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IMI Workshop of the Joint Research Projects
Mathematical approach for quantum information society

O

y
Institute of Mathematics for Industry
Kyushu University

We organize a conference as one of the common enterprises of IMI,
Kyushu University as follows.
We welcome the participation of many all of you.

Date : 17 of Sep 2018 (Mon) 13:00 — 19 of Sep 2018 (Wed) 11:45
Venue : Meeting room A Nishijin Plaza, Kyushu University,

2-16-23, Nishijin, Sawara-ku, Fukuoka-shi, Fukuoka, 814-0002
URL : http://www. imi. kyushu—u. ac. jp/events/view/

Program

17 of Sep (Mon)

13:00 Opening
13:15—13:25 Opening remarks

13:30—14:30 Yoshinori Aono (NICT)
LOTUS: a conservative PKE/KEM scheme

14:45—15:45 Koichiro Akiyama (TOSHIBA)
A Public-key Encryption Scheme Based on Non-linear
Indeterminate Equations (Giophantus(TM))

16:00—17:00 Toyohiro Tsurumaru (Mitsubishi Electric)
Leftover Hashing Lemma as Quantum Error Correction

18 of Sep (Tue)

9:30—10:30 Yasuhiko Ikematsu (The University of Tokyo)
The multivariate encryption scheme HFERP
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10:40—11:40

Yutaka Shikano (Keio University)
How to understand the cloud quantum computer

Lunch Break

13:10—14:10
14:20—15:20
15:30—16:30
16:40—17:40
18:10—

19 of Sep (Wed)

9:30—10:30

Hirotake Kurihara (Kitakyushu College)
POVM from the viewpoints of combinatorics

Masakazu Yoshida (University of Nagasaki)
Solutions to a retrodiction problem by using quantum

error-correcting codes

Phong Nguyen (INRIA The University of Tokyo)
Searching for Short Lattice Vectors

Tadanori Teruya (AIST)
Observations on Random Sampling Reduction Algorithms

Conference Dinner

Noboru Kunihiro (The University of Tokyo)
Quantum Factoring Circuit: Resource Estimation and Survey
of Experimental Realization

10:45—11:45 Akinori Hosoyamada (NTT)
On the post-quantum security of symmetric key cryptography
Organizers :

Takuro Abe (Kyushu University)

Hiroyuki Ochiai (Kyushu University)
Katsuyuki Takashima (Mitsubishi Electric)
Koji Nuida (The University of Tokyo)
Masaya Yasuda (Kyushu University)
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Yoshinori Aono (NICT)

LOTUS: a conservative PKE/KEM scheme

Abstract

We present an overview of our post-quantum LWHE-based scheme LOTUS, submitted to the
NIST PQC standardization project. LOTUS is the combination of Lindner-Peikert scheme
and Fujisaki-Okamoto transformation. One of the distinction of LOTUS is conservativeness:
its security assumption is the well-studied standard LWE with discrete gaussian errors, and
the parameter setting is from a lower cost bound to solve LWE by lattice enumeration. We

give comparisons on parameters to other schemes based on the LWE-like assumptions.



LOTUS: a conservative PKE/KEM scheme

Yoshinori Aono  N/CFswsinman

Talk at “Mathematical approach for quantum information society”

(EFERESIcmir-83Enm770—7F)

2018/09/17 13:30-14:30 @ VI KZFFEFHT 77 Y K SEEA

Agenda

* Background — NIST post-quantum cryptography project
* Qutline framework of cryptographic scheme

* Which properties are wanted; long-term security

* Outline of LOTUS

* Comparison with other submissions

* Parameter setting from lower bound
* Cost lower bound for known algorithms
* Performance limit of computation




NIST Post-Quantum project

Background history:
* Major cryptographic schemes used up to now can be broken by
using Peter Shor’s quantum algorithm [SIAM J. comp, 1997]
* Recent progress in development of digital quantum computers
approaching to 100 qubits

* Need to construct a quantum-resilient cryptographic scheme,
whose security base is a computational problem that is NOT easy
to solve using both classical and quantum computers

NIST Post-Quantum project

* Post-quantum cryptography standardization process
* 81 submissions, 69 remained for 1st round, 63 remained up to now
* Will announce 2nd round candidates early 2019

* Mergers should be announced by Nov. 30

* 2nd conference will be collocated with Crypto 2019

Nov. 30 2022-
2017 2019 2023

(Modified from John Kelsey’s talk at Crypto rump session)

e Each submission must contain at least one of
Public key encryption scheme
KEM scheme

} NICT team have submitted LOTUS
Digital-signature scheme
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Agenda

* Background — NIST post-quantum cryptography project
* Outline framework of cryptographic scheme

*  Which properties are wanted; long-term security

* Outline of LOTUS

* Comparison with other submissions

* Parameter setting from lower bound
* Cost lower bound for known algorithms
* Performance limit of computation

LOTUS: a conservative PKE/KEM scheme

* Designers:
Le Trieu Phong, Takuya Hayashi, Yoshinori Aono, Shiho Moriai

at NICF sasionan

e Acronym for Learning with errOrs based encryption with chosen
ciphertexT secUrity for poSt quantum era

* Lattice-based cryptographic scheme

* Design concept: combination of conservative modules
* Modules=Algorithms, security proofs, parameters, etc.
* Conservative=All modules are well studied and believed to be
secure




NIST post-quantum standardization
* Public-key encryption (PKE) scheme

Goal: Bob gets Alice’s message

< INTERNET >
Alice Bob
Modules (if we want to give the complete introduction):
* Definitions
* Algorithms (Functions): KeyGen, Enc, Dec ...
* Protocols: {How, When} participants use them and send data
* Theories
* Correctness: Theoretical proof that the scheme works
* Security proof: Theoretical proof that recovering message/secret key from public
information is harder than some “hard problems”
* Practical issues
* Parameter setting: propose key lengths for which computational cost for solving hard
problems is larger than 2128, 2192, 2256 gt
* Implementation: program source code or hardware for the algorithms and protocols
* Experimental data: size of keys/ciphertexts, time of communication
*  Proof of tamper resistance: implemented hardware is protected from malicious users

n N
v

NIST post-quantum standardization
* Public-key encryption (PKE) scheme

Goal: Bob gets Alice’s message
n N

=" < INTERNET |—>
Alice Bob
Modules (if we want to give the complete introduction):

* Definitions
* Algorithms (Functions):[KeyGen, Enc, Dec ]

* Protocols: {How, When} particip use them and send data
* Theories
*  Correg : i

* Secur ret key from public
infornl N some short talks, crypto researchers
* Practical is say “this is cryptography!”
e Paranm al cost for solving hard

problems is larger than 2+4°, 2174, 24°° etc.
* Implementation: program source code or hardware for the algorithms and protocols
* Experimental data: size of keys/ciphertexts, time of communication
*  Proof of tamper resistance: implemented hardware is protected from malicious users
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NIST post-quantum standardization
* Public-key encryption (PKE) scheme

Goal: Bob gets Alice’s message

| < INTERNET >
Alice Bob
Modules (if we want to give the complete introduction):
* Definitions
. [Algorithms (Functions): KeyGen, Enc, Dec ... ]
* | Protocols: {How, When} participants use them and send data

* Theories
* Correctness: Theoretical pro scheme works
* Secur : i i ret key from public
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v
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« practicalid 1N some short talks, crypto researchers
*  Paran say “this is cryptography!” al cost for solving hard
probl

* Implementation: program source code or hardware for the algorithms and protocols
* Experimental data: size of keys/ciphertexts, time of communication
*  Proof of tamper resistance: implemented hardware is protected from malicious users

NIST post-quantum standardization
* Public-key encryption (PKE) scheme

Goal: Bob gets Alice’s message
n N

=" < INTERNET |—>

Alice Bob
Modules (if we want to give the complete introduction):
* Definitions

* Algorithms (Functions): KeyGen, Enc, Dec ...

* Protocols: {How, When} participants use them and send data
* Theories

* Correctness: Theoretical proof that the scheme works

* Security proof: Theoretical proof that recovering message/secret key from public
information is harder than some{ “hard problems” |

* Practical issues
* Parameter setting: propose key lengths omputational cost for solving hard
12

problems is larg 102 ~ocq
- Implementation| IN some short talks, crypto attackers talk |4 protocols

*  Experimental da about computational problems
*  Proof of tamper

\/erv deen area licious users
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NIST post-quantum standardization
* Public-key encryption (PKE) scheme

Goal: Bob gets Alice’s message

nn
= <€ INTERNET >
Alice Bob
Modules (if we want to give the complete introduction): p \
Definitions l Today’s talk
* Algorithms (Functions): KeyGen, Enc, Dec ...

* Protocols: {How, When} participants use them and send data
* Theories
* Correctness: Theoretical proof that the scheme works
* Security proof: Theoretical proof that recovering message/secret key from public
information is harder than some “hard problems”
* Practical issues
* Parameter setting: propose key lengths for which computational cost for solving hard
K problems is larger than 2128, 2192, 2256 ot )
* Implementation: program source code or hardware for the algorithms and protocols
* Experimental data: size of keys/ciphertexts, time of communication
*  Proof of tamper resistance: implemented hardware is protected from malicious users

NIST post-quantum standardization

* Key encapsulation mechanism (KEM)

L Goal: Share a key for symmetric enc.

= < INTERNET |——>
Alice Bob
Modules:
* Definitions

* Algorithms (Functions): KeyGen, Encapsulation, Decapsulation, Symmetric Encryption...
* Protocols: {How, When} participants use them and send data

(OMIT, same as PKE)

We will introduce only the outline of LOTUS-PKE (public key encryption)




Agenda

* Background — NIST post-quantum cryptography project
* Outline framework of cryptographic scheme

* Which properties are wanted; long-term security

* Outline of LOTUS

* Comparison with other submissions

* Parameter setting from lower bound
* Cost lower bound for known algorithms
* Performance limit of computation

Specifications of LOTUS

Our design concept: lattice-based cryptography as secure as possible

Advantages:
* Expected to be secure in the long term
* Simple construction
* Can be a “backup” if other NIST candidates using state-of-the-art
techniques are broken

Drawbacks:
* Low performance, limited functions
* Extreme position in security-performance trade-off
* Fewer new techniques




Specifications of LOTUS

Our design concept: lattice-based cryptography as possible as secure

* Well-studied modules
* Base algorithms: (KeyGen,Enc,Dec) from [Lindner-Peikert, 2011]
* Protocols: standard PKE + Fujisaki-Okamoto transform
* Security proof: IND-CCA2 secure under the standard LWE
assumption in the random oracle model
* Parameter setting: Attacker using a major algorithm with a
classical computer must perform at least 2128 operations

Specifications of LOTUS
0700000 900000 0 00000 900000 @ .@0.@.
.6 " 00000O o000 00® 0009000 o 00000 200
®
@5 Agenda to introduce modules: :2
o® * Algorithms and protocol of IND-CPA scheme g;
o0 [Lindner-Peikert@CT-RSA2011] °
9
ol * Proof of correctness -
- * Security reduction to the LWE problem [
o o
@
2e * State of LOTUS at now s
.0 0.
5] .;
9: P}
o o
o® o
® 290" 0 LK L XX R 29000 " O 20000 O 20000 .@.
200000 20000 0O 2900000 (X X X X B 20000
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QOutline of LP11

A: security parameter (n,q, ¥, s): algorithm parameters

Subroutine: discrete gaussian generator

For a parameter s € R, DG(s) returns an integer z with probability:
Prloutput=x] oc exp(-nxz/sz)
(Scaling from mathematical gaussian)

Example for s=3:

0.35 i . i
Pr{DG(3)=x]
0.3 (1/3)*exp(-pi*x2/32) Output:
0.25| 100-20-30-1-1-1111
£ 02 10-11-1-1-1-1-3000-
8 015 1210-52-121-101-1
E 5 01-2-10-20-1-11-120

0-211211-11-1200-1
01-101-1..

0.05

‘4 3 21 01 2 34506 7 8 910

Outline of LP11 (Algorithms+Protocol)

A: security parameter (n,q, ¥, s): algorithm parameters

KeyGen(lA)%(sk,pk): secret key and public key
Step 1: Generate random matrices

A |<z> | R||IS | DG(s)™

LOTUS parameters: n=576, q=8192, s=3, £ =128

[ 1 0 o0 0 -1 0
-3 & 1 =1 0§ =3

Small examples of _ 2 0 0 ) 0 1 2
noise matrices A= g oy = S=1_1 0 1
9 9 -3 1 1 2

0 -2 0 b 1 =3

_10_




Outline of LP11 (Algorithms+Protocol)

A: security parameter (n,q, ¥, s): algorithm parameters

KeyGen(l)‘)é(sk,pk): secret key and public key
Step 1: Generate random matrices

A &z |R||S | < DG(s)™

Step 2: Compute

P =R - A |S| (mda)

Then, secret key sk=and public key pk=(| A E )

Outline of LP11 (Algorithms+Protocol)

Goal: Bob gets Alice’s message
n n

;1'-": < INTERNET |P——>
Alice

message [[M ] € {0, 1}

{_ Enc(pk,M)

e, e 18 DG(S)“”

e DG (s)'*¢
cir=eAt+e€ Z(li.xn } ciphertext S
co=e,P+es+ M- [%J € Z;Xf

_11_




Cont’d sk=
< pk=([A][P]
{_ Enc(pk,M)

ey, e —— DG(s)*"

3 ¢ DG(s)"**
ci=eA+e€Z " ciphertext S
cr=eP+eg+ M- |7 | €z

—

Dec(sk,c)

M =cS+cy:=(M,..., M)

If M; mod ¢ < % or > 22,

then M; = 0 otherwise M; =1

Proof of correctness

Theorem Bob recovers Alice’s message M with high probability

(Proof) Follow Bob’s decryption process
M =c,S+cy:=(My,...,M)
= (e1A+e)S+eP+es+ M- |2
—e;(AS+ P)+eS+e3+ M- |4
=eR+eS+es+ M- 2]

Small noise vector

Reminder p = R — AS (mod q)

C1 = elA +eq € Zéxn co=e P+e3+ M- ng € Zéxf




Cont’d

M=eR+eS+es+ M- EJ (mod q)

\ . 7

Y

Small noise vector

« IfM; =0,thenM; ~ 0
e IfM; =1,then M; ~ q/2

For a large q and small s (=gaussian error derivation), the PKE scheme
works correctly

Since noise vectors are from gaussian, sometimes a coordinate
becomes larger than q/2 and decryption error occurs

It is very small probability under appropriate parameter settings

Specifications of LOTUS
=] ..® O..QQ. A .. ..@ ...G'O £ '. o.e O..OO. . 0‘ ..6 ...G’. 5 O. ..0 ..Q@@ o
..
®
os Agenda to introduce modules: :2
o® e Algorithms and protocol of IND-CPA scheme g:
o® [Lindner-Peikert@CT-RSA2011] °
9
ol * Proof of correctness .
® < Security reduction to the LWE problem °e
o® oy
o® %
o® o
o * State of LOTUS at now o®
: ot
@ 3]
e et
o® o
® 290" 0 200000 2900000 20000 0 20000 .0.
20000 0O L X X N N BN o900 0"0O 200000 20000




LWE problem [Regev2005]

* A computationally hard combinatorial problem
* Intuitively, it’s a problem of solving “approximate” simultaneous
equations

111+ 229+ 63 =~ 2 (mod 13)
41+ 122+ Txz =~ 7 (mod 13)
921+ lazs+ Tz3 =~ 10 (mod 13)
921+ 8z2+ 1223 =~ 6 (mod 13)
41+ 3r90+ 223 ~ 6 (mod 13)

e Matrix form

A X =|b +le (modq)

Formal definition of problem: for given (A,b,q) and distribution of each
ei, find x (or e)
Note: Finding x < Finding e

Investigation of LWE problem

A x| = b +le (modaq)

* Cryptographers: reduce to u-SVP or BDD over a lattice
* Try to solve by using ENUM or Sieve

Note: Engineers consider a similar problem “Sphere decoding problem”
* no modulus
* Each xiis subset of Zq (suchas {1, £3}

~—

N ¢ Y
T—=H T
¥ 7
Source: Dest:

[See for example] Byonghyo Shim and Insung Kang “Sphere
Decoding With a Probabilistic Tree Pruning,” IEEE Trans. on signal sE yiL y=HS+V c Rm
processing, Vol. 56, No. 10, Oct. 2008

_14_




Two variants of LWE problem

* Computational version: for given (A,q,b) and distribution of each ei,
find x satisfying the equation

A X =b +le (modq)

* Used for parameter setting

* Decision version: for given (A,bo,b1,q) where one of bt satisfies
bt=Ax-e (mod q) and bi-tis a random vector from Z;nxl .
Then, find tE€{0,1}

A b is indistinguishable from A u

Used for security proof (Random vector

Outline of security proof

LWE assumption: decision is hard (it immediately follows that the
computational version is also hard)

A b is indistinguishable from A u

Theorem: LP11-PKE is secure under the LWE assumption
(Proof outline) Want to show
(pk,ciphertext) is indistinguishable from (pk,random)

It follows that an attacker cannot extract any partial information on
message from given ciphertext

_15_




* In LP11-PKE, (pk,ciphertext)=(A,P) and (c1,c2) where A is random
and P is computed by

-] - | A

Relation on each column P; = R; — A*S; and the LWE assumption
asserts that P; is a random vector

* Also, ciphertexts are
q
ci=elA+e € Z;x” c;=eP+e3+ M- [QJ € Z;*"
which means that
c1 = (gaussian vector)*(random matrix)+(gaussian) = random
c2 = (gaussian vector)*(random matrix)+(gaussian)+message
=random

* (pk,ciphertext) is indistinguishable from (pk,random) [

LOTUS PKE = LP11+FO

* LP11 scheme achieved IND-CPA security, which is slightly weaker
than NIST requirement
* Not secure for an attacker using decryption oracle
~ lllegal use of Bob’s decryption hardware

--------- —{_INTERNET }— (@9

‘e /1 Bob

Eavesdropping and attackT
[ A BN

* Fujisaki-Okamoto (FO) transformation (1999)
* Automatic transformation of a PKE scheme to a more secure
scheme by using additional subroutines
* Symmetric key encryption (e.g. AES)
e Hash function (e.g. SHA-512)
* Security proof is omitted in this talk

_16_




Description of LOTUS-PKE

* Assume LP11-PKE’s key (sk,pk) are already generated
* M is message that Alice want to send
* Hashi1 and Hashz are distinct hash functions

Enc(pk,M) that calls Enc function of LP11-PKE

o: random vector; K=Hashi(o); Csym=AESEnc (Key=K,message=M)
h=Hash2(c| | Csym)

(c1,c2)=LP11PKE(o); error vectors (el,e2,e3) are generated from h
Ciphertext is (c1,c2,Csym)

Dec(sk,(c1,c2,Csym))

Recover o’ from (c1,c2) and

K’=Hash1(o’); '=AESDec(Key=K’,ciphertext=Csym)
Integrity check: h’=Hash2(o’ | | Csym)

(c’1,c’2)=LP11PKE(0’); error vectors (el,e2,e3) are generated from h’ If

(c’1,c’2)#(c1,c2) then decryption error

Specifications of LOTUS

=] ..® O..QO. A .. ..9 ..000. £ '. ..9 O.OOO. . .. ..9 ...QC. 5 0. ..O ..QQO o
..
© ®
»¢ Agenda to introduce modules: :2
o® e Algorithms and protocol of IND-CPA scheme ::
o® [Lindner-Peikert@CT-RSA2011] °
9
ol * Proof of correctness -
- * Security reduction to the LWE problem [
o® oy
.. 0.
%e °* State of LOTUS at now s
D
ol :
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°® ~
:° ot
o° o
® 290" 0 200000 2900000 20000 0 20000 ...
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Current state of LOTUS (at 2018, Sep. 13)

Post-Quantum Cryptography Lounge
https://www.safecrypto.eu/pqclounge/

« ANALYSIS € {d, ATTACKED,WITHDRAWN}, db=it may be safe at now

* NOTES=known problems claimed in the pqgc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/pgc-forum
and some technical papers

* CCA attack for LOTUS implementation was claimed at the end of 2017
* |t has been patched soon

Patch

B Tancrede Lepoint 20171230 | g | =

FTOADEEE: pgc-co. @nist gov

Dear authors, dear all,

Attack for our
The current reference implementation of KEM LOTUS128 fails to achieve CCA security. .
implementation
Indeed, similarly to Odd Manhattan, even though the verification of the ciphertext is performed, when it fails, the shared
secret is not medified. As such, it is also possible to run a new CCA attack where one discards the return flag and exploits
what is in ss to recover the matrix S row by row.

Find attached an attack script to be put in the Reference_Implementation/kem/lotus128/ directory and to run as follows:
$ gee -03 -lerypto Iwe-arithmetics.c crypto.c mg.c pack.c sampler.c kem.c cpa-pke.c attack.c -o attack

% .Jattack

(MNote that you also need to add the files rg.c and mg.h from NIST.)

This attack can be avoided if proper action is taken in case of failure.

Kind regards,
Tancréde Lepoint.

PS: I did not try, but this attack may apply directly to kem/lotus192 and kem/lotus256
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Patch

B Le Trieu Phong 2017124 | g | o

TOMDBEE: tancrede._@sri_com, pgc-co.@nist.gov

EEE: =

Dear Tancréde and all in pgc-forum,

Thank you for the careful review and the nice attack code.

=This attack can be avoided if proper action is taken in case of failure

Agreed. In implementation, the shared secret should be set only after the verification passes.
The patch for the code is attached to this email. With the patch, the attack is now unsuccessful.

By the way, we wish you all a happy new year! A Sma” patCh (1.7KB)
Kind regards, .
Phong can fix the problem

Comparison with other NIST candidates

List of lattice based PKEs/KEMs (22 items)
e Standard LWE assumption
* LOTUS, FrodoKEM
* Ring-LWE assumption
* Ding Key Exchange, LIMA, NewHope, KCL, LAC
* Module-LWE assumption
e CRYPTALS-KYBER, KINDI, KCL
* Small secret LWE
 EMBLEM, Lizard

* Other lattice assumptions
* Compact LWE, Giophantus, Odd Manhattan,NTRU Prime,
Three Bears, NTRUEncrypt, SABER, Round5, Titanium,
NTRU-HRSS-KEM, Mersenne-756839
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Variants of LWE assumptions
Since the public key of LWE-based cryptography is heavy

A X =b +le (modq)

* Compress A by using a ring Z[x]/f(z): Ring-LWE or Module-LWE
* Ding Key Exchange, LIMA, NewHope, KCL, LAC, CRYPTALS-
KYBER, KINDI, KCL
* Hardness of base problems are unclear
* Unexpected attack can be found

* Compress A by using a random seed: standard LWE
* Frodo KEM

* No compression: standard LWE
 LOTUS

Variants of LWE assumptions

In order to reduce the probability of decryption failure

M = e|R[+ eg—I— es + M - EJ (mod q)

\

Y

Small noise vector

* Generate R and S from a small noise such as {-1,0,1}: Small
secret LWE
* EMBLEM and Lizard
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Size comparison

10000000
1000000 LOTUS
O
— ¥
: *
= |
s 100000 f
! ¢
9 10000 d o
< a o @® Multi-variate
9 ® e FLEtHEE-
= 1000 0 Lattice-based
& > ¥ Code-based
100 ¢ Others
10
10 100 1000 10000 100000 1000000

Ciphertext Size (Min.)

Size Comparison (KEM)
* Public key size is much higher than others

https://groups.google.com/a/list.nist.gov/forum/#!topic/pgc-forum/1IDNioOsKqg4

Agenda

* Background — NIST post-quantum cryptography project
* Qutline framework of cryptographic scheme

* Which properties are wanted; long-term security

* Outline of LOTUS

* Comparison with other submissions

* Parameter setting from lower bound
* Cost lower bound for known algorithms
* Performance limit of computation
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Starting point of parameter setting

Theorem (Repeat): LOTUS-PKE is IND-CCA2-secure under the LWE
assumption provided that G and H are random oracles

* Important relation Conversion parameter]

(Cost of attacking LOTUS-PKE)>(Cost o%ng decision LWE)*C1
=(Cost of solving comp. LWE)*C1-C2

* Cost of solving LWE is baseline hardness of many cryptographic
schemes

* Need to estimate cost of solving {decision,computational} LWE

Two-sided estimation for attacking cost

* In general, there are two direction of cost estimation

Limit of algorithm efficiency<solving Time< Algorithm efficiency at now|

Limit of computing power [seconds] Computing power at now
1\ v J 1\ v
Lower bound Upper bound

e Algorithm upper bound
[Pros] Constructive proof is easier
[Cons] For parameter setting, must follow/predict the progress
of algorithms/computing hardware
e Algorithm lower bound
[Pros] Can fix long-term parameters, i.e., conservative
[Cons] General bound is hard to show (cf. P#NP)
Useless if suggested parameters are very far from
current estimations
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Known estimation from lower

Limit of algorithm efficiency ) .
<Solving Time [soconds]

Limit of computing power

\ J
Y

Lower bound

* For long-term security, it is useful to discuss the lower bound
cost estimation even though for specific algorithms
* Up to now, ENUM and Sieve algorithm have been discussed

Time Space
Classical [ANSS18] Poly(n)
ENUM Quantum [ANS18] y
_ Classical 0(20-292n) 0(20-2065n)
Sieve Quantum O(20.265n) 0(20.265n)

Example, cost lower bound for solving shortest vector problem in B-dimension

Overview of LOTUS parameter setting

* A preliminary version of the argument in [A-Nguyen-Seito-Shikata2018] was
used to set LOTUS parameters

* Convert LWE problem to a problem of tree search [Gama-Nguyen-
Regev2010]
* The depth-first search of a searching tree

Depth n

root rtest vector

* Cost(tree-search) = Total # nodes in the tree
* We bound it from lower
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Overview of LOTUS parameter setting

* Number of nodes in depth k = Volume of an k-dimensional object

Ck

* We find a non-trivial lower bound of vol(Ck) via isoperimetry
* Can compare lower cost bound between ENUM and Sieve

500

192

" HKZ Low:ar, unbounded b:ases : :
Rankin Lower, unbounded bases

ZU_HEHv

950 200 250 300 350 400 450 500 550 600
dimension

Y

f=1

k=1
-
w
(=]

L

2

[=]
-
o
o

logz{complexities)

0 HKZ Lower, unbounded bases ——
Rankin Lower, unbounded bases ——
50 20.265n. Quantum Sieve - - --

100 200 300 400 500 600
dimension

-
(=1
(=1

Classical hardness
loga(complexities)
Quantum hardness

Agenda

* Background — NIST post-quantum cryptography project
* Qutline framework of cryptographic scheme

* Which properties are wanted; long-term security

* Outline of LOTUS

* Comparison with other submissions

* Parameter setting from lower bound
* Cost lower bound for known algorithms
* Performance limit of computation
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Physicists can help cryptographers

Limit of algorithm efficiency< Attack Cost

Limit of computing power

* Limit of efficiency is known for two specific algorithms:
* Number of operations is bounded from lower

* How about the computing power?

Physicists can help cryptographers

Limit of algorithm efficiency< Attack Cost

Limit of computing power

* Limit of computing power from physics

* Landauer’s principle (1961)

Minimum energy required to erase one bit of information is kTIn2

where T is temperature and k=1.38 1023 [J/K] is the Boltzmann const.

* Used to measure how many bits can be changed by a unit of energy
in the discussion in [B. Schneider “Applied cryptography” Chap. 7 (1995)]

* The latest computers are approaching to the limit
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Summary of energy for one bit operation

Top computers in Green500:

/\ 2.5-10 12 - 7.8-1013 [J]
Specific hardware for binary CNN
N 6.5-10716 [J]
- 229 X230
/\ Limit of electric circuit ??
X 1000 2.85-10718[)]

AA V4

Landauer: 2.85° 10'21[J]

Limit of bit operation from Laudauer
e Reference values:

For T=25[°C]=298[K], kTIn2=2.85-10721[J]
< May perform 3.5° 1029 bit operations/J

<

-

Cf. A standard portable battery of 3.7V 5000mAh=18.5Wh=66600[J]
& May perform about 66600/2.85-1021=2.3+ 102 bit operations

The
Current upper bounds: GREEN

* Performance of latest (super)computers ~ 20GFlops/) 500:
https://www.top500.0rg/green500/lists/2018/06/

* 1 Floating-point operation =64 to 2* 10% bit operations

« Binary CNN hardware ~95-10%2 operations/J
Bahou et al., arXiv 1803.05849

1 {XOR,popcount} operation = 16 bit operations




Limitation of electric circuits?

