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Preface

These are the proceedings of the workshop “Non-destructive inspection for concrete struc-
tures and related topics”, held at IMI, Kyushu University, from October twenty third to
October twenty sixth, 2018. During the workshop, the following researches were reported
and lively discussions were had on them.

• Dr. Kenji Hashizume : Development and operation of the non-destructive inspection
devices for road structures.

• Prof. Cheng Hua : Introduction and Application of CED-based Fracture Mechanics

• Takashi Takiguchi : Structure of the least square solutions and its application to non-
destructive inspections

• Prof. Takayuki Ochi : A non-destructive inspection for the reinforcing steel in RC
structures by electromagnetic induction method

• Prof. Manabu Machida : Nondestructive inspection of biological tissue by optical
tomography

• Mr. Toshiaki Takabatake : Exact probe of the reinforcing steel in RC structures by
application of ultrasonic CT

On the first day of the workshop, Doctor Kenji Hashizume gave a talk to introduce the in-
spection techniques for the expressways developed by West Nippon Expressway Engineering
Shikoku Company Limited. It is surprising that his talk necessarily contains new technology
developed by West Nippon Expressway Engineering Shikoku Company Limited every year.
In his talk, we created a new research task that non-integer dimensional analysis for the
cracks on the road is very important to predict the outbreaks of the potholes.

In the morning on the second day, Professor Cheng Hua gave a talk on the problem “How
to give a mathematical representation of the crack propagation in viscoelastic composite
materials”, which may be a key research to predict when and where a pothole breaks out on
the expressway happens. He proposed a mathematical treatment how to develop the CED
method in order for it to be applied for viscoelastic crack propagation. During his talk, many
questions are asked on the future development of the modification of CED method and lively
discussions were had on this problem.

In the afternoon, the organiser introduced his research on the structure of the least square
solutions to overdetermined systems, which would be applied in the theories by Prof. Ochi
and by Mr. Takabatake in this workshop. The structure introduced in this talk will also play
an important role in 3D reconstruction of asteroids by 2D pictures, which shall be studied
in our forthcoming workshops.
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In the morning on October 25th, Professor Takayuki Ochi presented how to detect the
exact position of the rebar in RC (reinforced concrete) structures, which is recognized as a
difficult open problem in the study of concrete structures for the time being. In this study,
a device with electromagnetic induction was applied for the measurement of the position
of the rebar and inaccuracy of the measurements were modified by application of the least
square solution based on the theory of the organizer’s talk. This work was based on the
collaboration among architecture (Ochi), mathematics (Takiguchi) and a private company
(Hashizume and Takabatake).

In the afternoon, Professor Manabu Machida introduced his research on the development
of optical tomography. X-ray CT and MRI being superior non-invasive inspection technique,
their costs are very expensive and negative effects of the X-ray to human body and the
environment cannot be ignored, in view of which, new non-invasive technologies are under
investigation. In this talk, Prof. Machida presented inverse problems of the transport
equation for the development of optical tomography, where approximation of the transport
equation by a diffusion equation was studiously discussed.

On the final day, Mister Toshiaki Takabatake talked about exact probe of the rebar in RC
structures by ultrasonic measurements, where the improvement of Prof. Ochi’s talk was at-
tempted. In this talk, the structure of the least square solutions presented by the organizer on
the second day played an important part. This work was based on the industry-academia col-
laboration among a private company (Hashizume and Takabatake), mathematics (Takiguchi)
and architecture (Ochi).

In this workshop, we have created new research tasks to be solved by industry-academia
and interdisciplinary collaboration. We wish that we would have more opportunities to hold
such workshops to study these important problems. We also hope that such collaboration
be much more popular.

At the end of Preface, I would express my gratefulness to Ms. Kazuko Ito and Ms.
Chiemi Furutani, the secretaries of this workshop, for their help.

January 26, 2019

Takashi Takiguchi
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October 23-26, 2018
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744 Motooka, Nishi-ku Fukuoka 819-0395, Japan

October 23, Tuesday
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(Chair: C. Hua)

14:00-15:30 Kenji Hashizume
(West Nippon Expressway Shikoku Engineering Company Limited, Japan)
Development and operation of the non-destructive inspection devices
for road structures

15:30-16:30 Discussion

October 24, Wednesday
(Chair: T. Ohe)

11:00-12:30 Cheng Hua (Fudan University, China)
Introduction and Application of CED-based Fracture Mechanics

12:30-14:00 Discussion over lunch

14:00-15:30 Takashi Takiguchi (National Defense Academy of Japan, Japan)
Structure of the least square solutions
and its application to non-destructive inspections

15:30-16:30 Discussion

October 25, Thursday
(Chair: T. Takiguchi)

11:00-12:30 Takayuki Ochi (Shikoku Polytechnic College, Japan)
A non-destructive inspection for the reinforcing steel
in RC structures by electromagnetic induction method

12:30-14:00 Discussion over lunch

14:00-15:30 Manabu Machida (Hamamatsu University School of Medicine, Japan)
Nondestructive inspection of biological tissue by optical tomography

15:30-16:30 Discussion
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11:00-12:30 Toshiaki Takabatake
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by application of ultrasonic CT

12:30-14:00 Discussion over lunch

14:00 Closing
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Takashi Takiguchi (National Defense Academy of Japan)

Supported by:

IMI, Kyushu University
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Introduction and Application of CED-based Fracture Mechanics 

 
Cheng Hua 

Department of Aeronautics and Astronautics, Fudan University, Shanghai, China 
 
 
Abstract: The CED (Crack Energy Density) [1] is introduced as the crack parameter which has the 
meanings of strain energy density per unit area for a completely sharp crack as the limit where the 
notch radius approaches zero in a notch model. The CED can be defined in an arbitrary direction at a 
crack tip and is a potential parameter for describing fracture behavior of a mixed-mode crack. It has 
also been expected as a crack parameter which controls fracture behavior in different material media. 
The CED in an arbitrary direction [2] is often evaluated by path-independent region integral or load-
displacement curves. However, there is the need to compute stress and strain near crack tip even in 
elastic stage and this makes us uneasy to find the numerical result of the CED. On the other way, we 
can get relative accurate numerical result of CED through load-displacement curves, but it is not so 
clear about the difference between the two evaluations.  

In this report, by introducing basic concepts and potential applications of CED-based fracture me-
chanics, it is shown that the CED in an arbitrary direction of a crack in an inhomogeneous material 
under monotonically increasing load can be evaluated by a new path-independent integral, including 
the case of the evaluation of CED by load-displacement curves. The new evaluation can also be ex-
pected to obtain practical accuracy about the CED and useful to evaluate CED in an arbitrary direction 
of a crack. Through the new evaluation, it also becomes to be clear about the difference between the 
evaluations of CED by path-independent region integral and by load-displacement curves. 

 

Keywords:  Crack Energy Density; mixed-mode crack; fracture mechanics parameter; path-inde-
pendent integral 
 
 
References
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[2] T. Utsunomiya and K. Watanabe (1993), “Fracture Criterion of a Mixed-mode Crack based on CED (Crack 
Energy Density) ”, Nuclear Engineering and Design, 142: 101-111. 
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Structure of the least square solutions and
its application to non-destructive inspections

Takashi TAKIGUCHI∗

Abstract

In this article, we study the structure of the least square solutions to over deter-
mined systems, by which we establish how to approximately solve overdetermined
systems established by practical requirement. We also mention that our main the-
orem, the structure of the least square solutions, plays an important role for non-
destructive inspection for reinforced concrete structures.

Keywords: least square solution, non-destructive inspection, inverse problems

2010 Mathematics Subject Classification ; Primary 65F20, Secondary 35R30

∗Department of Mathematics, National Defense Academy of Japan, 1-10-20, Hashirimizu, Yokosuka,
Kanagawa, 239-8686, JAPAN. email: takashi@nda.ac.jp
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1 Introduction

In this article, we study the structure of the least square solutions to the following
overdetermined system ⎧⎨⎩

F1(x1, x2, · · · , xn) = 0
· · ·

Fm(x1, x2, · · · , xn) = 0
(1)

where Fj’s are general functions and m >> n.
We apply its structure and study how to solve the following overdetermined system⎧⎨⎩

(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = r21

· · ·
(x− xn)

2 + (y − yn)
2 + (z − zn)

2 = r2n

(2)

for n >> 3, which plays an important role for a non-destructive inspection to probe the
precise position of the rebar in the reinforced concrete structures.

We also mention other applications of the structure of the least square solutions to
the system (1), to some non-destructive inspections.

This article consists of the following sections.

§1. Introduction

§2. Main theorem

§3. Applications

§4. Conclusion

In this section, as the introduction of this article, we introduce the outline of our
article as well as the main problem in this article, how to give the least square solutions
to the overdetermined system (1).

In the next section, we study the main problem and give the main theorem in this
article. Roughly summing up, our theorem reads that if we can derive an overdetermined
system of linear equations from the system (1) by equivalent deformations. then we can
easily obtain the least square solution to the original system (1). We also mention the
merits of our main theorem from both viewpoints of theory and practice.

In the third section, we study application of our main theorem in practice. We study
how to detect the endpoints of the rebar in reinforced concrete (‘RC’ for short) structures.
For the time being, there being no non-destructive inspection technique to exactly probe
the rebar for reinforcement, the results in this section are very important for the mainte-
nance of RC structures. Detection of the exact position of the rebar is closed related to
the development of ultrasonic tomography for RC structures, as a part of which, we shall
also introduce how to inspect the cover concrete for reinforcement by application of the
principle of ultrasonic tomography. The author claims that the results in this section are
also very important for the maintenance of RC structures.

In the final section, we shall summarize our conclusions in this article.
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2 Main theorem

In this section, we study the structure of the least square solutions to the system (1),
which is formulated as;

Problem 2.1. Give the least square solutions to the system (1).

For the system (1) the following proposition clearly holds.

Proposition 2.1. If xxx ∈ R
n is a solution to (1) then it is also a solution to a system

derived from the system (1) by equivalent deformations.

Conversely, by Proposition , we obtain the following proposition.

Proposition 2.2. If the solution to a system derived from the system (1) by equivalent
deformations is unique then it must be the unique solution to (1). In this case, it is also
proved that the system (1) has the unique solution.

It is not unusual in practice that the system (1) itself is an overdetermined system
of linear equations. or an overdetermined system of linear equations is derived from the
system (1) by equivalent deformations. An example of the former one is G. N. Hounsfields
overdetermined system of linear equations, for which confer [4]. As an example of the
latter, we take (2), where if we subtract j-th equation from i-th equation then we obtain

an overdetermined system of m(m−1)
2

linear equations. In this article, we focus on the
case where the system (1) itself is an overdetermined system of linear equations. or an
overdetermined system of linear equations is derived from the system (1) by equivalent
deformations.

Assume that a system of k ≥ m linear equations⎧⎪⎪⎨⎪⎪⎩
a11x1 + a12x2 + · · ·+ a1nxn = s1,
a21x1 + a22x2 + · · ·+ a2nxn = s2,

· · · · · · · · ·
ak1x1 + ak2x2 + · · ·+ aknxn = sk

(3)

or equivalently
Axxx = sss (4)

is obtained derived from the system (1) by equivalent deformations.
In practice, the system (1), itself, would not be obtained. By errors and noises, what

we can obtain is the system (1) with a small error in each equation, consequently, we
obtain a following overdetermined system (5) of linear equations;⎧⎪⎪⎨⎪⎪⎩

a11x1 + a12x2 + · · ·+ a1nxn = s̃1,
a21x1 + a22x2 + · · ·+ a2nxn = s̃2,

· · · · · · · · ·
ak1x1 + ak2x2 + · · ·+ aknxn = s̃k

(5)

or equivalently
Axxx = s̃ss, (6)

where s̃i = si + εi with small εi for 1 ≤ i ≤ k.
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It is often the case that the derived overdetermined system (3) must theoretically have
the unique solution if no errors and noises are included, henceforth so must the original
system (1) by Proposition 2, but because of the errors and noises the system (1) with
errors and noises becomes to allow no solution, consequently, neither does the derived
linear system (5).

