$$
\text { マス・フォア・インダストリ研究 No. } 10
$$

量子情報社会に向けた数理的アプローチ Mathematical approach for quantum information society

Institute of Mathematics for Industry Kyushu University

編 集 阿部 拓郎
落合 啓之
高島 克幸
縫田 光司
安田 雅哉

The Mathematics for Industry Research was founded on the occasion of the certification of the Institute of Mathematics for Industry (IMI), established in April 2011, as a MEXT Joint Usage/Research Center - the Joint Research Center for Advanced and Fundamental Mathematics for Industry - by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in April 2013. This series publishes mainly proceedings of workshops and conferences on Mathematics for Industry (MfI). Each volume includes surveys and reviews of MfI from new viewpoints as well as up-to-date research studies to support the development of MfI.

October 2018
Osamu Saeki
Director
Institute of Mathematics for Industry

Mathematical approach for quantum information society

Mathematics for Industry Research No.10, Institute of Mathematics for Industry, Kyushu University ISSN 2188-286X

Editors: Takuro Abe, Hiroyuki Ochiai, Katsuyuki Takashima, Koji Nuida, Masaya Yasuda
Date of issue: 26 December 2018
Publisher:
Institute of Mathematics for Industry, Kyushu University
Motooka 744, Nishi-ku, Fukuoka, 819-0395, JAPAN
$\mathrm{Tel}+81$-(0)92-802-4402, Fax +81-(0)92-802-4405
URL http://www.imi.kyushu-u.ac.jp/
Printed by
Social Welfare Service Corporation Fukuoka Colony
1-11-1, Midorigahama, Shingu-machi Kasuya-gun, Fukuoka, 811-0119, Japan
TEL +81-(0)92-962-0764 FAX + 81-(0)92-962-0768

量子情報社会に向けた数理的アプローチ

Mathematical approach for quantum information society

編集

阿部 拓郎
落合 啓之
高島 克幸
縫田 光司
安田 雅哉

巻頭言

【研究背景】

急速に高度化する現代情報社会において，将来の実用化が期待される量子計算機によって利便性の向上が期待される一方，現行社会システムに対する影響も同時に存在する。例えば，現在広く普及している公開鍵暗号としてRSA 暗号と楕円曲線暗号があり，それらの安全性は素因数分解問題と楕円曲線離散対数問題の解読計算量困難性に基づいている。しかし，量子計算機によりこれらの数学問題は効率的に解読可能なため，米国立標準技術研究所 NIST により量子計算機による攻撃でも耐性を持つ「ポスト量子暗号」の標準化が近年積極的に進められている。実際 2017 年 11 月末に投稿されたポスト量子暗号の候補方式は格子•符号•多変数多項式•楕円曲線上の同種写像などの暗号数学から構成されている。また一方，量子力学の情報理論 への応用である量子符号の研究においても多くの数学理論が利用されている。例えば，量子状態の測定に関連した SIC－POVM や MUB は代数的組み合わせ論の球面デザインと深く関係している。

【本研究集会の目的】

上記の研究背景で述べたように，量子計算機に基づく情報社会の実現に向けて，ポスト量子暗号で利用され る暗号数学や代数的組み合わせ論に基づく量子符号など多様な数学理論の研究がこれまで独立に進展して いる。本研究集会では，ポスト量子暗号や量子符号などの量子情報理論で活用されている異なる数理的アプ ローチに関する専門知識•最新情報を共有すると共に，他分野間の研究アプローチによるシナジーからこれ までの既存研究では得られない新しい研究の芽や方向性の探索を目的とする。

【本研究集会の講演内容と主な成果】

本研究集会では，大きく分けて下記 3 つの分野からの講演があった：
A）ポスト量子暗号の構成と安全性解析
NIST のポスト量子暗号の標準化プロジェクトに投稿された公開鍵暗号方式の構成に関する講演が 2 件 あった。具体的には，非線形な不定方程式に基づく暗号方式 Giophantus と格子に基づく暗号方式 LOTUS の紹介があった。また，ポスト量子暗号の安全性解析に関して，多変数公開鍵暗号方式 HFERP の数学的解析や共通鍵暗号に対する量子計算攻撃の安全性評価に関する最新の講演があった。さらに，格子暗号の安全性を支える数学問題である最短ベクトル問題の最新の求解法に関するサーベイや高次元格子上のランダムサンプリングによる最先端アルゴリズムの技術解説があった。
B）量子計算機の研究進展状況と情報社会への影響評価
量子計算の歴史から量子計算センターIBM－Q に関する最新情報までの話題と量子誤り訂正能力に関す る現状課題に関する講演があった。また，RSA 暗号の安全性を支える素因数分解問題を解くために必要な量子計算資源の見積もりに関する講演があった。
C）量子誤り訂正符号における数学研究
暗号を含む情報理論で不可欠な leftover hash lemma に対して量子誤り訂正理論による新しい証明ア プローチの講演があった。また，量子状態の測定に関連したSIC－POVM の一般化とその構成に関する講演や，代数的組み合わせ論からみた SIC－POVM の数学研究とその代数的構成の講演があった。

本研究集会の各講演において異なる分野からの質疑が多くあり非常に活発な議論ができた。例えば，量子計算機の研究進展に関して，ポスト量子暗号の研究者と実際の量子計算機を開発する研究者が持っている イメージの間には大きな隔たりがあることが分かった。また，量子誤り訂正符号の理論が古典の情報理論の証明でも利用できることが分かった。さらには，量子状態の測定で用いられる SIC－POVMの構成は代数的組み合わせ論として非常に難しい数学問題であると共に，量子情報理論における重要な課題であることが分かった。これらのように，量子情報と数学の接点となる問題をいくつか共有でき，今後の異なる分野間で の共同研究の芽を見つけることができた。一方，本研究集会では産学官における数学者•暗号研究者•量子計算機開発のエンジニアなど多種多様な方々に参加して頂き，研究内容以外にも他機関•他分野での研究の進め方•開発規模に関する意見交換ができ，非常に有意義な研究交流ができた。現在，量子計算•量子情報 に関する研究は世界中で急速に発展している分野であり，本研究集会を通して継続的かつ積極的な研究交流の必要性を強く感じた。

世話人
阿部 拓郎（九州大学）
落合 啓之（九州大学）
高島 克幸（三菱電機）
縫田 光司（東京大学）
安田 雅哉（九州大学）

IMI Workshop of the Joint Research Projects

Mathematical approach for quantum information society

We organize a conference as one of the common enterprises of IMI, Kyushu University as follows. We welcome the participation of many all of you.

Date : 17 of Sep 2018 (Mon) 13:00 - 19 of Sep 2018 (Wed) 11:45
Venue : Meeting room A Nishijin Plaza, Kyushu University, 2-16-23, Nishijin, Sawara-ku, Fukuoka-shi, Fukuoka, 814-0002
URL : http://www. imi. kyushu-u. ac. jp/events/view/

Program

17 of Sep (Mon)

$13: 00$	Opening
$13: 15-13: 25$	Opening remarks
$13: 30-14: 30$	Yoshinori Aono (NICT) LOTUS: a conservative PKE/KEM scheme
$14: 45-15: 45$	Koichiro Akiyama (TOSHIBA) A Public-key Encryption Scheme Based on Non-linear Indeterminate Equations (Giophantus(TM))
$16: 00-17: 00$	Toyohiro Tsurumaru (Mitsubishi Electric) Leftover Hashing Lemma as Quantum Error Correction

18 of Sep (Tue)

$$
\begin{array}{ll}
\text { 9:30-10:30 } & \text { Yasuhiko Ikematsu (The University of Tokyo) } \\
& \text { The multivariate encryption scheme HFERP }
\end{array}
$$

10:40-11:40	Yutaka Shikano (Keio University)
	How to understand the cloud quantum computer

Lunch Break

$13: 10-14: 10$	Hirotake Kurihara (Kitakyushu College)
	POVM from the viewpoints of combinatorics

14:20-15:20 Masakazu Yoshida (University of Nagasaki) Solutions to a retrodiction problem by using quantum error-correcting codes

15:30-16:30 Phong Nguyen (INRIA/The University of Tokyo) Searching for Short Lattice Vectors

16:40-17:40 Tadanori Teruya (AIST)
Observations on Random Sampling Reduction Algorithms

18:10- Conference Dinner

19 of Sep (Wed)

9:30-10:30	Noboru Kunihiro (The University of Tokyo) Quantum Factoring Circuit: Resource Estimation and Survey of Experimental Realization
$10: 45-11: 45$	Akinori Hosoyamada (NTT) On the post-quantum security of symmetric key cryptography

Organizers :

Takuro Abe (Kyushu University)
Hiroyuki Ochiai (Kyushu University)
Katsuyuki Takashima (Mitsubishi Electric)
Koji Nuida (The University of Tokyo)
Masaya Yasuda (Kyushu University)

Table of contents

1. LOTUS: a conservative PKE/KEM scheme 1
Yoshinori Aono (NICT)
2. A Public-key Encryption Scheme Based on Non-linear Indeterminate Equations (Giophantus(TM)) 33Koichiro Akiyama (TOSHIBA)joint work with Yasuhiro Goto (Hokkaido University of Education), Shinya Okumura(Osaka University), Tsuyoshi Takagi, Koji Nuida (The University of Tokyo),Goichiro Hanaoka (AIST), Hideo Shimizu (TOSHIBA), Yasuhiko Ikematsu (TheUniversity of Tokyo)
3. Leftover Hashing Lemma as Quantum Error Correction 53
Toyohiro Tsurumaru (Mitsubishi Electric)
4. The multivariate encryption scheme HFERP 87
Yasuhiko Ikematsu (The University of Tokyo)
joint work with Ray Perlner (NIST), Daniel Smith-Tone (NIST, University of Louisville), Tsuyoshi Takagi (The University of Tokyo), Jeremy Vates (The University of Montevallo)
5. How to understand the cloud quantum computer 111
Yutaka Shikano (Keio University)
6. POVM from the viewpoints of combinatorics 139
Hirotake Kurihara (Kitakyushu College)
7. Solutions to a retrodiction problem by using quantum error-correcting codes. 151
Masakazu Yoshida (University of Nagasaki)
8. Searching for Short Lattice VECTORS 173
Phong Nguyen (INRIA / The University of Tokyo)
9. Observations on Random Sampling Reduction Algorithms 211
Tadanori Teruya (AIST)
joint work with Yoshitatsu Matsuda, Kenji Kashiwabara (The University of Tokyo)
10. Quantum Factoring Circuit: Resource Estimation and Survey of Experimental Realization 255
Noboru Kunihiro (The University of Tokyo)
11. On the post-quantum security of symmetric key cryptography 279
Akinori Hosoyamada (NTT)

Yoshinori Aono (NICT)

LOTUS: a conservative PKE/KEM scheme

Abstract

We present an overview of our post-quantum LWE-based scheme LOTUS, submitted to the NIST PQC standardization project. LOTUS is the combination of Lindner-Peikert scheme and Fujisaki-Okamoto transformation. One of the distinction of LOTUS is conservativeness: its security assumption is the well-studied standard LWE with discrete gaussian errors, and the parameter setting is from a lower cost bound to solve LWE by lattice enumeration. We give comparisons on parameters to other schemes based on the LWE-like assumptions.

LOTUS：a conservative PKE／KEM scheme

Yoshinori Aono

Talk at＂Mathematical approach for quantum information society＂
（量子情報社会に向けた数理的アプローチ）
2018／09／17 13：30－14：30＠九州大学西新プラザ大会議室A

Agenda

－Background－NIST post－quantum cryptography project
－Outline framework of cryptographic scheme
－Which properties are wanted；long－term security
－Outline of LOTUS
－Comparison with other submissions
－Parameter setting from lower bound
－Cost lower bound for known algorithms
－Performance limit of computation

NIST Post-Quantum project

Background history:

- Major cryptographic schemes used up to now can be broken by using Peter Shor's quantum algorithm [SIAM J. comp, 1997]
- Recent progress in development of digital quantum computers approaching to 100 qubits
- Need to construct a quantum-resilient cryptographic scheme, whose security base is a computational problem that is NOT easy to solve using both classical and quantum computers

NIST Post-Quantum project

- Post-quantum cryptography standardization process
- 81 submissions, 69 remained for 1 st round, 63 remained up to now
- Will announce 2nd round candidates early 2019
- Mergers should be announced by Nov. 30
- 2nd conference will be collocated with Crypto 2019

(Modified from John Kelsey's talk at Crypto rump session)
- Each submission must contain at least one of Public key encryption scheme KEM scheme Digital-signature scheme

Agenda

- Background - NIST post-quantum cryptography project
- Outline framework of cryptographic scheme
- Which properties are wanted; long-term security
- Outline of LOTUS
- Comparison with other submissions
- Parameter setting from lower bound
- Cost lower bound for known algorithms
- Performance limit of computation

LOTUS: a conservative PKE/KEM scheme

- Designers:

Le Trieu Phong, Takuya Hayashi, Yoshinori Aono, Shiho Moriai at NICT (nixiàmena

- Acronym for Learning with errors based encryption with chosen ciphertexI secUrity for post quantum era
- Lattice-based cryptographic scheme
- Design concept: combination of conservative modules
- Modules=Algorithms, security proofs, parameters, etc.
- Conservative=All modules are well studied and believed to be secure

NIST post-quantum standardization

- Public-key encryption (PKE) scheme

Modules (if we want to give the complete introduction):

- Definitions
- Algorithms (Functions): KeyGen, Enc, Dec ...
- Protocols: $\{$ How, When $\}$ participants use them and send data
- Theories
- Correctness: Theoretical proof that the scheme works
- Security proof: Theoretical proof that recovering message/secret key from public information is harder than some "hard problems"
- Practical issues
- Parameter setting: propose key lengths for which computational cost for solving hard problems is larger than $2^{128}, 2^{192}, 2^{256}$ etc.
- Implementation: program source code or hardware for the algorithms and protocols
- Experimental data: size of keys/ciphertexts, time of communication
- Proof of tamper resistance: implemented hardware is protected from malicious users

NIST post-quantum standardization

- Public-key encryption (PKE) scheme

Alice

Goal: Bob gets Alice's message

Modules (if we want to give the complete introduction):

- Definitions
- Algorithms (Functions):KeyGen, Enc, Dec ..
- Protocols: $\{$ How, When participa s use them and send data
- Theories
- Correctnecs. Theoretical nronf $\#$ he crheme works
- Securi In some short talks, et key from public inforn

In some short talks, crypto researchers

- Practical is
- Param say "this is cryptography!" problems is larger than $2^{1 \angle 8}, 2^{192}, 2^{\angle 50}$ etc.
- Implementation: program source code or hardware for the algorithms and protocols
- Experimental data: size of keys/ciphertexts, time of communication
- Proof of tamper resistance: implemented hardware is protected from malicious users

NIST post-quantum standardization

- Public-key encryption (PKE) scheme

- Theories
- Correctness: Theoretical proof scheme works
- Securitunnanf. Thanontinal nrod
- Practical is
- Paran probl

In some short talks, crypto researchers say "this is cryptography!" ral cost for solving hard

- Implementation: program source code or hardware for the algorithms and protocols
- Experimental data: size of keys/ciphertexts, time of communication
- Proof of tamper resistance: implemented hardware is protected from malicious users

NIST post-quantum standardization

- Public-key encryption (PKE) scheme

Alice
Modules (if we want to give the complete introduction):

- Definitions
- Algorithms (Functions): KeyGen, Enc, Dec ...
- Protocols: $\{H o w$, When\} participants use them and send data
- Theories
- Correctness: Theoretical proof that the scheme works
- Security proof: Theoretical proof that recovering message/secret key from public information is harder than some "hard problems"
- Practical issues
- Parameter setting: propose key lengths Lomputational cost for solving hard problems is larg
- Implementation
- Experimental da
- Proof of tamper

In some short talks, crypto attackers talk d protocols about computational problems Verv deen area

NIST post-quantum standardization

- Public-key encryption (PKE) scheme

- Protocols: $\{\mathrm{How}$, When\} participants use them and send data
- Theories
- Correctness: Theoretical proof that the scheme works
- Security proof: Theoretical proof that recovering message/secret key from public information is harder than some "hard problems"
- Practical issues
- Parameter setting: propose key lengths for which computational cost for solving hard problems is larger than $2^{128}, 2^{192}, 2^{256}$ etc.
- Implementation: program source code or hardware for the algorithms and protocols
- Experimental data: size of keys/ciphertexts, time of communication
- Proof of tamper resistance: implemented hardware is protected from malicious users

NIST post-quantum standardization

- Key encapsulation mechanism (KEM)

Goal: Share a key for symmetric enc.

Alice

odules:

- Definitions
- Algorithms (Functions): KeyGen, Encapsulation, Decapsulation, Symmetric Encryption...
- Protocols: $\{\mathrm{How}$, When $\}$ participants use them and send data
(OMIT, same as PKE)

We will introduce only the outline of LOTUS-PKE (public key encryption)

Agenda

- Background - NIST post-quantum cryptography project
- Outline framework of cryptographic scheme
- Which properties are wanted; long-term security
- Outline of LOTUS
- Comparison with other submissions
- Parameter setting from lower bound
- Cost lower bound for known algorithms
- Performance limit of computation

Specifications of LOTUS

Our design concept: lattice-based cryptography as secure as possible
Advantages:

- Expected to be secure in the long term
- Simple construction
- Can be a "backup" if other NIST candidates using state-of-the-art techniques are broken

Drawbacks:

- Low performance, limited functions
- Extreme position in security-performance trade-off
- Fewer new techniques

Specifications of LOTUS

Our design concept: lattice-based cryptography as possible as secure

- Well-studied modules
- Base algorithms: (KeyGen,Enc,Dec) from [Lindner-Peikert, 2011]
- Protocols: standard PKE + Fujisaki-Okamoto transform
- Security proof: IND-CCA2 secure under the standard LWE assumption in the random oracle model
- Parameter setting: Attacker using a major algorithm with a classical computer must perform at least 2^{128} operations

Specifications of LOTUS

Agenda to introduce modules:

- Algorithms and protocol of IND-CPA scheme [Lindner-Peikert@CT-RSA2011]
- Proof of correctness
- Security reduction to the LWE problem
- State of LOTUS at now

Outline of LP11

λ : security parameter ($\mathrm{n}, \mathrm{q}, \ell, s$): algorithm parameters
Subroutine: discrete gaussian generator
For a parameter $s \in R_{>0}, \mathrm{DG}(\mathrm{s})$ returns an integer z with probability: $\operatorname{Pr}[$ output $=x] \propto \exp \left(-\pi x^{2} / s^{2}\right)$
(Scaling from mathematical gaussian)

Example for $s=3$:

Outline of LP11 (Algorithms+Protocol)

λ : security parameter ($\mathrm{n}, \mathrm{q}, \ell, s$): algorithm parameters
$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow$ (sk,pk): secret key and public key
Step 1: Generate random matrices

LOTUS parameters: $\mathrm{n}=576, \mathrm{q}=8192, \mathrm{~s}=3, \ell=128$

Small examples of noise matrices

$$
R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 1 \\
-2 & 0 & 0 \\
1 & -1 & -1 \\
2 & 2 & -3 \\
0 & -2 & 0
\end{array}\right] \quad S=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & -2 \\
0 & 1 & 2 \\
-1 & 0 & 1 \\
-1 & 1 & 2 \\
0 & 1 & -1
\end{array}\right]
$$

Outline of LP11 (Algorithms+Protocol)

λ : security parameter ($\mathrm{n}, \mathrm{q}, \ell, s$): algorithm parameters
$\operatorname{KeyGen}\left(1^{\lambda}\right) \rightarrow$ (sk,pk): secret key and public key
Step 1: Generate random matrices

Step 2: Compute

Then, secret key $s k=S$ and public key $p k=(A, P)$

Outline of LP11 (Algorithms+Protocol)

Goal: Bob gets Alice's message

Alice

Bob

Cont’d

Proof of correctness

Theorem Bob recovers Alice's message M with high probability
(Proof) Follow Bob's decryption process

$$
\begin{aligned}
\bar{M} & =c_{1} S+c_{2}:=\left(\overline{M_{1}}, \ldots, \overline{M_{\ell}}\right) \\
& =\left(\mathbf{e}_{1} A+\mathbf{e}_{2}\right) S+\mathbf{e}_{1} P+\mathbf{e}_{3}+M \cdot\left\lfloor\frac{q}{2}\right\rfloor \\
& =\mathbf{e}_{1}(A S+P)+\mathbf{e}_{2} S+\mathbf{e}_{3}+M \cdot\left\lfloor\frac{q}{2}\right\rfloor \\
& =\underbrace{\mathbf{e}_{1} R+\mathbf{e}_{2} S+\mathbf{e}_{3}}_{\text {Small noise vector }}+M \cdot\left\lfloor\frac{q}{2}\right\rfloor
\end{aligned}
$$

Reminder $P=R-A S(\bmod q)$

$$
\mathbf{c}_{1}=\mathbf{e}_{1} A+\mathbf{e}_{2} \in \mathbb{Z}_{q}^{1 \times n} \quad \mathbf{c}_{2}=\mathbf{e}_{1} P+\mathbf{e}_{3}+M \cdot\left\lfloor\frac{q}{2}\right\rfloor \in \mathbb{Z}_{q}^{1 \times \ell}
$$

Cont'd

$$
\bar{M}=\underbrace{\mathbf{e}_{1} R+\mathbf{e}_{2} S+\mathbf{e}_{3}}_{\text {Small noise vector }}+M \cdot\left\lfloor\frac{q}{2}\right\rfloor(\bmod q)
$$

- If $M_{i}=0$, then $\overline{M_{i}} \approx 0$
- If $M_{i}=1$, then $\overline{M_{i}} \approx q / 2$

For a large q and small s (=gaussian error derivation), the PKE scheme works correctly

Since noise vectors are from gaussian, sometimes a coordinate becomes larger than $q / 2$ and decryption error occurs

It is very small probability under appropriate parameter settings

Specifications of LOTUS

Agenda to introduce modules:

- Algorithms and protocol of IND-CPA scheme [Lindner-Peikert@CT-RSA2011]
- Proof of correctness
- Security reduction to the LWE problem
- State of LOTUS at now

LWE problem [Regev2005]

- A computationally hard combinatorial problem
- Intuitively, it's a problem of solving "approximate" simultaneous equations

$$
\begin{array}{rrrlr}
11 x_{1}+ & 2 x_{2}+ & 6 x_{3} & \approx & 2 \\
4 x_{1}+ & 12 x_{2}+ & 7 x_{3} & \approx & 7 \\
(\bmod 13) \\
9 x_{1}+ & 1 x_{2}+ & 7 x_{3} & \approx 10 & (\bmod 13) \\
9 x_{1}+ & 8 x_{2}+ & 12 x_{3} & \approx 6 \\
4 x_{1}+ & 3 x_{2}+ & 2 x_{3} & \approx 6 & (\bmod 13) \\
(\bmod 13)
\end{array}
$$

- Matrix form

$$
\mathrm{A} x=\mathrm{x}+\mathrm{e}(\bmod \mathrm{q})
$$

Formal definition of problem: for given (A,b,q) and distribution of each ei, find x (or e)
Note: Finding $x \Leftrightarrow$ Finding e

Investigation of LWE problem

- Cryptographers: reduce to u-SVP or BDD over a lattice
- Try to solve by using ENUM or Sieve

Note: Engineers consider a similar problem "Sphere decoding problem"

- no modulus
- Each xi is subset of Z_{q} (such as $\{ \pm 1, \pm 3\}$)

Source:
$s \in Z^{n}$

Dest:
$y=H s+v \in R^{m}$

Two variants of LWE problem

- Computational version: for given (A, q, b) and distribution of each ei, find x satisfying the equation

$$
\mathrm{A} x=\mathrm{b}+\mathrm{e}(\bmod \mathrm{q})
$$

- Used for parameter setting
- Decision version: for given ($\mathrm{A}, \mathrm{bo}, \mathrm{b} 1, \mathrm{q}$) where one of bt satisfies $\mathrm{bt}_{\mathrm{t}}=\mathrm{Ax}-\mathrm{e}(\bmod \mathrm{q})$ and $\mathrm{b} 1-\mathrm{t}$ is a random vector from $\mathbb{Z}_{q}^{m \times 1}$. Then, find $t \in\{0,1\}$

Used for security proof

(Random vector

Outline of security proof

LWE assumption: decision is hard (it immediately follows that the computational version is also hard)

is indistinguishable from

Theorem: LP11-PKE is secure under the LWE assumption (Proof outline) Want to show (pk,ciphertext) is indistinguishable from (pk,random)

It follows that an attacker cannot extract any partial information on message from given ciphertext

- In LP11-PKE, (pk, ciphertext) $=(\mathrm{A}, \mathrm{P})$ and ($\mathbf{c} 1, \mathrm{c} 2)$ where A is random and P is computed by

Relation on each column $P_{i}=R_{i}-A \cdot S_{i}$ and the LWE assumption asserts that P_{i} is a random vector

- Also, ciphertexts are

$$
\mathbf{c}_{1}=\mathbf{e}_{1} A+\mathbf{e}_{2} \in \mathbb{Z}_{q}^{1 \times n} \quad \mathbf{c}_{2}=\mathbf{e}_{1} P+\mathbf{e}_{3}+M \cdot\left\lfloor\frac{q}{2}\right\rfloor \in \mathbb{Z}_{q}^{1 \times \ell}
$$

which means that
c1 = (gaussian vector)*(random matrix)+(gaussian) = random
c2 $=(\text { gaussian vector) })^{*}($ random matrix) + (gaussian) + message = random

- (pk,ciphertext) is indistinguishable from (pk,random) \square

LOTUS PKE = LP11+FO

- LP11 scheme achieved IND-CPA security, which is slightly weaker than NIST requirement
- Not secure for an attacker using decryption oracle \approx Illegal use of Bob's decryption hardware

- Fujisaki-Okamoto (FO) transformation (1999)
- Automatic transformation of a PKE scheme to a more secure scheme by using additional subroutines
- Symmetric key encryption (e.g. AES)
- Hash function (e.g. SHA-512)
- Security proof is omitted in this talk

Description of LOTUS-PKE

- Assume LP11-PKE's key (sk,pk) are already generated
- M is message that Alice want to send
- Hash1 and Hash2 are distinct hash functions

Enc(pk,M) that calls Enc function of LP11-PKE σ : random vector; K=Hash1(σ); Csym=AESEnc (Key=K,message=M) $h=H a s h 2(\sigma| | C s y m)$
($\mathrm{c} 1, \mathrm{c} 2$) $=\mathrm{LP} 11 \mathrm{PKE}(\sigma)$; error vectors ($\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3$) are generated from h Ciphertext is (c1,c2,Csym)

Dec(sk,(c1,c2,Csym))
Recover σ^{\prime} from ($c 1, c 2$) and
$K^{\prime}=H a s h 1\left(\sigma^{\prime}\right) ;$ '=AESDec(Key=K',ciphertext=Csym)
Integrity check: $h^{\prime}=H a s h 2\left(\sigma^{\prime}| | C s y m\right)$
($c^{\prime} 1, c^{\prime} 2$) $=$ LP11PKE(σ^{\prime}); error vectors (e1,e2,e3) are generated from h^{\prime} If ($\left.c^{\prime} 1, c^{\prime} 2\right) \neq(c 1, c 2)$ then decryption error