* Pessimistic side
“Nanomagnet based computers dissipate kBTIn2, while charge based

computers must dissipate NkBTIn2, where N>10%"
Snider et al. “Minimum Energy for Computation, the Landauer Principle, and Adiabatic CMOS”,
Superconducting Electronics Approaching the Landauer Limit and Reversibility (SEALeR)
Workshop, 2012/05

* Optimistic side

“From a technological perspective, energy dissipation per logic
operation in present-day silicon-based digital circuits is about a factor
of 1,000 greater than the ultimate Landauer limit, but is predicted to

quickly attain it within the next couple of decades”
Bérut et al. “Experimental verification of Landauer’s principle linking information and
thermodynamics”, Nature volume 483, pages 187-189 (08 March 2012)

Summary of energy for one bit operation

Top computers in Green500:

/\ 2.5-101° - 7.8-1013 ]

Specific hardware for binary CNN

6.5-10716 [J]
< 229 X230

Limit of electric circuit ??
X 1000 2.85-10718[)]

Landauer: 2.85-10721[J]

* 222 would get smaller by the near-future progress of computers
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Impact for the parameter setting

* Near the limit, we may assume the principle to be an approximation
of the current computing power
* Do we need to follow the progress of supercomputers?

Limit of algorithm efficiency _ . Algorithm efficiency at now|
— : <Solving Time~—— -
Limit of computing power [seconds] Limit of computing power

\ J \
Y Y

Lower bound (Hypothetical)
Upper bound

. - https://www.top500.org/statistics/perfdevel/

How much energy can an attacker use?

* Typical discussion assumes that the strongest attacker can cause a
supercomputer to take several years to recover a ciphertext
* Power consumption of the latest supercomputer is comparable to
output of a power plant
* Since both facilities must be large buildings, such an attack may
be public and we may soon be able to take countermeasures

Aide

* Thus, about 10’kw=1010 [J+s] and 108 [seconds] may be the limit
of attacker
« 1019-108/(2.85-1021)=3.5-1038=7128
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How much energy can an attacker use?

* The power supply system can be changed drastically by a network
of renewable energy and batteries [Nikkei electronics, 2018/07]

o

£_:L

/ I.... -
Jl .

* Suppose such a network has been infected
with a virus that targets some crypto. and can
steal 1% of energy

* Very cheap attack; construction of large
buildings not needed

How much energy can an attacker use?

e Revival of science fictional discussion

* World energy consumption at 2017: 7.3-10%° [W]
* Annual energy of the sun: 3.8 1026 (W]
= 192 bit-security appears to be sufficient

* Schneier said: A typical supernova’s release exceeds 1030 W]
= 256 bit-security appears to be sufficient




About the quantum limit

* Useful to discuss the security against quantum computer?
* Margolus—Levitin theorem
* Bremermann's limit
* etc.

* Reversible computer
* Candidate of ultra-low energy computation

About the storage limit

* Since most cryptographic attacks are combinational problems,
space-time trade off relation holds

* Limitation of storage is also useful: capacity [bits/m3], access speed
[bits/second]

* In 2030, total storage all over the world may rise to 1023 bytes

Muraoka et al. “Gigantic Amount Information and Storage Technology : Challenge to Yotta-Byte-Scale
Informatics”, IEICE Technical report (in Japanese), 116-440, pp. 27-32, 2017
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Concluding remarks

* Introduce LOTUS-PKE scheme
* Conservative {Algorithms, protocol, correctness, security proof,
parameter setting}
* No critical problem has been found (as of 2018/08)

* Limitation of cryptographic attack

* Useful for setting crypto parameters
* Computing power/storage in classical/quantum/etc.

Thank you for your attention
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Koichiro Akiyama (TOSHIBA)

A Public-key Encryption Scheme Based on Non-linear Indetermi-
nate Equations (Giophantus(TM))

Abstract

We proposed a post-quantum public-key encryption scheme named ”Giophantus” to NIST
PQC standardization. The security of the scheme depends on a problem arising from a mul-
tivariate indeterminate equation. In this scheme we employ the ”small” solution problem of
multivariate indeterminate equations as a hard problem. If we employ non-linear multivari-
ate equation in the problem, we have some possibility of reducing key in size since lattice
reduction techniques which depends on the linearity cannot apply directly. In this talk, T

introduce an outline of this scheme and show a security analysis for the linear case.
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TOSHIBA

Leading Innovation >>>

IMI Forum
“Mathematical approach for quantum information society”

A Public-key Encryption Scheme
Based on Non-linear Indeterminate
Equation “Giophantus”

Koichiro AKIYAMA
TOSHIBA Corporation

Joint work with
Yasuhiro Goto, Shinya Okumura, Tsuyoshi Takagi, Koji Nuida,
Goichiro Hanaoka, Hideo Shimizu, Yasuhiko lkematsu

2018.09.17

Agenda

1. Introduction
— Public key Cryptosystem : Principle and Vulnerability
— Post-Quantum Cryptosystems
2. Goal of the study
— Unsolvable problems : Section finding Problem
— Algebraic Surface Cryptosystems (ASC)
3. Indeterminate Equation Cryptosystem
— Algorithms ( Encryption/Decryption )
— Possible Attacks
— Computational Experiments

4. Conclusion

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation 33> . Equations : Giophantus(TM) (IMI Forum 2018)

_34_




Agenda

1. Introduction
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TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation >3 Equations : Giophantus(TM) (IMI Forum 2018)

Public Key Cryptosystems : Principle
B Principle

@ Ciphertext N #i30'%Kks0)@ é@
-

Bob’s Bob’s
Alice Public Key Secret Key Bob

To recover a plaintext from a ciphertext is as hard as
to solve some computational hard problems

B Computational hard problem
No polynomial time algorithm is known

| Exponential hard dudng 5o i o rara
Classical problem . t Problems (IF,DL) are
Computer (integer factorization, Quantum solvable so quickly.
discrete logarithm ) Computer '
T T
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate 4
Leading Innova tien 23> . Equations : Giophantus(TM) (IMI Forum 2018)
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Background of the study

B Quantum computer comes close to us

Some IT company develops
quantum computer
I with huge investment

(Source: IBM Website https://www.ibm.com/blogs/research/2018/01/quantum-prizes/)

B We need some technologies to resistant against QC

€ Post-Quantum Public key Cryptosystem
Its security depends on a computational hard problem
in the sense of quantum computers.
NIST started standardization project in the last year.

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation >33 Equations : Giophantus(TM) (IMI Forum 2018)

Post-Quantum Cryptosystems

Knapsack Cryptosystem (1978) Code-based Cryptosystem (1978)

(Inventor) McElice
(Security) Decording problem for
linear codes

(Inventor) Merkle,Hellman
(Security) Knapsack problem

Multivariate Cryptosystem (1989) Lattice-based Cryptosystem (1996)

(Inventor) Matsumoto,Imai (Inventor) Ajitai,Dwork
(Security) Solving multivariate (Security) Shortest Vector problem
non-linear problem in lattices
Problem

1. Secure one requires large public key in size.
2. Practical one is require cryptanalysis.

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation 33> . Equations : Giophantus(TM) (IMI Forum 2018)
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TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation >3 Equations : Giophantus(TM) (IMI Forum 2018)

Concept for Design

To construct a public-key cryptosystem whose security
depends on some non-linear problem.

Giophantus
. Key size :
Post Quantum Lattice base | paduction | Indetern_’nnate Eq. |
Y 2-dim space Y High dim space Y 3-dim space

High dim {---ide--idooidodig NOD-

Linear .|

Xy=n ;
4 -
Solution LNEeger point Lattice point Lattice point
OIUHON in hyperbola in hyper plane in hyper surface

Giophantus provides new variation of PQC which is located
between multivariate & lattice based cryptosystem

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation 33> . Equations : Giophantus(TM) (IMI Forum 2018)
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Section Finding Problem

Algebraic Surface - T Section Finding Problem

Algebraic Surface public key
~ X(X,y)=0on Ft]

Hard 1 1 Easy

Section secret key
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (X, y) = (u,(H),u, (1))
u, (t),u, (t) € F,[t]

This problem is considered as a Diophantine problems on Fp[t] ‘

Algebraic Surface Cryptosystem (ASC)

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation >33 Equations : Giophantus(TM) (IMI Forum 2018)

Algebraic Surface Cryptosystem (Encryption)

message M

* Embed to poly

Public-key: Algebraic surface

message poly. m( X, y)

Same form ? Same form

_________________

Fmmmm e e e e e = 1
\ Random bivariate poly. Randomize Random bivariate poly
1 1
sy S r(x,9) |
----------------- : High speed - --------------~
Fp [t] calculation encryption
Cipher text
[ C(X,y)=m(x, y)s(x, y)+ X (X, y)r(x,y)
I I
L]
Same form
Same form
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate 10
Leading Innova tien 23> . Equations : Giophantus(TM) (IMI Forum 2018)
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Algebraic Surface Cryptosystem (Decryption)

Cipher text

C(X, y) = mOx, Y)S(%, Y)+ X (%, Y)r(x,Y)

* Secret key : section

Section
substitution D:(xy,t) = (u, (t),u, (1)) éé)

m(u, (t),u, ())s(u (t),u, (t))
* Factoring ( univariate poly. )

Message poly.

m(u, (t),u, (1))

* Solving linear equations

message M

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate

Leading Innovation >3 Equations : Giophantus(TM) (IMI Forum 2018) 1

History & Progression of ASC

C=m+ Xr
Linear Algebra Attack
Reduction Attack

c=m(t)s+ Xr(t)

3 variables Trace Attack by Voloch

multiple structure

C=mS+ XI PKC2009

noise addition Ideal Decomposition Attack
by Faugere

C = m(t) + Xr- 1 g .e Eliminate mult. structure

(noise added structure)

Giophantus™

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate

Leading Innovation 53> . Equations : Giophantus(TM) (IMI Forum 2018) 12
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TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation 53> Equations : Giophantus(TM) (IMI Forum 2018)

13

Small Solution Problem

The “small” solution u, (t),u,(t) has coefficients are
in the range of 0 to /-1 ,where / is small enough to d.

- Small Solution Problem ——

Indeterminate Equation

___ Section Finding Problem __

Algebraic Surface
X(x,y)y=0o0nF]t]

Hard Easy l 1
Small Solution Section
Sepsetsm T
u,(t),u,(t) e F[t]
u, (t),u, (t) e F,[t]/(t" 1)
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate

Leading Innovation 53> . Equations : Giophantus(TM) (IMI Forum 2018)

© 2014 Toshiba Corporation 14
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Encryption/Decryption Giophantus™
Public key : Indeterminate Eq. R, =F,[t]/(t" 1)
X(%y)(=0)

message M

{ - small integer * Embed to coeff.

Message poly. M(t)
__________________ (with small coefficients)

| Noise bivariate poly. | o rTTTTTT T T
i (with small coefficients) ! randomize 1 Random bivariate poly.
hmmmm e 22 [ ..
Encryption [ Ciphertext *

Tttt T C(Xa)’)=m(t)+X(X,Y)r(XaY)+fe(X,Y) ____________

Decryption

Same Form
; Secret key : Small Solution
Substitute D:(x,y) = (u,(t),u, ) éé)

I
mod / Recover
m(t)+ £ -e(u, (1),u, (1)) }l—; M(t) =— M
as poly. over

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation > - Equations : Giophantus(TM) (IMI Forum 2018) © 2014 Toshiba Corporation 15

F,[t]/ (" 1) calculation

F,[t]/ (t" —1) calculation (2t + 3t +4)(at’ + bt +¢) = dt” +et + f
t’=1

(2t* + 3t + 4)at® = 2at* + 3at’ + 4at’
=4at’ +2at+3a

Matrix Vector

4 3 2)\(a) (4a+3b+2c)t’
(2t° +3t+4)bt = 2bt’ + 3bt* + 4bt 2 4 3lbl=l2a+4b+3c |t
_ 2
=30 +4bt+20  warik (3 2 4)lc) (3a+2b+dc) 1
(2t> +3t+4)c =2ct’ +3ct+4c  SxPresson
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innova tion 23> - Equations : Giophantus(TM) (IMI Forum 2018) © 2014 Toshiba Corporation 16
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IE-LWE Problem/Assumption

X :Irreducible polynomial with small zero point} on
Y :random bivariate polynomial F [t/ (" ~1)
Decision problem between the distribution (X, X ¥ +¢€) and

the distribution (X,Y) called IE-LWE problem & assumption.

Method Infulluence

Linear Algebra _ Comparison . o ®
Attack (LAA) Z=Xr+e of coefficients \V/
x

Key Recovery __n Soving
Attack (krRay X (X Y) =0 T2~ (U, uy)

The lattice reduction technique can be applied to these attacks since these goals
are common in finding small solutions.

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation >33 Equations : Giophantus(TM) (IMI Forum 2018) © 2014 Toshiba Corporation 17

Linear Algebra Attack (LAA)
D dxy' =X axyD( X nxyD+ X exy on F[t]/(t"-1)

(,])el, (i,])el'x (,))el (,))ele

7 T—7 X r e

deg, X =deg, r=1

X(X,y)= a,X+a,Y+a, Known
r(x, y) =X+, Y+, Unknown
2 2
e(xa y) =6, X" +E XYy +E€,Y +E€,X+E,Y+Ey
Z(x,y)=d, x> +d, xy+d,y* +d, x+d,y+d,

Aol +65 = dzo

Substitute ol +a,h, +¢,=d,
& ay ly, +€y, = doz
Compare

E @ 1 Aol Tyl T 6 = le
as F[t]/t" - _
q[ I( ) Ay Fop + 850l T € = do1

Ayl €5 = doo

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation »» . Equations : Giophantus(TM) (IMI Forum 2018) © 2014 Toshiba Corporation 18
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LAA against IE-LWE ( single term )

ol +€, =0, on F[t]/({"-1)
Integerization
a,h, +€,+qu,, =d,, on Z[t]/(t"-1)

Linear Equation

10
(AIO In qln) e_2; :(a;) on Z
UZO

element of the €,, is small

A Public-key Encryption Scheme Based on Non-linear Indeterminate
Equations : Giophantus(TM) (IMI Forum 2018)

TOSHIBA

Leading Innovation 3>

© 2014 Toshiba Corporation 19

LAA against IE-LWE

If we consider the all equations

A\IO In qln
A Ao L ql,
A]I In qln
A)() Al() In qln
Ao An L ql,
A I

( all terms)

ql, )| Uz

LLAA

where element of the €; is small

rank (£, ,,) =6n

A Public-key Encryption Scheme Based on Non-linear Indeterminate
Equations : Giophantus(TM) (IMI Forum 2018)

TOSHIBA

Leading Innova tion 23 -

u(i(]
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Attack Improvement (by Xagawa)

X(X,y)=a,,X+a,Yy+a,

F(X,y) =X+, Y+,

e(xﬁ y) = e2()X2 + ellxy + e()Z y2 + el()X + e()l y + e()()
Z(X,y)=0d, x> +d, ,xy+d,,y* +d, x+d,y+d,

Substitute Y =0

X(X,0)=a,,X+a,,
I’(X, O) =X+ T
e(X,0) = e, X* +€,X+8,
Z(Xﬂ 0) = dZ()X2 + dl()x+ dOO

Aol +€ = dzo
Aol T Ayl T 6 = le
Ayl T €y = doo

AIO Irl ql n
rank(L£/,,) =3n Ao Ao L al,
%0 I n q I n
L
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation > - Equations : Giophantus(TM) (IMI Forum 2018) © 2014 Toshiba Corporation 21
Key Recovery Attack Linear case

Small solution problem  in€ar Ind. Eq.

of Indeterminate. Eq. X(X,y)=C,,X+C,y+Cy =0
Public key R, (=F,[t]/(t"-1)

Indeterminate Eq. n_ .
X (X.y) =0 J Convert to Z[t]/(t" -1) )

Co Uy + CIOUy +qu =—C,,

c

l

Easy uj
Secretkey | Coefficient comparison u
Small solution —
u
(X, ) = (Ux(t), uy(t)) - _
Y A —
! , (COI Cio ql) u, —_(Coo)
Polynomials with _
small coefficients ﬁKRA u
. . — = =T
Find a small solution (Ux, Uy, U)
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate

Leading Innovation 33> . Equations : Giophantus(TM) (IMI Forum 2018) 2
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How to find a small solution

u,

o _., Find Generalize ~ ceneral
Licea u, :_(Coo) >V VEW solution

U Lyon(VEW)=—(C,,)

u,
Lica @ :(0) —> W

- General

u solution

Shortest Vector problem:To find a small V = W

Closest Vector Problem: To find the closest W to V

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate 23
Leading Innovation >33 Equations : Giophantus(TM) (IMI Forum 2018)

Embedding Technique

Hermite normal form

correspond to X
I, B |C . — | (=
@RAZKO ql, D] " Cou) w, |=(0)
W,

B,C, D Cyclic matrix

| B
l, B small inte
_ ger
L((RA - £K+RA =10 dl
O ql, —
Embeddi Y Wy
CVP mbedding “——— A solution of
Technique SVP -
' _ v
rank (£ga) =20 rank (L' ) =2n+1 - .
Licga Vo [T _(Coo)
v,
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate 2

Leading Innovation 33> . Equations : Giophantus(TM) (IMI Forum 2018)
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Experimental results  (LLL)

!
L;RA Liea
n q rank | Norm1 Norm2 | Gap Norm1 |result time
10 33149 21 8 186 22 204 | Success 0.02
20] 131059 41 12§ 619 50 633 [ Success 0.09
30] 293791 61 15§ 1416 97 1619 [ Success 0.26
40] 521299 81 17§ 3236 191 3325 | Success 0.76
50{ 813623 101 19§ 6013 315 6581 | Success 1.77
60[ 1170751 121 21 11444 552 | 11738 | Success 3.52
70[ 1592659 141 22} 20796 943 | 20589 | Success 6.45
80| 2079401 161 24} 37181 1563 | 37601 | Success 10.74
90| 2630917 181 25) 66292 2641 65551 | Success 57.79
100 3247243 201 27) 106864 4026 | 110512 | Success | 318.16
110[ 3928361[ 221 28] 186219 6724 | 201748 | Success | 788.46
120] 4674289 241 29| 307382| 10474 | 313401 | Success | 1361.19
130 5484979 261) 373397| 574752 2 | 542968 | Failure | 2315.24
The norm of 1st basis vector ] Gap=Norm2/Norm1
The norm of 2"d basis vector _ _ ho A
By Bai-Galbraith O ql,
. . . + ’
This problem is a Unique-SVP ‘ | A, (Lra) lIF GH (Liga)
shortest vector
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate 25

Leading Innovation >33 Equations : Giophantus(TM) (IMI Forum 2018)

Experimental result  (BKZ)

e We carried out a BKZ experiment by changing block

SIZe ﬂ 15_; | Beta
15-] |® 10
14l n= 120 |®@ 20
13
log, 15[ =
(b1:b2:”'>b2n+l) i:2,---,2n—1 10-:
Sufficiently reduced z GSA holds
. " ]
basis of L., 7
Gram-Schmidt - .
orthonormalization 0 20 40 60 80 100 _ 140 180 220
* * * I
(bl ’bza' : 'ab2n+1) ~l—line fitting Beta=10

S i (*)Geometric series Assumption)

10 -0.0835 32.274 4320402 4320505  |b: /b’ ||~b, /b |
20 -0.0749 31.228 1783504 1783497
TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate 26

Leading Innovation 33> . Equations : Giophantus(TM) (IMI Forum 2018)
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The complexity of BKZ 2016 Estimate

We assume that the complexity for BKZ is as same as
the LWE problem with

parameters | meaning _____| Key recovery attack

n dimension n

m Number of samples 2n

q modulus ~324n* +72n+15
o standard deviation 1.12

m Estimation for the root of Hermite factor for SVP

Find a pair (n,5)

Sy = ()" B/ (27e)) ")
m 2016 Estimate

JBTCMA (L) = 82772 (det Ligy)">" —

satisfied
both conditions

-

Time complexity

( where A,(Lirs)=~5n/2 holds ) '8.2p.202%2F+1231

A Public-key Encryption Scheme Based on Non-linear Indeterminate 27

TOSHIBA
Equations : Giophantus(TM) (IMI Forum 2018)

Leading Innovation 3>

Parameter & Performance

In linear case, namely deg X(x,y)=1, we choose the

parameter n by cryptanalysis based on
the “2016 estimate”.

reference implementation

(=4
n-— Public Secret Key Gen | Encrypt | Decrypt
Key(KB) | Key(KB) @ Text(KB) (Mcycle) | (Mcycle) | (Mcycle)
135 1201 467424413 15 0.6 29 93 179 336
196 1733 973190461 21 0.9 42 161 379 717
259 2267 1665292879 28 1.2 55 240 627 1187
Small High speed

prime  prime
CPU : Xeon E5-1620 3.6GHz
0OS : Windows 7, 64bit

Memory : 32GB

g is a prime next to
0—1+£L(£-1)+20(0-1)’n+34(£ -1)’n’

A Public-key Encryption Scheme Based on Non-linear Indeterminate 28

TOSHIBA
Equations : Giophantus(TM) (IMI Forum 2018)

Leading Innovation >33 .
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Evaluating at one attack

Decryption Attack
c(X,y,t)= : c(x,y,1)=
mt)+ XX y,Or(x, y,H)+72-e(x,y,t) t=1 m)+ XX y,Dr(xy,)+7-e(x,y,l)
small solution R, = (F[t]/(t"~1) small solution l | F,
X(X,y,t)=0 1, ( X (X, };,1) 0 | exhaustive search

n-1 I Sx’ y =
u, (t),u, (t)) = ait', bit' —
O<a,,b,<£ 1 0<sx, y<n(£ 1)

| y
o(U, (1), U, (£),8) = m(t) + £-e(u, (t),u, (t),t)  C(Sc:SyD=mD)+L-(s,.S,,1)
1Y Loz

c(u, (t),u, (t),t) mod £ =m(t) c(s,,S,,1) mod / =m(l) mod /¢

X2 Oy»

Ward Beullens, Wouter Castryck and Frederik Vercauteren consider
this relation leads to breaking IND-CPA.

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation »» - Equations : Giophantus(TM) (IMI Forum 2018) 29

But the attack does not always work. Because,

C(SX’ y’l) m(l) + e(SX’ Y’l) F J must be larger than

y (C=DN+2(£—=1)*n* +3(£ =1)*n°
c(s,,Sy,)mod £=m(l) mod /' Z
(U, (D), U, (1),1) = M() + £-e(u, (D),u, (,1) R, \

‘1' g is a prime next to
cu,(®),u, (), )ymod £=m(t) | y_ 14 pr—1)+2000-1)2n+30(£—1)°n

Z[t
- in appropriate parameters
n__| The minimum required | attack/
scheme attack decode

c(s,,S,,1) mod ¢/ =m(l) mod /¢

1201 467424413 140344178502 300.25 x>y
1733 973190461 421634751198 433.25 is not always satisfied !

2267 1665292879 943804735206 566;75

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
LeadingInnovation > . Equations : Giophantus(TM) (IMI Forum 2018) 30




Experimental Result

(parameter using fixed q)

However, we fix the parameter d=2"—1 for optimal implementation

C(’Sx,sy,l) mod ¢

-0

1 2
1201 703 1167 52688
1733 36852 28222 13412
2267 24747 25522 25218

Here we set
8 m(1) mod /=1
45442  0.9626
21514 0.3015
24513 0.0148

Distinguish Advantage=Pr(2 most likely value)-Pr(2 least likely value)

Random

c(s,, Sys 1) mod ¢

0 1 2

24844 24900 25255
25038 24946 24983
25094 25056 25120

3

25001
25033
24730

| distinguishable

Distinguishing
Advantage

0.00512
0.00142
0.00428

Evaluating at one attack almost works the scheme with parameter used in
optimal implementation.

A Public-key Encryption Scheme Based on Non-linear Indeterminate

TOSHIBA
Equations : Giophantus(TM) (IMI Forum 2018)

Leading Innovation >3
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Experimental Result (appropriate parameter)

For appropriate parameter, we employ minimum q which leads
non-error decryption.

c(s,,S,,1) mod /
0 1 2 S

Distinguishing
Advantage(*)

1201 467424413 24769 25113 25559 24559 0.01344
1733 973190461 25136 25035 25008 24821 0.00342
2267 1665292879 25117 24791 25021 25071 0.00376 }
Random ’ indistinguishable
c(s,,S,,1) mod ¢
0 1 2 3
24873 24922 25144 25061  0.0041
24883 24945 25032 25140  0.00344
25121 25114 24970 24795  0.0047

The distinguishability strongly depends on the public key. We
need to consider about how to detect weak keys.

A Public-key Encryption Scheme Based on Non-linear Indeterminate

TOSHIBA
Equations : Giophantus(TM) (IMI Forum 2018)

Leading Innovation >33 .
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Agenda

1. Introduction
— Public key Cryptosystem : Principle and Vulnerability
— Post-Quantum Cryptosystems
2. Goal of the study
— Unsolvable problems : Section finding Problem
— Algebraic Surface Cryptosystems (ASC)
3. Indeterminate Equation Cryptosystem

— Algorithms ( Encryption/Decryption )
— Possible Attacks
— Computational Experiments

4. Conclusion

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innovation >33 Equations : Giophantus(TM) (IMI Forum 2018)
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Conclusion

m We proposed a new variant of PQC called

“Giophantus” which is located between Multivariate

and Lattice based.

B We found the secure parameters by 2016 estimate.

B Giophantus requires short secret key in size and

short process time.

W Evaluate at one Attack does not always work on

Giophantus.
- parameter used for optimization : almost works

— appropriate parameter : depends on the public-key

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate
Leading Innova tion 23> - Equations : Giophantus(TM) (IMI Forum 2018)
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Toyohiro Tsurumaru (Mitsubishi Electric)

Leftover Hashing Lemma as Quantum Error Correction

Abstract

The leftover hashing lemma (LHL) guarantees the security of privacy amplification (PA), a
ubiquitous primitive in modern cryptology. On the other hand, quantum error correction
(QEC) is an indispensable theoretical tool in the field of quantum information technology,
particularly in efforts toward realizing the quantum computer. We present a certain type of
equivalence between these two theoretical tools, the LHL and the QEC.
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Leftover Hashing from
Quantum Error Correction

Toyohiro Tsurumaru
(Mitsubishi Electric Corporation)
2018/9/17 @ Nishijin Plaza, Kyushu University
(arXiv:1809.05479 [quant-ph])

Warming Up:
A Quick Review on
Quantum Mechanics
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Braket Notation

In textbooks, vectors are denoted as

e State vector: 1/7 > ¥ (bra)
¢ Hermite conjugate of a state vector: l/_ﬁ > (@] (ket)
* Inner-product of 1/7, J; l,l_;*q?)) = (Y|p) (braket)

= transpose of complex conjugate; 1,1_))T =97

In the “braket” notation

3 102)
Z basis
‘: <> 112)
7 10x) = == (10, + 11,))
X basis ‘ V2
1
N 110 = 70102~ 112)
If one measures |0;) in the X basis,
(0,410x) = (0, %(|oz> + |1Z>):%<oz|oz) = 717 = |0x) is detected with probability [(0,]0;)|? ==,
(0,11) = (0] %qoz) - |1Z))=%(oz|oz> = % = |1x) is detected with probability |(0,|1,)|? = 2
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Whenn = 1 qubits are used

* The X basis and the Z basis are related by discrete Fourier transform:
|by): =272 30 (=1)"%|az)

* Changing bases corresponds to Fourier transform:
|¥) = Xap(@laz) = X, q(b)|bx),
q(b) =272 Eo(-1)"p(a),

Privacy Amplification
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(Nothing more than a)
Very Rough Image of Privacy Amplification

e A process of converting a “roughly secure” string into a “perfectly secure” string

Roughly secure string
(e.g., physical randon number)

a8

Public nonce

|:> [ Hash function ] Eavesdropper
Legitimate
el < - pletely unknown

]
% Perfectly secure string _/

. Bits unknown to eavesdropper D Bits known to eavesdropper

The Easiest Example

Either one occurs or \Ethe\rbit is known
o2 N y
Br L

Legitimate Hash function Eavesdropper

user =%OR /
Completely unknown

B

. Bits unknown to eavesdropper D Bits known to eavesdropper




Popular hash function for this purpose: Toeplitz matrix multiplication

Partially known string

Public nonce .:.:-
-
b

Xt
Yot fie Thwn o T Xn-ta1
Yot foca | Tt Thea fha
= e T Tha
Y, r o N T
Y I r fia T Xn-a
X

Toeplitz matrix
_ < all diagonal elements are equal

Completely unknown string

In general, one can use a universal, hash function

Def: Random function G: A — B is universal,

def
— Pr(G(ay) # G(ay)) < é for Ya,,a, €A, a4, # a,
(Carter-Wegman 1979)

The Toeplitz matrix of the previous slide is an example of universal, functions.