In this article, we assume the following;

Assumption 2.1. In the system (1), we assume the following; it is possible derive an
overdetermined linear system (3) which allows the unique solution.

By Assumption 2.1 we have

Proposition 2.3.
rankA = n, (7)

where the matrix A is defined in (4) and (6).

and

Proposition 2.4. The solution to the overdetermined system (1) is unique.

In order to construct an approximate solution, we study the overdetermined system
(5).

If the system (3) allows a solution xxx if and only if

Axxx− sss = 000. (8)

In view of (8), we define

Definition 2.1. A vector xxx ∈ R
n is called as a least square solution to (3) (or (4)) if and

only if it minimizes the norm
‖Axxx− sss‖ (9)

Let us review the basic theory for the least square solutions to a system of linear
equations. Let us study the following system of linear equations.

Problem 2.2. Solve the following system of linear equations in y1, y2, · · · , yn.⎧⎪⎪⎨⎪⎪⎩
b11y1 + b12y2 + · · ·+ b1nyn = s1,
b21y1 + b22y2 + · · ·+ b2nyn = s2,

· · · · · · · · ·
bm1y1 + bm2b2 + · · ·+ bmnyn = sm,

(10)

or equivalently
Byyy = sss, (11)

where B is the matrix in (10), yyy = t(y1, y2, · · · , yn) and sss = t(s1, s2, · · · , sm).
For the least square solutions to the system (10), the following propositions are known

to hold.

Proposition 2.5. Let Mmn(R) be the set of m × n matrices whose components are real
numbers. For B ∈ Mmn(R), the following conditions are equivalent.
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(i) yyy ∈ R
n is a least square solution to (10).

(ii) For any zzz ∈ R
n, there holds

〈Bzzz,Byyy − sss〉Rm = 0 (12)

where 〈·, ·〉Rm represents the inner product in R
m.

(iii) There holds the following equation.

tBByyy − tBsss = 000. (13)

Confer [2], for the proof of this proposition. The following proposition is clear from
the condition (iii) in Proposition 2.5.

Proposition 2.6. If rank(B) = n, for B ∈ Mmn(R), then the least square solution to the
system (3) is uniquely given by the unique solution to the following system;

tBByyy = tBsss. (14)

In fact, we can prove that rank(B) = rank( tBB), though we omit its proof. The
condition rank(B) = n is equivalent to the one that matrix tBB is regular, in other
words, tBB has its inverse.

The least square solutions to the system (10) has strong relation with the practical-
ization of CT, for which, confer [4].

Let us go back to study the system (5). By Assumption 2.1 and Proposition 2.6, we
have

Theorem 2.1. The least square solution to (10) is unique.

By Assumption 2.1 and Proposition 2.2, the systems (1) and (5) has the same unique
solution, and the least square solution to (10) is an approximate solution to the original
system (1). Therefore, we have proved that

Theorem 2.2. In order to construct an approximate solution to an overdetermined system
(1) with errors and noises, if Assumption 2.1 is satisfied, then the least square solution to
the system (10) gives what is required.

Remark 2.1. Assume that the unique solution to the system (1) is xxx and there exists
xxx′ �= xxx satisfying F (xxx′) ≈ 0 for all j = 1, 2, · · · ,m. In this case, if we directly give a least
square solution to the original system (1) with errors and noises, it may approximate xxx′,
not xxx which is required. In the case where Assumption 2.1 is satisfied, it is much better
to give the least square solution to the system (10) than to give a least square solution
to the original system (1). In the treatment of the system (10) of linear equations, such
kind of confusion would never happen.
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3 Applications

In this section, we first discuss how to detect the exact position of the rebar in RC
structures. We note that there many researches to detect the rebar in RC structures, for
example, [1, 5], there exists no non-destructive technique to exactly probe the rebar.

Assume that a cuboid RC structure contains, in its interior, a rebar which locates
parallelly or perpendicularly to each edge surface. Confer Figure 1 for its image.

Figure 1: A cuboid test piece

In Figure 1, we set the axes as shown. We first reconstruct the endpoints of the
rebar. For the reconstruction of the endpoint b in Figure 1, we take many observation
points on the edge surface B and its around and measure the thickness of concrete cover,
equivalently the distance between the observation and the endpoints. We let the endpoint
b = (x, y, z) and take n observation points (x1, y1, z1), · · · , (xn, yn, zn), whose distances
from the endpoint b are measured as r1, · · · , rn, respectively. We shall explain how to
take the observation points in the real structure in the next section.

By measurement, we obtain an overdetermined system (2)of quadratic equations, how-
ever, it is well known that it is impossible to measure the thickness of concrete cover by
the existing devices. Henceforth all measurements necessarily contain errors and noises.
Therefore, we have make an approximate solution of the system (2) with errors and noises,
where we can apply our main theorem, Theorem 2.2 since by subtracting i-th equation
in system (2) by the j-th one and dividing the both hand sides of the difference by 2, we

obtain the overdetermined system of n(n−1)
2

linear equations;

(xi − xj)x+ (yi − yj)y + (zi − zj)z =
1

2
(x2

i + y2i + z2i − x2
j − y2j − z2j + r2j − r2i ). (15)

For more detail of this analysis, as well as its practical background, confer the papers
by Prof. Ochi and Mr. Takabatake in these proceedings.

Let us turn to how to inspect concrete cover for reinforcement by ultrasound mea-
surement. By the detection of the endpoints of the rebar and scanning on the surface of
the structure by the device to measure the thickness of concrete cover by electromagnetic
induction, yields the exact position of the rebar, in other words, by application of our
main theorem we can correct the exactness of the measurement. If the exact position of
the rebar in the interior of an RC structure is given, then non-destructive inspection of
the concrete cover by application of an ultrasonic tomography is possible, for which confer
[3].
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4 Conclusion

As the closing of this article, we summarize the conclusion.

Conclusion 4.1 (Conclusion).

(i) We have studied the structure of the least square solution to overdetermined systems
(Theorem 2.2).

(ii) We have developed a non-destructive inspection technique to exactly probe the rebar
by application of an apparatus to measure thickness of concrete cover for reinforcing
steel by electromagnetic induction method, application of which makes it possible to
non-destructively inspect the concrete cover for reinforcement by application of an
ultrasonic tomography (Section 3).
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It being not easy to give the unique least square solution to the system (1),
we gave the unique least square solution to the following equivalent
system (2) of (1), which consists of n(n 1)

2 linear equations;

(xi x j)x (yi y j)y (zi z j)z
1
2
(x2i y2i z2i x2j y2j z2j r2j r2i )

(2)
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1. Introduction

Motivation of this study

(x x1)2 (y y1)2 (z z1)2 r2
1

(x xn)2 (y yn)2 (z zn)2 r2n
(1)
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2. Study of Problem 1.1

Assume that
F1(x1 x2 xn) 0

Fm(x1 x2 xn) 0
(3)

has a solution, where m n, Fj j 1 2 n, are continuous.
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Problem 1.1

(i) Relation between the least square solutions to the systems (1) and
(2).

(ii) Can the the least square solutions to the system (2) be alternatives of
that to the system (1)?
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Proposition 2.2

If the solution to (4) is unique then it must be the unique solution to (3). In
this case, it is also proved that the system (3) has the unique solution.
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Let us study the system of m(m 1)
2 equations;

CiFi(x1 x2 xn) CjF j(x1 x2 xn) 0 (4)

Proposition 2.1

If xxx is a solution to (3) then it is also a solution to (4).

Takashi TAKIGUCHI National Defense Academy of Japan

Structure of the least square solutions and its application to non-destructive inspections

－113－



Introduction Study of Problem 1.1 Application ND inspection of concrete cover Conclusion

Let us turn to the system of m(m 1)
2 equations;

CiFi(x1 x2 xn) CjF j(x1 x2 xn) Ci i C j j (6)

Proposition 2.3

If xxx is the unique LSS to (6) then it must be very close to a solution to (4).
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Let us turn to LSSs to the system

F1(x1 x2 xn) 1

Fm(x1 x2 xn) m

(5)

It is trivial that any LSS of (5) is very close to the real solution xxx0 of (3).
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Problem 2.5

Solve the following overdetemined system of linear equations in x1 x2 xn.

a11x1 a12x2 a1nxn s1
a21x1 a22x2 a2nxn s2

am1x1 am2x2 amnxn sm

(7)

Axxx sss (8)

where m n.
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By virtue of Propositions 2.1, 2.2 and 2.3,

Theorem 2.4

If the LSS to the system (6) is unique then it must be an approximate
solution to the system (3).

Applying Theorem 2.6, we propose a procedure to construst a suitable
approximate to the solution to the system (3) out of the obserbation with
noises and errors, namely, out of the system (5).
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Theorem 2.6

For A Mmn( ),
(i) there exists at least one LSS to (7) for any sss m.
(ii) Furthermore, if m n and rank(A) n then the solution to (7) is

unique.
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The equation (7) allows the unique solution xxx if and only if

Axxx sss 000

A vector xxx n is called as a least square solution to (7) (or (8)) if and
only if it minimizes the norm

Axxx sss
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Corollary 2.8

If tAA is regular then the LSS to (7) is unique.
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Lemma 2.7

For A Mmn( ), the following conditions are equivalent.
(i) xxx n is a LSS to (7).
(ii) (Azzz Axxx sss) 0 for any zzz n.
(iii) There holds the following equation.

tAAxxx tAsss 000 (9)

Back
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Lemma 2.11

For any A Mmn( ) and sss m, there always exists a solution to (9).
Futhermore, if m n and rank(A) n then the solution to (9) is unique.
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Lemma 2.9

For any A Mmn( ),

rank(tAA) rank(A)

Corollary 2.10

Let A Mmn, m n. If rank(A) n then tAA is regular.
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Example

x y 3
x y 1
x 2
x 0

y 2
y 0

(11)
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Idea of the proof

U1 : tAsss sss m U2 : tAAxxx xxx n (10)

U1 U2

rank(tAA) rank(A) dimU1 dimU2
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Theorem 2.12

If the system (3) can be transformed into the system of linear equations (7)
or (8 A is regular by equivalent deformation, then
the unique LSS to the system (7) or (8) turns out to be an approximate
solution to the system (3).
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tAAxxx 2 1
1 2

x
y

3
3

tAsss

x y 1
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(I) Tomography

an English electrical engineer
developed the diagnostic technique of X-ray computerized
tomography (CT)
received the Nobel Prize in Physiology or Medicine in 1979
(with Allan McLeod Cormack)
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3. Application of LSS

(I) Tomography

(II) Probe of the reinforcing steel in RC structures
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Mathematical model of CT
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Other awards, titles and so on

elected to the Royal Society in 1975

appointed Commander of the British Empire in 1976

awarded the Howard N. Potts Medal in 1977

knighted in 1981

: a quantitative measure of radiodensity used in evaluating
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Mathematical problem of CT

Reconstruct the function f (x y) from the data

l
f (x y)dl l is a line in 2
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I(x dx) I(x) f (x)I(x)dx

I (x) f (x)I(x)

log I(a) log I(b)
b

a
f (x)dx
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An inversion formula for the Radon transform

For f (x) n and n,

I f (x) : F 1( Ff ( ))(x)

F f ( ) :
n
e ix f (x)dx F 1 (x) : 1

(2 )n n
eix ( )d

I ( s) : F 1( ( ))(x)

F ( ) : e is ( s)ds F 1 ( s) : 1
2

eis ( )d
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The Radon transform

Let x n x s be a hyperplane in n,
where Sn 1 s 0.

