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IMI Workshop of the Joint Research Projects 
 

Mathematical approach for quantum information society 

 
We organize a conference as one of the common enterprises of IMI,  

Kyushu University as follows. 
We welcome the participation of many all of you. 

 
Date 17 of Sep 2018 (Mon) 13:00 – 19 of Sep 2018 (Wed) 11:45
Venue Meeting room A Nishijin Plaza, Kyushu University,

2-16-23, Nishijin, Sawara-ku, Fukuoka-shi, Fukuoka, 814-0002  
URL 

Program 
  

17 of Sep (Mon)  
 

13:00  Opening 
 

13:15 13:25 Opening remarks 
 

13:30 14:30 Yoshinori Aono (NICT) 
 LOTUS: a conservative PKE/KEM scheme 

 
14:45 15:45 Koichiro Akiyama (TOSHIBA) 

 A Public-key Encryption Scheme Based on Non-linear  
                     Indeterminate Equations (Giophantus(TM)) 
 

16:00 17:00 Toyohiro Tsurumaru (Mitsubishi Electric) 
         Leftover Hashing Lemma as Quantum Error Correction 

 
18 of Sep (Tue) 

   
9:30 10:30 Yasuhiko Ikematsu (The University of Tokyo) 

              The multivariate encryption scheme HFERP 
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10:40 11:40 Yutaka Shikano (Keio University) 
How to understand the cloud quantum computer 

   Lunch Break 

13:10 14:10 Hirotake Kurihara (Kitakyushu College) 
POVM from the viewpoints of combinatorics 

14:20 15:20 Masakazu Yoshida (University of Nagasaki) 
Solutions to a retrodiction problem by using quantum 
error-correcting codes 

15:30 16:30 Phong Nguyen (INRIA The University of Tokyo) 
Searching for Short Lattice Vectors 

16:40 17:40 Tadanori Teruya (AIST) 
Observations on Random Sampling Reduction Algorithms 

 18:10      Conference Dinner 

19 of Sep (Wed) 

9:30 10:30 Noboru Kunihiro (The University of Tokyo) 
 Quantum Factoring Circuit: Resource Estimation and Survey 

         of Experimental Realization 

10:45 11:45 Akinori Hosoyamada (NTT) 
On the post-quantum security of symmetric key cryptography  

Organizers  
Takuro Abe (Kyushu University) 
Hiroyuki Ochiai Kyushu University  
Katsuyuki Takashima Mitsubishi Electric  
Koji Nuida The University of Tokyo   
Masaya Yasuda Kyushu University  
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Yoshinori Aono (NICT)

LOTUS: a conservative PKE/KEM scheme

Abstract

We present an overview of our post-quantum LWE-based scheme LOTUS, submitted to the

NIST PQC standardization project. LOTUS is the combination of Lindner-Peikert scheme

and Fujisaki-Okamoto transformation. One of the distinction of LOTUS is conservativeness:

its security assumption is the well-studied standard LWE with discrete gaussian errors, and

the parameter setting is from a lower cost bound to solve LWE by lattice enumeration. We

give comparisons on parameters to other schemes based on the LWE-like assumptions.
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Koichiro Akiyama (TOSHIBA)

A Public-key Encryption Scheme Based on Non-linear Indetermi-
nate Equations (Giophantus(TM))

Abstract

We proposed a post-quantum public-key encryption scheme named ”Giophantus” to NIST

PQC standardization. The security of the scheme depends on a problem arising from a mul-

tivariate indeterminate equation. In this scheme we employ the ”small” solution problem of

multivariate indeterminate equations as a hard problem. If we employ non-linear multivari-

ate equation in the problem, we have some possibility of reducing key in size since lattice

reduction techniques which depends on the linearity cannot apply directly. In this talk, I

introduce an outline of this scheme and show a security analysis for the linear case.
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)

A Public-key Encryption Scheme 
Based on Non-linear Indeterminate 

Equation  “Giophantus ”TM

－34－



A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)

A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)

A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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A Public-key Encryption Scheme Based on Non-linear Indeterminate 
Equations : Giophantus(TM) (IMI Forum 2018)
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Toyohiro Tsurumaru (Mitsubishi Electric)

Leftover Hashing Lemma as Quantum Error Correction

Abstract

The leftover hashing lemma (LHL) guarantees the security of privacy amplification (PA), a

ubiquitous primitive in modern cryptology. On the other hand, quantum error correction

(QEC) is an indispensable theoretical tool in the field of quantum information technology,

particularly in efforts toward realizing the quantum computer. We present a certain type of

equivalence between these two theoretical tools, the LHL and the QEC.
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Warming Up:
A Quick Review on 

Quantum Mechanics

Leftover Hashing from 
Quantum Error Correction

Toyohiro Tsurumaru
(Mitsubishi Electric Corporation)

2018/9/17 @ Nishijin Plaza, Kyushu University
(arXiv:1809.05479 [quant-ph])
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(Quantum Mechanics)
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In the “braket” notation

basis

basis

If one measures  in the X basis,

= is detected with probability ,

= is detected with probability 

Braket Notation

In textbooks, vectors are denoted as

• State vector:     (bra)

• Hermite conjugate of a state vector: (ket)

• Inner-product of (braket)

transpose of complex conjugate; 
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Privacy Amplification

When qubits are used

• The basis and the basis are related by discrete Fourier transform:

• Changing bases corresponds to Fourier transform:

,

－65－



The Easiest Example

orEither one occurs Either bit is known

Hash function
XOR

Completely unknown

Bits known to eavesdropperBits unknown to eavesdropper

Legitimate
user

(Nothing more than a)
Very Rough Image of Privacy Amplification

• A process of converting a “roughly secure” string into a “perfectly secure” string

Hash function

Roughly secure string
(e.g., physical randon number)

Perfectly secure string

Public nonce

Bits known to eavesdropperBits unknown to eavesdropper

Eavesdropper

Partially known

Completely unknown
Legitimate

user
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In general, one can use a universal2 hash function

Def Random function is universal2

for

Carter-Wegman 1979

The Toeplitz matrix of the previous slide is an example of universal2 functions.

Popular hash function for this purpose Toeplitz matrix multiplication

n

n

tn

tn

tntn

tntntn

tntntn

ntntntn

nntntn

tn

tn

x
x

x
x

rrrr
rrrr

rrr
rrrr
rrrr

y
y

y
y

Partially known string

Completely unknown string

Public nonce

Toeplitz matrix
all diagonal elements are equal
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•

•

•

Use Cases of PA (2/3)
“Physically Unclonable Function (PUF)”

FF 0A 1B 35

Use Cases of PA (1/3)
“Physical Random Number Generator”

Universal hash function 

Output from
a physical

random source
(e.g., thermal noise)

Hash value

Encryption function
e.g., AES FF 0A 1B 35

Use as a secret key

Plaintext Ciphertext
“Hello”

Physical 
random
number
generator

Classical
Encryption
Device
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Quantum Description of
Classical Privacy Amplification

• The basic idea = Game transformation
• Actual scheme: Classical privacy amplification

• Virtual scheme: Quantum error correction (+ Z-basis Measurement)

Transform
without affecting
security measure

Random variable

Choice of (public) Universal
hash function 

Hash value
Eavesdropper ELegitimate

user

Prob. Dist.

Prob. Dist. 
( bits)

• Setting:

• Security criteria:  

• Leftover hashing lemma (LHL) (Hastad et al. 1984):  

,
where the minimum entropy is calculated from prob. dist. at the beginning;

Security of Privacy Amplification

Random variable

Choice of (public) Universal
hash function 

Hash value
Eavesdropper ELegitimate

user

Prob. Dist.

average variational distance between the real and the ideal final states

Prob. Dist. 
( bits)
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More Review on Quantum Mechanics:
Density matrices and pure states

• Preparing states with classical probabilities
Density matrix

• Expectation of observable :      

• Classical probability measurement basis is fixed

(diagonal)

• Pure state a vector occurs with probability 1 rank 

For example:

Step 1 of our game transform

Density matrix:  
Equivalent

Entangled state: 

Equivalent (purification)

Legitimate user
Vector space

Vector space of 
Eavesdropper 

Random variable

Eavesdropper 

Legitimate user

Classical probability:
Initial state
of the actual
PA

Initial state
of the virtual
PA

－70－



• Any classical random variable can be described as subsystem of 
entangled state ;

Classical probability Quantum state

where

More Review on Quantum Mechanics:

• Composite system:
Composite system of systems , is described by tensor product .