Physical
random
number
generator

Classical
Encryption
Device

Use Cases of PA (1/3)
“Physical Random Number Generator”

Outnur oM I T T [
a physical

random source <>

(e.g., thermal noise)

Universal hash function g ] <:|

M (public)

Random choice of g

Hashvalue (IR

= | Use as a secret key
‘ ¥
J Plaintext Encryption function Ciphertext

Hello” = (eg,AEs)  —[EIJOAESIEEY

Use Cases of PA (2/3)
“Physically Unclonable Function (PUF)”

« HELALLDOALT, BE—DOFFEFVTITRELTLD

o EEA TR, BEERE. FuT LADEELEL BIRA I
.« ABE=FYTOREESDE (MBEL. AT DHIE) w57 AEYEIZ
SEEA VDAL, B4 TR LN % BIER - %%

=3/ W 0 BE

JIFEJZ %EL DRENE &

bt Covwvama ) O[T
o AFEE

swe NN
& E5 X

HEES — mekmy | — 3

5@
T anER
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Security of Privacy Amplification

* Setting: Random variable A .:.:-:I:I\ Prob. Dist. )
([ B
Choice of g (public) Universal AN &
[ hash function g ] =
Legitimate - Eavesd[opper E
user Hash value K = g(A4) _ ———— P _rc;k;_D—ls_t-I;,(gE
(m bits)

e Security criteria: Zg P;(g) dl(PKgE): = Zg Pdg)“li— Uk X PE”J < ¢

L

average variational distance between the real and the ideal final states
¢ Leftover hashing lemma (LHL) (Hastad et al. 1984):

1
g ~(m—Hpin(A|E
Y Pe(9)di(Py) < 22~ Himin(AID)),
where the minimum entropy H,y;, is calculated from prob. dist. P45 at the beginning;

Hpmin(P4g|E) = —log, Y. méax Pyp(ale)

Quantum Description of
Classical Privacy Amplification

¢ The basic idea = Game transformation
¢ Actual scheme: Classical privacy amplification

W Random variable A .:.:-:I:I\ Prob. Dist.
LB

\\\PAE
<

7
-

Transform Choice of g (public) [ Universal } SOy L]
without affecting hash function g . 2 - -
i iti avesdropper
security measure Legl'jts'g”rate Hash value K = g(4) > | hed PP
9 ashvalue K = g _ ————— Prob. Dist. PY.
& (Pie) mbits)

\4

e Virtual scheme: Quantum error correction (+ Z-basis Measurement)




Step 1 of our game transform

Legltb%‘tie Hser Random variable A i!

T I 7] Eavesdropper E
Initial state
of the actual Classical probability: Pyg
PA { Equivalent
Density matrix: p=XaePap(a e)la)als @ |e)elg
{ Equivalent (purification)
Initial state Entangled state: W) = YaePap(a e)la), ® |a,e) s ® le)g

of the virtual

PA

Legitimate user !ﬂﬂ

Vector space H,
(m Vector space Hy, P A Vector space of

IEEEE NESESSEEE  Eavesdropper Hy

More Review on Quantum Mechanics:
Density matrices and pure states

* Preparing states [;), [{;), -+ with classical probabilities p;, p,, -
=3 Density matrix p = X; pi | )l

For example:

* Expectation of observable A: ¥, p;(y;|A[y:) = X pi Tr{([:{:])A} = Tr{pA}

* Classical probability ¢ measurement basis {|11), [{), -+ } is fixed

pr 0 - 0
o p= 0 P:z 0 (diagonal)
0 0 -+ Dn

* Pure state ¢ a vector [1;) occurs with probability 1 ¢ p = |1/)1)<1/)1| “rankp =1
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More Review on Quantum Mechanics:

¢ Composite system:

Composite system of systems H,, Hg is described by tensor product Hyg = Hy & Hp.
. {|ai)},{|b]—)} are basis of Hy, Hg > {|a,-)®|bj)} is a basis of Hyp.

¢ Quantum entanglement:
|WYap = |a)4 ® |b)p (without summation) & |¥) € H,p is NOT entangled (w.r.t. Hy and Hg).

* Partial trace: Tracing only over Hg, and leave Hy intact;

Trg(pap) = Zi(HA ® (bi|3)PAB(HA ® |bi)g)

e E.g., Partial trace of a pure state W), is a density matrix;
905 = D" Aslaiks ® lbids = Trg((¥UWD = > [Allai)ail,
L 15
e Purification: |W) is a purification of p, < p, = Trg(|¥)¥P])

« In fact, purification | W) exists for any mixed state p,

More Review on Quantum Mechanics:

* Any classical random variable A can be described as subsystem H, of
entangled state |W) 5 € Hyp;

Classical probability Quantum state

Pr[A = a] =p, e  pa=

0 P = Trp ()],

0 0 - p,

where W) 5 = Yav/Pa )4 @ |a)p
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Step 1 of our game transform

2

Leg'tlﬂ%‘t;e User Random variable A i!

T I 7] Eavesdropper E
Initial state
of the actual Classical probability: Pyg
PA { Equivalent
Density matrix: p=XaePap(a e)la)als @ |e)elg
{ Equivalent (purification)
Initial state Entangled state: W) = YaePap(a e)la), ® |a,e) s ® le)g

of the virtual

PA

=

Legitimate user !ﬂlm

Vector space H,
(m Vector space Hy, P A Vector space of

IEEEE NESESSEEE  Eavesdropper Hg

Step 2 of our game transform:

9= VPas(@)la)s ® laely @ le)e

Legitimate user
& Vector space Hy, Vector space H, (n-qubits)

%_I]:TI

Z-basis measurement using
=19 QIQZQIR QI
"\i-th qubit

Equivalent

N <1:> Z-basis measurement using
791 = 794 @ .. @ Z9in

Outcome a = (aq,+,ay)

{ Calculate k; = X; gij a; }

Hash value k = (kq,**+, k)

T For the sake of simplicity, we assume that hash functions g are linear; k; = ¥, i @;,  gi = (gir, ", gin) € Ker g




Step 2 of our game transform:

W)= VBa@elads @ la.e)a @ le)s

Legitimate user .
& Vector space Hy, Vector space H, (n-qubits)

8 "=
T

Z basis measurement usmg
Z9i =791 Q... Q Z9in

Hash value k = (kq, -+, k) &

* For the sake of simplicity, we assume that hash functions g are linear; k; = ¥ gija;, g = (gi1, -+ gin) EKer g

Step 3 of our game transform:

9= VPas(@)la)s ® laely @ le)e

Legitimate user
& Vector space Hy, Vector space H, (n-qubits)

% [T hi = (i, hyn) € (Ker g)*
X—basis measurement using
Commut Xhi = xhia @ ... @ XPNin
Bit flip in X-basis using
Z =l - QIRKRZJIIY QI

Z basis measurement usmg
791 = 7911 ® ® Z9in

Hash value k = (ky, -+, ky) &

T For the sake of simplicity, we assume that hash functions g are linear; k; = ¥, gij @;,  gi = (gir, "+, gin) € Ker g




Step 3 of our game transform:

W)= VBa@elads @ la.e)a @ le)s

Legitimate user

@

Vector space Hy, Vector space H, (n-qubits)

EEEEN I EEE 71
% [X—basis measurement using} Error correction in
XM= Xhia @ - @ XPin the X-basis using
L1 linear code
C9 = (Ker g)*

[ Bit flip in X-basis using }

Z=1Q-RIQZAIQ QI
<5

Z-basis measurement using
Z9i = 791 @ - @ Z9in

L

Hash value k = (kq, -+, k) _

* For the sake of simplicity, we assume that hash functions g are linear; k; = ¥ gija;, g = (gi1, -+, gin) EKer g

Our virtual PA scheme:

9= VPas(@)la)s ® laely @ le)e

Legitimate user

]

Vector space Hy, Vector space H, (n-qubits)

_I:I:F:I:I

Error correction in
the X-basis using
linear code
C9 = (Ker g)*
1
Z-basis measurement using
[ 79i = 791 @ - @ Z9in }

Hash value k = (ky, -+, ky) &

T For the sake of simplicity, we assume that hash functions g are linear; k; = ¥, i @;,  gi = (gir, ", gin) € Ker g




Zero error in the X basis implies
Security in the Z basis

* If Alice’s has the zero error state in the X basis, py = [0x){(0x| ,,
and measures it in the Z basis, the outcome is unknown to Eve

e Quantum Monogamy:
(For a composite state p,z € Hyg, and its sub-state py = Trg(p45))
“py is pure = p,p is NOT entangled”
i.e, pa=laXal, = ps=laNal, & ps
pa=la)Xal, = [Plapc = |a)a ® [Y)pc-
* Measuring the X-eigenstate |0y) in the Z basis = Uniform distribution
» X-eigenstate |ay) © X|ay) = (—1)% ay)

* lax) = 5(102) + (1% 12)

Zero error in the X basis implies
Security in the Z basis

e Classical probability:  P4g(a,e)
& Density matrix: Pag = YaePap(a,e)la)als ® |eXelg

= Purification: |W)agc = Xge v Par(a, e)|a)s @ le)y @ |a, e)¢

= Rewritten in the X basis:
[WYarc = Zppredap(b +b',e)|bx)s ® le)p ® |b'y, e)c,

qap(b,e) =272 5 (1) %/Pys(ae),

Discrete Fourier transform
lby): =272 3, (—1)P"%a)

e Uncorrelated case: Pyp(a,e) = 27"Pg(e)
= Zero error in the X basis: qae(b,e) = 69+ Pg(e)
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LHL derived from quantum error correction

* Pure state | W) 55 equals pyp after Hy is measured in the Z basis and Hy traced out.

Define a CSS code PCY9 = (Cg, ng) = ({0,1}", ker g ),
then privacy amp. is equivalent to bit measurements on code states of PCY.

¢ Lemma: There exists a phase error correction op. l'IfB using PCY,with the failure probability
Pon (M5 I¥X¥D) < 1= F(RY,, Uy x P)’,
where F(p,0) = Tr{(pl/zapl/z)l/z} (quantum fidelity)

* Theorem (Coding theorem): If hash function f is chosen randomly from a universal, family F,

%4 Pa(9) F(P&,, Uy X Pg)”* < 2m~Hmin(Pagle)

. Corollary: X, Pe(9)||PS — Uy X Pg|| < X4 Ps(9) 2ﬁJPph (ngqwxwD)

1 .
< zﬁ\/zg Pg(9) Ppn (ngB(pp)(lpD) < 23[M~Hmin(Pag|E)+3]

Leftover Hashing Lemma !

Summary

e Privacy amplification (PA) is an important algorithm in cryptography, both
classical and quantum.

* The leftover hashing lemma (LHL) is useful for the security proof of PA.

e Quantum error correcting (QEC) code is an important building block of quantum

information technology.
¢ We have shown that the LHL can be derived from QEC:

game transf.
PA = QEC + measurement
Security measure of PA < 2v/2 \/Failure prob. of QEC < 2v/2 V2™~Hmin
()
Coding theorem
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Quantum Key Distribution

(1) transmit random numbers

Goal of QKD: (2) monitor eavesdropping

QKD device Channel (e.g., optical fiber) QKD device

TV VAV

generate and send

receive A
random number A elve

[o[2]2]o]2]1] [o[2]2]o]2]1]

P

Alice (sender) Bob (receiver)
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(1) transmit random numbers

Goal of QKD: (2) monitor eavesdropping

QKD device

s

QKD device

Eve
(eavesdropper)

generate and send

random number A receive A

[o]a]a]o]s]s] [o]a]a]o]2]s]

% 4[ It’s being wiretapped! ]\\ﬁ?\\/

Alice (sender) Bob (receiver)

(1) transmit random numbers
Goal of QKD: . .
(2) monitor eavesdropping

QKD device Channel (e.g., optical fiber) QKD device
T=m

Whenever Alice and Bob conclude that there is

No wiretapping, bits A can be considered unknown
generate and send to outside .
random number A P receive A

of1[afoa]2]" P GV

secret communication

by using A as a secret key

v

Alice (sender) Bob (receiver)




Practical Case with Bit Error Rate P, > 0

modulation

S|

A random number A

ﬂﬂﬂﬂ

-«

[ Privacy Amplification }
N7
2 ]o]1]
]

Alice
(sender)

3

f@“@@d“@@\

1 )

demodulation

Eve
(Eavesdropper)

Estimate bit error rate P},
by random sampling

—>continue if Py, < Py, (threshold)

random number Z shared

(final goal)

[ Privacy Amplification }
v

(1 ]o]1]

.\~ 7 Bob

@\ii (receiver)

Alice

quantum channel

General QKD Protocol

’
=

’\ Eve E

A

%

quantum channel

@ Bob B
(]

.

o
i :

state estimation & error correction using classical communication

1
2=
T

[ Z-basis measurement }

[ Z-basis measurement }

corrected key state pyp = YqlaXala ® la)alz @ pi

[ Privacy amplification

] [

¥

1

Privacy amplification

v

final key state pyrprp = Tilk)Mkl g ® [k)Xkls ® pk




General QKD Protocol

Alice UE’ quantum channel
A % >

quantum channel ﬁ“ /’
A 1
> \ e~

=
| state estimation & error correction using classical communication
[ Z-basis measurement J [ Z-basis measurement ]
I I
corrected key state papr = Xalalals ® |aXalz & pg
[ Privacy amplification } [ Privacy amplification }

¥ v

final key state pyrprp = Xilk)kla ® 1k)klp ® pf

Goal of the Security Proof

@ Bob B
Alice ﬂﬁl quantum channel quantum channel o K 7
A > > \ .
A
=5
| state estimation & error correction using classical communication
[ Z-basis measurement J [ Z-basis measurement J
| |
corrected key state papr = Sqla)als ® a)als ® pf
[ Privacy amplification } [ Privacy amplification }

v v

final key state pyprp = Silk)kla ® lk)kls ® pk

@ Security measure = distance from the ideal state = ||pA/B:E - pjg‘f?"’}15||1

Ideal final key state pl9%3L = (273, [k)kl4 ® [k)klp) ® pg
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Outline of Our Result

There have been two major mathematical methods for proving the security of QKD:

1980’s
LHL

‘ 1990’s ‘ 2000’ ‘ 2010’

Quantum Leftover Hashing Lemma (QLHL) Quantum LHL

e Renner’s approach

for Modern Crypto.

Quantum

(2005 Renner)

e Avariant of a method known in modern
cryptography

Extention
(1984 Hastad et al.)

Wlt

1st Security Proof Simplified
(1996 Mayers) (2000 Shor-Preskill, 2004 Ko

Quantum Error Correction (QEC)
¢ Shor-Preskill’s or Koashi’s approach
¢ A method originally developed for QKD

« For most practical QKD schemes, the both method yield the same result.
¢ However, no direct link between the two were known up until the present.

These two are in fact equivalent

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

<+ s Bob B
2 EveE @ )
()

Alice quantum channel @ /
!
N4

| state estimation & error correction with classical communication

A

quantum channel

o
i :

(=
e

[ Z-basis measurement J [ Z-basis measurement }
I I
corrected key state pupr = DalaXal, ® |a)alp @ pf

[ Privacy amplification J

v

[ Privacy amplification J

¥

final key state pyrprp = Tilk)Mkl g ® [k)Xkls ® pk

ideal

@ Security measure = distance from the ideal state = ”PA’B’E - pA,B,EH1

Ideal final key state pjﬁ?}};

= @M Eglk)klar @ [k)klg) & pg




Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

< Eve E @ Bob B
ve )
Alice @ quantum channel ] quantum channel /W\CL
A 1
A 7B - \-ﬂ@ia:
| State estimation with classical communication
[ Z-basis measurement }
I Traced out
corrected key state pyr = DglaXal, @ pg
I
[ Privacy amplification J
E final key state pxg = Y. |k)(klx ® p¥ ;
@ security measure = ||pxg — p,iéifal”l
| Ideal final key State pideal = (2-™I,) ® pj
Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)
;{ s Bob B
Eve E .
Alice ﬂﬁl quantum channel ] quantum channel @\L
A 1
A = > \J(;i:
| State estimation with classical communication
[ Z-basis measurement J
I Traced out
corrected key state pur = Ygla)als ® pf Lower bound on
1 min-entropy Huin (A|E|paE)
Privacy amplification
using random function F

final ke\< state prp = Yplk)klx @ pk

/
. 1 N
@ Er |loksr — oI < 2z~ Hmin(IEIP4)] (Quantum Leftover Hashing Lemma)

Ideal final key state pide! = (2-™I,) ® pg




Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

’

™
Eve E
Alice @ quantum channel el quantum channel
A % > &! >

\

| State estimation with classical communication

’/Z—basis measurement
I N Traced out
/ corrected key state pyp = Zala)(dlA ® pg Lower bound on
: / min-entropy Huin (A|E|pag)
Privacy amplification
using random function F
| T Hatkey State peg = Silk)K
' \ Equivalent to logical Z-basis measurement on
ideal the quantum CSS code C = (Cy, C,) = ({0,1}", ker f )
Ep ”pKE,F ~ PKE ”
i Ideal final key state pided = (27™I,) ® pg
Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)
;{ ~ Bob B
Eve E _
Alice ﬂm quantum channel ) quantum channel @\\‘c /
1
A > > \J@g:

State estimation with classical communication

Pure state |W) 455

Logical Z-basis measurement on
the quantum CSS code
C=(C, ) = ({01} ker f)

¥

: final key state py = Sk} (k| ® pf




Virtual QKD Protocol using Quantum Error Correction (QEC)
Bob B

Alice ﬂ quantum channel quantum channel /ﬁ\“‘ L
A A

A ” - \_ﬁ@%\

=

| State estimation with classical communication |

7

X Eve E

T
E‘@

Pure state |W) 455

Phase error correction V,p classical communication
on CSS code state

Logical Z-basis measurement on
the quantum CSS code
€ = (€, C) = ({0,1}% ker f)

)

.| Arbitrary measurement }
L

final key state pxg = Y. |k)(klx ® pk

LHL derived from quantum error correction

o |W) g is a pure sate which equals p, after Hy diagonalized in Z basis and Hp traced out.

 Define a CSS code PCY9 = (Cg, ng) = ({0,1}", kerg),
then privacy amp. is equivalent to bit measurements on code states of PCY.

e Lemma 1: There exists a phase error correction op. l'[fB using PCY, achieving block error rate
. 2
Pph(ng3|q,)) s1- F(pIgE' piE™ )",
* Lemma 2: If hash function f is chosen randomly from a universal, family,

. 2 .
Zg PG(Q)F(P,‘?E,P}gfaI) < 2M~Hmin(paE|E)

« Corollary: ¥, P:(9)|lpgy — piE?|| < XyPc(9)2V2 /Pph(H,i’BI‘PD

L Ho
< 2\/7\/247 PG(g)Pph(HAggll'p)) < 22[7“ Hmin(pag|E)+3]

Leftover Hashing Lemma !




Summary

1980’s \ 1990’ \ 2000 \ 2010
Quantum Leftover Hashing Lemma (QLHL) LHL Quantum LHL
¢ Renner’s approach for Modern Crypto.  Quantum (2005 Renner)
e Avariation of a method used in modern Extention A Our Result

cryptography

(1984 Hastad et al.)

Quantum Error Correction (QEC)
¢ Shor-Preskill’s or Koashi’s approach
* A method developed originally for QKD

1st Security Proof Simplified/
of QKD A A——A

(1996 Mayers) (2000 Shor-Preskill, 2004 Koashi)

There have been two major distinct mathematical methods for proving the security of QKD.

We have shown that they are actually equivalent;
QLHL can be considered as a special case of QEC-based approach.
This suggests that privacy amp schemes can be improved borrowing the theory of error correction;

this equally applies to privacy amp schemes used in modern cryptography.
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Yasuhiko Tkematsu (The University of Tokyo)

The multivariate encryption scheme HFERP

Abstract

Multivariate public key cryptography is one of the main candidates for post-quantum cryp-
tography. In 2016, Yasuda et.al. proposed a new multivariate encryption scheme SRP. This is
constructed by combining the encryption scheme Square with the signature scheme Rainbow
and using the plus modifier. In 2017, however, Perlner et.al. proved that SRP is vulnerable to
MinRank attack. In this talk, we will describe a new multivariate encryption scheme HFERP
that we proposed at PQCrypto2018. HFERP is constructed by replacing Square part in SRP
with the HFE scheme. We will explain that HFERP is invulnerable to MinRank attack. This
is a joint work with R. Perlner and D. Smith-Tone and T. Takagi and J.Vates.
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The multivariate encryption
scheme HFERP

*Yasuhiko lkematsu (The University of Tokyo)
Ray Perlner (NIST)
Daniel Smith-Tone (NIST, University of Louisville)
Tsuyoshi Takagi (The University of Tokyo)
Jeremy Vates (The University of Montevallo)

18t September 2018

What is MPKC?

Consider the following quadratic polynomials over [F3;:
p1 = 11xZ 4 24x,x5 + 5x1x3 + 22x2 + x,x5 + 17x3,
Do = 27x% + 29x1 x5 + 24x2 + 27x,x5 + 19x3,
ps = 4xZ + 6x1x5 + x1x3 + 25x2 + 27x,x5 + 26x3.
P:= (p1,p2,p3) 1 F3y — F3;
(x1,%2,x3) = (0,1,1) ‘ P(0,1,1) = (9,8,16) easytocompute

P(xq,%,%x3) = (9,8,16) ‘ (x1,%x5,%x3) = +(0,1,1) difficult to solve
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What is MPKC?

1. Construct fi = x2,
easy-to-invertmap  fo = 13x7 + 26x1x, + x2,
fa = 16x2 + x1x3 + 21x2 + 5x,%5 + x2.

Easy to solve
Fx)=c
for any element c.

2. Randomlychoose 22 3 12 13 9 2
S=|11 o0 27} T=|0 7 17].

linear maps
5 17 14 28 15 4

F:=(fi, fa f3): F3, — F34

3. Composite P=(p,pup3) =TcF °S=IF§1 - ]F§1

3/43

What is MPKC?

p1 = 11xf + 24x,x5 + 5x1x3 + 22x5 + x,x5 + 17x3,
P = 27x% + 29x1%, + 24x2 + 27x,x3 + 19x3,
p3 = 4xZ + 6x1x5 + X1X3 + 25x2 + 27x,%3 + 26x3.

P=ToFoS=(p,p2p3): F3y — F3; Public key

Bob’s message Ciphertext to Alice

P
(0,1,1) € F3, : » F3, 3 (9,8,16)
I 1 encryption T_lf
S
) decryption 3
]F§1 c -1 [F31

4/43
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§1. MPKC (Multivariate Public Key Cryptosystems)
§2. HFE scheme
§3. HFERP scheme (Our proposal)

§4. Experimental results

5/43

§1. MPKC (Multivariate Public Key Cryptosystems)
§2. HFE scheme
§3. HFERP scheme (Our proposal)

§4. Experimental results
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*PQC - - - Post-Quantum Cryptography

+ Lattice-based * Isogeny-based
+ Code-based + MPKC

* MPKC « -« -« Multivariate Public Key Cryptosystem ——

‘ » High-speed  Short signature

* NIST PQC standardization in 2016
10 multivariate schemes among all 69 proposals

7/43

1-2. Easy-to-invert quadratic map

Consider m quadratic polynomials in n variables over a finite field F.

1 1
fi(xa, o Xn) = Li<icjzn al’(,j)xl’xj + Lisisn bi( )xi +c),

Jm (X1, 00, X)) = 21si5j5n al-(jl)xl-xj + 21<izn bi(m)xi + c(m),

F:=(fy, ., fp):F* — F™ Quadratic map

Def. Easy-to-invert
For any d € F™, the equation F(x) =d
can be solved in very little complexity.
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1-3. The general construction of encryption schemes

Secretkey F:F*— F™  easy-to-invert quadratic map ice’
y Alice’s

. N n
7‘? ) ]IE’"_) im) invertible linear maps Secret key
: —
Publickey P:=ToFoS: F* — ™M quadratic map Alice_,s
= (P1, - Pm) Public key
Bob’s message p Ciphertext to Alice
d € F* " > IFmB C
encryption
|5 ol
decryption
n < m
H? - }7__1 H?

The security of this scheme is based on solving P(x) = c.
9/43

MQ problem
Given m,n : positive integers
91, - 9m : Quadratic polynomials in n-variables over F
Findz e F* s.t. g;(z) = = gm(2) =0.

* MQ problem is proven to be NP-complete. [Fraenkel et al. Dis. Appl. Math. 1, °79]

* The security of MPKC is based on MQ problem “P(x) = ¢”.
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1-5. The history of MPKC encryption schemes

)4\/” (Or C*) [Matsumoto-Imai Eurocrypt'88],  [Patrin Crypto’95]
N‘IFE [Patarin Eurocrypt'96], [Bettale et al. Des. Codes and Cryptogr’13]
* ABC [Ta0etal. Pac13]
ﬂHFE [Porras et al. PQC’14], [Cabarcas et al. PQCrypto’17]
M SRP (vasudaetal. icics'15],  [Periner et al. SAC™17]
b EFC [Szepieniec et al. PQC’16]

*HFERP [lkematsu et al. PQC’18] X broken
*EF LAS H [Cartor et al. SAC’18]

11/43

1-6. Direct attack

* Direct attack + + - Tosolve P(x) = c using Grobner basis

Complexity of F4 algorithm for P(x) = ¢

n+dreg 2 n A >1 _ degree of
dreg ' (2) reg = = * regularity of P = (pq, ..., Pm)

Difficult to estimate the degree of regularity

12/43

_93_



1-7. Structure attack

For g € F[xy, ..., x,], let g® be the quadratic part of g.

Choose an nxn matrix G s.t. g (x) =x -G - x%, x = (xq, .., Xp).

Matrix repre. of ,q(z)

%(G + GY) char(F) # 2,

If char (F) # 2, then

Qg = 9P x) =x-Qq - xt.

7 le+6t  char(F) = 2. ‘
_ 100 13 13 0 16 16 1

From slide2 Qf1:<0 0 o), Qf2=(13 1 0), Qf3:<16 21 18).
000 0 0 0 1 18 1

11 12 18 27 30 0 4 3 16

From slide3 Qp1=<12 22 16), Qp2=<30 24 29), Q,,3:<3 25 29).
18 16 17 0 29 19 16 29 26

13/43

1-7. Structure attack

F =1 fm) P=@u-Pm)i=ToFoS

w  Span{Q,,,..,Q, } = Span{S- Qy, - St,..,S - Q; -S*}
Slide2 and 3 11 12 18\ /27 30 0\ /4 3 16
Span{(lz 22 16),(30 24 29),(3 25 29>}
18 16 17/ \0o 29 19/ \16 29 26
10 0 13 13 0 16 16 1
=Span{5-<0 0 0)-51‘,5-(13 1 0)-St,5-<16 21 18
00 0 0 0 0 1 18 1

If the matrix repre’s of F have a feature, then
an attacker may be able to break from P using them.

)
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1-8. Summary of MPKC

*  An MPKC scheme has three objects as secret key :
F: easy-to-invert quadratic map,
S, T:two random invertible maps.

* Publickeyisgivenby P =T o F oS

* There are two kinds of attacks against MPKC :
Direct attack and Structure attack.

To propose an MPKC scheme

To propose how to construct an easy-to-invert quadratic map

15/43

§1. MPKC (Multivariate Public Key Cryptosystems)
§2. HFE scheme
§3. HFERP scheme (Our proposal)

§4. Experimental results
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2-1. HFE(Hidden Field Equation) scheme

HFE scheme  « isconstructed using an extension field.
* was proposed by Patarin at Eurocrypt’96.
* is an extension of Matsumoto-Imaischeme.