Specifications of LOTUS

Agenda to introduce modules:

- Algorithms and protocol of IND-CPA scheme [Lindner-Peikert@CT-RSA2011]
- Proof of correctness
- Security reduction to the LWE problem

- State of LOTUS at now

Current state of LOTUS（at 2018，Sep．13）

Post－Quantum Cryptography Lounge https：／／www．safecrypto．eu／pqclounge／

－ANALYSIS $\in\{\phi, A T T A C K E D, W I T H D R A W N\}, \phi=i t ~ m a y ~ b e ~ s a f e ~ a t ~ n o w ~$
－NOTES＝known problems claimed in the pqc－forum https：／／groups．google．com／a／list．nist．gov／forum／\＃！forum／pqc－forum and some technical papers
－CCA attack for LOTUS implementation was claimed at the end of 2017
－It has been patched soon

Patch

Tancrede Lepoint

その他の受信者：pqc－co．．．＠nist．gov
メッセージを次の言語に㒛訳：日本語
Dear authors，dear all，

Attack for our

The current reference implementation of KEM LOTUS128 fails to achieve CCA security． implementation
Indeed，similarly to Odd Manhattan，even though the verification of the ciphertext is performed，when it fails，the shared secret is not modified．As such，it is also possible to run a new CCA attack where one discards the return flag and exploits what is in ss to recover the matrix S row by row．

Find attached an attack script to be put in the Reference＿Implementation／kem／lotus128／directory and to run as follows：
\＄gcc－O3－lcrypto lwe－arithmetics．c crypto．c rng．c pack．c sampler．c kem．c cpa－pke．c attack．c－o attack
\＄．／attack
（Note that you also need to add the files rng．c and rng．h from NIST．）
This attack can be avoided if proper action is taken in case of failure．

Kind regards，

Tancrède Lepoint．
PS：I did not try，but this attack may apply directly to kem／lotus192 and kem／lotus256

Patch

Q Le Trieu Phong
その他の受信者：tancrede．．．＠sri．com，pqc－co．．．＠nist．gov

メッセージを次の言語に誹訳：日本語
Dear Tancrède and all in pqc－forum，
Thank you for the careful review and the nice attack code
＞This attack can be avoided if proper action is taken in case of failure．
Agreed．In implementation，the shared secret should be set only after the verification passes．
The patch for the code is attached to this email．With the patch，the attack is now unsuccessful．
By the way，we wish you all a happy new year！A small patch（1．7KB）
Kind regards，
Phong

Comparison with other NIST candidates

List of lattice based PKEs／KEMs（22 items）
－Standard LWE assumption
－LOTUS，FrodoKEM
－Ring－LWE assumption
－Ding Key Exchange，LIMA，NewHope，KCL，LAC
－Module－LWE assumption
－CRYPTALS－KYBER，KINDI，KCL
－Small secret LWE
－EMBLEM，Lizard
－Other lattice assumptions
－Compact LWE，Giophantus，Odd Manhattan，NTRU Prime， Three Bears，NTRUEncrypt，SABER，Round5，Titanium， NTRU－HRSS－KEM，Mersenne－756839

Variants of LWE assumptions

Since the public key of LWE-based cryptography is heavy

$$
A x=b+e(\bmod q)
$$

- Compress A by using a ring $Z[x] / f(z)$: Ring-LWE or Module-LWE
- Ding Key Exchange, LIMA, NewHope, KCL, LAC, CRYPTALSKYBER, KINDI, KCL
- Hardness of base problems are unclear
- Unexpected attack can be found
- Compress A by using a random seed: standard LWE
- Frodo KEM
- No compression: standard LWE
- LOTUS

Variants of LWE assumptions

In order to reduce the probability of decryption failure

$$
\bar{M}=\underbrace{\mathbf{e}_{1} \sqrt{R}+\mathbf{e}_{2} \sqrt{S}+\mathbf{e}_{3}}_{\text {Small noise vector }}+M \cdot\left\lfloor\frac{q}{2}\right\rfloor(\bmod q)
$$

- Generate R and S from a small noise such as $\{-1,0,1\}$: Small secret LWE
- EMBLEM and Lizard

Size comparison

Size Comparison (KEM)

- Public key size is much higher than others
https://groups.google.com/a/list.nist.gov/forum/\#!topic/pqc-forum/1IDNioOsKq4

Agenda

- Background - NIST post-quantum cryptography project
- Outline framework of cryptographic scheme
- Which properties are wanted; long-term security
- Outline of LOTUS
- Comparison with other submissions
- Parameter setting from lower bound
- Cost lower bound for known algorithms
- Performance limit of computation

Starting point of parameter setting

Theorem (Repeat): LOTUS-PKE is IND-CCA2-secure under the LWE assumption provided that G and H are random oracles

- Important relation Conversion parameter
(Cost of attacking LOTUS-PKE) \geq (Cost of solving decision LWE) $\cdot \mathrm{C}_{1}$ \geq (Cost of solving comp. LWE) $\cdot \mathrm{C}_{1} \cdot \mathrm{C}_{2}$
- Cost of solving LWE is baseline hardness of many cryptographic schemes
- Need to estimate cost of solving \{decision,computational\} LWE

Two-sided estimation for attacking cost

- In general, there are two direction of cost estimation

$\underbrace{\frac{\text { Limit of algorithm efficiency }}{\text { Limit of computing power }}}_{\text {Lower bound }} \leq$ Solving Time | [seconds] |
| ---: | :--- |$\underbrace{\frac{\text { Algorithm efficiency at now }}{\text { Computing power at now }}}_{\text {Upper bound }}$

- Algorithm upper bound
[Pros] Constructive proof is easier
[Cons] For parameter setting, must follow/predict the progress of algorithms/computing hardware
- Algorithm lower bound [Pros] Can fix long-term parameters, i.e., conservative [Cons] General bound is hard to show (cf. $\mathrm{P} \neq \mathrm{NP}$) Useless if suggested parameters are very far from current estimations

Known estimation from lower

- For long-term security, it is useful to discuss the lower bound cost estimation even though for specific algorithms
- Up to now, ENUM and Sieve algorithm have been discussed

	Time	Space
$\text { ENUM }\left\{\begin{array}{l} \text { Classical } \\ \text { Quantum } \end{array}\right.$	[ANSS18] [ANS18]	Poly(n)
$\text { Sieve }\left\{\begin{array}{l} \text { Classical } \\ \text { Quantum } \end{array}\right.$	$\begin{aligned} & O\left(2^{0.292 n}\right) \\ & O\left(2^{0.265 n}\right) \end{aligned}$	$\begin{aligned} & \mathrm{O}\left(2^{0.2065 n}\right) \\ & \mathrm{O}\left(2^{0.265 n}\right) \end{aligned}$

Example, cost lower bound for solving shortest vector problem in β-dimension

Overview of LOTUS parameter setting

- A preliminary version of the argument in [A-Nguyen-Seito-Shikata2018] was used to set LOTUS parameters
- Convert LWE problem to a problem of tree search [Gama-NguyenRegev2010]
- The depth-first search of a searching tree

- Cost(tree-search) = Total \# nodes in the tree
- We bound it from lower

Overview of LOTUS parameter setting

- Number of nodes in depth $\mathrm{k} \approx$ Volume of an k-dimensional object

Ck

- We find a non-trivial lower bound of vol(Ck) via isoperimetry
- Can compare lower cost bound between ENUM and Sieve

Agenda

- Background - NIST post-quantum cryptography project
- Outline framework of cryptographic scheme
- Which properties are wanted; long-term security
- Outline of LOTUS
- Comparison with other submissions
- Parameter setting from lower bound
- Cost lower bound for known algorithms
- Performance limit of computation

Physicists can help cryptographers

$\underline{\text { Limit of algorithm efficiency }} \leq$ Attack Cost
 Limit of computing power

- Limit of efficiency is known for two specific algorithms:
- Number of operations is bounded from lower
- How about the computing power?

Physicists can help cryptographers

$\underline{\text { Limit of algorithm efficiency }} \leq$ Attack Cost
 Limit of computing power

- Limit of computing power from physics
- Landauer's principle (1961)

Minimum energy required to erase one bit of information is kTln2 where T is temperature and $k=1.38 \cdot 10^{-23}[\mathrm{~J} / \mathrm{K}]$ is the Boltzmann const.

- Used to measure how many bits can be changed by a unit of energy in the discussion in [B. Schneider "Applied cryptography" Chap. 7 (1995)]
- The latest computers are approaching to the limit

Summary of energy for one bit operation

Top computers in Green500:

Limit of bit operation from Laudauer

- Reference values:

For $\mathrm{T}=25\left[{ }^{\circ} \mathrm{C}\right]=298[\mathrm{~K}], \mathrm{kT} \ln 2=2.85 \cdot 10^{-21}[\mathrm{~J}]$
\Leftrightarrow May perform $3.5 \cdot 10^{20}$ bit operations/J

Cf. A standard portable battery of 3.7V 5000mAh=18.5Wh=66600[J]
\Leftrightarrow May perform about $66600 / 2.85 \cdot 10^{-21}=2.3 \cdot 10^{25}$ bit operations

Current upper bounds:

- Performance of latest (super)computers ~ 20GFlops/J
- 1 Floating-point operation $=64$ to $2 \cdot 10^{4}$ bit operations
- Binary CNN hardware $\sim 95 \cdot 10^{12} \underset{\text { Bahou et al., arxiv }}{\text { operations }}$

Bahou et al., arXiv 1803.05849

- 1 \{XOR,popcount $\}$ operation $=16$ bit operations

Limitation of electric circuits?

- Pessimistic side
"Nanomagnet based computers dissipate kBTIn2, while charge based computers must dissipate NkBTIn2, where $N \geq 10^{4 "}$
Snider et al. "Minimum Energy for Computation, the Landauer Principle, and Adiabatic CMOS", Superconducting Electronics Approaching the Landauer Limit and Reversibility (SEALeR)
Workshop, 2012/05
- Optimistic side
"From a technological perspective, energy dissipation per logic operation in present-day silicon-based digital circuits is about a factor of 1,000 greater than the ultimate Landauer limit, but is predicted to quickly attain it within the next couple of decades"
Bérut et al. "Experimental verification of Landauer's principle linking information and thermodynamics", Nature volume 483, pages 187-189 (08 March 2012)

Summary of energy for one bit operation

Top computers in Green500:

- $2{ }^{29}$ would get smaller by the near-future progress of computers

Impact for the parameter setting

- Near the limit, we may assume the principle to be an approximation of the current computing power
- Do we need to follow the progress of supercomputers?

How much energy can an attacker use?

- Typical discussion assumes that the strongest attacker can cause a supercomputer to take several years to recover a ciphertext
- Power consumption of the latest supercomputer is comparable to output of a power plant
- Since both facilities must be large buildings, such an attack may be public and we may soon be able to take countermeasures

- Thus, about $10^{7} \mathrm{~kW}=10^{10}[\mathrm{~J} \cdot \mathrm{~s}]$ and 10^{8} [seconds] may be the limit of attacker
- $10^{10} \cdot 10^{8} /\left(2.85 \cdot 10^{-21}\right)=3.5 \cdot 10^{38}=2^{128}$

How much energy can an attacker use?

- The power supply system can be changed drastically by a network of renewable energy and batteries [Nikkei electronics, 2018/07]

- Suppose such a network has been infected with a virus that targets some crypto. and can steal 1\% of energy
- Very cheap attack; construction of large buildings not needed

How much energy can an attacker use?

- Revival of science fictional discussion
- World energy consumption at 2017: 7.3•10 ${ }^{19}$ [W]
- Annual energy of the sun: $3.8 \cdot 10^{26}[\mathrm{~W}]$
$\Rightarrow 192$ bit-security appears to be sufficient
- Schneier said: A typical supernova's release exceeds 10^{30} [W]
$\Rightarrow 256$ bit-security appears to be sufficient

About the quantum limit

- Useful to discuss the security against quantum computer?
- Margolus-Levitin theorem
- Bremermann's limit
- etc.
- Reversible computer
- Candidate of ultra-low energy computation

About the storage limit

- Since most cryptographic attacks are combinational problems, space-time trade off relation holds
- Limitation of storage is also useful: capacity [bits $/ \mathrm{m}^{3}$], access speed [bits/second]
- In 2030, total storage all over the world may rise to 10^{23} bytes

Muraoka et al. "Gigantic Amount Information and Storage Technology : Challenge to Yotta-Byte-Scale Informatics", IEICE Technical report (in Japanese), 116-440, pp. 27-32, 2017

Concluding remarks

- Introduce LOTUS-PKE scheme
- Conservative \{Algorithms, protocol, correctness, security proof, parameter setting\}
- No critical problem has been found (as of 2018/08)
- Limitation of cryptographic attack
- Useful for setting crypto parameters
- Computing power/storage in classical/quantum/etc.

Thank you for your attention

Koichiro Akiyama (TOSHIBA)

A Public-key Encryption Scheme Based on Non-linear Indeterminate Equations (Giophantus(TM))

Abstract

We proposed a post-quantum public-key encryption scheme named "Giophantus" to NIST PQC standardization. The security of the scheme depends on a problem arising from a multivariate indeterminate equation. In this scheme we employ the "small" solution problem of multivariate indeterminate equations as a hard problem. If we employ non-linear multivariate equation in the problem, we have some possibility of reducing key in size since lattice reduction techniques which depends on the linearity cannot apply directly. In this talk, I introduce an outline of this scheme and show a security analysis for the linear case.

TOSHIBA

Leading Innovation

IMI Forum
"Mathematical approach for quantum information society"

A Public-key Encryption Scheme Based on Non-linear Indeterminate Equation "Giophantus ${ }^{T N /}$

Koichiro AKIYAMA
TOSHIBA Corporation

Joint work with
Yasuhiro Goto, Shinya Okumura, Tsuyoshi Takagi, Koji Nuida, Goichiro Hanaoka, Hideo Shimizu, Yasuhiko Ikematsu
2018.09.17

Agenda

1. Introduction

- Public key Cryptosystem : Principle and Vulnerability
- Post-Quantum Cryptosystems

2. Goal of the study

- Unsolvable problems : Section finding Problem
- Algebraic Surface Cryptosystems (ASC)

3. Indeterminate Equation Cryptosystem

- Algorithms (Encryption/Decryption)
- Possible Attacks
- Computational Experiments

4. Conclusion

Agenda

1. Introduction

- Public key Cryptosystem : Principle and Vulnerability
- Post-Quantum Cryptosystems

2. Goal of the study

- Unsolvable problems : Section finding Problem
- Algebraic Surface Cryptosystems (ASC)

3. Indeterminate Equation Cryptosystem

- Algorithms (Encryption/Decryption)
- Possible Attacks
- Computational Experiments

4. Conclusion

Public Key Cryptosystems : Principle

Principle

Alice

Bob's Public Key

Ciphertext \#i3o\% \%kso)@

Bob's
Secret Key

To recover a plaintext from a ciphertext is as hard as to solve some computational hard problems

■ Computational hard problem
No polynomial time algorithm is known

Exponential hard problem
(integer factorization, discrete logarithm)

Some kind of hard Problems (IF,DL) are solvable so quickly.

Background of the study

Quantum computer comes close to us

Some IT company develops quantum computer with huge investment
(Source: IBM Website https://www.ibm.com/blogs/research/2018/01/quantum-prizes/)

■ We need some technologies to resistant against QC

- Post-Quantum Public key Cryptosystem

Its security depends on a computational hard problem in the sense of quantum computers.
NIST started standardization project in the last year.

Post-Quantum Cryptosystems

Problem

1. Secure one requires large public key in size.
2. Practical one is require cryptanalysis.

Agenda

1. Introduction

- Public key Cryptosystem : Principle and Vulnerability
- Post-Quantum Cryptosystems

2. Goal of the study

- Unsolvable problems : Section finding Problem
- Algebraic Surface Cryptosystems (ASC)

3. Indeterminate Equation Cryptosystem

- Algorithms (Encryption/Decryption)
- Possible Attacks
- Computational Experiments

4. Conclusion

Concept for Design

To construct a public-key cryptosystem whose security depends on some non-linear problem.

Giophantus provides new variation of PQC which is located between multivariate \& lattice based cryptosystem

Section Finding Problem

$\left[\begin{array}{c}\text { Section Finding Problem } \\ \text { Algebraic Surface public key } \\ X(x, y)=0 \text { on } F_{p}[t] \\ \text { Hard } \\ \text { Section } \\ (x, y)=\left(u_{x}(t), u_{y}(t)\right) \\ u_{x}(t), u_{y}(t) \in F_{p}[t]\end{array}\right]$

This problem is considered as a Diophantine problems on $F_{p}[t]$

Algebraic Surface Cryptosystem (ASC)

Algebraic Surface Cryptosystem (Encryption)

History \& Progression of ASC

$$
c=m+X r
$$

multiple structure \quad Linear Algebra Attack
Reduction Attack
$c=m(t) s+X r(t)$
3 variables \quad Trace Attack by Voloch

$$
c=m s+X r \quad \text { PKC2009 }
$$

noise addition \quad Ideal Decomposition Attack by Faugere

$$
c=m(t)+X r+\ell \cdot e \begin{gathered}
\text { Eliminate mult. structure } \\
\text { (noise added structure) }
\end{gathered}
$$

Giophantus ${ }^{\text {TM }}$

Agenda

1. Introduction

- Public key Cryptosystem : Principle and Vulnerability
- Post-Quantum Cryptosystems

2. Goal of the study

- Unsolvable problems : Section finding Problem
- Algebraic Surface Cryptosystems (ASC)

3. Indeterminate Equation Cryptosystem

- Algorithms (Encryption/Decryption)
- Possible Attacks
- Computational Experiments

4. Conclusion

Small Solution Problem

The "small" solution $u_{x}(t), u_{y}(t)$ has coefficients are in the range of 0 to $\ell-1$, where ℓ is small enough to q.

Small Solution Problem
Indeterminate Equation

$$
X(x, y)=0 \text { on } F_{q}[t] /\left(t^{n}-1\right)
$$

Small Solution

$$
(x, y)=\left(u_{x}(t), u_{y}(t)\right)
$$

$$
u_{x}(t), u_{y}(t) \in F_{q}[t] /\left(t^{n}-1\right)
$$

Section Finding Problem

Algebraic Surface

$$
X(x, y)=0 \text { on } F_{p}[t]
$$

Section

$$
\begin{array}{r}
(x, y)=\left(u_{x}(t), u_{y}(t)\right) \\
u_{x}(t), u_{y}(t) \in F_{p}[t]
\end{array}
$$

Encryption/Decryption
 Giophantus ${ }^{\text {TM }}$

TOSHIBA A Public-key Encryption Scheme Based on Non-linear Indeterminate Leading Innovation >>>. Equations: Giophantus(TM) (IMI Forum 2018)

$F_{q}[t] /\left(t^{n}-1\right)$ calculation

$$
\begin{aligned}
F_{q}[t] /\left(t^{3}-1\right) \text { calculation }\left(2 t^{2}+3 t+4\right)\left(a t^{2}+b t+c\right) & =d t^{2}+e t+f \\
t^{3} \equiv 1 & \left.\begin{array}{rl}
\left(2 t^{2}+3 t+4\right) a t^{2} & =2 a t^{4}+3 a t^{3}+4 a t^{2} \\
& =4 a t^{2}+2 a t+3 a \\
\left(2 t^{2}+3 t+4\right) b t & =2 b t^{3}+3 b t^{2}+4 b t \\
& =3 b t^{2}+4 b t+2 b \quad \begin{array}{lll}
\text { Matrix }
\end{array} \\
\left(2 t^{2}+3 t+4\right) c & =2 c t^{2}+3 c t+4 c \quad \text { expression }
\end{array}\right)\left(\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 3 \\
3 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=
\end{aligned}
$$

IE-LWE Problem/Assumption

\(\left.\begin{array}{l}X :Irreducible polynomial with small zero point

Y :random bivariate polynomial\end{array}\right]\)| on |
| :---: |
| $F_{q}[t] /\left(t^{n}-1\right)$ |

Decision problem between the distribution $(X, X r+e)$ and the distribution (X, Y) called IE-LWE problem $\&$ assumption.

Attack	Method	Infuluence	
		$\operatorname{deg} \mathrm{X}=1$	$\operatorname{deg} \mathrm{X}=2$
Linear Algebra Attack (LAA)	$Z=X r+e \underset{\text { of coefficients }}{\text { Comparison }} r, e$	\bigcirc	\bigcirc
Key Recovery Attack (KRA)	$X(x, y)=0 \underset{\text { Soving Eq. }}{\text { Sol }}\left(u_{x}, u_{y}\right)$	\bigcirc	\times

The lattice reduction technique can be applied to these attacks since these goals are common in finding small solutions.

Linear Algebra Attack (LAA)

$$
\underline{\operatorname{deg}_{x y} X=\operatorname{deg}_{x y} r=1}
$$

$$
X(x, y)=a_{10} x+a_{01} y+a_{00} \quad \text { Known }
$$

$$
r(x, y)=r_{10} x+r_{01} y+r_{00} \quad \text { Unknown }
$$

$$
e(x, y)=e_{20} x^{2}+e_{11} x y+e_{02} y^{2}+e_{10} x+e_{01} y+e_{00}
$$

$$
Z(x, y)=d_{20} x^{2}+d_{11} x y+d_{02} y^{2}+d_{10} x+d_{01} y+d_{00}
$$

$$
\begin{aligned}
& \text { Substitute } \\
& \quad \& \\
& \text { Compare } \\
& \quad\left\{\begin{array}{l}
a_{10} r_{10}+e_{20}=d_{20} \\
a_{10} r_{01}+a_{01} r_{10}+e_{11}=d_{11} \\
a_{01} r_{01}+e_{02}=d_{02} \\
a_{10} r_{00}+a_{00} r_{10}+e_{10}=d_{10} \\
a_{01} r_{00}+a_{00} r_{01}+e_{01}=d_{01} \\
a_{00} r_{00}+e_{00}=d_{00}
\end{array}\right.
\end{aligned}
$$

LAA against IE-LWE (single term)

$$
a_{10} r_{10}+e_{20}=d_{20} \quad \text { on } F_{q}[t] /\left(t^{n}-1\right)
$$

$$
a_{10} r_{10}+e_{20}+q u_{20}=d_{20} \text { on } \mathbb{Z}[t] /\left(t^{n}-1\right)
$$

Linear Equation
$\left(\begin{array}{lll}A_{10} & I_{n} & q I_{n}\end{array}\right)\binom{\overrightarrow{r_{10}}}{\overrightarrow{e_{20}}}=\left(\overrightarrow{d_{20}}\right)$ on \mathbb{Z}
element of the $\overrightarrow{e_{20}}$ is small

LAA against IE-LWE (all terms)

If we consider the all equations

Attack Improvement (by Xagawa)

$$
\begin{aligned}
& X(x, y)=a_{10} x+a_{01} y+a_{00} \\
& r(x, y)=r_{10} x+r_{01} y+r_{00} \\
& e(x, y)=e_{20} x^{2}+e_{11} x y+e_{02} y^{2}+e_{10} x+e_{01} y+e_{00} \\
& Z(x, y)=d_{20} x^{2}+d_{11} x y+d_{02} y^{2}+d_{10} x+d_{01} y+d_{00} \\
& \text { Substitute } y=0 \\
& X(x, 0)=a_{10} x+a_{00} \\
& r(x, 0)=r_{10} x+r_{00} \\
& e(x, 0)=e_{20} x^{2}+e_{10} x+e_{00} \\
& Z(x, 0)=d_{20} x^{2}+d_{10} x+d_{00} \\
& \left\{\begin{array}{l}
a_{10} r_{10}+e_{20}=d_{20} \\
a_{10} r_{00}+a_{00} r_{10}+e_{10}=d_{10} \\
a_{00} r_{00}+e_{00}=d_{00}
\end{array}\right.
\end{aligned}
$$

Key Recovery Attack
 Linear case

Small solution problem of Indeterminate. Eq.
Public key
Indeterminate Eq. $X(x, y)=0$
Hard

Easy
Secret key
Small solution

$$
(x, y)=\underline{\left(u_{x}(t), u_{y}(t)\right)}
$$

Polynomials with small coefficients

Linear Ind. Eq.

$$
\begin{aligned}
X(x, y)=c_{10} x+ & c_{01} y+c_{00}=0 \\
& R_{q}\left(=F_{q}[t] /\left(t^{n}-1\right)\right)
\end{aligned}
$$

Convert to $\mathbb{Z}[t] /\left(t^{n}-1\right)$

$$
c_{01} u_{x}+c_{10} u_{y}+q u=-c_{00}
$$

Coefficient comparison

$$
\frac{\left(\begin{array}{lll}
C_{01} & C_{10} & q I
\end{array}\right)}{\mathcal{L}_{\text {KRA }}}\binom{\frac{\overrightarrow{u_{x}}}{\overrightarrow{u_{y}}}}{\vec{u}}=-\left(\overrightarrow{c_{00}}\right)
$$

Find a small solution $\left(\overrightarrow{\boldsymbol{u}}_{x}, \overrightarrow{\boldsymbol{u}}_{y}, \overrightarrow{\boldsymbol{u}}\right)^{T}$

How to find a small solution

Shortest Vector problem:To find a small $\vec{V} \pm \vec{W}$

Closest Vector Problem: To find the closest \vec{W} to \vec{V}

Embedding Technique

Hermite normal form

$$
\begin{aligned}
& B, C, D \text { Cyclic matrix }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{rank}\left(\mathcal{L}_{\text {KRA }}^{\prime}\right)=2 n \quad \operatorname{rank}\left(\mathcal{L}_{\text {KRA }}^{+}\right)=2 n+1 \quad \mathcal{L}_{\text {KRA }}\left(\begin{array}{l}
\overrightarrow{v_{x}} \\
\vec{v}_{y} \\
\vec{v}_{c}
\end{array}\right)=-\left(\overrightarrow{c_{00}}\right)
\end{aligned}
$$

Experimental results (LLL)

$\mathcal{L}_{\text {KRA }}^{+}$															
n	q	rank	Norm1								Norm2	Gap	Norm1	result	time
10	33149	21	8	186	22	204	Success	0.02							
20	131059	41	12	619	50	633	Success	0.09							
30	293791	61	15	1416	97	1619	Success	0.26							
40	521299	81	17	3236	191	3325	Success	0.76							
50	813623	101	19	6013	315	6581	Success	1.77							
60	1170751	121	21	11444	552	11738	Success	3.52							
70	1592659	141	22	20796	943	20589	Success	6.45							
80	2079401	161	24	37181	1563	37601	Success	10.74							
90	2630917	181	25	66292	2641	65551	Success	57.79							
100	3247243	201	27	106864	4026	110512	Success	318.16							
110	3928361	221	28	186219	6724	201748	Success	788.46							
120	4674289	241	29	307382	10474	313401	Success	1361.19							
130	5484979	261	373397	574752	2	542968	Failure	2315.24							