• are basis of ,  is a basis of . 

• Quantum entanglement:
(without summation) is NOT entangled (w.r.t. and ).

• Partial trace:  Tracing only over , and leave intact;

• E.g., Partial trace of a pure state is a density matrix;

• Purification: is a purification of

• In fact, purification exists for any mixed state

More Review on Quantum Mechanics:

－71－



-basis measurement using

-th qubit

Hash value 

Step 2 of our game transform:

Legitimate user
Vector space ( -qubits) Vector space

Calculate 

Outcome 

Equivalent

-basis measurement using

† For the sake of simplicity, we assume that hash functions are linear; ,     

Step 1 of our game transform

Density matrix:  
Equivalent

Entangled state: 

Equivalent (purification)

Legitimate user
Vector space

Vector space of 
Eavesdropper 

Random variable

Eavesdropper 

Legitimate user

Classical probability:
Initial state
of the actual
PA

Initial state
of the virtual
PA

－72－



Step 3 of our game transform:

Legitimate user
Vector space ( -qubits) Vector space

-basis measurement using

-basis measurement using

Bit flip in -basis using
Commutative

† For the sake of simplicity, we assume that hash functions are linear; ,     

Hash value 

Step 2 of our game transform:

Legitimate user
Vector space ( -qubits) Vector space

-basis measurement using

† For the sake of simplicity, we assume that hash functions are linear; ,     

Hash value 

－73－



Our virtual PA scheme:

Legitimate user
Vector space ( -qubits) Vector space

-basis measurement using

Error correction in
the -basis using 

linear code

† For the sake of simplicity, we assume that hash functions are linear; ,     

Hash value 

Step 3 of our game transform:

Legitimate user
Vector space ( -qubits) Vector space

-basis measurement using

-basis measurement using

Bit flip in -basis using

Error correction in
the -basis using 

linear code=

† For the sake of simplicity, we assume that hash functions are linear; ,     

Hash value 
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• Classical probability: 

Density matrix:

Purification: 

Rewritten in the basis:

,

• Uncorrelated case: 

Zero error in the basis: 

Zero error in the basis implies
Security in the basis

Discrete Fourier transform

Zero error in the basis implies
Security in the basis

• If Alice’s has the zero error state in the basis, ,
and measures it in the basis, the outcome is unknown to Eve

• Quantum Monogamy:
(For a composite state , and its sub-state )

“ is pure is NOT entangled”
i.e.,  

.

• Measuring the -eigenstate in the basis Uniform distribution
• -eigenstate 

•

－75－



Summary
• Privacy amplification (PA) is an important algorithm in cryptography, both 

classical and quantum.

• The leftover hashing lemma (LHL) is useful for the security proof of PA.

• Quantum error correcting (QEC) code is an  important building block of quantum 
information technology.

• We have shown that the LHL can be derived from QEC:
game transf.

PA QEC + measurement
Security measure of PA  Failure prob. of QEC

Coding theorem

• Pure state equals after is measured in the basis and traced out.

• Define a CSS code , 
then privacy amp. is equivalent to bit measurements on code states of .

• Lemma: There exists a phase error correction op. using ,with the failure probability

,

where (quantum fidelity)

• Theorem (Coding theorem): If hash function is chosen randomly from a universal2 family ,

• Corollary:

LHL derived from quantum error correction

Leftover Hashing Lemma !
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Channel (e.g., optical fiber)QKD device QKD device

receive 

0 1 1 0 1 1 0 1 1 0 1 1

Goal of QKD:
(1) transmit random numbers
(2) monitor eavesdropping

Alice (sender) Bob (receiver)

generate and send
random number 

Quantum Key Distribution
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Internet

secret communication
by using as a secret key

0 1 1 0 1 1 0 1 1 0 1 1

Whenever Alice and Bob conclude that there is
No wiretapping, bits can be considered unknown
to outside

Goal of QKD:
(1) transmit random numbers
(2) monitor eavesdropping

generate and send
random number receive 

Alice (sender) Bob (receiver)

QKD device QKD deviceChannel (e.g., optical fiber)

Eve
(eavesdropper)

It’s being wiretapped!

0 1 1 0 1 1 0 1 1 0 1 1

Goal of QKD:
(1) transmit random numbers
(2) monitor eavesdropping

generate and send
random number receive 

Alice (sender) Bob (receiver)

QKD device QKD device
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Eve
Alice

Bob
quantum channel quantum channel

final key state

Privacy amplification

corrected key state

Privacy amplification

state estimation & error correction using classical communication

-basis measurement -basis measurement

General QKD Protocol

0 1 1 0 1 1 0 1 0 0 1 0

random number 

0 1 1 0 1 0 1 0 0 1

Estimate bit error rate 
by random sampling

continue if (threshold)

0 1 1 00 1 1 0

Error Correction

random number shared

Error correction

Privacy Amplification

1 0 11 0 1 Secret key shared
(final goal)

Practical Case with Bit Error Rate 

Eve
(Eavesdropper)

Alice
(sender)

Bob
(receiver)

Privacy Amplification

modulation demodulation
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Eve
Alice

Bob
quantum channel quantum channel

final key state

Privacy amplification

corrected key state

Privacy amplification

state estimation & error correction using classical communication

Ideal final key state  

Security measure = distance from the ideal state

Goal of the Security Proof

-basis measurement -basis measurement

Eve
Alice

Bob
quantum channel quantum channel

final key state

Privacy amplification

corrected key state

Privacy amplification

state estimation & error correction using classical communication

-basis measurement -basis measurement

General QKD Protocol
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Eve
Alice

Bob
quantum channel quantum channel

final key state

Privacy amplification

corrected key state

Privacy amplification

state estimation & error correction with classical communication

Ideal final key state  

Security measure = distance from the ideal state

-basis measurement -basis measurement

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

Outline of Our Result

1980’s 1990’s 2000’s 2010’s

Quantum Leftover Hashing Lemma (QLHL)
• Renner’s approach
• A variant of a method known in modern 

cryptography

Quantum Error Correction (QEC)
• Shor-Preskill’s or Koashi’s approach
• A method originally developed for QKD

•
•

There have been two major mathematical methods for proving the security of QKD:

Our Result

These two are in fact equivalent
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Eve
Alice

Bob
quantum channel quantum channel

final key state

Privacy amplification
using random function 

corrected key state

Ideal final key state  

(Quantum Leftover Hashing Lemma)

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

State estimation with classical communication

Traced out
-basis measurement

Lower bound on
min-entropy 

Eve
Alice

Bob
quantum channel quantum channel

final key state

Privacy amplification

corrected key state

Ideal final key State  

security measure 

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

State estimation with classical communication

Traced out
-basis measurement
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Eve
Alice

Bob
quantum channel quantum channel

final key state

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

State estimation with classical communication

Logical -basis measurement on
the quantum CSS code

Pure state

Eve
Alice

Bob
quantum channel quantum channel

final key state

Privacy amplification
using random function 

corrected key state

Ideal final key state  

(Quantum Leftover Hashing Lemma)

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

State estimation with classical communication

Traced out
-basis measurement

Lower bound on
min-entropy 

Equivalent to logical -basis measurement on
the quantum CSS code 

－83－



• is a pure sate which equals after diagonalized in basis and traced out.

• Define a CSS code , 
then privacy amp. is equivalent to bit measurements on code states of .

• Lemma 1: There exists a phase error correction op. using , achieving block error rate

,

• Lemma 2: If hash function is chosen randomly from a universal2 family,

• Corollary:

LHL derived from quantum error correction

Leftover Hashing Lemma !