Notations IF : finite field with g elements
E : d extension field of [F
(64, ...,84) : basis of E/F

¢ FE3 (xq,...,xq) — inei €E (F-linearisom.)
i

Fix a positive integer D.

17/43

2-2. The construction of HFE scheme

HFE polynomial with degree D

H(X) = Z ai,jXququ, a; ;€ E.  (Call D HFE degree)

qi+qi<D
HFE (quadratic) map Fy E H(X)
¢ ] ) [ ¢
Fy: F4 F¢  Quadratic map ()
(%) (x1,...,xq) € F4, X =¢(xq, 0, xg) = %101+ -+ x4604.

. . . . i i J 7
xai+d = yd'. xa/ = (xlgf 4+ e 4 xdgg ) (xlef + .4 deg )

= (quad in xq,...,xq)01 + -+ + (quad in x4, ..., x4)04.
18/43




2-2. The construction of HFE scheme

Secret key Fy : F% — F2 easy-to-invert quadratic map

S, T: F*— F2 invertiblelinear maps . c
0
Publickey P :=ToFy oS :F%— F? quadraticmap m HG) ™
E——E
* How tosolve Fy(xy, ..., xq) = (¢1, ., Ca)- ] o l -1
1. ComputeC := ¢(cq, ...,cq) € E. 4 - ]F‘f9
H
2. Findasolution X, of H(X) = C by Berlekamp algorithm. (c1,..,€a)
3. Computemg := ¢~ 1(X,) € F%
The complexity of Berlekamp algorith
0(D3 + dDzlogq) complexity
19/43

2-3. Direct attack for HFE

Theorem [Ding et al. CRYPTO'11]
2+ (g— 1)[10gq]_)]/2, q:oddor [loqu]: even
dreg(P) = dreg(FH) =< h .
1+ (q — 1)([log, D] +1)/2, otherwise

(*) Forsmall g and sufficiently large n, d. 4 (Fy) is considered to be the upper bound experimentally.

The complexity of direct attack for HFE:

d+d.. (F)\ /d
0(< dreg(i},) )(2))
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2-4. MinRank attack for HFE
(HFE polynomial with bound D) Rank [logg D] L a1y ars .. ¥
( 8) o
~ 0
0 0/ \X

H(X) = Z a X0+ = (x xa . yetny[ 21 922

qt+q/<D d-1

0 0 q

» Ty, ., ag €E s.t. Rank(a,Qp, + -+ aqQp,) = [logq D].
MinRankattack is to find such ay, ..., a4 € E
by computingthe zero of all the minors of size [loqu] +1.

Theorem [Bettale et al. Des. Codes Crypt. 69 2013]

The complexity of MinRank attack is O ((dJ'llog" Dl) (d)>

21/43

2-5. Summary of HFE scheme

* HFEschemeis constructedby H(X) = X i, j<p ai'jXqi’qu,
*  The complexity of decryptionis O(D3 + dD?log q).

d+dreg(FH))2 (d)
Areg(Fy)

2+ (q — D|log, D]/2, q:oddor[logg D]: even
1+ (q — 1)([logg D] + 1)/2, otherwise.

*  The complexity of direct attack is O ((

dreg(P) = dreg(FH) = {

[logg D]

* Trade-off between decryption efficiency and security.

. . . d+|log, D| 2 d
* The complexity of MinRank attack is O ( a )(2)
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§1. MPKC (Multivariate Public Key Cryptosystems)
§2. HFE scheme
§3. HFERP scheme (Our proposal)

§4. Experimental results
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3-1. HFERP scheme

HFERP scheme  « isour proposal at PQC’18.

* is an extension of SRP encryption scheme.

* is constructed as SRP with HFE replacing Square.

Notations [F : finite field with g elements
d,0q,05,1,1,,5 : positive integers
E : d extension field of [F
n:=d+o,+0, mi=d+o;+o,+1n+1r,+s

D : positiveinteger (HFE degree)
24/43




3-2. The construction of HFERP

X = (X1, e, Xq), V= (yl, ...,yol), z= (zl, ...,202) n-variables

HFERP := Plus modifier of (HFE scheme + Rainbow scheme)
Construction of east-to-invert map

* HFEmap Fy: F43 x — Fy(x) € F4, where H(X) = Z al-,jXqi”qj

qi+qi<D

* First Rainbowmap fi(x,v) = Za” xlyj + quad poly.in x

Randomlychosen over [F
(ql+r1) I|r_1ear poly. O, el ]
in 0-variablesy f01+r1 (xy) = Za X;yj + quad poly.in x

FRl: = (fi, ""f01+7'1) . ]Fd+01 — ]F01+r1

25/43

3-2. The construction of Rainbow

¢ SecondRainbow map

filx,v,2) = Za’(l)x iz + Zb’g)ylzj + quad poly.inx,y

fo,+r, (X, Z) = Za’(02+r2) XiZ + Zb'g‘}ﬁrz}yizj + quad poly.inx,y

Fra:= (f{, e, fo,4r,) : F'— FO27T2
* Random map
91(x,v,2) = quad poly.inx,y,z

(0p+1,)-linear poly.
in 0,-variables z

9s(x,v,2) = quad poly.inx,y,z

Fp:= (91, .., 9s) : F*—
26/43
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3-2. The construction of HFERP

Combiningthe quadratic polynomials
FH(x)'FRl(x' y)' FRZ(x'y' Z)!FP(x: Y, Z);
we get the following quadraticmap :

Fyrgrp = (Fy,Frq,Fro, Fp) : F* — F™

Secret key Fypprp: F*— F™ easy-to-invertquadratic map

. fn n
; : Em_—)ﬁF"J invertible linear maps

Publickey P :=T o Fypgppo S : F* — F™ quadraticmap

27/43

3-3. The decryption of HFERP

* How tosolve Fypgrp(x,v,7) = (¢1, ..., Cp) € F™.

1. Findasolutionx € F4 of Fyy(x) = (cq, ..., cq).
2. Find asolution y, of the linear systemin y

Frq(x0,y) = (Cd+1:---ﬂcd+01+r1)-
3. Find asolution z, of the linear systemin z

Fra(x0,0,2) = (Cd+01+r1+1' ---»Cm—s)-
4. Check FHFERP(xO'yOI Zo) = (Cl, ...,Cm).

The complexity of decryption: 0(D3 + dD?logq)  (d < n)

28/43

-101-




3-4. About Rainbow and SRP

Rainbow scheme -« isa multivariate signature scheme.
* was proposed by Ding. et al. at ACNS’05.

Frainbow = (FRl;FRz ) : F* — F™, where n=r=5s=0.

SRP scheme * is a multivariate encryption scheme.
* was proposed by Yasuda. et al. at ICICS’15.
* isthe original of HFERP scheme.
* uses square map instead of HFE map.
* was broken by MinRank attack. [Perlner et al. SAC’'17]

Squaremap  Fy: F%3 x — Fy(x) € F, where H(X) = X2

29/43

3-6. Direct attack for HFERP

Degree of regularity for HFERP
2+ (q—- 1)[logq D]/Z' q: odd or [log, D]: even
1+ (q— 1)([10qu] + 1)/2, otherwise

Areg(Furerp) < dreg(Fy) <

The complexity of direct attack for HFERP:

2
n+dreg(FHFERP)| (1 _
0(( dreg(FHFERP) ) (2)), wheren = d + 01 + 0.

30/43
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3-7. MinRank attack for HFERP

(HFE polynomial with bound D) 41 @2 o 0 ¥
igo) q
H(X) = Z ai ;[ X9+ = (x xa .. xa*?) (az’:l ?2’2 8) X
00 o0 0/ \x*"

qt+q/<D

» 3y, ...,y EE s.t. Rank(alQp1 + -+ a'mem) = [loqu].
MinRankattack is to find such a4, ..., a;, € E.
The complexity of MinRank attack for HFERP:

2
1
(<"H(')lg0ngDfJ) (T;)), wherem=d +o0; +0,+1 +1, +5.

* SRP is broken by MinRank attack, since [loqu] = [logq 2] = 2.
31/43

3-8. Other attacks for HFERP

Fy(x) Fri(x, ) Frao(x,y,2)  Fp(x,7,7)

Matrix d .

repre. 01

02

There are other attacks for Rainbow are applicable to HFERP.

1. HighRank attack

2. UOVinvariant attack
3. Linear-algebra-search version of MinRank attack

32/43
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3-9. Summary of HFERP scheme

* HFERP = Plus modifier of (HFE scheme + Rainbow scheme)

* The complexity of decryptionis O(D3 + dD?log q). (m=d+o0, + 0y)

2
* The complexity of direct attack is O n+dreg(FHFERP)) m.
P Y (( dreg(FurERP) (2)
2+ (q — D|log, D]/2, q:oddor [logg D]: even

d P)=d F <
reg(P) reg(FureRP) {1 +(q- 1)([logq D] + 1)/2, otherwise.

2
* The complexity of MinRank attack is O ((mﬁgoggfj) (';))
m=d+o1+0+1r1+1,+5) &a

* Trade-off between decryption efficiency and security.

33/43

§1. MPKC (Multivariate Public Key Cryptosystems)
§2. HFERP scheme (Our proposal)
§3. Attacks against HFERP scheme

§4. Experimental results

34/43
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4-1. Parameter selection for HFERP

128-bit security parameter of HFERP

We take F = .
ND=3"+1 Assume — 29 Assume
D dreg = 10 2)D=3"+1 dreg = 12
n = 225 by direct attack n = 140 by direct attack
m = 464 by MinRank attack m = 226 by MinRank attack

\ 4 \ 4

d =85,00 =0, =70, =15, =89,s = 61. d =60,00 =0y, =40,1y =1, = 23,5 = 40.

(If HFE scheme, d = 464.) ( If HFE scheme, d = 226.)
35/43

4-2. Direct attack experiment data for HFERP

(1)D=3"+1,(d =850, =0, =70,;, =1, = 89,5 = 61)

—1)|log, D
dregﬁz+%[gq]=2+8=10.

d =34a,01=0, =28a, rn=r, =3.56qa,s = 2.44a, (a=1234)

ououriris Ln in L GFERD

(333442) 3,3,3,3,3 3,3,3,3,3

(7,6,6,7,7,5) 19 38 4,4,4,4,4 5,5,5,5,5

(10,88,11,11,7) 26 55 5,5,5,5,5 5,5,5,5,5
(14,11,11,14,14,10) 36 74 5 5

The degree of regularity of the small scale instances » Estimate
of HFERP grows in relation to that of random schemes. dreg = 10
36/43
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4-2. Direct attack experiment data for HFERP

(2)D=3%+1,(d=60,0, = 0, = 40,1; =1, = 23,5 = 40)

—1)|log, D
dregsz+%[gq]=z+1o:1z.

d=24a,0,=0,=1.6a, =10, =092q,s = 1.6q, (a=2345)

ououriris i Ln L GFERD

(533223) 4,4,4,4,4 4,4,4,4,4
(7,5,5,3,3,5) 17 28 44,444 5,5,5,5,5
(10,6,6,4,4,6) 22 36 5,5,5,5,5 5,5,5,5,5
(12,8,8,5,5,8) 28 46 5,5 5,5

The degree of regularity of the small scale instances » Estimate
of HFERP grows in relation to that of random schemes. dyeg = 12
37/43

4-3. Improving on HFERP decryption
}I()() = :EE: Cll])(S iy3J

, 3t+3J
H'(X) := Z a; ;X 2 D/2 degree

3i+3/<D
*  We solve the equations H'(X) = cand X? = ¢’
instead of H(X) = c in decryption process.

The complexity of decryption

O(D*+dD?logq) mem) 0( D3+> dDzlogq)

38/43
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4-4. Experimental results for HFERP

(DD=3"+1

2)D=3%+1

(d=85,0,=0,=70,r1=1,=89,s=61) (d=060,00 =0, =40,11 =1, = 23,5 = 40)

Key Generation 12.057 s
Encryption 0.007 s
Decryption 6.605 s

Secret Key Size 1344.0 KB

Public Key Size 2905.7 KB

HFE scheme with d = 464.

Key Generation 72.084 s
Decryption 190.940 s

Key Generation 2.005 s
Encryption 0.003 s
Decryption 87.726 s

Secret Key Size 226.0 KB

Public Key Size 552.3 KB

HFE scheme with d = 226.

Key Generation 8.298 s
Decryption 1414.718 s

All the experiments were performed using Magma on 1.6GHz Intel Core i5.

39/43

4-5. Minus modifier

a : integer

Fy(xq, ..., xq) = (f1, ..., fg) : easy-to-invert map of HFE scheme

Fy-a(xq, ..., xq) = (fi, ) fa—a): F4 — [Fd-a

1. Choosecg_q41, -+ Cq € F.

2. Find asolutions of Fy(xq, ...

def
( HFE™% scheme ﬁ Easy-to-invert map:FH—a(xl,...,xd\)

How to solve Fy-a(xq, ..., x3) = (C1, ) Ca—g)-

,Xq) = (¢, ey Cq)

k 3. Ifitdoes notexists, go back to step1.

40/43
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4-5. Minus modifier

/[Ding et al. Journal of Math-for-Industry Vol.4 2012] and \
[Vates et al. PQC’17] show that

(Security of HFE~*withD' = g"* + 1)

K = (Security of HFE withD = q" + 1) j

The complexity of decryption of HFE %withD'=q""%+1 =g~ %D

0(q~2%%D3 + dq~*D?log q)

41/43

4-6. Experimental results for HFERP minus modifier

HFERP minus modifieris replacing HFE part with HFE~% scheme.

(OD=3""%+1 (2)D=3%"%+1
d=850,=0,=70,,=1,=89, d=60,0=0,=40,1y =1, = 23,
s=61l+a s=40+a
Decryption Decryption

(max, min, average) (max, min, average)
a=0 6.6 s, a=0 87.7 s
a=1 49s,155,3.0s a=1 41.6s,13.15s,29.1s
a=2 3.25,035,1.65s a=2 26.85,2.85,14.6s
a=3 245,015,125 a=3 18.65,0.65,9.1s

All the experiments were performed using Magma on 1.6GHz Intel Core i5. 42/43
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Conclusion

* HFERP is constructed as SRP with HFE replacing Square.
* The substitution makes MinRank attack infeasible for HFERP.
* The substitution makes the decryption of HFERP efficient.

Future works

* Analysis for direct attack against HFERP minus modifier.

* Optimization of the implementation of HFERP minus modifier.

43/43
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Yutaka Shikano (Keio University)

How to understand the cloud quantum computer

Abstract

Recently, commercial-based quantum computing service was started through the cloud. Keio
University was selected as the Asian IBM Q Hub and has the cloud access right to use the
20-qubits quantum computers. Since quantum computers are too sensitive, it is too difficult
to understand the ”current” status of the cloud quantum computer. In this talk, I would
like to introduce how to understand the status through the cloud service. Also, the current

target application will be discussed if possible.
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How to understand
the cloud-type superconducting
quantum computer?

Keio University Yutaka Shikano
g Quantum Computing Center
L Institute for Quantum Studies
Preface
OMG....

“Mathematical approach for quantum
information society”

Today’s talk is no mathematics.

Today, | will talk about the recent progress
of superconducting-qubit type quantum
computer and how to understand it.
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Keio University
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1858
LAD\O

Quantum Computing Center

(since 2018.4.1.)
IBM-Q Hub

Yagami Campus
Building 34
Room 312

Naoki Yamamoto
Director

Associate Professor
Quantum control theory

Kohei Itoh
Professor
Silicon quantum dot

Yutaka Shikano
Project Associate Professor
Quantum theory

Takeharu Sekiguchi
Project Associate Professor
Spin quantum information

Rodney Van Meter
Vice director
Associate Professor
Quantum architecture

Hiroshi Watanabe
Project Lecturer
Molecular dynamics simulation

Takahiko Satoh
Project Assistant Professor
Quantum networking

Yoichi Suzuki
Project Associate Professor
Chemical physics

Eriko Kaminishi
Project Assistant Professor
Statistical physics
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Cloud use of superconducting
quantum computer

Member companies:

JSR Corporation

MUFG Bank

Mizuho Financial Group
Mitsubishi Chemical Corporation

Toward

Limit of Computation

-114-




1015
HUMAN
o - BRAIN
ELECTROMECHANICAL SoLID- VACUUM  TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
ey RELAY
MOUSE
CORE i7 QUAD 4> BRAIN
8" )
g PENTIUM 4 CORE 2 DUO
& PENTIUM il : AL
xq0 |- PENTIUM Il ]
w
- COMPAQ VTN
2 DESKPRO 386 COMPUTING?
S10° |- S
2 ALTAIR 8800 ‘ PENTIUM
o IBM 1130 L
w 10¢ =
IBM AT-80286
& DEC PDP-1 ‘ 8
g ' « IBM PC
£ 10
< UNIVAC | @ Ooec ArPLEN
2 PDP-10
a| 0 1 1 1 L 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 1
oS COLOSSUS,
1BM 1BM 704
L o TABULATOR [eEC
HOLLERITH
i TABIxTOR =1
10 . NATIONAL CALCULATOR
ELLIS 3000 MopeL. 1 © BCA Research 2013
ANALYTICAL ENGINE
=3 g =] w = w =} w0 Q o (=] ﬂ (=] w =3 w (=] w0 (=] w =3 w =] w o w
$ 5 5 9 8§ % & & » & & & & 5 & » & & & 8 8 T - 8 8
- - - - - - - - - -~ - - - - - - - - - - N N ] ~ ~ ~

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND
2012 REPRESENT BCA ESTIMATES.

1952 IBM 701
First commercial computer
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John Archibald Wheeler (1911-2008)

He is the naming founder of black hole.
He said “It from Bit”.

His students became our legends.
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Turing machine does not use
right physics!!

Proe. R. Soe. Lond. A 400, 97-117 (1985)
Printed in Great Britain

Quantum theory, the Church-Turing principle and
the universal quantum computer

By D. DevTscu
Department of Astrophysics, South Parks Road, Oxford OX1 3RQ, U.K.

(Communicated by R. Penrose, F.R.8. — Received 13 July 1984)
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1 qubit system

Superconducting qubit
= Non-linear resonator

LC resonator ‘Josephson-junction resonator ‘ |

Josephson junction = nonlinear inductor

05um 0.5mm
Anharmonicity = Effective two-level system

| D

Slide: thanks to Yasu Nakamura (UT)

energy
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E()l ~ 10GHz ~ 05K

© * Microwave generation

e Cool down near 10 mK

Blackbody radiation (uncontrollable)

10 — Ultraviolet Visible Infrared

Ajisuagur

q
B

At 500 mK, the single microwave photon is emitted.
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How to cool down?

[ Dilution refrigerator

I Cooled by decompressed helium—4 I

] IDistilling chamber | |:I Dense phase
{

pure helium—-3)

Heat exchanger Dilute phase
| | - (6% helium—3 and
94% helium—4)

| Mixing chamber |

Reality

B ElLfield |E, norm. 0 1

10 mm




2 dimensional case
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Qubit representation (Bloch sphere)

-—— -
-.-__,.-
-

n = 2: qubit (quantum bit)

Geometry of Quantum State
Pure state: Fubini-Study metric

——
.
-~

. o
) = —0) +r’c’-111— 1)

lu

11)

R.(0)

Rotation operation

0 - .0
N P 0 COS = —18in 5
p —fo-\xz = COS 3[ — ¢ 51N 34\ = 2
9 2 —17 8In f, “’“_
. 0 R Ccos ) — sin Q)
e “=coa—I—gmm-Y = f
9 )
9 2 “1111 — (_l]‘w_
—i0/2
)7 (; F) I
e 022 _ p— T —inii—Z —
9 2 0 g e

Due to the qubit frequency, the operation
speed is determined. 5 GHz -> 0.2 nsec
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Qubit measurement

A Input Pump Output
Transmon Parametric
D*D amplifier
G O
E C D
i X

|

B
L
&
hiwg o - X
10y - P '
Frequency
Transmon qubit  Cavity phase Cavity input  State-dependent Phase-sensitive
response cavity output amplification

Comptes Rendus Physique 17, 766-777 (2016)

Measurement error

A .
W Y 'V
) |
Q 1l ] /
E il
i -
(| RIE
B ) l . —2Z
10 e S, T 0 5 10 i5 20
r Time (ps)
D "
£
3 AN
8
o
— —) w—F
‘0.0 05 _1.0 15 2.0
Time (ps)

Due to the quantum noise, we cannot

perfectly take the measurement.

Comptes Rendus Physique 17, 766-777 (2016)
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Noise sources

Slide: thanks to Yasu Nakamura (UT)

magnetic-field noise?
trapped vortices?

paramagnetic/nuc

environment
circuit mo

photons?

charge/Josephson-energy fluctuations?

Qubit quality check schemes

~90% visibility

Rabi: T,

/L 0.51

Ramsey: - % 9 T2* ti}ne (slilghilydeiuned)
WA WM/L E 0.5 1

_ z 9 : ; :
Echo: < ﬁ T2 time (no detuning)
j\_ Dc% 0.5¢ M

1 =

=

T1: ! \I\‘I\\
/L s

100 200 300 400
time [ns]

OO
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Recently, the qubit coherence time does
not satisfy “Quantum Moore’s law”.

1ms
1000 5 ”
3 3Dtransmon  /
i P
A 47
100 = e
E »
| s
- ’
"5‘ El flux b B .
,
04 i e
o 1 es /7" materials
g i F 1 9% »
(= Jquantronium ’a'. e  advances
Q 15
e ; =
g ] . transmon,
£ 014 Pl fluxonium
o] E ’
6] ] =t
1 % flux
T s
’
0.01 4 .
3 it @ 2D qubits
. G A 3D qubits
1,2 @ charge qubit
0001 4 g
P e e e e A s
2000 2005 2010 2015
Year MRS BULLETIN 38, 816 (2013) MIT-LL
State fidelity

F(p,0)

Gate fide

Iy

lity

Tr\/\/ﬁa\/ﬁ 2

T/ VERU () VE(D

2
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Quantum Process Tomography

eflon oy sy} ™ ol =|wi ){wi,

p out

process map Operator basis

|
prm! = g(pm) = Z ZE}'EE pinE;—

;Ji - L)
E, E{f.o'\..fﬂ"_.d'__}

Example: identity operator

Real part Imaginary part
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Randomized Benchmarking (RB)

1. Qubit initialization s
2. Randomized Clifford circuit operated.

3. The inversed randomized Clifford circuit
operated.

K
] =/ _lz /
4. Qubit measurement PL= K 4 P Lk
=1

a — —\T €10 :
T H B
g o & g 0.9
o i 9 O ",
= = o = © 0.8} s

-
)\ 0.7}

b 0.6 'I.

T 0 0.5L . .

HRIE L ey o

= - E_'-T,--..';b- _'.;,‘_ :. ek ., .0

Cm S -0.02k h i S
—J) \— 0 40 80 120 160

more qubits system
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Two-qubit interaction methods

Direct coupling (Flux-tuning) &
C-X gate / <
iISWAP gate Go g|€

(@) ©
1 0 1
Magnetic flux (/D)

Indirect coupling (Drive-tuning)

Cross-Resonant Gate
C-NOT gate

N, ged

[l afls
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Gate-type Quantum Computing Developers

@ o e

rigetti §
Google

lon trap )

Quantumdots @

Superconducting @

2 8 10 17 19 20->50? 22->72? # Qubits
>
gi*“‘*“ o te4sn Q rigetti I=3s Google
@ ETH:zlirich

90 % hardware problems on quantum
computer are in classical problem.

r:l'\q_.__ % i ﬂl

Each connector has the slightly different properties.
Therefore, the ground level is not stable.
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IBM Q 5 Tenerife [ibmaqx]

Last Calibration: 2018-09-16 18:59:43

MAINTENANCE AVAILABLE ON QISKIT

Q2 Q4

Rabi Oscillation Fraguency (G 5.02
T1 (ps) 48.40

T1/ Echo T2 (us) 54.70

RB Gate error (11]‘3)
Readout error (103

MultiQubit gate error oy

Shor’s algorithm (N=15, x=11)

- - T
2 3| °— QFTy QFTy — $
@ E

(i) =

' mod N

n qubits

register B

‘ ibmex4: 12 qubits and 192 gates needed

- ] tOH-
|r) q1 I.H I m

|0 q2

rJ q3

' U

i
/
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simulation reality

Probabilities
{=1 =] o

00 000
5 53 8§ 5
§ § 88 § § 3

Prababilities
1= (=1

005

0000 0000 0000 0000 0000 O 000

wawawa

(' -1)=(112-1)=(11-1)(11+1) =10-12.

gcd(15,10) =5 }
Factor of 15
gcd(15,12) =3 arXiv:1804.03719

Simplified algorithm is OK?

Factoring of 4088459 can be mapped to
the two-qubit search problem.

i
a8 = o o e

we) b

arXiv:1805.10478

2017 X 2027 = 4088459

Factoring problems on specific numbers can

be easily solved by quantum computer.

-132-




Next investigation: Error correction

Majority rule of the measurement bit can be applied.

W’) @ D— |4)
10) & &

10) & &

0) —b H |—l—o— oD H|-b -
10) & E j‘) ¥

0) & &

0) —E 9 (H—o—4—
10) <> @ T

10) < <

@ 1 —Quantum Threshold Theorem

- Phys. Rev. X 8, 021054 (2018)

10" |

% M

se

Failure probability

The error correction code cannot be scaled
above the several errors conditions.

-133-




Let’s see ibmgx4

IBM Q 5 Tenerife [bmgx4]

Last Calibration: 20185-09-16 18:59:43

blue orange

qol [0 al0] 10

al1l o a1l o —

al21 o al2] 0

al31 o) al31 0 -

ql4] 1) — al4 0

M 3 2 ! 0 oY 0 2 4 3
7000 Executed on: Sep 17, 2018 7:33:55 AM Executed on: Sep 17, 2018 7:34:34 AM
- Results date: Sep 17, 2018 7:58:39 AM Results date: Sep 17, 2018 7:59:31 AM
Number of shots: 8192 Number of shots: 8192

5000
4000
3000
2000
1000
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Frequency (GHz)
T1 (us)
T2 (ps)

Gate error (10

Readout error (1072

We cannot take the accurate
computational tasks.

From the calibration date, under the independent
noise and error for each qubit, we can estimate
the successful probability “00000” as 62%.

The real device is 5899/8192 = 73%.

Software development
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Namec e [ vow B D saw ibengu2 o . Smulate .

LT . n }3\3 aans @ n _.
e BEHOHE

ql3]

masITR

a4 - i

OPERATIONS

@

from gqiskit import QuantumProgram
gp = QuantumProgram()

qr = gp.create_quantum_register('qr', 2)
cr = gp.create_classical_register('cr', 2)
qc = gp-create_circuit('Bell', [qrl, [crl)
gc.hiqgriel)

qc.cx(griel, qrl1])
qc.measure(qri@]l, criel)
qc.measure(qri1l], crl1l])

result = gp.execute('Bell"')
print(result.get_counts('Bell'))

L Zbit_calculatoripynb Bl commany
Fie B8 View set funtme Teoh e

OocoE @ TEST 4 CEL & CEL o COMMECTED

g o

a1 £ A qubit intitially in the |8) state that we want to send
o 42 [/ the state of msg to.
B 43 = operation Teleport(msg : Qubit, there : Qubit) : () {

body {

using (register = Qubit(1]) {
// Ask for an auxillary qubit that we can use to prepare
/i for teleportation.
let here = register[0];

ff Create some entanglement that we can use to send our message.

52 H(here);

53 CNOT(here, there);

54

55 // Move our sessage into the entangled pair.
56 CNOT (msg, here);

57 Himsg);

58

59 // Measure out the entanglement.