The norm of $1^{\text {st }}$ basis vector
The norm of $2^{\text {nd }}$ basis vector

Gap=Norm2/Norm1
By Bai-Galbraith $\quad\left(\begin{array}{cc}I_{n} & A \\ O & q I_{n}\end{array}\right)$

This problem is a Unique-SVP
$\left\|\lambda_{2}\left(\mathcal{L}_{\text {KRA }}^{+}\right)\right\| \approx G H\left(\mathcal{L}_{\text {KRA }}^{\prime}\right)$
shortest vector

Experimental result (BKZ)

- We carried out a BKZ experiment by changing block size β

$$
\left(b_{1}^{*}, b_{2}^{*}, \cdots, b_{2 n+1}^{*}\right)
$$

- line fitting Beta $=10$
line fitting Beta $=20$
(*)Geometric series Assumption)

β	slope	y-int.	$\left\\|b_{2}^{*}\right\\| /\left\\|b_{1}^{*}\right\\|$	$\left\\|b_{2}\right\\| /\left\\|b_{1}\right\\|$	
10	-0.0835	32.274	4320402	4320505	$\mid b_{2}^{*}\\|/\\| b_{1}^{*}\\|\approx\\| b_{2}\\|/\\| b_{1} \\|$
20	-0.0749	31.228	1783504	1783497	

The complexity of BKZ 2016 Estimate

We assume that the complexity for BKZ is as same as the LWE problem with

parameters	meaning	Key recovery attack
n	dimension	n
m	Number of samples	$2 n$
q	modulus	$\sim 324 n^{2}+72 n+15$
σ	standard deviation	1.12

Estimation for the root of Hermite factor for SVP

$$
\delta_{0}=\left(\left((\pi \beta)^{1 / \beta} \beta /(2 \pi e)\right)^{1 / 2(\beta-1))}\right.
$$

- 2016 Estimate

$$
\begin{aligned}
\sqrt{\beta /(2 n)} & \lambda_{1}\left(\mathcal{L}_{\text {KRA }}^{+}\right) \geq \delta_{0}^{2 \beta-2 n}\left(\operatorname{det} \mathcal{L}_{\text {KRA }}^{+}\right)^{1 / 2 n} \\
& \left(\text { where } \lambda_{1}\left(\mathcal{L}_{\text {KRA }}^{+}\right)=\sqrt{5 n / 2} \text { holds }\right)
\end{aligned}
$$

Find a pair (n, β) satisfied both conditions Time complexity $8 \cdot 2 n \cdot 2^{0.292 \beta+12.31}$

Parameter \& Performance

In linear case, namely deg $X(x, y)=1$, we choose the parameter n by cryptanalysis based on the "2016 estimate".

| k | n | q | Public
 Key(KB) | Secret
 Key(KB) | Cipher
 Text(KB) | Key Gen
 (Mcycle) | Encrypt
 (Mcycle) | Decrypt
 (Mcycle) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 135 | 1201 | $\mathbf{4 6 7 4 2 4 4 1 3}$ | 15 | 0.6 | 29 | 93 | 179 | 336 |
| 196 | 1733 | 973190461 | 21 | 0.9 | 42 | 161 | 379 | 717 |
| 259 | 2267 | $\mathbf{1 6 6 5 2 9 2 8 7 9}$ | 28 | 1.2 | 55 | 240 | 627 | 1187 |

CPU : Xeon E5-1620 3.6GHz
q is a prime next to OS : Windows 7, 64bit Memory : 32GB

$$
\ell-1+\ell(\ell-1)+2 \ell(\ell-1)^{2} n+3 \ell(\ell-1)^{3} n^{2}
$$

Evaluating at one attack

Decryption

Attack

$c(x, y, t)=$ $c(x, y, 1)=$
$m(t)+X(x, y, t) r(x, y, t)+\ell \cdot e(x, y, t) \quad t=1 \quad m(1)+X(x, y, 1) r(x, y, 1)+\ell \cdot e(x, y, 1)$
small solution || $\quad R_{q}=\left(F_{q}[t] /\left(t^{n}-1\right)\right)$
$X(x, y, t)=0$
$\left(u_{x}(t), u_{y}(t)\right)=\left(\sum_{i=0}^{n-1} a_{i} t^{i}, \sum_{i=0}^{n-1} b_{i} t^{i}\right) \quad \underset{t=1}{\longrightarrow} \quad \begin{aligned} & \left(s_{x}, s_{y}\right)= \\ & \left(u_{x}(1), u_{y}(1)\right)=\left(\sum_{i=0}^{n-1} a_{i}, \sum_{i=0}^{n-1} b_{i}\right)\end{aligned}$ $0 \leq a_{i}, b_{i}<\ell-1$ $0 \leq s_{x}, s_{y}<n(\ell-1)$

$c\left(u_{x}(t), u_{y}(t), t\right)=m(t)+\ell \cdot e\left(u_{x}(t), u_{y}(t), t\right)$

$c\left(u_{x}(t), u_{y}(t), t\right) \bmod \ell=m(t)$

$$
\begin{gathered}
c\left(s_{x}, s_{y}, 1\right)=m(1)+\ell \cdot e\left(s_{x}, s_{y}, 1\right) \\
\downarrow \mathbb{Z}[t] \\
c\left(s_{x}, s_{y}, 1\right) \bmod \ell=m(1) \bmod \ell
\end{gathered}
$$

Ward Beullens, Wouter Castryck and Frederik Vercauteren consider this relation leads to breaking IND-CPA.

But the attack does not always work. Because,

$c\left(s_{x}, s_{y}, 1\right)=m(1)+\ell \cdot e\left(s_{x}, s_{y}, 1\right) \quad F_{q}$
\downarrow
$c\left(s_{x}, s_{y}, 1\right) \bmod \ell=m(1) \bmod \ell \quad \mathbb{Z}$
$c\left(u_{x}(t), u_{y}(t), t\right)=m(t)+\ell \cdot e\left(u_{x}(t), u_{y}(t), t\right) R_{q}$

$$
\mathbb{Z}[t]
$$ $c\left(u_{x}(t), u_{y}(t), t\right) \bmod \ell=m(t)$

q must be larger than $(\ell-1) n+2(\ell-1)^{2} n^{2}+3(\ell-1)^{3} n^{3}$ in appropriate parameters

n	The minimum required q		attack/ decode	$c\left(s_{x}, s_{y}, 1\right) \bmod \ell=m(1) \bmod \ell$
	scheme	attack		
1201	467424413	140344178502	300.25	
1733	973190461	421634751198	433.25	is not always satisfied!
2267	1665292879	943804735206	566;75	

Experimental Result (parameter using fixed q)

However, we fix the parameter $q=2^{31}-1$ for optimal implementation

n	$c\left(S_{x}, S_{y}, 1\right) \bmod \ell$				$\begin{array}{l}\text { Distinguishing } \\ \text { Advantage }\left({ }^{*}\right)\end{array}$		
	0	1	2	3			
1201	703	1167	52688	45442	0.9626		
1733	36852	28222	13412	21514	0.3015		
2267	24747	25522	25218	24513	0.0148	$] \quad$	Here we set
:---							

Distinguish Advantage $=\operatorname{Pr}(2$ most likely value $)-\operatorname{Pr}(2$ least likely value)
Random

$C\left(S_{x}, S_{y}, 1\right) \bmod \ell$				Distinguishing Advantage
0	1	2	3	
24844	24900	25255	25001	0.00512
25038	24946	24983	25033	0.00142
25094	25056	25120	24730	0.00428

Evaluating at one attack almost works the scheme with parameter used in optimal implementation.

Experimental Result (appropriate parameter)

For appropriate parameter, we employ minimum q which leads non-error decryption.

n	\mathbf{q}	$c\left(s_{x}, s_{y}, 1\right) \bmod \ell$				Distinguishing Advantage(*)
		0	1	2	3	
1201	467424413	24769	25113	25559	24559	0.01344
1733	973190461	25136	25035	25008	24821	0.00342
2267	1665292879	25117	24791	25021	25071	0.00376

Random
indistinguishable

$c\left(S_{x}, S_{y}, 1\right) \bmod \ell$				$\begin{array}{l}\text { Distinguishing } \\ \text { Advantage }\end{array}$
0	1	2	3	
24873	24922	25144	25061	0.0041
24883	24945	25032	25140	0.00344
25121	25114	24970	24795	0.0047

The distinguishability strongly depends on the public key. We need to consider about how to detect weak keys.

Agenda

1. Introduction

- Public key Cryptosystem : Principle and Vulnerability
- Post-Quantum Cryptosystems

2. Goal of the study

- Unsolvable problems : Section finding Problem
- Algebraic Surface Cryptosystems (ASC)

3. Indeterminate Equation Cryptosystem

- Algorithms (Encryption/Decryption)
- Possible Attacks
- Computational Experiments

4. Conclusion

Conclusion

■ We proposed a new variant of PQC called "Giophantus" which is located between Multivariate and Lattice based.

■ We found the secure parameters by 2016 estimate.
■ Giophantus requires short secret key in size and short process time.

■ Evaluate at one Attack does not always work on Giophantus.

- parameter used for optimization : almost works
- appropriate parameter : depends on the public-key

TOSHIBA
 Leading Innovation >>>

Toyohiro Tsurumaru (Mitsubishi Electric)

Leftover Hashing Lemma as Quantum Error Correction

Abstract

The leftover hashing lemma (LHL) guarantees the security of privacy amplification (PA), a ubiquitous primitive in modern cryptology. On the other hand, quantum error correction (QEC) is an indispensable theoretical tool in the field of quantum information technology, particularly in efforts toward realizing the quantum computer. We present a certain type of equivalence between these two theoretical tools, the LHL and the QEC.

Leftover Hashing from Quantum Error Correction

Toyohiro Tsurumaru
(Mitsubishi Electric Corporation)
2018/9/17 @ Nishijin Plaza, Kyushu University (arXiv:1809.05479 [quant-ph])

Warming Up:
 A Quick Review on
 Quantum Mechanics

偏光と偏光板

$\vec{E}=$ 電場

 \vec{E} の方向 $=$ 偏光－偏光 $=$ 光の振動の向き

－偏光板：決まった偏光成分をフィルタする（ブロックする） ↔偏光をブロック

角度 θ の偏光

$$
\vec{E}_{\text {in }}=E_{0}\binom{\cos \theta}{\sin \theta}
$$

$$
=E_{0} \cos \theta\binom{1}{0}+E_{0} \sin \theta\binom{0}{1}
$$

\leftrightarrow 偏光 と ↔偏光の重ね合わせ

入力：$\vec{E}_{\text {in }}=E_{0}\binom{\cos \theta}{\sin \theta}=E_{0} \cos \theta\binom{1}{0}+E_{0} \sin \theta\binom{0}{1}$
さ偏光 と ↔偏光の
$\vec{E}=$ 電場
\vec{E} の方向 $=$ 偏光

出力2： 0 度偏光（ \rightarrow 偏光）

$$
\vec{E}_{2}=E_{0}\binom{\cos \theta}{0}
$$

出力1：90度偏光（ 1 偏光）

$$
\vec{E}_{1}=E_{0}\binom{0}{\sin \theta}
$$

偏光ビームスプリッタ（PBS）を
 上から見たところ

$$
\vec{E}=\text { 電場 }
$$

以下簡単のため， 4種類の偏光だけ考える

各出力の光強度を測る

光量子仮説

－電磁波には，それ以上分割できない最小単位 ${ }^{\dagger}$ があり， それを「光子」（こうし）と呼ぶ

- 我々が普段見ているのは，大量 ${ }^{+\dagger}$ の光子の平均のふるまいである
- 光子一つずつを扱う実験もできる

†正確には，光のエネルギー E の最小単位がある：
$E=h v ; v=$ 光の振動数，$h=$ プランク定数 $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$. 可視光なら $E \simeq 10^{-19} \mathrm{~J} \simeq 1 \mathrm{eV}$. †ナアボガドロ数 $\left(10^{23}\right)$ くらい

ふたたびノ偏光の場合

入射光を弱めて ${ }^{+}$光子 1 個にする

検出確率の計算法：パワー $P \propto|\vec{E}|^{2}$ を確率に読替える （ただし全確率が1になるよう規格化する）

入力：

確率 $\left|\vec{E}_{2}\right|^{2}=1 / 2$ で
状態 \vec{E}_{2}（ \leftrightarrow 偏光状態）でここに見つかる

検出確率の計算法（言い換え）：測定の軸で射影

偏光ビームスプリッタ（PBS）を もう一つおき，検出した光を合波

全く同じ装置構成で 途中の検出だけをやめたら？
 全く同じ装置構成で 途中の検出だけをやめたら？

入力：
冗偏光の単一光子
PBS
\qquad
鏡

ここで検出が起こる確率は前頁と
A）全比K（確率1／2）
B）翼なる（確率1）

検出しないときは
 電磁波としてふるまう

同じ状況を抽象的にいうと：

同じ状況を抽象的にいうと：
2 種類の異なる軸で測定している

途中の測定をやめると

不確定性原理
 種類の異なる測定は，両立しないことがある

リ，ひのどちらかに変化
例えば右の表にしたがって
偏光を数字bに置き換えると以下が成り立つ：

$$
H(B \mid Z)+H(B \mid X) \geq 1
$$

$(H(B \mid X), H(B \mid Z)=Z, X$ 測定における b のエントロピー）

\ldots ．．．よく本で見かける $\Delta p \cdot \Delta x \geq \frac{\hbar}{2}$ と同種の関係式

以上の話を一般化すると．．．

量子力学（Quantum Mechanics）

ミクロな系は，通常の確率論では記述できない。かわりに量子論という，拡張された確率論を使う必要がある。
－状態は，確率分布 $P=\left(p_{1}, p_{2}, \cdots\right)$ ではなく
複素数値ベクトル $\vec{\psi}=\left(\psi_{1}, \psi_{2}, \cdots\right)$ で表される $\quad .$. （状態ベクトル）

- 単一光子の例では，電場 $\overrightarrow{\text { を规規格化したものが } \vec{\psi} た ゙ っ た ~}$
- 測定するまでは：$\vec{\psi}$ は波として（線形に）変化する
．．．（波動性）
－測定すると：$\vec{\psi}$ は特定の状態に確率的に変化する
．．．（粒子性）
1．予め測定の軸 $\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots\right\}$（基底）を選んでおく

確率 $=$ これらの絶対値の2乗

Braket Notation

In textbooks, vectors are denoted as

- State vector:

$$
\vec{\psi} \rightarrow|\psi\rangle
$$

(bra)

- Hermite conjugate of a state vector: $\quad \vec{\psi}^{\dagger} \rightarrow\langle\psi|$ (ket)
- Inner-product of $\vec{\psi}, \vec{\phi}$
$\vec{\psi}^{\dagger} \vec{\phi}=\langle\psi \mid \phi\rangle \quad$ (braket)

$$
\dagger=\text { transpose of complex conjugate; } \vec{\psi}^{\dagger}=\left(\psi^{*}\right)^{\mathrm{T}}
$$

In the "braket" notation

If one measures $\left|0_{Z}\right\rangle$ in the X basis,
$\left\langle 0_{z} \mid 0_{X}\right\rangle=\left\langle 0_{z}\right| \frac{1}{\sqrt{2}}\left(\left|0_{Z}\right\rangle+\left|1_{Z}\right\rangle\right)=\frac{1}{\sqrt{2}}\left\langle 0_{Z} \mid 0_{Z}\right\rangle=\frac{1}{\sqrt{2}} \quad \Rightarrow\left|0_{X}\right\rangle$ is detected with probability $\left|\left\langle 0_{Z} \mid 0_{X}\right\rangle\right|^{2}=\frac{1}{2^{\prime}}$
$\left\langle 0_{Z} \mid 1_{X}\right\rangle=\left\langle 0_{z}\right| \frac{1}{\sqrt{2}}\left(\left|0_{Z}\right\rangle-\left|1_{Z}\right\rangle\right)=\frac{1}{\sqrt{2}}\left\langle 0_{z} \mid 0_{Z}\right\rangle=\frac{1}{\sqrt{2}} \quad \Rightarrow\left|1_{X}\right\rangle$ is detected with probability $\left|\left\langle 0_{z} \mid 1_{X}\right\rangle\right|^{2}=\frac{1}{2}$

When $n \geq 1$ qubits are used

- The X basis and the Z basis are related by discrete Fourier transform:

$$
\left|b_{X}\right\rangle:=2^{-n / 2} \sum_{a}(-1)^{b \cdot a}\left|a_{Z}\right\rangle
$$

- Changing bases corresponds to Fourier transform:

$$
\begin{aligned}
& |\Psi\rangle=\sum_{a} p(a)\left|a_{Z}\right\rangle=\sum_{b} q(b)\left|b_{X}\right\rangle \\
& q(b):=2^{-n / 2} \sum_{a}(-1)^{b \cdot a} p(a),
\end{aligned}
$$

Privacy Amplification

(Nothing more than a)
 Very Rough Image of Privacy Amplification

- A process of converting a "roughly secure" string into a "perfectly secure" string

Popular hash function for this purpose: Toeplitz matrix multiplication

In general, one can use a universal ${ }_{2}$ hash function

Def: Random function $G: A \rightarrow B$ is universal ${ }_{2}$

$$
\stackrel{\text { def }}{\longleftrightarrow} \operatorname{Pr}\left(G\left(a_{1}\right) \neq G\left(a_{1}\right)\right) \leq \frac{1}{|B|} \text { for } \forall a_{1}, a_{2} \in A, a_{1} \neq a_{2}
$$

The Toeplitz matrix of the previous slide is an example of universal ${ }_{2}$ functions.

Use Cases of PA（1／3）
 ＂Physical Random Number Generator＂

Use Cases of PA（2／3） ＂Physically Unclonable Function（PUF）＂

- 前頁と同じものが全て，単一の半導体チップに収まっている
- 電源オフ時に，秘密情報を，チップ上から消去したい

電源オフ時に
－乱数源＝チップの製造ばらつき（回路遅延，メモリ初期値） \rightarrow 電源オン時にのみ存在し，電源才フ時は消える情報

消える
メモリ上に残る

Security of Privacy Amplification

- Setting:

- Security criteria: $\quad \sum_{g} P_{G}(g) d_{1}\left(P_{K E}^{g}\right):=\sum_{g} P_{G}(g)\left\|P_{K E}^{g}-U_{K} \times P_{E}\right\| \leq \varepsilon$ average variational distance between the real and the ideal final states
- Leftover hashing lemma (LHL) (Hastad et al. 1984):

$$
\sum_{g} P_{G}(g) d_{1}\left(P_{K E}^{g}\right) \leq 2^{\frac{1}{2}\left(m-H_{\min }(A \mid E)\right)}
$$

where the minimum entropy $H_{\min }$ is calculated from prob. dist. $P_{A E}$ at the beginning;

$$
H_{\min }\left(P_{A E} \mid E\right)=-\log _{2} \sum_{e} \max _{a} P_{A E}(a \mid e)
$$

Quantum Description of Classical Privacy Amplification

- The basic idea = Game transformation
- Actual scheme: Classical privacy amplification

Transform without affecting security measure $d_{1}\left(P_{K E}^{g}\right)$

- Virtual scheme: Quantum error correction (+ Z-basis Measurement)

Step 1 of our game transform

More Review on Quantum Mechanics: Density matrices and pure states

- Preparing states $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \cdots$ with classical probabilities p_{1}, p_{2}, \cdots
$\Leftrightarrow \quad$ Density matrix $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
For example:
- Expectation of observable $\hat{A}: \quad \sum_{i} p_{i}\left\langle\psi_{i}\right| \hat{A}\left|\psi_{i}\right\rangle=\sum_{i} p_{i} \operatorname{Tr}\left\{\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right) \hat{A}\right\}=\operatorname{Tr}\{\rho \hat{A}\}$
- Classical probability \Leftrightarrow measurement basis $\left\{\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \cdots\right\}$ is fixed

$$
\Leftrightarrow \rho=\left(\begin{array}{cccc}
p_{1} & 0 & \cdots & 0 \\
0 & p_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & p_{n}
\end{array}\right) \quad \text { (diagonal) }
$$

- Pure state \Leftrightarrow a vector $\left|\psi_{1}\right\rangle$ occurs with probability $1 \Leftrightarrow \rho=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \Leftrightarrow$ rank $\rho=1$

More Review on Quantum Mechanics:

- Composite system:

Composite system of systems H_{A}, H_{B} is described by tensor product $H_{A B}=H_{A} \otimes H_{B}$.

- $\left\{\left|a_{i}\right\rangle\right\},\left\{\left|b_{j}\right\rangle\right\}$ are basis of $H_{A}, H_{B} \rightarrow\left\{\left|a_{i}\right\rangle \otimes\left|b_{j}\right\rangle\right\}$ is a basis of $H_{A B}$.
- Quantum entanglement:
$|\Psi\rangle_{A B}=|a\rangle_{A} \otimes|b\rangle_{B}$ (without summation) $\Leftrightarrow|\Psi\rangle \in H_{A B}$ is NOT entangled (w.r.t. H_{A} and H_{B}).
- Partial trace: Tracing only over H_{B}, and leave H_{A} intact;

$$
\operatorname{Tr}_{B}\left(\rho_{A B}\right)=\sum_{i}\left(\mathbb{I}_{A} \otimes\left\langle\left. b_{i}\right|_{B}\right) \rho_{A B}\left(\mathbb{I}_{A} \otimes\left|b_{i}\right\rangle_{B}\right)\right.
$$

- E.g., Partial trace of a pure state $|\Psi\rangle_{A B}$ is a density matrix;

$$
|\Psi\rangle_{A B}=\sum_{i} \lambda_{i}\left|a_{i}\right\rangle_{A} \otimes\left|b_{i}\right\rangle_{B} \Rightarrow \operatorname{Tr}_{B}(|\Psi\rangle\langle\Psi|)=\sum_{i}\left|\lambda_{i}\right|^{2}\left|a_{i}\right\rangle\left\langle\left. a_{i}\right|_{A}\right.
$$

- Purification: $|\Psi\rangle$ is a purification of $\rho_{A} \Leftrightarrow \rho_{A}=\operatorname{Tr}_{B}(|\Psi\rangle\langle\Psi|)$
- In fact, purification $|\Psi\rangle$ exists for any mixed state ρ_{A}

More Review on Quantum Mechanics:

- Any classical random variable A can be described as subsystem H_{A} of entangled state $|\Psi\rangle_{A B} \in H_{A B}$;

$$
\begin{array}{cc}
\text { Classical probability } & \text { Quantum state } \\
\operatorname{Pr}[A=a]=p_{a} \quad \Leftrightarrow & \rho_{A}=\left(\begin{array}{cccc}
p_{1} & 0 & \cdots & 0 \\
0 & p_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & p_{n}
\end{array}\right)=\operatorname{Tr}_{B}(|\Psi\rangle\langle\Psi|), \\
& \text { where }|\Psi\rangle_{A B}=\sum_{\mathrm{a}} \sqrt{p_{\mathrm{a}}}|a\rangle_{A} \otimes|a\rangle_{B}
\end{array}
$$

Step 1 of our game transform

Step 2 of our game transform:

\dagger For the sake of simplicity, we assume that hash functions g are linear; $k_{i}=\sum_{j} g_{i j} a_{j}, \quad g_{i}=\left(g_{i 1}, \cdots, g_{i n}\right) \in \operatorname{Ker} g$

Step 2 of our game transform:

\dagger For the sake of simplicity, we assume that hash functions g are linear; $k_{i}=\sum_{j} g_{i j} a_{j}, \quad g_{i}=\left(g_{i 1}, \cdots, g_{i n}\right) \in \operatorname{Ker} g$

Step 3 of our game transform:

\dagger For the sake of simplicity, we assume that hash functions g are linear; $k_{i}=\sum_{j} g_{i j} a_{j}, \quad g_{i}=\left(g_{i 1}, \cdots, g_{i n}\right) \in \operatorname{Ker} g$

Step 3 of our game transform:

Our virtual PA scheme:

\dagger For the sake of simplicity, we assume that hash functions g are linear; $k_{i}=\sum_{j} g_{i j} a_{j}, \quad g_{i}=\left(g_{i 1}, \cdots, g_{i n}\right) \in \operatorname{Ker} g$

Zero error in the X basis implies Security in the Z basis

- If Alice's has the zero error state in the X basis, $\rho_{A}=\left|0_{X}\right\rangle\left\langle\left. 0_{X}\right|_{A^{\prime}}\right.$ and measures it in the Z basis, the outcome is unknown to Eve
- Quantum Monogamy:
(For a composite state $\rho_{A E} \in H_{A E}$, and its sub-state $\rho_{A}=\operatorname{Tr}_{E}\left(\rho_{A E}\right)$)
" ρ_{A} is pure $\Rightarrow \rho_{A E}$ is NOT entangled"

$$
\begin{aligned}
& \text { i.e., } \rho_{A}=|a\rangle\left\langle\left. a\right|_{A} \Rightarrow \rho_{A}=\mid a\right\rangle\left\langle\left. a\right|_{A} \otimes \rho_{B}\right. \\
& \therefore \quad \rho_{A}=|a\rangle\left\langle\left. a\right|_{A} \Rightarrow \mid \Psi\right\rangle_{A B C}=|a\rangle_{A} \otimes|\psi\rangle_{B C} .
\end{aligned}
$$

- Measuring the X-eigenstate $\left|0_{X}\right\rangle$ in the Z basis \Rightarrow Uniform distribution
- X-eigenstate $\left|a_{X}\right\rangle \Leftrightarrow X\left|a_{X}\right\rangle=(-1)^{a}\left|a_{X}\right\rangle$
- $\left|a_{X}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{Z}\right\rangle+(-1)^{a}\left|1_{Z}\right\rangle\right)$

Zero error in the X basis implies Security in the Z basis

- Classical probability: $\quad P_{A E}(a, e)$
\Leftrightarrow Density matrix: $\quad \rho_{A E}=\sum_{a, e} P_{A E}(a, e)|a\rangle\left\langle\left. a\right|_{A} \otimes \mid e\right\rangle\left\langle\left. e\right|_{E}\right.$
\Rightarrow Purification: $|\Psi\rangle_{A E C}=\sum_{a, e} \sqrt{P_{A E}(a, e)}|a\rangle_{A} \otimes|e\rangle_{E} \otimes|a, e\rangle_{C}$
\Rightarrow Rewritten in the X basis:
$|\Psi\rangle_{A E C}=\sum_{b, b, e} q_{A E}\left(b+b^{\prime}, e\right)\left|b_{X}\right\rangle_{A} \otimes|e\rangle_{E} \otimes\left|b^{\prime}{ }_{X}, e\right\rangle_{C}$,
$\left.\begin{array}{l}q_{A E}(b, e):=2^{-n / 2} \sum_{a}(-1)^{b \cdot a} \sqrt{P_{A E}(a, e)}, \\ \left|b_{X}\right\rangle:=2^{-n / 2} \sum_{a}(-1)^{b \cdot a}|a\rangle\end{array}\right\}$ Discrete Fourier transform
- Uncorrelated case: $\quad P_{A E}(a, e)=2^{-n} P_{E}(e)$
\Rightarrow Zero error in the X basis: $\quad q_{A E}(b, e):=\delta_{b, 0} \sqrt{P_{E}(e)}$

LHL derived from quantum error correction

- Pure state $|\Psi\rangle_{A B E}$ equals $\rho_{A E}$ after H_{A} is measured in the Z basis and H_{B} traced out.
- Define a CSS code $P C^{g}=\left(C_{1}^{g}, C_{2}^{g}\right)=\left(\{0,1\}^{n}, \operatorname{ker} g\right)$,
then privacy amp. is equivalent to bit measurements on code states of $P C^{g}$.
- Lemma: There exists a phase error correction op. $\Pi_{A B}^{g}$ using $P C^{g}$, with the failure probability

$$
\begin{aligned}
& P_{\mathrm{ph}}\left(\Pi_{A B}^{g}(|\Psi\rangle\langle\Psi|)\right) \leq 1-F\left(P_{K E}^{g}, U_{K} \times P_{E}\right)^{2} \\
& \text { where } \quad F(\rho, \sigma):=\operatorname{Tr}\left\{\left(\rho^{1 / 2} \sigma \rho^{1 / 2}\right)^{1 / 2}\right\} \quad \text { (quantum fidelity) }
\end{aligned}
$$

- Theorem (Coding theorem): If hash function f is chosen randomly from a universal ${ }_{2}$ family F,

$$
\sum_{g} P_{G}(g) F\left(P_{K E}^{g}, U_{K} \times P_{E}\right)^{2} \leq 2^{m-H_{\min }\left(P_{A E} \mid E\right)}
$$

- Corollary: $\quad \sum_{g} P_{G}(g)\left\|P_{K E}^{g}-U_{K} \times P_{E}\right\| \leq \sum_{g} P_{G}(g) 2 \sqrt{2} \sqrt{P_{\mathrm{ph}}\left(\Pi_{A B}^{g}(|\Psi\rangle\langle\Psi|)\right)}$

$$
\leq 2 \sqrt{2} \sqrt{\sum_{g} P_{G}(g) P_{\mathrm{ph}}\left(\Pi_{A B}^{g}(|\Psi\rangle\langle\Psi|)\right)} \leq 2^{\frac{1}{2}\left[m-H_{\min }\left(P_{A E} \mid E\right)+3\right]}
$$

Leftover Hashing Lemma!

