simple and Objective Evaluation Method (Is it possible and easy to 

evaluate objectively?) 
There could be, for individuals, differences among the inspection judgments 
because it is sometime impossible to judge the damage evaluation such as 
delamination and spalling for the bridge members and damaged parts only by 
looking at the infrared 
images. It is also 
impossible to judge the 
crack’s depth along the 
rebar. However, the red, 
yellow, and blue cracks’ 
judgment- images at the 1, 
2, 3 cm depth from the 
surface are shown at the 
camera monitor (Figure 
-3). 
 
2.2 Tunnel and Pavement Inspection 
2.2.1 Tunnel and Pavement Inspection 
We now explain the “L & L System” 

(Figure-4) inspection method which uses the 
Line Censor Camera and Laser Marker. Line 
Censor cameras mount the visual image 
censors, and can photograph seamless and 
continuous imageries. They can also be 
applied for the tunnel and pavement 
inspections.Light Cutting method is 
photographing the laser marker images from 
a upper and oblique position by using the 
laser which is irradiated vertically down on 
measuring surfaces and obtain the object 
shape. This method is used for road surface 
profile measuring. 

Damage grade Visible image Infrared image 3 level indication

Observation
Abnormal sound

Caution
Possibility of falling 
down near future

Warning
Require emergency 
measure

figure -4  L&L System 

Pavement 

Tunnel 

figure -3 J-System Monitor Image 

2. New devices for inspection 
2.1 Bridge Inspections 
We now explain the “J-System” (Figure-1) for the inspection method using the 

infrared cameras. The reinforced concrete fulfill its role with the joint functioning 
of rebar and concrete for the concrete structure. When the rebar gathers rust in 
the concrete, cracks appear on the concrete 
surface along the rebar, the surface concrete 
spalls, and so its durability is to be reduced. We 
have been inspecting the cracks triggered by the 
concrete delaminations along the rebar through 
the hammering. The infrared cameras inspection 
is the new one detecting the damaged areas such 
as concrete delaminations and cracks through 
photographing the concrete surface by using 
infrared cameras from remote palaces, and 
keeping the records of the concrete surface 
conditions using digital cameras. The inspections 
of bridges surface by infrared cameras are done 
by the passive method, and the followings are the 
important elements; 
 

i. Cameras Quality (Is the cameras suitable 
for the inspection environment?) 

Inspections are done basically during night, so 
it is important to extend the surveillance hours 
of the day and increase the annual surveillance 
days by using the camera with a short- wave 
type which has no the environmental reflections 
during night and with a enforcing-cooling- 
system type with a small thermal resolution. 

 
ii. Judgment on time zone of the day when 

inspections can be done (Do we inspect at a suitable time ?) 
We implement the night- time inspection basically, because there are various 

bridge types and bridge members which are not suitable to inspect during 
daytime. The time zone of the day when inspection is possible is based on data 

figure -1 J-system 

figure -2  J-system EM(S) 
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evenness, and IRI values obtained by the road surface measurements, and we 
can also easily sort and extract some of the data with abnormal ranges which 
show more than a certain threshold (Figure-6). Thus, the repairing and renewal 
plans of road pavement and the bumps will be made easier.  
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figure -6 Pavement evaluation 

i. Tunnel Inspection 
It is possible to 

obtain the fine and 
colorful continuous 
images (Figure-5) of 
tunnel lining by using 
Line Censor cameras 
mounted on the 
inspection cars with 
high speed (less than 
100km/h). The cracks 
of tunnel lining can be 
detected up to 0.2mm, 
and water leakage 
and lime isolation can 
be also found. The 
damage spreading 
drawings and their 
diagonal charts can 
easily be produced 
based on the captive 
pictures, and so we 
inspect only the areas 
where further close 
and detail investigations are necessary. And we can clearly watch the conditions 
of rusted accessories in tunnels, and so it is now possible to apply them for the 
accessories inspections.  
 

ii. Pavement Inspection 
We can inspect the pavement conditions such as cracks and potholes, and 

conditions of bridge expansion joints by using Line Censer cameras mounted on 
the vehicle with high speed (less than 100km/h). At the same time, we can also 
measure rutting, bumps, and upheaval through using laser cameras, and 
measure road surface profile such as height, and also evaluate the evenness, 
bump and IRI values. 
We can also display the grade evaluation for the cracks, rutting, bumps, 

figure -5 Visual image with cracks and the 
accessories 

－4－



evenness, and IRI values obtained by the road surface measurements, and we 
can also easily sort and extract some of the data with abnormal ranges which 
show more than a certain threshold (Figure-6). Thus, the repairing and renewal 
plans of road pavement and the bumps will be made easier.  
 

 

0

2

4

6

8

10

0 

1 

2 

3 

4 

5 

105 105.5 106 106.5 107 107.5 108 108.5 109 109.5 110

IR
I(1

0)
    

IR
I(1

00
)  

,  I
RI

(2
00

)

kilometer-post

IRI DATA 

IRI(200) IRI(100) IRI(10m)

Processed surface height image(red:rutting10mm or deeper)

Crack

h
e
ig

h
t(

m
m

)

w i d th(m m )

Crack

Visual image（ pavement ）
Zoom up

Zoom up

Transversal cross section (Left red line) Cracks can be detected as a difference of height.

figure -6 Pavement evaluation 

i. Tunnel Inspection 
It is possible to 

obtain the fine and 
colorful continuous 
images (Figure-5) of 
tunnel lining by using 
Line Censor cameras 
mounted on the 
inspection cars with 
high speed (less than 
100km/h). The cracks 
of tunnel lining can be 
detected up to 0.2mm, 
and water leakage 
and lime isolation can 
be also found. The 
damage spreading 
drawings and their 
diagonal charts can 
easily be produced 
based on the captive 
pictures, and so we 
inspect only the areas 
where further close 
and detail investigations are necessary. And we can clearly watch the conditions 
of rusted accessories in tunnels, and so it is now possible to apply them for the 
accessories inspections.  
 

ii. Pavement Inspection 
We can inspect the pavement conditions such as cracks and potholes, and 

conditions of bridge expansion joints by using Line Censer cameras mounted on 
the vehicle with high speed (less than 100km/h). At the same time, we can also 
measure rutting, bumps, and upheaval through using laser cameras, and 
measure road surface profile such as height, and also evaluate the evenness, 
bump and IRI values. 
We can also display the grade evaluation for the cracks, rutting, bumps, 

figure -5 Visual image with cracks and the 
accessories 

－5－



Second, the cracking of porous asphalt proceeds with aggregate scattering; 
however, by using this vehicle, a surface texture depth (mean profile depth: 
MPD) evaluation can be applied to the full lane width (Figure-8). The MPD is a 
quantitative evaluation method used for evaluating the progress of aggregate 
scattering and cracking peculiar to porous asphalt. Acquiring highly accurate 
shape data of the road surface makes it possible to quantitatively evaluate the 
MPD of the full lane width in a planar way. 

This study will be the basic documents for the repair planning which will 
prolong the porous asphalt pavement life, and contribute to reducing the pothole 
occurrence risks by proposing the quantifying evaluation flow based on the 
analysis results. 
 

 
 
 
 
 
 
 
 
 

figure -8 Mean profile depth 

Warm color  ⇒ Large MPD
Large quantity of aggregate scattering is observed.
Cool color  ⇒ Small MPD
A place which will likely be clogged.

T
ra

ff
ic

 l
a
n
e 

  
3
.5

m

We have analyzed the periodically measured data using the high-accuracy 
pavement-condition measuring vehicle in expressways of Shikoku, to fully 
understand the progress of porous asphalt pavement damages. As a result, it is 
found that when the local subsidence phenomena occur, they would develop 
from cracks to potholes in a short time. It is very difficult to find these damages 
earlier even through the conventional evaluation indexes (cracks, rutting, 
flatness) or survey frequency. This study is to propose the new evaluation 
factors to the porous asphalt pavement based on the analysis of the 
high-accuracy surface profile. 

First, an evaluation by the local subsidence amount is proposed (Figure-7). 
This method is an evaluation method for extracting local collapse points 
indicating a prediction of the occurrence of potholes that cannot be grasped by 
conventional evaluation methods and survey frequency. In this method, the data 
presented in a chronological order and measured periodically were used. The 
evaluation index based on the amount of local subsidence can be calculated 
with the conventional measurement data obtained by investigating the road 
properties, making it possible to grasp the generation risk of the current potholes. 
In addition, the prediction results based on the damage growth curve model can 
be utilized as a mid-to-long-term repair planning document. 
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By measuring with high frequency, it is possible to grasp the current situation 
quickly. Also, by analyzing accumulated data, it can contribute to formulation of 
inspection and repair plan according to the actual situation (Figure-11). 

 
4. Conclusion 
 The bridges, tunnels, and pavement inspections by cameras can be used for 

the assistances for the on-site inspections or their alternatives, and we can 
maintain the objective evaluations and predict the future damages through their 
annual transitions. Also the repairing plan can be made easily and efficiently.  
The proposed inspection method using the cameras makes it possible to use, 
select and combine those inspection tools economically and effectively in 
accordance with budges and utilizations patterns of each organization based on 
their different road structure maintenance and repairing standards. 
 
This work is partially based on the discussions at 2019 IMI Joint Use Research 

Program Workshop (II) "New technologies for non-destructive and non-invasive 
inspections and their applications" 
 
 

figure -11   Damage formed by a simple road survey property 
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3. Topic technology 
3.1 Tunnel Inspection new system “Smart-Eagle type-T” 
We are considering a method to evaluate the risk of crashing of tunnel concrete 

(Figure-9). In this technique, we measure the unevenness of the surface with 
shape measurement precisely and judge the danger from its shape. In the future, 
I would like to propose unique evaluation methods based on visible and shape 
data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Pavement Inspection new system “Smart-Eagle type-P” 
Currently, a technology that can 

easily grasp each index of the road 
surface properties required for 
pavement management attracts 
attention (Figure-10). This technology 
reduces the investigation cost which 
was the problem of the conventional 
road surface property investigation, 
and shortens the analysis time. This 
system has the following features 
 
 Automatic analysis 
 Proposing a new evaluation indicator to extract damage 

(Local subsidence amount & MPD by vehicle) 
 

ひび割れ・わだち

掘れ 測定機器

IRI測定機器
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3D-camera×1

gyro×1
Light cutting unit×1

figure -10 Smart Eagle type-P 

figure -9 Smart Eagle type-T 
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Development and operation of the 
non-destructive inspection 
methods for infrastructures

West Nippon Expressway Shikoku Company Limited.

New technologies for non-destructive and non-invasive inspections and their applications
October 28-31, 2019

West’s Japan highway business area Map

West’s Highways in Operation  
3,427km

http://global.w-nexco.co.jp/

My company 
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The NEXCO-West Group Policy

2

Operation and Maintenance Management

Inspection 
Planning

Inspection

Decision Making
Meeting

Planning for 
Design and Repair

Design
and Repair

Scheduling for inspection activities 
using stored inspection data

Conducting 
inspections

Deciding the necessity of  repair works with 
updated bridge inventory

Scheduling for designs and 
repair works 

Conducting designs 
and repair works

Inspection

3
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Inspection Types
Type Procedure Frequency

Daily Inspection Visible unusual conditions and 
deformations of structures are  daily 
inspected behind the wheels.

Once every two days 
to
Once every four days
(Dependent on traffic 
volume)

Routine Inspection The safety of the structure is regularly 
confirmed by distant visual inspection, 
cross visual inspection and hammering 
test.

More than once a year 

Detailed Inspection The safety of the structure is 
understood by cross visual inspection 
and hammering test more in detail.

Once every five years

4

Budgeting for O&M Activities(West’s Japan highway)

道路維持管理費

道路業務管理費

高速道路修繕費

Toll 
Collection 
Costs
399mn. US$

Maintenance 
Costs
830mn. US$

Repair 
Costs
327mn. US$

http://corp.w-nexco.co.jp/corporate/disclosure/h25/

【Note】Exchange Rate 1 USD=115 JPY

Operation and Maintenance Costs : 15.6 bn. US$ 

（planned, in2013 fiscal year ）

Inspection Costs
84mn. US$

5
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Inspection of Japan highway
Tunnels

Pavement

Bridges

6

Proposal of new technology
Tunnels

Pavement
L&L
System
Analyzer
with Laser &
Line sensor 

Bridges

J-System

7
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Proposal of our technology

J-System

Eagle

 We developed this technology to gain effective 
inspection in order to comply Road Management rule
 After analyzing accumulated data we propose an 
Evaluation Indicator that related in order to understand 
deterior mechanism of Architectural structure and to do a 
preventive action

【Our approachment】
Not just hand over a complete system, but 
we submit a proposal by finding out the 
needs from  user and design the machine 
based on measurement accuracy as 
needed and customize soft ware that 
easy to use

8

Contents
Ⅰ. Approach and issues for

preventing concrete accident flaking

Ⅱ. Approach and issues for
identity of pavement damages

Ⅰ-1. Bridge
（ reinforced concrete structure）

Ⅰ-2. Tunnel
（unreinforced concrete structure）

9
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10

A new concrete inspection and assessment 
method with safer manipulating, higher 
performance, and lower cost based on infrared 
thermography technology.

Ｊ

EM(S) Test-Piece

J Monitor

J Software

11
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Sounding inspection for prevention measure against flaking

Present method needs a lot of costs and time
12

Infrared inspection situation

Visible image camera

Infrared camera Battery

Monitor 

13
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Basic Theory of Infrared Thermography
te

m
p.

 (°
C

)

morning

Flawed area
temp.

Sound area
temp.

noon evening night

Temp.
difference

Air temp.

night-time

concrete surface

Concrete interior

Flawed area
temp.

Sound area
temp.

Heat flow Heat flow

night-time : sound > flawed >air

Temp. differences creates thermal anomalies
view before break Infrared image view after break

daytime

Concrete surface

Heat flow

Concrete interior

Heat flow

Flaweded area
temp.

Sound area
temp.

daytime : sound <flawed < air

delamination

Inspection must be done when the temperature difference between 
air and concrete is large enough.

14

Inspection 
time should 
be selected 
by bridge 
type or part

Relationship between Inspection time, and bridge type or part

Direction of heat flow and temperature in damage part
Section Surface to be inspected Direct effect Indirect effect
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Pavement
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S
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Temperature 
rises due to effect 
of sunlight

Temperature 
decreases due to 
effect of sunlight

Surface to be 
inspected is not 
directly exposed to 
sunlight

Surface to be 
inspected is not 
directly exposed to 
sunlight

Temperature 
decreases due 
to effect of 
sunlight

Temperature 
decreases 
due to effect 
of sunlight

S
un
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ht

Sunlight

Sunlight

Temperature 
rises due to 
effect of 
sunlight

M
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Inspection time period of each bridge type
Seto Inland Sea climate during summer/autumn

Almost all bridge types and bridge sections 
can be investigated during night time.

Inspection time period

6 8 10 12 14 16 18 20 22 24 2 4
All bridges

Wall 
balustrade

Overhang

Floor slab

Overhang

Floor slab

Overhang

Floor slab

Overhang

Girder

Floor slab

Bridge 
type Section

Time

RC bridge

Me bridge

Box beam 
bridge

PC bridge

16

Thermal images of different minimum detected temperatures (NETD)                        
(Daily range = 10 C: photographed at 0 a.m.)

20mm inner 
Cavity

30mm inner 
Cavity

40mm inner 
Cavity

60mm inner 
Cavity

20mm inner 
Cavity

30mm inner 
Cavity

40mm inner 
Cavity

60mm inner 
Cavity

a) Thermal image photographed by Camera A b) Thermal image photographed by Camera B
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C
)

a) Temperature variation of Camera A

Pixel number

Standard deviation = 0.034  C
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 ( 

C
)

b) Temperature variation of Camera B

Pixel number

Standard deviation = 0.016  C

Images of damage from different minimum detected temperatures

17
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Issues for accurate infrared inspection

調査環境

Camera 
performance

Inspection 
environment

・kind of bridge, part
・detection depth

・photographing distance etc

・resolving power
・detection wavelength region

・resolution
・detecting element etc

Inspection 
terms

・daily range
・solar radiation

・wind and rain etc

・clarification of inspection depth
・quality guarantee and prevention of 
missing damage
・high efficient inspection work and cost 
performance
・efficient damage judgment and 
objectivity
・recording and reproductability

Feasible time

18

A new concrete inspection and assessment 
method with safer manipulating, higher 
performance, and lower cost based on infrared 
thermography technology.

Ｊ

EM(S) Test-Piece

J Monitor

J Software

19
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EM(S): On-the-spot Test Piece

EM(S) Test-Piece

J Monitor

J Software

To ensure thermal condition of real structure for infrared 
testing before and during infrared inspection

20

To obtain real temperature data under actual 
conditions element by element

EM(S) : On-the-spot Test-Piece

Both-sided
adhesive tape

Gap □ 10×10cm
t=1mm   Artificial delamination

Thermal exchange

Conductive  layer
t =1mm

Sensor B (sound) Sensor A (flawed)

Sensor C (Air)

Sensor B (sound)
Sensor A (flawed)

Sensor C (Air)
Ocean sideGulf side

Concrete plate
t =10, 20, 30mm

t = 10mm 20mm 30mm

21
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ＥＭ（Ｓ）

IR Image
Central cavity is 
observed.

→ OK
IR Image
Cavity is not observed.

→ NG

The thermal environment should be precisely obtained by 
an EM(S) device before any investigation

Do we inspect at a suitable time ?

Checking 
central Void

22

J Monitor：A Display for IR images in Real Time 

EM(S) Equipment

J Monitor

J Software

23

－22－



J Monitor, inspection situation 

24

J Monitor
J-System

IR camera & 

PC

Ｊ Monitor
IR Raw Image IR Prosess Image

25
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J Software: Infrared Image Processing Software 

EM(S) Equipment

J Monitor

J Software

26

Image Emphasizing Thermal Anomalies

The thermal gradient of a structure is 
filtered to emphasize thermal 
anomalies.

sunlight

delamination

thermal anomaly
= 0.1℃

temp.

thermal anomaly = 0.1℃
Thermal gradient of structure

Thermo-image Filtered image Rating image

hard to spot

easy to spot

foreign body

plastic
(5cm)

around 5℃

27
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J Software: Damage Ratings
Temperature distribution is interpreted into damage ratings by 
using a comprehensive database of temperature patterns.

1cm 2cm 3cm

Visible image： EM(S) test-piece

IR raw image

IR Process image

（Insignificant）

28

Comparison Between New and Conventional 

29
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Your resources can be focused on the areas that need the most work.

観察

注意

要注意（打音実施箇所）

observation
caution
critical

Is it possible and easy to evaluate objectively?

30

Overpass slab without crushing inspection robot
（RABITTM）development

• This robot is included of Impact Echo, Electrical resistivityh, Ultrasonic surface wave, GPR, High-definition 
imaging, GPS

• At first, it is decided to use it to 24 bridges in states at Northeast are in USA. In the next 5 years targeted to 
use it at 1,000 bridges

• Company to manufacture and sales  RABITTM was established.
• Currently, in addition 5 units are in production.

31
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Proposal for RABITTM（December 2013 ）

Overpass slab without crushing inspection robot was 
developed by Federal Highway Administration 
(FHWA) and Rutgers University

32

Accuracy verification by RUTGERS University
Verification at Test Room Verification at actual bridge 

33
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J-System Features

Absolute quality assurance 
& Oversight prevention

Proper investigable time can be assessed.

Damage depth can be obtained in real time

“J-System” supports investigations 
conducted by customers

34

Current of Issues (improvement)①

【Improvement】
Further accuracy improvement of 
identified and analyzed damage by
J-System

【Current issues】
Clearing noise (filtering) on the image 
after analysis by J-System

35
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Features analyzed image by results of hammering sound
removal or

flaking Cavity Slag Foreign
substances Normal

Surrounding form 
is complexity, Red 
is out of center.

Surrounding form 
is smooth, Red is 
in the center.

Form is long thin, 
surrounding form 
is complexity.

Form is square, 
Red occupancy is 
high.

Yellow occupancy 
is high, Red’s 
barycenter is in 
the midst.