&8 if (M(msg) == One) { Z(there); }

61 if (M(here) == One) { X(there); }

62

63 // Reset our "hers” qubit before releasing it.
4 Reset(here);

&5 }
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Looking for the applications

c
0.4 prmd Ml 7
0s) o @8)
2y @ @ E“ o © @ H
I & ™ e ~ N <
o1 ) Ez\ @3 o 1 =70 @) @ r_%\g‘[ o Ugl -130
T apt i e [\3., oy, a - o
‘E | @y L 721t @) - -135
2 04 H H i3 gLy
B ! .—. e H -4
7 -osf ! . .
i [ =145 ¢
\ 76 \
a8l i i P '
1: |, \ s ? f-_.-._..___-____‘. 150
UL S l..,)’f. -7.8 Ny,
-155
ol -8.0 = -
o 1 2 3 4 1 2 3 4 5 1 2 3 4 5
Interatomic distance (A) Interatomic distance (A) Interatomic distance ()

Quantum Algorithm Zoo

Nature 549, 242-246 (2017)

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please
email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

GOVERNMENT

Shor
Minimization
Variational

factoring

Cryplography
"L

Optirnization
=N
—— \\\\
-“-" s —

FHARMACEUTICAL

Grover
Harrow-
Hassidim-
Lloyd (HHL)

N0|sy Intermediate-Scale Quarﬁum
(NISQ) Era may not change the world.

71
.“ =

Molorals

Sclence

$

Variational
eigen solver
(VQE)

Phase
estimation

FIMAMNCIAL SERVICES

Chemistry

WEATHER 5

L—X Measuremen

?

SERVICES
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Conclusion and Outlook

* We review the short history of
(superconducting-qubit type) quantum
computation.

* How robust the algorithm against the
realistic noises?

* Next algorithm development is required. In
my personal opinion, we have to find the
quantum unique/original problem to hardly
define such problem in classical mind.

EFIRIBBAMPARE (QIT)

* QIT39 @R REARESLmBEZRMAR L 2—
— 20185 11H26H (A)~278 (X)
- BiFREEAR
 EERX (RRIEKRT)/ZEB— (REKXZF) /
Francesco Buscemi (BB XF)/FEAXE (RRKXF)

— OEEEEEHA 20185108128 (£)
— IRRA—FHFKHIA 201845 10826H (&)
— https://staff.aist.go.jp/s-kawabata/qit/qit39/

* QIT40 @ LM KZFE
— 2019 & (HlE 6 ALE)
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Hirotake Kurihara (Kitakyushu College)

POVM from the viewpoints of combinatorics

Abstract

In quantum theory, measurements are represented by positive operator valued measures
(POVMs). In my talk, a POVM is a finite set of Hermite matrix with some properties.
It is known that when each element of a measurement is a rank-one matrix, the measure-
ment is maximally efficient at determining the state. In this situation, such a measurement
is regarded as a finite subset on a complex projective space. In other hand, “good” finite
subsets on complex projective spaces have been studied in combinatorics. In my talk, I will

discuss “goodness” of measurements from the viewpoints of combinatorics.
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POVM from the viewpoints of combinatorics

Hirotake Kurihara

National Institute of Technology, Kitakyushu College

EFERARICHEGEBENT TO0—F
September 18, 2018

H. Kurihara (Nit Kit)

© Preliminaries

@ Harmonic analysis on complex projective spaces
© Design theory on CP™!

@ Distance sets on CP" !

© Examples of SIC-POVM's

H. Kurihara (Nit Kit)




Based papers in my talk

@ Zauner, G. (1999). Quantum Designs —Foundations of a
non-commutative Design Theory—. Thesis of University of Vienna.

@ Renes, J. M., Blume-Kohout, R., Scott, A. J., and Caves, C. M.
(2004). Symmetric informationally complete quantum measurements.
Journal of Mathematical Physics, 45(6), 2171-2180.

@ Hoggar, S. G. (1982). t-Designs in Projective Spaces. European
Journal of Combinatorics, 3(3), 233-254.

H. Kurihara (Nit Kit)

Axioms of Quantum Theory

21
e C":=Sp=]|:||lzneC; ¢* =t
“Zn
® (oY) == ™, o) (Y] := pv*
Axioms of Quantum Theory

e "“Quantum system” <> H: Hilbert space (In my talk, we assume
dimH < oo, i.e., H is C" with (-|-))

e “state" > p € H, ¢ # 0. Rem: If v, € H satisfy ¢ = ar) for some
a € C, then we treat that ¢ and 1) are the same state.

e From a state ¢ with [|¢|| = 1, we obtain a projection matrix |¢)(¢|
on H.

@ “General state” <> p: Hermite operator on End(H) with Trp =1
and p > 0. p is called a density operator.

@ S(H):={p| p is a density operator}

H. Kurihara (Nit Kit)




Axioms of Quantum Theory (Cont'd)

e “quantity” <> A: Hermite matrix on End(#)
@ For ¢ € H with ||| = 1, the probability that ¢ take the quantity of

A (pldp)
e If ¢ is an eigenvalue of A (A = Ayp), then the quantity of A of ¢ is
A

POVM (Positive Operator Valued Measure)

@ Measure on H <+ M = { M} }r—1...: My satisfies M} > 0 and
> My =1. M is called a Positive Operator Valued Measure
(POVM)

@ the probability that p take the quantity with respect to Mj, is
Tr(p M)

H. Kurihara (Nit Kit)

SIC-POVM

@ In order to we determine completely the state p by POVM
M = {My}y, |M| > n2.

@ POVM M is called an informationally complete POVM (IC-POVM) if
p is determined completely by M.

Definition 1
POVM M = {Mjy}y. is called a symmetric IC-POVM (SIC-POVM) if M
satisfies the following:

e M is IC-POVM

o |[M|=n?

@ For each k, My, is a projection matrix, i.e., there exists |¢r) € H,
lpkll = 1 such that My = |px) (k|

Throughout this talk, we regard SIC-POVM as an n?-elements subset of
H.

H. Kurihara (Nit Kit)




complex projective spaces

o C*:=C-{0}
o (€)= {peC||g| =1}, (C")S = 520!
@ U(n): unitary group of degree n

Definition 2

A complex projective space CP"~! s defined by
o (CYP/(€)°
o (C"—{0})/C
e U(n)/(U1) xU(n—1))

Remark 3
SIC-POVM's on ‘H = C™ are regarded as subsets of CP"~ .

H. Kurihara (Nit Kit)

Properties of CP"!

CP" ! is complex (n — 1)-dimensional compact simply connected
complex manifold.

CP" ! is a Riemannian symmetric space.
G=U(n), K=U(1)xU(n—1) (K is a closed subset of G)
f: C'*°-involution of GG such that

N _ il 0
0(z) := sxs zeG s= (0 —11;—1)

Gg:={g€G|0(g) =g}is K.
The rank of CP"~ 1 is one.

H. Kurihara (Nit Kit)




Polynomial spaces on C"

S*(C™): the space of C-valued polynomials on C".
SP(C") == {f € S*(C") | f(cz) = cPe?f(2)}

S*(C") = X pq0 SPU(CT)

SP4(C™) is a unitary representation of U(n).

A= gl

where 52 = 3 (07 — \/—ay )i s =5la +\/—8y’)
e HC") ={feS*(C") | Af =0}

e HPY(C") = H(C™) N SPI(C")

o H(C") =), 456 H"(C")

o dim HP(Cr) = CPpipregpln=t)

@ In particular

. Ll (2D ((4n—2))2 _ a4+l-1\2 +1-2\2
dim H (Cn) = ((n—l)((a)m—?)?)?(ﬂ)% - (n l ) - (n.’.—l )

H. Kurihara (Nit Kit)

Harmonic analysis on CP"!
Remark 4
For any f € HYY(C™),
(€S L ¢
“C)Sl iz

Cpn—l
HYH(CP™ 1) is well-defined.

o HU(CP™ 1) is an irreducible unitary representation of U (n).

® The space C(CP" ") of continuous functions on CP"~! has the
standard inner product defined by (f,g) := W,—) fCP”—l fodu,
where 1 is a Haar measure on CP"~ 1.

C(CP*=) e Dicz,, H'(CP" ).

Theorem 5 (Peter-Weyl theorem) J

H. Kurihara (Nit Kit)




The reproducing kernel of H'(CP" 1)

Theorem 6

For each HY'(CP™1), there exists uniquely a polynomial Q; € R[t] of
degree | such that for any f € H"(CP" ') and ¢ € CP"1,

(f, Qi([{¢])[?)) = f(p) holds. @ is called the reproducing kernel of
HY(CREY),

° Qo(t) =1
° Qi(t) =n(n+1)(t— ;)
o Qat) = H(n+3)(n+2)(n+ 1) (£ — ;44 + o )
e {Q}; are Jacobi polynomials for some parameters.
Put R(t) = Qo(t) + Q1(t) = n{(n + 1)t — 1}

H. Kurihara (Nit Kit)

Definition of t-Design on CP"!

Definition 7
Let X be a finite set of CP"~1. Let t be a non-negative integer. Then X
is called a t-design on CP"! if for any f € @;_, H"/(CP"!)

1 1
,U;(CPH_I) \/CPﬂ—l fd.ru' = m Z f((fo)

peX
holds.

Remark 8
By definition, For ¢, # with ¢t > t’ and a t-design X, X is also a #'-design.

H. Kurihara (Nit Kit)




The reproducing kernels and designs

Theorem 9

For a finite subset X on CP"~!, the following are equivalent:
e X /s a t-design.
e Fori=1,2,...,t, ¥, yex Qul{el¥)[?) = 0.

Proof.

Since Qu(|()?) = 32 £ () £2 (1), where {£}, is an orthonormal
basis of Hb{(CP™1),

X is a t-design

& Toex fi (@) =0

< Qul{el¥)?) =0

H. Kurihara (Nit Kit)

SIC-POVM and t-design

Fact 1
If X ¢ CP" ! isa SIC-POVM, then X is a 2-design, but not 3-design.

v

Proof.

Using the properties of SIC
o M is POVM (>, My, =1I)
e M is IC (Spanc M = S(H))
e |M|=n?

H. Kurihara (Nit Kit)




Lower bounds for ¢-designs

Theorem 10 (Fisher-type bound)
o If X is a 2-design, then | X| > n?.
® Moreover if | X| = n?, then X satisfies that for o, € X with ¢ # 1,

1
=
) = —=
holds.
Proof
Since

5 2 o, 2n? 4(n+1)n
R°=(14+Q1)" =n +n Q1+(n+3)(n+2)Q

H. Kurihara (Nit Kit)

we have
nQ
> R = X {n+ 2 aulieln)
pYpeX ppeX
N (n4j§)+(;f2)Q2(|<¢|w>|2)}
— ?’LQIX|2

On the other hand,

> R(el)?)? =Y RUelo)H? + > R((elw)?

pYeX peX pFEY
> R(/{ele)*)?
peX
= Y (M =n'ix|
peX

Therefore we have n?|X|? > n'|X|, ie., | X| > n?

H. Kurihara (Nit Kit)




Furthermore, If | X| = n?, we have 3, R(|(¢[)[*)? = 0.
Hence For any ¢, € X, R(|(p|¢)]?) =0

e n{(n+1)[(el¥)* -1} =0

& el = o

QED

Definition 11
A 2-design X with | X| =n? is called a minimal 2-design.

Remark 12

Since SIC-POVM X is a minimal 2-design, X satisfies |(¢|¢)[* = .

H. Kurihara (Nit Kit)

Distance sets on CP" !

o |{p|)|? is given a distance on CP" 1.
e U(n) acts on CP"~! x CP"! and the orbits coinside with
{Ra}ae[{],l]! where R, = {(‘Pufd)) | I(@WJ)IQ = a}.

Definition 13
A finite subset X C CP" ! js called an s-distance set if

{{elD) 2 | o, € X, 0 # ¥} =s.

Theorem 14
e If a finite subset X C CP"~! is a I-distance set, then | X| < n?.
e If a 1-distance set X satisfies | X| = n?, then X is a 2-design.

A 1-distance set X with |X| = n? is called a maximal 1-distance set.

H. Kurihara (Nit Kit)




Equivalence conditions for SIC-POVM

Theorem 15

For a finite subset X C CP"™ !, the following are equivalent:
e X isa SIC-POVM
@ X is a minimal 2-design.

e X /s a maximal 1-distance set.

o |X|=n? and for o, € X, |(eth)|* = 1;.

H. Kurihara (Nit Kit)

=2
Let w := M, i.e., w is a primitive 3rd roots of unity. Let X C CP! be

O}

Then X is a SIC-POVM.
Proof.
o CP! ~ 52
@ Using the Hopf map f: (20, 21) — (22021, |20| — |21])
(€)S =531 g2
+<C)5l o
f
CP
@ Let X be a vertex set of regular simplex on S? and X = ?_1()(0).
O

o

H. Kurihara (Nit Kit)




n=3

Let w:= _H?‘/__S, i.e., wis a primitive 3rd roots of unity.
Let X C CP? be

1 0
xX=¢{—=11 §=0,1,2
V2 \_
—wJ 1 1
ug—1 0 | =0,1,22 U — | =’ ||5=0,1,2
7 X J 7 ‘ J

Then X is a SIC-POVM.

H. Kurihara (Nit Kit)

Conjecture

Conjecture 16
@ For any n, there exists a SIC-POVM on CP"!
@ Each SIC-POVM is obtained as a orbit of a Weyl-Heisenberg group.

@ Forn=1,...,21,24,28, 30,31, 35,37,39, 43,48, there exist algebraic
constructions for SIC-POVM on CP™ 1,

@ For n < 151, there exist numerical solutions for SIC-POVM on
CcpP™1,

H. Kurihara (Nit Kit)




Masakazu Yoshida (University of Nagasaki)

Solutions to a retrodiction problem by using quantum error-
correcting codes

Abstract

We discuss a retrodiction problem (so-called mean king’ s problem) among noncommutative
observables from the viewpoint of error detection and correction. Quantum error-correcting
codes against error corresponding to the observables are constructed and any code state of
the codes provides a way to discriminate the eigenstates of the observables. From observation
of the results, we also discuss the topics of quantum codes, quantum key distribution, MUBs,
MUSs, and SIC-POVMs.

—-151-



Solutions to a retrodiction problem by
using quantum error—correcting codes

Masakazu Yoshida

S H -

University of Nagasaki

RIBRIKF

Mean king’ s problem (1/2)

[Vaidman, et al., ‘87] |

Alice King
@ Initial state @ Measurement
0y € {O'x, Oy, az]
R (3 Measurement .y
L & i € {1}
k

< @ Delayed information J

®) Estimation (k,]) — i’

Solution
[ @ Initial state, @ measurement, & Estimation s.t. i’ = i]
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o000
Mean king’ s problem (2/2) s3e:
[Vaidman, et al., ‘8?']l ‘
Alice King
@ Bell state @ Measurement
gy € {ax,ay, az}
R @ Measurement on \?'e (+1)
<} the bipartite system -
k <€

@ Delayed information J

K= = = = — -

® Estimation (k) ~ i’ k=1lk=2]k=3[k=4
x|+ -1 [+1[1
+1] -1 [-1]+1
z[+1[+1][-1]1

<

3

Agenda sses

e Mean king’ s problem:

e Quantum error—correcting codes
e Solution by using QECC

e MUBs, MUSs, NBs:

e Relationship among MUBs, MUSs, NBs
e Construction of generalized SIC-POVMs

e Quantum key distribution:
e “Multi-party” QKD by using mean king’ s problem

4
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Related works (1/2) S

e A solution using Bell state for three observables
[L. Vaidman, et al., ‘87]

Solutions for projective measurements constructed
from MUB (mutually unbiased basis) (A Hayashi, et al., ‘05]

A solution always exists for arbitrary dimension if a
POVM measurement is performed (G. Kimura, et al., ‘06]

There are no solutions if the entanglement is not used

[Reimpell, et al., ‘07]
[G. Kimura, et al., ‘07]

5

Related works (2/2) scet

e A solution using quantum error—correcting codes for
measurements constructed from measurement

operators
P [M. Yoshida, G. Kimura, T. Miyadera, H. Imai, J. Cheng ‘15]

Alice King
@ Initial state @ Measurement

; =~ adding error
@ Measurement
@ Delayed information
y

K= = = = ==

® Estimation = distinguishing error op.

6
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Quantum error—correcting codes (1/2) | e

Def

C is a quantum error-correcting code against €
def
& There exists a recovery R s.t. R0 E(p) x p

[E. Knill, R. Laflamme ‘97]

p : code state whose support lies in C

T >R = (R)); : recovery

€ = (&) : error

Quantum error—correcting codes (2/2) | e

Theorem

There exists a recovery R s.t. Ro E(p) < p

= PSEEk:P = Axi,P, Where P is the projector onto C

[E. Knill, R. Laflamme ‘97]

span{€; |¥;)}x span{€; |¥3)}x

span{€; |¥;)}k span{€; |, )}k
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eee 9
State after the measurement eses
Alice @ Initial state |¥) King
' >
R @ Measurement 2 Measurement O}E{Jx:gy:dz}
O < L1
k @ Delayed information J e {1
<— — | _— | | — —
® Estimation (k,)) i’
+1-1
MC
>0
+1
-1
4T
Solution using QECC (1/4) HH
+1 -1
w2
iy 2
) Oy > 3[4
Orthogonal subspaces o, 1[2|+1
made of |¥) and the observables 314]-1

L

[ R : measurement to distinguish the orthogonal subspaces ]

Ex. Jy = _1 """""" dy '''''''''''

[ +1if oy
L;> R =2 =) The answer candidates @f ay

—1ifo,
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eoe 11

Solution using QECC (2/4) sess
0x(+1) = E; + E; O‘y(-l-l) =E +E, 0,(+1) =E, +E,
ox(-1) =E;+Ey 0y,(-1)=E,+E; 0,(—1) = E3 + E,
(]] ® Ek‘IJIII ® Ek’lp) - ‘;l'kakk'
132,12
Solution using QECC (3/4) sss:

e
Ux('l‘l) = El + E3 O-y(+1) = El + E4 O'Z(+1) = El + Ez
0x(-1)=E;+E; 0y(-1)=E;+E;  0,(-1)=E3+E,

(1 Q ExYI|l @ Ef¥) = A8yt

& PARE)TI® Ex)P = A SipP
where P is the projector onto € = span{|¥)}

N

g

[ C is a quantum error-correcting code against (I ® Ej) ]
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eee 13

o900
[ [ o000
Solution using QECC (4/4) o
I ®
Theorem
~N
(Mi(”)_ : king’s measurements %) %)
s E Ey Ey Ey
C(} )supspace 7, E, L, L,
X;”" rindex sets : :
7. 1M = . 0l® E En [RERN E. En
‘ W) W, )

2 xPnxP=9

3 PAQ®ENT( ® Ey)P = AxSy, P, Where P is the projector onto C

= + By using any code state in C, Alice can guess the king’s outcome
» ( is a quantum error-correcting code against (I ® E;)x
J
[M. Yoshida, G. Kimura, T. Miyadera, H. Imai, J. Cheng “15]
eee 14
eecs
InD=2 ais
®

0y, 0y, 0, - King’'s measurements
|¥) : Bell state

By = Hase lal) By = 1 _1{1“:)
E3 = i(ii 1?)‘ Ey = i(—f+i _12_1)

L

Jx(+1) = El + E3 Uy('l'l) — El + E4
O'x(—l) = Ez + E4 O'y(—l) = Ez + E3

(Y| Q E)TI ® E)|¥) = 16kk

0,(+1) = E; + E;
0,(—1) = E3 + E,
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eee 15
o900

“Reverse’ statement 33T

Theorem

(Mi(”)_ - king's measurements
L

|¥) : maximally entangled state
R :rank 1 PVM

|¥) and R provide a solution

= There exist index set XI.U ) and operators (E;); s.t.

2. MY = % ex
z 2axP =9
3 (Y(I®ETI® E)IY) = 26k
& (ExlExdus = trE{ Ejy = A
. y

[T. Masuhara, Y. Miyagoshi, M. Yoshida, G. Kimura, T. Miyadera, H. Imai, J. Cheng ‘14]
[M. Yoshida, G. Kimura, T. Miyadera, H. Imai, J. Cheng ‘15]

eee 16
o900

Related works eses

e A relationship between MUBs (mutually unbiased
basis) and finite geometry

[W. K. Wootters ‘06]
[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng ‘13]

e A construction of general SIC-POVMs
[M. Yoshida, G. Kimura, J. Cheng ‘16]
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eeoe 17
o900
o000
Y
L X ]

MUBs, MUSs, and NBs

MUB {llnz) 1221
S {|2,Z) -.i.=1
{|3,i) le

[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng ‘13]

MUB (mutually unbiased basis)

eee 18

Def

ONBs (|/,i)); are MUBs

def ‘&
& LR =29 = ],i ’% %

Properties of MUBs:
« The number of basis is less than orequalto d + 1
Complete set of MUBs -

d = p" = there exist complete sets of MUBs

Ex. of a complete set of MUBSs:

 The eigenvectors of oy, 0y, 0,

—160 -



eee 19
o900
[ X X X N

Striations e

A :sets.t. #4 = d?
(Ll) —1 (L; € A) is a set of striations

def
#L; N L; = d&;;
= : 4 W [W. K. Wootters ‘06]

A=1{1,2,...,9)
(1,4,7}
(2,5,8)
{3,6,9}
33,20
MUS (mutually unbiased striations)| ::::

Def

d
Sets of striations (L‘: )s= , are MUSs
def

J Jr oz o
— #Li n Lir =LV #],ii [W. K. Wootters ‘06]

Properties of MUSs:
» The number of basis is less than orequaltod + 1

Complete set of MUSs i

+ d = p" = there exist complete sets of MUSs
d= = the number of basis is less than or equal to 3

Ex. of a complete set of MUSs:

2] Li=1{12} [ L={(.3 EE L={14
S L ={3,4} (3P 12={2,4 B4 13=1{23)
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eeoe 21

o900
B eo
MUS and NB => MUB o
i L]
Theorem
7= \
(x )i . - complete set of MUSs
(5= |j,i)(],i|)‘f=1 : sets of projections
There exists operators (Ek)ﬁil st
L P['j =2 Ee = ZkEr=1
‘ NB (Normalized base
2. (ExlExus = %6.‘:10 ( :
= (|/,i)); is a complete set of MUBs
A S
[W. K. Wootters ‘06]
oo 27
eecs
MUS and MUB => NB oo
i L]

Theorem
-

(L] )?=1 : complete set of MUSs
(1/,1)); : complete set of MUBs

= There exists operators (Ek)ﬁil sk

2 P =100l =2, Ek = S E =1
2. (EkIEkr)Hszigkkr

[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng "13]

-162-
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o900

Outline of proof atee

(P! =11,i)(, i|)£_ : king’s measurements w.r.t. a complete set of MUBs
|¥) : maximally entangled state

= There exists rank 1 PVM (|k){(k|), which provides a solution

[A. Hayashi, et al., ‘05]

= There exist index set XiU ) and operators (Ey)y s.t.

. pif = Zkexiw E, = Ek E, =1 [ our “reverse” statement]
© (VAR EDTI® E)IY) = 556k
1
= <EklEkf)HS = tI'E;Ek, = E(Skk,

E} is defined by an isomorphism |k) = (I @ dE;)|V)

eee 24
o900
[ X LR}

Relationship among MUBs, MUSs, NBs 000

[W. K. Wootters ‘06]
{ ‘ ]'? Z) ?:1 I

MUBs {\233)}-_111 NBs E;,E,, Es, E,
{‘3a Z) 32:1 =>

[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng ‘13]
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eee 25
o900
o000

Related works oo

e A relationship between MUBs (mutually unbiased
basis) and finite geometry

[W. K. Wootters ‘06]
[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng ‘13]

e A construction of general SIC-POVMs
[M. Yoshida, G. Kimura, J. Cheng ‘16]

eee 206
Quantum state tomography

Unknown state
B

@ <

./"__“\ M

n — @/ C 8

_@C’f * gggo$=Pr(M=ilp)

. YiM; =1
M = (M;);:POVM «[ :‘45 ‘2 0
1

Pr(M = 1|p), ...,Pr(M = N|p) * p is determined I
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eee 27
o900
o000

Infomationally complete (1/2) sse

Def

APOVM M = (M), is an informationally complete (IC)-POVM
def
& span(M)Y, = L(H)

Theorem

APOVM M = (MY, is an IC-POVM
= There exists (Q)X., s.t. p=3YN~,p(M =i|p)Q;

eee 28
Infomationally complete (2/2) sess
Theorem
Rank M; =1, trM; = -, trM;M; = ——— (i # j)

d3(1+d)
= M= (MY, is an “optimal” IC-POVM

[Petz, Ruppert, Szanto, ‘14]

N N
p=ZP(M=f|p)Q: ﬁ=Zﬁ(M=i|P)Qi
i=1
/\ Mlnlmlzmg ‘error”
Theoretical value Experimental value
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eee 29

SIC-POVM
Def
~ N

APOVM M = (M;)N_, satisfying

1

Rank M; =1, trM; = %, tl‘MiMj = m (i ?‘:j)

is called a symmetric informationally complete (SIC)-POVM

.
[Renes, Blume-Kohout, Scott, Caves, '04]
Existence of SIC-POVMs:
« d=1,..,1519,24,35,48 : analytical results
* In limiting dimensions up to 844
[Listed in C. A. Fuchs, M. C. Hoang, B. C. Stacey, '17]
eee 30
: H
Generalized SIC-POVM oo
i ®
Def
/- N
APOVM M = (M;)N_, satisfying
trM? = const,, trM;M; = const. (i # j)
is called a generalized SIC-POVM
(Each POVM element may not necessarily be a rank 1)
- /
[Appleby, '07]

Existence of generalized SIC-POVMs:

*  Generalized SIC-POVMs exist in all dimensions
[Gour, Kalev, '14]
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eoe 31

o900
Construction of generalized SIC-POVM | e3¢
®
{lla 3)}?21
MUBs {|212>}!2=1
{13,9)}i,
Y V4
@ EI!EZJ E3: E-’-l-
+ Generalized SIC-POVM
- SIC-POVM (d = 2)
eeoe 32
3
NBs made of MUBs and MUSs oo
T ®
d k.
(L}),_, : complete set of MUSs
()/,1)); : complete set of MUBs
a+1
Ec= Y Vst )5l where s(k.)) = iask € L]
=1
N J

Ex. of NB (d = 2):

Ey:= |12)(12|+|21)(21|+|32)<3,2|

# L) L2 = 16) I3 ={1,4)
Gl o

4lz-g @4 13-

{2(3)
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eee 33

o000
Definition of POVM elements sses
— @
4 =N
A 1-20+d)
Gk'_EEk +Tﬂ (k= 1‘2’ .,.,dz)
where A:const.
o j
Generalized SIC-POVM ?
SIC-POVM ?
eee 34
: ; cece
Construction of generalized SIC-POVM | e:2¢
— @
Theorem

There exists 1 s.t. (G,)%., is a generalized SIC-POVM ]

[M. Yoshida, G. Kimura, J. Cheng “16]

Outline of proof:

® terz = trGlz = h . f | f
.« G G, = trGGy rom the properties of complete sets o

o NG =1 MUBs, MUSs, and definition of G,

* Gp =0 Aisdetermined with depending on the eigenvalues of Ej,
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eee 35
H
Toward SIC-POVM o
®
Lemma ~
3
A=t
= (Gk)ﬁil satisfies the followings:
* Rank G, = 1,trG, = %,terGg - m (k#1)
* 2kGr=1I
, o
Theorem
s ™
1
d=2and A= iﬁ
= (Gy)l-, is a SIC-POVM
% 4
Positivity: the eigenvalues of G, are 0 and %
from the characteristic poly. Fg, (a) = a? —%
eee 30
o000
L L LA
Future works 33

®
|
[M. Yoshida, G. Kimura, J. Cheng, to be appeared]

General construction of NBs:

Orthogonal basis

l

NBs

Relationship among MUBs, NBs, and SIC-system:
MUSs

l

MUBs L — NBs
—

N &

SIC-system (SIC-POVM without positivity)
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o000
o000

Related works e

e Quantum key distribution by using mean king’ s
problem [J. Bub, ‘01]

e Robustness for general attack
Eve gains information = error rate of secret key is not zero
[A.H. Werner et al, ‘09]

e [rade—off inequality for some attacks

Eve’s information gain and error rate of secret key
[M. Yoshida, T. Miyadera, H. Imai, ‘10, ‘12]

e “Multi-party” quantum key distribution

[A. Nakayama, M. Yoshida, J. Cheng, ‘18]

“Multi-party” QKD (1/3)

Our proposal

"8’
it
|
L
M
U \
v s
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eee 39

“Multi-party” QKD (2/3)
. Theorem N
There exist

|¥) : pure state of a bipartite system
(Mi("m)) : king(m)'s measurements

xYUmm - index sets

(im)m

(Dm
s.t. 2 XUm)m n X(fm)m =0

(im)m (itmdm —

3 (PIA® B ® Ep)[¥) = 26

= A “multi-party” QKD can be constructed

(.