Eve
Alice

Bob
quantum channel quantum channel

final key state

State estimation with classical communication

Logical -basis measurement on
the quantum CSS code

Pure state

Phase error correction 
on CSS code state Arbitrary measurementclassical communication

Virtual QKD Protocol using Quantum Error Correction (QEC)
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Summary

•
•

•

1980’s 1990’s 2000’s 2010’s

Quantum Leftover Hashing Lemma (QLHL)
• Renner’s approach
• A variation of a method used in modern 

cryptography

Quantum Error Correction (QEC)
• Shor-Preskill’s or Koashi’s approach
• A method developed originally for QKD

Our Result
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Yasuhiko Ikematsu (The University of Tokyo)

The multivariate encryption scheme HFERP

Abstract

Multivariate public key cryptography is one of the main candidates for post-quantum cryp-

tography. In 2016, Yasuda et.al. proposed a new multivariate encryption scheme SRP. This is

constructed by combining the encryption scheme Square with the signature scheme Rainbow

and using the plus modifier. In 2017,however, Perlner et.al. proved that SRP is vulnerable to

MinRank attack. In this talk, we will describe a new multivariate encryption scheme HFERP

that we proposed at PQCrypto2018. HFERP is constructed by replacing Square part in SRP

with the HFE scheme. We will explain that HFERP is invulnerable to MinRank attack. This

is a joint work with R. Perlner and D. Smith-Tone and T. Takagi and J.Vates.
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What is MPKC? 

The multivariate encryption 
scheme HFERP

*Yasuhiko Ikematsu (The University of Tokyo)
Ray Perlner (NIST)

Daniel Smith-Tone (NIST, University of Louisville)
Tsuyoshi Takagi (The University of Tokyo)

Jeremy Vates (The University of Montevallo)

18th September 2018 
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Public key

encryption

Ciphertext to AliceBob’s message

decryption

What is MPKC? 

What is MPKC? 
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§1. MPKC (Multivariate Public Key Cryptosystems)

§2. HFE scheme 

§3. HFERP scheme (Our proposal)

§4. Experimental results

Contents

§1. MPKC (Multivariate Public Key Cryptosystems)

§2. HFE scheme 

§3. HFERP scheme (Our proposal)

§4. Experimental results

Contents
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1-2. Easy-to-invert quadratic map
Consider quadratic polynomials in variables over a finite field .

For any , the equation 
can be solved in very little complexity. 

Quadratic map
Def. Easy-to-invert 

• High-speed

• NIST PQC standardization in 2016 

• Lattice-based       
• Code-based           

• Isogeny-based
• MPKC

• Short signature

10 multivariate schemes among all 69 proposals

• PQC Post-Quantum Cryptography

• MPKC Multivariate Public Key Cryptosystem

1-1. MPKC
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1-4. MQ problem

Given positive integers 
quadratic polynomials in -variables over 

Find s.t. .

MQ problem

• MQ problem is proven to be NP-complete.

• The security of MPKC is based on MQ problem “ ”.

’

Secret key easy-to-invert quadratic map
invertible linear maps

Public key quadratic map

1-3. The general construction of encryption schemes

encryption

Ciphertext to AliceBob’s message

decryption

Alice’s
Public key

The security of this scheme is based on solving .

Alice’s
Secret key
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Complexity of F4 algorithm for

degree of 
regularity of 

1-6. Direct attack  

• Direct attack To solve using Gröbner basis

•MI (or ) [Matsumoto-Imai Eurocrypt’88],  

•HFE  [Patarin Eurocrypt’96], 

•ABC  [Tao et al. PQC’13]

•ZHFE  [Porras et al. PQC’14], 

•SRP  [Yasuda et al. ICICS’15], 

•EFC  [Szepieniec et al. PQC’16]

•HFERP  [Ikematsu et al. PQC’18]

•EFLASH [Cartor et al. SAC’18]
broken

[Patrin Crypto’95]

[Bettale et al. Des. Codes and Cryptogr’13]

[Cabarcas et al. PQCrypto’17]

[Perlner et al. SAC’17]

1-5. The history of MPKC encryption schemes 
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1-7. Structure attack

1-7. Structure attack

If , then 
.
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§1. MPKC (Multivariate Public Key Cryptosystems)

§2. HFE scheme 

§3. HFERP scheme (Our proposal)

§4. Experimental results

Contents

1-8. Summary of MPKC

•

•

•
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2-2. The construction of HFE scheme

Quadratic map 

2-1. HFE(Hidden Field Equation) scheme

•
•
•

Fix a positive integer 
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2-3. Direct attack for HFE

•

2-2. The construction of HFE scheme
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2-5. Summary of HFE scheme

•

•

•

•

•

2-4. MinRank attack for HFE
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3-1. HFERP scheme

•

•

•

§1. MPKC (Multivariate Public Key Cryptosystems)

§2. HFE scheme 

§3. HFERP scheme (Our proposal)

§4. Experimental results

Contents
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3-2. The construction of Rainbow 

•

•

3-2. The construction of HFERP 

•

•
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•

3-3. The decryption of HFERP 

3-2. The construction of HFERP 

invertible linear maps
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3-6. Direct attack for HFERP

3-4. About Rainbow and SRP 

•
•

Rainbow scheme

•
•
•
•
•

SRP scheme
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3-8. Other attacks for HFERP

3-7. MinRank attack for HFERP

•
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§1. MPKC (Multivariate Public Key Cryptosystems)

§2. HFERP scheme (Our proposal)

§3. Attacks against HFERP scheme

§4. Experimental results

Contents

3-9. Summary of HFERP scheme

•

•

•

•

•
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4-2. Direct attack experiment data for HFERP

4-1. Parameter selection for HFERP
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4-3. Improving on HFERP decryption

•

4-2. Direct attack experiment data for HFERP
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4-5. Minus modifier

•

4-4. Experimental results for HFERP
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4-6. Experimental results for HFERP minus modifier

4-5. Minus modifier
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Conclusion

•

•

•

•

•
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Yutaka Shikano (Keio University)

How to understand the cloud quantum computer

Abstract

Recently, commercial-based quantum computing service was started through the cloud. Keio

University was selected as the Asian IBM Q Hub and has the cloud access right to use the

20-qubits quantum computers. Since quantum computers are too sensitive, it is too difficult

to understand the ”current” status of the cloud quantum computer. In this talk, I would

like to introduce how to understand the status through the cloud service. Also, the current

target application will be discussed if possible.
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Preface

OMG….

“Mathematical approach for quantum
information society”

Today’s talk is no mathematics.
Today, I will talk about the recent progress
of superconducting qubit type quantum
computer and how to understand it.

How to understand 
the cloud-type superconducting 

quantum computer?

Quantum Computing Center

Institute for Quantum Studies

Yutaka Shikano
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Naoki Yamamoto
Director
Associate Professor
Quantum control theory

Rodney Van Meter
Vice director
Associate Professor
Quantum architecture

Kohei Itoh
Professor
Silicon quantum dot

Yutaka Shikano
Project Associate Professor
Quantum theory

Takeharu Sekiguchi
Project Associate Professor
Spin quantum information

Hiroshi Watanabe
Project Lecturer
Molecular dynamics simulation

Takahiko Satoh
Project Assistant Professor
Quantum networking

Yoichi Suzuki
Project Associate Professor
Chemical physics

Eriko Kaminishi
Project Assistant Professor
Statistical physics

Quantum Computing Center
(since 2018.4.1.)

IBM Q Hub

Yagami Campus
Building 34
Room 312
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Toward 
Limit of Computation

Cloud use of superconducting
quantum computer
Member companies:
JSR Corporation
MUFG Bank
Mizuho Financial Group
Mitsubishi Chemical Corporation
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1946 ENIAC
First electrical computer

1952 IBM 701
First commercial computer
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Computation forgot 
Physics till 1980s.
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His students became our legends.

John Archibald Wheeler (1911 2008)

He is the naming founder of black hole.
He said “It from Bit”.
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Superconducting qubit
= Non linear resonator

Slide: thanks to Yasu Nakamura (UT)

11 qubit system
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Blackbody radiation (uncontrollable)

At 500 mK, the singlemicrowave photon is emitted.

Microwave generation
Cool down near 10 mK

Sample
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Reality

How to cool down?
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2 dimensional case
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Rotation operation

Due to the qubit frequency, the operation
speed is determined. 5 GHz > 0.2 nsec

Qubit representation (Bloch sphere)
n = 2: qubit (quantum bit)

Geometry of Quantum State
Pure state: Fubini Study metric
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Measurement error

Due to the quantum noise, we cannot
perfectly take the measurement.

Comptes Rendus Physique 17, 766 777 (2016)

Qubit measurement

Comptes Rendus Physique 17, 766 777 (2016)
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Qubit quality check schemes

T2 time

T2* time

Noise sources

environment
circuit modes?