36

周囲長

矩
形

高
さ

矩形幅

重心位置（x,y）

面積

Concept figure of analyzed image

Extraction of feature amount  on analyzed image

Analyzed image Area of Red (scale -up）

Feature amount
Area（s)＝Σ
Boundary length（Ｌ）＝Σ
Complexity（c)=Ｌ/Ｓ
Degree  of  circularity（cL）＝4πS／L2

Thermal image

37
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Increasing prediction accuracy （reclassification)
Spalling 13％

Delamination 18％

Efflorescence 6％

Sound 58％

Other materials
4％

Thermal 
pictures  
detection

60% of sound parts

Redistribution of sound parts＝repair marks, free lime, and color unevenness 

Examining algorism of classifying 7 categories 

Utilizing thermal pictures textures

Color  
unevenness
33％

Repair 
marks
8％
Free lime
17％

38

Measuring thermal movement 
through detection 

Situations of thermal pictures textures

Sound （color 
unevenness）

Delamination Area 

Local contrast
With contrast
（even ）

With contrast 
（uneven）

Surface adhesion Lacing 

Thermal recording of foreign 
substances

Efflorescence 

Free Lime Foreign substance lacing

Repair  Marks Spalling Area

39
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Texture Analysis by Gray-Level Co-occurrence Matrix
Texture Analysis by GLCM
（GLCM：Gray-Level Co-occurrence Matrix）

Method of inspecting colorful density location 
of remote two-pixel pair at certain area 

Computing GLCM

Effective character value for 
evaluating damage level 

Computing 14 different 
character values

40

1 2 0 3

1 2 2 3

2 0 3 2

1 3 0 2

→　j

0 1 2 3

0 0 0 1 2

1 0 0 2 1

2 2 0 2 1

i ↓ 3 1 0 1 0

（r,θ）＝（1,0°）

Pδ＝
1

Texture Analysis by GLCM
ＧＬＣＭ
（Probability Matrix）

Probability P. δ（i, j) where a 
relative pixel’s density is j at a 
distance δ=（ｒ,θ）from a 
subject pixel density i

Subject pixel 
（density  i）

Relative pixel 
(density, j)

θ

Distance 
ｒ

Movement σ

Enlarged thermal picture Converting the probability of movement 
appearance frequency 41
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Character value arising from GLCM①
• Multiple Comparison Result 
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Character value Significance probability
1 Angular Second Moment 0.405 
2 Contrast 0.000 ※※
3 Correlation 0.108 
4 Sum of Square:variance 0.000 ※※
5 Inverse Difference Moment 0.109 
6 Sum Average 0.000 ※※
7 Sum Variance 0.000 ※※
8 Sum Entropy 0.140 
9 Entropy 0.374 
10 Difference Variance 0.160 
11 Difference Entropy 0.135 
12 Information Measure of Correlation1 0.045 ※
13 Information Measure of Correlation2 0.871 
14 Maximal Correlation Coefficient 0.621 

Character value arising from GLCM②

43
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Further improvement
【Form for wanting to be removed 
by filtering】
Remove “flicker”, still exiting through 
restriction of inspection term

44
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Background
Conventional visible inspection adds damage 
conditions of tunnel linings concrete , such as 
flaking concrete to be caused  critical 
accident, adopted camera technical and 
developed vehicle to inspect higher accurate 

46

Flow chart for tunnel inspection
Ⅰ.　現地調査

Ⅱ.　ＴＮ覆工表面画像作成

Ⅲ.　解析・調査結果取りまとめ

Ⅳ.　現場点検

The captured image of the tunnel Analyzing

Creating an image of the tunnel Inspection

47
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Investigation of cracking and other damages

 The width, length, and  number of cracks, efflorescence, and water leakage can be 
investigated with high precision.
 Color images allow the inspection of corrosion and damage to the accessories attached to 

the tunnel lining.
 High-precision photography/analysis enables a comparison between the previous 

investigation and the current damage progress. 48

Visual image（ tunnel ）

Zoom-up

①

49
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Zoom-up visual image（Cracks ）

50

Further improvement
Tunnel lining concrete which is plain 
concrete causes concrete flaking accidents.

51

Surface status （visual image)
＆ surface profiling (height data）

⇒Need method for predicting flaking
（Theory from deterioration to flaking） 51
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Current problems New technique

No judgeing by the 
front of image whether 
the crack may be 
falling or not

Detecting flaking point by 
obtaining height data of tunnel 
lining surface.

Infrared can not be used （TN）→ We need a new approach！

Approach for identifying hazardous areas

52

vehicle speed of 65km/h （H29)

Smart EAGLE type-T(Tunnel) Completion

Now, Trying at 80 to 100 km / h
53
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エリアカメラで斜めから

レーザーを撮影して

覆工面の形状を計測

スリットレーザーを

トンエル軸に直行して

ＴＮ覆工面に照射

A） Visual image unitB） Surface profiling unit A） Visible image

Cracking evaluation 

B） Surface profiling

(height data）

Extract dangerous spots 
from concrete surface 
profiling

Measuring unit

PC & Monitor 54

Measurement of tunnel conditions by height data

Damage of inside 
tunnel for verification
(photo-shooting by 
digital camera)

Visual Image Height Image

55
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Simulate gap

Thickness 0.5～5.6㎜

Black
=Large gap

Visual image

Height image

Process image

観察

注意

要注意（打音実施箇所）

observation

caution

critical

Overview of proposed measuring technology ②

Simulation step thickness

Simulation step thickness

Simulation step thickness

56

Height measurement result of actual tunnel
【Visual image】 【Height image】

【３D image】 【Zoom-up photo of changes after inspection 】

Remove repair 
section of filled 
trace (50mm 
× 50mm）

Approximately
4 mm protrusion

57
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Extraction of damaged points 
（Calculation of shape feature amount ）

・"Shape feature amount" is calculated for each area of 
red, yellow, and blue which is determined by setting a 
threshold value as emphasis index

Colored part:
convex part

Feature amount 
extraction in white 

frame

■Processed image

※shape feature amount
⇒Numerical representation of items ①～
⑤ of unique shape change areas

2.2㎜以上

1.8㎜以上2.2㎜未満

1.4㎜以上1.8㎜未満

【閾値設定イメージ】

表面形状

【Threshold setting image】

Surface 
shape

2.2mm or more

1.8 mm or more and 
less than 2.2 mm

1.4 mm or more and 
less than 1.8 mm

① Boundary length(L)
② Area(S)
③ Occupancy (O)
④ Complexity (C)

(S) = number of  “X”
(O) = S/(H*W)
(C) = L/S
(CC) = 4πS/L＾2Boundary length(L)

⑤ Degree of Circularity
(CC)

58

Extraction of damaged points
（ Prediction method of damage type ）

Adopt analysis result 
by neural network

◎ Feature amount 
by texture analysis 
（14types）

・Dispersion
・Total
・Distributed total
・Contrast

・
・

【 Independent variable 】 【 Dependent variable 】

Result of hammering 
N=149

◎ Feature amount
・Length
・Area
・Occupancy
・Complexity 
・Circularity

【 Multivariate analysis 】

◎Neural network
・Logistic regression 
analysis
・Discrimination 
analysis
・Decision tree 
analysis

・
・・
・

↓Various models

Analysis is performed with 
multiple multivariate 
analysis models and select 
model with high correlation.

Damage Float
Separation
Sheet peeling 
Rock pocket

Sound  protrusion
Sound
Step
Repair mark
Free lime
Contamination

Construction of 
prediction model

Feature amount to use 
for variables of formula

Answer to the formula
（ Result of hammering ）

59
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Extraction of damaged points 
（ Prediction method of damage type ）

Screening points: 84

Analysis result 149points where unique 
shapes were detected

Damage points :51

Oversight is 0 ( 84 points of hammering inspection)

Area of hammering：5,900㎡

60

Prospect of tunnel inspection
Height measurement is effective as screening technology of 
hammering！

1）Current tunnel lining image shooting ⇒
tunnel lining shooting ＋ Height measurement

2） Detailed inspection ･all hammering ⇒
Hammering at only the screening points

⇒It is also possible to increase the frequency 
of detailed inspection with only hammering at 
screening points.

61
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62

Detailed Inspection pavement investigation

《Our product》

Inspection Methods 
Daily Inspection (Behind the wheel)

63
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Control Item
■ Maintenance Target Values of Pavement

Rutting
(mm）

Difference in Level（mm） Coefficient of 
Sliding 
Friction
（μV）

Flatness
IRI（mm/m）

Cracking Ratio
（%）Bridge 

Mounting

Crossing 
Structure 
Mounting

25 20 30 0.25 3.5 20

：Crack Measurement：Cracks《Legend》

O
ne Lane

Evaluation Unit：100m

■ Cracks Evaluation（Conceptual Diagram）

64

Data Acquisition by Periodic Inspection
Road Surface Measurement （3 Elements）
Company-owned 
vehicle

RutsCracks Flatness

65
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L&L System

Line Sensor

Camera

Direction of 
movement

Illumination
area

Visual image

The slit laser is situated in 
directions perpendicular.

Slit
Laser

photographed with
an area camera by
a slant

Width profileHeight image
Camera

66

Certified in the performance confirmation test in FY2018

■Examination date
May 22, 23, 24, 2018

■Testing place
The testing track of the National 
Institute for Land and Infrastructure 
Management, and others

■Performance confirmation result (Pass)
“Performance Confirmation Certificate 
No.3027”

Test items Assessment scope Time Resul
t

Accuracy of distance 
measurement

The vehicle obtains accuracy within +/- 5% 
accuracy for of the value measured by an 
optical measuring device.

Night Pass

Accuracy of cracking 
measurement

The vehicle obtains accuracy capable of 
identifying cracking with width of 1mm or 
greater.

Night Pass

Accuracy of rutting 
measurement

The vehicle obtains accuracy within +/- 3 mm 
of the rut depth measured by a cross-section 
profile meter.

Night Pass

Accuracy of flatness 
measurement

The vehicle obtains accuracy within +/- 30% 
of the standard deviation value measured by a 
longitudinal profile meter.

Night Pass

67
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Movie

68

Visual image（ pavement ）

Accuracy at a speed of 100km/h
～Detecting cracks～
Shooting width=4.5m(Color image)
Resolution 0.8mm x 0.8mm/pixel

69

－45－



Calculation of cracking ratio 
Aerial view taken by the Line Scanning Camera

Semi-automatic identification of cracking damage 

Fully-automatic line/surface Analysis (Accuracy rate  is 99%)

develop 

70

Accuracy at a speed of 100km/h
～Rutting Measurement～
Shooting width=4.4m
Dimension of rutting:1mm or less
Resolution 1.27mm(Transversal)

2.70mm (Longitudinal)
0.50mm (Depth) 

Height image
Surface height image

Zoom 4.0m

3.
0m

71
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Ruts

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

高
さ
(m

m
)

幅 (mm)

ひび割れ
ひび割れ

Cracking

Height image (Black part is low.)

Ruts on the red line above 

H
ei

gh
t (

m
m

)

Cracking

Width (mm)

Cracking

72

Flatness (Longitudinal profiling)

段差部 段差部

Simulated 
bump

High-resolution 
allows us to 
accurately profile the 
longitudinal shape of 
a microscopic bump.

Result of longitudinal profiling (magnified)

H
ei

gh
t (

m
m

)

Bump

Distance (mm)

Bump

1st measurement
2nd measurement
3rd measurement
Level measurement

Li
gh

t-s
ec

tio
n 

se
ns

or
H

ei
gh

t [
m

]

Gap5mm

Scale

Gap12mm

Driving
direction
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Analyzing highly accurate longitudinal profile

74

Surface height image
Analyzing highly accurate longitudinal profile

Visual image

Hi
gh

t（
m
m
）

Manhole Cover profile area
75
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Analyzing highly accurate longitudinal profile

Future: IRI can be measured thanks to 
no speed dependanc

0

2

4

6

8

10

0 

1 

2 

3 

4 

5 

105.0 105.5 106.0 106.5 107.0 107.5 108.0 108.5 109.0 109.5 110.0 

IR
I(1

0)
    

IR
I(1

00
)  

,  
IR

I(2
00

)

キロポスト(km)

IRI(200) IRI(100) IRI(10m)

The kilometer post(km)
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Developmental event of pothole on Porous asphalt pavement 

Done to review the objective of 
preventive maintenance 
 Proposal new evaluation indicator to 
apply for Porous asphalt pavement
 Proposal method of predicting of 
occurrence of pot hole 

77
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Data from periodic measurement

Oct. 2013 Nov. 2013 Dec. 2013 Jan. 2014

Visual image

78

Data from periodic measurement

Oct. 2013 Nov. 2013 Dec. 2013 Jan. 2014

Height image

79
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Proposal of a new evaluation indicator

Lane markingLane marking

Red: Shape of the rut at the objective point
Blue: Representative shape of the rut(1)  Area where the overall depth of the rut is high

(2) Area where the overall depth of the rut is low

Proposal method [Evaluation based on the depth of local subsidence]
The relative depth of local subsidence is calculated as the depth of local 
subsidence by calculating the difference between the rut depth of the 
objective point and the representative rut depth which is the central value of 
the maximum rut depth in a vicinity of 10m.

The depth of the rut is high, but that of local subsidence is low.
 Low risk of pothole occurrence

Depth of local subsidence

The depth of the rut is low, but that of local subsidence is high.

 Potential risk of pothole occurrence ⇒ Dangerous

Depth of local subsidence

80

 Current issues
Due to the spread of Porous asphalt-related road surfaces, 
problems caused by aggregate scattering have increased.
(1) Less noise reduction functionality
(2) Less driving safety and comfort
 A quantitative evaluation method has not been established.

Proposal of a new evaluation method (Aggregate scattering) (1) 

81
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We focus on the relationship between 
aggregate scattering and mean profile 
depth (MPD).

Image of aggregate scattering

3D shape measurement by Light-
Section Method allows us to measure the 
form of a  pavement with high precision.

Dents Dents

He
ig

ht
 (m

m
)

pavement

Void generated by aggregate 
scattering

pavement

a) Visible image b) Height image

Proposal of a new evaluation method (Aggregate scattering) (2) 

82

Warm color: Large 
MPD
 Large quantity of 
aggregate scattering is 
observed.

Cool color: Small 
MPD
 A place which will 
likely be clogged.

Tr
af

fic
 la

ne
   

3.
5m

Superficial (MPD) quantitative evaluation of aggregate scattering

Small MPD

Large MPD

83
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High risk event
Pot-hole

84

Pothole

Compacting machine

Repair work 

Cold ashalt mixture

Pot hole repair method

85
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Current status of road surface management

Inspection frequency 
Once every 3 years
(Shikoku-area）

①Surface inspection

Inspection frequency 
5days/2weeks
（According to traffic volume ）

② Daily check （ On-board inspection ）

【Current status】 Discover pothole by daily inspection 
→ Emergency treatment ⇒ Post-maintenance

86

Crack, Rut, GPS

IRI

Smart EAGLE type-P(Pavement) Completion

87

－54－



Characteristic
・Production cost is low
（ Measuring equipment of road surface shape ×1set, IRI- equipment 
×1set, GPS）

• Fully automated analysis by simplified method, so analyzing cost is low
• Grasp damaged points beforehand by increasing frequency

GPS-unit×1

laser×1
3D-camera×1

gyro×1, Light cutting unit×1

Get velocity from 
vehicle speed pulse

Proposal of Simple Road Survey Method by Smart Eagle

88

Smart Eagle Evaluation index that automatic analysis possible

Evaluation index Analysis value of this system

Crack ratio Crack ratio by simplified method

Ruts amount Test method manual・ＮＥＸＣＯ-Test method compliance

ＩＲＩ Evaluation length can be set arbitrarily

Depth of local
subsidence Depth of local subsidence against the representative ruts

ＭＰＤ
The Value calculated MPD from transverse shape data in a 
plane

Prediction of  pothole occurrence 
Evaluation index focused on this time

⇒ Depth of local subsidence ＆ ＭＰＤ

Proposal of Simple Road Inspection Method by Smart Eagle

89
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Proposal on operation method of road surface management
by Smart Eagle ①

Vehicle equipped with Smart Eagle
（ In the future to be installed in 
daily inspection vehicles ）

Automatic analysis

Cloud server 90

Damage form by simple road survey property technology

91
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Periodic measurement（10 days pitch ）

April 2019 trial introduction scheduled 

Prevent the pothole 
occurrence by risk 

management
1.67/day

Evaluation of increase 
→ Display of caution points etc.

Proposal on operation method of road surface management
by Smart Eagle ②

92
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Abstract: Waves that propagate in elastic solid can be divided into two main categories: body 
waves and surface waves. Two and only two types of body waves in an unbounded solid, namely 
longitudinal wave (P-wave) and shear waves (SV-wave and SH-wave), can be propagated inde-
pendently. Rayleigh wave is one kind of surface waves which propagates along the free boundary 
and decays exponentially away from the boundary. Rayleigh wave is essentially the formation of in-
terference on the surface of the medium of P-wave and SV-wave. Therefore, it was firstly intro-
duced as a solution of the free boundary problem for an elastic half space by Lord Rayleigh (1885) 
[1], who summed it up as the simultaneous solution of the equations of P-wave and SV-wave. Yet 
to this day, the method of the characteristic equation of surface wave velocity he deduced is still the 
important way to seek for Rayleigh wave [2]. 

It is important to realize that since a solution (Rayleigh wave) can be found using Elastic theory and 
Helmholtz decomposition, it can also be seen as the superposition of two separate components: one 
P-wave and the other SV-wave. So, we think it is necessary to review in detail the mechanical pro-
cess and mathematical method of deducing Rayleigh wave so far. In this report another main atten-
tion is a new and simplified characteristic equation about Rayleigh wave, which is the result recent-
ly deduced with special aim at future purposes in viscoelastic media. 

In this report an overview will also be given about propagation properties of Rayleigh wave, such as 
velocity of propagation, particle motion, wave attenuation factor. Velocity of propagation is one of 
the most important features of Rayleigh wave, in fact, the characteristic equation is exactly what it 
is about Rayleigh wave speed. Concerning the combined effect of material and geometrical attenua-
tion as the wave spreads out from the source, the exponential decay of particle motion with depth is 
another important property that helps to build the mathematical model of Rayleigh wave. 

 

 

Keywords: Rayleigh wave; Rayleigh’s equation; Rayleigh wave speed; characteristic equation 
 
 
 
 
 
 
 
 
 
 
Acknowledgement 
 
This work is based on the discussions at 2019 IMI Joint Use Research Program Workshop (II) " New technologies 
for non-destructive and non-invasive inspections and their applications". 
 
 



 

 
Mathematical modelling and analysis of Rayleigh Wave 

 
Cheng Hua 

Department of Aeronautics and Astronautics, Fudan University, Shanghai, China 
 

Abstract: Waves that propagate in elastic solid can be divided into two main categories: body 
waves and surface waves. Two and only two types of body waves in an unbounded solid, namely 
longitudinal wave (P-wave) and shear waves (SV-wave and SH-wave), can be propagated inde-
pendently. Rayleigh wave is one kind of surface waves which propagates along the free boundary 
and decays exponentially away from the boundary. Rayleigh wave is essentially the formation of in-
terference on the surface of the medium of P-wave and SV-wave. Therefore, it was firstly intro-
duced as a solution of the free boundary problem for an elastic half space by Lord Rayleigh (1885) 
[1], who summed it up as the simultaneous solution of the equations of P-wave and SV-wave. Yet 
to this day, the method of the characteristic equation of surface wave velocity he deduced is still the 
important way to seek for Rayleigh wave [2]. 

It is important to realize that since a solution (Rayleigh wave) can be found using Elastic theory and 
Helmholtz decomposition, it can also be seen as the superposition of two separate components: one 
P-wave and the other SV-wave. So, we think it is necessary to review in detail the mechanical pro-
cess and mathematical method of deducing Rayleigh wave so far. In this report another main atten-
tion is a new and simplified characteristic equation about Rayleigh wave, which is the result recent-
ly deduced with special aim at future purposes in viscoelastic media. 

In this report an overview will also be given about propagation properties of Rayleigh wave, such as 
velocity of propagation, particle motion, wave attenuation factor. Velocity of propagation is one of 
the most important features of Rayleigh wave, in fact, the characteristic equation is exactly what it 
is about Rayleigh wave speed. Concerning the combined effect of material and geometrical attenua-
tion as the wave spreads out from the source, the exponential decay of particle motion with depth is 
another important property that helps to build the mathematical model of Rayleigh wave. 

 

 

Keywords: Rayleigh wave; Rayleigh’s equation; Rayleigh wave speed; characteristic equation 
 
 
 
 
 
 
 
 
 
 
Acknowledgement 
 
This work is based on the discussions at 2019 IMI Joint Use Research Program Workshop (II) " New technologies 
for non-destructive and non-invasive inspections and their applications". 
 