1. I ® Mffl) ® ® M:::l'l?‘l) -— Zkexum)m I ® ER

J

[A. Nakayama, M. Yoshida, J. Cheng, ‘18]

“Multi-party” QKD (3/3)

[A. Nakayama, M. Yoshida, J. Cheng, ‘18]

Construction of QKD:

R

9 O'x, az
|¥) : GHZ state ?){'ﬁ
(o

Security of QKD:

In 3 users case (Alice, King(1), King(2)),
eavesdropping by intercept-resend attack induces error

eee 40
o900
o000
eoe

[ X ]

®
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Phong Nguyen (INRIA/The University of Tokyo)

Searching for Short Lattice Vectors

Abstract

Lattices are regular arrangements of points in the n-dimensional space. Lattice-based cryp-
tography started in the mid-nineties, but its origins go back to the beginning of public-key
cryptography with knapsack cryptosystems. In the past few years, lattice-based cryptog-
raphy has been attracting significant interest, in part because of its well-known (potential)
resistance to quantum computers, but especially because of new and surprising features, such
as fully-homomorphic encryption, (noisy) multilinear maps, and lately, (indistinguishability)
obfuscation. In this talk, we will present the main algorithms for solving hard lattice problems

and discuss security estimates for lattice-based cryptography.
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The n-dimensional volume of a Euclidean ball of radius R in n-dimensional Euclidean space is:

Ry g
e 1"(§+1)













B IR

o Pick m ““random” lattice points in an n-dim
lattice L.

o From which value of m do we generate L
with positive probability?

o [NgPul8] shows it is m=n+l, because the
probability is asymptotically

1/(&(m)&(m-1)...E(m-n+1)).
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Security level = log2 #operations
120 Predicted upper bounds for BKZ-Enumeération
[CN11, C13, AWHT16]
100 |
SVP Challenges Records
Before 2018
B0 8] sieve =0.415*dim
0| [ADHKPS18]
2 Oold sieving_ . Best sieve = 0.292*dim
Mt
; , _ Dimension
50 100 1%0 200 250
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Space level = log» #bits

[NgVi08] estimate 4%4/3)"2 vectors

2048 Gb

256 Gb

Sieving requires exponential space

Dimension
250

1
il
!
il
!
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Enumeration with Pruning

_ [ScEu94,ScH095,GNR10]

o Input: a lattice L, a ball SCR" and a
pruning set PCR".
o Output: All points in LnSnP=(LnP)nS.

o Pros: Enumerating LnSnP can be much
faster than LnS.

o W
o Cons: Maybe LnSnP C {0}. I ‘

Analyzing Pruned Enumeration
[GNRlO] Framework

o T N
(PR Srateg Mo L haniad, PO SR

i M&- N

o Enumerahng LnSnP is de’rermlnls’rlc, but:

o The set P is randomized: it depends on a
(random) reduced basis.

o The success probability is Pr(LnSnP ¢ {0}).

o #(LnSnP) « should be » "‘“'VOI(SHP)/COVOI(L)
(Gaussian heuristic). . - -, -

------
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Tadanori Teruya (AIST)

Observations on Random Sampling Reduction Algorithms

Abstract

Development of efficient solvers of the (approximated) shortest vector problem over lattices
is an important research area because the security of lattice-based schemes is based on the
hardness of the shortest vector problem. Random sampling reduction is an approach to
construct efficient solvers of the shortest vector problem by combining lattice basis reduction
and sampling of short lattice vectors. In this talk, we show our observations on random

sampling reduction algorithms, and recently proposed our probabilistic analysis framework.
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Observations on
Random Sampling Reduction
Algorithms

Tadanori TERUYA (AIST)

Joint work with
Yoshitatsu MATSUDA and Kenji KASHIWABARA
(U. Tokyo)

2018/09/18
in “Mathematical approach for quantum information society”
at Nishijin Plaza, Kyushu University
This is revised version

Summary of this talk

* Probabilistic analysis framework

* For algorithms to solve the Shortest Vector Problem
(SVP) and Approximated SVP (ASVP)
* Gram-Charlier A series based approach
* [Matsuda-T-Kashiwabara 2018 (IACR ePrint 2018/815)]
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Outline

 Background
* Shortest vector problem
* Random sampling reduction

* Probabilistic analysis

* Our probabilistic analysis framework
* Analysis based on Gram-Charlier A series
* A lower bound
* Improvements

« Validity of the randomness assumption
* More observations

Background
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NST

Information Technology Laboratory

COMPUTER SECURITY RESOURCE CENTER

PROJECTS POST-QUANTUM CRYPTOGRAPHY

Post-Quantum Cryptography

* https://csrc.nist.gov/projects/post-quantum-cryptography

* Lattice-based crypto. is the most popular (26 / 69)
* [ts security is based on the hardness of SVP and ASVP
* Analysis of their solvers is important to determine the key-length

5

Shortest vector problem (SVP)

* Given a basis B = (b4, ..., b;,)
 Find the shortest non-zero lattice
vector A, (L)

* Exact solvers:
* Enumeration (ENUM), sieving

* Heuristics by basis reduction:

* LLL, BKZ, and
Random Sampling Reduction (RSR)
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Gaussian heuristics (GH)

* GH’: Let R, € R"™ be a ball with radius ¢ centered at 0

VOl(Rg)
#H{vlveLA|v| <} = Tot L

* GH: ||1,{(L)|| can be estimated as .
(T(1+n/2) - detL)/n

NG

12Dl = GH(L) =

Gram-Schmidt orthogonalized basis
B* = (b}, ..., by)

. b; =z bl | . . ° ] . ° °
b= b, 5 N
* * 2 ¢
where y; j = (bi' bj )/”bJ” . ¢ ° ‘ ’
detL = [T, 1Ib;
e ) Hl—l” l” ° ° ¢ ° © ‘

Invariant of L
vol(S) is the volume of a figure

(measurable set) S 7

Approximated-SVP (ASVP)

*y-ASVP: Find v € L \ {0} such that ||v|| <y - GH(L)
* The number of solutions = y™
* The hardness is mitigated by factor y™
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SVP Challenge

INTRODUCTION

This page presents sample lattices for testing algorithms that solve the shortest vector
problem (SVP) in euchdean lattices. The SVP challenge helps assessing the strength of SVP
like sieving and
enumeration. The lattices presented here are random lattices in the sense of Goldstein and

sigorithms, and

Mayer.

serves to compare different types of algorithms,

https://www.latticechallenge.org/svp-challenge/

* Hosted by TU Darmstadt since 2010
* Provide an SVP instances and their generator

* Evaluate hardness of SVP/ASVP and efficiency of solvers

Accept 1.05-ASVP solutions

Hall-of-fame in SVP Challenge

HALL OF FAME

Position Dimension E“;';:_’:""
1 153 3192
2 151 3233
3 150 3220
4 149 3030
3 148 3178
8 147 3175
5 146 3195
o 145 3175
e 144 3154
10 143 3159

* Sieving

Seed

Contestant

Martin Albrecht, Leo Ducas, Gottfried Herold,
Elena Kirshanova, Eamonn Postlethwaite,
Marc Stevens
Martin Albrecht, Leo Ducas, Gottfried Herold,
Elena Kirshanova, Eamonn Postiethwaite,
Marc Stevens

Kenji KASHIWABARA and Tadanori TERUYA

Martin Albrecht, Leo Ducas, Gottfried Herold,
Elena Kirshanova, Eamonn Postiethwaite,
Marc Stevens

Kenji KASHIWABARA and Tadanori TERUYA

Martin Albrecht, Leo Ducas, Gottfried Herold,
Elena Kirshanova, Eamonn Postiethwalte,
Marc Stevens

Kenji KASHIWABARA and Tadanori TERUYA

Martin Albrecht, Leo Ducas, Gottfried Herold,
Elena Kirshanova, Eamonn Postlethwaite,
Marc Stevens

Kenji KASHIWABARA and Tadanori TERUYA
Martin Albrecht, Leo Ducas, Gottfried Herold,

Elena Kirshanova, Eamonn Postiethwaite,
Marc Stevens

Solution Algorithm

* Note: A detailed report has not been published yet
* (Random) Sampling Reduction (RSR) [T et al. 2018]

Siaving

Sleving

Other

Sieving

Other

Sieving

Other

Sieving

Other

Sleving

Subm. Approx.
Date Factor

;g_’;’é 1.02102
sg_’% 1.04411
;;?_111 1.04192
;g.’?d 0.98506
ro s 103512
2018-
08-30

2015-
08-24

2018-
08-30

1.03863

1.04534

1.04267
2015-
06-21

2018-
08-30

1.04284

1.04498
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(Random) Sampling Reduction

(Random) Sampling Reduction (RSR)

* An approach (usage) of lattice basis reduction
* The first version is [Schnorr 2003]

* Several variants are proposed
* [Buchmann-Ludwig 2005, 2006], [Fukase-Kashiwabara 2015],
and [T et al. 2018], etc.
* Main loop consists of two sub-algorithms:

* Vector generation (GEN): generate short lattice vectors by using
the basis

* Basis reduction (Reduce): update the basis by generated short
lattice vectors (LLL/BKZ)

* Note: Randomness is not needed in practice
* “Random” may be omitted
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- o o o o —

Sampling reduction in nutshell |i-thprojection of B s

1 . %%
T (v) =v— Zl ,bj,

where v (v b*)

HGEN|= = = = e e e e e e e e e e e e e e e - - - —-— -
t=(ty, ., t)=1(0..,0)
B* == (b*, bg, bg, veey bk—l' b]*(, b]*(_'_l, b2+2' ey b;kl_l, b:l)
Many short lattice Sampling with k zeros Many projected short
vectors (Babai’s nearest-plane lattice vectors
S={sy,.., sy} EL algorithm) Wi, ...,Wy € (L)

Repeat and change k
until solve SVP or ASVP

N
[ Update basis

B < Reduce(S, B)

\

Sampling Algorithm (SA)

*SA is an instance of GEN
* Given ) € N™, then {v|t « Q; v « SA(B, t)}
¢ [ts definition is based on ENUM
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Two types definitions

Given Q) € N", then {v|t « Q; v « SA(B, t)}

* Probabilistic SA:

* The first version [Schnorr 2003]:
t (or Q) is chosen by a (probabilistic) distribution

* Useful in estimation [Matsuda-T-Kashiwabara 2018]

* Deterministic SA:

* Variants: [Buchmann-Ludwig 2005, 2006], [Fukase-Kashiwabara
2015], [T etal. 2018], and [Aono-Nguyen 2017]

* Used in practice

The same color boxes:
* Correspond to one t € N™ (coordinate system)

Behavior of SA |° Contain one lattice vector

t=(22) (12 | (02) 12 @22
t=(21) | @1 01 s /,;2 (1,1) (2.1)
(20) - [(10) (0,0) (L0)  b;|(20)
(21 (1,1) (0.1 (1,1) 2,1
RN (R ) e

Input: a basis B = (b4, ..., b,) of a lattice L and

asequence t = (tq,...,t,) EN" (t; € {0,1,2,...})
Output: v € L such thatv = }[-, v/ bj,

vol(each color) = detL

ti+1 t; t; ti+1
e € (~157, 4] (1.
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Basic properties of SA
1, ifx>0

nzsign(x) =
gn(x) -1, otherwise

. . t;
* Rewrite: vi = nzsign(u;) 5 +u;
* Location (how far from the origin): ¢;

11
* Distribution (uncertainty): u; E( > 2]

* Squared-length distribution (box) bounds-

2
inf (v)? = 1, imme=LlHH
L )

1
csup(w)? = suplm )12 = BT

Input: a basis B = (b4, ..., b,) of a lattice L and
asequence t = (ty, ..., tp) E N™ (t; € {0,1,2,..})

Output: v € L such that v = 1Vibj,
t+1l ] (ti i+l
Wherevi E(_ 2 '_E]U(E' 2 ] 17
Note on GEN

* Main purpose is to generate many short lattice
vectors from input basis B

* To construct GEN, not necessary to be limited to
SA (and ENUM)
* So we call GEN

* In this talk, we focus on SA
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Probabilistic Analysis

How to improve algorithms?

* Compute {v|t « Q; v « SA(B, t)}

* What is better input parameter? (B, t, )
* Guideline to improve parameters and algorithms
* A hint to consider the hardness of SVP/ASVP

* How to analyze?
* Approach: Probabilistic analysis

* Consider length distribution of output SA (GEN):
Pr[||v||=¢], where v = SA(B,t) and t € Q)

—-221-




Uncertainty in algorithms

* On cryptographically (or something) interested lattices,
bases, and algorithms, ... -
« E.g, SA (GEN) e ° [ . e

Before calculating algorithms, ., [
we do not know exact M’ . )
coordinates of outputs \?\ E

Uncertainty in algorithms

* On cryptographically (or something) interested lattices,
bases, and algorithms, ...

Before calculating algorithms,
we do not know exact
coordinates of outputs

However we know that

outputs are contained in /“ : . e

these figures
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Randomness assumption (RA)

* RA: Assume that lattice vectors are independently and
uniformly distributed in figures

* Note: These figures are specified by algorithms
* Hereafter, assume RA

Notes on gaussian heuristics and
randomness assumption

* More aggressive statements of GH and RA:

* GH+RA: One v € L is independently and uniformly distributed in a
figure (measurable set) A such that vol(4) = detL
* GH+RA: Prlv e R" Av € L] = 1/detlL
* Remark: for some S € R",
__vol(S)
E[#{vlve Ln S} = ol
* E[¢] := expectation of ¢
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Examples of figures for GH+RA

e Ball

* Captures lattice vectors shorter than its radius

* Cylinder

* Used to formalize pruned enumeration

* Box
* Corresponds to computation of SA and ENUM

e ... and their intersections

- e
°
° ° © ° © °
°
® [
. o ° Py
[ ] [ ] °
° R O
°
» » ) O
° . °
. ° “
° ° °
° ° °
° J z °

Example: RA on SA (box)

* Consider deterministic SA
* Forinput B = (b4, ...,b,) and t = (t4, ..., t,)

G+l ¢ t; ti+1
* Qutputv = YJ-, v/ b; € L, where v; € (— o ,——l] U(—‘, ‘+]
2 2 2’ 2

* RA on SA [Fukase-Kashiwabara 2015]:
Each v; is uniformly distributed in boxes specified above
and independent with distinct i and distinct v

* Allv{ and ||v|| can be seen as random variables
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Fix B Input of SA Output of SA

Sampling \

(Vector Generation)

N*' >t = (t1,t2,...,1,) b= (vy,02,...,0,) €Z"
Membershi Lmear.
P Combination
Orthogonalization
0 e (Projection) "
L>v= i:lvibi v = i:lUibiEL

Length

Randomness Assumption

[(_url ti titl
22| Y

vi ~U 2072

Under RA, we can consider this

Length

/ loll? = X7, (0?1157 117

Several works on probabilistic analysis

* [Schnorr 2003] and [Buchmann-Ludwig 2005, 2006]:
* Success probability

* [Fukase-Kashiwabara 2015]:

* The expectation and the variance

* Length Estimation based on Normal Distribution (LEND)
* [Aono-Nguyen 2017]:

* Volume-based estimation

e [Matsuda-T-Kashiwabara 2018]:
* This talk
* Use Gram-Charlier A series
* This can be seen as a generalization of LEND
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Length estimation by
[Fukase-Kashiwabara 2015]

s |l; (v)||? of output of SA can be estimated by normal distribution

with 2
. 21 — ,, — \n ﬁ 1 || %
Expectation: E[||m; (W) ||“] = u = Zj=ig 4 + 12) | bj
- . 21 _ 2 tj+tj L 12
Variance: V[||r;(w)||*] = 0% = }1=i( e 180) | b;

* Length Estimation based on Normal Distribution (LEND) is
extremely simple and fast

Input: a basis B = (b4, ..., b,) of a lattice L and
asequence t = (ty,...,t,) € N* (t; € {0,1,2,..})
Output: v € L such thatv = Y[-, v/ b;,

t+1 ¢t t; ti+1
where v; € (— L ,——‘] U (—‘, : ]
2 2 2’ 2

Problem of LEND

* [Aono-Nguyen 2017] pointed out
* This picture is taken from [Aono-Nguyen 2017]

dist of Y (dim=100, u=10, LLL-reduced)

100 N(0,1) ——

At the tail,
quite large gap!!!!

101
102

o

c 1073}

E

T 104}

1]

i

(T 1‘}‘5 L
106
10-? E

108
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Consideration on LEND (1/2)

* At the tail of PDF, seriously inaccurate
* But fast
* [Aono-Nguyen 2017] proposed a volume-based
estimation
* Itis more accurate than LEND at the tail
e But slow

e Trade-off?
* Difference of methods?
e That’s all?

Consideration on LEND (2/2)

* Fact: LEND uses only two parameters
* Expectation
 Variance

* Conclusion: Since there are only two parameters,
LEND is inaccurate at the tail

Natural question:
Use many parameters,
then what will happen?
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Our proposal:
Gram-Charlier A series based

probabilistic analysis
[Matsuda-T-Kashiwabara 2018 (IACR ePrint 2018/815)]

Higher-order moments

* The moments are important statistical parameters
* Def: r-th moment of a random variable X with PDF f is

iy (X) = f X" () dx

—00
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Higher-order moments of SA

* For output v = Y7, v/ bj,
each (v;)? can be seen as a random variable

* For input t = (ty, ..., t;), each r-th moment of (v;)? is

- ((ti + 1)2r+1 . ti2r+1)
.ur((vi) ) = (2r + 1)227

Input: a basis B = (b4, ..., b,) of a lattice L and
asequence t = (t,...,t,) € N* (t; € {0,1,2,..})
Output: v € L such thatv = }I*, v/ bj,

ti+1 t t; ti+1
where v; € (— L ,——l] U (—l, - ]
2 2 2’ 2

Higher-order cumulants

* The cumulants are also important statistical parameters
* r-th cumulant x, (X) is
r—

00 =m0 = 3 (77 kO )

m=1
« Namely, piy, ..., iy © Ky, ..., Ky in O(r?) time

* Let X and Y be two independent random variables

. _faxr;X)+b, T=1
er(aX +b) = { a’k,(X), otherwise

c k(X +Y) =1 (X) + 10 (Y)
* Calculation of k,.(aX + bY + c) is quite easy

—229-




Calculating higher-order cumulants of SA

* Each r-th cumulant of ||v||? = ¥~ (v;)? - ||b}||? can be
calculated as

1((v)?) K-((v)?) (VD2 - 11B512)
: » : » : » - (Jlvll%)
ur((v)?) K-((v)?) (V)2 - b3 12)

Input: a basis B = (b4, ..., b,) of a lattice L and
asequence t = (t,...,t,) € N* (t; € {0,1,2,..})
Output: v € L such thatv = }/-, v/ bj,

t+1 ot t ti+1
where v; € (— : ,——l] U (—‘, L ]
2 2 2’ 2

Corollaries

* Expectation:

. . t7+t; 1
E[(v)?] = k1 ((v))?) = lTl + 12
e Variance:
VIO = (1)) = oty L
Vil =1e\Wi) ) =748 T 180

* Also, E[||lm;(®)||?] and V[||7;(¥)||?] are implied

Input: a basis B = (b4, ..., b,;) of a lattice L and
asequence t = (tq,...,t,) € N* (t; € {0,1,2,...})
Output: v € L such thatv = -, v; bj,

ti+1 ti t;i ti+1
e € (~127, 4] (4.
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Gram-Charlier A series (GCA)

* Given cumulants k4, k5, k3, ..., of a random variable X
e PDF and CDF of X can be written as

PDF  f(x) = ¢(2) (1 N Z Bell,.(0,0, k3, ..., K;-) Her(z)>

L & riJis
- Bell,-(0,0, k3, ..., k)
CDF  F(x) = () - $(@) ). 3 T ey (2)
o Tr. \/KZ
R oY
N

* Standard normal distribution PDF ¢ (x) and CDF ®(x)
* r-th complete Bell polynomial Bell,. (x4, ..., x,-) € Z[x4, ..., X,]
* r-th Hermite polynomial He, (x) € Z[x]

Properties of GCA

* GCA is an asymptotic series expansion
* Like the Fourier ones
* A survey is [Brenn-Anfinsen 2017]

* In general, convergence is not guaranteed

* However, for estimation of SA, GCA describes true PDF
and CDF when degree r —» o
» Because distribution is bounded

* In practice, surprisingly accurate with finite degree r

* For more techniques and details, see
[Matsuda-T-Kashiwabara 2018 (IACR ePrint 2018/815)]

40
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Example: Schnorr’s sampling

Seed 0

BKZ-20 reduced

cumulative probability of squared vector length (B150, 225-RS)
' v v I

T

™ 2-10 L | i
S : A
U _1 5 | p s 2 "
w2 | .
2 | o
= 2‘20 - [ - i .
‘E I rr"f/ 1

-25 L ! : =
£2 | :
o 30 1 —— sampling
8277 : normal approx. 1
] ' Gram-Charlier (Q=10)
a 2351 i ——— Gram-Charlier (Q=50)| -
[ : // Gram-Charlier (Q=60)
% 240 | , p Gram-Charlier (Q=70)|
5 e
£ 545 1/ Moy R o e 2 ]
52 Y \ l Icsv
© 50 ! I i

2- 'l | i
1 2 3 b

relative squared vector length (|(23H =1)

41

Recall: LEND and GCA formula

_ @ - Bell,-(0,0, k3, ..., k)
PDF  f(x) = N 1+ rz:g N He,(2)
X~ K
Ve

* Q: What is LEND [Fukase-Kashiwabara 2015]?
* A: Itis GCA degree 2 under RA m

* LEND is inaccurate at the tail because the degree is 2, quite small
* LEND is accurate at the center because the degree is 2, enough

* In practice, LEND is useful because the expectation and variance

are important statistical parameters

42
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Our proposal:
GCA based analysis framework

43

Cumulants of the ball under RA

* Fix the maximum length €.«

* CDF of ||w|| < £,,ax can be formalized as truncated
distribution

* GH”: Fix a basis B, let R, be a (n — k)-dimensional ball with
radius € centered at 0

#Hwlwem (L) A |w| < £} =
* PDF is the derivative of CDF

* Higher-order moments and cumulants can be calculated
* GCA is applicable

vol(R,)
detm, (L)

—233-




Example of our framework

GEN
Parameters
t=(ty,..,ty,) €N Radius 4,
B* = (b3, b3, b3, ...,by,_1, b}, by g, brins oo by 1, BY)
L 7 J \ Y J Outputwv € L
“Head” part “Tail” part

/ (Sampling/ENUM) (ENUM/sieving) “

Box .

" Tail part length Ball

Cumulants of X Estimation of # of tail part calls PDF o
to solve SVP or ASVP

Cumulants of Y

a

Cumulantsof X + Y

Random variables:
PDF and CDF of ||v||? e X = Z?;l(v{)z . ||b;-‘||2
* Y = lm, (@)||?

C Il =X +Y .

Application of GCA:
Computational
lower bound of SA

46

—234-



Meaningless box of SA

* In practice, t, = (0, ..., 0) corresponds to the origin
* Output is meaningless

* However, it has the best expectation
* Under RA, the probability on ¢, is not degenerate

(2,2) @2y 1002 L2 [ (2.2)
1) (L1) 0y s A, | 0D @1
(2,00 (1,0) (0,0) (1L0)  b; [(20)
) (1,1) (0,1 (1,1) (21
(2,2) (12 (0,2) 1 22 B

Ideal setting for a lower bound of SA

* CDF of t and a simulated-HKZ basis can be seen as the
performance limitation of SA on a lattice L
* If you do not like t,, use t; = (0, ..., 0,1) instead
* Consider that many non-trivial executions of SA with
input simulated-HKZ bases

* A computational lower bound ofy—A?VP seems to be

N~

F((r-aHw)’)
where F is a CDF calculated by t; and
a simulated-HKZ basis
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Example:

150-dimension SVP Challenge instance

20

Cumulative Distribution Function (Sagemath RealField with 100 bits precision)

 N(r1, 52)

—Degree 10
Degree 49
Degree 88

—Degree 128

| GH(L)?

| (L.O5GH(L))?
(1.2GH(L))?

| K1
I [by]l

Seed 0
Simulated-HKZ basis
SVP: 52 bits
1.05-ASVP: 40 bits

Computation time: < 0.7 sec

. . . .
le7 1.5e7 2e7 2.5e7

.
3e7

. .
3.5e7 4e7 19

Improve algorithms
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Recall: Sampling reduction

e 1L A R el N
‘ t=(t, ... t;)=(0,..,0) \
: B = (b1, b3, b3, ..., bi_1, bi, biyq, bisz, .o, brq, br) 1
|
|
|
| Many short lattice Sampling with k zeros Many projected short |
1 vectors (Babai’s nearest-plane lattice vectors I
| S = {Sl, ...,SN} cL algorithm) Wy, ..., Wy € TL'k(L) 1
‘ 4
\ e e e e ey € M - o ,I
Repeat and change k
until solve SVP or ASVP
N
Update basis
B < Reduce(S, B)
J
51
Sampling reduction using SA
HGENfF === == mm e e mm e —— - = - -
’ . _
f Given Q, then compute {s|t « Q; s < SA(B, t)} \
I t =(0,0,0,0,0,00,..,0,0,0,txs1, ., tp_1,t,) € N? 1
: B = (b3, b5, b3, .., b1, b, bis1, Bicrs ., b1, B7) :
I iy : I
1 Many short lattice sl?grlzli:']csicct:d SA I
vectors SA with k « I
: S={s,..sy}CL wi Zeros vectors over 1y, (L) I
\ o Wy, ..., Wy € m (L) )
7/

— — _—ee—— o o e e o e e e e e e e e e Ee Ee e e = -_—— ==

Repeat and change k
until solve SVP or ASVP
Update basis
B < Reduce(S,B)
J

?

\
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How to choose better (1? (1/2)

* Minimize output length [|v||? = ¥, (v{)? - ||b]|?

* [Fukase-Kashiwabara 2015] and [T et al. 2018] suggested
a choice based on the expectation E[||r; (v)]|?]

* To choose independently with the basis, use simulated
shape of basis and E[(v;)?]
« Other candidates: inf(v;)? and sup(v;)?
* Shape simulation: Geometric Series Assumption (GSA) and
monotonically decreasing sequence

Shape of B is (|[bil|, [|b3 ]I, ..., l1by|)) GSA: [IB;[I/lIby |l = g* 1,
Squared-shape of B is (IIb3I%, B3I, ..., I 11*) where3/4 < q <1

How to choose better ? (2/2)

* [Aono-Nguyen 2017] showed a general and adaptive way
* Discrete pruning

* To construct better (), we can use ENUM without calculating
coordinates
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Limitation of improvements of ()

Minimize output length of SA
n

vl = > w2 - b1
i=1

« Under RA, we cannot control the probability of (v;)?
* A choice based on the expectation seems to be better
* [Fukase-Kashiwabara 2015], [T et al. 2018], [Aono-Nguyen 2017]

* In short, better choice:
t=1(0,0,00,0,..,0,0,trsq, -, ty_1,tn) € N?
* Many zeros from the head
e Should use small natural numbers at the tail

Lattice basis reduction is important

Minimize output length of SA
n

w2 = ) )2+ 1B 11
i=1

* In the contrast, we can control lattice basis reduction to a
certain extent

* Main results of [Fukase-Kashiwabara 2015], [T et al.
2018] are reduction strategies under RA
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Probability

For some t € 0 € N" (or consider t, = (0,0, ..., 0) only),
let B; and B, be two bases of a lattice such that Exp(B,) < Exp(B;)

no (Pt 1 .
Exp(B) = E[||[v|I*] = z < l 2 L+E) Ib; 117

=1

PDFs of output ||v||? from
B, and B, are ...