Rf ( ) Rf ( s)
x s

f (x)dx
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Johann Karl August Radon

an Austrian mathematician whose doctoral dissertation was on the
calculus of variations
(in 1910, at the University of Vienna)

Uber die Bestimung von Funktionen durich ihre Integralwarte langs
gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig,
Math-Nat. 69 (1917), pp. 262-277.
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An inversion formula for the Radon transform

f (x) 1
2
(2 )1 nI R I n 1Rf (x) (12)

R (x) :
Sn 1

( x )d
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For n 2. Let 1 in (12) then the symmetry Rf ( s) Rf ( s) of
the Radon transform yields that

n 2

f (x) 1
0

Fx(q)
q

dq (14)

Fx(q) :
1
2 S1

Rf ( x q)d
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For n 3. Let 2 in (12) then

n 3

f (x) 1
8 2 S2

Rf ( x )d (13)
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Divide the picture into n pixels.

f (x y) g(x y)
n

j 1
xj c j(x y) (16)

where f (x y) is the density at (x y).
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A present-day algorithmic idea for CT

Let n 2 1 in (12)

f (x) 1
4
I 1

S1
Rf ( x )d (15)
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Problem 3.1

Solve the following system of linear equations in x1 x2 xn.

a11x1 a12x2 a1nxn s1
a21x1 a22x2 a2nxn s2

am1x1 am2x2 amnxn sm

(17)

Axxx sss (18)
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c j j 1 2 n : the pixels
Ii i 1 2 m : the projected X-rays
li : the line Ii passes through
ai j : li c j : the length of li c j
I0
i
I1
i
: strength of the X-ray Ii before and after

passing through the human body, respectively
si : log I0

i
log I1

i
x j : the density of the human body on the pixel c j
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ART

Figure 1: Image of ART
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On the data of the X-rays in (17)

m const 106 n 3 105

In the present-day CT, m 5 109 n 3 107 and
The pixel size in the present-day high precision CT is about ( a few
m )2.
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Take a suitable xxx0 n xxxk by

xxxk : Pxxxk 1 PmPm 1 P1xxxk 1 k 1 2

xxxH : lim
k

xxxk xxx (22)
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aaai : (ai1 ai2 ain) i 1 2 m (19)

Hi : ai1x1 ai2x2 ainxn si (20)

Hi : a hyperplane whose normal vector is aaai
Orthogonal projection Pixxx of xxx n to Hi is given by

Pixxx : xxx
aaai xxx si

aaai
aaai
aaai

(21)
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Outline of our experiments

Ultrasonic waves;

- The frequency of the ultrasonic waves is 54kHz.
- Velocity of the ultrasonic wave is denoted by V (m s).

Length of the test pieces;
We prepared test pieces of the length 100 200 300 400 800 and 1200mm
in order to check

- the decay of the acoustic velocity
- the propagation of the ultrasonic waves
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Ultrasonic CT

travel time is the shotest (which is called the fastest route) in the
cement paste, the mortar and the concrete.
In the concrete structures of the length less than 1200mm, there is no
decay of the speed of the ultrasonic waves with respect to the length.
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Table 1: Mix proportion of the test pieces
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Inclusions;
We prepared two types of test pieces of the size 100mm 100mm 400mm.

- Normal test pieces
- Test pieces with styrofoam 100mm 50mm (200 or 300mm) included
in their inside (cf. Figure 5 below)

These test pieces are made use of to study the propagation of the ultrasonic
waves.

Number of the test pieces;
We made three test pieces of each type mentioned above and have taken
the average of the observed values of three test pieces in each experiment.
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Experiment 1

Normal test pieces of cement paste and cement mortar.
In order to check the decay of the acoustic velocity in accordance with
the length of the test pieces.
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Figure 2: Length of the test pieces and inspection points
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Figure 4: Normal test pieces (age of 4 weeks)

Takashi TAKIGUCHI National Defense Academy of Japan

Structure of the least square solutions and its application to non-destructive inspections

Introduction Study of Problem 1.1 Application ND inspection of concrete cover Conclusion

Figure 3: Normal test pieces (age of a week)
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Experiment 2

Test pieces of the length 400mm (100mm 100mm 400mm) with
and without the styrofoam of the length 200 and 300mm included in
their inside.
In order to study how the ultrasonic waves propagate in the cement
paste and in the cement mortar.
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Property 3.2

The more time goes by, the harder the test pieces are (the reaction of
hydration).

(sand).

We can conclude that for the test pieces of the length less than 1200mm,

arriving time.
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In Experiment 2, the (formal) velocity V calculated by

V
length of the test piece (meters)

arriving time (seconds)
(23)

in the lower points is smaller than that of upper points (confer Table 2
below), applying which we studied the propagation of the ultrasonic waves
in the test pieces.

Takashi TAKIGUCHI National Defense Academy of Japan

Structure of the least square solutions and its application to non-destructive inspections

Introduction Study of Problem 1.1 Application ND inspection of concrete cover Conclusion

Figure 5: Test pieces with styrofoam
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Figure 6: Propagation of the ultrasonic waves in concrete
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Hypothesis 3.1

test pieces of the cement paste and the mortar.

In view of this hypothesis, we modify the velocities between the middle and
the lower points in the test pieces with stylofoam.

Takashi TAKIGUCHI National Defense Academy of Japan

Structure of the least square solutions and its application to non-destructive inspections

－137－



Introduction Study of Problem 1.1 Application ND inspection of concrete cover Conclusion

Table 2:
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For the lower points in the test pieces with styrofoam of the length 200mm,

V
0 406 (meters)

arriving time (seconds)
(24)

For the lower points in the test pieces with styrofoam of the length 300mm,

V
0 412 (meters)

arriving time (seconds)
(25)
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Figure 8: Mortar with styrofoam (age of 4 weeks)
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Figure 7: Cement paste with styrofoam (age of 4 weeks)
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The above point may result in that the velocities of the center and
lower points in the test pieces with the styrofoam are a little slower
than the counterparts in the test pieces without the styrofoam.
Remark that in the center points, the ultrasonic wave propagates
along the center of the test pieces, which may be prevented by the
styrofoam.
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Reviewexamination of the results of Experiment 2

as the test pieces without styrofoam.
-
aggregate is prevented by the styrofoam. (clearer in the test pieces of
mortar)

- We are afraid that the styrofoam may lie in the route shown in Figure 6,
which makes the ultrasonic wave go a longer way around.
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Problem 3.4

Let 3 be a domain and f (x) (x ) be the propagation speed of
the sound. For , we denote by a route from to through
. Reconstruct f (x) (x ) out of the data

min 1 f (x)d (26)

for .
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Conculusion 3.3 (Conclusion of Experiments 1 and 2)

the cement paste, the mortar and the concrete.
In the concrete structures of the length less than 1200mm, there is no
decay of the speed of the ultrasonic waves with respect to the length.
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Remark 3.6 (Importance of Problem 3.4 in mathematics)

It is a very interesting problem to establish an reconstruction formula for
Problem 3.4 in view of pure mathematics.

In view of both applied math and integral geometry, it is another interesting
problem in Problem 3.4 to determine the subset of where the
reconstruction is impossible because it has no intersection with any giving
(26).

In practice, we have to study various incomplete data problems of Problems
3.4 by the restriction arisen from various reasons in practical application,
which is interesting in view of pure mathematics (integral geometry with
incomplete data), applied mathematics and practice.
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Remark 3.5 (Remarks on Problem 3.4)

It is impossible to reconstruct the information of some points x
f (x) 3.3). However, it does not matter very
much. For some problems, we only focus on the part where the density is
relatively large, for others, the part where the density is relatively small can
be determined by the phenomena that the ultrasonic wave would not go
through it.

It is an interesting problem to determine the optimal subset reconstructible
by the acoustic CT established by the study of Problem 3.4.
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(II) Probe of the reinforcing steel
in RC structures

Figure 9: Test piece to probe the steel
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An algorithm for ultrasoic CT

Two iterative methods;
ART(Kaczmarz method) and iteration of its solution
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V : velocity in the steel, v : the one in the concrete
4000m s v 5200m s, 5500m s V 6500m s we assume v V

x
vh

V2 v2
L

Vh

V2 v2
(27)
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4. Non-destructive inspection of concrete cover for reinforcing steel

Figure 10: Propagation of ultrasonic waves in RC
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Determination of the average acoustic velocity in concrete

Oi(0 hi) hi h , Rj(r j 0) r j vh

V2 v2
0

Observation Oi Rj
Li j : the lengthof the segment, t i j: the travel time

v1
t i jLi j

t2
i j

(31)
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Determination of the acoustic velocity in the steel

V(t1 t0) l1 V(tn t0) ln (28)

(V(t1 t0) l1)2 (V(tn t0) ln)2 (29)

V
l1(t1 t0) ln(tn t0)
(t1 t0)2 (tn t0)2

(30)

Takashi TAKIGUCHI National Defense Academy of Japan

Structure of the least square solutions and its application to non-destructive inspections

－145－



Introduction Study of Problem 1.1 Application ND inspection of concrete cover Conclusion

Non-destructive inspection of concrete cover (2)

If the velocity in the segment QP is much larger than the homogenized
velocity
We doubt the damage by salt in the segment QP.
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Non-destructive inspection of concrete cover (1)

If the velocity in the segment QP is much smaller than the homogenized velocity

There is a cavity in the segment QP.
There is a water route around the steel.
Some part of the steel may get corroded.

Takashi TAKIGUCHI National Defense Academy of Japan

Structure of the least square solutions and its application to non-destructive inspections
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Introduction Study of Problem 1.1 Application ND inspection of concrete cover Conclusion

Open problems left for further development

Relation of the LSS to (17) and solution by ART (Kaczmarz method)
Theoretical proof of the convergence of ART to (17).

Takashi TAKIGUCHI National Defense Academy of Japan

Structure of the least square solutions and its application to non-destructive inspections

Introduction Study of Problem 1.1 Application ND inspection of concrete cover Conclusion

5. Conclusion

Conclusion of this talk

3) (Theorem 2.12).

By application of Theorem 2.12, the LSS to the overdetemined system (3) is
obtained, which is applied for the probe of the reinforcing steel in RC
structures.

By obtaining the exact position of the reinforcing steel in RC structures, a
ND inspection for concrete cover is made possible, which is essentially
important for the maintenance of RC structures.

Takashi TAKIGUCHI National Defense Academy of Japan

Structure of the least square solutions and its application to non-destructive inspections
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Abstract 

1. Introduction 

exactly probe 
the rebar
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2. Apparatus to measure the thickness of concrete cover 

Figure 1: Apparatus to measure thickness of concrete cover by electromagnetic induction 
 

Property 2.1. 

 The measurement is not exact.

 It is impossible to measure the thickness of more than 9cm.

 Although the measurement is not exact, it is stable.

 This apparatus is not suitable to detect the endpoints of the rebar by its original 
directions for usage.
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Figure 2: Detecting the endpoints of the rebar 
 

A 
a

f, 
e, d, c a

f a 
a

a

3. Theoretical study to exactly probe the rebar 

Figure 3: A cuboid test piece 
 
 

b
B
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n 
 

i j
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Problem 3.1.  Solve  the  following  system  of  linear equations  in  y , y , · · · , yn. 

or equivalently
 

where B is the matrix in , and .