Slide: thanks to Yasu Nakamura (UT)
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Fidelity Zoo

State fidelity

Gate fidelity

1ns

1ms

Recently, the qubit coherence time does
not satisfy “QuantumMoore’s law”.
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Example: identity operator

Quantum Process Tomography
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more qubits system

Randomized Benchmarking (RB)
1. Qubit initialization
2. Randomized Clifford circuit operated.
3. The inversed randomized Clifford circuit

operated.
4. Qubit measurement
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Two qubit interaction methods

Direct coupling (Flux tuning)

Indirect coupling (Drive tuning)
Cross Resonant Gate

C NOT gate

C X gate /
iSWAP gate
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Wiring spaghetti problem

Each connector has the slightly different properties.
Therefore, the ground level is not stable.

90 % hardware problems on quantum
computer are in classical problem.

Gate type Quantum Computing Developers

# Qubits2 1710 22 > 72?20 > 50?8

Superconducting

Quantum dots

Ion trap

19
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ibmex4: 12 qubits and 192 gates needed

Shor’s algorithm (N=15, x=11)

Rabi Oscillation

T1 / Echo

RB
?

RB
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Factoring of 4088459 can be mapped to
the two qubit search problem.

2017 2027 = 4088459
arXiv:1805.10478

Factoring problems on specific numbers can
be easily solved by quantum computer.

simulation reality

Factor of 15

Simplified algorithm is OK?
arXiv:1804.03719
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Quantum Threshold Theorem

The error correction code cannot be scaled
above the several errors conditions.

Phys. Rev. X 8, 021054 (2018)

Next investigation: Error correction

Majority rule of the measurement bit can be applied.
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blue orange

Executed on: Sep 17, 2018 7:33:55 AM
Results date: Sep 17, 2018 7:58:39 AM
Number of shots: 8192

Executed on: Sep 17, 2018 7:34:34 AM
Results date: Sep 17, 2018 7:59:31 AM
Number of shots: 8192

LLet’s see ibmqx4
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Software development

From the calibration date, under the independent
noise and error for each qubit, we can estimate
the successful probability “00000” as 62%.

The real device is 5899/8192 = 73%.

We cannot take the accurate
computational tasks.
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Noisy Intermediate Scale Quantum
(NISQ) Era may not change the world.

Shor
Minimization
Variational
factoring

Variational
eigen solver
(VQE)
Phase
estimation

Grover
Harrow
Hassidim
Lloyd (HHL)

Looking for the applications

Nature 549, 242–246 (2017)
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(QIT)

QIT39 @
2018 11 26 27

) / /
Francesco Buscemi /

2018 10 12 )
2018 10 26 )

https://staff.aist.go.jp/s kawabata/qit/qit39/

QIT40 @
2019 6

Conclusion and Outlook
We review the short history of
(superconducting qubit type) quantum
computation.

How robust the algorithm against the
realistic noises?

Next algorithm development is required. In
my personal opinion, we have to find the
quantum unique/original problem to hardly
define such problem in classical mind.
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Hirotake Kurihara (Kitakyushu College)

POVM from the viewpoints of combinatorics

Abstract

In quantum theory, measurements are represented by positive operator valued measures

(POVMs). In my talk, a POVM is a finite set of Hermite matrix with some properties.

It is known that when each element of a measurement is a rank-one matrix, the measure-

ment is maximally efficient at determining the state. In this situation, such a measurement

is regarded as a finite subset on a complex projective space. In other hand, good finite

subsets on complex projective spaces have been studied in combinatorics. In my talk, I will

discuss goodness of measurements from the viewpoints of combinatorics.
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Masakazu Yoshida (University of Nagasaki)

Solutions to a retrodiction problem by using quantum error-
correcting codes

Abstract

We discuss a retrodiction problem (so-called mean king s problem) among noncommutative

observables from the viewpoint of error detection and correction. Quantum error-correcting

codes against error corresponding to the observables are constructed and any code state of

the codes provides a way to discriminate the eigenstates of the observables. From observation

of the results, we also discuss the topics of quantum codes, quantum key distribution, MUBs,

MUSs, and SIC-POVMs.
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Phong Nguyen (INRIA/The University of Tokyo)

Searching for Short Lattice Vectors

Abstract

Lattices are regular arrangements of points in the n-dimensional space. Lattice-based cryp-

tography started in the mid-nineties, but its origins go back to the beginning of public-key

cryptography with knapsack cryptosystems. In the past few years, lattice-based cryptog-

raphy has been attracting significant interest, in part because of its well-known (potential)

resistance to quantum computers, but especially because of new and surprising features, such

as fully-homomorphic encryption, (noisy) multilinear maps, and lately, (indistinguishability)

obfuscation. In this talk, we will present the main algorithms for solving hard lattice problems

and discuss security estimates for lattice-based cryptography.
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Summary

Context

Lattices

Searching for Short Lattice Vectors

Enumeration

Sieving

Searching for Short Lattice Vectors

Phong Nguy n 

September 2018
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The Quantum Wave

2015-: €350M for British research on quantum 
technology

2016: €1billion Flagship for Quantum 
Technologies in EU H2020.

Industry

Google: Quantum AI Lab.

IBM: Quantum Computing Platform.

Microsoft, Intel/TUDelft, Alibaba/CAS, etc.
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Post-Quantum Candidates

Lattices: TLS-prototype tested several 
months by Chrome/Google

Coding theory

Multivariate polynomials over nite elds

Elliptic curve isogenies

The Quantum Challenge

Quantum computers would have a big 
impact on cryptography:

Break factoring (RSA)                     
and discrete log (DSA, ECC)                
[Shor1994]

Increase symmetric keysizes 
[Grover1996]

In 2015, the NSA announced a transition to 
post-quantum cryptography

N=pq
y=gx
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The Ubiquity of Lattices

In mathematics

Algebraic number theory, Algebraic 
geometry, Sphere packings, etc.

Fields medals: G. Margulis (1978), E. 
Lindenstrauss and S. Smirnov (2010), M. 
Bhargava (2014), A. Venkatesh (2018).

Applications in computer science, statistical 
physics, etc.
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What is a Lattice?

A linear deformation of Zn.

Let B be a non-singular n x n matrix.

The lattice spanned by B is L=Zn B.

2 0 0 0 0

0 2 0 0 0
0 0 2 0 0

0 0 0 2 0
1 1 1 1 1

What is a Lattice?

An in nite arrangement of 
“regularly spaced” points
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Lattice Invariants

The rank is the dim of span(L).

The (co-)volume is the absolute value of 
det(basis).                                         
Ex: vol(Zn)=1.

O

What is a Lattice?

A lattice is a discrete subgroup of R .

O
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Volume of the Ball

Γ(z) =

∫ ∞

0

xz−1e−x dx

The Gaussian Heuristic

The volume measures the density of 
lattice points.

For “nice” full-rank lattices L, and “nice” 
measurable sets C of Rn:

Card(L ∩ C) ≈ vol(C)
vol(L)
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Mathematical Goals

Classical Problem: the worst case.

Find the worst-case for the shortest 
lattice vector (non-zero) norm. 

New Trends: the average case.

Properties of random lattices

Properties of random lattice points

Short Lattice Vectors

Th: Any d-rank lattice L has 
exponentially many vectors of norm 

Th: In a random d-rank lattice L, all 
non-zero vectors have norm 

O
(√

d
)

vol(L)1/d

Ω
(√

d
)

vol(L)1/d

O
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Random Lattice Points

Since lattices are in nite, no obvious natural 
distribution over lattice points. Ex: Z.

Several distributions have appeared:

The uniform distribution over L C where C is a 
large hypercube or hyperball.

The discrete Gaussian distribution.

Random Lattices

[Siegel45]: there is a natural probability 
space over unit-volume lattices, related to 
Haar measures.

[Rogers56]: The limit distribution of vol(d-
dim ball of radius the rst minimum of a 
random L) when d→  is the exponential 

distribution of expectation 2. 
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Classical Example

Take n = 1: what is the probability 
that m random integers generate Z, 
i.e. that they are coprime?

The asymptotic probability of 
coprimality for two integers is known 
to be prime p (1-1/p2)=1/𝛇(2)=6/ 2 61%.

Generating A Lattice

Pick m ``random’’ lattice points in an n-dim 
lattice L.