 

－59－



 

  
3

3

2

2

1

1

xxxx
u iii

j

ij
i 


















  (for j=1,2,3)            (2) 

Each basis vector component of the acceleration as for example 1i  is expressed as 
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Finally, in complete indicial notation: jijiu ,  

By using the relation between strain and displacement, the infinitesimal deformation at each point depends 
on the gradients in the displacement field: 
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Empirically, it has been shown that for small strains ( 510 ), and over short periods of time, solids behave as 
ideal elastic solids.  The most general form of Hooke’s Law for an ideal elastic solid is: 

  pqijpqij ec     (4) 

where ijpqc is a fourth-order tensor containing 34=81 elastic constants or matrix components that define the 

elastic properties of the material in the an anisotropic and inhomogeneous medium.  Each component ijpqc or 

elastic constant has dimensions of pressure.  Each component ijpqc  is independent of the strain ije and for this 
reason is called a ‘constant’ although elastic constants vary throughout space as a function of position. 

 

We can reduce the number of constants to two in various steps.  Firstly we can reduce the number to 36 be-
cause it follows that since ij  and ije  are symmetric: 

   ijpqjipq cc     and   ijpqijqp cc  . 

Through thermodynamic considerations we can demonstrate that 

  ijpqpqij cc   

So that even in the case of anisotropy the number of constants can be reduced to 21.  However, it is possible 
to often solve many geological problems by considering that rocks have isotropic elastic properties. The as-
sumption of isotropy reduces the number of independent elastic constants to just two.  In summary for an iso-
tropic, continuous medium we can reduce the elastic constant tensor to the following: 

  )( jpiqjqippqijijpqc                    (5) 

where  and  are known as the Lamé elastic parameters or properties.  Lamé parameters  and  can be 
expressed in terms of other familiar elastic parameters such as Young’s modulus E  and Poisson’s ratio  : 

 

Elastic Wave 
 
Mechanical wave is a disturbance that propagates in a solid, liquid, or gaseous medium. Examples of me-
chanical waves include the elastic waves generated in the earth’s crust during earthquakes and sound waves 
and ultrasonic waves in liquids and gases. When elastic waves propagate, the energy of elastic deformation is 
transferred in the absence of a flow of matter, which occurs only in special cases, such as during an acoustic 
wind. Every harmonic elastic wave is characterized by the amplitude and vibration frequency of the particles 
of the medium, a wavelength, phase and group velocities, and a law governing the distribution of displace-
ments and stresses over the wave front. A special feature of elastic waves is that their phase and group veloc-
ities are independent of the wave amplitude and the wave geometry. An elastic wave may be a plane, spheri-
cal, or cylindrical wave. 
 
An elastic wave is a deformation of elastic body that travels throughout the body in all directions.  We can 
examine the deformation over a period of time by fixing our look on just one point in space.  This is the case 
of Lagrangian description. 
 
We will begin by a simple case, assuming that we have an isotropic medium, which is the elastic properties 
or wave velocity is not directionally dependent and that our medium is continuous.  By examining a balance 
of forces across an elemental volume and relating the forces on the volume to an ideal elastic response of the 
volume using Hooke’s Law we will derive one form of the elastic wave equation. 

Let us begin by examining the balance of forces and mass (Newton's Second Law) for a very small elemental 
volume.  The effect of traction forces and additional body forces ( f


) is to generate an acceleration (u


 ) per 

unit volume of mass or density  : 

  ijiji fu  ,                (1)  

where the double-dot above u , denotes the second partial derivative with respect to time ( 2

2

t
ui




). The de-

formation in the body is achieved by displacing individual particles about their central resting point.  Be-
cause we consider that the behavior is essentially elastic the particles will eventually come to rest at their 
original point of rest.  Displacement for each point in space is described by a vector with a tail at that point. 

),,( 321 uuuu 


  

Each component of the displacement, iu depends on the location within the body and at what stage of the 
wave propagation we are considering.   

Density  is a scalar property that depends on what point in 3-D space we consider: 

),,( 32 xxx   or, in other words 

  )(),,( 321 xxxx    

Body forces all the forces external to the elastic medium except in the immediate vicinity of the elemental 
volume.  For example, commonly the effect of gravity is discarded as is the effect of the seismic source if the 
case is relatively ‘distant’ from the cause, so that the homogeneous (partial differential) equation for motion 
states that the acceleration a particle of solid undergoes while under the influence of traction forces is propor-
tional to the stress gradients across its surface, and that the acceleration is greater for smaller volume densi-
ties, i.e.: 
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Finally, in complete indicial notation: jijiu ,  

By using the relation between strain and displacement, the infinitesimal deformation at each point depends 
on the gradients in the displacement field: 
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Empirically, it has been shown that for small strains ( 510 ), and over short periods of time, solids behave as 
ideal elastic solids.  The most general form of Hooke’s Law for an ideal elastic solid is: 

  pqijpqij ec     (4) 

where ijpqc is a fourth-order tensor containing 34=81 elastic constants or matrix components that define the 

elastic properties of the material in the an anisotropic and inhomogeneous medium.  Each component ijpqc or 

elastic constant has dimensions of pressure.  Each component ijpqc  is independent of the strain ije and for this 
reason is called a ‘constant’ although elastic constants vary throughout space as a function of position. 

 

We can reduce the number of constants to two in various steps.  Firstly we can reduce the number to 36 be-
cause it follows that since ij  and ije  are symmetric: 

   ijpqjipq cc     and   ijpqijqp cc  . 

Through thermodynamic considerations we can demonstrate that 

  ijpqpqij cc   

So that even in the case of anisotropy the number of constants can be reduced to 21.  However, it is possible 
to often solve many geological problems by considering that rocks have isotropic elastic properties. The as-
sumption of isotropy reduces the number of independent elastic constants to just two.  In summary for an iso-
tropic, continuous medium we can reduce the elastic constant tensor to the following: 

  )( jpiqjqippqijijpqc                    (5) 

where  and  are known as the Lamé elastic parameters or properties.  Lamé parameters  and  can be 
expressed in terms of other familiar elastic parameters such as Young’s modulus E  and Poisson’s ratio  : 
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Note that 
V
Vu 




, (where V is the relative change in volume, for infinitesimal deformations) 

We obtain the wave equation for displacements in a general isotropic medium by substituting (8b) into the 
equation of motion 

  ijiji fu  ,

  (1) 

   ijijjikkij fuuu 
,,,, )(  

 iijjjjiijjijjkkij fuuuuu  )()()( ,,,,,,  ,   

 iijjjjijijjikkijkkiji fuuuuuu  )())(( ,,,,,,,,    

After expansion using the product rule.  Let us take each of the terms on the right hand side separately to 
demonstrate the application of indicial notation.  For each term i only the case where j=i can contribute in the 
Kronecker delta, so 
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Because we can interchange the repeated k’s by repeated j’s because they both signify summation over the 
range of values for j; i.e., 1 through 3. 
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In order to show the steps in detail, let us examine each of the terms I  through IV on the right hand side of 
equation (9).   

Starting with I : 
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Other elastic parameters can also be expressed in terms of   and  .  For example, incompressibility K re-
lates the change in pressure surrounding a body to the corresponding relative change in volume of the body: 
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Substitution of equation (5) into equation (4) shows that traction forces and strain are related for an isotropic 
medium in the following manner: 

     pqjpiqjqippqijij e   
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If we add over repeated sub-indices: 
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From the definition of a Kronecker delta, the only terms that will be non-zero and contribute to the stress 
tensor will be those which make the sub-indices equal.  That is for the second term on the right of the equals 
sign, values exist if ip  and jq  .  Similarly, for the third term on the right of the equals sign values exist 
if jp  and iq  .  With this simplification we arrive at: 

       jijjiiijjjiikkij eee    

Because the deformation tensor is symmetric jiij ee  leading to the result that 
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In experiments we observe displacement, ground velocity and acceleration so it makes sense to express the 
stresses in terms displacements,  
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Note that 
V
Vu 




, (where V is the relative change in volume, for infinitesimal deformations) 

We obtain the wave equation for displacements in a general isotropic medium by substituting (8b) into the 
equation of motion 
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After expansion using the product rule.  Let us take each of the terms on the right hand side separately to 
demonstrate the application of indicial notation.  For each term i only the case where j=i can contribute in the 
Kronecker delta, so 
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Because we can interchange the repeated k’s by repeated j’s because they both signify summation over the 
range of values for j; i.e., 1 through 3. 
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In order to show the steps in detail, let us examine each of the terms I  through IV on the right hand side of 
equation (9).   
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In order to propagate this type of deformation through the medium the body must expand and contract (di-
vergence is non-zero), in which the particles of the medium vibrate in the direction of wave propagation, can 
propagate also in liquids and gases, which are elastic with respect to volume but not with respect to shape. This is 
P wave that can be transmitted by both solid and liquid materials in the Earth’s interior. With P wave, the 
particles of the medium vibrate in a manner similar to sound waves—the transmitting media is alternately 
compressed and expanded. 

 

Now, if we take the rotational of the general equation of motion as expressed in equation (11) i.e., 
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Because u  is a scalar field and the rotational of the gradient of this field is zero (identity 3). the first 
term on the right of the equation goes to zero: 
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We can now change variable names by defining a new vector field variable u


 so that the immediate-
ly preceding expression looks like: 
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because the first term goes to zero since the divergence of the rotational of 


is zero (identity 2), the above 
equation represents another type of body wave, the slower one, the S wave, travels only through solid mate-
rial. With S waves, the particle motion is transverse to the direction of travel and involves a shearing of the 
transmitting rock.  
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After some algebra we show that an alternative expression can be obtained by adding (9) vectorially from 
3,2,1i  to arrive at: 
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Two fundamental body wave types: P wave and S wave 

From the equation of motion (10) in vectorial form, we can demonstrate (by Poisson, Cauchy, and George G. 
Stokes), that in an infinite elastic, and isotropic, homogeneous medium two types of particle motion associ-
ated with traveling trains of deformation can be predicted. These are called body waves. In the faster type, 
called longitudinal, dilational, irrotational wave, or simply P wave, the particle motion is in the same direc-
tion as that of wave propagation; in the slower type, called transverse, shear, rotational wave, or simply S 
wave, it is perpendicular to the propagation direction.  We next show the existence of the two types of elastic 
deformation waves which could propagate through isotropic elastic solids. 

Since  and  are constant in a homogeneous medium, we have that  and  both equal zero because 
there are no spatial changes in their values.  This leaves: 
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Now, if we take the divergence of (11) while keeping in mind that: 
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We can simplify the expression to because the second term on the right becomes zero because u  is a 
vector quantity, and its rotational is zero (identity 2):  
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We can change variable names by defining a new scalar field variable u so that the immediately pre-
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An overview of ultrasonic imaging and its development

Takashi TAKIGUCHI∗

Abstract

In this paper, we give an overview of the development of the ultrasonic imaging.
We introduce a mathematical model for the ultrasonic imaging developed by Mita-
Takiguchi, whose numerical solutions are also discussed. In our numerical approach
to the ultrasonic imaging, the idea by G. N. Hounsfield, who first developed a device
for medical computerized tomography, for the practicalization of the computerized
tomography, plays an important role.

Key words : ultrasound, non-destructive inspection, least square solution

AMS subject classifications : 44A12, 45Q05, 15A60

1 Introduction

In this paper, we review the development of the ultrasonic imaging (USI). The X-ray
tomography (CT) and the magnetic resonance imaging (MRI) being excellent techniques
for non-destructive or non-invasive inspections, they have shortcomings such as the ex-
pensive cost in both the devices themselves and their protection facilities, harmful side
effects of the X-rays and the strong electromagnetic field to both human bodies and the
environment and so on. Therefore, it is required to develop new, cheaply running, safe
and reliable tomographic techniques without X-ray nor magnetic resonance, especially
in medical imaging and in the non-destructive inspections. There are new tomographic
techniques under development such as optical tomography ([3]), photo-acoustic tomog-
raphy ([8]), ultrasonic imaging ([1, 10]) and so on, among which we take the ultrasonic
imaging as the main topic in this paper. We refer the readers to [14] for a review of new
tomographic techniques without X-ray nor magnetic resonance.

It may be very hard for USI to be as accurate as CT and MRI, since CT and MRI
are very sharp and accurate. We, however, believe that USI would be a cheaply running
and safe alternative to CT or MRI, because we can reconstruct sharper and more accu-
rate images by USI with the numerical approach established in [14, 15] than the optical
tomography and the photo-acoustic tomography, which is why we focus on USI.

We develop our theory in the following way. In this section, as the introduction of
this article, we introduce the motivation of this paper. In the next section, we review the
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However, it does not matter very much. Since, for some problems, we only focus on
the part where the density (accordingly, the ultrasonic velocity) is relatively large
for other problems, it is very important to determine the part where the density
is so small that the ultrasound would not go through it, where the exact velocity
does not matter. Remark that, in practice, it being very important to determine the
exact place where the density is relatively small, for example, to determine the place
where the steel is corroded or concrete would not pour in well in the RC structures,
it is not so important to determine the exact density (ultrasonic velocity) of the
place where the density is relatively small.

• We also note that it is possible to determine the exact place where the ultrasonic
velocity is so small that no ultrasound would go through it, by USI, without knowing
the ultrasonic velocity at such points.

• It is an interesting problem to determine the optimal subset reconstructible by USI.

In the same paper [10], they also verified that there is no decay in the velocity of
the ultrasonic waves with respect to the length in concrete structures, if the length less
than 1200mm, by which, together with Property 2.1, they gave how to non-destructively
inspect cover concrete in reinforced concrete (RC) structures. Let us shortly review it.

For simplicity, let us assume a simple structure where only one rebar is imbedded as
designed in Figure 1, which is a section of the three dimensional structure. We assume
that the rebar is imbedded as designed where the rebar is parallel to surfaces of the test
piece. We established the basic theory for our non-destructive inspection technique for
concrete cover. By modification, our method can be applied for real RC structures.

Figure 1: Propagation of an ultrasonic wave

Concrete structure being inhomogeneous, we homogenize the ultrasonic velocity in the
concrete by application of the idea of the least square solution (cf. [10]), by which we
denote the velocity in the steel by V and that in the concrete by v. In general, it is known
that 4000m/s < v < 5200m/s and 5500m/s < V < 6500m/s. Therefore we can assume
that v < V .

We first determine the ultrasonic velocity in the steel V . By homogenization of the
ultrasonic velocity in the concrete, the first-arriving ultrasound projected from the point
O(0, h) propagates along the spline OQ ∪QP and is received at the point P (l, 0), whose
travel time we denote by t0. If we project the ultrasonic wave from the point O and
receive it at the point Pi(l+li, 0) with travel time ti, then we obtain approximate ultrasonic

mathematical problem for the practicalization of USI posed by Mita-Takiguchi [10]. In
the third section, we shall review the idea by G. N. Hounsfield to practicalize CT, which
serves as the key idea for our numerical solution to USI developed in the fourth section.
In Section 4, we shall introduce an numerical approach to the mathematical problem of
USI posed in the second section. We also make a comparison between USI and CT from
the viewpoint of accuracy and discuss why the development of USI is important. In the
final section, we summarize the conclusion of this review and mention open problems for
USI to be practicalized in various field; medical imaging, non-destructive inspection for
concrete structures and so on.

2 Mathematical model for ultrasonic imaging

In this section, we review the mathematical model for USI. There existing a number
of non-destructive inspection methods. Confer [5, 13] for non-destructive inspections of
concrete structures applying ultrasonic waves. Almost all of known techniques applying
ultrasound utilize the “echo technique”. It is very helpful to apply echo techniques when
we can access the concrete structure from only its one side. Applying this technique,
however, we obtain only rough sketches of the inclusion or the cavity which lies very close
to the side we can access, which is far from concretely interior-describing non-destructive
inspection we are trying to establish. We can find very few paper like [9] where the study
is given in a similar method to ours. Even in the paper [9], its main result is to detect
the combination defect in the masonry, which is very rough and strongly depends on a
priori information of the structure, which is also far from the non-destructive inspection
technique the we are trying to develop. Mita and the author [10], verified the propagation
of the ultrasonic primary waves by experiments, which reads as;

Property 2.1. The ultrasonic primary wave takes the route in the object where the travel
time would be the shortest.

We call this route the fastest route. In view of Property 2.1, Mita and the author
posed a mathematical problem for USI with the observation data of only the first arriving
ultrasonic waves, which reads as follows.

Problem 2.1 (Problem to develop USI (cf. [10]) ). Let Ω ⊂ R3 be a domain and f(x) be
the propagation velocity the ultrasound at the point x ∈ Ω. For α, β ∈ ∂Ω, we denote by
γα,β a route from α to β contained in Ω. In this case, reconstruct f(x) (x ∈ Ω) out of the
data

min
γα,β

∫

γα,β

1/f(x)dγ, (1)

for ∀α, β ∈ ∂Ω.

Remark 2.1 (Remarks on Problem 2.1).

• In general, solutions to Problem 2.1 are not unique. It is impossible to reconstruct
the information of some points x’s where C(x)’s are very small. For example, we
cannot reconstruct the ultrasonic velocity of the styrofoam if it is included near the
center of the test piece of concrete since no ultrasound wave would go through it.
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and the one in the segment QP is

t̃ =
V h

v̄
√
V 2 − v̄2

. (9)

If the velocity ṽ in the segment QP is much smaller than the homogenized velocity v̄, for
example, v̄ − ṽ > 200m/s, then one or more of the following could happen.

• There is a cavity in the segment QP .

• There is a water route around the rebar.

• Some part of the rebar may get corroded.

In any case, we have to shave the concrete cover and have to repair the defect. Shaved
concrete cover can be easily re-fixed by filling the cavity by shaving with better concrete.
Therefore, what is important is to establish how to find where to shave in a non-destructive
way, an answer of which is given as the above way.

3 G. N. Hounsfield’s idea

In this section, we review the idea by G. N. Hounsfield for the practicalization of CT,
which plays an important role in our main theory in the next section.

Consider a section of the human body by a plane, where we define the coordinate
in order that this plane is given by {(x, y, z) ∈ R3| z = 0}. Let f(x, y) = f(x, y, 0) be
the density of the human body in the plane {(x, y, z) ∈ R3 | z = 0}. The mathematical
problem of CT is introduced as follows.

Problem 3.1. Reconstruct the function f(x, y) defined on R2 by its line integrals
∫
l
f(x, y)dl

along all lines l’s in R2.

For the properties of the X-rays, introduction of the mathematical model for CT and
the introduction of Problem 3.1, we refer the readers to [6, 11] for example. In general,
for a function f(x) defined on Rn and d < n, its d-dimensional Radon transform Rdf(ξ)
is defined as its integration on a d-dimensional plane ξ. For d = n − 1, we omit to
write the term n− 1 and denote Rf , which is called the Radon transform of f . Problem
3.1 is a problem of the Radon transform on R2. For the general theory of the Radon
transform, cf. [4, 6, 7]. As a reference of the Radon transform in connection with CT,
we recommend [11]. In 1917, J. Radon [12] (cf. also the appendix in [4]) gave inversion
formulas for the Radon transform for n = 2, 3. Radon’s reconstruction formula being not
stable under errors, some regularization and discretization treatment was necessary for
the practicalization of CT. Therefore, there arose the following problem.

Problem 3.2. Assume that for two functions f1(x, y), f2(x, y) defined on R2 and for any
line l ⊂ R2, their Radon transforms are close, that is,

Rf1(l) ≈ Rf2(l) for ∀l ⊂ R2. (10)

In this case, is it true that

f1(x, y) ≈ f2(x, y) for ∀(x, y) ∈ R2? (11)

velocity in the steel by li/(ti−t0). Take observation points P1, · · · , Pn as many as possible
and take the least square solution

V =
l1(t1 − t0) + · · ·+ ln(tn − t0)

(t1 − t0)2 + · · ·+ (tn − t0)2
(2)

to the system of linear equation which trivially has no solution

V (t1 − t0) = l1, · · · , V (tn − t0) = ln. (3)

We also comment that the least square solution V is the minimizer of the function

(V (t1 − t0)− l1)
2 + · · ·+ (V (tn − t0)− ln)

2, (4)

which was introduced in [10], it may be better if we give the minimizer of

lk1(V (t1 − t0)− l1)
2 + · · ·+ lk(V (tn − t0)− ln)

2, (5)

for k=1 or 2, as a weighted least square solution, which shall be discussed in our forth-
coming paper. Whichever minimizer is applied, our non-destructive inspection for cover
concrete works well.