Proposition 3.1. Let be the set of m×n matrices whose components are real 
numbers. For , the following conditions are equivalent. 

  is a least square solution to .
 There holds the following equation.

  

Proposition 3.2. For  ,the following   conditions  are   equivalent.

 There exists at least one least square solution to for any .
 Furthermore, if  then the solution to is unique. 

 

  

－154－



      

    

Theorem 3.1. In practice, the uniquely determined least square solution to the 
system is given as the unique solution to the system .

Remark 3.1. 
n 

 

 

   

C Dk 

   

 

b a A

a
a
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Method 3.1. 
Consider the case where we measure the exact thickness of concrete cover from Surface 
C in Figure 3.

 Scan the Surface C with the apparatus near the points where the end- point a 
locates.

 Compare the minimal measured value in the above procedure and the z-
coordinate of the point a, which gives the correction value of the thick- ness of 
concrete cover.

 Modify the thickness of concrete cover by the above correction value.

 
 

 

 

4. Verification of the theoretical study by experiments 

mm3
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Table 1: Materials of the concrete 
 

g/cm

 
 

a, b 

Table 2: Mix proportion of the concrete 
kg/m kg/m

 

Table 3: Quality of the concrete 

cm kg/l N/mm kg/l N/mm kg/l

Figure 4: Observation points 
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Table 4: Measured distance from the rebar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a, b
 

m/s m/s 
m/s

. 

Figure 5: A model to probe the x-coordinate of the endpoint 
 

mm
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Property 4.1. If the thickness of concrete cover is mm then the measured thickness 
of concrete cover begins to increase when the x-coordinates of top of the sensor goes 
farther than mm from xa, confer Figure 6 for its image.

 

 
Figure 6: Image of calibration 

 

Table 5: Reconstruction of the x-coordinates 
y z

 
a 

   

 
b 
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Figure 7: Reconstruction of the endpoints 
 

Figure 8: The sections of the test piece 
 

 

 
Figure 9: Expansion plan of the test piece 
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Table 6: Table of the results 

 

 

 

C,D E

5. Conclusion and open problems 

Conclusion 5.1 . 

 We have developed a non-destructive inspection technique to exactly probe the 
rebar by application of an apparatus to measure thickness of concrete cover for 
reinforcing steel by electromagnetic induction method Theorem 3.1 and Property 
4.1 .

 In order to obtain the above conclusion , the idea of ‘the least square solutions’ 
played an important role.

 As a by-product of the above result , we have also developed a technique to 
measure the exact thickness of the concrete cover for reinforcing steel Method 
3.1 .

 Our theoretical studies to exactly probe the rebar conclusion and to 
precisely measure the thickness of concrete cover for reinforcing steel 
conclusion has been verified to be good by our experiments Section 4 .
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Problem 5.1 . 
 

 The method to reconstruct the y- and z-coordinates of the endpoint of the rebar 
Theorem 2.1 being good and sophisticated, the one to reconstruct the x-

coordinates Property 3.1 is very primitive and it requires to make a model in 
accordance with the reconstructed y- and z-coordinates of the endpoints. It is 
required to modify Property 3.1 in a much better way or to develop another better 
method to reconstruct the x-coordinates.

 We shall verify our techniques to exactly probe the rebar and to precisely measure 
the concrete cover for the reinforcing steel, in the non- destructive inspection of the 
real RC structures, for example, bridge piers and floorboards in expressways, which 
may require some modification of our theory in accordance with the structures. 
The authors claim that it is a very important and interesting problem.

 The authors conjecture that the measurement of concrete cover by the apparatus 
with electromagnetic inductions depends on the density and the solidity of the 
concrete as we have verified in our preliminary experiment. 
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The purpose of this talk

• We shall introduce basic properties of concrete and discuss the 
differences between the concrete materials and megaliths.

- The superior and the inferior points of the concrete materials to the 
megaliths.

- How to improve the above inferior points.

• In view of the above discussion, there arises a problem how to 
maintain the concrete structures, to study which is the main purpose 
of this talk.
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Remark 2.1

(i) The mixture of the cement and the water is called the cement paste.
(ii) The mixture of the cement, the water, and the sand (the cement paste 

and the sand) is called the mortar.
(iii)The concrete can be understood as the mixture of the mortar and the 

gravel.
(iv)It is very important to add the air as the fifth component, since the 

concrete is a porous medium.

Takayuki OCHI   
A non-destructive inspection to exactly probe the reinforcing steel by an electromagnetic induction method

Shikoku Polytechnic College

6

II. Basic properties of concrete

Definition 2.1 (The concrete) 

The concrete is the mixture of

•The cement (C),

•The water (W),
•The sand (fine aggregate: S) and 
•The gravel (coarse aggregate: G). 
•The air as the fifth element.

Takayuki OCHI  
A non-destructive inspection to exactly probe the reinforcing steel by an electromagnetic induction method

Shikoku Polytechnic College
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Remark 2.3 (remarks on Property 2.2)
• The properties (a), (b) and (c) are almost the same as ones of the megaliths.
• The properties (d) and (e) are essentially important for the RC structures.

• The property (d) is by the chemical property of the cement.
• The properties (f) and (g) are much superior to the megaliths as the building 

material.

Takayuki OCHI   
A non-destructive inspection to exactly probe the reinforcing steel by an electromagnetic induction method

Shikoku Polytechnic College
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Property 2.2 (Merits of the concrete)

(a)Durability against the weather, the chemical materials and the 
mechanical force.

(b)High fire-resistance and water-resistance.

(c) High compressive strength.

(d)High corrosion resistance for steel.

(e)The coefficients of thermal expansion (CTE) of the concrete and the 
steel are exactly the same.

(f) Easily made and shaped in any form. (by its fluidity)

(g)The cost is very cheap.

Takayuki OCHI   
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Remark 2.5 (Remarks on Property 2.4)
• As for (α), the tensile strength of the concrete is about 1/10 of its 

compressive one (very weak). Its bending strength is about a third of its 
compressive one.

the necessity to reinforce the concrete

• The demerit (β) causes problems in the load bearing ability and durability. It 
also causes the water leakage.

• The RC structures are generally said to be weak to the damage by the 
earthquake because of the demerit (γ).

• The demerits (α) and (β) are inferior to the megaliths as the building 
material.

• The demerit (γ) is the same one as the megaliths.
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Property 2.4 (Demerits of the concrete)

(α ) Low tensile strength.
(β) It easily gets cracks in and on itself.
(γ ) It is very heavy in the RC structures.

Takayuki OCHI   
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By virtue of the properties (d) and (e), the RC was called as 
the miracle and the permanent material

at its initial stage of application as the building material.

It turned out, however, that it was neither miracle nor permanent.

Takayuki OCHI   
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On the properties (d) and (e)

• The main component of the cement is calcium oxide (CaO).

• CaO + H2O Ca(OH)2

• The calcium hydroxide (Ca(OH)2) shows strong alkalinity.

It prevents the steel from getting oxidized.

• If the CTE of the concrete and the steel are different, the RC structure 
easily have some cracks in their interior by the change of the 
temperature.
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Problem 2.6 (Improvement of the concrete)

(i) Develop a method to make solid, stubborn and stable concrete 
without reinforcement, by which we can literally make artificial 
megaliths.

(ii) Develop a method to maintain RC structures in order that their 
lifespan can be much longer.

Takayuki OCHI   
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• The concrete gets neutralized by the carbon dioxide (CO2) in the air 
a few decades after its foundation;

Ca(OH)2  + CO2  CaCO3  + H2O

• Calcium carbonate (CaCO3) is chemically neutral.

• After the neutralization of the concrete, a part of the steel inside the 
RC structure gets corroded.

The corroded steel intumesces very much, which would make 
cracks or ruin the structure.

• The life span of the RC structure is called about a half century, 
these days.
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III. Why we have to exactly probe 
the reinforcing steel?
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Important problem in the maintenance of RC structures

In the maintenance of RC structures, one of the most important problem is to 
prevent the steel from getting corroded.

16

In view of Problem 2.6 (ii), we pose the following problem. 

Problem 2.7
Establish an acoustic CT method for concrete structures.
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Apparatus to measure the thickness of concrete cover

Apparatus to measure thickness of concrete cover by
electromagnetic induction

Probe
The value of 

the cover

18

Why to exactly probe the reinforcing steel

• In order to check whether the strucure has been constructed as it 
was designed.

• To determine the chipping (or break up) in the destructive 
inspection or on the repair of the structure.

• It helps us to check whether the steel for reinforcement is fine

• For the development of ultrasonic CT.
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Figure 3.2 Detecting the endpoints of the reinforcing steel

it is our purpose to establish some good methods to compensate
for the properties (i) and (vi), by virtue of the property (iii).

20
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Properties of the apparatus

Property 3.1. (Properties of the apparatus)

(i) Themeasurement isnotexact.

(ii) It is impossible to measure the thickness of more than 9cm.

(iii)Although the measurement is not exact, it is stable.

( iv) This apparatus is not suitable to detect the endpoints of
the reinforcing steel by its original directions for usage.

19
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Test piece

A cuboid test piece
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Surface C
↓

22

IV. Theory to exactly probe the reinforcing steel
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We shall establish a theory to detect the exact
position of the reinforcing steel.

21
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2
1)()()( ji rrzyxzyxzzzyyyxxx jjjiiijijiji (2)

The system (2) is obtained by subtracting i-th equation in 
system (1) by the j-th one and dividing the both hand sides 
of the difference by 2.

we have the system of              linear equations
2

1nn

24

The least square solution to

(1)
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In the system (1), the unknowns are x, y and z.

We remove the effect of the errors and the noises by 
taking what is called “the least square solution” to the 
system (1)

23
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Replacing equation (3) with a determinant yields 
equation (4)
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Replacing each formula with another symbol.
It can be expressed as Equation 3
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(6)
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Let us study the following system of linear equations.

Problem 4.1. 
Solve the following system of linear equations
in y , y , , yn

28

Introduction Properties of concrete Why to probe the steel An inverse problem Probe of the steel Conclusion
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Proposition 4.1. 

Let Mmn R be the set of m n matrices whose 
components are real numbers. For B Mmn R , the 
following conditions are equivalent.

(i)y Rn is a least square solution to .

(ii)There holds the following equation.

30
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Or equivalently

For the least square solutions to the system (6)or (7), the
following propositions are known to hold.

R
R

R
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Proposition 4.2. 
For A Mmn RR , the following conditions are 

equivalent.
(i) There exists at least one least square solution to 

for any s Rm.

(ii)Furthermore, if B n then the solution to 
is unique.

31
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Remark 4.1.
If the inexactness of the measurement by the apparatus is 

random, then the least square solution to the system (9) for 
large n gives satisfactorily approximate solution for the 
edges of the reinforcing steel bar. 
As we have mentioned in Property 3.1 (iii), however, it is 
unfortunate that the it is stable. 
In view of this argument, we remark the following two points.

i. The y- and z-coordinates determined by Theorem 4.1 
are very close to the real values.

ii. The the x-coordinates determined by Theorem 4.1 are 
not very approximate.

34
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Theorem 4.1.

In practice, the uniquely determined least square
solution to the system is given as the unique
solution to the system .