Summary

- Privacy amplification (PA) is an important algorithm in cryptography, both classical and quantum.
- The leftover hashing lemma (LHL) is useful for the security proof of PA.
- Quantum error correcting (QEC) code is an important building block of quantum information technology.
- We have shown that the LHL can be derived from QEC:
game transf.
PA $\quad \Rightarrow \quad$ QEC + measurement
Security measure of PA $\leq 2 \sqrt{2} \sqrt{\text { Failure prob. of QEC }} \leq 2 \sqrt{2} \sqrt{2^{m-H_{\text {min }}}}$ \Uparrow
Coding theorem

Quantum Key Distribution

Goal of QKD:
(1) transmit random numbers
(2) monitor eavesdropping

Goal of QKD:
(1) transmit random numbers
(2) monitor eavesdropping

Goal of QKD:
 (1) transmit random numbers
 (2) monitor eavesdropping

generate and send random number A

Outline of Our Result

There have been two major mathematical methods for proving the security of QKD:

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

Security Proof Based on Quantum Leftover Hashing Lemma (QLHL)

Virtual QKD Protocol using Quantum Error Correction (QEC)

LHL derived from quantum error correction

- $|\Psi\rangle_{A B E}$ is a pure sate which equals $\rho_{A E}$ after H_{A} diagonalized in Z basis and H_{B} traced out.
- Define a CSS code $P C^{g}=\left(C_{1}^{g}, C_{2}^{g}\right)=\left(\{0,1\}^{n}, \operatorname{ker} g\right)$, then privacy amp. is equivalent to bit measurements on code states of $P C^{g}$.
- Lemma 1: There exists a phase error correction op. $\Pi_{A B}^{g}$ using $P C^{g}$, achieving block error rate

$$
P_{\mathrm{ph}}\left(\Pi_{A B}^{g}|\Psi\rangle\right) \leq 1-F\left(\rho_{K E}^{g}, \rho_{K E}^{\text {ideal }}\right)^{2}
$$

- Lemma 2: If hash function f is chosen randomly from a universal ${ }_{2}$ family,

$$
\sum_{g} P_{G}(g) F\left(\rho_{K E}^{g}, \rho_{K E}^{\text {ideal }}\right)^{2} \leq 2^{m-H_{\min }\left(\rho_{A E} \mid E\right)}
$$

- Corollary: $\quad \sum_{g} P_{G}(g)\left\|\rho_{K E}^{g}-\rho_{K E}^{\text {ideal }}\right\| \leq \sum_{g} P_{G}(g) 2 \sqrt{2} \sqrt{P_{\mathrm{ph}}\left(\Pi_{A B}^{g}|\Psi\rangle\right)}$

Summary

	1980's	1990's	2000's	2010's
Quantum Leftover Hashing Lemma (QLHL) - Renner's approach - A variation of a method used in modern cryptography	LHL for Modern Crypto. Quantum Quantum LHL $(2005$ Renner $)$ (1984 Hastad et al.) $)$ Extention Our Result			
Quantum Error Correction (QEC) - Shor-Preskill's or Koashi's approach - A method developed originally for QKD				

- There have been two major distinct mathematical methods for proving the security of QKD.
- We have shown that they are actually equivalent; QLHL can be considered as a special case of QEC-based approach.
- This suggests that privacy amp schemes can be improved borrowing the theory of error correction; this equally applies to privacy amp schemes used in modern cryptography.

Yasuhiko Ikematsu (The University of Tokyo)

The multivariate encryption scheme HFERP

Abstract

Multivariate public key cryptography is one of the main candidates for post-quantum cryptography. In 2016, Yasuda et.al. proposed a new multivariate encryption scheme SRP. This is constructed by combining the encryption scheme Square with the signature scheme Rainbow and using the plus modifier. In 2017,however, Perlner et.al. proved that SRP is vulnerable to MinRank attack. In this talk, we will describe a new multivariate encryption scheme HFERP that we proposed at PQCrypto2018. HFERP is constructed by replacing Square part in SRP with the HFE scheme. We will explain that HFERP is invulnerable to MinRank attack. This is a joint work with R. Perlner and D. Smith-Tone and T. Takagi and J.Vates.

The multivariate encryption scheme HFERP

*Yasuhiko Ikematsu (The University of Tokyo)
Ray Perlner (NIST)
Daniel Smith-Tone (NIST, University of Louisville)
Tsuyoshi Takagi (The University of Tokyo)
Jeremy Vates (The University of Montevallo)

18 ${ }^{\text {th }}$ September 2018

What is MPKC?

Consider the following quadratic polynomials over \mathbb{F}_{31} :

$$
\begin{aligned}
& p_{1}=11 x_{1}^{2}+24 x_{1} x_{2}+5 x_{1} x_{3}+22 x_{2}^{2}+x_{2} x_{3}+17 x_{3}^{2} \\
& p_{2}=27 x_{1}^{2}+29 x_{1} x_{2}+24 x_{2}^{2}+27 x_{2} x_{3}+19 x_{3}^{2} \\
& p_{3}=4 x_{1}^{2}+6 x_{1} x_{2}+x_{1} x_{3}+25 x_{2}^{2}+27 x_{2} x_{3}+26 x_{3}^{2} \\
& \qquad P:=\left(p_{1}, p_{2}, p_{3}\right): \mathbb{F}_{31}^{3} \rightarrow \mathbb{F}_{31}^{3}
\end{aligned}
$$

$$
\begin{gathered}
\left(x_{1}, x_{2}, x_{3}\right)=(0,1,1) \quad \square P(0,1,1)=(9,8,16) \quad \text { easy to compute } \\
P\left(x_{1}, x_{2}, x_{3}\right)=(9,8,16) \quad \square\left(x_{1}, x_{2}, x_{3}\right)= \pm(0,1,1) \text { difficult to solve }
\end{gathered}
$$

What is MPKC?

1. Construct
easy-to-invert map
Easy to solve $F(x)=c$
for any element c.

$$
f_{1}=x_{1}^{2}
$$

$$
f_{2}=13 x_{1}^{2}+26 x_{1} x_{2}+x_{2}^{2}
$$

$$
f_{3}=16 x_{1}^{2}+x_{1} x_{3}+21 x_{2}^{2}+5 x_{2} x_{3}+x_{3}^{2} .
$$

$$
F:=\left(f_{1}, f_{2}, f_{3}\right): \mathbb{F}_{31}^{3} \rightarrow \mathbb{F}_{31}^{3}
$$

$$
S=\left(\begin{array}{ccc}
22 & 3 & 12 \\
1 & 0 & 27 \\
5 & 17 & 14
\end{array}\right), \quad T=\left(\begin{array}{ccc}
13 & 9 & 2 \\
0 & 7 & 17 \\
28 & 15 & 4
\end{array}\right) .
$$

3. composite

$$
P=\left(p_{1}, p_{2}, p_{3}\right):=T \circ F \circ S: \mathbb{F}_{31}^{3} \rightarrow \mathbb{F}_{31}^{3}
$$

What is MPKC?

$$
\begin{aligned}
& p_{1}=11 x_{1}^{2}+24 x_{1} x_{2}+5 x_{1} x_{3}+22 x_{2}^{2}+x_{2} x_{3}+17 x_{3}^{2}, \\
& p_{2}=27 x_{1}^{2}+29 x_{1} x_{2}+24 x_{2}^{2}+27 x_{2} x_{3}+19 x_{3}^{2}, \\
& p_{3}=4 x_{1}^{2}+6 x_{1} x_{2}+x_{1} x_{3}+25 x_{2}^{2}+27 x_{2} x_{3}+26 x_{3}^{2} . \\
& \quad P=T \circ F \circ S=\left(p_{1}, p_{2}, p_{3}\right): \mathbb{F}_{31}^{3} \rightarrow \mathbb{F}_{31}^{3} \quad \text { Public key }
\end{aligned}
$$

Bob's message

Contents

§1. MPKC (Multivariate Public Key Cryptosystems)
§2. HFE scheme
§3. HFERP scheme (Our proposal)
§4. Experimental results

Contents

§1. MPKC (Multivariate Public Key Cryptosystems)
§2. HFE scheme
§3. HFERP scheme (Our proposal)
§4. Experimental results

1-1. MPKC

-PQC • • • Post-Quantum Cryptography

- Lattice-based
- Isogeny-based
- Code-based
- MPKC
- MPKC • • • Multivariate Public Key Cryptosystem
- High-speed
- Short signature
- NIST PQC standardization in 2016

10 multivariate schemes among all 69 proposals

1-2. Easy-to-invert quadratic map

Consider m quadratic polynomials in n variables over a finite field \mathbb{F}.

$$
\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{1 \leq i \leq j \leq n} a_{i, j}^{(1)} x_{i} x_{j}+\sum_{1 \leq i \leq n} b_{i}^{(1)} x_{i}+c^{(1)} \\
& \vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{1 \leq i \leq j \leq n} a_{i, j}^{(m)} x_{i} x_{j}+\sum_{1 \leq i \leq n} b_{i}^{(m)} x_{i}+c^{(m)} . \\
& F:=\left(f_{1}, \ldots, f_{m}\right): \mathbb{F}^{n} \rightarrow \mathbb{F}^{m} \quad \text { Quadratic map }
\end{aligned}
$$

Def. Easy-to-invert

For any $d \in \mathbb{F}^{m}$, the equation $F(x)=d$ can be solved in very little complexity.

1-3. The general construction of encryption schemes

Secret key $F: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m} \quad$ easy-to-invert quadratic map Alice's $\left.\begin{array}{l}S: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n} \\ T: \mathbb{F}^{m} \rightarrow \mathbb{F}^{m}\end{array}\right)$ invertible linear maps Secret key

Alice's
Public key

Public key $P:=T \circ F \circ S: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ quadratic map

$$
=\left(p_{1}, \ldots, p_{m}\right)
$$

Ciphertext to Alice

The security of this scheme is based on solving $P(x)=c$.

1-4. MQ problem

MQ problem

Given m, n : positive integers
g_{1}, \ldots, g_{m} : quadratic polynomials in n-variables over \mathbb{F}
Find $z \in \mathbb{F}^{n}$ s.t. $g_{1}(z)=\cdots=g_{m}(z)=0$.

- MQ problem is proven to be NP-complete. [Fraenkel et al. Dis. Appl. Math. 1, ${ }^{\text {79] }}$
- The security of MPKC is based on MQ problem " $P(x)=c$ ".

1-5. The history of MPKC encryption schemes

XMI (Or C*) [Matsumoto-Imai Eurocrypt'88], [Patrin Crypto'95]
XHFE [Patarin Eurocrypt'96], [Bettale et al. Des. Codes and Cryptogr'13]

- ABC [Tao et al. PQC' 13]
\times ZHFE [Porras et al. PQC'14], [Cabarcas et al. PQCrypto'17]
XSRP [Yasuda et al. ICICS'15], [PerIner et al. SAC'17]
- EFC [Szepieniec et al. PQC'16]
- HFERP [Ikematsu et al. PQC'18]
- EFLASH [Cartor et al. SAC'18]

1-6. Direct attack

- Direct attack • • To solve $P(x)=c$ using Gröbner basis

Complexity of F4 algorithm for $P(x)=c$

$$
O\left(\binom{n+d_{\text {reg }}}{d_{\text {reg }}}^{2} \cdot\binom{n}{2}\right) \quad d_{\text {reg }} \geq 1: \begin{aligned}
& \text { degree of } \\
& \text { regularity of } P=\left(p_{1}, \ldots, p_{m}\right)
\end{aligned}
$$

Difficult to estimate the degree of regularity

1-7. Structure attack

For $g \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, let $g^{(2)}$ be the quadratic part of g.
Choose an $n \times n$ matrix G s.t. $g^{(2)}(x)=x \cdot G \cdot x^{t}, x=\left(x_{1}, \ldots, x_{n}\right)$.
Matrix repre. of $g^{(2)}$

$$
Q_{g}:= \begin{cases}\frac{1}{2}\left(G+G^{t}\right) & \operatorname{char}(\mathbb{F}) \neq 2, \\ G+G^{t} & \operatorname{char}(\mathbb{F})=2 .\end{cases}
$$

From slide2 $\quad Q_{f_{1}}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad Q_{f_{2}}=\left(\begin{array}{ccc}13 & 13 & 0 \\ 13 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), \quad Q_{f_{3}}=\left(\begin{array}{ccc}16 & 16 & 1 \\ 16 & 21 & 18 \\ 1 & 18 & 1\end{array}\right)$.
From slide3 $Q_{p_{1}}=\left(\begin{array}{lll}11 & 12 & 18 \\ 12 & 22 & 16 \\ 18 & 16 & 17\end{array}\right), Q_{p_{2}}=\left(\begin{array}{ccc}27 & 30 & 0 \\ 30 & 24 & 29 \\ 0 & 29 & 19\end{array}\right), Q_{p_{3}}=\left(\begin{array}{ccc}4 & 3 & 16 \\ 3 & 25 & 29 \\ 16 & 29 & 26\end{array}\right)$.

1-7. Structure attack

$$
\begin{aligned}
& F=\left(f_{1}, \ldots, f_{m}\right), \quad P=\left(p_{1}, \ldots, p_{m}\right):=T \circ F \circ S \\
& \operatorname{Span}\left\{Q_{p_{1}}, \ldots, Q_{p_{m}}\right\}=\operatorname{Span}\left\{S \cdot Q_{f_{1}} \cdot S^{t}, \ldots, S \cdot Q_{f_{m}} \cdot S^{t}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Slide2 and 3 } \\
& \operatorname{Span}\left\{\left(\begin{array}{lll}
11 & 12 & 18 \\
12 & 22 & 16 \\
18 & 16 & 17
\end{array}\right),\left(\begin{array}{ccc}
27 & 30 & 0 \\
30 & 24 & 29 \\
0 & 29 & 19
\end{array}\right),\left(\begin{array}{ccc}
4 & 3 & 16 \\
3 & 25 & 29 \\
16 & 29 & 26
\end{array}\right)\right\} \\
& \quad=\operatorname{span}\left\{S \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot S^{t}, S \cdot\left(\begin{array}{ccc}
13 & 13 & 0 \\
13 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot S^{t}, S \cdot\left(\begin{array}{ccc}
16 & 16 & 1 \\
16 & 21 & 18 \\
1 & 18 & 1
\end{array}\right) \cdot S^{t}\right\}
\end{aligned}
$$

If the matrix repre's of F have a feature, then an attacker may be able to break from P using them.

1-8. Summary of MPKC

- An MPKC scheme has three objects as secret key :
F : easy-to-invert quadratic map,
S, T : two random invertible maps.
- Public key is given by $P=T \circ F \circ S$
- There are two kinds of attacks against MPKC :

Direct attack and Structure attack.
To propose an MPKC scheme

To propose how to construct an easy-to-invert quadratic map

Contents

§1. MPKC (Multivariate Public Key Cryptosystems)

§2. HFE scheme

§3. HFERP scheme (Our proposal)

§4. Experimental results

2-1. HFE(Hidden Field Equation) scheme

HFE scheme

- is constructed using an extension field.
- was proposed by Patarin at Eurocrypt'96.
- is an extension of Matsumoto-Imai scheme.

Notations $\quad \mathbb{F}$: finite field with q elements
$\mathbb{E}: d$ extension field of \mathbb{F}
$\left(\theta_{1}, \ldots, \theta_{d}\right)$: basis of \mathbb{E} / \mathbb{F}
$\phi: \mathbb{F}^{d} \ni\left(x_{1}, \ldots, x_{d}\right) \mapsto \sum_{i} x_{i} \theta_{i} \in \mathbb{E} \quad$ (F-linear isom.)
Fix a positive integer D.

2-2. The construction of HFE scheme

HFE polynomial with degree D

$$
H(X)=\sum_{q^{i}+q^{j} \leq D} a_{i, j} X^{q^{i}+q^{j}}, \quad a_{i, j} \in \mathbb{E} . \quad \text { (Call } D \text { HFE degree) }
$$

HFE (quadratic) $\operatorname{map} F_{H}$
 Quadratic map (*)
(*) $\quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{F}^{d}, \quad X=\phi\left(x_{1}, \ldots, x_{d}\right)=x_{1} \theta_{1}+\cdots+x_{d} \theta_{d}$.

$$
\begin{aligned}
X^{q^{i}+q^{j}} & =X^{q^{i}} \cdot X^{q^{j}}=\left(x_{1} \theta_{1}^{q^{i}}+\cdots+x_{d} \theta_{d}^{q^{i}}\right) \cdot\left(x_{1} \theta_{1}^{q^{j}}+\cdots+x_{d} \theta_{d}^{q^{j}}\right) \\
& =\left(\text { quad in } x_{1}, \ldots, x_{d}\right) \theta_{1}+\cdots+\left(q u a d \text { in } x_{1}, \ldots, x_{d}\right) \theta_{d} .
\end{aligned}
$$

2-2. The construction of HFE scheme

Secret key $F_{H}: \mathbb{F}^{d} \rightarrow \mathbb{F}^{d}$ easy-to-invert quadratic map
$S, T: \mathbb{F}^{d} \rightarrow \mathbb{F}^{d}$ invertible linear maps
Publickey $P:=T \circ F_{H} \circ S: \mathbb{F}^{d} \rightarrow \mathbb{F}^{d}$ quadraticmap

- How to solve $F_{H}\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$.

1. Compute $C:=\phi\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{E}$.

X_{0}		C
m	$H(X)$	m
$\mathbb{E} \xrightarrow{(}$	\mathbb{E}	

2. Find a solution X_{0} of $H(X)=C$ by Berlekamp algorithm. $\quad\left(c_{1}, \ldots, c_{d}\right)$
3. Compute $m_{0}:=\phi^{-1}\left(X_{0}\right) \in \mathbb{F}^{d}$.

The complexity of Berlekamp algorithm

$$
\mathcal{O}\left(D^{3}+d D^{2} \log q\right)
$$

2-3. Direct attack for HFE

Theorem [Ding et al. CRYPTO'11]
$d_{\text {reg }}(P)=d_{\text {reg }}\left(F_{H}\right) \leq\left\{\begin{array}{c}2+(q-1)\left[\log _{q} D\right] / 2, \quad q: \text { odd or }\left[\log _{q} D\right\rceil \text { : even } \\ 1+(q-1)\left(\left\lceil\log _{q} D\right\rceil+1\right) / 2, \text { otherwise }\end{array}\right.$
(*) For small q and sufficiently large $n, d_{\text {reg }}\left(F_{H}\right)$ is considered to be the upper bound experimentally.
The complexity of direct attack for HFE:

$$
\mathcal{O}\left(\binom{d+d_{r e g}\left(F_{H}\right)}{d_{r e g}\left(F_{H}\right)}^{2}\binom{d}{2}\right)
$$

2-4. MinRank attack for HFE

(HFE polynomial with bound D)
$H(X)=\sum_{q^{i}+q^{j} \leq D} a_{i, j} X^{q^{i}+q^{j}}=\left(\begin{array}{llll}X & X^{q} & \cdots & X^{q^{d-1}}\end{array}\right)\left(\begin{array}{cccc}a_{1,1} & a_{1,2} & \cdots & 0 \\ a_{2,1} & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{c}X \\ X^{q} \\ \vdots \\ X^{q^{d-1}}\end{array}\right)$
$\square \exists \alpha_{1}, \ldots, \alpha_{d} \in \mathbb{E}$ s.t. $\operatorname{Rank}\left(\alpha_{1} Q_{p_{1}}+\cdots+\alpha_{d} Q_{p_{d}}\right)=\left\lceil\log _{q} D\right\rceil$.
MinRank attack is to find such $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{E}$
by computing the zero of all the minors of size $\left\lceil\log _{q} D\right\rceil+1$.
Theorem [Bettale et al. Des. Codes Crypt. 69 2013]
The complexity of MinRank attack is $\mathcal{O}\left(\binom{d+\left[\log _{q} D\right]}{\left[\log _{q} D\right\rceil}^{2}\binom{d}{2}\right)$.

2-5. Summary of HFE scheme

- HFE scheme is constructed by $H(X)=\sum_{q^{i}+q^{j} \leq D} a_{i, j} X^{q^{i}+q^{j}}$.
- The complexity of decryption is $\mathcal{O}\left(D^{3}+d D^{2} \log q\right)$.
- The complexity of direct attack is $\mathcal{O}\left(\binom{d+d_{\text {rege }}\left(F_{H}\right)}{d_{\text {reg }}\left(F_{H}\right)}^{2}\binom{d}{2}\right)$.

$$
d_{\text {reg }}(P)=d_{\text {reg }}\left(F_{H}\right) \leq\left\{\begin{array}{c}
2+(q-1)\left\lceil\log _{q} D\right\rceil / 2, \quad q \text { : odd or }\left[\log _{q} D\right\rceil \text { : even } \\
1+(q-1)\left(\left\lceil\log _{q} D\right\rceil+1\right) / 2, \text { otherwise. }
\end{array}\right.
$$

- The complexity of MinRank attack is $\mathcal{O}\left(\binom{d+\left[\log _{q} D\right]}{\left[\log _{q} D\right\rceil}^{2}\binom{d}{2}\right)$.
- Trade-off between decryption efficiency and security.

Contents

§1. MPKC (Multivariate Public Key Cryptosystems)

§2. HFE scheme

§3. HFERP scheme (Our proposal)

§4. Experimental results

3-1. HFERP scheme

HFERP scheme • is our proposal at PQC'18.

- is an extension of SRP encryption scheme.
- is constructed as SRP with HFE replacing Square.

Notations $\quad \mathbb{F}$: finite field with q elements
$d, o_{1}, o_{2}, r_{1}, r_{2}, s$: positive integers
$\mathbb{E}: d$ extension field of \mathbb{F}
$n:=d+o_{1}+o_{2}, m:=d+o_{1}+o_{2}+r_{1}+r_{2}+s$
D : positive integer (HFE degree)

3-2. The construction of HFERP

$$
x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{o_{1}}\right), \quad z=\left(z_{1}, \ldots, z_{o_{2}}\right) n \text {-variables }
$$

HFERP := Plus modifier of (HFE scheme + Rainbow scheme)
Construction of east-to-invert map

- HFE map $F_{H}: \mathbb{F}^{d} \ni x \rightarrow F_{H}(x) \in \mathbb{F}^{d}$, where $H(X)=\sum_{q^{i}+q^{j} \leq D} a_{i, j} X^{q^{i}+q^{j}}$
- First Rainbow map $f_{1}(x, y)=\sum a_{i, j}^{(1)} x_{i} y_{j}+$ quad poly.in x

$$
F_{R 1}:=\left(f_{1}, \ldots, f_{o_{1}+r_{1}}\right): \mathbb{F}^{d+o_{1}} \longrightarrow \mathbb{F}^{o_{1}+r_{1}}
$$

3-2. The construction of Rainbow

- Second Rainbow map

$$
\left.\begin{array}{l}
f_{1}^{\prime}(x, y, z)=\sum a_{i, j}^{\prime(1)} x_{i} z_{j}+\sum b_{i, j}^{\prime(1)} y_{i} z_{j}+\text { quad poly.in } x, y \\
\vdots \\
f_{o_{2}+r_{2}}^{\prime}(x, y, z)=\sum a_{i, j}^{\prime\left(o_{2}+r_{2}\right)} x_{i} z_{j}+\sum b_{i, j}^{\prime\left(o_{2}+r_{2}\right)} y_{i} z_{j}+\text { quad poly.in } x, y \\
\qquad F_{R 2}:=\left(f_{1}^{\prime}, \ldots, f_{o_{2}+r_{2}}^{\prime}\right): \mathbb{F}^{n} \rightarrow \mathbb{F}^{o_{2}+r_{2}} \\
\text { dom map } \\
g_{1}(x, y, z)=\text { quad poly.in } x, y, z \\
\vdots \\
g_{S}(x, y, z)=\text { quad poly.in } x, y, z \\
\left.F_{P}:=\left(g_{1}, \ldots, g_{s}\right): \mathbb{F}^{n} \rightarrow \mathbb{F}^{s}+r_{2}\right) \text {-linear poly. } \\
\text { in } o_{2} \text {-variables } z
\end{array}\right]
$$

- Random map

3-2. The construction of HFERP

Combining the quadratic polynomials

$$
F_{H}(x), F_{R 1}(x, y), F_{R 2}(x, y, z), F_{P}(x, y, z)
$$

we get the following quadratic map :

$$
F_{H F E R P}:=\left(F_{H}, F_{R 1}, F_{R 2}, F_{P}\right): \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}
$$

Secret key $F_{H F E R P}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ easy-to-invert quadratic map
$\left.\begin{array}{l}S: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n} \\ T: \mathbb{F}^{m} \rightarrow \mathbb{F}^{m}\end{array}\right) \quad$ invertible linear maps
Publickey $P:=T \circ F_{H F E R P} \circ S: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ quadratic map

3-3. The decryption of HFERP

- How to solve $F_{H F E R P}(x, y, z)=\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}^{m}$.