From which value of m do we generate L 
with non-negligible probability?

What is the probability of generating?
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Generating A Lattice

Pick m ``random’’ lattice points in an n-dim 
lattice L.

From which value of m do we generate L 
with positive probability?

[NgPu18] shows it is m=n+1, because the 
probability is asymptotically                   
1/(𝛇(m)𝛇(m-1)…𝛇(m-n+1)).
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Benchmarks

Lattice challenges on the Internet.

Hard Lattice Problems

Input: a lattice L and an n-dim ball C.

Output: decide if L C is non-trivial, and 
nd a point when applicable. Easy if L=Zn.

Two settings

Approx: L C has many points.                
Ex: SIS and ISIS.

Unique: only one non-trivial point.           
Ex: BDD.
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Remarks

[ADHKPS18]-Sieving in dim 151 is 700 times 
faster than [KaTe17]-RSR.

[KaTe15-17]-RSR not signi cantly faster than 
predictions for BKZ-Enumeration 
[CN11,Ch13,AWHT16].

Similar performances for discrete pruning 
and cylinder pruning.

Sieving is faster than enum in dim 120-153 
but…

Security level = log2 #operations

Best sieve = 0.292*dim

New sieving records [ADHKPS18]

Predicted upper bounds for BKZ-Enumeration
[CN11, C13, AWHT16]

SVP Challenges Records
Before 2018 

Old sieving

Dimension

[NgVi08] sieve =0.415*dim
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Lattice Security Estimates

https://estimate-all-the-lwe-ntru-
schemes.github.io/docs/

The best attack requires an SVP 
subroutine in some target blocksize:

Cost of the subroutine?

Number of subroutine calls?

Space level = log2 #bits

Dimension

256 Gb

2048 Gb

[NgVi08] estimate = (4/3)n/2 vectors

New sieving records [ADHKPS18]

Sieving requires exponential space
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Other Algorithms

A classical problem is to prove the existence of 
short lattice vectors.

All known upper bounds have a more-or-less-
ef cient algorithmic analogue:

Hermite’s inequality: the LLL algorithm.

Mordell’s inequality: Blockwise generalizations 
[GaNg08,Sc87,etc.] of LLL.

Mordell’s proof of Minkowski’s inequality: worst-case 
to average-case reductions for SIS and sieve  
algorithms [BJN14,ADRS15]

Which Subroutine?

Sieving: exponential time and space

Enumeration: super-exponential time
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Enumeration

The simplest method to solve hard lattice 
problems, going back to the 70s.

Input: a lattice L and a small ball S Rn s.t. 
#(L S) is « small ».

Output: All points in L S.

Drawback: running-time typically 
superexponential, much larger than #(L S).
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Which Projections?

Let (b1,…,bn) be a Z-basis of L.

Let d be the projection over span(b1,…,bn-d) .

d(L) is a d-rank lattice L/L(b1,…,bn-d) of 
covolume vol(L)/vol(b1,…,bn-d)

Short vectors d(x) can be lifted as short 
vectors d+1(x). L d+1

d

L/L(b1,…,bn-d-1)

L/L(b1,…,bn-d)

Enumeration Insight

Key ideas:

Projections never increase norms:            
if ||v|| R, then || (v)|| R.

Using nice subspaces, (lattice) is a   
lower-rank lattice, and partial solutions 
can be lifted.
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Enumeration Tree

1(x) 1(x) 
xn-1

...

2(x) 2(x) 2(x) 2(x) 2(x) 

xn xn xn

3(x) 3(x) 
...

x 

Root

Leaves

xn-1xn-1xn-1xn-1

xn-2xn-2

More precisely…

Consider a lower-triangular matrix:

b1,1

bb2,1 bb2,2

bb3,1 bb3,2 bb3,3

bb4,1 bb4,2 bb4,3 bb4,4

bb5,1 bb5,2 bb5,3 bb5,4 bb5,5

x1

x2

x3

x4

x5

If norm  R, then

(x5b5,5)2  R2

(x4b4,4+x5b5,4)2+
(x5b5,5)2  R2

…

So enumerate x5, 
then x4, etc.
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Enumeration is based on one key idea

Projection to decrease the lattice rank

Once parameters are xed, it is possible 
to reasonably estimate the number of 
nodes of the tree, hence the running 
time.

Take Away

Enumeration tree

Depth k contains all projected lattice points 
|| k(y)|| (y L) of norm  R. Their number can 
be estimated by the Gaussian heuristic.

Most of the nodes are in middle depths.

Log #nodes

n-depth
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Speeding Up Enumeration

Assume that we do not need all L S:

Can we make enumeration faster if 
we only need to nd one vector?
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Analyzing Pruned Enumeration 
[GNR10] Framework

Enumerating L S P is deterministic, but:

The set P is randomized: it depends on a 
(random) reduced basis.

The success probability is Pr(L S P  {0}).

#(L S P) « should be » vol(S P)/covol(L) 
(Gaussian heuristic).

Enumeration with Pruning 
[ScEu94,ScHo95,GNR10]

Input: a lattice L, a ball S Rn and a 
pruning set P Rn.

Output: All points in L S P=(L P) S.

Pros: Enumerating L S P can be much 
faster than L S.

Cons: Maybe L S P  {0}.
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Two Kinds of Pruning

Cylinder Pruning ([GNR10] generalizing 
[ScEu94,ScHo95]): P is a cylinder 
intersection.

Discrete Pruning ([AoN17] generalizing 
[Sc03,FuKa15]): P is a union of cells, in 
practice a union of millions of boxes.

Extreme Pruning [GNR10]

Repeat until success

Generate P by reducing a “random” basis.

Enumerate(L S P)

Can be much faster than enumeration, even 
if Pr(L S P  {0}) is tiny.
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Pruned enumeration is based on one 
more key idea

Slicing the ball in a randomized 
manner

Once all parameters are xed, it is 
possible to reasonably estimate the 
running time. But dif cult to optimize 
everything.

Take Away

Technical Problems:
Computing Volumes

To analyze and select good parameters for  
pruning, we need to estimate the volume of 
Ball P:

Cylinder pruning [GNR10].

Discrete pruning [AoNg17].
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Cylinder Pruning

[ScEu94,ScHo95], revisited in [GNR10].

Idea: random projections are shorter.

We can prune the gigantic tree.

Pruned enumeration cuts 
off many branches, by 
bounding projections.
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Cylinder Pruning

Replace each inequality || k(x)|| R             
by || k(x)|| Rk R for each index k in 
{1,...,n}, where 0<Rk 1.

The enumeration tree is pruned with     
P = {x Rn s.t. || k(x)|| Rk R for 1 k n}. 

The algorithm is faster because there are 
less nodes.

Intuition

Enumeration says:                             
If ||x|| R, then || k(x)|| R for all 1 k n

But if x is random in the ball of radius R, 
its projection are shorter.

For instance, we would expect                 
|| n/2(x)|| R/ 2.
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New Results

[ANSS-CRYPTO18]: Lower bounds on 
cylinder pruning.

If the success probability is lower 
bounded, then one can lower bound the 
cost.

[ANS-ASIACRYPT18]: Quadratic quantum 
speedup for cylinder pruning.

Technical Problem [GNR10]

To analyze and select good parameters for 
cylinder pruning, we need to estimate the 
volume of:

C(R1,…,Rn)={(y1,…,yn) Rn s.t. for all 1 k n, 
y12+...+yk2  Rk2}.

This can be done ef ciently thanks to 
the Dirichlet distribution and well-
chosen polytopes.
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Insight

Previous analyses of [Sch03]’s Random 
Sampling studied the distribution of 
certain lattice points (based on 
encodings): tricky!

New point of view: it’s actually about 
partitioning the n-dim space.

Description

Analysis
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Intuitively

Enum(L C(t))   
 Egg opening

Lattice Partitions

Any partition of Rn= t T C(t) into 
countably many cells s.t.:

cells are disjoint: C(i) C(j) = 

each cell can be « opened » : it 
contains one and only one lattice point, 
which can be found ef ciently. Given a 
tag t T, one can compute L C(t). 
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Babai’s partition

Cell opening: Babai’s algorithm [Bab1986].

Partitions in Dimension 1

Babai’s partition: T=Z

The natural partition: T=N

0 1 2-1-2

-2 -1 0 1 2

0 112 2 33 44
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Lattice Enumeration with 
Discrete Pruning [AoN17]

Repeat until success

Select P= t U C(t) for some nite U T.