We then give an average ultrasonic velocity v̄ as in [10]. For given V and v, x and the
length L of the segment QP in Figure 1 are calculated as

x =
vh√

V 2 − v2
, x =

V h√
V 2 − v2

. (6)

We let v0 = 3500m/s then the ultrasonic wave projected from the point Oi(0, hi), h̄i < h
linearly propagates in the concrete to the observation point Rj(rj, 0), rj <

vh√
V 2−v20

. Take

as many pairs of source and observation points {Oi, Rj} which gives the length Lij of
the segment where the ultrasonic wave propagates, and the travel time tij. Therefore we
obtain the first step value v1 of the homogenized acoustic velocity in the concrete by

v1 =

∑
tijLij∑
t2ij

. (7)

Replacing v0 by v1 and repeating the same procedure, we obtain the the second step
values v2 = v̄, which we determine as the homogenized acoustic velocity in the concrete. If
necessary, we make the sequence {vk} until it approximately converges. In giving average
ultrasonic velocity v̄, we can give a modification of applying the idea of a weighted least
square solution, which also shall be discussed in our another paper.

By the knowledge of the ultrasonic velocities, V in the steel and v̄ in the concrete, and
the route where the ultrasound propagates, we can propose a non-destructive inspection
technique for concrete cover.

In Figure 1, when we observe the travel time the primary ultrasonic wave between the
points O and P , the calculated travel time is

l − v̄h√
V 2−v̄2

V
+

V h

v̄
√
V 2 − v̄2

(8)
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the introduction of Problem 3.1, we refer the readers to [6, 11] for example. In general,
for a function f(x) defined on Rn and d < n, its d-dimensional Radon transform Rdf(ξ)
is defined as its integration on a d-dimensional plane ξ. For d = n − 1, we omit to
write the term n− 1 and denote Rf , which is called the Radon transform of f . Problem
3.1 is a problem of the Radon transform on R2. For the general theory of the Radon
transform, cf. [4, 6, 7]. As a reference of the Radon transform in connection with CT,
we recommend [11]. In 1917, J. Radon [12] (cf. also the appendix in [4]) gave inversion
formulas for the Radon transform for n = 2, 3. Radon’s reconstruction formula being not
stable under errors, some regularization and discretization treatment was necessary for
the practicalization of CT. Therefore, there arose the following problem.

Problem 3.2. Assume that for two functions f1(x, y), f2(x, y) defined on R2 and for any
line l ⊂ R2, their Radon transforms are close, that is,

Rf1(l) ≈ Rf2(l) for ∀l ⊂ R2. (10)

In this case, is it true that

f1(x, y) ≈ f2(x, y) for ∀(x, y) ∈ R2? (11)
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Problem 3.4. Solve the following system of linear equations in x1, x2, · · · , xn.




a11x1 + a12x2 + · · ·+ a1nxn = s1,
a21x1 + a22x2 + · · ·+ a2nxn = s2,

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = sm,

(15)

or equivalently
Axxx = sss. (16)

In the medical CT, we have to treat a huge system like m ≥ 9 × 106, n ≥ 3 × 104.
The fact m ≫ n and the effect of the errors we mentioned above, the overdetermined
system (15) must have no solution. Although the system (15) has no solution, the density
distribution f(x, y) of the human body exists with no doubt, which must be approximately
solved. Therefore, we have to solve the following problem.

Problem 3.5. Construct an alternative solution to the system of linear equations (15)
with no solution.

This is the problem Hounsfield tried to solve. His idea is what is now called ART
(algebraic reconstruction technique) or Kaczmarz method. He hit upon this idea all by
himself without knowing ART nor Kaczmarz method (for these methods, see [11]). In the
rest of this section, we shall introduce Hounsfield’s solution of Problem 3.5.

We first note that each line

ai1x1 + ai2x2 + · · ·+ ainxn = si (17)

in (15) is an equation of the hyperplaneHi ⊂ Rn whose normal vector is aaai := (ai1, ai2, · · · , ain).
Take any xxx0 ∈ Rn and define the sequence {xxxk} by

xxxk := Pxxxk−1 ≡ PmPm−1 · · ·P1xxxk−1, k = 1, 2, · · · (18)

where

Pixxx := xxx− aaai · xxx− si
∥aaai∥

aaai
∥aaai∥

(19)

is the orthogonal projection of xxx onto the hyperplane Hi. If the system (15) has the
unique solution, then it is easily proved that the limit

lim
k→∞

xxxk (20)

gives the unique solution of (15), which is called ART or Kaczmarz method. Of course,
the system has no solution in practice, because of errors in approximation of the original
function f by the pixel function g, errors in observation, numerical rounding errors by
computers, some noises and so on, all of which are small. Therefore, it can be said that the
system (15) is “close to have the unique solution”. Therefore Hounsfield considered that
(20) would give an approximate solution of (15), which worked very well in practice. It
is known that this iteration method by Hounsfield almost converges in a few steps, k = 3
or 4 in (20), independently of the size of the system (cf. Figure 2). We also note that
if the errors in the each equation in the system (15) is very small, then an approximate
solution to (15) constructed by Hounsfield’s iteration method and the least square solution

This problem was solved, about a decade after the practicalization of CT, by giving
suitable filters applicable to the Radon’s inversion formula to cut-off the unstable or the
high frequency factors. This method is called “the filtered back projection method”,
which gives a better reconstruction image than Hounsfield’s method.

Hounsfield, independently of the above discussion, considered the problem of practical
CT formulated as follows.

Problem 3.3. Let m ∈ N be sufficiently large and l1, l2, · · · , lm be mutually different
lines in R2. Construct an approximate solution of the density distribution f(x, y) from
the observed data F1, F2, · · · , Fm (Fi ≈ Rf(li), i = 1, 2, · · · ,m) necessarily containing
errors.

In numerical analysis, we usually directly discretize a mathematical formula obtained
by mathematical analysis in order to implement it for practical application. However,
the essence of Hounsfield’s idea is to discretize the mathematical model itself, not a
mathematical formula. It is very interesting and worked very well at the initial stage of
the practicalization of CT.

We can assume that suppf is compact and f ∈ L1(R2) since f is a density distribution
of the human body. Cover suppf with n squares c1, c2, · · · , cn, whose sides are of the same
length and parallel to the x- or y-axis, whose areas are all the same as c = |cj|, and any
pair of whose interiors are mutually disjoint. We approximate the function f by a function
g(x, y) defined as

gc(x, y) =
n∑

j=1

xjχcj(x, y), (12)

where χcj(x, y) is the characteristic function of the square cj and xj are unknowns. For
example, if we take xj as the integral mean of f(x, y) in the square cj

xj =
1

c

∫

cj

f(x, y)dxdy, (13)

then it seems easy to understand Hounsfield’s idea. Let us call the function gc(x, y) as a
pixel function. Since inf(x,y)∈cj f(x, y) ≤ xj ≤ sup(x,y)∈cj f(x, y), by the definition of the
Lebesgue integral, there holds that

lim
c→0

gc(x, y) = f(x, y) in L1(R2). (14)

Therefore, it is very important in practice to construct approximate solutions for xj’s
for small c > 0 with observation data containing errors and noises, which Hounsfield
tried. He never tried to reconstruct the original function f(x, y), from the observed data
necessarily containing errors in various senses. This idea is very nice. Since the best
we can hope is to obtain an approximation of f , not to reconstruct f itself, it is very
flexible to approximate f by a suitably simple function gc so that the problem would be
simplified. Assume that m X-rays, I1, I2, · · · , Im, are projected to the human body. We
assume that for i = 1, 2, · · · ,m, the strength of Ii before the projection is I0i and after
the projection is I1i . By l1, l2, · · · , lm, we denote the lines where the X-ray I1, I2, · · · , Im
rectilinearly propagates, respectively and by aij, i = 1, 2, · · · ,m, j = 1, 2, · · · , n, we
denote the length of li ∩ cj. Letting si := log I0i − log l1i , i = 1, 2, · · · ,m together with
(12), the problem we have to solve turns out to be the following one.
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Problem 3.4. Solve the following system of linear equations in x1, x2, · · · , xn.




a11x1 + a12x2 + · · ·+ a1nxn = s1,
a21x1 + a22x2 + · · ·+ a2nxn = s2,

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = sm,

(15)

or equivalently
Axxx = sss. (16)

In the medical CT, we have to treat a huge system like m ≥ 9 × 106, n ≥ 3 × 104.
The fact m ≫ n and the effect of the errors we mentioned above, the overdetermined
system (15) must have no solution. Although the system (15) has no solution, the density
distribution f(x, y) of the human body exists with no doubt, which must be approximately
solved. Therefore, we have to solve the following problem.

Problem 3.5. Construct an alternative solution to the system of linear equations (15)
with no solution.

This is the problem Hounsfield tried to solve. His idea is what is now called ART
(algebraic reconstruction technique) or Kaczmarz method. He hit upon this idea all by
himself without knowing ART nor Kaczmarz method (for these methods, see [11]). In the
rest of this section, we shall introduce Hounsfield’s solution of Problem 3.5.

We first note that each line

ai1x1 + ai2x2 + · · ·+ ainxn = si (17)

in (15) is an equation of the hyperplaneHi ⊂ Rn whose normal vector is aaai := (ai1, ai2, · · · , ain).
Take any xxx0 ∈ Rn and define the sequence {xxxk} by

xxxk := Pxxxk−1 ≡ PmPm−1 · · ·P1xxxk−1, k = 1, 2, · · · (18)

where

Pixxx := xxx− aaai · xxx− si
∥aaai∥

aaai
∥aaai∥

(19)

is the orthogonal projection of xxx onto the hyperplane Hi. If the system (15) has the
unique solution, then it is easily proved that the limit

lim
k→∞

xxxk (20)

gives the unique solution of (15), which is called ART or Kaczmarz method. Of course,
the system has no solution in practice, because of errors in approximation of the original
function f by the pixel function g, errors in observation, numerical rounding errors by
computers, some noises and so on, all of which are small. Therefore, it can be said that the
system (15) is “close to have the unique solution”. Therefore Hounsfield considered that
(20) would give an approximate solution of (15), which worked very well in practice. It
is known that this iteration method by Hounsfield almost converges in a few steps, k = 3
or 4 in (20), independently of the size of the system (cf. Figure 2). We also note that
if the errors in the each equation in the system (15) is very small, then an approximate
solution to (15) constructed by Hounsfield’s iteration method and the least square solution
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(I) f(x, y) ∈ L1 ∩ L2(R2).

(II) For any line l ⊂ R2, f |l ∈ L1(l) and is piecewisely continuous.

(III) m ≫ n.

Note that these conditions, (I) and (II), are satisfied by the density distribution of the
human body. We also assume that

In the system (15), we divide the right hand side into the following there components;

sss = sss0 + sssappc + sssobsc , (22)

where sss0 := Axxx0 with

xxx0 = (x0
1, · · · , x0

n), x0
j :=

1

c

∫

cj

f(x, y)dxdy, (23)

sssappc := ((sappc )1, · · · , (sappc )m) with (sappc )i =
∫
li
f(x, y)dl−s0i and sss

obs
c = sssX := (sX1 , · · · , sXm)

with sXi , i = 1, · · · ,m, being random variables whose probability density functions are
supported by [−εi, εi] for small εi > 0 and whose expectation value E(sXi ) is 0.

Under these assumptions, the author [15] gave a stochastic justification why the idea
by Hounsfield worked well for the practicalization of CT.

Theorem 3.1. We know by experience that even for a fixed number n, the larger the num-
ber m is, the better resolution we can obtain, which is proved to be stochastic theoretically
right.

Theorem 3.2. The pixel function

gc(x, y) :=
n∑

j=1

xjχcj(x, y). (24)

converges almost surely to the density distribution function f(x, y), that is,

lim
c→0

gc(x, y) = f(x, y), a.s. (25)

Note that by the assumption (III), c → 0 yields m ≫ n → ∞. Remember also that

gc(x, y) = g0c (x, y) + gappc (x, y) + gobsc (x, y). (26)

For the proofs of these theorems, we refer the readers to [15]. Theorems 3.1 and 3.2
stochastically prove that the idea by Hounsfield is theoretically right, in the sense that his
solution approximates the unique least square solution to (15) if the number n of the pixels
are sufficiently large, we have enough number m > n of the X-ray data and the errors are
sufficiently small, which can be naturally assumed in usual practical applications.

are very close together and the both of them approximate what is required, the density
distribution of the human body, very well, for whose image, see Figure 2.

Figure 2: Iterated approximation and the least square solution

There are a number of works on such overdetermined systems of linear equations, cf.
[2, 16] for example. There had been are few papers studying such system in relation
with the idea by Hounsfield. In [15], the author has given a theoretical justification why
Hounsfield’s idea works well, which we shall review.

The iteration method by Hounsfield is justified in terms of the least square solutions.
If a linear system (15) has a solution xxx, then it holds that Axxx − sss = 000, in view of which
the following the idea of the least square solution is defined.

Definition 3.1. A vector xxx ∈ Rn is called a least square solution to (15) (or (16)) if and
only if it minimizes the norm

∥Axxx− sss∥, (21)

where ∥yyy∥ :=
√
y21 + · · ·+ y2m for yyy ∈ Rm.

We note that there are many researches on the least square solutions to overdetermined
systems (15), cf. [2, 16] for example, our theory is different from them in the following
points.

• We a priori know that the least square solution to the overdetermined system (15)
is unique, since the rank of the coefficient matrix A in (15) must be n. There being
very many X-ray are projected to the human body, for i < n, we can take the i+1-
th line li+1 inductively such that it goes through only one new pixel and some of i
pixels where some of the lines l1, · · · , li have already gone through. In this process,
we have to remember the fact m ≫ n.

• We know by experience that the more observation X-ray data we have (the larger
the number m is), the better resolution we can obtain, which shall be discussed and
justified in a stochastic way (Theorem 3.1 below).

In the following, we assume the following conditions.
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(I) f(x, y) ∈ L1 ∩ L2(R2).

(II) For any line l ⊂ R2, f |l ∈ L1(l) and is piecewisely continuous.

(III) m ≫ n.

Note that these conditions, (I) and (II), are satisfied by the density distribution of the
human body. We also assume that

In the system (15), we divide the right hand side into the following there components;

sss = sss0 + sssappc + sssobsc , (22)

where sss0 := Axxx0 with

xxx0 = (x0
1, · · · , x0

n), x0
j :=

1

c

∫

cj

f(x, y)dxdy, (23)

sssappc := ((sappc )1, · · · , (sappc )m) with (sappc )i =
∫
li
f(x, y)dl−s0i and sss

obs
c = sssX := (sX1 , · · · , sXm)

with sXi , i = 1, · · · ,m, being random variables whose probability density functions are
supported by [−εi, εi] for small εi > 0 and whose expectation value E(sXi ) is 0.

Under these assumptions, the author [15] gave a stochastic justification why the idea
by Hounsfield worked well for the practicalization of CT.

Theorem 3.1. We know by experience that even for a fixed number n, the larger the num-
ber m is, the better resolution we can obtain, which is proved to be stochastic theoretically
right.

Theorem 3.2. The pixel function

gc(x, y) :=
n∑

j=1

xjχcj(x, y). (24)

converges almost surely to the density distribution function f(x, y), that is,

lim
c→0

gc(x, y) = f(x, y), a.s. (25)

Note that by the assumption (III), c → 0 yields m ≫ n → ∞. Remember also that

gc(x, y) = g0c (x, y) + gappc (x, y) + gobsc (x, y). (26)

For the proofs of these theorems, we refer the readers to [15]. Theorems 3.1 and 3.2
stochastically prove that the idea by Hounsfield is theoretically right, in the sense that his
solution approximates the unique least square solution to (15) if the number n of the pixels
are sufficiently large, we have enough number m > n of the X-ray data and the errors are
sufficiently small, which can be naturally assumed in usual practical applications.
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(4) Taking the boxel function g2 as the second image and repeat the same procedure as
procedure (3) to obtain a better approximation boxel function g3 than g2.

(5) Repeat the procedure (4) until sup1≤k≤n |gk+1 − gk| is sufficiently small.

Note that in the procedure (3), the new calculated orbit of the ultrasound in any boxel
must be a segment. Hence the new orbit must be piecewisely linear. For more detail of
this method, cf. [14]. In order to practicalize Method 4.1, it is very important to solve
the following problem.

Problem 4.1. Assume that the distribution C(x) of the velocity , x ∈ Ω ⊂ R3 is known.
For any α, β ∈ ∂Ω, determine the fastest route γ from α to β though Ω, that is,

min
γα,β

∫

γα,β

1/C(x)dγ =

∫

γ

1/C(x)dγ. (28)

This problem is challenging and interesting. The complete solution to Problem 4.1
seeming to be difficult, it is sufficient to solve this problem by assuming that the distri-
bution C(x) of the velocity is a boxel function. Furthermore, giving an algorithm to find
the fastest route for a given boxel function is also practically sufficient. For a numerical
approach to USI without sloving Problem 4.1, confer [15].

At the end of this section, let us compare the accuracy of the algorithms for X-ray
CT and USI. Method 4.1 is as accurate as Hounsfield’s algorithm for CT, where both
algorithms are as accurate as each other. The algorithm for today’s X-ray CT, however,
is much sharper than Hounsfield’s. while we have not developed its counterpart for USI
and it may be difficult. That is why we mentioned in Introduction that it may be very
hard for USI to be accurate as CT and MRI. We, however, claim that the development of
USI is very important. USI costs very cheap, requires no protection facility and is very
safe. That is why USI is very suitable for non-destructive inspection for infrastructures,
especially, for concrete structures, since they are huge, cheaply running, safe and running-
with-small-device inspection is required. It is also possible for USI to be an alternative
to CT or MRI in the place where it is impossible to build big hospitals, for example, in
conflict areas. We also claim that the resolution of USI can be better than that of the other
new non-destructive or non-invasive inspection techniques, such as the optical tomogaphy,
the photo-acoustic tomography and so on, by developing the numerical approach (Method
4.1) posed in this section.

5 Summary

In order to conclude this paper, we shall summarize the conclusions in this paper and
mention some open problems to be solved for further development. We first summarize
our conclusions.

Conclusion 5.1. We summarize the conclusion of this paper.

• A mathematical problem for USI was reviewed (Problem 2.1).

• A theoretical justification of Hounsfield’s idea for the practicalization of CT was
reviewed (Theorems 3.1 and 3.2).

4 A numerical approach to USI

In this section, we review a numerical approach to Problem 2.1 introduced in [14],
where the idea by Hounsfield play an important role.

Let Ω ⊂ R3 be a domain where the object locates, and C(x) be the propagation
velocity of the ultrasound at the point x ∈ Ω. For α, β ∈ ∂Ω, we denote by γα,β a route
from α to β contained in Ω. Mathematical solution to Problem 2.1 being very difficult
and open, we can establish and solve practical problems related to Problem 2.1.

If the object is small or close to homogeneous, then we can apply the same algorithm
with the X-ray CT, that is, we assume that the ultrasound rectilinearly propergates and
apply the same algorithm with the X-ray CT to obtain a rough sketch of the distribution of
the reciprocal 1/C(x) of the propagation velocity of the ultrasound. This idea is successful
in medical imaging where the object is very small (cf. [1]).

In this section, we review the numerical approach to USI proposed in T1, whose idea
is based on Property 2.1 and Hounsfield’s idea. The essential idea of this approach is that
if the ultrasound rectilinearly propagates then Problems 2.1 and 3.1 are equivalent.

Theorem 4.1. Assume the same assumption as Problem 2.1. If we further assume that
the ultrasound rectilinearly propagates then the fastest route between the two boundary
points α, β ∈ ∂Ω becomes the segment l(α, β)

l(α, β) = {tα + (1− t)β | 0 < t < 1} (27)

between α and β. In this case, the integral (1) is the line integral along the segment between
the two boundary points α, β ∈ ∂Ω. Therefore, if the ultrasound rectilinearly propagates
then Problems 2.1 and 3.1 are equivalent by identifying f(x) = 1/C(x) for x ∈ R2 or R3.

By this theorem, if we assume the ultrasound rectilinearly propagates, then applying
the same algorithm as X-ray CT, then we obtain some approximation for the section of
the reciprocal velocity 1/C(x) distribution.

In this subsection, we shall propose more precise three dimensional reiterating recon-
struction algorithm for 1/C(x) in USI, where we shall apply Theorem 4.1 as the first
step.

Method 4.1. For USI, we propose the following reiterating procedure.

(1) Divide the object into boxels.