Typically,
B, has larger
Prllivl? < ¢] f—~

(ball-box
intersection)

Exp(B;)

Exp(B;)

5 \

Length

~

Target length ¢

Recall: Sampling reduction

s 0 A R el

* * * * * * * * * *
B* = (b3, b3, b5, .., bi_y, bj., b1, i, o) i1, b3)

Many short lattice Sampling with k zeros Many projected short
vectors (Babai’s nearest-plane < lattice vectors
S={sy,...,sy}EL algorithm) W1, ..., Wy € my (L)

Repeat and change k
until solve SVP or ASVP

~
Update basis
B < Reduce(S,B)
J
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Strategy of sampling reduction (1/3)

= = GEN|= = = = = = 7= BN BN OEN BN BN BN BN BN BN Y == == == == == == == o= == e N
= (et 2Q e Dlp == == === = = \

B" = (b, b5, b5, . b, big bicss, Bz i BR) | 1

————————— I

Many short lattice Sampling with k zeros Many projected short :
vectors (Babai’s nearest-plane - lattice vectors |
S={sy, .., sy} EL algorithm) l Wy, ..., Wy € mp(L) I
/

The natural number 0 has

the sm

Collect a great deal of

projected short lattice vecto
(possible because small dimension)

allest expectation

Is

— o o o —

- =| GEN

___________________________ N
r —t = CLll-u' ikl:—(Qhu-l m ————————— -~ ‘

V' B* = (b1, b3, b, ..., bje—1, B, Bies1, Bieszs o By, B7) 1
————————————————— -’ I

_ I

Update basis to improve Ma’}y projected short J
" - attice vectors I
probability of finding Wy, ., wy € T (L) |
short lattice vectors /

Update basis
B < Reduce(S,B)

60
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Strategy of sampling reduction (3/3)

- = GEN

B* = (b}, b, b, .., b1, b By, Drgy oo by, b)

Large-scale parallelization is » I

. . . ny pr r
possible via reduction strategy SqF " [ thIt)icZ]f/(;gco:s °
[T et al- 2018] Wyq, ...,Wy € T[k(L)

Update basis
B < Reduce(S, B)

- - - = — 61

N e e e e o -

Validity of
the randomness assumption

62
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Validity of RA (on boxes)

* GCA is based on RA

* [T 2018] investigated validity of RA

* Forinput B = (b4, ...,
* Collect all the v from all the outputs v =

* Show statistics
* Histograms of all the v{ and chi-square statistics
* Correlation index

b,)andallt € O = {0}"‘”‘1><{0,1}”><{1}
l 1V*b*

Histograms of orthogonalized coefficients

n

-_

Itl)htl 130

(21) Index 141
HE

(17) Index 137

]

S 11—
IM

(15) Index 138

(1) Index 121 {2) Index 122 (3) lnclex 123 (4) Index 124 (5) Index 125
| T
1 3 H H It i e i =
: ! { i I H
iR i } | i i
i | } H
g (| 1 1
H ¥ | { il _
(6) Index 126 (7) Index 127 (%) Index 125 rn; In l X l ] (10) Index 130
e e e e+ B s S [ e e e I T
H H 4 i : ==
} : g | { } { | g
{ | |
1 { ] }
(11} Dnidex 131 (12) Index 132 (13) Index 133 (1) Index 134 (15) Index 135
T T i |
b £ 4 i

() Index 104

{20) Index 140

(25) Index 145

(26) lodex 146

(27) Index 147

(28} Index 148

{29) Index 149

(30) Index 150

* An SVP Challenge instance

with 150-dim. and seed 0,
BKZ-20 reduction

Uset € Q= {0}1?9%
{0,132x{1}

Show plots of v; such that
outputs v = i, v/’ b;,
Indices 121-150

For plots of indices 130-
150, these are merged
histograms of t; =0 and 1
Plots of indices 1-120 are
omitted because they are
similar to index 121

For all histograms, see https://doi.org/10.6084 /m9.figshare.6474278 64
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Chi-square statistics

10° T T T T T T T T T T T T T T 71 35
pxa) =127 u=20 ]
108 F X2 with index i<n-u + \éj 30
2 withindex izn-u X K
107 F Cumul. freq. of criticals (> 0.05) ; ]
Cumul. freq. of weak powers (< 0.80) X% 1 25
6
10° F
s X {20 8
o )
010° F X 2
=
g N ; 3 15 qu
107 F
X
X 11
10° F 0.05 x dimension 150 = 7.50 0
15
101 1 1 1 1 0
30 60 90 120 150

Index

Pearson correlation index heatmap on
distinct coordinate indices

p: Pearson co ion b over indices
150 pvars=150
min=-0.298258, max=0.421700

* In theory, if random

= variables are independent,
5 i""m then correlation index is 0
°*  Not in practice (finite

s samples)
" .-w * Not vice versa
* Clearly, many indices
might not be correlated
with each other except the
last consecutive indices

66
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Pearson correlation index heatmap on
distinct lattice vectors

* Randomly selected

Haat P lation bot n b r laltice vect: . . =
s et ik ol e e distinct 250 lattice vectors
o * Slightly correlated...
200
150 Ccrr‘0
-
os

00
a -05

100 '
10

Histogram of correlation index on distinct
lattice vectors

Histogram: Pearson correlation between variables over lattice vectors
100 #vars=250
31375 data points

<« Skewed to the positive!

-400

2
k3
2
[
a
= o
2050 2
8 2
S
15
E
S
-200
0.25-
0.00- -0
E 05 0o 05 10
68

Correlation coefficient
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Ludwig’s observation

* “The point it that only the very last v; will fail simple

statistical tests”

* This is a quotation from Ludwig’s PhD thesis

* In the previous example, remove all v;, where i =
121, ...,150

150

Pearson correlation index heatmap of

truncated values on distinct lattice vectors

Heatmap: Pearson comelation between variables over lattice vectors

#vars=250
min=-0.321928, max=0 443184

F
©

Heatmap: Pearson batween
vars=250

min=-0.384877, max=0.360722
(runcated 30 indices)

Remove all v;,
wherei = 121, ...,150

50

I
‘o

over laltice veciors

Com

.;o

os

oo
. 08
-10

%
%
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Histogram of Pearson correlation index of
truncated values on distinct lattice vectors

Histogram: Pearson correlation between (truncated) variables over lattice vectors
#vars=250
31375 data points
(truncated 30 indices)
- 600

0.75-

g -400
g
@ / g
2 050 2
E
3
-200
1 * May not be skewed
* Normal distribution?
0.00- 0
—1.0 —0.5 0.0 0.5 1.0

~

Correlation coefficient

Chi-square statistics on n =50
H a =0.010
LWE Challenge instance 149 samples used
109 T T T T T 30
p(x3) = 127 u=20 ]
108 2 with index i<n-u + A
2 withindex izn-u X K1 25
107 E Cumul. freq. of criticals (> 0.05) v
Cumul. freq. of weak powers (< 0.80) K] 20
o 10%F Ko -
ke -
210° F o {152
3 18
© E b
Z10t b 3 ] "
1 10
108 0.05 x dimension 150 = 7.50 S ]
2 [ttt bt b bl st Ll e 15
10 LA LML L i AR L A s = ML AL L A L ol "ﬁ”"ﬁ"”"f‘ﬁ%#
101 1 1 1 | i 0
30 60 90 120 150

Index
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Conclusion on RA on SA

* RA cannot strictly hold
* However, we cannot simply dismiss RA

* Rather, RA is trustworthy
* Indices at the head (e.g., 1-129), might follow RA
* Indices at the tail (e.g., 130-150), we cannot decide anything
because few samples
* On few samples, some statistics might be inappropriate
 E.g, histograms and chi-square statistics, etc.
* In practice, indices at the tail can be ignored

73

Open question on RA

Q: Can we find algorithms such that its
behavior is completely outside of RA?
Especially, at the head part indices

Q’: If we find such an algorithm,
what can we say?
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Open question on RA

Q: Can we find algorithms such that its
behavior is completely outside of RA?
Especially, at the head part indices

Q’: If we find such an algorithm,
what can we say?

A?: Are lattice basis reduction algorithms the answers?

More observations
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Recall: Sampling reduction

s BN R
t=(t;,....t)=(0,..,0)
B* == (b*, bz, b;, veey b?{—l’ b]*(, b]*(+1’ b2+2, ey b:l—l' b:l)
Many short lattice Sampling with k zeros Many projected short
vectors (Babai’s nearest-plane lattice vectors
S={sy,.,sn}SL algorithm) Wy, ..., Wy € mp (L)

\

Repeat and change k
until solve SVP or ASVP
N

Update basis
B < Reduce(S, B)
J

77

SubSieve+ [Ducas 2018]: An overview

t = (0,0,0,0,0,0,0, ..., 0,0,0)
B* = (b, b, b3, ..., bg_1,bg, by i1, by, ..., bryq, by)

M .
any. SA with d zeros Many proj e_cted .
short lattice Babai ¢ short lattice « Sieving

vectors l( a :}: S vectors over (L)
Si,..,Sy EL algorithm) W, ...,Wy E (L)

Repeat and decrease d
until solve SVP or ASVP
Construct rank m
partial reduced basis

V=w., v,

Update basis
B < LLL([V|B])

78
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SubSieve+ [Ducas 2018]: Ah overview

4GEN|- - === - - e e e e e - - = =~ N
t = (0,0,0,0,0,0,0, ..., 0,0,0) \
B* = (b},b3, b5, .., by_1, b3, by, bz, by, b) l
|
Many . Many projected |
short lattice SA v%/llgt:b(;i’Z:ros short lattice « Sieving |
vectors lsorith vectors overmy(L) || 1
51,-.,Sy €L algorithm) Wy, ..., Wy € my(L) |
]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
I
I
I
\

Repeat and decrease d
until solve SVP or ASVP

Construct rank m .
partial reduced basis Blff(ﬁtf (IE;T;:])
V=w,. v,

D’

79

Observations on SubSeive+

* To overcome memory consumption problems, [Ducas
2018] proposed sieving over (L)

* The quality of its output depends on “how reduced” basis

* SubSieve+ [Ducas 2018] alternately iterates:
» Sieving over (L) + SA with d zeros
* Lattice basis reduction

* “Initial pool” may be similar to stock/link vector [Fukase-
Kashiwabara 2015] and [T et al. 2018]

* SubSieve+ can be seen as a variant of sampling reduction
* Note: Our analysis framework can be applied

80
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Sampling reduction with hybrid approach

~=|GENfF—=—=——=""="="="="="=—=—= === —mm = === N
’ \
' Generate many projected |
I short lattice vectors |
1 |
: Many short lattice I
: vectors Sampling < ENUM Sieving :
: S={sy,.., sy} EL :
1 1
\ /

~ -_—

Repeat until
solve SVP or ASVP
N
Update basis
B < Reduce(S, B)
J

* [Laarhoven and Mariano 2018] also mentioned

* Note: Our analysis framework can be applied

Conclusion

* We proposed Gram-Charlier A series based probabilistic

analysis framework
* For more details, see [Matsuda-T-Kashiwabara 2018]

* To solve SVP and ASVP, combining lattice basis reduction

and short lattice vector generation, is important

* LLL/BKZ + sampling: [Schnorr 2003], [Buchmann-Ludwig 2005,

2006], [Fukase-Kashiwabara 2015], and [T et al. 2018]
* SubSieve+ [Ducas 2018]

* Hybrid approach:
Lattice basis reduction + sampling + ENUM + sieving

82
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Noboru Kunihiro (The University of Tokyo)

Quantum Factoring Circuit: Resource Estimation and Survey of
Experimental Realization

Abstract

In this talk, we discuss quantum circuits for Shor’s factoring algorithm. In the first part, we
review the resource estimation (the exact number of qubits and gates) of quantum circuits for
factoring. We estimate the running time for factoring a large composite such as 768 and 1024
bit numbers by appropriately setting gate operation time. Consequently, we show that if we
adopt the long gate operation-time devices or qubit-saving circuits, factorization will not be
completed within feasible time on the condition that a new efficient modular exponentiation
algorithm will not be proposed. Furthermore, we point out that long gate operation time may
become a new problem preventing a realization of quantum computers. In the second part,
we summarize the existing physical experiments for factoring of small numbers including 15

and 21.
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Quantum Factoring Algorithm:
Resource Estimation and
Survey of Experimental Realization

The University of Tokyo
Noboru Kunihiro

Mathematical Approach for Quantum Information Society

Kyushu University, 19, Sep., 2018 1

Brief History of Quantum Algorithm
from the cryptographic aspect

1994: Shor’s polynomial time algorithms for Factoring and
Discrete Logarithm Problem
1996: Grover’s Database Search Algorithm
1995-1999 : Polynomial time algorithms for Hidden Subgroup
Problem (extension of Shor’s algorithm)

.

In theory, we can break RSA, FlGamal and Elliptic Curve
Cryptosystem in Quantum Polynomial time.
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Part I;
Resource Estimation of
Quantum Factoring

N. Kunihiro, “Exact Analysis of Computational Time for Factoring
in Quantum Computers,” IEICE Trans. Vol. 88-A, No.1 2005.

Resource Estimation for Factoring:
Quatum Circuit Construcion

1. Circuit with less qubits is desirable.
2. Circuit with less gates is desirable.

Reason for 1
The maximal number of qubits is seven in the state
of the art.
It seems that a large-scale quantum computer cannot be
constructed in the near future.

Reason for 2
Quantum states are destroyed by decoherence.
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Overview of Shor’s Factoring Algorithm

Strategy:

For chosen a, compute the smallest positive integer
I such that a" = 1(mod N).

Stepl: Let m= 2|_10g NJ+1
Step2: Set an initial state: [0>|1>
5

m qubit
Step3: Perform Hadamard Transformation to obtain

iy

Step4: Perform the modular exponentlatlon

\/2_m Z| ‘a modN>

S
Sy

r-1
Step:5 The inverse of QFT — TZ

r $=0

Step6: Observe the first registration:

~

- — S can be considered as a random integer [0 :r-1].
r

Step7: Obtain r by classical computation.

Research Target:

Construct efficient quantum circuits for Modular
Exponentiation.
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Hadamard Gate: H

Quantum Superposition:
00) == (0)+[1))0) 2 (0) +[1))0}+|1)

1 1 1 1
=— —01)+—|1 —|11
! Jo0)+ 2 jor) 10}« 211

7
X @ /\\ .
X2 ‘@ * Inverse [ /‘7‘\
X3 _H| * QFT |
X4 T i
1) —HUa T U ] Upe H Uy

Up: |x) = |bx mod N)

For a fixed a and k, U 42k can be described as quantum circuit.

8
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Modular Exponentiation N: a target large composite

2Mm—1 2M—1

Ix)I1> \/— IX)Ia"mod N)

1

4 MOD-EXP < Controlled MOD-MUL.: I x)—)[ax mod N)

MOD-MUL € MOD-Product-Sum + SWAP
|z)|y)=2|z)|y + dz mod N)

uouIuo))

MOD-PS € Controlled MOD-ADD |b)_)'b + a mod N)
MOD-ADD € ADD |b)=>|b + a)

How to construct ADDs

QoUdII(
‘—

Modular Multiplication: MOD - MUL(d)
‘Z)‘O) —>‘d2mod N>‘0>
MOD-PS(d):|z)|y) —>|z)| y + dzmod N)
By applying MOD — PS(d), SWAP, MOD — PS(-d"!), we obtain
|2)|0) —|z)|dzmod N) —|dzmod N)| z)
—|dzmod N)|z—d ™' (dz)ymod N ) =|dzmod N)|0)

Modular Product Sum: MOD - PS (d)

n-1 n-1 .
y+dzmodN = y+dzzjzjmodN = y+2(2’d modN)Zj mod N

j=0 j=0
predetermined, let ey ;
For |Zo.Zos - 2iZ,)|Y) . apply

C(z)-MOD-ADD(e,)) for j=0, 1,2, ..., n-1.
10
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Modular Addition: [b)—>|b+amodN)

R R, R;
;Y_/ ;Y_/
lqubit N qubits 1qubit

n: the bit-length of N

There are two strategies for constructing MOD-ADD from ADD.

Modular addition consists of the following circuits.

C3-ADD | C2-ADD |C-ADD | ADD | others
Typel 1 3 0 0 |(2,4,0,0)
Type2| 0 3 1 1 (1,2,3)
Which type is effective? 11
Modular addition |y) —>|y+dmodN)
1qubit n qubit 1qubit
— —
R, R, R;
—~
Apply ADD
1. ADD(d) } Equivalently, ADD(d+2" - N
2. ADD(2"- N) quivalently, ( -N)
3. NOT(R,), C(R)-NOT(R;), NOT(R))
4. C(R;)-ADD(N)
5. NOT(R)) Four ADD and One C-ADD
6. ADD(2"-d)
7. C(R))-NOT(R5)
8. ADD(d)
9. NOT(R)) 12
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Two Construction of C2-ADD

N

© NN kW

Typel

. ADD(d+2"- N)

NOT(R,), C(R,)-NOT(R;),
NOT(R))

C(R;)-ADD(N)

NOT(R))

ADD(2"- d)
C(R)-NOT(R;)

ADD(d)

NOT(R))

All the operation are
controlled-controlled.

Type2

C2 - ADD(d)

2. ADD(2"- N)

(98]

N R AN

NOT(R,), C(R,)-NOT(R;),
NOT(R))

C(R;)-ADD(N)
C2-NOT(R))

C2 - ADD(2"- d)
C(R)-NOT(R;)
C2-ADD(d)

NOT(R))

13

Typel construction

ADD
(d+2"-N)

!

.

!

ADD

(N)

S

ADD
(2"-d)

ADD
(d)

i

A
U

Type2 construction

o
N\

}/( 3} } ) ; O
N

YADD || ADD ADD [P TaDD [ T {ADD[®

< (d) || (@2"™N) (N) (2"-d) d |

oo
A\

fany
A\
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Elementary gate

C-NOT gate | | Toffoli gate, CK-NOT gate
C] Cl Cl C]
c C o i o o .
t gt@c t t@(c, Ac,) ||C-9GC
Cy4 Cy
Rotation gate Ry t tO(G AL NG AC)

10)—|0), 1) = exp(27i/2°)|1)

Quantum Fourier Transform

. 1 & o
|J>—>W2exp(2m1k/2 )| k)

k=0
Executable by H, R,, R;, ..., R,
The number of gate is given by O(m?). 15
Construction of ADD

1. classical addition (C-ADD)
2. addition using generalized Toffoli gate (GT-ADD)
3. quantum addition (Q-ADD)

Known Facts
# of qubits # of gates
C-ADD 3n+2 O(n?)
GT-ADD 2n+a, O(n%)
Q-ADD | 2n+3— 2n+2° O(n%)

*Obtaining the order of the number of gates is an easy task.
*We evaluate the exact number of gates, which is complicated.

* A quantum circuit for Shor's factoring algorithm using 2n+ 2 qubits,
Takahashi & K, Quantum Information & Computation 6 (2), 184-192, 2006.
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Classical addition (C-ADD)

Basic circuits: CARRY, CARRY"!, SUM operation
ADD(a):|b) —»|b+a)
b=bb

n~n-1
a=a, ,a,,...aa, :classical number, or predetermined number

b,,...bb, :quantum number

CARRY ————— —— CARRY!!
aiZO ai:1 ai:O ai:1
G G G G
b; b; b; b;
Ci+1 Ci+1 Ci+1 Ci+1
ai=0 ai=1

SUM ¢, ¢
bi 1 bi 17

By combining CARRY, SUM, CARRY"! , C-ADD is constructed.
Example: a =(11010011),=211

by I—@—
b, }e}x oo
C o—
b, o)
CS A\ %
b, i 2
C, &

The number of gates for C-ADD(211) is (13, 16, 11).

33
The average number for C-ADD is (20 -3,2n— 55 n- 2j 18
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The total average number of gates

Typel: m(4n? — 6n,16n? — 21n, 15n? — 9n, 9n? — 3n, 2n,0)
C5-NOT C4-NOT C3-NOT C2-NOT C-NOT NOT

Type2: m(12n? — 18n,16n? — 15n, 17n% — 18n, 7n? —4, 3n? + 2n)

Known Facts:
Ck— NOT gate can be decomposed into some Toffoli.

« If there are k-2 clean ancilla qubits, C-NOT can be
decomposed into 2Kk-3 Toffoli gate.

« If there are k-2 unclean ancilla qubits, C*-NOT can be
decomposed into 4k-8 Toffoli gate.

19

Decomposition of C3 — NOT into Toffoli Gates

20
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The total average number of gates

Since we can apply the first rule, we can decompose
C>, C4 C3=NOT into 7, 5, and 3 Toffoli gates, respectively.

The average number is given as follows.

Typel: m(162n2-177n,  2n, 0)
Type2: m(125n2- 153n, 7n2- n, 3n2+ 2n)

In this case, Type2 is better.

The number of qubits:m + 3n +1

21

The average number for GT-ADD is
(1/2,1,3/2,2, ...,n/2,n/2).

I

C"-NOT

i
il

The number of gates for GT-ADD(211) is (1, 2, 2, 2, 3, 3,4, 5, 5). 0
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The total number of gates for GT-ADD

Typel, (we omit the Type2)
« #0of C' - NOT:m(4n2+ 13n - 4ni) (4 =i = n+3)
# of C3 - NOT: m(4n2+ 4n)
o# of C2 - NOT: m(3n2+9n)
#0of C-NOT: 2mn

By apply the second rule, we can decompose CK—~NOT into
4k-8 Toffoli gates. We obtain

m@ n*+10n° +?n2 + 25n,2n,0j

The number of qubits : M + 2N +3

23

Quantum Addition (Q-ADD)

*C2-Rjgate: 3n(n+2-i) (1=i=n+l)

*C2- NOT, C-NOT, NOT: n, 6n+4, 4n+4.

C - R; gate: nin+2 -i) (1=i=n+l) 1 0
*Rijgate:  (On+2)(n+2-i) (2=i=n+l) i 2(0 exp(27i/24)
*R, gate: n(n+1), Hgate: (8n+2)(n+1)

C? - R; can be decomposed into six C-NOT and eight 1qubit operation.
C - Rj can be decomposed into two C-NOT and four 1qubit operation.

Total: C - NOT: m(10n(n+1)(n+2)+6n+4)
1 qubit operation: m (n+1)(n+2)(37n+2)/2

The number of qubits : M + 2N +2

24

|
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# of qubits and gates for 768 and 1024 bits numbers

World Record (n=768) |[Recommended (n=1024)
# of qubits| # of gates |# of qubits| # of gates
C-ADD 2306 1.22 x 10 3074 3.80 x 10!
GT-ADD 1540 -- 2052 6.03 X 1015
Q-ADD 1539 -- 2051 8.48 x 1013
Q-ADD (with | 539 | g 6g 1011 | 2051 | 1.22x 10"
approximation)
25
Running time for 1024 bit composite
o 1msec lusec 1nano sec
unit time 0.1msec
(=103 sec) (=106 sec) | (=10 sec)
C-ADD 12years | 1.2years | 4.4days 6.3min.
GT-ADD 191years 70days
Q-ADD 270years | 2.7years 1days
Q-ADD (with 39years | 3.8years | l4days 20min
approx.)
26
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Candidates of Devices
We need at least 10'! operations.

maximal gate operation| max of gate

available time time operation

Nuclear Spin | 102-10%sec | 1073-10°sec 10°-10'
—Lleetzon-Spin Lo=taee LoLgee Jiod
Ton trap 10! sec 104 sec 10%3
Fay L 1. 10-6 10-9 103

%Uullbulll UVvul U x\./ YU [SAA ryYvU
—Otigal oot L0 aos 10l sop 109
Microwave 10° sec 10 sec 10*
cavity

(QIC by Nielsen and Chuang) 27

Part II:
Experimental Realization of
Quantum Factoring

[1] Experimental realization of Shor's quantum factoring algorithm
using nuclear magnetic resonance, Nature, 2001.

[2] Shor’s Quantum Factoring Algorithm on a Photonic Chip,
Science, 2009.

[3] Computing prime factors with a Josephson phase qubit quantum
processor, Nature Physics, 2012.

[4] Realization of a scalable Shor algorithm, Science, 2016.

[5] Experimental realisation of Shor’s quantum factoring algorithm

using qubit recycling, Nature Photonics, 2012.

28
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Experimental Realization of Quantum Factoring

e O A

2001
Photonic chip U. of Bristol 2009

Superconductivity UCSB 2012
Ion Trap U. Innsbruck 2016
Photon U. of Bristol 2012

The maximal number of qubits is seven.
Consider factoring of 15 ( = 4bits),

If we use C-ADD, 14 qubits are required.
If we use Q-ADD, 11 qubits are required.

What happens?

15
15
15
21

Nature
Science
Nature Physics
Science

Nature Photonics

29

Mathematical Preparation

Consider N=15.

The order of each element is given as follows:

a2 14 17 18 1113 14
r 4 2 4 4 2 4 2

Weuse U, U {a?}, U {a*}, U {a%,U {al5},...
{4, 11, 14}> mod 15=1, {}* mod 15=1, {}¥ mod 15 =1,...

{2,7,8,13}2 mod 15=4, {}* mod 15=1, {}® mod 15=1, ...

30
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Modular Exponentiation

uowuo))

Q0UdIIq

2M—1 2m—1

1
v—z"‘)'” 72 |x>|axmod1v>

4 MOD-EXP < Controlled MOD-MUL: |x) —|ax mod N)
MOD-MUL € MOD-Product-Sum + SWAP

|z)|y)=2|z)|y + dz mod N)

MOD-PS €< Controlled MOD-ADD |b)9‘b + a mod N)
MOD-ADD € ADD |b)=>|b + a)

<4—

How to construct ADDs

It 1s sufficient for constructing MOD-MUL. 31

Quantum Circuit for Modular Exponetiation:

The case of Chuang et al. Il]
7

1
), i >—>—Z [x)17*mod 15)

X7x_0 x4

— A \
* ®
*—o
o— o
> i /] AN ?_6
oo

If x3=1, If x,=1, If Xy=1

multiply by 7. swap Y, and Y. swap Y1 and ;. 32
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Structure of the quantum computer molecule [1]

33

The circuit heavily relies on the fact that N=15

The fact:
72 mod 15=4 and 7% mod 15=1

74275 mod15 = (74)" (72 o (7) mod15
=4 ¢7% mod15

I — if(x;==1)thenadd 6to 1
— 1f (X,==1) then multiply 4y mod 15.

Letting y=(Y3 Y, Y1 Yo)2,
4y=(Y3Y2Y1Y000),=16 X (Y;3¥,),1(Y; Yo 00),

4y mod 15= (Y3 ¥2)2+(Y1 Y0 00),=(Y1 Yo Y3 ¥2)2

Executable by two swap operations.

34
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More Simplification

X1
Xs @
X3 ’ ®
Yo s ~
Y1 ¥ N ®
Y2
Y3 N,

35

The Circuit of UCSB group [3]

The experiment used a=4.

The order of 4 is 2.
X1
Xs ®
Yo qu
y1 D

If Xx,=1, add 3 to 1 (multiply by 4).

36
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The Circuit of U. of Innsbruck [4]

The experiment used a=2, 7, 8, and 13.
Their orders are 4.

x4 X a
— —
x A | —orT
Yo —
Yio— Us ——
U, a=2,7,
Y2 = 8,13
Y3 —
37
JI% @ w‘ SWAP
oD 3 —X—
L N Py
3 ' @ 4 —X—
—X —X® x—- |
U2 U13 U4 m
x X —F P C-SWAP
_'_
: R
U —%
X b @D X
x*— X—P x—O I
——
Usg U, Un ii
38
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The Circuit U. of Bristol group [2]

Xy ®
X3 ®
Yo D
Y1 v

The experiment used a=7.
Note that 7°=1, 7= 7, 7>2=4, 73°=13 and 74=1.
Their Trick:
Encode 1— 00, 7 —01,4 —10, and 13 —11.
U,: 00~ 01, U, 0x21x
Their circuit uses the fact that the order is 4.
But, the purpose of Shor’s algorithm is finding the order.
39

Quantum Circuit for Factoring 21 [5]

The experiment used a=4.
This circuit heavily relies on the fact that 4° mod 21=1
— The orderr is 3

Only 1, 4 and 16 appear in 4 mod 63 fori=0, 1, 2,...

4 mod 63 = 4 1>
42mod 63 =16 x4// \\
4mod63=4 ;457 10
48 mod 63 =16 116>
0>
Encode 1 — 0,4 — 1,16 — 2. U// \
U,: [x> — [x+1 mod 3> U \
U x> — [x-1 mod 3> 1> - 2> 40
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In their experiments, they used qutrit (=three state) not qubit.

y_

U,

ol

U.