(9)dx AAA tt
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Figure5.1 : Test piece

Takayuki OCHI   
A non-destructive inspection to exactly probe the reinforcing steel by an electromagnetic induction method

Shikoku Polytechnic College

36

V. Exact probe of the reinforcing steel

In this section, we shall give a procedure to detect the 
exact position of the reinforcing steel.
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fishing line
Instant adhesives

spacer
Removal before 
casting
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Table 5.1: Materials of the concrete

Materials Symbol Type Density 
(g/cm3)

Coefficients of
water 

absorption(%)

Fineness
Modulus

(%)

Cement C
Normal potland 

cement
3.16 - -

Fine aggregate S1 Limestone 2.69 1.02 2.79
Fine aggregate S2 Sea sand 2.57 1.51 2.14

Fine aggregate S
Mixed 

S1:S:2=7:3
2.65 1.17 2.60

Coarse  
aggregate

G Limestone 2.70 0.46 6.69

Water-reducing    
admixture

-
MasterPolyheed

15H[N]
1.05 - -

Air-entraining   
admixture

- MasterAir202 1.04 - -

40
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In these test pieces the diameter of the 
reinforcing steel is 10mm and the coordinates 
of the endpoints are designed as

a , , ,b , ,

y z , x

We note that the coordinates of the endpoints a, b
represents the center of the section of the reinforcing
steel, that is, in our test pieces, the reinforcing steel is 
designed to locate in the cylinder domain

39
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At the casting
Standard curing 

(8 weeks)
Field curing (8 weeks)

Slump
(cm)

Air-content
(%)

Density
(kg/l)

Compressive 
strength
(N/mm2)

Density
(kg/l)

Compressive
strength
(N/mm2)

Density
(kg/l)

11.0 5.9 2.33 52.8 2.39 35.7 2.38

Table 5.3: Quality of the concrete

42
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Table 5.2: Mix proportion of the concrete

W/C
(%)

A/C S/A
(%)

Unit volume (kg/m3) admixture (kg/m3)
C W S1 S2 G Water-

reduce
Air-
extrain

46.2 5.64 4 .0 331 153 544 233 1092 1.99 0.0132

41
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Table 5.4: Measured distance from the reinforcing steel
Edge surface Point Coordinates Distance (mm)

A

(0,125,125) 74
(0,75,125) 75
(0,125,75) 73
(0,75,75) 75

(25,150,125) 67
(25,150,75) 67

(25,125,150) 66
(25,75,150) 67

B
(1) (475,150,125) 68
(2) (475,150,75) 70
(3) (475,125,150) 68
(4) (475,75,150) 68

a , , , b , , .

44

Observation points

Figure 5.2: Observation points
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Figure 5.4: Image of calibration

Property 5.1.

If the thickness of concrete cover is mm then the measured
thickness of concrete cover begins to increase when the x-
coordinates of top of the sensor goes farther than mm from
xa, confer Figure 5.4 for its image.
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Reconstruction of the x-axis

Figure 5.3: A model to calibrate the device
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Figure 5.5: Reconstruction of the endpoints
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Table 5.5: Reconstruction of the x-coordinates

End 
point

y-
coordinat

e

z-
coordinat

e
Measureme
nt surface

Scanning
direction

Distan
ce

Average
distance

a 100 101

Surface C Surface B → A 51

50
Surface A → B 53

Surface E Surface B → A 51
Surface A → B 46

b 100 100

Surface C Surface A → B 87

84
Surface B → A 87

Surface E Surface A → B 79
Surface B → A 83

47
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Figure 5.7: Expansion plan of the test piece
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Real endpoint  a , , , b , , .

50

The section of the test pieces

Figure 5.6: The sections of the test pieces
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Section A Section B
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VI. Conclusion and open problems

Conclusion of this talk

i. We have developed a non-destructive inspection 
technique to exactly probe the rein- forcing steel by 
application of an apparatus to measure thickness of 
concrete cover for reinforcing steel by electromagnetic 
induction method

ii. In order to obtain the above conclusion (i), the idea of 
‘the least square solutions’ played an important role.
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Endpoint Coordinat
e

(i) Real
value

(ii) Designed
value

(iii)Reconstructe
d value (i)-(ii) (i) - (iii)

a

x 51 50 50 1 1

y 100 95 100 5 0

z 100 95 101 5 -1

b

x 444 440 446 4 -2

y 100 95 100 5 0

z 100 95 100 5 0

Table 5.6: Table of the results

The reconstructed values are closer to the 
real ones than the designed ones.
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Open problems

• The method to reconstruct the x-coordinates (Property 5.1) 
is very primitive and it requires to make a model in 
accordance with the reconstructed y- and z-coordinates of 
the endpoints. It is required to modify Property 5.1 in a 
much better way or to develop another better method to 
reconstruct the x-coordinates.

• We shall verify our techniques to exactly probe the 
reinforcing steel and to precisely measure the concrete cover 
for the reinforcing steel, in the non-destructive inspection of 
the real RC structures.
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iii. As a by-product of the above result (i), we have also 
developed a technique to measure the exact thickness of 
the concrete cover for the reinforcing steel .

iv. Our theoretical studies to exactly probe the reinforcing steel 
(conclusion (i)) and to precisely measure the thickness of 
concrete cover for reinforcing steel (conclusion (iii)) has 
been verified to be good by our experiments.
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NONDESTRUCTIVE INSPECTION OF BIOLOGICAL TISSUE BY

OPTICAL TOMOGRAPHY

MANABU MACHIDA

Abstract. Optical tomography is a medical imaging modality. It is similar
to X-ray CT but uses near-infrared light instead of X-rays. Optical tomogra-
phy is free from radiation exposure and can be done by rather small devices
with a near-infrared laser. However, the underlying mathematics is more diffi-
cult compared with X-ray CT because near-infrared light experiences multiple
scatterings in biological tissue. Optical tomography is formulated as inverse
problems of determining coefficients in the radiative transport equation or the
diffusion equation. Here we discuss how these inverse problems are used to
obtain tomographic images.

1. Introduction

We try to look inside biological tissue with near infrared light. Infrared light of
wavelength from 700 nm to 1μm, which is called the optical window, is used. The
propagation of near-infrared light in biological tissue is characterized by scattering
and absorption. Biological tissue exhibits strong scattering. The specific intensity of
light is governed by the radiative transport equation, which is a linear Boltzmann
equation. The radiative transport equation is a first-order differential equation
but has an integral term. The equation has angular variables in addition to time
and spatial variables. The radiative transport equation is often approximated by
the diffusion equation. Optical tomography is formulated as inverse problems of
determining coefficients of the radiative transport equation or the diffusion equation
from boundary measurements.

2. Stability analysis

Let Ω be a bounded domain of Rn, n ≥ 2 with C1-boundary ∂Ω. We consider

P0u(x, v, t) + σt(x, v)u−
∫
V

k(x, v, v′)u(x, v′, t)dv′ = 0, (2.1)

x ∈ Ω, v ∈ V, 0 < t < T,

u(x, v, 0) = a(x, v), x ∈ Ω, v ∈ V, (2.2)

u(x, v, t) = g(x, v, t), 0 < t < T, (x, v) ∈ Γ−, (2.3)

where

P0u(x, v, t) := ∂tu(x, v, t) + v · ∇u(x, v, t).
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2

Here and henceforth for v, v′ ∈ R
n, by v · v′ we denote the scalar product in R

n, let

∇ = ∇x =
(

∂
∂x1

, ..., ∂
∂xn

)
, and V ⊂ R

n be a bounded sub-domain or a measurable

subset of {v ∈ R
n; |v| = c} with constant c > 0. Here and henceforth V denotes

the closure of V .
Let ν(x) be the outward normal unit vector to ∂Ω at x ∈ ∂Ω. We define Γ+ and

Γ− by

Γ+ = {(x, v) ∈ ∂Ω× V ; (ν(x) · v) > 0} , (2.4)

Γ− = {(x, v) ∈ ∂Ω× V ; (ν(x) · v) < 0} .
In (2.1), we let a real-valued function u(x, v, t) denote the angular density of par-
ticles or the specific intensity of light at time t ∈ (0, T ) and position x ∈ Ω ⊂ R

n

with velocity v ∈ V .
Let σt(x, v) denote the total attenuation and satisfy

σt ∈ L∞(Ω× V ) (2.5)

and let k(x, v, v′) be a scattering kernel which indicates the amount of particles
scattering from a direction v′ into a direction v at position x.

We assume that k is independent of t and

k(x, v, v′) ≡ σs(x, v)p(x, v, v
′), (2.6)

σs ∈ L∞(Ω× V ), (2.7)

p ∈ L∞(Ω× V × V ), > 0 in Ω× V × V .

In this section, p ∈ L∞(Ω × V × V ) is fixed, and σt or σs is unknown to be
determined.

We assume that there exist γ ∈ R
n, �= 0 and θ > 0 such that

V ⊂ {v; (γ · v) ≥ θ}. (2.8)

This means that we should restrict the distribution of v in a sector with angle < π
with vertex 0. We can consider the following experiment of optical tomography for
example. That is, in (2.1), u(x, v, t) is the specific intensity of light at time t and
point x ∈ Ω with velocity v ∈ V ⊂ {v ∈ R

n; |v| = c}, where c is the speed of light.
Let a slab-shaped box Ω be filled with a random medium such as biological tissue.
An array of sources on a face of Ω illuminates the medium and the outgoing light
is collected by an array of detectors on the other face. We suppose that the width
of the box is thin in the sense that few scatterings take place while the light travels
from one side to the other. If light is scattered in the forward direction when it
collides with impurity, i.e., the direction does not change much by scattering, then
light stays within V when it reaches the other side. Thus in this situation, we can
assume that v is confined in V . That is, by taking γ in the direction perpendicular
to the source and detector faces, we have V = {v ∈ R

n; |v| = c, (γ · v) ≥ θ}, where
θ > 0 is some constant. Thus (1.8) is satisfied.

Let us rewrite (2.1) as

P0u(x, v, t) + σt(x, v)u− σs(x, v)

∫
V

p(x, v, v′)u(x, v′, t)dv′ = 0. (2.9)

We consider inverse problems of determining total attenuation σt or a scattering
coefficient σs in the radiative transport equation (2.9) by boundary data

u(x, v, t), (x, v) ∈ Γ+, 0 < t < T,
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after setting up the initial value (2.2) and boundary value (2.3) once. Our inverse
problem is motivated for example by optical tomography, in which we recover σt

and/or σs from boundary measurements. An incident laser beam g(x, v, t) enters
the sample through the sub-boundary Γ− × (0, T ), and the outgoing light u(x, v, t)
is measured on the sub-boundary Γ+ × (0, T ). The positivity for an initial value
a(x, v) is needed.

Let us adopt a similar formulation to [3] and we consider the inverse problems
of determining σs or σt by the boundary value on Γ+× (0, T ) with a suitable single
input of the initial value and boundary data on Γ− × (0, T ). Our main results
are Lipschitz stability estimates in determining σs or σt. To the best knowledge
of the authors, there are no publications on the Lipschitz stability with single
measurement data related to the initial/boundary value problem (2.9), (2.2), and
(2.3).

Our proof is based on the methodology by Bukhgeim and Klibanov [1] which
uses a Carleman estimate, which is an L2-weighted estimate for solutions to the
differential equation under consideration. Although the principle of our method
is same as [1] and [3], our key Carleman estimate is of different character and
so we do not need any extensions of the solution u to (−T, T ). On the other
hand, [3] needs the extension of the solution u to (−T, T ) and so further re-
quires extra conditions for unknown coefficients σt and initial value a such as
(a(x, v)σt(x, v))

2 = (a(x,−v)σt(x,−v))2 for x ∈ Ω and v ∈ V in the case of
V = {v; |v| = 1}. Klibanov and Pamyatnykh [2] proved the Lipschitz stability
in determining σt when we consider the transport equation (2.9) for −T < t < T
with (2.2) and (2.2) is prescribed at an intermediate time t = 0 and is not an initial
value. In [2], the extension argument is not necessary and the application of the
relevant Carleman estimate is more direct.