(2) As for the first step of this reiterating method, assume that the ultrasound rectilin-
early propagates and apply the idea by Hounsfield to obtain the boxel function g1 as
the least square solution to (15), which approximates 1/C(x), the reciprocal of the
sonic velocity C(x). In this procedure, the elements aij of the matrix in (15) is given
by the length of intersection between the (assumed) linear orbit of the i-th ultrasound
and j-th boxel and si is the travel time of the i-th ultrasound.

(3) Taking the boxel function g1 obtained in the procedure (2) as the first image, we
can calculate the new orbit of the ultrasound. Then we change the elements aij of
the matrix by the length of intersection between the new orbit of the i-th ultrasound
and j-th boxel. Giving the least square solution g2 to (15) with new matrix elements
gives better approximation.
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(4) Taking the boxel function g2 as the second image and repeat the same procedure as
procedure (3) to obtain a better approximation boxel function g3 than g2.

(5) Repeat the procedure (4) until sup1≤k≤n |gk+1 − gk| is sufficiently small.

Note that in the procedure (3), the new calculated orbit of the ultrasound in any boxel
must be a segment. Hence the new orbit must be piecewisely linear. For more detail of
this method, cf. [14]. In order to practicalize Method 4.1, it is very important to solve
the following problem.

Problem 4.1. Assume that the distribution C(x) of the velocity , x ∈ Ω ⊂ R3 is known.
For any α, β ∈ ∂Ω, determine the fastest route γ from α to β though Ω, that is,

min
γα,β

∫

γα,β

1/C(x)dγ =

∫

γ

1/C(x)dγ. (28)

This problem is challenging and interesting. The complete solution to Problem 4.1
seeming to be difficult, it is sufficient to solve this problem by assuming that the distri-
bution C(x) of the velocity is a boxel function. Furthermore, giving an algorithm to find
the fastest route for a given boxel function is also practically sufficient. For a numerical
approach to USI without sloving Problem 4.1, confer [15].

At the end of this section, let us compare the accuracy of the algorithms for X-ray
CT and USI. Method 4.1 is as accurate as Hounsfield’s algorithm for CT, where both
algorithms are as accurate as each other. The algorithm for today’s X-ray CT, however,
is much sharper than Hounsfield’s. while we have not developed its counterpart for USI
and it may be difficult. That is why we mentioned in Introduction that it may be very
hard for USI to be accurate as CT and MRI. We, however, claim that the development of
USI is very important. USI costs very cheap, requires no protection facility and is very
safe. That is why USI is very suitable for non-destructive inspection for infrastructures,
especially, for concrete structures, since they are huge, cheaply running, safe and running-
with-small-device inspection is required. It is also possible for USI to be an alternative
to CT or MRI in the place where it is impossible to build big hospitals, for example, in
conflict areas. We also claim that the resolution of USI can be better than that of the other
new non-destructive or non-invasive inspection techniques, such as the optical tomogaphy,
the photo-acoustic tomography and so on, by developing the numerical approach (Method
4.1) posed in this section.

5 Summary

In order to conclude this paper, we shall summarize the conclusions in this paper and
mention some open problems to be solved for further development. We first summarize
our conclusions.

Conclusion 5.1. We summarize the conclusion of this paper.

• A mathematical problem for USI was reviewed (Problem 2.1).

• A theoretical justification of Hounsfield’s idea for the practicalization of CT was
reviewed (Theorems 3.1 and 3.2).
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• A numerical approach to USI was given (Method 4.1).

The first conclusion is the origin of this research. The second one, being interesting
itself from the view point of CT, gives a theoretical background for our algorithm (Method
4.1). The third one is very important for numerical implementation to practicalize USI,
which contains many points to improve, and requires numerical and practical experiments.

In view of Conclusion 5.1, we mention some open problems to be solved for further
development.

Problem 5.1. We pose open problems to be solved for further development.

• It is very important to study the analytic solution to Problem 2.1, which may be very
difficult.

• It is important to solve the open problem (Problem 4.1) mentioned in the previous
section, the solution of which yields a better numerical solution to USI.

• Development of a good numerical solution to Problem 4.1 would be of great help to
improve the numerical solutions to USI.

• Practical and numerical experiments of Method 4.1 are of great importance.

Let us give some comments on Problem 5.1. First of all, it is very important to
establish the reconstruction formula for USI, which is posed in the first problem. The
second problem is posed for the development of Method 4.1. If Problem 4.1 is solved
then the iteration algorithm in Method 4.1 will improve very much. Even if the analytic
solution to Problem 4.1 is difficult, its numerical solution would be sufficient to improve
Method 4.1, which is what the third problem claims. Finally, we pose a problem that it
is very important to give practical and numerical experiments of Method 4.1.
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1. Introduction

Ultrasonic Imaging (Mita-T, 2018)

The first arrival wave of the ultrasonic one takes the route where the
travel time is the shotest (which is called the fastest route) in the
cement paste, the mortar and the concrete.
In the concrete structures of the length less than 1200mm, there is no
decay of the speed of the ultrasonic waves with respect to the length.
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Problem 1.1 (Ultrasonic Imaging (Mita-T, 2018))

Let 3 be a domain and f (x) (x ) be the propagation velocity of
the sound. For , we denote by a route from to through
. Reconstruct f (x) (x ) out of the data

min 1 f (x)d (1)

for .
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Problem 1.4 (Problems in this talk)

Numerical solution to Problem 1.1 and its related problems
Further development
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2. Housfield’s idea for CT

Sir Godfrey Newbold Hounsfield
(28 August 1919 – 12 August 2004)

an English electrical engineer
developed the diagnostic technique of X-ray computerized
tomography (CT)
received the Nobel Prize in Physiology or Medicine in 1979
(with Allan McLeod Cormack)
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Remark 1.2 (Remarks on Problem 1.1)

It is impossible to reconstruct the information of some points x’s where
f (x)’s are very small. However, it does not matter very much. For some
problems, we only focus on the part where the density is relatively large, for
others, the part where the density is relatively small can be determined by
the phenomena that the ultrasonic wave would not go through it.

It is an interesting problem to determine the optimal subset reconstructible
by the acoustic imaging established by the study of Problem 1.1.
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Remark 1.3 (Importance of Problem 1.1 in mathematics)

It is a very interesting problem to establish an reconstruction formula for
Problem 1.1 in view of pure mathematics.

In view of both applied math and integral geometry, it is another interesting
problem in Problem 1.1 to determine the subset of where the
reconstruction is impossible because it has no intersection with any giving
(1).

In practice, we have to study various incomplete data problems of Problems
1.1 by the restriction arisen from various reasons in practical application,
which is interesting in view of pure mathematics (integral geometry with
incomplete data), applied mathematics and practice.
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Numerical solution to Problem 1.1 and its related problems
Further development
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Mathematical problem of CT

Reconstruct the function f (x y) from the data

l
f (x y)dl l is a line in 2
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Other awards, titles and so on

elected to the Royal Society in 1975

appointed Commander of the British Empire in 1976

awarded the Howard N. Potts Medal in 1977

knighted in 1981

Hounsfield scale : a quantitative measure of radiodensity used in evaluating
X-ray CT scans, whose unit is defined as Hounsfield unit (HU)
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An inversion formula for the Radon transform

f (x)
1
2
(2 )1 nI R I n 1Rf (x) (2)

R (x) :
Sn 1

( x )d
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Johann Karl August Radon
(16 December 1887 – 25 May 1956)

an Austrian mathematician whose doctoral dissertation was on the
calculus of variations
(in 1910, at the University of Vienna)

Über die Bestimung von Funktionen durich ihre Integralwarte längs
gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig,
Math-Nat. 69 (1917), pp. 262-277.
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Let x n x s be a hyperplane in n,
where Sn 1 s 0.
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gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig,
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Über die Bestimung von Funktionen durich ihre Integralwarte längs
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Math-Nat. 69 (1917), pp. 262-277.
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The Radon transform

Let x n x s be a hyperplane in n,
where Sn 1 s 0.

Rf ( ) Rf ( s)
x s

f (x)dx
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An inversion formula for the Radon transform

For f (x) defined on n and n,

I f (x) : F 1( Ff ( ))(x)

F f ( ) :
n
e ix f (x)dx F 1 (x) :

1
(2 )n n

eix ( )d

I ( s) : F 1( ( ))(x)

F ( ) : e is ( s)ds F 1 ( s) :
1
2

eis ( )d
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A present-day algorithmic idea for CT

Let n 2 1 in (2)

f (x)
1
4
I 1

S1
Rf ( x )d (5)
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Hounsfield’s idea
Divide the picture into n pixels.

f (x y) gc(x y)
n

j 1
x j c j(x y) (6)

where f (x y) is the density at (x y).
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J. Radon’s inversion formulas

For n 3. Let 2 in (2) then

J. Radon’s inversion formula for n 3

f (x)
1

8 2 S2
Rf ( x )d (3)
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For n 2. Let 1 in (2) then the symmetry Rf ( s) Rf ( s) of
the Radon transform yields that

J. Radon’s inversion formula for n 2

f (x)
1

0

Fx(q)
q

dq (4)

Fx(q) :
1
2 S1

Rf ( x q)d
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The equation (7) allows the unique solution xxx if and only if

Axxx sss 000

Definition 2.1 (Least square solutions)

A vector xxx n is called as a least square solution to (7) (or (8)) if and
only if it minimizes the norm

Axxx sss
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Lemma 2.2

For A Mmn( ), the following conditions are equivalent.
(i) xxx n is a LSS to (7).
(ii) (Azzz Axxx sss) 0 for any zzz n.
(iii) There holds the following equation.

tAAxxx tAsss 000 (9)
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c j j 1 2 n : the pixels
c : the size of all pixels
Ii i 1 2 m : the projected X-rays
li : the line Ii passes through
ai j : li c j : the length of li c j
I0
i
I1
i
: strength of the X-ray Ii before and after

passing through the human body, respectively
si : log I0

i
log I1

i
x j : the density of the human body on the pixel c j
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Problem 2.1

Solve the following system of linear equations in x1 x2 xn.

a11x1 a12x2 a1nxn s1
a21x1 a22x2 a2nxn s2

am1x1 am2x2 amnxn sm

(7)

Axxx sss (8)

Back
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The equation (7) allows the unique solution xxx if and only if
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Lemma 2.6

For any A Mmn( ) and sss m, there always exists a solution to (9).
Futhermore, if m n and rank(A) n then the solution to (9) is unique.
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On the data of the X-rays in (7)

In G.N. Hounsfield’s CT, m const 106 n 3 105

In the present-day CT, m 5 109 n 3 107 and
The pixel size in the present-day high precision CT is about ( a few
m )2.
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Corollary 2.3

If tAA is regular then the LSS to (7) is unique.
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Lemma 2.4

For any A Mmn( ),

rank(tAA) rank(A)

Corollary 2.5

Let A Mmn, m n. If rank(A) n then tAA is regular.
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Take a suitable xxx0 n and define the sequence xxxk by

xxxk : Pxxxk 1 PmPm 1 P1xxxk 1 k 1 2

G.N. Hounsfield’s algorithm for CT

xxxH : lim
k

xxxk xxx (13)
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Theoretical justification of Hounsfield’s idea

sss sss0c sssappc sssobsc (14)

Go to (7)

sss0c : Axxx0 with

xxx0 (x0
1

x0n) x
0
j :

1
c c j

f (x y)dxdy (15)
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ART

Figure 1: Image of ART
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aaai : (ai1 ai2 ain) i 1 2 m (10)

Hi : ai1x1 ai2x2 ainxn si (11)

Hi : a hyperplane whose normal vector is aaai
Orthogonal projection Pixxx of xxx n to Hi is given by

Pixxx : xxx
aaai xxx si

aaai

aaai
aaai

(12)
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Theorem 2.8 ((T, 2019))

The pixel function

gc(x y) :
n

j 1
x j c j(x y) (16)

converges almost surely to the density distribution function f (x y), that is,

lim
c 0

gc(x y) f (x y) a s (17)
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3. Ultrasonic Imaging

Theorem 3.1

If we assume that the ultrasound rectilinearly propagates then the fastest route
between the two boundary points becomes the segment l( )

l( ) t (1 t) 0 t 1 (18)

between and . In this case, the integral (1) is the line integral along the
segment between the two boundary points . Therefore, if the ultrasound
rectilinearly propagates then Problem 1.1 becomes the inverse problems of the
X-ray transform by identifying f (x) 1 C(x) for x 2 or 3.
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If we assume that the ultrasound rectilinearly propagates then the fastest route
between the two boundary points becomes the segment l( )

l( ) t (1 t) 0 t 1 (18)

between and . In this case, the integral (1) is the line integral along the
segment between the two boundary points . Therefore, if the ultrasound
rectilinearly propagates then Problem 1.1 becomes the inverse problems of the
X-ray transform by identifying f (x) 1 C(x) for x 2 or 3.
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) is 0.
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Theorem 2.7

We know by experience that even for a fixed number n, the larger the
number m is, the better resolution we can obtain. This knowledge by
experience is proved to be stochastic theoretically right.
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Problem 3.2

Assume that the distribution C(x) of the velocity , x 3 is known.
For any , determine the fastest route from to though ,
that is,

min 1 C(x)d 1 C(x)d (19)
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4. Conclusion

Conclusion of this talk

We introduced theoretical justification how Hounsfield’s algorithm
worked well for practicalization of CT (Theorem 2.8).
We have introduced a numerical solution to USI, where Hounsfield’s
idea plays an important role.
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A reiterating numarical algorithm for USI

1. Divide the object into boxels.
2. Assume that the ultrasound rectilinearly propagates and apply the

idea by Hounsfield to obtain the boxel function g1.
3. Taking the boxel function g1 obtained in the procedure 2 as the first

image, we can calculate the new orbit of the ultrasound.
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4. Change the elements ai j of the matrix by the length of intersection
between the new orbit of the i-th ultrasound and j-th boxel.

5. Give the least square solution g2 to (7) with new matrix elements
gives better approximation.

6. Taking the boxel function g2 as the second image and repeat the
same procedure to obtain a better approximation boxel function g3
than g2.

7. Repeat the above procedure until sup1 k n gk 1 gk is sufficiently
small.
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Open problems left for further development

Analytic solution to Problem 1.1
A better numerical approach to USI than ours
Solution to Problem 3.2
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Regularity of solutions to the stationary transport equation

and its application to the optical tomography

Daisuke Kawagoe ∗

2019/10/30

Abstract

We consider a boundary value problem of the stationary transport equation in a bounded
convex domain with the incoming boundary condition, and we obtain two results on regularity
of its solutions. The first result is to describe discontinuity of the solution which arises from
discontinuous points of the incoming boundary condition, and we show the exponential decay
of a jump of the solution on a discontinuous point. The second one is to give a precise estimate
in a two dimensional case. We obtain a W 1,p estimate of the solution for 1 ≤ p < pm, where
pm is a real number depending only on the shape of the domain. These two results are applied
to solve the inverse problem to determine a coefficient of the stationary transport equation,
which is a model of the optical tomography.

0 Introduction

The optical tomography is a new noninvasive medical imaging technology using near-infrared light
[5], and it is mathematically modeled by the inverse problem to determine a coefficient in the
stationary transport equation (STE).

STE is an integro-differential equation of the following form

ξ · ∇xf(x, ξ) + µt(x)f(x, ξ) = µs(x)

∫

Sd−1

p(x, ξ, ξ′)f(x, ξ′) dσξ′ . (1)

Here, the function f(x, ξ) represents density of photon at a position x ∈ Rd with a direction
ξ ∈ Sd−1. In STE, we focus on two phenomena inside a media; absorption and scattering. We
consider STE (1) in the pair of a bounded convex domain Ω in Rd (d = 2 or 3) with C1 boundary
and the unit sphere Sd−1.

We introduce a notion of “boundaries” associated with STE. Let Ω be a bounded convex domain
in Rd with the C1 boundary. Then, we can define the outer unit normal vector n(x) to ∂Ω for all
x ∈ ∂Ω. The outgoing boundary Γ+ and the incoming boundary Γ− are defined by

Γ± := {(x, ξ) ∈ ∂Ω× Sd−1| ± n(x) · ξ > 0},

respectively. Here, n(x) · ξ denotes the Euclid inner product of two vectors n(x) and ξ in Rd.
We pose the incoming boundary condition to STE (1): Let f0 be a given function on Γ−. Then,

the incoming boundary condition reads

f(x, ξ) = f0(x, ξ) on Γ−. (2)

The final goal of this research is to solve the inverse problem to determine the coefficient µt in
STE (1) from boundary measurements; f0 and f |Γ+

, where f is a solution to the boundary value
problem (1)–(2). This inverse problem was already solved mathematically using the albedo operator

∗d.kawagoe@acs.i.kyoto-u.ac.jp
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function on Rd × Sd−1 × Sd−1 which is continuous on Ω0 × Sd−1 × Sd−1 and p(x, ξ, ξ′) = 0 for
(x, ξ, ξ′) ∈ (Rd\Ω0)× Sd−1 × Sd−1, and satisfies

∫

Sd−1

p(x, ξ, ξ′) dσξ′ = 1

for all (x, ξ) ∈ Ω0 × Sd−1. We regard the directional derivative ξ · ∇xf(x, ξ) as

ξ · ∇xf(x, ξ) :=
d

dt
f(x+ tξ, ξ)

∣∣∣∣
t=0

.

Finally, the measure dσξ′ is the Lebesgue measure on the sphere Sd−1.
We introduce some notations. Let

D := (Ω× Sd−1) ∪ Γ−, D := D ∪ Γ+,

and we define two functions τ± on D by

τ±(x, ξ) := inf{t > 0|x± tξ �∈ Ω}.

Let Γ−,ξ and Γ−,x be projections of Γ− on ∂Ω and Sd−1 respectively;

Γ−,ξ := {x ∈ ∂Ω|n(x) · ξ < 0}, ξ ∈ Sd−1

and
Γ−,x := {ξ ∈ Sd−1|n(x) · ξ < 0}, x ∈ ∂Ω.

Let disc(f) be a set of the discontinuous points for a function f .
We define a solution to the boundary value problem (1)-(2). We call a bounded measurable

function f on D a solution to the boundary value problem (1)-(2) if (i) it has the directional
derivative ξ · ∇xf(x, ξ) at all (x, ξ) ∈ Ω0 × Sd−1, (ii) it satisfies the stationary transport equation
(1) for all (x, ξ) ∈ Ω0 × Sd−1 and the boundary condition (2) for all (x, ξ) ∈ Γ−, (iii) f(·, ξ) is
continuous along the line {x + tξ|t ∈ R} ∩ (Ω ∪ Γ−,ξ) for all (x, ξ) ∈ D, and (iv) ξ · ∇xf(·, ξ)
is continuous on the open line segments {x − tξ|t ∈ (tj−1(x, ξ), tj(x, ξ))}, j = 1, . . . , l(x, ξ) with
t0(x, ξ) = 0 for all (x, ξ) ∈ Ω0 × Sd−1.

The first main result shows how the boundary-induced discontinuity propagates in the media.

Theorem 1. Suppose that a boundary data f0 is bounded and that it satisfies at least one of the
following two conditions.

1. f0(x, ·) is continuous on Γ−,x for almost all x ∈ ∂Ω,

2. f0(·, ξ) is continuous on Γ−,ξ for almost all ξ ∈ Sd−1.

Then, there exists a unique solution f to the boundary value problem (1)-(2), and we have

disc(f) = {(x∗ + tξ∗, ξ∗)|(x∗, ξ∗) ∈ disc(f0), 0 ≤ t < τ+(x∗, ξ∗)}.

Theorem 1 shows that the boundary-induced discontinuity propagates only along a positive
characteristic line starting from a discontinuous point of the incoming boundary data. Here, a
positive characteristic line from a point (x, ξ) ∈ Γ− is defined by {(x+ tξ, ξ)|t ≥ 0}.
Remark 1. Theorem 1 implies that, for a bounded continuous boundary data f0 on Γ−, there
exists a unique solution f , which is bounded continuous on D.

Remark 2. Anikonov et al. [3] showed Theorem 1 with the condition 2. Our main contribution is
to show Theorem 1 with the condition 1.

As the second main result, we shall discuss the boundary-induced discontinuity of the solution
extended up to Γ+. In other words, we can extend the domain of the solution f up to Γ+, and we
see that the boundary-induced discontinuity propagates along a positive characteristic line up to
Γ+.

[6] [9] [14]. However, it is quite difficult to observe the albedo operator in a practical situation.
This motivates us to consider another approach to solve the inverse problem in a practical setting.
In this note, we discuss two approaches.