Enumerate(L S P) by enumerating              
all C(t) L where t U.

Each iteration takes #U poly-time operations 
and succeeds with Pr(L S P {0}).

We need to calculate vol(S P)= t Uvol(S C(t)).

Time(Enum(L P)) « linear » in #(L P).

The « Natural » Partition [FuKa15]

Cell opening: variant of Babai’s algorithm.
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New Results

If one changes the radius of the ball, 
one needs to recompute everything.

[MTK-eprint18] proposes a new 
approximation method without 
recomputations.

[ANS-ASIACRYPT18] optimizes the 
generation of cells and shows quadratic 
quantum speed-up for discrete pruning. 

Technical Problem:

Let S=unit-ball and H= i [αi,βi] be a box. 

Compute vol(S H).

[AoNg17] gives:

Two in nite-series formulas by generalizing [CoTi1997] 
(Fourier analysis).

Practical method using [Hosono81]’s Fast Inverse  
Laplace Transform.

－204－



Provable vs Heuristic

Sieving comes in two avours:

Provable algorithm with rigorous analysis 
[AKS01,NgVi08,MiVo10,ADRS15]

Heuristic algorithm where not much is 
known. These have the best claimed 
running times. Started with [NgVi08].
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Sieve Algorithms

Generate exponentially many short 
lattice vectors by Gaussian sampling 
[NgVi08,MiVo10] or discrete pruning 
[Du18].

Sieve them to create shorter and 
shorter vectors. 

Several sieving techniques: current 
records use some kind of size-
reduction ||vi±vj||.

Sieving

Given many lattice points inside a ball, can 
you nd shorter lattice points?

Yes by subtraction if you have exponentially 
many points. 

Any ball can be covered by exponentially 
many smaller balls.
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Number of Points

[NgVi08] gives a heuristic estimate 
N=poly(n)*4/3n/2 

If you only use o(4/3n/2/ n) « random » 
points, the pool of vectors will be empty 
after any linear number of sieves, so the 
output won’t be an extremely short 
vector.

Questions

How big should be the number N of 
points?

What is the cost of sieving w.r.t. N ?

Naive sieve [NgVi08] requires quadratic 
time N2 because it computes ||vi±vj|| 
for all pairs.

Subquadratic sieves exist [Laa15…] but 
have overhead in practice.

－207－



Quantum Sieve

There are quantum speedups for 
sieve, but there are much less than 
quadratic.

For the NIST competition, in a 
quantum world, is enumeration or 
sieving faster?

Improvements

[Duc18]: Run sieve on a projected lower-
dim lattice like enumeration. Sieving nds 
exponentially many short vectors and 
short vectors have short projections. The 
153-dim record uses dim 123.

Optimizations: only compute ||vi±vj|| for the 
pairs s.t. HammingWeight(vi vj) is small.
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Cryptanalysis

There has been signi cant progress in 
lattice algorithms in the past 10 years.

It is a positive sign that the problem is 
attracting more and more attention.

On the other hand, how are we going to 
model future progress in security estimates?

The most ef cient lattice-based cryptosystems 
use special lattices like ideal or module 
lattices.
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Thank you for your attention... 

Any question(s)?

Quantum Cryptanalysis

There are very few examples of 
quantum algorithms... especially in 
cryptanalysis.

Until we have a quantum computer to 
play with, it will be dif cult to know 
the true power of quantum 
computers.
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Tadanori Teruya (AIST)

Observations on Random Sampling Reduction Algorithms

Abstract

Development of efficient solvers of the (approximated) shortest vector problem over lattices

is an important research area because the security of lattice-based schemes is based on the

hardness of the shortest vector problem. Random sampling reduction is an approach to

construct efficient solvers of the shortest vector problem by combining lattice basis reduction

and sampling of short lattice vectors. In this talk, we show our observations on random

sampling reduction algorithms, and recently proposed our probabilistic analysis framework.
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N
n � t = (t1, t2, . . . , tn)

Randomness Assumption

��

Sampling
(Vector Generation) �� v̂ = (v1, v2, . . . , vn) ∈ Z

n

Linear
Combination

��
L � v =

∑n
i=1 v

∗
i b

∗
i

Membership

��

Length

��

v =
∑n

i=1 vibi ∈ L

Orthogonalization
(Projection)��

Length

��
vi ∼ U

[(
− ti+1

2 ,−
ti
2

]
∪
(
ti
2 ,

ti+1
2

] ] Estimation
�� ‖v ‖2 =

∑n
i=1(v

∗
i )

2‖b∗i ‖
2
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Histogram: Pearson correlation between variables over lattice vectors

#vars=250

31375 data points
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Histogram: Pearson correlation between (truncated) variables over lattice vectors

#vars=250

31375 data points

(truncated 30 indices)
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Noboru Kunihiro (The University of Tokyo)

Quantum Factoring Circuit: Resource Estimation and Survey of
Experimental Realization

Abstract

In this talk, we discuss quantum circuits for Shor’s factoring algorithm. In the first part, we

review the resource estimation (the exact number of qubits and gates) of quantum circuits for

factoring. We estimate the running time for factoring a large composite such as 768 and 1024

bit numbers by appropriately setting gate operation time. Consequently, we show that if we

adopt the long gate operation-time devices or qubit-saving circuits, factorization will not be

completed within feasible time on the condition that a new efficient modular exponentiation

algorithm will not be proposed. Furthermore, we point out that long gate operation time may

become a new problem preventing a realization of quantum computers. In the second part,

we summarize the existing physical experiments for factoring of small numbers including 15

and 21.
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Brief History of Quantum Algorithm
from the cryptographic aspect

1994: Shor’s polynomial time algorithms for Factoring and 
Discrete Logarithm Problem

1996: Grover’s Database Search Algorithm
1995-1999 Polynomial time algorithms for Hidden Subgroup

Problem (extension of Shor’s algorithm)

In theory, we can break RSA, ElGamal and Elliptic Curve
Cryptosystem in Quantum Polynomial time.

2

Quantum Factoring Algorithm:
Resource Estimation and

Survey of Experimental Realization

Mathematical Approach for Quantum Information Society

The University of Tokyo
Noboru Kunihiro

1Kyushu University, 19th, Sep., 2018

－256－



Resource Estimation for Factoring:
Quatum Circuit Construcion

1. Circuit with less qubits is desirable.
2. Circuit with less gates is desirable.

Reason for 1
The maximal number of qubits is seven in the state
of the art.
It seems that a large-scale quantum computer cannot be
constructed in the near future. 

Reason for 2
Quantum states are destroyed by decoherence.

4

Part I:
Resource Estimation of
Quantum Factoring

N. Kunihiro, “Exact Analysis of Computational Time for Factoring
in Quantum Computers,” IEICE Trans. Vol. 88-A, No.1 2005.

3
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Step6: Observe the first registration:

Step7: Obtain r by classical computation.

r
s~ s~ can be considered as a random integer [0 :r-1].

Research Target:
Construct efficient quantum circuits for Modular
Exponentiation.

6

Overview of Shor’s Factoring Algorithm
Strategy:
For chosen a, compute the smallest positive integer 
r such that ar = 1(mod N).

Step1: Let
Step2: Set an initial state: |0 |1

1log2 += Nm

m qubit

Step3:  Perform Hadamard Transformation to obtain

=

12

0
1

2
1 m

j
m

j

Step4:  Perform the modular exponentiation

=

12

0
mod

2
1 m

j

j

m
Naj

Step:5 The inverse of QFT s

r

s
u

r
s

r =

1

0

~1
5
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x2

x3

x4

H

H

H

Ua

x1 H

Inverse
QFT

8

For a fixed a and k, can be described as quantum circuit.