1. Find a solution $x_{0} \in \mathbb{F}^{d}$ of $F_{H}(x)=\left(c_{1}, \ldots, c_{d}\right)$.
2. Find a solution y_{0} of the linear system in y

$$
F_{R 1}\left(x_{0}, y\right)=\left(c_{d+1}, \ldots, c_{d+o_{1}+r_{1}}\right)
$$

3. Find a solution z_{0} of the linear system in z

$$
F_{R 2}\left(x_{0}, y_{0}, z\right)=\left(c_{d+o_{1}+r_{1}+1}, \ldots, c_{m-s}\right)
$$

4. Check $F_{H F E R P}\left(x_{0}, y_{0}, z_{0}\right)=\left(c_{1}, \ldots, c_{m}\right)$.

The complexity of decryption: $\mathcal{O}\left(D^{3}+d D^{2} \log q\right) \quad(d<n)$

3-4. About Rainbow and SRP

Rainbow scheme • is a multivariate signature scheme.

- was proposed by Ding. et al. at ACNS’05.

$$
F_{\text {Rainbow }}:=\left(F_{R 1}, F_{R 2}\right): \mathbb{F}^{n} \rightarrow \mathbb{F}^{m} \text {, where } r_{1}=r_{2}=s=0 .
$$

SRP scheme

- is a multivariate encryption scheme.
- was proposed by Yasuda. et al. at ICICS'15.
- is the original of HFERP scheme.
- uses square map instead of HFE map.
- was broken by MinRank attack. [PerIner et al. SAC'17]

Square map $\quad F_{H}: \mathbb{F}^{d} \ni x \mapsto F_{H}(x) \in \mathbb{F}^{d}$, where $H(X)=X^{2}$.

3-6. Direct attack for HFERP

Degree of regularity for HFERP
$d_{\text {reg }}\left(F_{H F E R P}\right) \leq d_{\text {reg }}\left(F_{H}\right) \leq\left\{\begin{array}{c}2+(q-1)\left\lceil\log _{q} D\right\rceil / 2, q: \text { odd or }\left[\log _{q} D\right\rceil \text { : even } \\ 1+(q-1)\left(\left\lceil\log _{q} D\right\rceil+1\right) / 2, \quad \text { otherwise }\end{array}\right.$

The complexity of direct attack for HFERP:

$$
\mathcal{O}\left(\binom{n+d_{r e g}\left(F_{H F E R P}\right)}{d_{r e g}\left(F_{H F E R P}\right)}^{2}\binom{n}{2}\right), \text { where } n=d+o_{1}+o_{2}
$$

3-7. MinRank attack for HFERP

$$
\begin{aligned}
& \text { (HFE polynomial with bound D) } \\
& \qquad \begin{aligned}
H(X)= & \sum_{q^{i}+q^{j} \leq D} a_{i, j} X^{q^{i}+q^{j}}=\left(\begin{array}{llll}
X & X^{q} & \cdots & X^{q^{d-1}}
\end{array}\right)\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & 0 \\
a_{2,1} & a_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
X \\
X^{q} \\
\vdots \\
X^{q^{d-1}}
\end{array}\right) \\
& \operatorname{Rank}\left\lceil\log _{q} D\right\rceil
\end{aligned} \\
& \exists \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{E} \text { s.t. } \operatorname{Rank}\left(\alpha_{1} Q_{p_{1}}+\cdots+\alpha_{m} Q_{p_{m}}\right)=\left\lceil\log _{q} D\right\rceil .
\end{aligned}
$$ MinRank attack is to find such $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{E}$.

The complexity of MinRank attack for HFERP:

$$
\mathcal{O}\left(\binom{m+\left\lfloor\log _{q} D\right\rfloor}{\left\lceil\log _{q} D\right\rceil}^{2}\binom{m}{2}\right), \text { where } m=d+o_{1}+o_{2}+r_{1}+r_{2}+s
$$

- SRP is broken by MinRank attack, since $\left\lceil\log _{q} D\right\rceil=\left\lceil\log _{q} 2\right\rceil=2$.

3-8. Other attacks for HFERP

There are other attacks for Rainbow are applicable to HFERP.

1. HighRank attack
2. UOV invariant attack
3. Linear-algebra-search version of MinRank attack

3-9. Summary of HFERP scheme

- HFERP = Plus modifier of (HFE scheme + Rainbow scheme)
- The complexity of decryption is $\mathcal{O}\left(D^{3}+d D^{2} \log q\right) . \quad\left(n=d+o_{1}+o_{2}\right)$
- The complexity of direct attack is $\mathcal{O}\left(\binom{n+d_{r e g}\left(F_{H F E R P}\right)}{d_{r e g}\left(F_{H F E R P}\right)}^{2}\binom{n}{2}\right)$.

$$
d_{\text {reg }}(P)=d_{\text {reg }}\left(F_{H F E R P}\right) \leq\left\{\begin{array}{c}
2+(q-1)\left\lceil\log _{q} D\right\rceil / 2, \quad q: \text { odd or }\left[\log _{q} D\right\rceil: \text { even } \\
1+(q-1)\left(\left[\log _{q} D\right\rceil+1\right) / 2, \text { otherwise. }
\end{array}\right.
$$

- The complexity of MinRank attack is $\left.\mathcal{O}\binom{m+\left[\log _{q} D\right]}{\left[\log _{q} D\right\rceil}^{2}\binom{m}{2}\right)$.
- Trade-off between decryption efficiency and security. X, D

Contents

§1. MPKC (Multivariate Public Key Cryptosystems)

§2. HFERP scheme (Our proposal)

§3. Attacks against HFERP scheme

§4. Experimental results

4-1. Parameter selection for HFERP

128-bit security parameter of HFERP

We take $\mathbb{F}=\mathbb{F}_{3}$.

4-2. Direct attack experiment data for HFERP

(1) $D=3^{7}+1,\left(d=85, o_{1}=o_{2}=70, r_{1}=r_{2}=89, s=61\right)$

$$
d_{\text {reg }} \leq 2+\frac{(q-1)\left\lceil\log _{q} D\right]}{2}=2+8=10 . \quad<\alpha=25
$$

$d \fallingdotseq 3.4 \alpha, o_{1}=o_{2} \fallingdotseq 2.8 \alpha, r_{1}=r_{2} \fallingdotseq 3.56 \alpha, s \fallingdotseq 2.44 \alpha,(\alpha=1,2,3,4)$

$\left(d_{1} \boldsymbol{o}_{1}, \boldsymbol{o}_{2}, r_{1}, r_{2}, s\right)$	n	m	$d_{\text {reg }}$ (HFERP)	$d_{\text {reg }}$ (Random)
$(3,3,3,4,4,2)$	9	19	$3,3,3,3,3$	$3,3,3,3,3$
$(7,6,6,7,7,5)$	19	38	$4,4,4,4,4$	$5,5,5,5,5$
$(10,8,8,11,11,7)$	26	55	$5,5,5,5,5$	$5,5,5,5,5$
$(14,11,11,14,14,10)$	36	74	5	5

The degree of regularity of the small scale instances of HFERP grows in relation to that of random schemes.

$$
\begin{aligned}
& \text { Estimate } \\
& d_{\text {reg }}=10
\end{aligned}
$$

4-2. Direct attack experiment data for HFERP

(2) $D=3^{9}+1,\left(d=60, o_{1}=o_{2}=40, r_{1}=r_{2}=23, s=40\right)$

$$
d_{\text {reg }} \leq 2+\frac{(q-1)\left[\log _{q} D\right\rceil}{2}=2+10=12 . \quad<\alpha=25
$$

$d \fallingdotseq 2.4 \alpha, o_{1}=o_{2} \fallingdotseq 1.6 \alpha, r_{1}=r_{2} \fallingdotseq 0.92 \alpha, s \fallingdotseq 1.6 \alpha,(\alpha=2,3,4,5)$

$\left(d_{0}, \boldsymbol{o}_{\mathbf{1}}, r_{1}, r_{2}, s\right)$	n	m	$d_{\text {reg }}$ (HFERP)	$d_{\text {reg }}$ (Random)
$(5,3,3,2,2,3)$	11	18	$4,4,4,4,4$	$4,4,4,4,4$
$(7,5,5,3,3,5)$	17	28	$4,4,4,4,4$	$5,5,5,5,5$
$(10,6,6,4,4,6)$	22	36	$5,5,5,5,5$	$5,5,5,5,5$
$(12,8,8,5,5,8)$	28	46	5,5	5,5

The degree of regularity of the small scale instances of HFERP grows in relation to that of random schemes.

> Estimate
$d_{\text {reg }}=12$

4-3. Improving on HFERP decryption

$$
\begin{aligned}
H(X) & =\sum_{3^{i}+3^{j} \leq D} a_{i, j} X^{3^{i}+3^{j}} \\
H^{\prime}(X) & :=\sum_{3^{i}+3^{j} \leq D} a_{i, j} X^{\frac{3^{i}+3^{j}}{2}} \quad D / 2 \text { degree }
\end{aligned}
$$

- We solve the equations $H^{\prime}(X)=c$ and $X^{2}=c^{\prime}$ instead of $H(X)=c$ in decryption process.

The complexity of decryption

$$
\mathcal{O}\left(D^{3}+d D^{2} \log q\right) \quad \mathcal{O}\left(\frac{1}{8} D^{3}+\frac{1}{4} d D^{2} \log q\right)
$$

4-4. Experimental results for HFERP

> (1) $D=3^{7}+1$ $\left(d=85, o_{1}=o_{2}=70, r_{1}=r_{2}=89, s=61\right) \quad\left(d=60, o_{1}=o_{2}=40, r_{1}=r_{2}=23, s=40\right)$

Key Generation	12.057 s
Encryption	0.007 s
Decryption	6.605 s
Secret Key Size	1344.0 KB
Public Key Size	2905.7 KB

Key Generation	2.005 s
Encryption	0.003 s
Decryption	87.726 s
Secret Key Size	226.0 KB
Public Key Size	552.3 KB

HFE scheme with $d=464$.

Key Generation	72.084 s
Decryption	190.940 s

HFE scheme with $d=226$.

Key Generation	8.298 s
Decryption	1414.718 s

4-5. Minus modifier

a : integer
$F_{H}\left(x_{1}, \ldots, x_{d}\right)=\left(f_{1}, \ldots, f_{d}\right)$: easy-to-invert map of HFE scheme
$F_{H^{-a}}\left(x_{1}, \ldots, x_{d}\right):=\left(f_{1}, \ldots, f_{d-a}\right): \mathbb{F}^{d} \rightarrow \mathbb{F}^{d-a}$

- HFE^{-a} scheme $\stackrel{\text { def }}{ }$ Easy-to-invert map : $F_{H^{-a}}\left(x_{1}, \ldots, x_{d}\right)$ How to solve $F_{H^{-a}}\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d-a}\right)$.

1. Choose $c_{d-a+1}, \ldots, c_{d} \in \mathbb{F}$.
2. Find a solution s of $F_{H}\left(x_{1}, \ldots, x_{d}\right)=\left(c_{1}, \ldots, c_{d}\right)$.
3. If it does not exists, go back to step1.

4-5. Minus modifier

[Ding et al. Journal of Math-for-Industry Vol. 4 2012] and
[Vates et al. PQC'17] show that

$$
\begin{aligned}
& \text { (Security of } \left.H F E^{-a} \text { with } D^{\prime}=q^{r-a}+1\right) \\
\fallingdotseq & \text { (Security of HFE with } \left.D=q^{r}+1\right)
\end{aligned}
$$

The complexity of decryption of $H F E^{-a}$ with $D^{\prime}=q^{r-a}+1 \fallingdotseq q^{-a} D$

$$
\mathcal{O}\left(q^{-2 a} D^{3}+d q^{-a} D^{2} \log q\right)
$$

4-6. Experimental results for HFERP minus modifier

HFERP minus modifier is replacing HFE part with $H F E^{-a}$ scheme.

$$
\begin{aligned}
& \text { (1) } D=3^{7-a}+1 \\
& \text { (2) } D=3^{9-a}+1 \\
& d=85, o_{1}=o_{2}=70, r_{1}=r_{2}=89, \quad d=60, o_{1}=o_{2}=40, r_{1}=r_{2}=23 \text {, } \\
& s=61+a \\
& \text { Decryption } \\
& \text { (max, min, average) } \\
& s=40+a
\end{aligned}
$$

Conclusion

- HFERP is constructed as SRP with HFE replacing Square.
- The substitution makes MinRank attack infeasible for HFERP.
- The substitution makes the decryption of HFERP efficient.

Future works

- Analysis for direct attack against HFERP minus modifier.
- Optimization of the implementation of HFERP minus modifier.

Yutaka Shikano (Keio University)

How to understand the cloud quantum computer

Abstract

Recently, commercial-based quantum computing service was started through the cloud. Keio University was selected as the Asian IBM Q Hub and has the cloud access right to use the 20 -qubits quantum computers. Since quantum computers are too sensitive, it is too difficult to understand the "current" status of the cloud quantum computer. In this talk, I would like to introduce how to understand the status through the cloud service. Also, the current target application will be discussed if possible.

Preface

OMG....
"Mathematical approach for quantum information society"

Today's talk is no mathematics.
Today, I will talk about the recent progress of superconducting-qubit type quantum computer and how to understand it.

Keio University

Quantum Computing Center

(since 2018.4.1.) IBM-Q Hub

Naoki Yamamoto
Director
Associate Professor Quantum control theory

Kohei Itoh
Professor
Silicon quantum dot

Yutaka Shikano
Project Associate Professor
Quantum theory

Takeharu Sekiguchi
Project Associate Professor
Spin quantum information

Hiroshi Watanabe
Project Lecturer
Molecular dynamics simulation

Takahiko Satoh
Project Assistant Professor
Quantum networking

Yoichi Suzuki
Project Associate Professor
Chemical physics

Eriko Kaminishi
Project Assistant Professor
Statistical physics

1946 ENIAC

First electrical computer

First commercial computer

Computation forgot Physics till 1980s.

John Archibald Wheeler (1911-2008)

He is the naming founder of black hole. He said "It from Bit".

His students became our legends.

Physics of Computation Conference Endicott House MIT May 6-8, 1981

1 Freetran Dyion 2 Giggory Chatin 3 Jumes Crutchfidd 4)Notman Puctiod 5 Panos Ligomenides 6 jesorec Rothitein 7 Cad Hexit:
8 Notman Hasdy
9 Edaard Frodkin 10 Tom Toffoh 11 Rolf Landsuer 12 Johe Whoder

13 Frederick Kantor 14 Dind Leinveber 15 Konrad Zuse 15 Bernatd Zeige 17 Carl Adam Petri 18 Anitol Holt 19 Roland Volmar 20 Hant Bocmerma 21 Donad Greenspan 22 Markas Borthiker 23 Otto Fibberth 24 Robert Lewis

25 Robert Suaya 26 Stan Kiges 27 Ba Gorper 28 Lutr Prieve 39 Madhu Gupta 30 Puil Benioff 31 Hans Monsvec 32 Ian Puchasds 33 Manan Pous-EI 34 Dinny Hilat 35 Arthar Burks 36 john Cocke

37 Crooge Mchach 38 Ruchaod Fejnman 39 t wutet Ingham 40 Thagarijan 417
42 Getasd Vichriac
43 Leotis Leva
4 Lev Levitin
45 Peter Gues 46 Din Greenbenger

Turing machine does not use

 right physics!!

Proc. R. Soc. Lond. A 400, 97-117 (1985) Printed in Great Britain

Quantum theory, the Church-Turing principle and the universal quantum computer

By D. Deutsch
Department of Astrophysics, South Parks Road, Oxford OX1 3RQ, U.K.
(Communicated by R. Penrose, F.R.S. - Received 13 July 1984)

1 qubit system

Superconducting qubit
 = Non-linear resonator

Blackbody radiation (uncontrollable)

At 500 mK , the single microwave photon is emitted.

How to cool down?

Reality

B El. field $|\vec{E}|$, norm. 0 1

C

2 dimensional case

Qubit representation (Bloch sphere)

 $\mathcal{H}=\mathbb{C}^{n} \quad \mathrm{n}=2$: qubit (quantum bit)

Rotation operation

$$
\begin{aligned}
& R_{x}(\theta) \equiv e^{-i \theta X / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} X=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right] \\
& R_{y}(\theta) \equiv e^{-i \theta Y / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Y=\left[\begin{array}{ccc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right] \\
& R_{z}(\theta) \equiv e^{-i \theta Z / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Z=\left[\begin{array}{cc}
e^{-i \theta / 2} & 0 \\
0 & e^{i \theta \theta / 2}
\end{array}\right]
\end{aligned}
$$

Due to the qubit frequency, the operation speed is determined. $5 \mathrm{GHz}->0.2 \mathrm{nsec}$

Qubit measurement

Measurement error

B

Due to the quantum noise, we cannot perfectly take the measurement.

Noise sources

Qubit quality check schemes

Recently, the qubit coherence time does not satisfy "Quantum Moore's law".

Fidelity Zoo

State fidelity

$$
F(\rho, \sigma)=(\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}})^{2}
$$

Gate fidelity

$$
F_{U}=(\operatorname{Tr} \sqrt{\sqrt{\mathcal{E}(\rho)} U(\rho) \sqrt{\mathcal{E}(\rho)}})^{2}
$$

Quantum Process Tomography

$$
\left.\left.\mid \psi_{m}^{\prime}\right) \in\{(10),|1,|(0)+| 1\rangle,|0\rangle+i 11\rangle\right\}^{22} \quad \rho_{m 1}^{\prime}=\left|\psi_{m}^{\prime}\right\rangle\left\langle\left\langle\psi_{m}^{\prime}\right|\right.
$$

$$
P_{\text {out }}^{\text {process }}=\mathcal{E}\left(O_{i n}\right)=\sum_{i j}^{\text {map }} \mathcal{E}_{i j} \in\left\{I, \sigma_{i}, i \sigma_{y}, \sigma_{z}\right\}_{i n}^{\otimes 2}
$$

Example: identity operator

Randomized Benchmarking (RB)

1. Qubit initialization

$$
\bar{F}=\frac{1+p}{2}
$$

2. Randomized Clifford circuit operated.
3. The inversed randomized Clifford circuit operated.
4. Qubit measurement $\bar{p}_{L}^{\prime}=\frac{1}{K} \sum_{k=1}^{K} p_{L, k}^{\prime}$

more qubits system

Two-qubit interaction methods

Direct coupling (Flux-tuning)

C-X gate /
isWAP gate

Google

Indirect coupling (Drive-tuning)

Gate-type Quantum Computing Developers

Wiring spaghetti problem

90% hardware problems on quantum computer are in classical problem.

Each connector has the slightly different properties.
Therefore, the ground level is not stable.

IBM Q 5 Tenerife [ibmqx4]

Last Calibration: 2018-09-16 18:59:43

T1 / Echo

Q0

$\begin{array}{lllll}62.40 & 55.10 & 48.40 & 59.00 & 53.30\end{array}$
$\begin{array}{lllll}77.50 & 64.00 & 54.70 & 57.30 & 36.40\end{array}$

1.37	1.37	2.23	1.72	0.94
2.40	2.60	3.00	2.20	4.50
CX0_1	CX1_2		CX3_2 2	CX4_2
2.72	3.77		3.97	3.51
CX0_2			CX3_4	
4.18			3.62	

Shor's algorithm ($\mathrm{N}=15, \mathrm{x}=11$)

\square ibmex4: 12 qubits and 192 gates needed

Factoring of 4088459 can be mapped to the two-qubit search problem.

arXiv:1805.10478

$$
2017 \times 2027=4088459
$$

Factoring problems on specific numbers can be easily solved by quantum computer.

Next investigation: Error correction

Majority rule of the measurement bit can be applied.

The error correction code cannot be scaled above the several errors conditions.

Let's see ibmqx4

\checkmark IBMQ 5 Tenerife [ibmqx4]

Last Calibration: 2018-09-16 18:59:43

	$\mathrm{Q0}$	Q 1	Q 2	Q 3	Q 4
Frequency $(\mathbf{\mathrm { Hz }})$	5.25	5.30	5.35	5.43	5.18
$\mathbf{T 1}(\boldsymbol{\mathrm { s }})$	42.70	19.30	44.60	55.50	43.00
$\mathbf{T 2}(\mathrm{\mu s})$	32.60	5.10	27.60	14.40	13.30
Gate error $\left(\mathbf{1 0 ^ { - 3 }}\right)$	0.77	5.67	1.20	2.32	1.29
Readout error $\left(1 \mathbf{1 0}^{-2}\right)$	7.60	10.20	3.40	7.70	16.00

We cannot take the accurate

computational tasks.

From the calibration date, under the independent noise and error for each qubit, we can estimate the successful probability "00000" as 62%.

The real device is $5899 / 8192=73 \%$.

from qiskit import QuantumProgram
$\mathrm{qp}=$ QuantumProgram()
$\mathrm{qr}=\mathrm{qp} . \mathrm{create}$ _quantum_register('qr', 2)
$\mathrm{cr}=\mathrm{qp} . \mathrm{create} \mathrm{classical} \mathrm{_register('cr'}, \mathrm{2)}$
qc = qp.create_circuit('Bell', [qr], [cr])
qc.h(qr[0])
qc.cx(ar[0], $\operatorname{qr}[1])$
qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
result = qp.execute('Bell')
print(result.get_counts('Bell'))

QISKit

Quantum Information Software Kit

Looking for the applications

Nature 549, 242-246 (2017)

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

Conclusion and Outlook

－We review the short history of （superconducting－qubit type）quantum computation．
－How robust the algorithm against the realistic noises？
－Next algorithm development is required．In my personal opinion，we have to find the quantum unique／original problem to hardly define such problem in classical mind．

量子情報技術研究会（QIT）

- QIT39＠東京大学先端科学技術研究センター
- 2018年11月26日（月）～27日（火）
- 招待講演者
- 上妻幹夫（東京工業大学）／笠原裕一（京都大学）／ Francesco Buscemi（名古屋大学）／伊與田英輝（東京大学）
- ロ頭講演申込：2018年10月12日（金）
- ポスター発表申込：2018年10月26日（金）
－https：／／staff．aist．go．jp／s－kawabata／qit／qit39／
- QIT40＠九州大学
- 2019年春（例年：6月頃）

Hirotake Kurihara (Kitakyushu College)

POVM from the viewpoints of combinatorics

Abstract

In quantum theory, measurements are represented by positive operator valued measures (POVMs). In my talk, a POVM is a finite set of Hermite matrix with some properties. It is known that when each element of a measurement is a rank-one matrix, the measurement is maximally efficient at determining the state. In this situation, such a measurement is regarded as a finite subset on a complex projective space. In other hand, "good" finite subsets on complex projective spaces have been studied in combinatorics. In my talk, I will discuss "goodness" of measurements from the viewpoints of combinatorics.