The first one is to make use of propagation of the boundary-induced discontinuity, which
is discontinuity of a solution to the boundary value problem (1)-(2) arising from discontinuous
incoming boundary data. We will see the detail in Section 1.

Anikonov et al. [3] also made use of it in order to solve the inverse problem. They showed that
a jump of the boundary-induced discontinuity propagates along a positive characteristic line when
the boundary data has a jump with respect to direction ξ, and it is observed as a jump of the
outgoing boundary data on a discontinuous point, which locates on the tip of the characteristic
line. The exponential decay of the jump contains information about the X-ray transform of the
attenuation coefficient µt, which is defined by

(Xµt)(x, ξ) :=

∫

R
µt(x− rξ) dr, (x, ξ) ∈ Rd × Sd−1.

They applied the inverse X-ray transform to the observed data in order to determine the unknown
coefficient µt from its image Xµt [13].

On the other hand, a jump of the boundary-induced discontinuity also propagates along a
positive characteristic line when the boundary data has a jump with respect to space x. Aoki et
al. [4] showed this property for the case of the two dimensional half homogeneous space with an
incoming boundary data independent of ξ. In this note, we extend the result in [4] to a bounded
convex domain. In addition to the discontinuity with respect to direction ξ, which is presented in
Anikonov et al [3], we also discuss the discontinuity with respect to space x.

The second one is by iterative numerical computation [12]. In particular, we apply the discrete-
ordinate discontinuous Galerkin method as a numerical scheme. Although its numerical analysis
was done by Han et al. [11] under the assumption that the gradient of the solution to the boundary
value problem (1)-(2) belongs to L2(Ω × Sd−1), it is not known under which condition the above
assumption holds true. In section 2, we consider a bounded convex domain of two dimensions with
the C2 boundary in order to obtain an Lp estimate for the gradient ∇xf for 1 ≤ p < pm, where
pm is a real number depending only on the shape of the boundary ∂Ω. Moreover, with the polar
coordinate ξ = (cos θ, sin θ), we also obtain an Lp estimate for the derivative fθ with respect to θ
for 1 ≤ p < pm.

There are few researches about estimates for the gradient ∇xf of the solution f . Anikonov [2]
gave a formula of the gradient to see its unboundedness. We should note that Agoshkov [1] also
analyzed regularity of the solution in a Besov space, although he did not give an Lp estimate for
the gradient.

1 Propagation of boundary-induced discontinuity in station-
ary radiative transfer

In this section, we describe propagation of the boundary-induced discontinuity under the following
setting.

Let Ω be a bounded convex domain in Rd with the C1 boundary ∂Ω. We assume that Ω =
∪N
j=1Ωj , where Ωj , 1 ≤ j ≤ N , are disjoint (open) subdomains of Ω with piecewise C1 boundaries.

Let Ω0 := ∪N
j=1Ωj . We assume that, for all (x, ξ) ∈ Ω×Sd−1, the half line {x− tξ|t ≥ 0} intersects

with ∂Ω0 at most finite times. In other words, for all (x, ξ) ∈ Ω × Sd−1, there exist positive

integer l(x, ξ) and real numbers {tj(x, ξ)}l(x,ξ)j=1 such that 0 ≤ t1(x, ξ) < t2(x, ξ) < · · · < tl(x,ξ)(x, ξ),
x− tξ ∈ ∂Ω0 if and only if t = tj(x, ξ), and sup(x,ξ)∈Ω×Sd−1 l(x, ξ) < ∞. This assumption is called
generalized convexity condition for Ω0 [3]. In what follows, we use these notations tj(x, ξ) and
l(x, ξ) for the generalized convexity, and we put t0(x, ξ) = 0.

We assume that µt and µs are nonnegative bounded functions on Rd such that µt and µs are
continuous on Ω0, µt(x) ≥ µs(x) for x ∈ Ω0, µt(x) = µs(x) = 0 for x ∈ Rd\Ω0, and discontinuity
may occur only at ∂Ω0. We also assume that the integral kernel p is a nonnegative bounded
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This motivates us to consider another approach to solve the inverse problem in a practical setting.
In this note, we discuss two approaches.

The first one is to make use of propagation of the boundary-induced discontinuity, which
is discontinuity of a solution to the boundary value problem (1)-(2) arising from discontinuous
incoming boundary data. We will see the detail in Section 1.

Anikonov et al. [3] also made use of it in order to solve the inverse problem. They showed that
a jump of the boundary-induced discontinuity propagates along a positive characteristic line when
the boundary data has a jump with respect to direction ξ, and it is observed as a jump of the
outgoing boundary data on a discontinuous point, which locates on the tip of the characteristic
line. The exponential decay of the jump contains information about the X-ray transform of the
attenuation coefficient µt, which is defined by

(Xµt)(x, ξ) :=

∫

R
µt(x− rξ) dr, (x, ξ) ∈ Rd × Sd−1.

They applied the inverse X-ray transform to the observed data in order to determine the unknown
coefficient µt from its image Xµt [13].

On the other hand, a jump of the boundary-induced discontinuity also propagates along a
positive characteristic line when the boundary data has a jump with respect to space x. Aoki et
al. [4] showed this property for the case of the two dimensional half homogeneous space with an
incoming boundary data independent of ξ. In this note, we extend the result in [4] to a bounded
convex domain. In addition to the discontinuity with respect to direction ξ, which is presented in
Anikonov et al [3], we also discuss the discontinuity with respect to space x.

The second one is by iterative numerical computation [12]. In particular, we apply the discrete-
ordinate discontinuous Galerkin method as a numerical scheme. Although its numerical analysis
was done by Han et al. [11] under the assumption that the gradient of the solution to the boundary
value problem (1)-(2) belongs to L2(Ω × Sd−1), it is not known under which condition the above
assumption holds true. In section 2, we consider a bounded convex domain of two dimensions with
the C2 boundary in order to obtain an Lp estimate for the gradient ∇xf for 1 ≤ p < pm, where
pm is a real number depending only on the shape of the boundary ∂Ω. Moreover, with the polar
coordinate ξ = (cos θ, sin θ), we also obtain an Lp estimate for the derivative fθ with respect to θ
for 1 ≤ p < pm.

There are few researches about estimates for the gradient ∇xf of the solution f . Anikonov [2]
gave a formula of the gradient to see its unboundedness. We should note that Agoshkov [1] also
analyzed regularity of the solution in a Besov space, although he did not give an Lp estimate for
the gradient.

1 Propagation of boundary-induced discontinuity in station-
ary radiative transfer

In this section, we describe propagation of the boundary-induced discontinuity under the following
setting.

Let Ω be a bounded convex domain in Rd with the C1 boundary ∂Ω. We assume that Ω =
∪N
j=1Ωj , where Ωj , 1 ≤ j ≤ N , are disjoint (open) subdomains of Ω with piecewise C1 boundaries.

Let Ω0 := ∪N
j=1Ωj . We assume that, for all (x, ξ) ∈ Ω×Sd−1, the half line {x− tξ|t ≥ 0} intersects

with ∂Ω0 at most finite times. In other words, for all (x, ξ) ∈ Ω × Sd−1, there exist positive

integer l(x, ξ) and real numbers {tj(x, ξ)}l(x,ξ)j=1 such that 0 ≤ t1(x, ξ) < t2(x, ξ) < · · · < tl(x,ξ)(x, ξ),
x− tξ ∈ ∂Ω0 if and only if t = tj(x, ξ), and sup(x,ξ)∈Ω×Sd−1 l(x, ξ) < ∞. This assumption is called
generalized convexity condition for Ω0 [3]. In what follows, we use these notations tj(x, ξ) and
l(x, ξ) for the generalized convexity, and we put t0(x, ξ) = 0.

We assume that µt and µs are nonnegative bounded functions on Rd such that µt and µs are
continuous on Ω0, µt(x) ≥ µs(x) for x ∈ Ω0, µt(x) = µs(x) = 0 for x ∈ Rd\Ω0, and discontinuity
may occur only at ∂Ω0. We also assume that the integral kernel p is a nonnegative bounded
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Definition 1. Let m ≥ 2 or ∞, and let Ω be a bounded convex domain in R2 with C2 boundary.
We say that the boundary ∂Ω has the uniform outer generalized contact order m if there exist
positive numbers a and δ such that the following statement holds: For a point y0 ∈ ∂Ω, we choose
a Cartesian coordinates system (x1, x2) so that y0 = (0, 0) and n(y0) = (0,−1) in the system.
Then, the curve x2 = a|x1|m, |x1| < δ touches the boundary ∂Ω at y0 from outside of Ω.

We assume that µt and µs are nonnegative functions in W 1,∞(Ω) such that µt(x) ≥ µs(x) for
almost all x ∈ Ω. We also assume that there exists a nonnegative function p̃ in W 1,∞(Ω× (−1, 1))
such that

p(x, ξ, ξ′) = p̃(x, ξ · ξ′)

for almost all (x, ξ, ξ′) ∈ Ω× S1 × S1 and

∫

S1

p̃(x, ξ · ξ′) dσξ′ = 1

for almost all (x, ξ) ∈ Ω × S1. For simplicity, in what follows, we only consider p̃ and omit the
tilde on p.

We introduce a function space W 1,∞(Γ−). Firstly, we define the derivative on the boundary
∇x,vf0(x, ξ) by

∇x,vf0(x, ξ) :=
d

dt
f0(g(t), ξ),

where g : (−δ, δ) → ∂Ω with a small number δ is a local parametrization of ∂Ω around x such that

g(0) = x, g′(0) = v.

Also, we introduce the polar coordinate ξ = (cos θ, sin θ) to identify the unit circle S1 with the
interval [−π, π). Then, the function space W 1,∞(Γ−) is defined by

W 1,∞(Γ−) := {f0 ∈ L∞(Γ−)|‖f0‖W 1,∞ < ∞},

where
‖f0‖W 1,∞(Γ−) := ‖f0‖L∞(Γ−) + ‖∇xf0‖L∞(Γ−) + ‖f0,θ‖L∞(Γ−),

‖∇xf0‖L∞(Γ−) := esssup(x,ξ)∈Γ−

(
esssupv∈Tx(∂Ω)

|v|=1

|∇x,vf0(x, ξ)|

)
,

Tx(∂Ω) is the tangent space at x ∈ ∂Ω, and f0,θ is the first derivative of the function f0 with
respect to θ. We assume that the boundary data f0 belongs to W 1,∞(Γ−).

The main result in this section is the following:

Theorem 4. Suppose that the boundary ∂Ω has the uniform outer generalized contact order m.
Then, the solution f to the boundary value problem (1)-(2) belongs to W 1,p(Ω×S1) for 1 ≤ p < pm,
where pm := 2 + 1/(m− 1).

Here, a solution f to the boundary value problem (1)-(2) satisfies the stationary transport
equation (1) and the boundary condition (2) almost everywhere. We show existence and uniqueness
of a solution to the boundary value problem (1)-(2) in the Lp sense.

As a corollary, we obtain the following estimate, which answers to our original question.

Corollary 1. Suppose that the boundary ∂Ω has the uniform outer generalized contact order m > 2.
Then, the solution f to the boundary value problem (1)-(2) belongs to W 1,2(Ω× S1).

The outline of a proof is the following. We reduce the boundary value problem (1)-(2) into the
following integral equation.

f(x, ξ) = F0(x, ξ) + F1(x, ξ) + F2(x, ξ),

Theorem 2. Let a boundary data f0 satisfy assumptions in Theorem 1 and let f be the solution
to the boundary value problem (1)-(2). Then, it can be extended up to Γ+, which is denoted by f ,
by

f(x, ξ) :=



f(x, ξ), (x, ξ) ∈ D,

lim
t↓0

f(x− tξ, ξ), (x, ξ) ∈ Γ+.

Moreover, we have

disc(f) = {(x∗ + tξ∗, ξ∗)|(x∗, ξ∗) ∈ disc(f0), 0 ≤ t ≤ τ+(x∗, ξ∗)}.

We state the decay of the boundary-induced discontinuity in some situation. Let γ be two
points in ∂Ω when d = 2, while let γ be a simple closed curve in ∂Ω when d = 3. Then, γ splits ∂Ω
into two connected components A and B, that is ∂Ω = A∪B ∪ γ and A∩B = A∩ γ = B ∩ γ = ∅.
We put an incoming boundary data f0 by

f0(x, ξ) =

{
I, (x, ξ) ∈ ((A ∪ γ)× Sd−1) ∩ Γ−,

0, (x, ξ) ∈ (B × Sd−1) ∩ Γ−,
(3)

where I is a non-zero constant. We note that f0 satisfies the condition 1 of Theorem 1, and that
disc(f0) = {(x∗, ξ∗)|x∗ ∈ γ, ξ∗ ∈ Γ−,x∗}.

For (x, ξ) ∈ disc(f), we define a jump [f ](x, ξ) by

[f ](x, ξ) := lim
x→x

P (x,ξ)∈(A∪γ)

f(x, ξ)− lim
x→x

P (x,ξ)∈B

f(x, ξ),

where
P (x, ξ) := x− τ−(x, ξ)ξ.

We note that, in our situation, [f0](x, ξ) = I for all (x, ξ) ∈ disc(f0) = (γ × Sd−1) ∩ Γ−. In this
situation, we have the following theorem, which is the most important in this paper.

Theorem 3. Let f be the extended solution to the boundary value problem (1)-(2) with the incoming
boundary data given by (3), and let (x∗, ξ∗) ∈ disc(f). Then,

[f ](x∗, ξ∗) = I exp

(
−
∫ τ−(x∗,ξ∗)

0

µt(x
∗ − rξ∗) dr

)
.

In particular, we take a point (x∗, ξ∗) ∈ disc(f) ∩ Γ+. From Theorem 3, we have

Xµt(x
∗, ξ∗) =

∫ τ−(x∗,ξ∗)

0

µt(x
∗ − rξ∗) dr = − log

(
[f ](x∗, ξ∗)/I

)
.

The right hand side is obtained from observed data. By arranging γ, we can observe the image Xµt

of the X-ray transform of µt. Then, applying the well-known method in [13], we can reconstruct
the attenuation coefficient µt.

We omit proofs of the above theorems in this note. For detail, see [8].

2 W 1,p estimate for solutions to the stationary transport
equation

In this section, we give a W 1,p estimate of the solution to the boundary value problem (1)-(2) for
1 ≤ p < pm, where pm is a real number depending only on the shape of the domain.

We introduce a condition for the domain Ω as follows.
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Definition 1. Let m ≥ 2 or ∞, and let Ω be a bounded convex domain in R2 with C2 boundary.
We say that the boundary ∂Ω has the uniform outer generalized contact order m if there exist
positive numbers a and δ such that the following statement holds: For a point y0 ∈ ∂Ω, we choose
a Cartesian coordinates system (x1, x2) so that y0 = (0, 0) and n(y0) = (0,−1) in the system.
Then, the curve x2 = a|x1|m, |x1| < δ touches the boundary ∂Ω at y0 from outside of Ω.

We assume that µt and µs are nonnegative functions in W 1,∞(Ω) such that µt(x) ≥ µs(x) for
almost all x ∈ Ω. We also assume that there exists a nonnegative function p̃ in W 1,∞(Ω× (−1, 1))
such that

p(x, ξ, ξ′) = p̃(x, ξ · ξ′)

for almost all (x, ξ, ξ′) ∈ Ω× S1 × S1 and

∫

S1

p̃(x, ξ · ξ′) dσξ′ = 1

for almost all (x, ξ) ∈ Ω × S1. For simplicity, in what follows, we only consider p̃ and omit the
tilde on p.

We introduce a function space W 1,∞(Γ−). Firstly, we define the derivative on the boundary
∇x,vf0(x, ξ) by

∇x,vf0(x, ξ) :=
d

dt
f0(g(t), ξ),

where g : (−δ, δ) → ∂Ω with a small number δ is a local parametrization of ∂Ω around x such that

g(0) = x, g′(0) = v.

Also, we introduce the polar coordinate ξ = (cos θ, sin θ) to identify the unit circle S1 with the
interval [−π, π). Then, the function space W 1,∞(Γ−) is defined by

W 1,∞(Γ−) := {f0 ∈ L∞(Γ−)|‖f0‖W 1,∞ < ∞},

where
‖f0‖W 1,∞(Γ−) := ‖f0‖L∞(Γ−) + ‖∇xf0‖L∞(Γ−) + ‖f0,θ‖L∞(Γ−),

‖∇xf0‖L∞(Γ−) := esssup(x,ξ)∈Γ−

(
esssupv∈Tx(∂Ω)

|v|=1

|∇x,vf0(x, ξ)|

)
,

Tx(∂Ω) is the tangent space at x ∈ ∂Ω, and f0,θ is the first derivative of the function f0 with
respect to θ. We assume that the boundary data f0 belongs to W 1,∞(Γ−).

The main result in this section is the following:

Theorem 4. Suppose that the boundary ∂Ω has the uniform outer generalized contact order m.
Then, the solution f to the boundary value problem (1)-(2) belongs to W 1,p(Ω×S1) for 1 ≤ p < pm,
where pm := 2 + 1/(m− 1).

Here, a solution f to the boundary value problem (1)-(2) satisfies the stationary transport
equation (1) and the boundary condition (2) almost everywhere. We show existence and uniqueness
of a solution to the boundary value problem (1)-(2) in the Lp sense.

As a corollary, we obtain the following estimate, which answers to our original question.

Corollary 1. Suppose that the boundary ∂Ω has the uniform outer generalized contact order m > 2.
Then, the solution f to the boundary value problem (1)-(2) belongs to W 1,2(Ω× S1).

The outline of a proof is the following. We reduce the boundary value problem (1)-(2) into the
following integral equation.

f(x, ξ) = F0(x, ξ) + F1(x, ξ) + F2(x, ξ),

Theorem 2. Let a boundary data f0 satisfy assumptions in Theorem 1 and let f be the solution
to the boundary value problem (1)-(2). Then, it can be extended up to Γ+, which is denoted by f ,
by

f(x, ξ) :=



f(x, ξ), (x, ξ) ∈ D,

lim
t↓0

f(x− tξ, ξ), (x, ξ) ∈ Γ+.

Moreover, we have

disc(f) = {(x∗ + tξ∗, ξ∗)|(x∗, ξ∗) ∈ disc(f0), 0 ≤ t ≤ τ+(x∗, ξ∗)}.

We state the decay of the boundary-induced discontinuity in some situation. Let γ be two
points in ∂Ω when d = 2, while let γ be a simple closed curve in ∂Ω when d = 3. Then, γ splits ∂Ω
into two connected components A and B, that is ∂Ω = A∪B ∪ γ and A∩B = A∩ γ = B ∩ γ = ∅.
We put an incoming boundary data f0 by

f0(x, ξ) =

{
I, (x, ξ) ∈ ((A ∪ γ)× Sd−1) ∩ Γ−,

0, (x, ξ) ∈ (B × Sd−1) ∩ Γ−,
(3)

where I is a non-zero constant. We note that f0 satisfies the condition 1 of Theorem 1, and that
disc(f0) = {(x∗, ξ∗)|x∗ ∈ γ, ξ∗ ∈ Γ−,x∗}.

For (x, ξ) ∈ disc(f), we define a jump [f ](x, ξ) by

[f ](x, ξ) := lim
x→x

P (x,ξ)∈(A∪γ)

f(x, ξ)− lim
x→x

P (x,ξ)∈B

f(x, ξ),

where
P (x, ξ) := x− τ−(x, ξ)ξ.

We note that, in our situation, [f0](x, ξ) = I for all (x, ξ) ∈ disc(f0) = (γ × Sd−1) ∩ Γ−. In this
situation, we have the following theorem, which is the most important in this paper.

Theorem 3. Let f be the extended solution to the boundary value problem (1)-(2) with the incoming
boundary data given by (3), and let (x∗, ξ∗) ∈ disc(f). Then,

[f ](x∗, ξ∗) = I exp

(
−
∫ τ−(x∗,ξ∗)

0

µt(x
∗ − rξ∗) dr

)
.

In particular, we take a point (x∗, ξ∗) ∈ disc(f) ∩ Γ+. From Theorem 3, we have

Xµt(x
∗, ξ∗) =

∫ τ−(x∗,ξ∗)

0

µt(x
∗ − rξ∗) dr = − log

(
[f ](x∗, ξ∗)/I

)
.

The right hand side is obtained from observed data. By arranging γ, we can observe the image Xµt

of the X-ray transform of µt. Then, applying the well-known method in [13], we can reconstruct
the attenuation coefficient µt.

We omit proofs of the above theorems in this note. For detail, see [8].