Hadamard Gate: H

( )

( )10
2

11

10
2

10 +

( ) ( )( )

11
2
110

2
101

2
100

2
1

1010
2
1010

2
100

+++=

+++

Quantum Superposition:

7
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Modular Multiplication MOD - MUL(d)

By applying MOD PS(d), SWAP,  MOD PS(-d-1), we obtain

0modmod)(mod

modmod0
1 NdzNdzdzNdz

zNdzNdzzz

=

NdzyzyzdPSMOD mod:)( +

0mod0 Ndzz

Modular Product Sum: MOD PS (d)

( ) NzNdyNzdyNdzy
n

j
j

j
n

j
j

j modmod2mod2mod
1

0

1

0 ==

+=+=+

predetermined, let eb,j

For yzzzz nn 0121 , apply

C(zj)-MOD-ADD(eb,j)  for j=0, 1, 2, , n-1.
10

Modular Exponentiation

MOD-EXP Controlled MOD-MUL:

MOD-MUL MOD-Product-Sum + SWAP

MOD-PS Controlled MOD-ADD

MOD-ADD ADD

C
om

m
on 

D
ifference

How to construct ADDs

N: a target large composite

9
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Modular addition

Apply ADD
1. ADD(d)
2. ADD(2n - N)
3. NOT(R1),    C(R1)-NOT(R3),    NOT(R1)
4. C(R3)-ADD(N)
5. NOT(R1)
6. ADD(2n - d)
7. C(R1)-NOT(R3)
8. ADD(d)
9. NOT(R1)

Ndyy mod+

Four ADD and One C-ADD

Equivalently, ADD(d+2n - N)

R1 R2 R3

1qubit 1qubitn qubit

12

Modular Addition: Nabb mod+

1qubit 1qubitn qubits

There are two strategies for constructing MOD-ADD from ADD.

C3-ADD C2-ADD C-ADD ADD others
Type1 1 3 0 0 (2,4,0,0)

Type2 0 3 1 1 (1,2,3)

Modular addition consists of the following circuits.

R1 R2 R3

n: the bit-length of N

Which type is effective? 11
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Type1 construction
xi
yj

R1

R2

R3

ADD
(d+2n-N)

ADD
(N)

ADD
(2n-d)

ADD
(d)

Type2 construction

yj

R1

R2

R3

ADD
(d)

ADD
(N)

ADD
(2n-d)

ADD
(d)

xi

ADD
(2n-N)

14

Two Construction of C2-ADD

1. ADD(d+2n - N)
2. NOT(R1), C(R1)-NOT(R3)

NOT(R1)
3. C(R3)-ADD(N)
4. NOT(R1)
5. ADD(2n - d)
6. C(R1)-NOT(R3)
7. ADD(d)
8. NOT(R1)

All the operation are
controlled-controlled.

1. C2 - ADD(d)
2. ADD(2n - N)
3. NOT(R1), C(R1)-NOT(R3)

NOT(R1)
4. C(R3)-ADD(N)
5. C2 - NOT(R1)
6. C2 - ADD(2n - d)
7. C(R1)-NOT(R3)
8. C2-ADD(d)
9. NOT(R1)

Type1 Type2

13
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Construction of ADD
1. classical addition (C-ADD)
2. addition using generalized Toffoli gate (GT-ADD)
3. quantum addition (Q-ADD)

# of qubits # of gates
C-ADD 3n+2 O(n3)

GT-ADD 2n+ O(n5)
Q-ADD 2n+3 2n+2* O(n4)

Known Facts

•Obtaining the order of the number of gates is an easy task.
•We evaluate the exact number of gates, which is complicated.

16

* A quantum circuit for Shor's factoring algorithm using 2n+ 2 qubits,
Takahashi & K, Quantum Information & Computation 6 (2), 184-192, 2006.

Elementary gate

C-NOT gate  Toffoli gate, Ck-NOT gate

Rotation gate Rk

Quantum Fourier Transform

c

t

c

ct

c1
c2

t

c1
c2

)( 21 cct c3
c4

t

c1
c2

c3
c4

c1
c2

)( 4321 cccct

1)2/2exp(1,00 ki

=

12

0
2/ )2/2exp(

2
1 m

k

m
m kijkj

Executable by H, R2, R3, , Rm.
The number of gate is given by O(m2). 15
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By combining CARRY, SUM, CARRY-1 , C-ADD is constructed.

Example: a =(11010011)2=211

2
2
3,

2
32,32 nnnThe average number for C-ADD is 

b0
c1

b1
c2

b2
c3

b3
c4

b4
c5

b5
c6

b6
c7

b7
b8

The number of gates for C-ADD(211) is (13, 16, 11).

18

Basic circuits CARRY, CARRY-1, SUM operation

abbaADD +:)(

0121 bbbbbb nnn=
0121 aaaaa nn=

: quantum number

SUM

Classical addition (C-ADD)

: classical number, or predetermined number

ci

bi

ci+1

ai=0
ci

bi

ci+1

ai=1
ci

bi

ci+1

ai=0
ci

bi

ci+1

ai=1

bi

ci

ai=0

bi

ci

ai=1

CARRY CARRY-1

17
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Decomposition of C5 NOT into Toffoli Gates

20

The total average number of gates 

Type1:

Type2:

C5-NOT C4-NOT

Known Facts: 
Ck NOT gate can be decomposed into some Toffoli.
• If there are k-2 clean ancilla qubits, Ck-NOT can be 
decomposed into  2k-3 Toffoli gate.

• If there are k-2 unclean ancilla qubits, Ck-NOT can be
decomposed into  4k-8 Toffoli gate.

C3-NOT C2-NOT C-NOT NOT

19
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GT-ADD
The average number for GT-ADD is 
(1/2, 1, 3/2, 2, , n/2, n/2).

Cn - NOT

Example: a =(11010011)2=211

b0
b1

b2
b3

b4
b5

b6
b7

b8

ai=1
bi-1

bibi+1 bi+2

bn-1 bn

The number of gates for GT-ADD(211) is (1, 2, 2, 2, 3, 3, 4, 5, 5). 22

In this case, Type2 is better.

Type1: m(162n2 - 177n,       2n,            0)
Type2: m(125n2 - 153n, 7n2 - n, 3n2 + 2n)

Since we can apply the first rule, we can decompose
C5, C4, C3 NOT into 7, 5, and 3 Toffoli gates, respectively.

The number of qubits m + 3n +1

The average number is given as follows.

The total average number of gates 

21
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•C2 - Ri gate:      3n (n + 2 - i)     (1 i n+1)
•C Ri gate: n (n + 2  -i)     (1 i n+1)
•Ri gate:       (9n+2)(n+2 - i)   (2 i n+1)
•R1 gate: n(n+1) , H gate:    (8n+2)(n+1)
•C2- NOT, C-NOT, NOT: n, 6n+4, 4n+4.

Quantum Addition (Q-ADD)

C2 Ri can be decomposed into six C-NOT and eight 1qubit operation.
C Ri can be decomposed into two C-NOT and four 1qubit operation.

Total C NOT:               m(10n(n+1)(n+2)+6n+4)
1qubit operation: m (n+1)(n+2)(37n+2)/2

The number of qubits : m + 2n +2

=
)2/2exp(0

01
ki i

R

24

+++ 0,2,25
3
4310

3
8 234 nnnnnm

Type1, (we omit the Type2)
• # of Ci NOT m(4n2 + 13n - 4ni) (4 i n+3)
•# of C3 NOT m(4n2 + 4n)
•# of C2 NOT: m(3n2 + 9n)
•# of C NOT: 2mn

The number of qubits : m + 2n +3

By apply the second rule, we can decompose Ck NOT into
4k-8 Toffoli gates. We obtain

The total number of gates for GT-ADD 

23
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unit time
1msec

(=10-3 sec)
0.1msec

1 sec
(=10-6 sec)

1nano sec 
(=10-9 sec)

C-ADD 12years 1.2years 4.4days 6.3min.

GT-ADD --- --- 191years 70days

Q-ADD --- 270years 2.7years 1days

Q-ADD (with 
approx.) 39years 3.8years 14days 20min

Running time for 1024 bit composite

26

# of qubits and gates for 768 and 1024 bits numbers

World Record (n=768) Recommended (n=1024)

# of qubits # of gates # of qubits # of gates

C-ADD 2306 1.22 1011 3074 3.80 1011

GT-ADD 1540 -- 2052 6.03 1015

Q-ADD 1539 -- 2051 8.48 1013

Q-ADD (with 
approximation) 1539 8.68 1011 2051 1.22 1012

25
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Part II: 
Experimental Realization of
Quantum Factoring

[1] Experimental realization of Shor's quantum factoring algorithm
using nuclear magnetic resonance, Nature, 2001.