Our arguments in the case V ⊂ {v ∈ R
n; |v| = c} is the same as in the case of

sub-domain V ⊂ R
n. Therefore, henceforth we assume that V is a sun-domain in

R
n. Throughout this article, Hm(Ω) denotes usual Sobolev spaces. We set

X = H1(0, T ;L∞(Ω× V )) ∩H2(0, T ;L2(Ω× V )).

For an arbitrarily fixed constant M > 0, we set

U = {u ∈ X; ‖u‖X + ‖∇u‖H1(0,T ;L2(Ω×V )) ≤ M}. (2.10)

By the geometric configuration assumption (2.8) of V , we can choose γ ∈ R
n such

that

min
v∈V

(γ · v) > 0.

We recall that p ∈ L∞(Ω× V × (0, T )) is given.
We can prove the following theorem [6].

Theorem 2.1 (Determination of σt). Let ui = u(σi
t)(x, v, t), i = 1, 2 be solutions

to the transport equation:

∂tu(x, v, t) + v · ∇u+ σi
t(x, v)u

− σs(x, v)

∫
V

p(x, v, v′)u(x, v′, t)dv′ = 0, x ∈ Ω, v ∈ V, 0 < t < T,

u(x, v, 0) = ai(x, v), x ∈ Ω, v ∈ V,

u = g on Γ− × (0, T ).
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Let ui ∈ U and ‖σi
t‖L∞(Ω×V ), ‖σs‖L∞(Ω×V ) ≤ M . We assume that

T >
maxx∈Ω(γ · x)−minx∈Ω(γ · x)

minv∈V (γ · v) . (2.11)

and there exists a constant a0 > 0 such that

a1(x, v) ≥ a0 or a2(x, v) ≥ a0, almost all (x, v) ∈ Ω× V .

Then there exists a constant C = C(M,a0) > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖σ1
t − σ2

t ‖L2(Ω×V ) ≤ C

(∫ T

0

∫
Γ+

(ν(x) · v)|∂t(u1 − u2)(x, v, t)|2 dSdvdt
) 1

2

+C(‖a1 − a2‖L2(Ω×V ) + ‖∇a1 −∇a2‖L2(Ω×V )),(∫ T

0

∫
Γ+

(ν(x) · v)|∂t(u1 − u2)(x, v, t)|2dSdvdt
) 1

2

≤C(‖σ1
t − σ2

t ‖L2(Ω×V ) + ‖a1 − a2‖L2(Ω×V ) + ‖∇a1 −∇a2‖L2(Ω×V )).

Here C(M,a0) → ∞ as M → ∞ or a0 → 0.

In particular, if we asume a1 = a2 in Ω× V , then we have a two-sided estimate:

C−1

(∫ T

0

∫
Γ+

(ν(x) · v)|∂t(u1 − u2)(x, v, t)|2dSdvdt
) 1

2

≤ ‖σ1
t − σ2

t ‖L2(Ω×V )

≤ C

(∫ T

0

∫
Γ+

(ν(x) · v)|∂t(u1 − u2)(x, v, t)|2dSdvdt
) 1

2

.

This means that the choice of the norm of the boundary data on Γ+ × (0, T ) is the
best possible for our inverse problem.

Similar stability estimates can be proved for σs.

3. Optical tomography

Let us consider the following time-independent radiative transport equation
(RTE).

ŝ · ∇I + (μa + μs)I = μs

∫
S2

p(̂s, ŝ′)I(r, ŝ′) dŝ′.

3.1. Formulation. We assume that the scattering coefficient μs is constant every-
where in the medium but the absorption coefficient μa varies with position. We
thus decompose μa into a constant part μ̄a and a spatially varying part δμa:

μa(r) = μ̄a + δμa(r).

The RTE thus becomes

ŝ · ∇I + μtI + δμa(r)I = μs

∫
S2

p(̂s, ŝ′)I(r, ŝ′) dŝ′,

where μt = μ̄a + μs. The solution is formally given by

I(r, ŝ) = I0(r, ŝ)−
∫
S2

∫
Ω

G(r, ŝ; r′, ŝ′)δμa(r
′)I(r′, ŝ′) dr′dŝ′.
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Here I0 is the solution in the case of μa = μ̄a. The Green’s function G satisfies the
equation

ŝ · ∇rG(r, ŝ; r′, ŝ′) + μtG(r, ŝ; r′, ŝ′) = μs

∫
S2

p(̂s, ŝ′)G(r, ŝ; r′, ŝ′) dŝ′ + δ(r− r′)δ(̂s− ŝ′).

By the Born approximation, we have

I(r, ŝ) = I0(r, ŝ)−
∫
Ω

∫
S2

G(r, ŝ; r′, ŝ′)δμa(r
′)I0(r′, ŝ′) dr′dŝ′.

The Rytov approximation is given by

− ln

(
I(r, ŝ

I0(r, ŝ)

)
=

1

I0(r, ŝ)

∫
Ω

∫
S2

G(r, ŝ; r′, ŝ′)δμa(r
′)I0(r′, ŝ′) dr′dŝ′.

It is convenient to introduce the data function φ, which is defined by

φ =

{
I0 − I, Born,

−I0 ln(I/I0), Rytov.

In either case, φ obeys the integral equation

φ(ρs,ρd) =

∫
S2

∫
Ω

G(r, ŝ; r′, ŝ′)δμa(r
′)I0(r′, ŝ′) dr′dŝ′,

where ρs and ρd are the transverse coordinates of the source and detector, respec-
tively.

We assume a three-dimensional slab-shaped medium for Ω. The incident field
is taken to be generated by a point-source oriented in the inward normal direction
located on the z = 0 plane. Thus I0 = G(r, ŝ; ρ′, 0, ẑ). Light exiting the slab in
the normal direction is collected by a point-detector that is located on the plane
z = L. Thus the integral equation becomes

φ(ρs,ρd) =

∫
S2

∫
Ω

G(ρd, L, ẑ; r, ŝ)G(r, ŝ; ρs, 0, ẑ)δμa(r) drdŝ,

where ρs and ρd are the transverse coordinates of the source and detector, respec-
tively.

We make use of the method of rotated reference frames [7] to express the Green’s
function as an expansion in two-dimensional plane waves and spherical harmonics.
We have [4]

G(r, ŝ; r′, ŝ′) =
∫
R2

1

(2π)2
e−iq·(ρ−ρ′)

∞∑
l=0

l∑
m=−l

Ylm(̂s′)imklm(q, z) dq.

Hence,

φ(ρs,ρd) =

∫
Ω

∫
R2

1

(2π)2

∫
1

(2π)2
ei(q1−q2)·ρe−i(q1·ρs−q2·ρd)κ(q1,q2, z)δμa(r) dq2dq1dr,

where

κ (q1,q2, z) =

∞∑
l=0

l∑
m=−l

(−1)mklm(q1, z)k
∗
lm(q2, L− z).

Let us consider the inverse problem of recovering the absorption δμa from mea-
surements of the data function φ. To proceed, we assume that the sources and
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detectors are placed on square lattices with lattice spacings hs and hd, respectively.
The positions of the sources and detectors are given by

ρs = hs(nsxx̂+ nsyŷ), ρd = hd(ndxx̂+ ndyŷ),

where nsx, nsy, ndx, and ndy are integers. Consider the Fourier transform of the
data function:

φ̃(qs,qd) =
∑
ρs,ρd

ei(qs·ρs+qd·ρd)φ(ρs,ρd).

Here the vectors qs and qd lie in the first Brillouin zone (FBZ) of the source and
detector lattices:

− π

hs
≤ q(x)s , q(y)s ≤ π

hs
, − π

hd
≤ q

(x)
d , q

(y)
d ≤ π

hd
.

We obtain

φ̃(qs,qd) =
1

h2
sh

2
d

∑
νs,νd

∫ L

0

κ(qs + νs,−qd + νd, z)δ̃μa(qs + qd + νs − νd, z) dz,

where

δ̃μa(q, z) =

∫
R2

eiq·ρδμa(ρ, z) dρ.

Next, we perform the change of variables

qs =
q

2
+ p, qd =

q

2
− p,

where qs and qd are two-dimensional vectors. We also assume that δμa is trans-
versely band-limited to the FBZs of the source-detector lattices (corresponding to
the band limit min{2π/hs, 2π/hd}) and therefore put νs = 0 and νd = 0, which
thus becomes

Φ(q,p) =

∫ L

0

K(q,p, z)δ̃μa(q, z) dz,

where

Φ(q,p) = h2
sh

2
dφ̃

(q
2
+ p,

q

2
− p

)
,

K(q,p, z) = κ
(
p+

q

2
,p− q

2
, z
)
.

For fixed q, We have a system of one-dimensional integral equations for the Fourier

transform δ̃μa. Following the general approach, we construct the pseudoinverse
solution and perform an inverse Fourier transform to obtain the inversion formula
[5]

δμa(ρ, z) =

∫
FBZ

1

(2π)2
e−iq·ρ ∑

ν

Rε(σν(q))

σ2
ν(q)

∑
p

〈fν(q)|p〉Φ(q,p)

×
∑
p′

K∗(q,p′, z) 〈p′|fν(q)〉 dq.

Here fν and σν are the singular functions and singular values of the matrix M :∑
p′

〈p|M(q) |p′〉 〈p′|fν(q)〉 = σ2
ν(q) 〈p|fν(q)〉 ,
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x

y

2.5

4

1 1

(b)

5

Figure 1. The bar target in the x-y plane. The height and width
of the bar in the middle are 5�∗ and �∗, respectively, whereas the
height and width of the whole bar target are 8�∗ and 5�∗, respec-
tively.

where

〈p|M(q) |p′〉 =
∫ L

0

K(q,p, z)K∗(q,p′, z) dz.

It is important to note that regularization must be introduced to control the effect
of small singular values. This we do by introducing the regularizer Rε, where ε is
a small parameter. Common choices for Rε are the Tikhonov regularizer Rε(σ) =
σ2/

(
σ2 + ε

)
or the step function Rε(σ) = θ(σ − ε). In our computations, both

approaches give numerically equivalent results.
Let us consider numerical calculation and obtain reconstruction from simulated

forward data. The data are stored in the data function with the Born approxima-
tion. Our target is a bar target shown in Fig. 1. Gaussian noise with zero mean
and standard deviation of 1% of the average signal is added to the data function
Φ for the numerical experiment. The sum over l is truncated at lmax = 9. The
optical properties of the background medium are taken to be

μ̄a = 0.05 cm−1, μs = 100 cm−1, g = 0.9.

Note that �∗ = 1.00mm in this case. The above values are typical for biological
tissues in the near-IR spectral range. We have −Ns ≤ nsx, nsy ≤ Ns and −Nd ≤
ndx, ndy ≤ Nd. We also set Nd = 120 and Ns = 120hd/hs. The wave vectors q and
p are discretized as

q = 2π
hd(2NFBZ+1) (jxx̂+ jyŷ), −Nq ≤ jx, jy ≤ Nq ,

p = 2π
hd(2NFBZ+1) (kxx̂+ kyŷ), 0 ≤ kx, ky ≤ Np − 1,

where NFBZ is the number of points in the FBZ. We take Nq and Np to be much
smaller than NFBZ to control numerical stability at high frequencies. We have found
that NFBZ = 120, Nq = 28, and Np = 7 are suitable choices. Finally, we note that
numerical integration over z is carried out using Simpson’s rule, with discretization
zj = j(L−2�∗)/Nz+�∗ (j = 0, 1, . . . , Nz). We take Nz to be 160. The step function
regularizer is used. The bar target shown in Fig. 1 has absorption

δμa(ρ, z) = f(x, y)δ(z − z0),

where f(x, y) = 1 if (x, y) lies in the shaded region and f(x, y) = 0 otherwise. We
put L = 6�∗, z0 = 3�∗, hs = 0.2�∗ and hd = 0.1�∗. The reconstructed images are

－197－



8

0 1

Figure 2. The reconstructed δμa/max(δμa) of the bar target
are shown. The results from the RTE (left) and DE (right) are
compared.

shown in Fig. 2. Reconstruction by RTE is compared with reconstruction by the
diffusion equation (DE).