2 W 1,p estimate for solutions to the stationary transport
equation

In this section, we give a W 1,p estimate of the solution to the boundary value problem (1)-(2) for
1 ≤ p < pm, where pm is a real number depending only on the shape of the domain.

We introduce a condition for the domain Ω as follows.
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where

F0(x, ξ) := exp

(
−
∫ τ−(x,ξ)

0

µt(x− rξ) dr

)
f0(P (x, ξ), ξ),

F1(x, ξ) :=

∫ τ−(x,ξ)

0

µs(x− tξ) exp

(
−
∫ t

0

µt(x− rξ) dr

)
G1(x− tξ, ξ′) dt,

F2(x, ξ) :=

∫ τ−(x,ξ)

0

µs(x− tξ) exp

(
−
∫ t

0

µt(x− rξ) dr

)
G2(x− tξ, ξ′) dt,

G1(x, ξ) :=

∫

S1

p(x, ξ · ξ′)F0(x, ξ
′) dσξ′ ,

G2(x, ξ) :=

∫

S1

p(x, ξ · ξ′)
∫ τ−(x,ξ′)

0

µs(x− tξ′) exp

(
−
∫ t

0

µt(x− rξ′) dr

)

×
∫

S1

p(x− tξ′, ξ′ · ξ′′)f(x− tξ′, ξ′′) dσξ′′ dt dσξ′

=

∫

Ω

p

(
x, ξ · x− y

|x− y|

)
µs(y) exp

(
−|x− y|

∫ 1

0

µt(x− r(x− y)) dr

)

×
(∫

S1

p

(
y,

x− y

|x− y|
· ξ′′

)
f(y, ξ′′) dσξ′′

)
dy

|x− y|
.

Thanks to the above formula, we can consider the formal derivative of the solution f . However,
a strong singularity appears after the differentiation. In order to control the singularity, we first
derive a local Hölder estimate for the solution with respect to x. This estimate helps us to prove
differentiability of the solution with respect to x. After justification of the differentiation, we
investigate an Lp estimates of spatial derivatives of the solution. We further use these estimates
to obtain an Lp estimate for the derivative of the solution with respect to θ. We omit the detail
of the proof because the calculation is quite complicated and tedious.
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36, no. 3, pp. 745–782, (2019).

－124－



[8] I. Chen, D. Kawagoe, Propagation of boundary-induced discontinuity in stationary radiative
transfer and its application to the optical tomography, Inverse Problems & Imaging 13 no. 2,
pp. 337–351, (2019).

[9] M. Choulli, P. Stefanov, An inverse boundary value problem for the stationary transport
equation, Osaka J. Math., 36, no. 1, pp. 87–104, (1999).

[10] H. Egger, M. Schlottbom, An Lp theory for stationary radiative transfer, Applicable Analysis,
93, no. 6, pp. 1283–1296, (2014).

[11] W. Han, J. Huang, J. A. Eichholz, Discrete-ordinate discontinuous Galerkin methods for
solving the radiative transfer equation, SIAM J. Sci. Comput., 20, no. 2, pp. 477–497, (2010).

[12] A. D. Klose, A. H. Hielscher, Optical tomography using the time-independent equation of
radiative transfer–Part 2: inverse model, J. Quant. Spect. Rad. Trans., 72, pp. 715–732,
(2002).

[13] F. Natterer, The Mathematics of Computerized Tomography, SIAM, Germany, (2001).

[14] J.-N. Wang, Stability estimates of an inverse problem for the stationary transport equation,
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derive a local Hölder estimate for the solution with respect to x. This estimate helps us to prove
differentiability of the solution with respect to x. After justification of the differentiation, we
investigate an Lp estimates of spatial derivatives of the solution. We further use these estimates
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Abstract: This report discusses an inverse problem involved in digital image processing for 
3D reconstruction of the asteroid Ryugu conducted in the Hayabusa 2 project of the Japan 
Aerospace Exploration Agency.  When the spacecraft arrived at the asteroid, the observation 
process started with imaging of the body with its cameras. The obtained 2D images were 
transmitted from the spacecraft to the ground stations and processed for 3D reconstruction, 
that is, obtaining information including rotation axis, rotation period, and surface shape of 
the body. This 3D reconstruction is one of the main issues of computer vision and is closely 
related to inverse problems.   This report focuses on the mathematical aspect of the Ryugu 
3D reconstruction, including formulation as an optimization problem and relation to inverse 
problems. 
(This report is supported by the JAXA Hayabusa2 project) 
 
Key Words: 3D reconstruction, asteroid Ryugu, Hayabusa2, inverse problems 
 
1. Introduction 

This report discusses an inverse problem involved in digital image processing for 3D 
reconstruction of the asteroid Ryugu conducted in the Hayabusa 2 project of the Japan 
Aerospace Exploration Agency (JAXA).   
The Hayabusa 2 is a Japanese mission launched in December 2014 to study the asteroid 

Ryugu and to collect samples to bring to Earth. The Hayabusa 2 spacecraft arrived at the 
asteroid in June 2018.  

When the spacecraft arrived at an asteroid, an observation process started with imaging of 
the body with its cameras. These 2D images were transmitted from the spacecraft to the 
ground stations and processed for 3D reconstruction, that is, obtaining information including 

－164－



3D reconstruction of the asteroid Ryugu 

 as an inverse problem 
 

Makoto Maruya 
  

National Institute of Advanced Industrial Science and Technology / Geo Insight LLC 

Email: maruya@kta.biglobe.ne.jp 
 
Abstract: This report discusses an inverse problem involved in digital image processing for 
3D reconstruction of the asteroid Ryugu conducted in the Hayabusa 2 project of the Japan 
Aerospace Exploration Agency.  When the spacecraft arrived at the asteroid, the observation 
process started with imaging of the body with its cameras. The obtained 2D images were 
transmitted from the spacecraft to the ground stations and processed for 3D reconstruction, 
that is, obtaining information including rotation axis, rotation period, and surface shape of 
the body. This 3D reconstruction is one of the main issues of computer vision and is closely 
related to inverse problems.   This report focuses on the mathematical aspect of the Ryugu 
3D reconstruction, including formulation as an optimization problem and relation to inverse 
problems. 
(This report is supported by the JAXA Hayabusa2 project) 
 
Key Words: 3D reconstruction, asteroid Ryugu, Hayabusa2, inverse problems 
 
1. Introduction 

This report discusses an inverse problem involved in digital image processing for 3D 
reconstruction of the asteroid Ryugu conducted in the Hayabusa 2 project of the Japan 
Aerospace Exploration Agency (JAXA).   
The Hayabusa 2 is a Japanese mission launched in December 2014 to study the asteroid 

Ryugu and to collect samples to bring to Earth. The Hayabusa 2 spacecraft arrived at the 
asteroid in June 2018.  

When the spacecraft arrived at an asteroid, an observation process started with imaging of 
the body with its cameras. These 2D images were transmitted from the spacecraft to the 
ground stations and processed for 3D reconstruction, that is, obtaining information including 

－165－



 The outputs of 3D reconstruction are (1) asteroid coordinates (X-Y-Z orthogonal 
coordinates), (2) feature points or ground control points (GCPs), and (3) surface shape 
model. The asteroid coordinates are defined such that its origin is the position of asteroid 
volume center, Z-axis is parallel to the asteroid rotation axis, and XZ-plane includes the 
meridian.  The feature points represent unique terrain elements such as boulders and craters 
that are selected manually by operators from the Ryugu images. The 3D positions of feature 
points and the surface shape model are expressed in the asteroid coordinates.  
 The feature point data were used with GCP based navigation [3].  The surface shape model 
was also used for navigation including touchdown area search. 
 

 
Fig.2 The inputs and outputs of Ryugu 3D reconstruction 

 
3. The process of Ryugu 3D reconstruction 
3-1. Image acquisition 
  The process of Ryugu 3D reconstruction in the Hayabusa 2 project is basically the same as 
that in the Hayabusa for asteroid Itokawa, but some image acquisition parameters including 
the number of images and the spacecraft-to-asteroid distance were modified to adapt the new 
situation. 
 In the Hayabusa2 project, image acquisition for 3D reconstruction was conducted at a 

distance of 20 km and 6 km. The 20 km-distance images covered the whole area of Ryugu, 
and 6 km-distance images provided detailed information around the equatorial region.  
 In total, 79 images were prepared for 3D reconstruction and 92 feature points were selected 
by manual. At that stage, the known variables were only feature point positions on the images. 
Other variables, for example, the orientation of the rotation axis and the rotation period of 
the Ryugu, and also the positions and orientations of the camera (or the spacecraft) from the 

rotation axis, rotation period, and surface shape of the body. This kind of reconstruction is 
one of the main issues of computer vision and is closely related to inverse problems.    

The report focuses on the mathematical aspect of the Ryugu 3D reconstruction, including 
formulation as an optimization problem and relation to inverse problems. Figure 1 shows the 
relation of this report to three fields; asteroid exploration, 3D reconstruction, and inverse 
problems. 
 

 

 
Fig.1 The relation of this report to three fields:  

asteroid exploration, 3D reconstruction, and inverse problems. 
 
It should be noted that the images and results of this report were quoted from already 

published materials and presentations [1][2][3]. Until now, some Ryugu data are not allowed 
for publication. So, in these materials and also in this report, unpublishable images have been 
substituted by similar publishable ones. 
 
2. The inputs and outputs of Ryugu 3D reconstruction 
2-1. The inputs of 3D reconstruction 

The primary source of 3D reconstruction process is the images captured with a telescopic 
framing camera called ONC-T (hereinafter called "camera"). The field of view of the camera 
is about 6 x 6 degrees. 

The secondary source is the range data from the Light Detection And Ranging (LIDAR) 
instrument, which measures the distance from spacecraft to the asteroid surface, was used to 
determine the absolute scale of the 3D data. 
 These data were transmitted from the spacecraft to the ground stations and processed with 
computers.  
 
2-2.  The outputs of 3D reconstruction 
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Figure 5 shows the imaging geometry of a multiple view case. In a multiple view case and 

under certain conditions, the number of projection equations exceeds the number of unknown 
variables and the 2D to 3D computation becomes capable.  
  

 
Fig. 5 Basic imaging geometry: multiple views 

 
As the projection functions are not linear, we first obtained an initial (preliminary) solution 

by dividing the whole problem into small-sized problems (Fig.6). One small-sized problem is 
estimating positions and orientations of neighboring three cameras and positions of four 
feature points. Solutions of small-sized problems were merged to make an initial solution.  
 

 

Fig. 6 Obtaining initial values of non-linear optimization 

asteroid, were unknown.  

 
Fig. 3 Acquisition of the Ryugu images 

 
3-2. The basic idea of 3D reconstruction 
One fundamental idea of reconstructing 3D data from 2D images is called bundle adjustment 

[4], and this idea was applied to this work. Figure 4 shows the basic imaging geometry of a 
single view case which explains the projection mechanism from 3D to 2D.  The function 𝑓𝑓() 
is a projection function from 3D to 2D. In a single view case, projection from 3D to 2D is 
computable, but determining 3D from 2D is not computable. 
 
 
 

 
Fig. 4 Basic imaging geometry: single view 
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After local linearization, the following linear observation equation is obtained. 
Ax = y. 
 
where 
y： 2D projected position (Known variables) 
A： Sensitivity Matrix 
 
Then, least-square estimation was conducted using the following equation, 
 x = (ATA)-1・ATy. 
 
By repeating local linearization around new x, and least square estimation, final resolutions 
were obtained. The absolute scale of the 3D data was determined based on LIDAR data. 
 
4. The computational results of the Ryugu 3D reconstruction 
Figure 8 shows estimated camera positions (left) and estimated 3D positions (right) on the 

asteroid coordinates. The left image indicates the circular motion of the spacecraft around the 
asteroid, mainly due to the asteroid spinning motion. 
 

 
Fig. 8 The computational results (Position of cameras and feature points) 

 
In Figure 9, the reconstructed surface model (right) and real images (left) are arranged for 

comparison. There are no significant differences between them, and it means the 3D 
reconstruction has been successful. Red dots on the right images indicate feature points. 
Touchdown areas are also shown in the images. 

 
Unfortunately, the obtained initial solution contains some errors that are due to slight 

misregistrations of feature points on images (Fig.7).  This slight misregistration could 
cause significant errors in the 3D data. It is one of the typical phenomena in inverse 
problems. The magnitude of error can be measured by reprojection error. 

 

 
Fig. 7 Observation errors and their effect 

  
In order to obtain an optimal solution, we formulate an object function 𝐸𝐸(𝒙𝒙) and find the 

solution which minimizes the object function. 
The object function is defined as follows: 
 
 
where 
x：unknonw variables ( camera positions/rotations, feature point positions) 
𝑒𝑒�,�(𝒙𝒙) : reprojection error 
i: camera number 
j: feature point number 
M: Total number of camera positions = 79 
N: Total number of feature points = 92 
 
As the object function is complex and non-linear, it was difficult to obtain an optimal solution 

at a lump, so it was locally linearized, and a piecewise least square method was applied to 
approach for the final results step by step.  
 

𝐸𝐸(𝒙𝒙) = ∑ ∑ 𝑒𝑒�,�(𝒙𝒙)�
���

�
��� . 
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Fig. 9 The touchdown areas 
 
 
 
5. Summary 
This report discussed an inverse problem involved in digital image processing for the 3D 

reconstruction of the asteroid Ryugu conducted in the Hayabusa 2 project. From the 2D 
images, the 3D data including the asteroid coordinates, the positions of feature points, the 
positions and orientations of the spacecraft, and surface shape model was successfully 
determined.    
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solution which will be used as an initial solution.

1. Divide the  problem into small partial problems and solve them. 

Generally,  such an initial solution contains significant errors and
it does not satisfy whole GCP observation.
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Num. of camera positions:3 
Num. of feature points: More than 4

2. Connecting each partial solution to obtain total 
solution which will be used as an initial solution.

1. Divide the  problem into small partial problems and solve them. 

Generally,  such an initial solution contains significant errors and
it does not satisfy whole GCP observation.
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Formulation as an optimization problem

ෝ𝒙𝒙 = argmin 𝐸𝐸 𝒙𝒙

where

𝒙𝒙 :  A set of P,R,T

・3D position of feature points
・Camera rotation and translation

𝐸𝐸 𝒙𝒙𝒙𝒙
:  Total reprojection error

𝐸𝐸 𝒙𝒙 = σ σ𝑒𝑒𝑖𝑖,𝑗𝑗 𝒙𝒙
𝑖𝑖 = 1 j= 1

M N

M: Num. of camera positions = 79
N: Num. of feature points = 92

ෝ𝒙𝒙We tried to obtain              by numerical computation.

19

Observation Equation： Ax = y
Least Square Estimation： x = (ATA)1・ATy
x： Camera Position/Rotation, GCP position （Dimension: 743 ）
y： 2D projection state （Dimension:  about 14k） ⇒ calculate total reprojection error
A： Sensitivity Matrix

Optimization by piecewise least square estimation 

20

Computational process: step 2  

Additional effort:  accuracy improvement by iteration of finding and omitting "inconsistent"
(poor quality)  feature point data.     

Linear approximation 

Remaining  problems
 requires large computing time including manual operation
 insufficient convergence (occasionally).
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Formulation as an optimization problem
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Perturbations of Rayleigh waves in anisotropic elasticity and

Bleustein-Gulyaev waves in piezoelectricity

Kazumi Tanuma∗ (presenter)

1 Perturbations of Rayleigh waves

1.1 Introduction

Rayleigh waves are elastic surface waves which propagate along the traction-free surface with the
phase velocity in the subsonic range, and whose amplitude decays exponentially with depth below
the surface. Such waves serve as a useful tool in nondestructive characterization of materials. We
consider Rayleigh waves propagating along the traction-free surface of a homogeneous elastic half-
space. For isotropic elasticity, such waves are well known: Their phase velocity is determined by
the secular equation, which is a bi-cubic equation written in terms of the Lamé constants. For
orthorhombic elastic materials, when the traction-free surface is spanned by two symmetry axes and
the propagation direction of Rayleigh waves coincides with one of them, the phase velocity of the
waves is determined by a bi-cubic equation whose coefficients are written in terms of the components
of the elasticity tensor. For general anisotropic materials, however, to derive equations for Rayleigh-
wave velocity and to solve them are complicated or difficult. For the approaches along this line, see,
for example, [4, 5, 20, 21, 22, 23].

In this section we assume that the elasticity tensor has a principal (unperturbed) part which is
orthorhombic and assume that the remaining (perturbative) part of the elasticity tensor is arbitrarily
anisotropic. We then investigate the perturbation of the phase velocity and of the polarization ratio
(i.e., the ratio of the maximum longitudinal and maximum normal component of the displacements
at the surface) of Rayleigh waves, i.e., the shift of phase velocity and the shift of polarization ratio
of Rayleigh waves from their respective value pertaining to the comparative orthorhombic state, as
caused by the perturbative part of the elasticity tensor. We present perturbation formulas for the
phase velocity and for the polarization ratio, which are correct to first order in the components of
the perturbative part of the elasticity tensor. These formulas show explicitly how the perturbative
part of the elasticity tensor, to first order of itself, affects the phase velocity and the polarization
ratio of Rayleigh waves. We obtain these formulas by a consistent method on the basis of the Stroh
formalism.

Isotropic materials can be realized by reducing the 9 independent components of the elasticity
tensor of orthorhombic materials to the 2 independent Lamé components. Hence our formulas also

∗Department of Mathematics, Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan.
E-mail: tanuma@gunma-u.ac.jp
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apply to such a material that the principal (unperturbed) part of the elasticity tensor is isotropic and
the remaining (perturbative) part of the elasticity tensor is arbitrarily anisotropic.

Herein we restrict our study to the forward problem, i.e., the problem of investigating the behavior
of Rayleigh waves provided that all the relevant information on material parameters are known. We
believe, however, that the results in the forward problem will serve as a guide when considering the
inverse problem, i.e., the problem of characterizing material parameters from observation of Rayleigh
waves that propagate along the unknown materials.

The study in this section is a joint work with Chi-Sing Man (University of Kentucky, USA) and
Wenwen Du (Glenville State College, USA).

1.2 Preliminaries

Let E = E(u) =
(
εij

)
i,j=1,2,3

be the infinitesimal strain tensor

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (1)

where u = u(x) = (u1, u2, u3) is the displacement at the place x pertaining to the superimposed
small elastic motion and (x1, x2, x3) are the Cartesian coordinates of x. In the theoretical context of
linear elasticity, the constitutive equation can be written as the generalized Hooke’s law:

σ = C[E] or σij =
3∑

k,l=1

Cijkl εkl, (2)

where σ = (σij)i,j=1,2,3 is the stress and C is the elasticity tensor, the latter of which, when regarded
as a fourth-order tensor that maps symmetric tensors E onto symmetric tensors, has major and minor
symmetries

Cijkl = Cklij = Cjikl, i, j, k, l = 1, 2, 3.

We assume that the stored energy function is positive for any non-zero strain, which implies that
C =

(
Cijkl

)
i,j,k,�=1,2,3

is positive definite or it satisfies the following strong convexity condition:

3∑
i,j,k,l=1

Cijkl εij εkl > 0 for any non-zero 3 × 3 real symmetric matrix (εij).

We say that the elastic material is isotropic if the elasticity tensor C satisfies

Cijkl =
3∑

p,q,r,s=1

Qip Qjq Qkr Qls Cpqrs, i, j, k, l = 1, 2, 3 (3)

for any orthogonal tensor Q = (Qij)i,j=1,2,3. For isotropic materials, the components Cijkl can be
written as

Cijkl = λ δijδkl + µ(δikδjl + δilδkj)

with the Lamé constants λ and µ. We say that the elastic material is anisotropic if it is not isotropic.
In this section, as a base material we take an orthorhombic medium∗ with elasticity tensor COrth.