[2] Shor’s Quantum Factoring Algorithm on a Photonic Chip,
Science, 2009.

[3] Computing prime factors with a Josephson phase qubit quantum
processor, Nature Physics, 2012.

[4] Realization of a scalable Shor algorithm, Science, 2016.
[5] Experimental realisation of Shor’s quantum factoring algorithm
using qubit recycling, Nature Photonics, 2012.

28

Candidates of Devices

maximal
available time

gate operation 
time

max of gate 
operation

Nuclear Spin 10-2 - 108 sec 10-3-105 sec 10-5-1014

Electron Spin 10-3 sec 10-7 sec 104

Ion trap 10-1 sec 10-14 sec 1013

Quantum dot 10-6 sec 10-9 sec 103

Optical cavity 10-5 sec 10-14 sec 109

Microwave
cavity

100 sec 10-4 sec 104

We need at least 1011 operations.

(QIC  by Nielsen and Chuang)
27
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Mathematical Preparation

a 2 4 7 8 11 13 14
r 4 2 4 4 2 4 2

{4, 11, 14}2 mod 15=1, {}4 mod 15=1, {}8 mod 15 =1,…

{2, 7, 8, 13}2 mod 15=4, {}4 mod 15=1, {}8 mod 15=1, …

Consider N=15.
The order of each element is given as follows:

We use Ua, U_{a2} , U_{a4}, U_{a8}, U_{a16},…

30

Experimental Realization of Quantum Factoring
Device Year Target Journal

NMR IBM 2001 15 Nature

Photonic chip U. of Bristol 2009 15 Science

Superconductivity UCSB 2012 15 Nature Physics

Ion Trap U. Innsbruck 2016 15 Science

Photon U. of Bristol 2012 21 Nature Photonics

The maximal number of qubits is seven.
Consider factoring of 15 ( = 4bits),
If we use C-ADD, 14 qubits are required.
If we use Q-ADD, 11 qubits are required.
What happens? 29
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Quantum Circuit for Modular Exponetiation:
The case of Chuang et al. [1]

x1
x2

x3
y0

y1
y2

y3

If x3=1,
multiply by 7.

If x2=1,
swap y0 and y2.

If x2=1,
swap y1 and y3. 32

x7 x4

Modular Exponentiation

MOD-EXP Controlled MOD-MUL:

MOD-MUL MOD-Product-Sum + SWAP

MOD-PS Controlled MOD-ADD

MOD-ADD ADD

C
om

m
on

D
ifference

How to construct ADDs

31

|

It is sufficient for constructing MOD-MUL.
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The circuit heavily relies on the fact that N=15
The fact:

72 mod 15=4 and  74 mod 15=1

( ) ( ) ( )
15mod74

15mod77715mod7
32

321321 2424

xx

xxxxxx

•=

••=++

1 if (x3==1) then add 6 to 1
   if (x2==1) then multiply 4y mod 15.

Letting y=(y3 y2 y1 y0)2,
4 y= (y3 y2 y1 y0 00)2=16 (y3 y2)2+(y1 y0 00)2

4 y mod 15= (y3 y2)2+(y1 y0 00)2=(y1 y0 y3 y2)2
Executable by two swap operations.

34

Structure of the quantum computer molecule [1]

33
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The Circuit  of UCSB group [3]

x1
x2

y0
y1

The experiment used a=4.
The order of 4 is 2.

36

If x2=1,  add 3 to 1 (multiply by 4).

More Simplification

x1
x2

x3
y0

y1
y2

y3

35
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X
X X

X X
X

U2

X
X X

X X
X

U13

X
XX

XX
X

U8

X
XX

XX
X

U7

X

X

X

X
U11

X
X

SWAPX

X

X

X
U4

38

||

X
X

C-SWAP

||

The Circuit of U. of Innsbruck [4]

x

y0

y1

y2

y3

x 4

H H H

Ua
a=2, 7,
8, 13

H IQFT

x a

U4

37

The experiment used a=2, 7, 8, and 13.
Their orders are 4.

－274－



Quantum Circuit for Factoring 21 [5]

The experiment  used a=4.
This circuit heavily relies on the fact that 43 mod 21=1

The order r is 3
Only 1, 4 and 16 appear in 4i mod 63  for i=0, 1, 2,…

41 mod 63 =  4
42 mod 63 =16
44 mod 63 =  4
48 mod 63 =16

|1>

|4>
|16>

x 4
x 16

40

Encode 1 0, 4 1, 16 2.
U+: |x> |x+1 mod 3>
U-: |x> |x-1 mod 3>

|0>

|1> |2>

U+

U-

The Circuit U. of Bristol group [2]
x1

x2

x3

y0
y1

39

The experiment used a=7.
Note that 70=1, 71= 7, 72 =4, 73=13 and 74=1.
Their Trick:
Encode 1 00, 7 01, 4 10, and 13 11.
U7: 00 01,         U4: 0x 1x

Their circuit uses the fact that the order is 4.
But, the purpose of Shor’s algorithm is finding the order.
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Generalization of the last two circuits

42

The original form of Shor’s Factoring Algorithm

The “simplified” or “compiled” version of Shor’s Factoring Algorithm  

r is what we want to find.
It is unacceptable simplification for Shor’s algorithm.
The paper “Factoring 51 and 85 with 8 qubits” 
(Published in Scientific Reports, 2013) follows this idea.

x

y

H H H

U-

H IQFT

U+

41

In their experiments, they used qutrit (=three state) not qubit.

H H

U+

Their circuit uses the fact that the order is 3.
But, the purpose of Shor’s algorithm is finding the order.
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We survey quantum circuits for Shor’s factoring algorithm.
They are not considered to be naïve implementation of
Shor’s algorithm.

Some explicitly use the true value of the order r.
Some overuse the property of target composite (=15).

The order is either 1, 2, or 4.
x4 mod 15 is executable by only SWAP.
x2, x8, x13, x7, x11 are also executable by SWAP
(and NOT).

Summary of Part II

Oversimplifying Quantum Factoring*

43

The “oversimplified” version of Shor’s Factoring Algorithm  

* A Smolin, John & Smith, Graeme & Vargo, Alexander. (2013). 
Oversimplifying quantum factoring. Nature. 499. 163-165.

Find an element a with order 2.  (a2 mod N = 1) 

They claimed that
Valid implementations should not make use of the answer sought.
They presented a factorization of a 20,000-bit number.

|0>
|0> H H
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45

We evaluated the necessary resource of Shor’s factoring
Algorithm (Part I).
We survey quantum circuits for Shor’s factoring
algorithm (Part II).
There is a big gap between theory and experiments.

Summary of this Talk

Design quantum circuits for small composite number 
(say, 21 and 35) close to the original Shor’s algorithm.
Conduct experiments by simulation (like Microsoft Q#)
and real quantum computers (like IBM Q). 

Future Works
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Akinori Hosoyamada (NTT)

On the post-quantum security of symmetric key cryptography

Abstract

It was said that the security of symmetric key cryptography will not be significantly affected

by quantum computers, because it does not rely on the hardness of algebraic problems such as

the integer factorization problem. However, recent works revealed that some symmetric key

schemes such as CBC-MAC and the Even-Mansour construction fall insecure against quantum

computers in some specific situations. In this talk, I will survey recent developments related

to the post-quantum security of symmetric key cryptography.
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bit,…)
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It is difficult to make “good” hash function
which takes long input data… 
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“Davies Meyer construction”
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“the security of symmetric key crypto will 
not be affected by quantum computers”   

•
•
•
•
•
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“It is sufficient to use 2n bit keys”
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“the security of symmetric key crypto would 
not be affected by quantum computers”   
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Assumed to be secure
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Assumed to be secureLet’s come up with a 

Assumed to be secureLet’s come up with a 
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•Let’s come up with a 
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Let’s start with this
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Let’s simplify the problem!
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Lets’ show this function is one
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random permutations 
random derangements
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Oracle of f…
query adversary…

State of the adversary after q queries to f…

•

•

•
•
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CoRR

–
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–

–

ISIT 2010
–

ISITA 2012 –

[EM97] S. Even and Y. Mansour, “A construction of a cipher from a single
pseudorandom permutation,” Journal of Cryptology, vol. 10, no. 3,

–

STOC 1996 –

ASIACRYPT 2017, Part II LNCS –
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–

–

SIAM journal on
computing –
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