3.2. Experimental setup. We assume that only the absorption coefficient de-
pends on r = (ρ, z).

μa(r) = μ̄a + δμa(ρ, z).

Two experiments are performed. In the first experiment, the (background) reference
intensity I0(ρs,ρd) is measured. From this, μ̄a, μs, and g are determined. In
the second experiment, the target is placed in the slab and the (signal) intensity
I(ρs,ρd) is measured. From this, the data function φ is calculated:

φ = G ln
I0
I
,

where G is the Green’s function corresponding to I0. Within the Rytov approxi-
mation, we have

φ =

∫
G(ρd, r)δμa(r)G(r,ρs) dr.

The experimental setup is shown in Figs. 3 and 4.
We have (2Ns + 1)2 sources and (2Nd + 1)2 detectors.

2Ns + 1 = 29, 51, 75, 2Nd + 1 = 397,

Before calculating the data function φ, we

• shift the origin of the lattice for sources and
• subtract the dark current from I and I0.

3.3. Optical properties of Intralipid. The box in Fig. 3 is filled with Intralipid.
The table below shows optical properties for Intralipid-10% and the infrared light
of λ = 774 nm.
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CCD
zlight

3cm

W=
9cm

3cm

L  =50cm50cm

1cm

CCD

Figure 3. The emitted infrared light is detected by the CCD
through the slab.

x

y

x

y
Nd=198

-Nd
Nd

-Nd
1

2Ns+1=29

z

SOURCES DETECTORS

Figure 4. Numbering of the sources and coordinates of the de-
tectors in experiments. hs = 3.21mm and hd = 0.363mm.

μa (cm
−1) μs (cm

−1) g μ′
s (cm

−1)
van Staveren (1991) - 300 0.65 110

Flock (1992) - 217 0.802 43.0
Michels (2008) 0.0313 112 0.335 70.8

According to Michels et al. [Optics Express 16 (2008) 5907], g strongly depends
on the concentration of Intralipid. They also showed that μa for Intralipid-10% is
almost identical to μa for water in the present wavelength.
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Ko et al. [Jpn. J. Appl. Phys. 45 (2006) 7158] compared Moes (1989), Flock
(1992), and van Staveren (1991), and concluded that μa is well predicted by Flock
(1992) and μ′

s is well predicted by van Staveren (1991).
McGlone et al. [Phys. Med. Biol. 52 (2007) 2367] suggested that μ′

s predicted by
van Staveren (1991) is larger than the true value.

It is not easy to determine the optical properties of Intralipid. Different results
for the laser wave length λ = 633 nm are compared in the table below.

Intralipid μa (cm
−1) μs (cm

−1) g
Flock (1988) 10% 0.11 323 0.675
Moes (1989) 10% 0.57 386 0.71

van Staveren (1991) 10% 0.159 476 0.807
Hielscher (1997) 0.8% - 29.6 0.76
Jacques (1998) 10% 0.02 630 0.83

Chen (2006) 20% 2.4 420 0.58
Chen (2006) 10% 1.4 300 0.59

The above table is taken from C. Chen, et al., Optics Express 14 (2006) 7420. In the
table, Flock is S. T. Flock, Hamilton, Ontario, Canada: McMaster University, 1988;
Moes is C. J. M. Moes, et al., Appl. Opt. 28 (1989) 2292; van Staveren is H. G. van
Staveren, et al., Appl. Opt. 30 (1991) 4507; Jacques is S. L. Jacques, (Oregon Medi-
cal Laser Center, 1998), http://omlc.ogi.edu/spectra/intralipid/index.html.

If we estimate the optical properties of Intralipid-1% as μa = 0.01 cm−1, μs =
20 cm−1, g = 0.65, we obtain μ′

s = 7 cm−1 and �∗ = 1.4mm.
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Nondestructive inspection 
of biological tissue by 
optical tomography

Manabu Machida

Institute for Medical Photonics Research,


Hamamatsu University School of Medicine, Hamamatsu

1

Non-destructive inspection for concrete structures 
and related topics   

IMI, Kyushu University, October 24, 2018

Look inside with near infrared light

2

－201－



Optical window

3

Y. Tanikawa, PhD thesis (2014)

700nm - 1000nm = 1  mμ

Strong scattering

4

Light propagation in biological tissue: 
Strong scattering and weak absorption
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Radiative transport equation (RTE)

5

Γ± = {(x, θ) ∈ ∂Ω × 𝕊2; ± θ ⋅ ν(x) > 0}

u(x, θ, t), x ∈ Ω ⊂ ℝ3, θ ∈ 𝕊2, t > 0.

∫𝕊2 Θ(θ ⋅ θ′) dθ = 1

(
1
c
∂
∂t
+ θ ⋅ ∇ + μa + μs) u − μs ∫𝕊2 Θ(θ ⋅ θ′)u(x, θ′, t) dθ′ = 0,

x ∈ Ω, θ ∈ 𝕊2, 0 < t < T,
u(x, θ, t) = g(x, θ, t), (x, θ) ∈ Γ−, 0 < t < T,

u(x, θ,0) = a(x, θ), x ∈ Ω, θ ∈ 𝕊2 .

The specific intensity

ν(x) : outer unit normal

μa, μs ∈ L∞(Ω)

Linear Boltzmann equation

6

(
1
c
∂
∂t
+ θ ⋅ ∇ + μa + μs) u − μs ∫𝕊2 Θ(θ ⋅ θ′)u(x, θ′, t) dθ′ = 0

RTE = linear Boltzmann equation

collision integral

scatterer

(
1
c
∂
∂t
+ θ ⋅ ∇ + μa) u = μs ∫𝕊2 Θ(θ ⋅ θ′)(u(x, θ′, t) − u(x, θ, t)) dθ′

⇕
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Physical meaning

 7

μs(x)u(x, θ) = μs(x)∫𝕊2 Θ(θ′ ⋅ θ)u(x, θ) dθ′

(
1
c
∂
∂t
+ θ ⋅ ∇) u(x, θ) = − μa(x)u(x, θ)

−μs(x)∫𝕊2 Θ(θ′ ⋅ θ)u(x, θ) dθ′

+μs(x)∫𝕊2 Θ(θ, θ′)u(x, θ′) dθ′

energy balance

loss by absorption

loss by scattering

gain by scattering

change

μt(x) = μa(x) + μs(x),

total attenuation

energy at position    in direction    per unit area

Specific intensity

 8

θ =
sin ϑ cosφ
sin ϑ sinφ
cos ϑ

∈ 𝕊2

is the Wigner transform of the fieldu(x, θ)
x θ≈

x

θ
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Applications

9

• Light transport in random media such as
biological tissue, clouds, fog, interstellar medium 

• Light transport for CG 
• Neutron transport in nuclear reactors 
• Seismic wave 
• etc

RTE: Transport phenomena characterized by 
scattering and absorption 

d'Eon and Irving (2011)

Medical imaging

 10

CT (computed tomography) Optical tomography

bones 
information: anatomy

tissue oxygenation (Hb/HbO2) 
information: function

Severely ill-posed inverse 
problem due to scattering.

Started around 1990; an old topic, but a good example  
to study severely ill-posed inverse problems, and still a 
challenging topic.
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Optical tomography

 11

Austin, et al. (2006)

Choe, et al. (2005)

Diffusion approximation

 12

ϵx → x, ϵ2μ−1a → μ−1a

u(x, θ, t) = u0(x, t) + θ ⋅ J(x, t)

1
c
∂
∂t

u0(x, t) − ∇ ⋅( 1
3(1 − g)μs(x)

∇u0(x, t)) + μa(x)u0(x, t) = 0

(
1
c
∂
∂t
+ θ ⋅ ∇ + μt(x)) u(x, θ, t) − μs(x)∫𝕊2 Θ(θ ⋅ θ′)u(x, θ′, t) dθ′ = 0

Assume the form

or take the asymptotic limit

g = ∫𝕊2 (θ ⋅ θ′)Θ(θ ⋅ θ′) dθ′
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Diffuse optical tomography

13

1
c
∂
∂t

u0 − ∇ ⋅ (D∇u0(x, t)) + μau0 = 0

(
1
c
∂
∂t
+ θ ⋅ ∇ + μt) u = μs ∫𝕊2 Θ(θ ⋅ θ′)u(x, θ′, t) dθ′

The diffusion equation (DE)

is tractable, but RTE

is not. So, DE is used for optical tomography.

Diffusion approximation

14

800nm,  source-detector distance = 3cm

μa = 0.0146mm, μ′s = (1 − g)μs = 1.04mm, n = 1.37

 0
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-1  0  1  2  3  4  5
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un
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time (ns)

measurement
simulation

TRS80 at Hamamatsu
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Beyond the diffusion approximation

15

DE RTE
Diffusion approximation breaks 
near the boundary and near  
the source.

https://clancy-ent.com.au/

e.g. thyroid cancer

Inverse transport problems

 16

Early stage
Bellman-Kagiwada-Kalaba-Ueno (1965), 
Case (1973), McCormick-Kuscer (1974), Siewert (1978), 
Kanal-Moses (1978), Larsen (1981), ...

Uniqueness
Choulli-Stefanov (1996, 1999), Stefanov (2003), 
Stefanov-Tamasan (2009), ...

Stability
Romanov (1997, 1998), Wang (1999), Tamasan (2002), 
Bal-Jollivet (2008), Bal (2008), 
Bal-Langmore-Monard (2008), Stefanov-Uhlmann (2003), 
Langmore (2008), McDowall-Stefanov-Tamasan (2010), 
M.-Yamamoto (2014), ...
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Transport-based optical 
tomography

 17

Usually the diffusion equation is used for optical tomography 
except several works. 

• O. Dorn (1998) 
• A. D. Klose and A. H. Hielscher (1999) 
• K. Ren, G. Bal, and A. H. Hielsher (2006) 
• S. Wright, M. Schweiger, and S. R. Arridge (2007) 
• T. Tarvainen, M. Vauhkonen, and S. R. Arridge (2008) 
• P. Gonzalez-Rodriguez and A. D. Kim (2009) 
• H. Gao and H. Zhao (2010) 
• M.M., G. Y. Panasyuk, Z.-M. Wang, V. A. Markel, and J. C. Schotland (2016) 
• ... 
• ... 
• etc. There are more papers but the number is limited.