Suppose the base material can be such that it occupies the half-space x3 ≤ 0 and its symmetry axes
∗We say that an elastic material is orthorhombic if (3) holds for the orthogonal tensor Q = (Qij)i,j=1,2,3 corresponding

to a right-handed rotation by the angle π around each of the three coordinate axes.
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coincide with the three coordinate axes. Then the elasticity tensor COrth is expressed under the Voigt
notation† as

COrth = (COrth
αβ ) =




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
Sym. C66




. (4)

Suppose that the elasticity tensor C is composed of an orthorhombic part COrth and a perturbative
part A, the latter of which expresses a deviation of the material from its orthorhombic unperturbed
state. For the perturbative part A, we assume the major and minor symmetries

aijkl = aklij = ajikl, i, j, k, l = 1, 2, 3

but do not assume any material symmetry. In the Voigt notation, A can be written as

A = (aαβ) =




a11 a12 a13 a14 a15 a16

a22 a23 a24 a25 a26

a33 a34 a35 a36

a44 a45 a46

Sym. a55 a56

a66




(5)

and the 21 components in the upper triangular part of matrix (5) are generally all independent. In
this setting, C can be written as a fourth-order tensor on symmetric tensors E in the form

C[E] = COrth[E] + A[E]. (6)

Thus, in our constitutive equation (2) with (6), A expresses the deviation of the medium in question
from its comparative orthorhombic state and then we consider what influence A exerts upon the phase
velocity and the polarization of Rayleigh waves that propagate along the surface of the material half-
space.

Let t denote the time and ρ the uniform mass density of the material. Substitution of (1) and (2)
into the equation of motion with no body force, namely

3∑
j=1

∂

∂xj
σij = ρ

∂2

∂t2
ui, i = 1, 2, 3,

leads us to the elastic wave equation written in terms of the displacement

3∑
j=1

∂

∂xj

(
Cijkl

∂uk

∂xl

)
= ρ

∂2

∂t2
ui, i = 1, 2, 3. (7)

†For the subscripts ij and kl of Cijkl ∈ C we have used the rules of replacing the subscript ij (or kl) by α (or β) as
follows:

ij (or kl) α (or β) ij (or kl) α (or β)
11 ←→ 1 23 or 32 ←→ 4
22 ←→ 2 31 or 13 ←→ 5
33 ←→ 3 12 or 21 ←→ 6.

Then the fourth-order tensor C can be written as a 6 × 6 symmetric matrix
`

Cαβ

´

α,β=1,2,3,4,5,6
.
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We consider Rayleigh waves that propagate along the traction-free surface x3 = 0 of the half-
space x3 ≤ 0 in the direction of 2-axis with the phase velocity vR in the subsonic range, and whose
amplitude decays exponentially as x3 −→ −∞, and which produce no tractions on x3 = 0. The Stroh
formalism (cf., for example, [1, 3, 15, 19]) leads us to the time-harmonic solution to the elastic wave
equation (7) which describes such Rayleigh waves

u =
3∑

α=1

cα aα e−
√
−1 k(x2+pαx3−v t), (8)

where k is the wave number, aα = aα(v) ∈ C3 and pα = pα(v) ∈ C‡ with Im pα > 0 (α = 1, 2, 3)§ are
determined from the equation (7), while the traction-free condition at the boundary

σi3 |x3=0 =
3∑

k,l=1

Ci3kl
∂uk

∂xl

���
x3=0

= 0, i = 1, 2, 3

determines the phase velocity v = vR and cα = cα(vR) ∈ C (α = 1, 2, 3).
The displacement field u of the Rayleigh waves at the surface x3 = 0 is written through (8) as

u = apol e−
√
−1 k(x2−vR t), apol =

3∑
α=1

cαaα.

The polarization ratio rR of Rayleigh waves on the surface x3 = 0 is defined as the ratio of the
maximum longitudinal component to the maximum normal component of the displacements on x3 = 0
(see [7]):

rR =
����
(apol)2
(apol)3

����
x3=0

,

where (apol)i denotes the i-th component of the vector apol and |z| denotes the absolute value of a
complex number z.

1.3 Perturbation of phase velocity of Rayleigh waves

For an orthorhombic base material whose elasticity tensor is given by (4), when there exist Rayleigh
waves propagating along the surface of the half-space x3 ≤ 0 in the direction of the 2-axis, the phase
velocity vOrth

R satisfies the secular equation (see [13])

ROrth(v) = 0, (9)

where

ROrth(v) = C33C44(C22 − V )V 2 − (C44 − V )
(
C33(C22 − V ) − C2

23

)2
, V = ρv2. (10)

Theorem 1 In an elastic medium whose elasticity tensor C is given by (6), the phase velocity of
Rayleigh waves which propagate along the surface of the half-space x3 ≤ 0 in the direction of the
2-axis can be written, up to terms linear in the perturbative part A of C, as

vR = vOrth
R − 1

2ρ vOrth
R

[
γ22(vOrth

R ) a22 + γ23(vOrth
R ) a23 + γ33(vOrth

R ) a33 + γ44(vOrth
R ) a44

]
, (11)

‡We also use the symbol C to denote the classical elasticity tensor. It should be clear from the context what the
symbol means when it appears.

§This condition guarantees the exponential decay of the solution (8) in x3 −→ −∞.
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where

γij(v) =
Nij(v)
D(v)

({ij} = {22}, {23}, {33}, {44}), (12)

N22(v) = C33[−2C44(C22C33 − C2
23) + 2(C22C33 − C2

23 + C33C44)V + (C44 − 2C33)V 2],

N23(v) = 4C23(C44 − V )(C22C33 − C2
23 − C33V ),

N33(v) = (C22 − V )[−2C44(C22C33 − C2
23) + 2(C22C33 − C2

23 + C33C44)V

+ (C44 − 2C33)V 2] =
C22 − V

C33
N22(v),

N44(v) =
−V

C44
(C22C33 − C2

23 − C33V )2,

D(v) = (C22C33 − C2
23)(C22C33 − C2

23 + 2C33C44)

+ 2C33[C22C44 − 2(C22C33 − C2
23) − C33C44]V + 3C33(C33 − C44)V 2,

V = ρv2.

Remark 2 Only four components a22, a23, a33 and a44 of the perturbative part A of C affect the
first-order perturbation of the phase velocity vR. This is also true for the case where the base material
is unstressed and isotropic [16]. When the base material is generally anisotropic, Song and Fu [14]
obtained a formula on the first-order perturbation of the phase velocity of Rayleigh waves; that formula
involves the eigenvalues and the eigenvectors of Stroh’s eigenvalue problem for the base material. Also,
they applied their formula to the case where the base material is monoclinic. There they asserted that
for Rayleigh waves polarized in a symmetry plane of the monoclinic material, which we take to be the
2–3 plane in this instance, the first-order perturbation of vR will not involve any components of A in
which suffix 1 appears at least once, i.e., no components of A other than a22, a23, a24, a33, a34 and a44

will affect the first-order perturbation of vR. For more discussion on work [14] refer to [17].

In the comparative orthorhombic medium whose elasticity tensor is COrth, the polarization ratio
is given by

rOrth
R =

√
C33V Orth

R

C22C33 − C2
23 − C33V Orth

R

, (13)

where V Orth
R = ρ

(
vOrth
R

)2 and vOrth
R satisfies (9) and (10) (cf. [13]).

Theorem 3 In an elastic medium whose elasticity tensor C is given by (6), the polarization ratio
of Rayleigh waves which propagate along the surface of the half-space x3 ≤ 0 in the direction of the
2-axis can be written, to within terms linear in the perturbative part A of C, as

rR = rOrth
R + η22(vOrth

R ) a22 + η23(vOrth
R ) a23 + η33(vOrth

R ) a33 + η44(vOrth
R ) a44, (14)
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where

η22(v) =
−C33C44

√
C44 − V

2E(v)

[
(C22C33 − C2

23)
2 − 2(C22C33 − C2

23)C33V + (C2
33 − C2

23)V
2
]
,

η23(v) =
C23

√
C44 − V

E(v)

[
(C22C33 − C2

23)
2C44 − 2(C22C33 − C2

23)C33C44V + (C33 − C22)C33C44V
2
]
,

η33(v) =
√

C44 − V

2C33E(v)

[
2C22(C22C33 − C2

23)
2C33C44

−(C22C33 − C2
23)

(
(C22C33 − C2

23)(2C22C33 + C2
23) + 4C22C

2
33C44

)
V

+C33

(
2(C22C33 − C2

23)(2C22C33 + C2
23) − C22(C22C33 + C2

23 − 2C2
33)C44

)
V 2

−C33

(
C22C33(2C33 − C44) + C2

23(C33 − 2C44)
)
V 3

]
,

η44(v) =
C22C33 − C2

23

2C44D(v)

√
C33(C22C33 − C2

23 − C33V )V ,

E(v) =
√

C44(C22 − V )(C22C33 − C2
23 − C33V )V D(v)V

and D(v) is given in (12) and V = ρv2.

Remark 4 Only four components a22, a23, a33 and a44 of the perturbative part A of C can affect
the first-order perturbation of the polarization ratio rR. These are the same as the components that
affect the first-order perturbation of the phase velocity vR (cf. Theorem 1). We observe that these
components, together with a24 and a34, constitute the elasticity tensor pertaining to two-dimensional
anisotropic elasticity in the 2-3 plane.

2 Bleustein-Gulyaev waves in piezoelectricity

2.1 Introduction

Piezoelectric materials have been used in many engineering devices because of their intrinsic direct and
converse piezoelectric effects that take place between electric fields and mechanical deformations [10,
12, 18]. In the system of the constitutive equations, the mechanical stress and the electric displacement
are related to the mechanical displacement and the electric potential through the elasticity tensor,
the piezoelectric tensor and the dielectric tensor, and it is the piezoelectric tensor through which the
elastic fields and electric fields can be coupled with each other.

When the piezoelectric material has a hexagonal symmetry, which means that the material has
one 6-fold symmetry axis, a subsonic surface wave called the Bleustein-Gulyaev (BG) wave [2, 6]
propagates along the surface of a piezoelectric half-space, provided that the 6-fold symmetry axis lies
on the surface, the propagation direction on the surface is perpendicular to the 6-fold axis, and that
the mechanically-free and electrically-closed boundary condition is imposed at that surface. Its phase
velocity is written explicitly in terms of the aforementioned three material tensors.

Now we give a perturbation to the three material tensors of the piezoelectric half-space of hexag-
onal symmetry. This perturbation consists of a perturbative part of the elasticity tensor (which has
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21 components, see (5)), a perturbative part of the piezoelectric tensor (has 18 components) and a
perturbative part of the dielectric tensor (has 6 components), for which we do not assume any ma-
terial symmetry. We then observe how these perturbative tensors (which have 45 components in all)
affect the phase velocity of BG waves that propagate along the surface of the piezoelectric half-space.

We present a first order perturbation formula for the velocity of BG waves, which expresses the
shift in the velocity from its comparative value for the piezoelectric half-space of hexagonal symmetry,
caused by the aforementioned perturbative parts of the three tensors. The formula is correct to within
terms linear in those perturbative parts of the tensors, and proves a somewhat surprising fact; only
a few components of the perturbative parts of the tensors can affect the first order perturbation of
the phase velocity of BG waves.

This section is a brief sketch of the collaborating work [11] with Gen Nakamura (Hokkaido Uni-
versity, Japan) and Xiang Xu (Zhejiang University, China).

2.2 Preliminaries

In the Cartesian coordinate system x = (x1, x2, x3), the mechanical stress tensor σ =
(
σij

)
i,j=1,2,3

and the electric displacement D = (D1, D2, D3) are related to the mechanical displacement u =
(u1, u2, u3) and the electric potential φ by the following constitutive equations:

σij =
3∑

k,l=1

Cijkl
∂uk

∂xl
+

3∑
l=1

eijl
∂φ

∂xl
, i, j = 1, 2, 3, (15)

Dj =
3∑

k,l=1

eklj
∂uk

∂xl
−

3∑
l=1

εjl
∂φ

∂xl
, j = 1, 2, 3.

Here C = (Cijkl)i,j,k,l=1,2,3 is the elasticity tensor, e = (eijl)i,j,l=1,2,3 is the piezoelectric tensor, and
ε = (εjl)i,l=1,2,3 is the dielectric tensor. Hence the elastic and electric fields are coupled through the
piezoelectric tensor.

These three tensors C, e, and ε satisfy the following symmetry conditions:

Cijkl = Cjikl = Cklij , eijl = ejil, εjl = εlj , i, j, k, l = 1, 2, 3.

We assume that the internal energy function is positive, which implies the following positivity con-
ditions for C and e:

3∑
i,j,k,l=1

Cijkl sij skl > 0,

3∑
j,l=1

εjl Ej El > 0

for any non-zero 3 × 3 real symmetric matrix (sij) and for any non-zero real vector (E1, E2, E3).
The equations of mechanical motion with zero body force and the equation of electric equilibrium

with zero free charge are given by

3∑
j=1

∂σij

∂xj
= ρ

∂2ui

∂t2
, i = 1, 2, 3 and

3∑
j=1

∂Dj

∂xj
= 0, (16)

respectively, where ρ is the uniform density. Substituting (15) into the preceding equations leads us
to a system of the equations for the unknowns u = (u1, u2, u3) and φ.
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Let m and n be orthogonal unit vectors in R3, and consider surface waves in the piezoelectric half-
space n ·x ≤ 0 which propagate along the surface n ·x = 0 in the direction of m, decay exponentially
as n ·x −→ −∞, and satisfies the “mechanically-free and electrically-closed (or, grounded) condition”

3∑
j=1

σijnj = 0 (i = 1, 2, 3) and φ = 0 at n · x = 0. (17)

Lothe and Barnett [8, 9] extended the Stroh formalism to piezoelectricity, which allows us to write
the time-harmonic solution to (16) that describes such surface waves in the following form

(
u
φ

)
=

4∑
α=1

cα aα e−
√
−1 k(m·x+pαn·x−v t), (18)

where k is the wave number, aα = aα(v) ∈ C4 and pα = pα(v) ∈ C with Im pα > 0 (1 ≤ α ≤ 4) are
determined from the equations (16), whereas the phase velocity v and cα = cα(v) ∈ C (1 ≤ α ≤ 4)
are determined from the boundary condition (17).

We assume that the piezoelectric medium has a hexagonal symmetry, which means that the
medium has one 6-fold symmetry axis¶. Let the 3-axis be the 6-fold axis. Then the elasto-piezo-
dielectric matrix is written as

Phex =
(
Phex

)T =




C11 C12 C13 0 0 0 0 0 e23

C12 C11 C13 0 0 0 0 0 e23

C13 C13 C33 0 0 0 0 0 e33

0 0 0 C44 0 0 e41 e42 0
0 0 0 0 C44 0 e42 −e41 0
0 0 0 0 0 C11−C12

2 0 0 0
0 0 0 e41 e42 0 −ε22 0 0
0 0 0 e42 −e41 0 0 −ε22 0

e23 e23 e33 0 0 0 0 0 −ε33




, (20)

where we have used the contracted notation (Voigt notation) which expresses the tensors C, e and ε

in terms of a 9 × 9 matrix as shown above.‖

2.3 Bleustein-Gulyaev waves and their perturbations

When the 6-fold axis lies on the surface of the piezoelectric half-space, a subsonic surface wave called
the Bleustein-Gulyaev (BG) wave propagates along that surface in the direction perpendicular to the
6-fold axis. Let us take m = (1, 0, 0) and n = (0, 1, 0).

¶In this case, besides the relation (3), relations

eijl =

3
X

p,q,r=1

Qip Qjq Qlr epqr (i, j, l = 1, 2, 3), εjl =

3
X

p,q=1

Qjp Qlq εpq (j, l = 1, 2, 3) (19)

hold for the orthogonal tensor Q = (Qij)i,j=1,2,3 corresponding to a right-handed rotation by the angle 2π/6 around that
axis. A piezoelectric medium of hexagonal symmetry is proved to be transversely isotropic with its 6-fold axis being an
axis of rotational symmetry, which implies that (3) and (19) hold for the orthogonal transformation Q = (Qij)i,j=1,2,3

corresponding to a right-handed rotation by an arbitrary angle around the axis of rotational symmetry.
‖For the subscript ij (the first two indices) of eijl ∈ e we have used the same rules as have been adopted in (4) and

(5). Then the elasto-piezo-dielectric matrix is defined as a 9× 9 symmetric matrix

"

`

Cαβ

´ `

eαl

´

`

eαl

´T − (εjl)

#

. We do not use

these rules for the subscript of ε.
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Proposition 5 ([2, 6]) Suppose that e42 �= 0. There exists a surface wave which propagates along
the surface x2 = 0 of the piezoelectric half-space x2 ≤ 0 in the direction of the 1-axis and which satisfies
a mechanically-free and electrically-closed condition at the boundary, i.e., (σi2)i↓1,2,3 = 0 and φ =
0 at x2 = 0. Its phase velocity v = vhex

B is given by

V hex
B = ρ

(
vhex
B

)2 =
C44

(
C44 + 2

e42
2

ε22

)

C44 +
e42

2

ε22

. (21)

The setting of the theorem implies the existence of another surface wave which is determined only
from the elastic part (Cαβ) of Phex, i.e., the upper left hand 6×6 block of (20). This is a surface wave
whose solution (18) has the fourth component being zero (i.e., φ = 0), and agrees with the Rayleigh
wave in a transversely isotropic elastic medium. In fact, Lothe and Barnett [8, 9] proved that

• For fixed orthogonal unit vectors m and n in R3, there are at most two surface waves that
satisfy the mechanically-free and electrically-closed boundary condition (17).

and the argument therein implies that

• Existence condition of the surface waves is stable under a perturbation of material constants.

Now we give a perturbation to the material constants of the piezoelectric medium of hexagonal
symmetry whose elasto-piezo-dielectric matrix is Phex (20). This perturbation is expressed as a
perturbative elasto-piezo-dielectric matrix Pptb:

Pptb =
(
Pptb

)T =




a11 a12 a13 a14 a15 a16 f11 f12 f13

a22 a23 a24 a25 a26 f21 f22 f23

a33 a34 a35 a36 f31 f32 f33

a44 a45 a46 f41 f42 f43

a55 a56 f51 f52 f53

a66 f61 f62 f63

−δ11 −δ12 −δ13

−δ22 −δ23

−δ33




.

Namely, the upper left hand 6× 6 block is the perturbative part of the elasticity tensor C, the upper
right hand 6× 3 block is the perturbative part of the piezoelectric tensor e, and the lower right hand
3×3 block is the minus of the perturbative part of the dielectric tensor ε, for which we do not assume
any material symmetry. Hence the 45 components in the upper triangular part of matrix Pptb are
generally all independent.

We consider BG waves in a piezoelectric half-space whose elasto-piezo-dielectric matrix is given
by Phex + Pptb, and present a perturbation formula which shows how Pptb affects the phase velocity
of BG waves from its comparative value vhex

B for the piezoelectric half-space of hexagonal symmetry.

Theorem 6 Suppose that vhex
B �= vR, where vR is the velocity of Rayleigh waves determined from the

upper left hand 6 × 6 block in Phex. In a piezoelectric medium whose elasto-piezo-dielectric matrix is
given by Phex + Pptb, the phase velocity vB of BG waves which propagate along the surface x2 = 0 of
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the piezoelectric half-space x2 ≤ 0 in the direction of the 1-axis and which satisfies a mechanically-free
and electrically-closed condition at x2 = 0 can be written, to within terms linear in the perturbative
part Pptb, as

VB = ρ (vB)2 = V hex
B + P1 f42 + P2 f51 + D1 δ11 + D2 δ22 + E1 a44 + E2 a55, (22)

where V hex
B is given by (21) and the coefficients Pi, Di and Ei (i = 1, 2) are written by

P1 =
−2 C44 e42

5

(C44 ε22 + e42
2)2 (C44 ε22 + 2 e42

2)
, P2 =

2C44 e42

C44 ε22 + 2 e42
2
,

D1 =
−C44

2 e42
2

(C44 ε22 + e42
2) (C44 ε22 + 2 e42

2)
, D2 =

−C44
2 e42

4

(C44L ε22 + e42
2)2 (C44 ε22 + 2 e42

2)
,

E1 =
e42

4

(C44 ε22 + e42
2)2

, E2 = 1.

Remark 7 Only two components f42, f51 of the perturbative part of the piezoelectric tensor e, two
component δ11, δ22 of the perturbative part of the dielectric tensor ε and two components a44, a55 of the
perturbative part of the elasticity tensor C can affect the first-order perturbation of the phase velocity
vB of BG waves that propagate in the direction of the 1-axis on the surface of the half-space x2 ≤ 0.
For an interpretation of this fact, we refer to Page 59 of the presentation slides.

Remark 8 In the formula (22), aαβ, fαl and δjl have different units. However, the formula can be
justified by regarding (aαβ), (fαl) and (δjl) as sufficiently small compared with C, e and ε, respectively.

For instance, the term P1 f42 in (22) can be rewritten as
−2C44

„

e42
2

ε22

«3

“

C44+
e42

2

ε22

”2“

C44+2
e42

2

ε22

”

· f42

e42
, whose unit is

pascal (cf. also (21)).
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