3 1/"'?2!\
' AR
|

Their circuit uses the fact that the order is 3.
But, the purpose of Shor’s algorithm is finding the order.

| —IQFT

41

Generalization of the last two circuits

The original form of Shor’s Factoring Algorithm

2m—_q

1 1
= ) [0I1) = = ) [x)|a*mod N)
7 2

2m—_q

The “simplified” or “compiled” version of Shor’s Factoring Algorithm

2Mm—1

= 2, 10— = 2. Wk mod)

I is what we want to find.
It is unacceptable simplification for Shor’s algorithm.

The paper “Factoring 51 and 85 with § qubits”
(Published in Scientific Reports, 2013) follows this idea.

2Mm—1

42
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Oversimplifying Quantum Factoring”

Find an element a with order 2. (a2 mod N=1)

1 1
1 1
\/—E; |x)|1) — \/_f; [x)|a*mod N)

The “oversimplified” version of Shor’s Factoring Algorithm
1i|>|o> LS gpmod 2
— X e x)|x mo
ﬁx:O ﬁx:O

T 1N
0> v
They claimed that

Valid implementations should not make use of the answer sought.
They presented a factorization of a 20,000-bit number.

* A Smolin, John & Smith, Graeme & Vargo, Alexander. (2013).
Oversimplifying quantum factoring. Nature. 499. 163-165. 43

Summary of Part 11

We survey quantum circuits for Shor’s factoring algorithm.
They are not considered to be naive implementation of
Shor’s algorithm.
* Some explicitly use the true value of the order r.
* Some overuse the property of target composite (=15).

* The order is either 1, 2, or 4.

* x4 mod 15 is executable by only SWAP.

* x2,x8,x13,x7, x11 are also executable by SWAP

(and NOT).

44
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Summary of this Talk

We evaluated the necessary resource of Shor’s factoring
Algorithm (Part I).

We survey quantum circuits for Shor’s factoring
algorithm (Part II).

There is a big gap between theory and experiments.

Future Works

Design quantum circuits for small composite number
(say, 21 and 35) close to the original Shor’s algorithm.
Conduct experiments by simulation (like Microsoft Q#)
and real quantum computers (like IBM Q).

45
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Akinori Hosoyamada (NTT)

On the post-quantum security of symmetric key cryptography

Abstract

It was said that the security of symmetric key cryptography will not be significantly affected
by quantum computers, because it does not rely on the hardness of algebraic problems such as
the integer factorization problem. However, recent works revealed that some symmetric key
schemes such as CBC-MAC and the Even-Mansour construction fall insecure against quantum
computers in some specific situations. In this talk, I will survey recent developments related

to the post-quantum security of symmetric key cryptography.
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Innovative RED by NTT

On the post-quantum security of
symmetric key cryptography

Akinori Hosoyamada
NTT Secure Platform Laboratories

2018.9.19
“Mathematical approach for quantum information society”
@ IMI, Kyushu Univ.

Copyright©2018 NTT corp. All Rights Reserved.

Outline 4

* Basics of symmetric key cryptography

« Researches in symmetric key cryptography

e Quantum Attacks

e Post-quantum provable security (our recent result)
s Summary

® NTT Copyright©2018 NTT corp. All Rights Reserved.

2
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Outline —
* Basics of symmetric key cryptography
® NTT Copyright©2018 NTT corp. All Rights Reserved. 3
~

Cryptography for secure network

o @@
N secure Newvork J)

Crypto

Sym-key crypto

Pub-key crypto

eent by WTT
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Sym-key and Pub-key:
characteristics -

Public key schemes
*High-functioning: keys can be public
*Low-speed in return for high-functioning

Symmetric key schemes
* Low-functioning :keys cannot be public
*High-speed: “math problem” is not used

*Both are indispensable to realize secure and

high-speed communication
*One should be as secure as the other.

NTT Copyright©2018 NTT corp. All Rights Reserved. 5
Block Cipher e
[
[ Encryption ] [ Decryption ]
Plaintext Plaintext
¥ \ 4
Block Fixed Block
Cipher length Cipher
il :
Ciphertext Ciphertext

@ NTT Copyright©2018 NTT corp. All Rights Reserved.
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Block Cipher b4

*Fixed input/output length
Key must be shared in advance

Block cipher do not use
“mathematical” problems

«Famous blockciphers :
DES, AES, Camellia, -

@ NTT Copyright©2018 NTT corp. All Rights Reserved

The problem with block ciphers e

: Fixed input/output length
(64-bit, 128-bit,...)

How can we encrypt long data?

s

if

Mode of operations

@ NTT Copyright©2018 NTT corp. All Rights Reserved
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Mode of operations:
Various kinds of schemes .

Encryption of long data
Cryptographic hash functions
Message authentication codes
«Authenticated encryption
cetc,...

® NTT Copyright©2018 NTT corp. All Rights Reserved. 9

Hash function 4

WBIRIZBALEYBZEDI LN E Lon
DRESESHNELPETHZAT g
HEZOHHALRVEET data

-
\ HASH

‘-' Randomly compressed
an76eOe data (fixed length)

@ NTT Copyright©2018 NTT corp. All Rights Reserved. ] ()

—284-




Hash function

inrsvuthn RED ry WTT

It is difficult to make “good” hash function

which takes long input data... ®

~~

Design Strategy

small function

1. Make fixed-length small function
2. Construct hash function from the

®) NTT

Copyright©2018 NTT corp. All Rights Reserved. ] ]

Design example :
Merkle-Damgard construction

Initial
Value

abcd efgh ijkl
abcd efgh

L

ijkl

Z Split
messages

——

Functlon with
Small input/output

L.

— =) | Output

Copyright©2018 NTT corp. All Rights Reserved. ] 2
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Desigh example :
Merkle—-Damgard construction .

Function with

L )Small input/output
) h )

Construct from block ciphers!
“Davies-Meyer construction”

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 1 3

From block ciphers to small functions:
Davies-Meyer construction o A

Block
Plaintext i Ciphertext
alnmex Cipher > P

® NTT Copyright©2018 NTT corp. All Rights Reserved. | 4}
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From block ciphers to small functions:
Davies-Meyer construction .

N =

Block

Input 1 ,
npu Cipher m) S——) Output

@ NTT Copyright©2018 NTT corp. All Rights Reserved. ] 5

Outline 4

« Researches in symmetric key cryptography

® NTT Copyright©2018 NTT corp. All Rights Reserved. 1 6
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Questions .

What do “sym-key crypto researchers” do?

Research type 1:
Cycle of design and attack

Research type 2:
Probvable security

® NTT Copyright©2018 NTT corp. All Rights Reserved. ] /

Research type 1:
Cycle of design and attack A

® NTT Copyright©2018 NTT corp. All Rights Reserved. 1 8
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Research type 1:
Cycle of_design and attack .

aes | s Secure

No one knows how to break | AES

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 1 9

Research type 2:
Provable_ security —

1. Come up with a good mode / construction
2. Make assumption / Idealization

« 3. Formally define what “secure” is

*4. Prove the mode / construction is “secure”

@ NTT Copyright©2018 NTT corp. All Rights Reserved. ) ()
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Outline <&

e Quantum Attacks

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 2

Symmetric-key & quantum: »
backgrounds " 4

“the security of symmetric key crypto will
not be affected by quantum computers”

® NTT Copyright©2018 NTT corp. All Rights Reserved. D
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-

Known quantum attacks : ~2010 > 4

[
Classical Quantum

Exhaustive n .
Key search 0(2"%) 0(2"%)
Collision search 0(2/?) 0(2™3)

“It is sufficient to use 2n-bit keys instead of n-bit keys”

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 2 3
Known attacks : 2018 b~ 4

Classical Quantum

Exhaustive n n/2

Key search o) A

Collision search 0(2™/?) 0(2™3)

Key recovery attack n/2 "

against Even-Mansour @y Fely=in
Forgery attack 02"/ Poly-time

against CBC-like MACs

Note :We assume that quantum oracles are available

® NTT Copyright©2018 NTT corp. All Rights Reserved. 24
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Symmetric-key & quantum:
backgrounds

v
“the security of sy ric key crypto would
not be affected 4 5 m computers”

5
L

Poly-time attack is possible !!

*The works by Kuwakado and Morii [KM10,KM12]
*The work by Kaplan et al. [KLLN16a]

We should study post-quantum
security of symmetric key crypto carefully

® NTT Copyright©2018 NTT corp. All Rights Reserved. 2 5

Q1 model:
Classical Oracle / Quantum computatlonmw

Classical CPA Q1 CPA

Enc. Enc.
Oracle Oracle

R

Computer

X

Adversary

Quantum
Computer

Adversary

@ NTT Copyright©2018 NTT corp. All Rights Reserved. ) 6
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Q2 model:
Quantum Oracle / Quantum computatlon mmmmm

Classical CPA Q2 CPA

Quantum
Enc. Enc.
Oracle Oracle

Computer Quantum
Computer
Adversary Adversary
® NTT ' Copyright©2018 NTT corp. All Rights Reserved. 27

Previous Q1 attacks (classical query) ‘w

Key Recovery attack on Even-Mansour
[KM12]

Meet-in-the-middle attacks against
iterated blockciphers [kap14]

* Differential /Linear cryptanalysis
[KLLN16b]

*Online-Offline meet-in-the-middle
attacks [Hs17a,Hs17b]

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 28
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Previous Q2 attacks (quantum query) _:<.

«3-round Feistel distinguisher [km1o0]

Key Recovery attack on Even-Mansour
[KM12]

Forgery attacks against MACs [KLLN16a]

«Key Recovery attack on AEZ [Bon17]

e Differential /Linear cryptanalysis

[KLLN16b]
Key Recovery attack on FX-construction
[LM17]
e Attack on Poly 1305(BN18]
® NTT Copyright©2018 NTT corp. Al Rights Reserved. 2 ©
Generic attacks on hash —

*The Grover search [Gro96]

«Collision search [BHT98]

« Multi-target preimage search [BB18]

« Multicllision finding algorithm[Hsx17]
« Efficient collision searchicns17]

® NTT Copyright©2018 NTT corp. All Rights Reserved. 3 ()
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Previous Q2 attacks (quantum query) m‘-::.,

«3-round Feistel distinguisher [km1o0]
Key Recovery attack on Even-Mansour
KM12
Forgery attacks against MACs [KLLN16a]
«Key Recovery attack on AEZ [Bon18]
* Differential /Linear cryptanalysis
[KLLN16b]

Key Recovery attack on FX-construction
[LM17]

e Attack on Poly 1305(BN18]

® NTT Copyright©2018 NTT corp. All Rights Reserved. 3 1

Simon'’s Period Finding Algorithm o

Problem

Suppose a function f:{0,1}"*—> S and s € {0,1}" satisfies
vx € {0,1}" f(x ®s) = f(x).
Given f, find s.

Classical computer needs exponential time

@

Simon’s quantum algorithm [Sim97]:
Can solve in polynomial time

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 3 ).
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Poly-time attack

Examele: Attack on Even-Mansour i~

kq ks
Even-Mansour cipherEy ;. 1 1
(P:public permutation) U P U

-An adversary needs to Classical CCA
make 2™/? queries to

recover keys (CCA) @
[EM97]
@\ /P

N Z
x

Adversary

® NTT Copyright©2018 NTT corp. Al Rights Reserved. 3 3

Poly-time attack
Examele: Attack on Even-Mansour -~

Even-Mansour cipherE e %
B kq,k;
(P:public permutation) —é_' P —é_’

-An adversary needs to Quantum query CCA

make 2™/? queries to

recover keys (CCA) @
[EMO7]
Ao

-A quantum adversary
with access to quantum

oracles can recover keys
. . : Computer
in polynomial time

[KM12] Adversary

@ NTT Copyright©2018 NTT corp. Al Rights Reserved. 34}
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Poly-time attack

1

Examele: Attack on Even-Mansour s

i k1 ka
Even-Mansour cipherEy ;. 1 1
(P:public permutation) % P A\ %
[Kuwakado and Morii 12]
Define f(x):= Ekuka (x) P P(x)

= then f(x ® k,) = f(x) holds
‘We can recover k, in polynomial time with

Simon’s algorithm
- k, can easily be recovered since we have
Ey,1,(x) @ P(x ® k1) =k,
@ NTT Copyright©2018 NTT corp. All Rights Reserved. 3 5

Outline —

e Post-quantum provable security (our recent result)

@ NTT Copyright©2018 NTT corp. Al Rights Reserved. 36
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Hash based signatures -

cHash-based signature
esignature made from hash functions
(signature---public key scheme for authentication)
«Some of them are post-quantum secure if
the underlying hash function is post-
quantum secure

*Hash functions are assumed to be post-
quantum secure

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 3 7

Typical hash function:
Merkle-Damgard with Davies Meyer e

Fix

m) S—) | O tput

Input 1

® NTT Copyright©2018 NTT corp. All Rights Reserved. 38
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Typical hash function:

Merkle-Damgard with Davies Meyer i
Input 1 Output
@ NTT Copyright©2018 NTT corp. Al Rights Reserved. 3O

Quantum insecure construction:
Even-Mansour cipher k. 4

Quantum insecure

Permutation & XOR

@ NTT Copyright©2018 NTT corp. All Rights Reserved. £} ()
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Typical hash function:
Merkle-Damgard with Davies Meyer e

Hash function
Assumed to be secure

Input 1 Output

Permutation & XOR

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 4}

Typical hash function:
Merkle-Damgard with Davies Mever e

Secure????

Hash fulrctom l/_‘

Assumed to be secure

Input 1 Output

Permutation & XOR
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Typical hash function:

Merkle-Damgard with Davies Mever =
Secure????

Ll

-

Let's come up with a Poly-time attack
that breaks one of them!

- ©

Permutation & XOR

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 43

Typical hash function:

Merkle-Damgard with Davies Mever -

Permutation & XOR

® NTT Copyright©2018 NTT corp. All Rights Reserved. 44}
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L

It is hard to make poly-time attacks:: =

Why impossible?

e Strategy of quantum poly-time attacks:

1. Make a periodic function with a secret period
2. Apply Simon’s period finding algorithm

Hash functions have no secret information!!

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 45

It is hard to make poly-time attacks:: =

4 . e )
Let’'s come up with a security proof
Hobtirno atioelothat brogle cno ofthoral
N )

Hash functions have no secret information!!

® NTT Copyright©2018 NTT corp. Al Rights Reserved. 46
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-

Security definitions of hash functions =

1. Preimage resistance (One-wayness)
2. Second preimage resistance
3. Collision resistance

“Post-quantum secure” hash functions must
satisfy all of them against quantum
superposition attackers

Hash functions are public,
and have no secret information
® NTT Copyright©2018 NTT corp. All Rights Reserved. £}/

-

Security definitions of hash functions =

1. Preimage resistance (One-wayness)

Let's start with this

® NTT Copyright©2018 NTT corp. All Rights Reserved. 48
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Recent result [HY18] i.. 4

Results

1. Proposal of a quantum version of the ideal
cipher model

2. Proof of optimal one-wayness (2"/2 quantum
queries are required to break one-wayness) of the
combination of Merkle-Damgard with Davies-
Meyer (fixed-length, use a specific padding)

3. Some proof technique for quantum oracle
indistinguishability

@ NTT Copyright©2018 NTT corp. Al Rights Reserved. 4O
Recent result [HY18] .. 4
Results

1. Proposal of a quantum version of the ideal
cipher model

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 5 ()
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Security Proof:
ideal permutation model —

«Ideal permutation model

* Permutation is chosen at random, and given to the
adversary as a black-box

» Adversary can make both forward and backword

queries
Adversary
@ NTT Copyright©2018 NTT corp. All Rights Reserved. 5 ]
Security Proof:
ideal permutation model —

Ideal permutation model

* Permutation is chosen at random, and given to the
adversary as a black-box

* Adversary can make both forward and backword
queries

4 )

In the classical setting, sym-key schemes based on
permutations are often proven in this model

& 1l Copyright©2018 NTT corp. All Rights Reserved. 5 )
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Security Proof: ~
quantum ideal permutation model et

*Quantum ideal permutation model

* Permutation is chosen at random, and given to the
adversary as a quantum black-box oracle

» Adversary can make both forward and backword
quantum queries

@
\ //

Quantum
Computer

Adversary
@ NTT Copyright©2018 NTT corp. Al Rights Reserved. 53
Security Proof: |
quantum ideal permutation model et

*Quantum ideal permutation model

* Permutation is chosen at random, and given to the
adversary as a quantum black-box oracle

* Adversary can make both forward and backword
quantum queries

4 )

Quantum security of sym-key schemes based on
permutations should be proven in this model

& 1l Copyright©2018 NTT corp. Al Rights Reserved. 54}
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Security Proof:

ideal cieher model .

Ideal cipher model

e Permutation | Eglis chosen at random for each key K,
and given to the adversary as a black-box oracle

» Adversary can make both forward and backword

queries
Adversary
@ NTT Copyright©2018 NTT corp. All Rights Reserved. 5 5
Security Proof: :
ideal cipher model wi... A

Ideal cipher model

« Permutation | Eglis chosen at random for each key K,
and given to the adversary as a black-box oracle

* Adversary can make both forward and backword
queries

4 )

Security of sym-key schemes based on
block ciphers are often proven in this model

\_ J

@ NTT Copyright©2018 NTT corp. Al Rights Reserved. 56
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Security Proof:

Quantum ideal cipher model .-

*Quantum ideal cipher model

e Permutation | Eglis chosen at random for each key K,
and given to the adversary as a quantum black-box
oracle

e Adversary can make both forward and backword
gquantum queries

\ //

Quantum
Computer
Adversary

® NTT Copyright©2018 NTT corp. All Rights Reserved. 57/

Security Proof:

Quantum ideal cipher model —

*Quantum ideal cipher model

« Permutation | Eglis chosen at random for each key K,
and given to the adversary as a quantum black-box
oracle

e Adversary can make both forward and backword

o R

Quantum security of sym-key schemes based on
block ciphers should be proven in this model

@ h | 3 Copyright©2018 NTT corp. All Rights Reserved. 58

-308 -




guantum oracles b

Quantum ideal permutation model

P <% Perm({0,1}")

10} x)y) = [0} x)y D P(x))
|DIx)y) = [DIx)y © P~H(x))

Oracle Op :

Quantum ideal cipher model

Ex <* Perm({0,1}") for each K
[0) ) xMy) = [0)|x)k)|y D Ex(x))

Oracle Oy :
DR )y o 1))y @ D (x))
@ NTT Copyright©2018 NTT corp. All Rights Reserved. 5O
Recent result [HY18] o

Results

2. Proof of optimal one-wayness (2"/?2 quantum
queries are required to break one-wayness) of the
combination of Merkle-Damgard with Davies-
Meyer (fixed-length, use a specific padding)

@ NTT Copyright©2018 NTT corp. All Rights Reserved. ()
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Merkle-Damgard

abcd

efgh

ijkl

/

abcd

Initial
Value

®) NTT

efgh

-

Merkle-Damgard

——

L.

N\

ijkl

L.

—) =) | Output

Copyright©2018 NTT corp. All Rights Reserved. 6 1

Davies Meyer

Input 2

Input 1

Davies

-Meyer

®) nN1T

Output

Copyright©2018 NTT corp. All Rights Reserved. ().
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Merkle-Damgard with Davies-Meyer b4

P

LD
AN >,

® NTT Copyright©2018 NTT corp. Al Rights Reserved. () 3

Merkle-Damgard with Davies-Meyer

{with a specific padding) .

X
}

Padding
(some fixed function)

LD
AN >,

® NTT Copyright©2018 NTT corp. Al Rights Reserved. (4}
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Securitx Definition b 4

- A function HE(x) is one-way if any adversary

has to make many (= 2"/?) queries to win the
following game:

« 1. Choose an ideal cipher E uniformly at random

+ 2. Choose x from the domain of HEuniformly at random
« 3. Adversary is given y = HE(x) and oracle access to 0g
« 4. After making queries, adversary outputs x’

« 5. Adversary wins if HE(x") =y

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 6 5

Our second result .

Theorem ([HY18] Thm. 5.2)

To break one-wayness of the combination of Merkle-Damgard
With Davies-Meyer and our padding function,

Q(Zn/Z/nl/Z)
quantum queries are needed.

Giving a proof
= giving a quantum query lower bound

@ NTT Copyright©2018 NTT corp. All Rights Reserved. (6
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Querz lower bound . 4

Quantum

. Worst case X
computation

Average case

Pub-key crypto (randomized)

Average case

Sym-key crypto (randomized)

Our theorem is the first result on quantum query lower
bound that takes backward queries into account

® NTT Copyright©2018 NTT corp. All Rights Reserved. 67

Merkle-Damgard with Davies-Meyer

- . . ~
(with a specific padding) -
x
Padding H
(some fixed function)
x‘z Xo+1
. i v O . A
w T B oo E

Let’s simplify the problem!

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 68
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Merkle-Damgard with Davies-Meyer

‘with a specific padding)

Lets’ show this function is one-way

®) NTT

Copyright©2018 NTT corp. Al Rights Reserved. (5O

One-wayness: proof strategy

It can be easily shown that:

Breaking one-wayness of

is almost as hard as

Finding a fixed point of

P

/|

’ (An element x s.t. P(x)=x) ‘

®) nN1T

Copyright©2018 NTT corp. All Rights Reserved. /()
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One-wayness: proof strategy S

It can be easily shown that:

Finding a fixed pointof | P

is almost as hard as

Distinguishing random permutations from
random derangements

-

@ NTT Permutation without fixed points

192018 NTT corp. Al Rights Reserved. /|

One-wayness: proof strategy e

Next: | want to reduce

Distinguishing random permutations from
random derangements

to

Distinguishing two distributions D;, D, on
the set of boolean functions Func({0,1}",{0,1})

Since Boolean functions are much simpler than permutations

® NTT Copyright©2018 NTT corp. All Rights Reserved. /2.

-315-




distributions D,, D, on the set of
boolean functions i, 4

e Define D, on Func({0,1}",{0,1}) as the
distribution which corresponds to the
following sampling:

1. P <% Perm({0,1}"™)

2. Define f:{0,1}" - {0,1} by f(x) = 1iff P(x) = x

3. Return f

* D, is the “distribution of fixed points”

* Define D, as the degenerate distribution on
the zero function

® NTT Copyright©2018 NTT corp. All Rights Reserved. 73

One-wayness: proof strategy —

It is sufficient to show that

Distinguishing two distributions D;, D, on
the set of boolean functions Func({0,1}", {0,1})
is hard

to show

WahY
N

Breaking one-wayness of 3

is hard

® NTT Copyright©2018 NTT corp. All Rights Reserved.  / 4}
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One-wayness: proof strategy _—

It is sufficient to show that

Distinguishing two distributions D,, D, on
the set of boolean functions Func({0,1}", {0,1})
is hard

4 )

How to show it?
—our third result

\- y,
@ NTT Copyright©2018 NTT corp. All Rights Reserved. /5§
Recent result [HY18] —
Results

3. Some proof technique for quantum oracle
indistinguishability

@ NTT Copyright©2018 NTT corp. Al Rights Reserved. /6
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Distinguishing advantage of
quantum query adversary

A function f:{0,1}" - {0,1} is chosen according
to D, or D,, and given to the adversary A as a
quantum oracle

- After making gq-queries, A outpus “1” or “2”
according to its guess

A has unlimited computational resources
e Indicator of adversary’s “distinguishing
advantage”:

Advgilf,gz (4) = ‘fljgl[Afoutputs 1] - fljlgz[Afoutputs 1]‘

Our goal is to show Adv's;, (4) is small ]

Copyright©2018 NTT corp. All Rights Reserved. /7

Mathematical model of
quantum query adversary

Oracle of f... O : [x)|y) = |x)|y © f(x))
g-query adversary... UqgOrUy_q -+ U1 07U

State of the adversary after g queries to f...
|1/Jf) = UquUq—1“'U10fU0|0)

fis chosen according to D,

!

the quantum state of the adversary becomes
with probability p} := Pr [F =
[¥r) P Ybr= T D1[ f]
@m Copyright©2018 NTT corp. All Rights Reserved. 78
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Mathematical model of
quantum query adversary _—

If f is chosen according to D,, the state of the
adversary after q queries is

= ZPH‘/’f)(lM
7

and generally it can be shown that

Adviish, (4) < td(p?, p?)

We need an upper bound of this

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 79

Our third result .

Proposition ([HY 18] Prop. 3.2)

Let D, be arbitrary distribution on Func({0,1}",{0,1}), and D, be
the degenerate distribution on the zero function. Then

td(p* p2)<zqug°°daj [1Eo%emax|{f € good,f (x) = 1}

+FPr [F € bad] holds.

~D1

{good,}, :*- a set of subsets of Func({0,1}",{0,1})
bad := Func({0,1}",{0,1}) \ (U, good,)

dg dg
pPooie = F1~D£1[F € good,], pflgoo = FEgl[F = f|F € good,]

Condition: good, N goodg = @ ,and p/18°°%eis independendet of f
@ NTT Copyright©2018 NTT corp. Al Rights Reserved. 63 ()
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Recall our distributions D,, D,+-- i
L

* Define D, on Func({0,1}",{0,1} ) as the
distribution which corresponds to the
following sampling:

1. P <% Perm({0,1}"™)

2. Define f:{0,1}" - {0,1} by f(x) = 1iff P(x) = x

3. Return f

* D, is the “distribution of fixed points”

* Define D, as the degenerate distribution on
the zero function

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 8 1

Apply the third result to our D,, D, e

Proposition ([HY 18] Prop. 3.2)

Let D, be arbitrary distribution on Func({0,1}",{0,1}), and D, be
the degenerate distribution on the zero function. Then

dg dg
(o, p%) < 20 ) pE°% [p"E** maxi(f € good,If (x) = 1)
a

+ Pr [F € bad] holds.
F~D

1

{good,}q + goodg = {f | If H(D)| = a}
bad := Func({0,1}*%{0,1}) \ (U, good,) = @

flgoodg

goody ._ ._ _
= F1~D£1[F € goody], py = FEgl[F = f|F € good,]

1

Condition: good, N goodg = @ ,and p/18°°%eis independendet of f

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 82
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_A_EEI\Lt_he third result to our D, D, &
\Pr \

We obtain
Adviish (4) < td(ph,p?) < 0(q/2™?)

0(2™/?) queries are need to distinguish Dy, D,
with a constant probability

L A

Recall arguments on our
second result-- .. 4

It is sufficient to show that

Distinguishing two distributions D;, D, on
the set of boolean functions Func({0,1}", {0,1})
is hard

to show

WahY
N

Breaking one-wayness of 3

is hard

® NTT Copyright©2018 NTT corp. All Rights Reserved. 84
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Recall arguments on our
second result--- i, 4

We have shown
( )

0(2™/?) queries are need to distinguish Dy, D,
with a constant probability

. J
thus
O Breaking one-wayness of P ——
is hard
@ NTT Copyright©2018 NTT corp. Al Rights Reserved. ¢35
Our third result:
Generalized version ——

Proposition 3.1 (Generalized version). Let Dy, Dy be any distributions on
Func({0,1}",{0,1}°), and D be any distribution that satisfies (9). Let badau,
bad?, good?, and {good? }.ca, be the sets as stated above. Then, for any quan-

tum algorithm A that makes at most ¢ quantum queries, Adv%slt, D, (A) is upper
bounded by

ds dg G
2q-Eg~D, [ Z p?ac \/pgljgog - max {v € good | v(z) = 1}‘]

QEAG
+2¢g- Pr _ [(F G) € badau]. (10)
(F,G)~D
@ NTT Copyright©2018 NTT corp. All Rights Reserved. 86
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Future work .

- How about second preimage resistance?
Collision resistance (or, collapsing)?

« How to get rid of our padding?
« How about other hash functions?

@ NTT Copyright©2018 NTT corp. All Rights Reserved. 87
Outline .. 4
s Summary

@ NTT Copyright©2018 NTT corp. Al Rights Reserved. 63 &
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Summary wh,, A

1. Some sym-key schemes are broken in poly-
time by quantum superposition query
attacks

2. We should study post-quantum security of
symmetric key crypto carefully

3. Merkle-Damgard with Davies-Meyer is one-
way

3. To prove security of sym-key schemes
against quantum superposition attacks, we
should treat average case & backward
quantum oracle queries

Thank you!

® NTT Copyright©2018 NTT corp. Al Rights Reserved. 3O
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