Transport-based OT (numerics)

18

Tarvainen, Vauhkonen, Kolehmaine, Arridge, and Kaipio,  
Physics in Medicine and Biology 50 (2005) 4913-4930

Tarvainen, Kolehmainen, Arridge, and Kaipio, 
 J. Quant. Spec. Rad. Trans. 112 (2011) 2600-2608

hybrid: RTE+DE

damped Gauss-Newton

Absorption (top row) and scattering (bottom 
row) distributions within a domain with an 
absorbing inclusion and a scattering 
inclusion (case 1). Images from left to right: 
simulated distributions (first column), 
reconstructions obtained using the RTE 
(second column) and the coupled model 
(third column) as forward models.
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Transport-based OT (experiment)

19

Kim and Hielscher, Inverse Problems 25 (2009) 015010

Montejo, Jia, Kim, Netz, Blaschke, Muller, and Hielscher,  
Journal of Biomedical Optics 18 (2013) 076001

frequency-domain RTE with SQP algorithm (reduced Hessian)

rheumatoid arthritis

(a and b) Absorption and (c 
and d) scattering coronal cross 
sections of PIP joints from 
subjects without (a, c) and with 
RA (b, d). All images are 
reconstructed from the data 
obtained with 600 MHz source 
modulation.

M. M., G. Y. Panasyuk, Z.-M. Wang, V. A. Markel, and J. C. 
Schotland 
Radiative transport and optical tomography with large 
datasets 
J. Opt. Soc. Am. A 33 (2016) 551-558 

Examples

 20

M. M. and M. Yamamoto 
Global Lipschitz stability in determining coefficients of the 
radiative transport equation 
Inverse Problems 30 (2014) 035010 

Example 2

Example 1
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M. M. and M. Yamamoto 
Global Lipschitz stability in determining coefficients of the 
radiative transport equation 
Inverse Problems 30 (2014) 035010 

Example 1

 21

Stability

 22

𝒜 : u |Γ−×(0,T) ↦ u |Γ+×(0,T)

Uniqueness and stability using the albedo operator:

Hoelder-type stability is known for the albedo operator.

Our result: global Lipschitz stability from a single input

cf, Klibanov and Pamyatnykh (2008): global uniqueness
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Carleman estimates

 23

• Bukhgeim and Klibanov (1981): Uniqueness
(pioneering work with Carleman estimate) 

• Imanuvilov and Yamamoto (2001): Lipscihtz stability 
for an inverse hyperbolic problem

See also
• Yamamoto, Inverse Problems (2009) 
• Isakov, Inverse Problems for PDEs (Springer, 1998) 
• Tataru, J. Math. Pures Appl. (1996) 
•   
•

Total attenuation term

 24

(∂t + v ⋅ ∇+σi
t) ui(x, v, t) − σs ∫V

p(x, v, v′)ui(x, v′, t) dv′

= 0, Ω × V × (0,T ),
ui(x, v,0) = a(x, v), Ω × V,

ui(x, v, t) = b(x, v, t), Γ− × (0,T )

Γ± = {(x, v) ∈ ∂Ω × V; ± v ⋅ ν(x) > 0}

We will estimate σ2t − σ1t

i = 1,2
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Let                  on             and  assume      is large.    
Then there exists                         such that

Global Lipschitz stability

 25

∥uj∥H1(0,T;L∞(Ω×V))∩H2(0,T;L2(Ω×V)) ≤ M,
∥σ j

t∥L∞(Ω×V) ≤ M, ∥σs∥L∞(Ω×V) ≤ M .
a(x, v) > 0 Ω × V T

C = C(M) > 0

Theorem

∥∇uj∥H1(0,T;L2(Ω×V)) ≤ M,
Suppose

and

C−1(∫Γ+ ∫
T

0
(ν ⋅ v) ∂t(u2 − u1)

2
dSdvdt)

1
2

≤

∥σ2t − σ1t ∥L2(Ω×V) ≤ C (∫Γ+ ∫
T

0
(ν ⋅ v) ∂t(u2 − u1)

2
dSdvdt)

1
2

•                                is necessary

•         must be positive

Remarks

 26

• The lower bound: forward problem <- Energy estimate 
• The upper bound: inverse problem <- Carleman estimate 
• The both-side estimate with the same norm:

Our result is the best possible estimate.

a(x, v) > 0 in Ω × V

γ ⋅ v new idea??

－213－



Subtraction

 27

y(x, v, t) = u2 − u1 = u[σ2t ](x, v, t) − u[σ1t ](x, v, t) .

f(x, v) = σ1t (x, v)−σ2t (x, v), R(x, v, t) = u2(x, v, t) .

∂ty + v ⋅ ∇y + σ1t y − σs ∫V
p(x, v, v′)y( ⋅ , v′, ⋅ )dv′

= f(x, v)R(x, v, t), x ∈ Ω, v ∈ V, 0 < t < T,
y(x, v,0) = 0 in Ω × V,
y = 0 on Γ− × (0,T ) .

We have

Inverse source problem

 28

C−1(∫Γ+ ∫
T

0
(ν ⋅ v) ∂tu

2
dSdvdt)

1
2

≤ ∥f∥L2(Ω×V)

≤ C (∫Γ+ ∫
T

0
(ν ⋅ v) ∂tu

2
dSdvdt)

1
2

∥f∥L2(Ω×V) ≤ C (∫Γ+ ∫
T

0
(ν ⋅ v) ∂tu

2
dSdvdt)

1
2

Let us consider the inverse problem.
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Conditions

 29

Pw ≡ ∂tw + v ⋅ ∇w + σtw − σs ∫V
p(x, v, v′)w( ⋅ , v′, ⋅ ) dv′

Pw = fRWe write the transport equation as

Note that            satisfies                , whereγ ⋅ v ≥ θ
γ ∈ ℝd, ≠ 0 and θ > 0

T >
maxx∈Ω(γ ⋅ x) − minx∈Ω(γ ⋅ x)

minv∈V(γ ⋅ v)

v ∈ V

s∫Ω ∫V
|u(x, v,0) |2e2sφ(x,0) dvdx + s2∫Q ∫V

|u(x, v, t) |2e2φ(x,t) dvdxdt

≤ C∫Q ∫V
|Pu |2e2sφ(x,t) dvdxdt + s∫

T

0 ∫Γ+
(ν ⋅ v) |u |2e2sφ(x,t) dSdvdt,

for sufficiently large    and

There exists            such that

Carleman estimate

 30

u ∈ H1(0,T; L2(Ω × V )),
∇u ∈ L2(Ω × V × (0,T )), u( ⋅ , ⋅ ,T ) = 0 in Ω × V

C > 0

s

(Q = Ω × (0,T ))

L2 -weighted inequality We set the weight function as

φ(x, t) = (γ ⋅ x) − βt

－215－



M. M., G. Y. Panasyuk, Z.-M. Wang, V. A. Markel, and J. C. 
Schotland 
Radiative transport and optical tomography with large 
datasets 
J. Opt. Soc. Am. A 33 (2016) 551-558 

Example 2

 31

Time-independent RTE

32

(θ ⋅ ∇ + μa + μs) u = μs ∫𝕊2 Θ(θ ⋅ θ′)u(x, θ′) dθ′, x ∈ Ω, θ ∈ 𝕊2,

u(x, θ) = g(x, θ), (x, θ) ∈ Γ− .

Assume absorption inhomogeneity

μa(x) = μ̄a + δμa(x), μs(x) = μ̄s

Determine δμa(x) from boundary measurements u Γ+

(θ ⋅ ∇ + μ̄a + μ̄s) u0 = μ̄s ∫𝕊2 Θ(θ ⋅ θ′)u0(x, θ′) dθ′, x ∈ Ω, θ ∈ 𝕊2,

u0(x, θ) = g(x, θ), (x, θ) ∈ Γ− .
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Born series

33

(θ ⋅ ∇ + μ̄a + μ̄s) G = μ̄s ∫𝕊2 Θ(θ ⋅ θ′)G(xθ′; x0, θ0) dθ′

+δ(x − x0)δ(θ − θ0), x ∈ Ω, θ ∈ 𝕊2,
G(x, θ; x0, θ0) = 0, (x, θ) ∈ Γ− .

u(x, θ) = u0(x, θ) − ∫𝕊2 ∫ΩG(x, θ; x′, θ′)δμa(x′)u(x′, θ′) dx′dθ′

= u0(x, θ) − ∫𝕊2 ∫ΩG(x, θ; x′, θ′)δμa(x′)u0(x′, θ′) dx′dθ′+ ⋯

where

Inverse Born series

34

ϕ(x, θ) = u0(x, θ) − u(x, θ)

ϕ = K1δμa + K2δμa⊗ δμa +⋯ Born series

δμa = 𝒦1ϕ +𝒦2ϕ⊗ ϕ +⋯ inverse Born series

𝒦1 = (K1)+reg,
𝒦2 = −𝒦1K2𝒦1 ⊗𝒦1,

𝒦j = −
j−1

∑
m=1
𝒦m ∑

i1+⋯+im=j

Ki1 ⊗ ⋯Kim 𝒦1⊗⋯⊗𝒦1

M. and Schotland, Inverse Problems 31 (2015) 095009
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Method or rotated reference frames (1)

35

g(x, θ) = δ(x − x0)δ(θ − θ0) .when

K1δμa = ∫𝕊2 ∫ΩG(x, θ; x′, θ′)δμa(x′)G(x′, θ′; x0, θ0) dx′dθ′,

δμa ≈ 𝒦1ϕ = (K1)+regϕ .

G(x, θ; x0, θ0) =∑
γ

Aγ(x0, θ0)ψγ(x, θ) .

(θ ⋅ ∇ + μ̄a + μ̄s) ψγ(x, θ) = μ̄s ∫𝕊2 Θ(θ ⋅ θ′)ψγ(x, θ′) dθ′.

idea: superposition of eigenmodes

are obtained from boundary conditions.Aγ(x0, θ0)

Method or rotated reference frames (2)

36

Θ(θ ⋅ θ′) = 1 − g2

4π (1 + g2 − 2g cos(θ ⋅ θ′))3/2

=
L

∑
l=0

l

∑
m=−l

glYlm(θ)Y*lm(θ′) .

g ∈ (−1,1)

θ =
sin ϑ cosφ
sin ϑ sinφ
cos ϑ

,

Ylm(θ) = Ylm(ϑ,φ) =
2l + 1
4π

(l − m)!
(l + m)!

Pm
l (cos ϑ)eimφ

g = ∫𝕊2 (θ ⋅ θ′)Θ(θ ⋅ θ′) dθ′

Spherical harmonics:

Henyey-Greenstein model

ϑ ∈ [0,π],
φ ∈ [0,2π)

g ≈ 0.9 in biological tissue
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Method or rotated reference frames (3)

37

• 1964 Dede (Nukleonik) 
• 1977 Kobayashi (J. Nucl. Sci. Technol.) 
• 2004 Markel (Waves Random Media) -> MRRF

• 2014 M. (J. Opt. Soc. Am. A) -> analytical solution 
• 2015 M. (J. Phys. A) -> 3dFN

idea: Rotate the reference frame in the direction of 
the Fourier vector.

Ylm(θ) → ℛ ̂kYlm(θ) =
l

∑
m′=−l

Dl
m′m (φ ̂k, ϑ ̂k,0) Ylm′(θ)

Wigner's D-matrices

ψγ(x, θ) = ℛ ̂k(ν,q)Φm
ν (θ)e−

̂k(ν,q)⋅x/ν

Reconstruction (1)

38

K+1 = K†1 (K1K
†
1 )
−1, K†1 = K1

T
Moore-Penrose pseudoinverse:

K1 = UΣV†, Σ = diag(σ1, σ2,…), U = (v1, v2,…)
Singular value decomposition

(K1)+reg = K†1 (v1 v2 ⋯)
(σ21 + α)−1

(σ22 + α)−1
⋱
(v1 v2 ⋯)†

δμ*a = 𝒦1ϕ = (K1)+regϕ

is the regularization parameterα
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Reconstruction (2)

39

δμ*a

Summary

40

Optical tomography: old and new topic

Optical tomography: Inverse problems for the 
diffusion equation and the radiative transport 
equation
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