POVM from the viewpoints of combinatorics

Hirotake Kurihara
National Institute of Technology，Kitakyushu College
量子情報社会に向けた数理的アプローチ
September 18， 2018

（1）Preliminaries
（2）Harmonic analysis on complex projective spaces
（3）Design theory on $\mathbb{C} P^{n-1}$
（4）Distance sets on $\mathbb{C} P^{n-1}$
（5）Examples of SIC－POVM＇s

Based papers in my talk

－Zauner，G．（1999）．Quantum Designs－Foundations of a non－commutative Design Theory－．Thesis of University of Vienna．
－Renes，J．M．，Blume－Kohout，R．，Scott，A．J．，and Caves，C．M． （2004）．Symmetric informationally complete quantum measurements． Journal of Mathematical Physics，45（6），2171－2180．
－Hoggar，S．G．（1982）．t－Designs in Projective Spaces．European Journal of Combinatorics，3（3），233－254．

Axioms of Quantum Theory

－ $\mathbb{C}^{n}:=\left\{\left.\varphi=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right) \right\rvert\, z_{i} \in \mathbb{C}\right\}, \varphi^{*}:={ }^{t} \bar{\varphi}$
－$\langle\varphi \mid \psi\rangle:=\varphi^{*} \psi,|\varphi\rangle\langle\psi|:=\varphi \psi^{*}$

Axioms of Quantum Theory

－＂Quantum system＂$\leftrightarrow \mathcal{H}$ ：Hilbert space（In my talk，we assume $\operatorname{dim} \mathcal{H}<\infty$ ，i．e．， \mathcal{H} is \mathbb{C}^{n} with $\left.\langle\cdot \mid \cdot\rangle\right)$
－＂state＂$\leftrightarrow \varphi \in \mathcal{H}, \varphi \neq 0$ ．Rem：If $\varphi, \psi \in \mathcal{H}$ satisfy $\varphi=a \psi$ for some $a \in \mathbb{C}$ ，then we treat that φ and ψ are the same state．
－From a state φ with $\|\varphi\|=1$ ，we obtain a projection matrix $|\varphi\rangle\langle\varphi|$ on \mathcal{H} ．
－＂General state＂$\leftrightarrow \rho$ ：Hermite operator on $\operatorname{End}(\mathcal{H})$ with $\operatorname{Tr} \rho=1$ and $\rho \geq 0 . \rho$ is called a density operator．
－ $\mathcal{S}(\mathcal{H}):=\{\rho \mid \rho$ is a density operator $\}$

Axioms of Quantum Theory（Cont＇d）

－＂quantity＂$\leftrightarrow A$ ：Hermite matrix on $\operatorname{End}(\mathcal{H})$
－For $\varphi \in \mathcal{H}$ with $\|\varphi\|=1$ ，the probability that φ take the quantity of $A \leftrightarrow\langle\varphi \mid A \varphi\rangle$
－If φ is an eigenvalue of $A(A \varphi=\lambda \varphi)$ ，then the quantity of A of φ is λ ．

POVM（Positive Operator Valued Measure）

－Measure on $\mathcal{H} \leftrightarrow M=\left\{M_{k}\right\}_{k=1,2, \ldots}: M_{k}$ satisfies $M_{k} \geq 0$ and $\sum_{k} M_{k}=I . M$ is called a Positive Operator Valued Measure （POVM）
－the probability that ρ take the quantity with respect to M_{k} is $\operatorname{Tr}\left(\rho M_{k}\right)$

SIC－POVM

－In order to we determine completely the state ρ by POVM $M=\left\{M_{k}\right\}_{k},|M| \geq n^{2}$ ．
－POVM M is called an informationally complete POVM（IC－POVM）if ρ is determined completely by M ．

Definition 1

POVM $M=\left\{M_{k}\right\}_{k}$ is called a symmetric IC－POVM（SIC－POVM）if M satisfies the following：
－M is IC－POVM
－$|M|=n^{2}$
－For each k, M_{k} is a projection matrix，i．e．，there exists $\left|\varphi_{k}\right\rangle \in \mathcal{H}$ ， $\left\|\varphi_{k}\right\|=1$ such that $M_{k}=\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|$

Throughout this talk，we regard SIC－POVM as an n^{2}－elements subset of \mathcal{H} ．

complex projective spaces

－ $\mathbb{C}^{*}:=\mathbb{C}-\{0\}$
－$\left(\mathbb{C}^{n}\right)^{S}:=\left\{\varphi \in \mathbb{C}^{n} \mid\|\varphi\|=1\right\},\left(\mathbb{C}^{n}\right)^{S} \cong S^{2 n-1}$
－$U(n)$ ：unitary group of degree n

Definition 2

A complex projective space $\mathbb{C} P^{n-1}$ is defined by
－$\left(\mathbb{C}^{n}\right)^{S} /(\mathbb{C})^{S}$
－$\left(\mathbb{C}^{n}-\{0\}\right) / \mathbb{C}^{*}$
－$U(n) /(U(1) \times U(n-1))$

Remark 3

SIC－POVM＇s on $\mathcal{H}=\mathbb{C}^{n}$ are regarded as subsets of $\mathbb{C} P^{n-1}$ ．

Properties of $\mathbb{C} P^{n-1}$

－ $\mathbb{C} P^{n-1}$ is complex $(n-1)$－dimensional compact simply connected complex manifold．
－ $\mathbb{C} P^{n-1}$ is a Riemannian symmetric space．
－$G=U(n), K=U(1) \times U(n-1)$（ K is a closed subset of $G)$
－$\theta: C^{\infty}$－involution of G such that

$$
\theta(x):=s x s^{-1} \quad x \in G \quad s=\left(\begin{array}{cc}
1 & 0 \\
0 & -1_{n-1}
\end{array}\right)
$$

－$G_{\theta}:=\{g \in G \mid \theta(g)=g\}$ is K ．
－The rank of $\mathbb{C} P^{n-1}$ is one．

Polynomial spaces on \mathbb{C}^{n}

－$S^{*}\left(\mathbb{C}^{n}\right)$ ：the space of \mathbb{C}－valued polynomials on \mathbb{C}^{n} ．
－$S^{p, q}\left(\mathbb{C}^{n}\right):=\left\{f \in S^{*}\left(\mathbb{C}^{n}\right) \mid f(c z)=c^{p} \bar{c}^{q} f(z)\right\}$
－$S^{*}\left(\mathbb{C}^{n}\right)=\sum_{p, q \geq 0} S^{p, q}\left(\mathbb{C}^{n}\right)$
－$S^{p, q}\left(\mathbb{C}^{n}\right)$ is a unitary representation of $U(n)$ ．
－$\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial z^{i} \bar{z}^{i}}$ ，
where $\frac{\partial}{\partial z^{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{i}}-\sqrt{-1} \frac{\partial}{\partial y^{i}}\right), \frac{\partial}{\partial \bar{z}^{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{i}}+\sqrt{-1} \frac{\partial}{\partial y^{i}}\right)$
－$H\left(\mathbb{C}^{n}\right)=\left\{f \in S^{*}\left(\mathbb{C}^{n}\right) \mid \Delta f=0\right\}$
－$H^{p, q}\left(\mathbb{C}^{n}\right)=H\left(\mathbb{C}^{n}\right) \cap S^{p, q}\left(\mathbb{C}^{n}\right)$
－$H\left(\mathbb{C}^{n}\right)=\sum_{p, q \geq 0} H^{p, q}\left(\mathbb{C}^{n}\right)$
－ $\operatorname{dim} H^{p, q}\left(\mathbb{C}^{n}\right)=\frac{(n+p+q-1)(p+n-2)!(q+n-2)!}{(n-1)((n-2)!)^{2} p!q!}$
－In particular
$\operatorname{dim} H^{l, l}\left(\mathbb{C}^{n}\right)=\frac{(n+2 l-1)((l+n-2)!)^{2}}{(n-1)((n-2)!)^{2}(l!)^{2}}=\binom{n+l-1}{l}^{2}-\binom{n+l-2}{l-1}^{2}$

Harmonic analysis on $\mathbb{C} P^{n-1}$

Remark 4

For any $f \in H^{l, l}\left(\mathbb{C}^{n}\right)$ ，

$$
\begin{aligned}
&\left(\mathbb{C}^{n}\right)^{S} \xrightarrow{f} \mathbb{C} \\
& \div(\mathbb{C})^{S} \downarrow \\
& \mathbb{C} P^{n-1}
\end{aligned}
$$

$H^{l, l}\left(\mathbb{C} P^{n-1}\right)$ is well－defined．
－$H^{l, l}\left(\mathbb{C} P^{n-1}\right)$ is an irreducible unitary representation of $U(n)$ ．
－The space $C\left(\mathbb{C} P^{n-1}\right)$ of continuous functions on $\mathbb{C} P^{n-1}$ has the standard inner product defined by $(f, g):=\frac{1}{\mu\left(\mathbb{C} P^{n-1}\right)} \int_{\mathbb{C} P^{n-1}} \bar{f} g d \mu$ ， where μ is a Haar measure on $\mathbb{C} P^{n-1}$ ．

Theorem 5 （Peter－Weyl theorem）
$C\left(\mathbb{C} P^{n-1}\right) \underset{\text { dense }}{\supset} \bigoplus_{l \in \mathbb{Z} \geq 0} H^{l, l}\left(\mathbb{C} P^{n-1}\right)$ ．

The reproducing kernel of $H^{l, l}\left(\mathbb{C} P^{n-1}\right)$

Theorem 6

For each $H^{l, l}\left(\mathbb{C} P^{n-1}\right)$ ，there exists uniquely a polynomial $Q_{l} \in \mathbb{R}[t]$ of degree l such that for any $f \in H^{l, l}\left(\mathbb{C} P^{n-1}\right)$ and $\varphi \in \mathbb{C} P^{n-1}$ ， $\left(f, Q_{l}\left(|\langle\varphi \mid \cdot\rangle|^{2}\right)\right)=f(\varphi)$ holds．Q_{l} is called the reproducing kernel of $H^{l, l}\left(\mathbb{C} P^{n-1}\right)$ ．
－$Q_{0}(t)=1$
－$Q_{1}(t)=n(n+1)\left(t-\frac{1}{n}\right)$
－$Q_{2}(t)=\frac{1}{4}(n+3)(n+2)(n+1) n\left(t^{2}-\frac{4 t}{n+2}+\frac{2}{(n+2)(n+1)}\right)$
－$\left\{Q_{l}\right\}_{l}$ are Jacobi polynomials for some parameters．
Put $R(t)=Q_{0}(t)+Q_{1}(t)=n\{(n+1) t-1\}$

Definition of t－Design on $\mathbb{C} P^{n-1}$

Definition 7

Let X be a finite set of $\mathbb{C} P^{n-1}$ ．Let t be a non－negative integer．Then X is called a t－design on $\mathbb{C} P^{n-1}$ if for any $f \in \bigoplus_{l=0}^{t} H^{l, l}\left(\mathbb{C} P^{n-1}\right)$

$$
\frac{1}{\mu\left(\mathbb{C} P^{n-1}\right)} \int_{\mathbb{C} P^{n-1}} f d \mu=\frac{1}{|X|} \sum_{\varphi \in X} f(\varphi)
$$

holds．

Remark 8

By definition，For t, t^{\prime} with $t \geq t^{\prime}$ and a t－design X, X is also a t^{\prime}－design．

The reproducing kernels and designs

Theorem 9

For a finite subset X on $\mathbb{C} P^{n-1}$ ，the following are equivalent：
－X is a t－design．
－For $l=1,2, \ldots, t, \sum_{\varphi, \psi \in X} Q_{l}\left(|\langle\varphi \mid \psi\rangle|^{2}\right)=0$ ．

Proof．

Since $Q_{l}\left(|\langle\varphi \mid \psi\rangle|^{2}\right)=\sum_{i} \overline{f_{i}^{(l)}(\varphi)} f_{i}^{(l)}(\psi)$ ，where $\left\{f_{i}^{(l)}\right\}_{i}$ is an orthonormal basis of $H^{l, l}\left(\mathbb{C} P^{n-1}\right)$ ，
X is a t－design
$\Leftrightarrow \sum_{\varphi \in X} f_{i}^{(l)}(\varphi)=0$
$\Leftrightarrow Q_{l}\left(|\langle\varphi \mid \psi\rangle|^{2}\right)=0$

SIC－POVM and t－design

Fact 1

If $X \subset \mathbb{C} P^{n-1}$ is a SIC－POVM，then X is a 2－design，but not 3－design．

Proof．

Using the properties of SIC
－M is POVM $\left(\sum_{k} M_{k}=I\right)$
－M is IC $\left(\operatorname{Span}_{\mathbb{C}} M=\mathcal{S}(\mathcal{H})\right)$
－$|M|=n^{2}$

Lower bounds for t-designs

Theorem 10 (Fisher-type bound)

- If X is a 2-design, then $|X| \geq n^{2}$.
- Moreover if $|X|=n^{2}$, then X satisfies that for $\varphi, \psi \in X$ with $\varphi \neq \psi$,

$$
|\langle\varphi \mid \psi\rangle|^{2}=\frac{1}{n+1}
$$

holds.
Proof
Since

$$
R^{2}=\left(1+Q_{1}\right)^{2}=n^{2}+\frac{2 n^{2}}{n+2} Q_{1}+\frac{4(n+1) n}{(n+3)(n+2)} Q_{2},
$$

we have

$$
\begin{aligned}
\sum_{\varphi, \psi \in X} R\left(|\langle\varphi \mid \psi\rangle|^{2}\right)^{2}= & \sum_{\varphi, \psi \in X}\left\{n^{2}+\frac{2 n^{2}}{n+2} Q_{1}\left(|\langle\varphi \mid \psi\rangle|^{2}\right)\right. \\
& \left.+\frac{4(n+1) n}{(n+3)(n+2)} Q_{2}\left(|\langle\varphi \mid \psi\rangle|^{2}\right)\right\} \\
= & n^{2}|X|^{2}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sum_{\varphi, \psi \in X} R\left(|\langle\varphi \mid \psi\rangle|^{2}\right)^{2} & =\sum_{\varphi \in X} R\left(|\langle\varphi \mid \varphi\rangle|^{2}\right)^{2}+\sum_{\varphi \neq \psi} R\left(|\langle\varphi \mid \psi\rangle|^{2}\right)^{2} \\
& \geq \sum_{\varphi \in X} R\left(|\langle\varphi \mid \varphi\rangle|^{2}\right)^{2} \\
& =\sum_{\varphi \in X}\left(n^{2}\right)^{2}=n^{4}|X|
\end{aligned}
$$

Therefore we have $n^{2}|X|^{2} \geq n^{4}|X|$, i.e., $|X| \geq n^{2}$.

Furthermore，If $|X|=n^{2}$ ，we have $\sum_{\varphi \neq \psi} R\left(|\langle\varphi \mid \psi\rangle|^{2}\right)^{2}=0$ ．
Hence For any $\varphi, \psi \in X, R\left(|\langle\varphi \mid \psi\rangle|^{2}\right)=0$
$\Leftrightarrow n\left\{(n+1)|\langle\varphi \mid \psi\rangle|^{2}-1\right\}=0$
$\Leftrightarrow|\langle\varphi \mid \psi\rangle|^{2}=\frac{1}{n+1}$

Definition 11

A 2－design X with $|X|=n^{2}$ is called a minimal 2－design．

Remark 12

Since SIC－POVM X is a minimal 2－design，X satisfies $|\langle\varphi \mid \psi\rangle|^{2}=\frac{1}{n+1}$ ．

Distance sets on $\mathbb{C} P^{n-1}$
－$|\langle\varphi \mid \psi\rangle|^{2}$ is given a distance on $\mathbb{C} P^{n-1}$ ．
－$U(n)$ acts on $\mathbb{C} P^{n-1} \times \mathbb{C} P^{n-1}$ and the orbits coinside with $\left\{R_{\alpha}\right\}_{\alpha \in[0,1]}$ ，where $R_{\alpha}=\left\{\left.(\varphi, \psi)| |\langle\varphi \mid \psi\rangle\right|^{2}=\alpha\right\}$ ．

Definition 13

A finite subset $X \subset \mathbb{C} P^{n-1}$ is called an s－distance set if

$$
\left|\left\{\left.\langle\varphi \mid \psi\rangle\right|^{2} \mid \varphi, \psi \in X, \varphi \neq \psi\right\}\right|=s
$$

Theorem 14

－If a finite subset $X \subset \mathbb{C} P^{n-1}$ is a 1－distance set，then $|X| \leq n^{2}$ ．
－If a 1－distance set X satisfies $|X|=n^{2}$ ，then X is a 2－design．
A 1－distance set X with $|X|=n^{2}$ is called a maximal 1－distance set．

Equivalence conditions for SIC－POVM

Theorem 15

For a finite subset $X \subset \mathbb{C} P^{n-1}$ ，the following are equivalent：
－X is a SIC－POVM
－X is a minimal 2－design．
－X is a maximal 1－distance set．
－$|X|=n^{2}$ and for $\varphi, \psi \in X,|\langle\varphi \mid \psi\rangle|^{2}=\frac{1}{n+1}$ ．
$n=2$
Let $\omega:=\frac{-1+\sqrt{-3}}{2}$ ，i．e．，ω is a primitive 3rd roots of unity．Let $X \subset \mathbb{C} P^{1}$ be

$$
X=\left\{\binom{1}{0},\binom{\frac{1}{\sqrt{3}}}{\sqrt{\frac{2}{3}}},\binom{\frac{1}{\sqrt{3}}}{\sqrt{\frac{2}{3}} \omega^{2}},\binom{\frac{1}{\sqrt{3}}}{\sqrt{\frac{2}{3}} \omega}\right\} .
$$

Then X is a SIC－POVM．

Proof．

－ $\mathbb{C} P^{1} \sim S^{2}$
－Using the Hopf map $f:\left(z_{0}, z_{1}\right) \mapsto\left(2 z_{0} \bar{z}_{1},\left|z_{0}\right|-\left|z_{1}\right|\right)$
$\left(\mathbb{C}^{2}\right)^{S}=S^{3} \xrightarrow{f} S^{2}$
$\div(\mathbb{C})^{s} \downarrow^{\mathbb{f}}$
$\mathbb{C} P^{1}$
－Let X_{0} be a vertex set of regular simplex on S^{2} and $X=\bar{f}^{-1}\left(X_{0}\right)$ ．

$$
n=3
$$

Let $\omega:=\frac{-1+\sqrt{-3}}{2}$ ，i．e．，ω is a primitive 3rd roots of unity．
Let $X \subset \mathbb{C} P^{2}$ be

$$
\begin{aligned}
X= & \left\{\left.\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-\omega^{j}
\end{array}\right) \right\rvert\, j=0,1,2\right\} \\
& \cup\left\{\left.\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-\omega^{j} \\
0 \\
1
\end{array}\right) \right\rvert\, j=0,1,2\right\} \cup\left\{\left.\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-\omega^{j} \\
0
\end{array}\right) \right\rvert\, j=0,1,2\right\} .
\end{aligned}
$$

Then X is a SIC－POVM．

Conjecture

Conjecture 16

（1）For any n ，there exists a SIC－POVM on $\mathbb{C} P^{n-1}$
（2）Each SIC－POVM is obtained as a orbit of a Weyl－Heisenberg group．
－For $n=1, \ldots, 21,24,28,30,31,35,37,39,43,48$ ，there exist algebraic constructions for SIC－POVM on $\mathbb{C} P^{n-1}$ ．
－For $n \leq 151$ ，there exist numerical solutions for SIC－POVM on $\mathbb{C} P^{n-1}$ ．

Masakazu Yoshida (University of Nagasaki)

Solutions to a retrodiction problem by using quantum errorcorrecting codes

Abstract

We discuss a retrodiction problem (so-called mean king' s problem) among noncommutative observables from the viewpoint of error detection and correction. Quantum error-correcting codes against error corresponding to the observables are constructed and any code state of the codes provides a way to discriminate the eigenstates of the observables. From observation of the results, we also discuss the topics of quantum codes, quantum key distribution, MUBs, MUSs, and SIC-POVMs.

Solutions to a retrodiction problem by using quantum error－correcting codes

Masakazu Yoshida吉田 雅一

University of Nagasaki
長崎県立大学

Mean king＇s problem（1／2）

［Vaidman，et al．，＇87］
Alice
King
（1）Initial state

（4）Delayed information J
（5）Estimation $(k, J) \mapsto i^{\prime}$

Solution

（1）Initial state，（3）measurement，（5）Estimation s．t． $\boldsymbol{i} \quad=\boldsymbol{i}$

Mean king's problem (2/2)

Alice

(1) Bell state
R (3) Measurement on
[) the bipartite system
k
(4) Delayed information J

(5) Estimation $(k, J) \mapsto i^{\prime} \quad$| | $k=1$ | $k=2$ | $k=3$ | $k=4$ |
| :---: | :---: | :---: | :---: | :---: |
| x | +1 | -1 | +1 | -1 |
| y | +1 | -1 | -1 | +1 |
| z | +1 | +1 | -1 | -1 |

(2) Measurement $\sigma_{J} \in\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$

\square

$i \in\{ \pm 1\}$
[Vaidman, et al., '87]
King

Related works (1/2)

- A solution using Bell state for three observables
[L. Vaidman, et al., '87]
- Solutions for projective measurements constructed from MUB (mutually unbiased basis) [A. Hayashi, et al., '05]
- A solution always exists for arbitrary dimension if a POVM measurement is performed
[G. Kimura, et al., '06]
- There are no solutions if the entanglement is not used
[Reimpell, et al., '07]
[G. Kimura, et al., '07]

Related works (2/2)

- A solution using quantum error-correcting codes for measurements constructed from measurement operators
[M. Yoshida, G. Kimura, T. Miyadera, H. Imai, J. Cheng '15]

Quantum error-correcting codes (1/2)

Def

C is a quantum error-correcting code against ε $\stackrel{\text { def }}{\Leftrightarrow}$ There exists a recovery \mathcal{R} s.t. $\mathcal{R} \circ \mathcal{E}(\rho) \propto \rho$
[E. Knill, R. Laflamme '97]
ρ : code state whose support lies in C

Quantum error-correcting codes (2/2)

Theorem
There exists a recovery \mathcal{R} s.t. $\mathcal{R} \circ \mathcal{E}(\rho) \propto \rho$
$\Leftrightarrow P \varepsilon_{k}^{\dagger} \varepsilon_{k^{\prime}} P=\lambda_{k k^{\prime}} P$, where P is the projector onto C
[E. Knill, R. Laflamme '97]
$\operatorname{span}\left\{\varepsilon_{k}\left|\Psi_{1}\right\rangle\right\}_{k} \quad \operatorname{span}\left\{\varepsilon_{k}\left|\Psi_{3}\right\rangle\right\}_{k}$

State after the measurement

Solution using QECC (1/4)

R :measurement to distinguish the orthogonal subspaces

Ex. $\sigma_{y}=-1$
$\xrightarrow{\square} \mathrm{Z}=2 \Rightarrow$ The answer candidates $\left\{\begin{array}{l}+1 \text { if } \sigma_{x} \\ -1 \text { if } \sigma_{y} \\ -1 \text { if } \sigma_{z}\end{array}\right.$

Solution using QECC (2/4)

$$
\begin{array}{ccc}
\sigma_{x}(+1)=E_{1}+E_{3} & \sigma_{y}(+1)=E_{1}+E_{4} & \sigma_{z}(+1)=E_{1}+E_{2} \\
\sigma_{x}(-1)=E_{2}+E_{4} & \sigma_{y}(-1)=E_{2}+E_{3} & \sigma_{z}(-1)=E_{3}+E_{4} \\
\left\langle\mathbb{I} \otimes E_{k} \Psi \mid \mathbb{I} \otimes E_{k^{\prime}} \Psi\right\rangle=\lambda_{k} \delta_{k k^{\prime}}
\end{array}
$$

Solution using QECC (3/4)

$$
\begin{array}{rlr}
\sigma_{x}(+1)= & E_{1}+E_{3} \quad \sigma_{y}(+1)=E_{1}+E_{4} & \sigma_{z}(+1)=E_{1}+E_{2} \\
\sigma_{x}(-1)= & E_{2}+E_{4} \quad \sigma_{y}(-1)=E_{2}+E_{3} & \sigma_{z}(-1)=E_{3}+E_{4} \\
& \left\langle\mathbb{I} \otimes E_{k} \Psi \mid \mathbb{I} \otimes E_{k^{\prime}} \Psi\right\rangle=\lambda_{k} \delta_{k k^{\prime}} \\
\Leftrightarrow & P\left(\mathbb{I} \otimes E_{k}\right)^{\dagger}\left(\mathbb{I} \otimes E_{k^{\prime}}\right) P=\lambda_{k} \delta_{k k^{\prime}} P \\
& \text { where } P \text { is the projector onto } C=\operatorname{span}\{|\Psi\rangle\}
\end{array}
$$

C is a quantum error-correcting code against $\left(\mathbb{I} \otimes E_{k}\right)_{k}$

Solution using QECC (4/4)

Theorem

$\left(M_{i}^{(J)}\right)_{i}:$ king's measurements
C : subspace
$X_{i}^{(J)}$: index sets

1. $\mathbb{I} \otimes M_{i}^{(J)}=\sum_{k \in X_{i}^{(J)}} \mathbb{I} \otimes E_{k}$
2. $X_{i}^{(J)} \cap X_{i^{\prime}}^{(J)}=\emptyset$

$\left\|\Psi_{1}\right\rangle$
E_{1} E_{1} E_{1} E_{2} E_{2} E_{2} \vdots \vdots \vdots E_{m} E_{m} $E_{m}$$\cdots$$E_{1}$ E_{2} \vdots $\left.E_{2}\right\rangle$

3. $\quad P\left(\mathbb{I} \otimes E_{k}\right)^{\dagger}\left(\mathbb{I} \otimes E_{k^{\prime}}\right) P=\lambda_{k} \delta_{k k^{\prime}} P$, where P is the projector onto C
\Rightarrow - By using any code state in C, Alice can guess the king's outcome

- C is a quantum error-correcting code against $\left(\mathbb{I} \otimes E_{k}\right)_{k}$
[M. Yoshida, G. Kimura, T. Miyadera, H. Imai, J. Cheng '15]

In $D=2$

$\sigma_{x}, \sigma_{y}, \sigma_{z}:$ king's measurements
$|\Psi\rangle$: Bell state

$\sigma_{x}(+1)=E_{1}+E_{3} \quad \sigma_{y}(+1)=E_{1}+E_{4} \quad \sigma_{z}(+1)=E_{1}+E_{2}$
$\sigma_{x}(-1)=E_{2}+E_{4} \quad \sigma_{y}(-1)=E_{2}+E_{3} \quad \sigma_{z}(-1)=E_{3}+E_{4}$
$\langle\Psi|\left(\mathbb{I} \otimes E_{k}\right)^{\dagger}\left(\mathbb{I} \otimes E_{k^{\prime}}\right)|\Psi\rangle=\frac{1}{4} \delta_{k k}$

"Reverse" statement

Theorem

$\left(M_{i}^{(J)}\right)_{i}$: king's measurements
$|\Psi\rangle$: maximally entangled state
R : rank 1 PVM
$|\Psi\rangle$ and R provide a solution
\Rightarrow There exist index set $X_{i}^{(J)}$ and operators $\left(E_{k}\right)_{k}$ s.t.

1. $M_{i}^{(J)}=\sum_{k \in X_{i}^{(J)}} E_{k}$
2. $X_{i}^{(J)} \cap X_{i^{\prime}}^{(J)}=\varnothing$
3. $\langle\Psi|\left(\mathbb{I} \otimes E_{k}\right)^{\dagger}\left(\mathbb{I} \otimes E_{k^{\prime}}\right)|\Psi\rangle=\frac{\lambda}{d} \delta_{k k^{\prime}}$

$$
\Leftrightarrow\left\langle E_{k} \mid E_{k^{\prime}}\right\rangle_{\mathrm{HS}}=\operatorname{tr} E_{k}^{\dagger} E_{k^{\prime}}=\lambda \delta_{k k^{\prime}}
$$

[T. Masuhara, Y. Miyagoshi, M. Yoshida, G. Kimura, T. Miyadera, H. Imai, J. Cheng '14] [M. Yoshida, G. Kimura, T. Miyadera, H. Imai, J. Cheng '15]

Related works

- A relationship between MUBs (mutually unbiased basis) and finite geometry
[W. K. Wootters '06]
[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng '13]
- A construction of general SIC-POVMs
[M. Yoshida, G. Kimura, J. Cheng '16]

MUBs, MUSs, and NBs

[W. K. Wootters '06]

$$
\{|3, i\rangle\}_{i=1}^{2}
$$

[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng '13]

MUB (mutually unbiased basis)

Properties of MUBs:

- The number of basis is less than or equal to $d+1$ Complete set of MUBs \qquad
- $d=p^{r} \Rightarrow$ there exist complete sets of MUBs

Ex. of a complete set of MUBs:

- The eigenvectors of $\sigma_{x}, \sigma_{y}, \sigma_{z}$

Striations

Def

$$
\begin{array}{ll}
& A \text { : set s.t. } \# A=d^{2} \\
& \left(L_{i}\right)_{i=1}^{d}\left(L_{i} \subset A\right) \text { is a set of striations } \\
\operatorname{def} & \# L_{i} \cap L_{j}=d \delta_{i j}
\end{array}
$$

[W. K. Wootters '06]

- $d=2$:

1	2	$A=\{1,2,3,4\}$
3	4	$L_{1}=\{1,2\}$
		$L_{2}=\{3,4\}$

- $d=3$:

1	2	3	$A=\{1,2, \ldots, 9\}$
4	5	6	$\{1,4,7\}$
7	8	9	
			$\{2,5,8\}$
			$\{3,6,9\}$

$\{3,6,9\}$

MUS (mutually unbiased striations)

Def

$$
\begin{array}{ll}
& \text { Sets of striations }\left(L_{i}^{J}\right)_{i=1}^{d} \text { are MUSs } \\
\stackrel{\text { def }}{\Leftrightarrow} & \# L_{i}^{J} \cap L_{i,}^{J^{\prime}}=1, \forall J \neq J^{\prime}, i, i^{\prime}
\end{array}
$$

[W. K. Wootters '06]
Properties of MUSs:

- The number of basis is less than or equal to $d+1$

Complete set of MUSs \qquad

- $d=p^{r} \Rightarrow$ there exist complete sets of MUSs
- $d=6 \Rightarrow$ the number of basis is less than or equal to 3

Ex. of a complete set of MUSs:

1	2	$L_{1}^{1}=\{1,2\}$				
3	4	$L_{2}^{1}=\{3,4\}$	\quad	1	2	$L_{1}^{2}=\{1,3\}$
:---	:---	:---				
3	4	$L_{2}^{2}=\{2,4\}$	\quad	1	2	$L_{1}^{3}=\{1,4\}$
:---	:---	:---				
3	4	$L_{2}^{3}=\{2,3\}$				

MUS and NB $\Rightarrow>$ MUB

Theorem
$\left(L_{i}^{J}\right)_{i=1}^{d}$: complete set of MUSs
$\left(P_{i}^{J}=|J, i\rangle\langle J, i|\right)_{i=1}^{d}$: sets of projections
There exists operators $\left(E_{k}\right)_{k=1}^{d^{2}}$ s.t.

$\Rightarrow(|J, i\rangle)_{i}$ is a complete set of MUBs
[W. K. Wootters '06]

MUS and MUB $=>$ NB

Theorem
$\left(L_{i}^{J}\right)_{i=1}^{d}$: complete set of MUSs
$(|J, i\rangle)_{i}$: complete set of MUBs
\Rightarrow There exists operators $\left(E_{k}\right)_{k=1}^{d^{2}}$ s.t.
$\left.\begin{array}{l}\text { 1. } P_{i}^{J}=|J, i\rangle\langle J, i|=\sum_{k \in L_{i}^{J}} E_{k} \Rightarrow \sum_{k} E_{k}=\mathbb{I} \\ \text { 2. }\left\langle E_{k} \mid E_{k^{\prime}}\right\rangle_{\mathrm{HS}}=\frac{1}{d} \delta_{k k^{\prime}}\end{array}\right] \underline{\mathrm{NB}}$
[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng '13]

Outline of proof

$\left(P_{i}^{J}=|J, i\rangle\langle J, i|\right)_{i}:$ king's measurements w.r.t. a complete set of MUBs
$|\Psi\rangle$: maximally entangled state
\Rightarrow There exists rank $1 \mathrm{PVM}(|k\rangle\langle k|)_{k}$ which provides a solution

> [A. Hayashi, et al., '05]
\Rightarrow There exist index set $X_{i}^{(J)}$ and operators $\left(E_{k}\right)_{k}$ s.t.

- $P_{i}^{J}=\sum_{k \in X_{i}^{(J)}} E_{k} \Rightarrow \sum_{k} E_{k}=\mathbb{I} \quad$ [: our "reverse" statement]
- $\langle\Psi|\left(\mathbb{I} \otimes E_{k}\right)^{\dagger}\left(\mathbb{I} \otimes E_{k^{\prime}}\right)|\Psi\rangle=\frac{1}{d^{2}} \delta_{k k^{\prime}}$

$$
\Leftrightarrow\left\langle E_{k} \mid E_{k^{\prime}}\right\rangle_{\mathrm{HS}}=\operatorname{tr} E_{k}^{\dagger} E_{k^{\prime}}=\frac{1}{d} \delta_{k k^{\prime}}
$$

E_{k} is defined by an isomorphism $|k\rangle=\left(\mathbb{I} \otimes d E_{k}\right)|\Psi\rangle$

Relationship among MUBs, MUSs, NBs

MUSs | 1 | 2 | 1 | 2 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 3 | 4 | 3 | 4 |

\Downarrow
[W. K. Wootters '06]
$\{|1, i\rangle\}_{i=1}^{2}$
MUBs
$\{|2, i\rangle\}_{i=1}^{2}$
\Longleftarrow
$\{|2, i\rangle\}_{i=1}^{2}$
\Longrightarrow
NBs $E_{1}, E_{2}, E_{3}, E_{4}$ $\{|3, i\rangle\}_{i=1}^{2}$
[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng '13]

Related works

- A relationship between MUBs (mutually unbiased basis) and finite geometry
[W. K. Wootters '06]
[M. Yoshida, G. Kimura, T. Miyadera, J. Cheng '13]
- A construction of general SIC-POVMs
[M. Yoshida, G. Kimura, J. Cheng '16]

Quantum state tomography

Unknown state

$$
\operatorname{Pr}(M=1 \mid \rho), \ldots, \operatorname{Pr}(M=N \mid \rho) \quad \square \rho \text { is determined }
$$

Infomationally complete (1/2)

Def

A POVM $M=\left(M_{i}\right)_{i=1}^{N}$ is an informationally complete (IC)-POVM def
$\stackrel{\text { def }}{\Leftrightarrow} \quad \operatorname{span}\left(M_{i}\right)_{i=1}^{N}=\mathcal{L}(\mathcal{H})$

Theorem
A POVM $M=\left(M_{i}\right)_{i=1}^{N}$ is an IC-POVM
$\Rightarrow \quad$ There exists $\left(Q_{i}\right)_{i=1}^{N}$ s.t. $\rho=\sum_{i=1}^{N} p(M=i \mid \rho) Q_{i}$

Infomationally complete (2/2)

Theorem
Rank $M_{i}=1, \operatorname{tr} M_{i}=\frac{1}{d}, \operatorname{tr} M_{i} M_{j}=\frac{1}{d^{2}(1+d)}(i \neq j)$
$\Rightarrow \quad M=\left(M_{i}\right)_{i=1}^{N}$ is an "optimal" IC-POVM
[Petz, Ruppert, Szántó, '14]
$\rho=\sum_{i=1}^{N} p(M=i \mid \rho) Q_{i} \quad \hat{\rho}=\sum_{i=1}^{N} \hat{p}(M=i \mid \rho) Q_{i}$

Theoretical value

Minimizing "error"

Experimental value

SIC-POVM

Def

A POVM $M=\left(M_{i}\right)_{i=1}^{N}$ satisfying

$$
\operatorname{Rank} M_{i}=1, \quad \operatorname{tr} M_{i}=\frac{1}{d}, \operatorname{tr} M_{i} M_{j}=\frac{1}{d^{2}(1+d)}(i \neq j)
$$

is called a symmetric informationally complete (SIC)-POVM
[Renes, Blume-Kohout, Scott, Caves, '04]

Existence of SIC-POVMs:

- $d=1, \ldots, 15,19,24,35,48$: analytical results
- In limiting dimensions up to 844
[Listed in C. A. Fuchs, M. C. Hoang, B. C. Stacey, '17]

Generalized SIC-POVM

Def
A POVM $M=\left(M_{i}\right)_{i=1}^{N}$ satisfying

$$
\operatorname{tr} M_{i}^{2}=\text { const. }, \quad \operatorname{tr} M_{i} M_{j}=\text { const. }(i \neq j)
$$

is called a generalized SIC-POVM
(Each POVM element may not necessarily be a rank 1)
[Appleby, '07]
Existence of generalized SIC-POVMs:

- Generalized SIC-POVMs exist in all dimensions
[Gour, Kalev, '14]

Construction of generalized SIC-POVM

MUSs | 1 | 2 | 1 | 2 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 3 | 4 | 3 | 4 |

MUBs $\quad\{|2, i\rangle\}_{i=1}^{2}$
$\{|3, i\rangle\}_{i=1}^{2}$

NBs $\quad E_{1}, E_{2}, E_{3}, E_{4}$
\downarrow

- Generalized SIC-POVM
- SIC-POVM $(d=2)$

NBs made of MUBs and MUSs

$\left(L_{i}^{J}\right)_{i=1}^{d}$: complete set of MUSs
$(|J, i\rangle)_{i}$: complete set of MUBs
$E_{k}:=\sum_{J=1}^{d+1}|J, s(k, J)\rangle\langle J, s(k, J)| \quad$ where $s(k, J):=i$ as $k \in L_{i}^{J}$

Ex. of NB $(d=2)$:

$$
\begin{aligned}
& E_{3}:=|1,2\rangle\langle 1,2|+|2,1\rangle\langle 2,1|+|3,2\rangle\langle 3,2| \\
& \begin{array}{lll}
1 & 2 & L_{1}^{1}=\{1,2\} \\
3 & 4 & L_{2}^{1}=(33.4\} \\
\hline & \text { (3) } 2 & 4 \\
L_{2}^{2}=\{2,4\} & \text { (3) } 4 & L_{2}^{3}=\{1,3 \\
\hline
\end{array}
\end{aligned}
$$

Definition of POVM elements

$$
G_{k}:=\frac{\lambda}{d} E_{k}+\frac{1-\lambda(1+d)}{d^{2}} \mathbb{I} \quad\left(k=1,2, \ldots, d^{2}\right)
$$

where λ : const.

Generalized SIC-POVM?
SIC-POVM ?

Construction of generalized SIC-POVM

Theorem
There exists λ s.t. $\left(G_{k}\right)_{k=1}^{d^{2}}$ is a generalized SIC-POVM
[M. Yoshida, G. Kimura, J. Cheng '16]
Outline of proof:

- $\operatorname{tr} G_{k}{ }^{2}=\operatorname{tr} G_{l}{ }^{2}$
- $\operatorname{tr} G_{k} G_{l}=\operatorname{tr} G_{k \prime} G_{l \prime}$
- $\sum_{k} G_{k}=\mathbb{I}$

From the properties of complete sets of MUBs, MUSs, and definition of G_{k}

- $G_{k} \geq 0 \quad \lambda$ is determined with depending on the eigenvalues of E_{k}

Toward SIC-POVM

Lemma

$$
\begin{aligned}
& \quad \lambda= \pm \frac{1}{\sqrt{d+1}} \\
& \Rightarrow \quad\left(G_{k}\right)_{k=1}^{d^{2}} \text { satisfies the followings: } \\
& \quad \text { • } \quad \operatorname{Rank} G_{k}=1, \operatorname{tr} G_{k}=\frac{1}{d}, \operatorname{tr} G_{k} G_{l}=\frac{1}{d^{2}(1+d)}(k \neq l) \\
& \quad \text { • } \quad \sum_{k} G_{k}=\mathbb{I}
\end{aligned}
$$

Theorem

$$
\begin{aligned}
& d=2 \text { and } \lambda= \pm \frac{1}{\sqrt{3}} \\
\Rightarrow \quad & \left(G_{k}\right)_{k=1}^{d^{2}} \text { is a SIC-POVM }
\end{aligned}
$$

Positivity: the eigenvalues of G_{k} are 0 and $\frac{1}{2}$

$$
\text { from the characteristic poly. } F_{G_{k}}(a)=a^{2}-\frac{a}{2}
$$

Future works

[M. Yoshida, G. Kimura, J. Cheng, to be appeared]
General construction of NBs:
Orthogonal basis

NBs

Relationship among MUBs, NBs, and SIC-system:

SIC-system (SIC-POVM without positivity)

Related works

- Quantum key distribution by using mean king's problem
[J. Bub, '01]
- Robustness for general attack

Eve gains information \Rightarrow error rate of secret key is not zero
[A.H. Werner et al, '09]

- Trade-off inequality for some attacks

Eve's information gain and error rate of secret key
[M. Yoshida, T. Miyadera, H. Imai, '10, '12]

- "Multi-party" quantum key distribution
[A. Nakayama, M. Yoshida, J. Cheng, '18]

"Multi-party" QKD (2/3)

Theorem
There exist
$|\Psi\rangle$: pure state of a bipartite system
$\left(M_{i_{m}}^{\left(J_{m}\right)}\right)_{i_{m}}$: king (m) 's measurements
$X_{\left(i_{m}\right)_{m}}^{\left(J_{m}\right)_{m}}$: index sets

$$
\text { 1. } \mathbb{I} \otimes M_{i_{1}}^{\left(J_{1}\right)} \otimes \cdots \otimes M_{i_{n}}^{\left(J_{n}\right)}=\sum_{k \in X_{(i) m}^{(J) m}} \mathbb{I} \otimes E_{k}
$$

s.t. 2. $X_{\left(i_{m}\right)_{m}}^{(J)_{m}} \cap X_{\left.\left(i^{\prime}\right)_{m}\right)_{m}}^{\left(J_{2}\right)_{m}}=\emptyset$
3. $\langle\Psi|\left(\mathbb{I} \otimes E_{k}\right)^{\dagger}\left(\mathbb{I} \otimes E_{k^{\prime}}\right)|\Psi\rangle=\frac{\lambda}{d} \delta_{k k}$
\Rightarrow A "multi-party" QKD can be constructed
[A. Nakayama, M. Yoshida, J. Cheng, '18]

"Multi-party" QKD (3/3)

[A. Nakayama, M. Yoshida, J. Cheng, '18]
Construction of QKD:

Security of QKD:
In 3 users case (Alice, $\operatorname{King}(1)$, King(2)),
eavesdropping by intercept-resend attack induces error

Phong Nguyen (INRIA/The University of Tokyo)

Searching for Short Lattice Vectors

Abstract

Lattices are regular arrangements of points in the n-dimensional space. Lattice-based cryptography started in the mid-nineties, but its origins go back to the beginning of public-key cryptography with knapsack cryptosystems. In the past few years, lattice-based cryptography has been attracting significant interest, in part because of its well-known (potential) resistance to quantum computers, but especially because of new and surprising features, such as fully-homomorphic encryption, (noisy) multilinear maps, and lately, (indistinguishability) obfuscation. In this talk, we will present the main algorithms for solving hard lattice problems and discuss security estimates for lattice-based cryptography.

Searching for Short Lattice Vectors

Phong Nguyễn

- Context
- Lattices
- Searching for Short Lattice Vectors
- Enumeration
- Sieving

Context

The Quantum Wave

- 2015-: €350M for British research on quantum technology
- 2016: €1billion Flagship for Quantum Technologies in EU H2O2O.
- Industry
- Google: Quantum AI Lab.
- IBM: Quantum Computing Platform.
- Microsoft, Intel/TUDelft, Alibaba/CAS, etc.

The Quantum Challenge

- Quantum computers would have a big impact on cryptography:
- Break factoring (RSA) N=pq and discrete \log (DSA, ECC) $y=g^{x}$ [Shor1994]
- Increase symmetric keysizes [Grover1996]
- In 2015, the NSA announced a transition to post-quantum cryptography

NGT
 National Institute of
 Standards and Technology
 U.S. Department of Commerce
 Post-Quantum Candidates

- Lattices: TLS-prototype tested several months by Chrome/Google
- Coding theory
- Multivariate polynomials over finite fields
- Elliptic curve isogenies

Lattices

The Ubiquity of Lattices

- In mathematics
- Algebraic number theory, Algebraic geometry, Sphere packings, etc.
- Fields medals: G. Margulis (1978), E. Lindenstrauss and S. Smirnov (2010), M. Bhargava (2014), A. Venkatesh (2018).
- Applications in computer science, statistical physics, etc.

What is a Lattice?

- An infinite arrangement of "regularly spaced" points

What is a Lattice?

- A linear deformation of \mathbf{Z}^{n}.
- Let B be a non-singular $n \times n$ matrix.
- The lattice spanned by B is $L=Z^{n} B$.

2	0	0	0	0
0	2	0	0	0
0	0	2	0	0
0	0	0	2	0
1	1	1	1	1

What is a Lattice?

- A lattice is a discrete subgroup of R^{n}.

Lattice Invariants

- The rank is the dim of span(L).
- The (co-)volume is the absolute value of det(basis).
Ex: $\operatorname{vol}\left(\mathbf{Z}^{n}\right)=1$.

The Gaussian Heuristic

- The volume measures the density of lattice points.
- For "nice" full-rank lattices L, and "nice" measurable sets C of R^{n} :

$$
\operatorname{Card}(L \cap C) \approx \frac{\operatorname{vol}(C)}{\operatorname{vol}(L)}
$$

Volume of the Ball

The n-dimensional volume of a Euclidean ball of radius R in n-dimensional Euclidean space is:

$$
V_{n}(R)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} R^{n}
$$

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

Short Lattice Vectors

- Th: Any d-rank lattice L has exponentially many vectors of norm \leq

$$
O(\sqrt{d}) \operatorname{vol}(L)^{1 / d}
$$

- Th: In a random d-rank lattice L, all non-zero vectors have norm \geq

$$
\Omega(\sqrt{d}) \operatorname{vol}(L)^{1 / d}
$$

Mathematical Goals

- Classical Problem: the worst case.
- Find the worst-case for the shortest lattice vector (non-zero) norm.
- New Trends: the average case.
- Properties of random lattices
- Properties of random lattice points

Random Lattices

- [Siegel45]: there is a natural probability space over unit-volume lattices, related to Haar measures.
- [Rogers56]: The limit distribution of vol(ddim ball of radius the first minimum of a random L) when $d \rightarrow \infty$ is the exponential distribution of expectation 2.

Random Lattice Points

- Since lattices are infinite, no obvious natural distribution over lattice points. Ex: Z.
- Several distributions have appeared:
- The uniform distribution over $L \cap C$ where C is a large hypercube or hyperball.
- The discrete Gaussian distribution.

Generating A Lattice

o Pick m "random" lattice points in an n-dim lattice L.

- From which value of m do we generate L with non-negligible probability?
- What is the probability of generating?

Classical Example

- Take $n=1$: what is the probability that m random integers generate \mathbf{Z}, i.e. that they are coprime?
- The asymptotic probability of coprimality for two integers is known to be $\Pi_{\text {prime } p}\left(1-1 / p^{2}\right)=1 / \zeta(2)=6 / \pi^{2} \approx 61 \%$.

Generating A Lattice

- Pick m "random" lattice points in an n-dim lattice L.
- From which value of m do we generate L with positive probability?
- [NgPul8] shows it is $m=n+1$, because the probability is asymptotically

$$
1 /(\zeta(m) \zeta(m-1) \ldots \zeta(m-n+1)) .
$$

$$
\begin{gathered}
\text { Overview of Lattice } \\
\text { Algorithms }
\end{gathered}
$$

Hard Lattice Problems

- Input: a lattice L and an n-dim ball C.
- Output: decide if $L \cap C$ is non-trivial, and find a point when applicable. Easy if $L=\mathbf{Z}^{n}$.
- Two settings
- Approx: LnC has many points.
 Ex: SIS and ISIS.
- Unique: only one non-trivial point. Ex: BDD.

Benchmarks

- Lattice challenges on the Internet.

Solved Challenges
Congrets to our nienerst
Challenge ET 197ro- Feich is. Challenge *2 1 tard - Mind 4 Challenge esistet-160 D, ind moneces
Challenge es taset - Le D, ind Phore of w
Challenge as 1epr - Lto D, mes thane Q : 4 .
Challenge at 163nt - Lto D, ant
Phore O . M
Challenge en mbart - Le D, and
Plone o. A.

Remarks

- [ADHKPS18]-Sieving in dim 151 is 700 times faster than [KaTel7]-RSR.
- [KaTe15-17]-RSR not significantly faster than predictions for BKZ-Enumeration [CN11,Ch13,AWHT16].
- Similar performances for discrete pruning and cylinder pruning.
- Sieving is faster than enum in dim 120-153 but...

Lattice Security Estimates

- https://estimate-all-the-Iwe-ntruschemes.github.io/docs/

- The best attack requires an SVP subroutine in some target blocksize: - Cost of the subroutine?
o Number of subroutine calls?

Which Subroutine?

- Sieving: exponential time and space - Enumeration: super-exponential time

Other Algorithms

- A classical problem is to prove the existence of short lattice vectors.
- All known upper bounds have a more-or-lessefficient algorithmic analogue:
- Hermite's inequality: the LLL algorithm.
- Mordell's inequality: Blockwise generalizations [GaNg08,Sc87,etc.] of LLL.
- Mordell's proof of Minkowski's inequality: worst-case to average-case reductions for SIS and sieve algorithms [BJN14,ADRS15]

Solving SVP by
 Enumeration

Enumeration

- The simplest method to solve hard lattice problems, going back to the 70s.
- Input: a lattice L and a small ball $S \subseteq R^{n}$ s.t. \#(LnS) is 《 small 》.
- Output: All points in LnS.
- Drawback: running-time typically superexponential, much larger than \#(LnS).

Enumeration Insight

- Key ideas:
- Projections never increase norms: if $\|v\| \leq R$, then $\|\pi(v)\| \leq R$.
- Using nice subspaces, π (lattice) is a lower-rank lattice, and partial solutions can be lifted.

Which Projections?

- Let $\left(b_{1}, \ldots, b_{n}\right)$ be a \mathbf{Z}-basis of L.
- Let π_{d} be the projection over $\operatorname{span}\left(b_{1}, \ldots, b_{n-d}\right)^{\perp}$.
- $\pi_{d}(L)$ is a d-rank lattice $=L / L\left(b_{1}, \ldots, b_{n-d}\right)$ of covolume $\operatorname{vol}(L) / \operatorname{vol}\left(b_{1}, \ldots, b_{n-d}\right)$
- Short vectors $\pi_{d}(x)$ can be lifted as short vectors $\pi_{d+1}(x)$. $L \xrightarrow{\Pi_{d+1}} L / L\left(b_{1}, \ldots, b_{n-d-1}\right)$

$$
L / L\left(b_{1}, \ldots, \dot{b}_{n-d}\right)
$$

More precisely...

- Consider a lower-triangular matrix:

Enumeration Tree

Enumeration tree

- Depth k contains all projected lattice points $\left\|\pi_{k}(y)\right\|(y \in L)$ of norm $\leq R$. Their number can be estimated by the Gaussian heuristic.
- Most of the nodes are in middle depths.
Log \#nodes

n-depth

Take Away

- Enumeration is based on one key idea - Projection to decrease the lattice rank - Once parameters are fixed, it is possible to reasonably estimate the number of nodes of the tree, hence the running time.

Speeding Up Enumeration by Pruning

Speeding Up Enumeration

- Assume that we do not need all LnS:
- Can we make enumeration faster if we only need to find one vector?

Enumeration with Pruning [ScEu94,ScHo95,GNR10]

- Input: a lattice L, a ball $S \subseteq R^{n}$ and a pruning set $P \subseteq R^{n}$.
- Output: All points in $\mathrm{L} \cap \mathrm{S} \cap \mathrm{P}=(\mathrm{L} \cap P) \cap \mathrm{S}$.
- Pros: Enumerating $\operatorname{LnS} \cap P$ can be much faster than LnS.
- Cons: Maybe $\operatorname{LnS} S \subseteq \subseteq\{0\}$.

Analyzing Pruned Enumeration [GNR10] Framework

- Enumerating $\mathrm{L} \cap \mathrm{S} \cap \mathrm{P}$ is deterministic, but:
- The set P is randomized: it depends on a (random) reduced basis.
- The success probability is $\operatorname{Pr}\left(\operatorname{LnS}_{n} P \nsubseteq\{0\}\right)$. - \#(LnSnP) < should be 》 $\approx \mathrm{vol}(\mathrm{S} \cap \mathrm{P}) / \mathrm{covol}(\mathrm{L})$ (Gaussian heuristic).

Extreme Pruning [GNR10]

- Repeat until success
- Generate P by reducing a "random" basis. - Enumerate(LnSnP)
- Can be much faster than enumeration, even if $\operatorname{Pr}(\operatorname{LnS} \cap P \nsubseteq\{0\})$ is tiny.

Two Kinds of Pruning

- Cylinder Pruning ([GNR10] generalizing
[ScEu94,ScHo95]): P is a cylinder intersection.

- Discrete Pruning ([AoN17] generalizing [ScO3,FuKa15]): P is a union of cells, in practice a union of millions of boxes.

- e $\Delta \triangle$ Technical Problems:
 $\triangle \triangle$ Computing Volumes

- To analyze and select good parameters for pruning, we need to estimate the volume of BallnP:
- Cylinder pruning [GNR10].
- Discrete pruning [AoNg17].

Take Away

- Pruned enumeration is based on one more key idea
- Slicing the ball in a randomized manner
- Once all parameters are fixed, it is possible to reasonably estimate the running time. But difficult to optimize everything.

Cylinder Pruning

Cylinder Pruning

- [ScEu94,ScHo95], revisited in [GNR10].
- Idea: random projections are shorter.
- We can prune the gigantic tree.

Pruned enumeration cuts off many branches, by bounding projections.

Intuition

- Enumeration says: If $\|x\| \leq R$, then $\left\|\pi_{k}(x)\right\| \leq R$ for all $1 \leq k \leq n$
- But if x is random in the ball of radius R, its projection are shorter.
- For instance, we would expect $\left\|\pi_{n / 2}(x)\right\| \approx R / \sqrt{ } 2$.

Cylinder Pruning

- Replace each inequality $\left\|\pi_{k}(x)\right\| \leq R$ by $\left\|\pi_{k}(x)\right\| \leq R_{k} R$ for each index k in $\{1, \ldots, n\}$, where $0<R_{k} \leq 1$.
- The enumeration tree is pruned with $P=\left\{x \in R^{n}\right.$ s.t. $\left\|\pi_{k}(x)\right\| \leq R_{k} R$ for $\left.1 \leq k \leq n\right\}$.
- The algorithm is faster because there are less nodes.

Technical Problem [GNR10]

- To analyze and select good parameters for cylinder pruning, we need to estimate the volume of:

$$
\begin{aligned}
& \text { o } C\left(R_{1}, \ldots, R_{n}\right)=\left\{\left(y_{1}, \ldots, y_{n}\right) \in R^{n} \text { s.t. for all } 1 \leq k \leq n,\right. \\
& \left.y_{1}^{2}+\ldots+y_{k}^{2} \leq R_{k}^{2}\right\} .
\end{aligned}
$$

- This can be done efficiently thanks to the Dirichlet distribution and wellchosen polytopes.

New Results

- [ANSS-CRYPTO18]: Lower bounds on cylinder pruning.
- If the success probability is lower bounded, then one can lower bound the cost.
- [ANS-ASIACRYPT18]: Quadratic quantum speedup for cylinder pruning.

Discrete Pruning

Insight

- Previous analyses of [Sch03]'s Random Sampling studied the distribution of certain lattice points (based on encodings): tricky!
- New point of view: it's actually about partitioning the n-dim space.
- Description
- Analysis

Lattice Partitions

- Any partition of $R^{n}=U_{t \in T} C(t)$ into countably many cells s.t.:
- cells are disjoint: $C(i) \cap C(j)=\varnothing$
- each cell can be 《 opened» : it contains one and only one lattice point, which can be found efficiently. Given a tag $t \in T$, one can compute $L \cap C(t)$.

Intuitively

> - Enum $(\operatorname{LnC} C(t))$
> $\quad \simeq$ Egg opening

Partitions in Dimension 1

- Babai's partition: $\mathbf{T}=\mathbf{Z}$

- The natural partition: $\mathrm{T}=\mathrm{N}$

Babai's partition

- Cell opening: Babai's algorithm [Bab1986].

The « Natural» Partition [FuKa15]

- Cell opening: variant of Babai's algorithm.

5 Lattice Enumeration with

- Repeat until success
- Select $P=U_{t \in U} C(t)$ for some finite $U \subseteq T$.
- Enumerate $\left(L_{n} S \cap P\right)$ by enumerating all $C(t) \cap L$ where $t \in U$.
- Each iteration takes \#U poly-time operations and succeeds with $\operatorname{Pr}(\operatorname{LnS} \cap P \nsubseteq\{0\})$.
- We need to calculate $\operatorname{vol}(S \cap P)=\Sigma_{t \in U} \operatorname{Vol}(S \cap C(t))$.
- Time(Enum(LnP)) 《 linear » in \#(LnP).

Technical Problem:

- Let $\mathrm{S}=$ unit-ball and $\mathrm{H}=\Pi_{\mathrm{i}}\left[\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}\right]$ be a box. Compute vol($\mathrm{S} \cap \mathrm{H}$).
- [AoNg17] gives:
- Two infinite-series formulas by generalizing [CoTi1997] (Fourier analysis).
- Practical method using [Hosono81]'s Fast Inverse Laplace Transform.

New Results

- If one changes the radius of the ball, one needs to recompute everything.
- [MTK-eprint18] proposes a new approximation method without recomputations.
- [ANS-ASIACRYPT18] optimizes the generation of cells and shows quadratic quantum speed-up for discrete pruning.

Sieving

Provable vs Heuristic

- Sieving comes in two flavours:
- Provable algorithm with rigorous analysis [AKS01,NgVi08,MiVol0,ADRS15]
- Heuristic algorithm where not much is known. These have the best claimed running times. Started with [NgViO].

Sieving

- Given many lattice points inside a ball, can you find shorter lattice points?
- Yes by subtraction if you have exponentially many points.
- Any ball can be covered by exponentially many smaller balls.

Sieve Algorithms

- Generate exponentially many short lattice vectors by Gaussian sampling [$\mathrm{NgViO8}, \mathrm{MiVolO}$] or discrete pruning [Du18].
- Sieve them to create shorter and shorter vectors.
- Several sieving techniques: current records use some kind of sizereduction $\left\|v_{i} \pm v_{j}\right\|$.

Questions

- How big should be the number N of points?
- What is the cost of sieving w.r.t. N ?
- Naive sieve [$\mathrm{NgViO8}$] requires quadratic time N^{2} because it computes $\left\|v_{i} \pm v_{j}\right\|$ for all pairs.
- Subquadratic sieves exist [Laa15...] but have overhead in practice.

Number of Points

- [NgViO8] gives a heuristic estimate $N=$ poly $(n)^{*} 4 / 3^{n / 2}$
- If you only use o $\left(4 / 3^{n / 2} / \sqrt{ } n\right)$ 《 random » points, the pool of vectors will be empty after any linear number of sieves, so the output won't be an extremely short vector.

Improvements

- [Duc18]: Run sieve on a projected lowerdim lattice like enumeration. Sieving finds exponentially many short vectors and short vectors have short projections. The 153-dim record uses dim 123.
- Optimizations: only compute $\left\|v_{v_{j}} \pm v_{j}\right\|$ for the pairs s.t. HammingWeight $\left(v_{i} \oplus v_{j}\right)$ is small.

Quantum Sieve

- There are quantum speedups for sieve, but there are much less than quadratic.
- For the NIST competition, in a quantum world, is enumeration or sieving faster?

Conclusion

Cryptanalysis

- There has been significant progress in lattice algorithms in the past 10 years.
- It is a positive sign that the problem is attracting more and more attention.
- On the other hand, how are we going to model future progress in security estimates?
- The most efficient lattice-based cryptosystems use special lattices like ideal or module lattices.

Quantum Cryptanalysis

- There are very few examples of quantum algorithms... especially in cryptanalysis.
- Until we have a quantum computer to play with, it will be difficult to know the true power of quantum computers.

Thank you for your attention...

Any question(s)?

Tadanori Teruya (AIST)

Observations on Random Sampling Reduction Algorithms

Abstract

Development of efficient solvers of the (approximated) shortest vector problem over lattices is an important research area because the security of lattice-based schemes is based on the hardness of the shortest vector problem. Random sampling reduction is an approach to construct efficient solvers of the shortest vector problem by combining lattice basis reduction and sampling of short lattice vectors. In this talk, we show our observations on random sampling reduction algorithms, and recently proposed our probabilistic analysis framework.

Observations on Random Sampling Reduction Algorithms

Tadanori TERUYA (AIST)

Joint work with
Yoshitatsu MATSUDA and Kenji KASHIWABARA
(U. Tokyo)

2018/09/18
in "Mathematical approach for quantum information society" at Nishijin Plaza, Kyushu University This is revised version

Summary of this talk

- Probabilistic analysis framework
- For algorithms to solve the Shortest Vector Problem (SVP) and Approximated SVP (ASVP)
- Gram-Charlier A series based approach
- [Matsuda-T-Kashiwabara 2018 (IACR ePrint 2018/815)]

Outline

- Background
- Shortest vector problem
- Random sampling reduction
- Probabilistic analysis
- Our probabilistic analysis framework
- Analysis based on Gram-Charlier A series
- A lower bound
- Improvements
- Validity of the randomness assumption
- More observations

Background

NGT
 Post-Quantum Cryptography

- https://csrc.nist.gov/projects/post-quantum-cryptography
- Lattice-based crypto. is the most popular (26 / 69)
- Its security is based on the hardness of SVP and ASVP
- Analysis of their solvers is important to determine the key-length

Shortest vector problem (SVP)

- Given a basis $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$
- Find the shortest non-zero lattice vector $\lambda_{1}(L)$
- Exact solvers:
- Enumeration (ENUM), sieving
- Heuristics by basis reduction:
- LLL, BKZ, and Random Sampling Reduction (RSR)

Gaussian heuristics (GH)

- GH': Let $R_{\ell} \subseteq \mathbb{R}^{n}$ be a ball with radius ℓ centered at 0

$$
\#\{v \mid v \in L \wedge\|v\| \leq \ell\} \approx \frac{\operatorname{vol}\left(R_{\ell}\right)}{\operatorname{det} L}
$$

- $\mathrm{GH}:\left\|\lambda_{1}(L)\right\|$ can be estimated as

$$
\left\|\lambda_{1}(L)\right\| \approx \mathrm{GH}(L)=\frac{(\Gamma(1+n / 2) \cdot \operatorname{det} L)^{1 / n}}{\sqrt{\pi}}
$$

Gram-Schmidt orthogonalized basis
$\boldsymbol{B}^{*}=\left(\boldsymbol{b}_{1}^{*}, \ldots, \boldsymbol{b}_{n}^{*}\right)$

- $b_{1}^{*}:=b_{1}$
- $\boldsymbol{b}_{i}^{*}:=\boldsymbol{b}_{i}-\sum_{j=1}^{i-1} \mu_{i, j} \boldsymbol{b}_{j}^{*}$ where $\mu_{i, j}:=\left\langle\boldsymbol{b}_{i}, \boldsymbol{b}_{j}^{*}\right\rangle /\left\|\boldsymbol{b}_{j}^{*}\right\|^{2}$
$\operatorname{det} L=\prod_{i=1}^{n}\left\|\boldsymbol{b}_{i}^{*}\right\|$
- Invariant of L
$\operatorname{vol}(S)$ is the volume of a figure
(measurable set) S

Approximated-SVP (ASVP)

- γ-ASVP: Find $v \in L \backslash\{0\}$ such that $\|v\|<\gamma \cdot \mathrm{GH}(L)$
- The number of solutions $=\gamma^{n}$
- The hardness is mitigated by factor γ^{n}

SVP Challenge

INTRODUCTION
This page presents sample lattices for testing algorithms that solve the shortest vector problem (SVP) in euclidean lattices. The SVP challenge helps assessing the strength of SVP algorithms, and serves to compare different types of algoritims, like sieving and enumeration. The lattices presented here are random lattices in the sense of Goldstein and Mayer.

- https://www.latticechallenge.org/svp-challenge/
- Hosted by TU Darmstadt since 2010
- Provide an SVP instances and their generator
- Evaluate hardness of SVP/ASVP and efficiency of solvers
- Accept 1.05-ASVP solutions

Hall-of-fame in SVP Challenge

- Sieving
- Note: A detailed report has not been published yet
- (Random) Sampling Reduction (RSR) [T et al. 2018]

(Random) Sampling Reduction

(Random) Sampling Reduction (RSR)

- An approach (usage) of lattice basis reduction
- The first version is [Schnorr 2003]
- Several variants are proposed
- [Buchmann-Ludwig 2005, 2006], [Fukase-Kashiwabara 2015], and [T et al. 2018], etc.
- Main loop consists of two sub-algorithms:
- Vector generation (GEN): generate short lattice vectors by using the basis
- Basis reduction (Reduce): update the basis by generated short lattice vectors (LLL/BKZ)
- Note: Randomness is not needed in practice
- "Random" may be omitted

Sampling reduction in nutshell

i-th projection of \boldsymbol{B} is $\pi_{i}(v)=v-\sum_{j=1}^{i-1} v_{j}^{*} \boldsymbol{b}_{j}^{*}$, where $v_{j}^{*}:=\left\langle\boldsymbol{v}, \boldsymbol{b}_{j}^{*}\right\rangle /\left\|\boldsymbol{b}_{j}^{*}\right\|^{2}$

Sampling Algorithm (SA)

- SA is an instance of GEN
- Given $\Omega \subseteq \mathbb{N}^{n}$, then $\{\boldsymbol{v} \mid \boldsymbol{t} \leftarrow \Omega ; \boldsymbol{v} \leftarrow \operatorname{SA}(\boldsymbol{B}, \boldsymbol{t})\}$
- Its definition is based on ENUM

Two types definitions

Given $\Omega \subseteq \mathbb{N}^{n}$, then $\{\boldsymbol{v} \mid \boldsymbol{t} \leftarrow \Omega$; $\boldsymbol{v} \leftarrow \operatorname{SA}(\boldsymbol{B}, \boldsymbol{t})\}$

- Probabilistic SA:
- The first version [Schnorr 2003]:
$\boldsymbol{t}($ or Ω) is chosen by a (probabilistic) distribution
- Useful in estimation [Matsuda-T-Kashiwabara 2018]
- Deterministic SA:
- Variants: [Buchmann-Ludwig 2005, 2006], [Fukase-Kashiwabara 2015], [T et al. 2018], and [Aono-Nguyen 2017]
- Used in practice

Behavior of SA			The same color boxes: - Correspond to one $\boldsymbol{t} \in \mathbb{N}^{n}$ (coordinate system) - Contain one lattice vector		
$\boldsymbol{t}=(2,2)$	$(1,2)$	$(0,2)$		$(1,2)$	$(2,2)$
$t=(2,1)$	$(1,1)$	$(0,1)$	$\boldsymbol{b}_{2}^{*} \quad \boldsymbol{b}_{2}$	$(1,1)$	$(2,1)$
$(2,0)$	$(1,0)$	$(0,0)$		$(1,0)$	(2,0)
$(2,1)$	$(1,1)$	$(0,1)$		$(1,1)$	$(2,1)$
$(2,2)$	$(1,2)$	$(0,2)$		$(1,2)$	$(2,2)$
Input: a basis $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ of a lattice L and a sequence $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}^{n}\left(t_{i} \in\{0,1,2, \ldots\}\right)$ Output: $\boldsymbol{v} \in L$ such that $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*}$, where $v_{i}^{*} \in\left(-\frac{t_{i}+1}{2},-\frac{t_{i}}{2}\right] \cup\left(\frac{t_{i}}{2}, \frac{t_{i}+1}{2}\right]$					color

Basic properties of SA

$$
\operatorname{nzsign}(x)=\left\{\begin{aligned}
1, & \text { if } x>0 \\
-1, & \text { otherwise }
\end{aligned}\right.
$$

- Rewrite: $v_{i}^{*}=\operatorname{nzsign}\left(u_{i}^{*}\right) \frac{t_{i}}{2}+u_{i}^{*}$
- Location (how far from the origin): t_{i}
- Distribution (uncertainty): $u_{i}^{*} \in\left(-\frac{1}{2}, \frac{1}{2}\right]$
- Squared-length distribution (box) bounds:
- $\inf \left(v_{i}^{*}\right)^{2}=\frac{t_{i}^{2}}{4}$,
$\inf \left\|\pi_{i}(\boldsymbol{v})\right\|^{2}=\sum_{j=i}^{n} \frac{t_{j}^{2}}{4}\left\|\boldsymbol{b}_{j}^{*}\right\|^{2}$,
$\cdot \sup \left(v_{i}^{*}\right)^{2}=\frac{\left(t_{i}+1\right)^{2}}{4}, \quad \sup \left\|\pi_{i}(\boldsymbol{v})\right\|^{2}=\sum_{j=i}^{n} \frac{\left(t_{j}+1\right)^{2}}{4}\left\|\boldsymbol{b}_{j}^{*}\right\|^{2}$

Input: a basis $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ of a lattice L and
a sequence $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}^{n}\left(t_{i} \in\{0,1,2, \ldots\}\right)$
Output: $\boldsymbol{v} \in L$ such that $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*}$,
where $v_{i}^{*} \in\left(-\frac{t_{i}+1}{2},-\frac{t_{i}}{2}\right] \cup\left(\frac{t_{i}}{2}, \frac{t_{i}+1}{2}\right]$

Note on GEN

- Main purpose is to generate many short lattice vectors from input basis \boldsymbol{B}
- To construct GEN, not necessary to be limited to SA (and ENUM)
- So we call GEN
- In this talk, we focus on SA

Probabilistic Analysis

How to improve algorithms?

- Compute $\{\boldsymbol{v} \mid \boldsymbol{t} \leftarrow \Omega ; \boldsymbol{v} \leftarrow \mathrm{SA}(\boldsymbol{B}, \boldsymbol{t})\}$
- What is better input parameter? $(\boldsymbol{B}, \boldsymbol{t}, \Omega)$
- Guideline to improve parameters and algorithms
- A hint to consider the hardness of SVP/ASVP
- How to analyze?
- Approach: Probabilistic analysis
- Consider length distribution of output SA (GEN):

$$
\operatorname{Pr}[\|\boldsymbol{v}\|=\ell], \text { where } \boldsymbol{v}=\operatorname{SA}(\boldsymbol{B}, \boldsymbol{t}) \text { and } \boldsymbol{t} \in \Omega
$$

Uncertainty in algorithms

- On cryptographically (or something) interested lattices, bases, and algorithms, ...
- E.g., SA (GEN)

Before calculating algorithms, we do not know exact coordinates of outputs

Uncertainty in algorithms

- On cryptographically (or something) interested lattices, bases, and algorithms, ...

Before calculating algorithms, we do not know exact coordinates of outputs

However we know that outputs are contained in these figures

Randomness assumption (RA)

- RA: Assume that lattice vectors are independently and uniformly distributed in figures
- Note: These figures are specified by algorithms
- Hereafter, assume RA

Notes on gaussian heuristics and randomness assumption

- More aggressive statements of GH and RA:
- GH+RA: One $\boldsymbol{v} \in L$ is independently and uniformly distributed in a figure (measurable set) A such that $\operatorname{vol}(A)=\operatorname{det} L$
- $\mathrm{GH}+\mathrm{RA} A^{\prime}: \operatorname{Pr}\left[\boldsymbol{v} \in \mathbb{R}^{n} \wedge \boldsymbol{v} \in L\right]=1 / \operatorname{det} L$
- Remark: for some $S \subseteq \mathbb{R}^{n}$,
$\mathrm{E}[\#\{\boldsymbol{v} \mid \boldsymbol{v} \in L \cap S\}]=\frac{\operatorname{vol}(S)}{\operatorname{det} L}$
- $\mathrm{E}[\phi]:=$ expectation of ϕ

Examples of figures for $\mathrm{GH}+\mathrm{RA}$

- Ball
- Captures lattice vectors shorter than its radius
- Cylinder
- Used to formalize pruned enumeration
- Box
- Corresponds to computation of SA and ENUM
- ... and their intersections

Example: RA on SA (box)

- Consider deterministic SA
- For input $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ and $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$
- Output $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*} \in L$, where $v_{i}^{*} \in\left(-\frac{t_{i}+1}{2},-\frac{t_{i}}{2}\right] \cup\left(\frac{t_{i}}{2}, \frac{t_{i}+1}{2}\right]$
- RA on SA [Fukase-Kashiwabara 2015]:

Each v_{i}^{*} is uniformly distributed in boxes specified above and independent with distinct i and distinct v

- All ν_{i}^{*} and $\|\boldsymbol{v}\|$ can be seen as random variables

Several works on probabilistic analysis

- [Schnorr 2003] and [Buchmann-Ludwig 2005, 2006]:
- Success probability
- [Fukase-Kashiwabara 2015]:
- The expectation and the variance
- Length Estimation based on Normal Distribution (LEND)
- [Aono-Nguyen 2017]:
- Volume-based estimation
- [Matsuda-T-Kashiwabara 2018]:
- This talk
- Use Gram-Charlier A series
- This can be seen as a generalization of LEND

Length estimation by
 [Fukase-Kashiwabara 2015]

- $\left\|\pi_{i}(\boldsymbol{v})\right\|^{2}$ of output of SA can be estimated by normal distribution with

Expectation: $\mathrm{E}\left[\left\|\pi_{i}(v)\right\|^{2}\right]=\mu=\sum_{j=i}^{n}\left(\frac{t^{2}+t_{j}}{4}+\frac{1}{12}\right)\left\|\boldsymbol{b}_{j}^{*}\right\|^{2}$
Variance: $\mathrm{V}\left[\left\|\pi_{i}(\boldsymbol{v})\right\|^{2}\right]=\sigma^{2}=\sum_{j=i}^{n}\left(\frac{t_{j}^{2}+t_{j}}{48}+\frac{1}{180}\right)\left\|\boldsymbol{b}_{j}^{*}\right\|^{2}$

- Length Estimation based on Normal Distribution (LEND) is extremely simple and fast

Input: a basis $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ of a lattice L and a sequence $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}^{n}\left(t_{i} \in\{0,1,2, \ldots\}\right)$
Output: $\boldsymbol{v} \in L$ such that $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*}$,
where $v_{i}^{*} \in\left(-\frac{t_{i}+1}{2},-\frac{t_{i}}{2}\right] \cup\left(\frac{t_{i}}{2}, \frac{t_{i}+1}{2}\right]$

Problem of LEND

- [Aono-Nguyen 2017] pointed out
- This picture is taken from [Aono-Nguyen 2017]

Consideration on LEND (1/2)

- At the tail of PDF, seriously inaccurate
- But fast
- [Aono-Nguyen 2017] proposed a volume-based estimation
- It is more accurate than LEND at the tail
- But slow
- Trade-off?
- Difference of methods?
-That's all?

Consideration on LEND (2/2)

- Fact: LEND uses only two parameters
- Expectation
- Variance
- Conclusion: Since there are only two parameters, LEND is inaccurate at the tail

> Natural question: Use many parameters, then what will happen?

Our proposal:
 Gram-Charlier A series based probabilistic analysis

[Matsuda-T-Kashiwabara 2018 (IACR ePrint 2018/815)]

Higher-order moments

- The moments are important statistical parameters
- Def: r-th moment of a random variable X with $\operatorname{PDF} f$ is

$$
\mu_{r}(X)=\int_{-\infty}^{\infty} x^{r} f(x) \mathrm{d} x
$$

Higher-order moments of SA

- For output $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*}$,
each $\left(v_{i}^{*}\right)^{2}$ can be seen as a random variable
- For input $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$, each r-th moment of $\left(v_{i}^{*}\right)^{2}$ is

$$
\mu_{r}\left(\left(v_{i}^{*}\right)^{2}\right)=\frac{\left(\left(t_{i}+1\right)^{2 r+1}-t_{i}^{2 r+1}\right)}{(2 r+1) 2^{2 r}}
$$

Input: a basis $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ of a lattice L and a sequence $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}^{n}\left(t_{i} \in\{0,1,2, \ldots\}\right)$
Output: $\boldsymbol{v} \in L$ such that $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*}$,
where $v_{i}^{*} \in\left(-\frac{t_{i}+1}{2},-\frac{t_{i}}{2}\right] \cup\left(\frac{t_{i}}{2}, \frac{t_{i}+1}{2}\right]$

Higher-order cumulants

- The cumulants are also important statistical parameters
- r-th cumulant $\kappa_{r}(X)$ is

$$
\kappa_{r}(X)=\mu_{r}(X)-\sum_{m=1}^{r-1}\binom{r-1}{m-1} \kappa_{m}(X) \mu_{r-m}(X)
$$

- Namely, $\mu_{1}, \ldots, \mu_{r} \leftrightarrow \kappa_{1}, \ldots, \kappa_{r}$ in $O\left(r^{2}\right)$ time
- Let X and Y be two independent random variables
- $\kappa_{r}(a X+b)=\left\{\begin{aligned} a \kappa_{1}(X)+b, & r=1 \\ a^{r} \kappa_{r}(X), & \text { otherwise }\end{aligned}\right.$
- $\kappa_{r}(X+Y)=\kappa_{r}(X)+\kappa_{r}(Y)$
- Calculation of $\kappa_{r}(a X+b Y+c)$ is quite easy

Calculating higher-order cumulants of SA

- Each r-th cumulant of $\|\boldsymbol{v}\|^{2}=\sum_{i=1}^{n}\left(v_{i}^{*}\right)^{2} \cdot\left\|\boldsymbol{b}_{i}^{*}\right\|^{2}$ can be calculated as

Input: a basis $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ of a lattice L and a sequence $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}^{n}\left(t_{i} \in\{0,1,2, \ldots\}\right)$
Output: $\boldsymbol{v} \in L$ such that $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*}$, where $v_{i}^{*} \in\left(-\frac{t_{i}+1}{2},-\frac{t_{i}}{2}\right] \cup\left(\frac{t_{i}}{2}, \frac{t_{i}+1}{2}\right]$

Corollaries

- Expectation:

$$
\mathrm{E}\left[\left(v_{i}^{*}\right)^{2}\right]=\kappa_{1}\left(\left(v_{i}^{*}\right)^{2}\right)=\frac{t_{i}^{2}+t_{i}}{4}+\frac{1}{12}
$$

- Variance:

$$
\mathrm{V}\left[\left(v_{i}^{*}\right)^{2}\right]=\kappa_{2}\left(\left(v_{i}^{*}\right)^{2}\right)=\frac{t_{i}^{2}+t_{i}}{48}+\frac{1}{180}
$$

- Also, $\mathrm{E}\left[\left\|\pi_{i}(\boldsymbol{v})\right\|^{2}\right]$ and $\mathrm{V}\left[\left\|\pi_{i}(\boldsymbol{v})\right\|^{2}\right]$ are implied

Input: a basis $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ of a lattice L and a sequence $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{N}^{n}\left(t_{i} \in\{0,1,2, \ldots\}\right)$ Output: $\boldsymbol{v} \in L$ such that $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*}$, where $v_{i}^{*} \in\left(-\frac{t_{i}+1}{2},-\frac{t_{i}}{2}\right] \cup\left(\frac{t_{i}}{2}, \frac{t_{i}+1}{2}\right]$

Gram-Charlier A series (GCA)

- Given cumulants $\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots$, of a random variable X
- PDF and CDF of X can be written as

$$
\begin{aligned}
& \text { PDF } f(x)=\frac{\phi(z)}{\sqrt{\kappa_{2}}}\left(1+\sum_{r=3}^{\infty} \frac{\operatorname{Bell}_{r}\left(0,0, \kappa_{3}, \ldots, \kappa_{r}\right)}{r!{\sqrt{\kappa_{2}}}^{r}} \operatorname{He}_{r}(z)\right) \\
& \mathrm{CDF} \\
& \\
&
\end{aligned}
$$

- $z=\frac{x-\kappa_{1}}{\sqrt{\kappa_{2}}}$
- Standard normal distribution PDF $\phi(x)$ and $\operatorname{CDF} \Phi(x)$
- r-th complete Bell polynomial $\operatorname{Bell}_{r}\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$
- r-th Hermite polynomial $\mathrm{He}_{r}(x) \in \mathbb{Z}[x]$

Properties of GCA

- GCA is an asymptotic series expansion
- Like the Fourier ones
- A survey is [Brenn-Anfinsen 2017]
- In general, convergence is not guaranteed
- However, for estimation of SA, GCA describes true PDF and CDF when degree $r \rightarrow \infty$
- Because distribution is bounded
- In practice, surprisingly accurate with finite degree r
- For more techniques and details, see
[Matsuda-T-Kashiwabara 2018 (IACR ePrint 2018/815)]

Recall: LEND and GCA formula

$$
\begin{gathered}
\text { PDF } f(x)=\frac{\phi(z)}{\sqrt{\kappa_{2}}}\left(1+\sum_{r=3}^{\infty} \frac{\operatorname{Bell}_{r}\left(0,0, \kappa_{3}, \ldots, \kappa_{r}\right)}{r!{\sqrt{\kappa_{2}}}^{r}} \mathrm{He}_{r}(z)\right) \\
z=\frac{x-\kappa_{1}}{\sqrt{\kappa_{2}}}
\end{gathered}
$$

- Q: What is LEND [Fukase-Kashiwabara 2015]?
- A: It is GCA degree 2 under RA
- LEND is inaccurate at the tail because the degree is 2 , quite small
- LEND is accurate at the center because the degree is 2 , enough
- In practice, LEND is useful because the expectation and variance are important statistical parameters

Our proposal:
 GCA based analysis framework

Cumulants of the ball under RA

- Fix the maximum length $\ell_{\text {max }}$
- CDF of $\|\boldsymbol{w}\| \leq \ell_{\text {max }}$ can be formalized as truncated distribution
- GH": Fix a basis \boldsymbol{B}, let R_{ℓ} be a $(n-k)$-dimensional ball with radius ℓ centered at 0

$$
\#\left\{\boldsymbol{w} \mid \boldsymbol{w} \in \pi_{k}(L) \wedge\|\boldsymbol{w}\| \leq \ell\right\} \approx \frac{\operatorname{vol}\left(R_{\ell}\right)}{\operatorname{det} \pi_{k}(L)}
$$

- PDF is the derivative of CDF
- Higher-order moments and cumulants can be calculated - GCA is applicable

Example of our framework

Application of GCA: Computational lower bound of SA

Meaningless box of SA

- In practice, $\boldsymbol{t}_{0}=(0, \ldots, 0)$ corresponds to the origin
- Output is meaningless
- However, it has the best expectation
- Under RA, the probability on \boldsymbol{t}_{0} is not degenerate

$(2,2)$	$(1,2)$	$(0,2)$		$(1,2)$	$(2,2)$	
$(2,1)$	$(1,1)$	$(0,1)$	\boldsymbol{b}_{2}^{*}	\boldsymbol{b}_{2}	$(1,1)$	$(2,1)$
$(2,0)$	$(1,0)$	$(0,0)$			$(1,0)$	\boldsymbol{b}_{1}^{*}
			$(2,0)$			
$(2,1)$	$(1,1)$	$(0,1)$				
$(2,2)$	$(1,2)$	$(0,2)$		$(1,1)$	$(2,1)$	

Ideal setting for a lower bound of SA

- CDF of \boldsymbol{t}_{0} and a simulated-HKZ basis can be seen as the performance limitation of SA on a lattice L
- If you do not like \boldsymbol{t}_{0}, use $\boldsymbol{t}_{0}^{\prime}=(0, \ldots, 0,1)$ instead
- Consider that many non-trivial executions of SA with input simulated-HKZ bases
- A computational lower bound of γ-ASVP seems to be

$$
F\left((\gamma \cdot \mathrm{GH}(L))^{2}\right)^{-1}
$$

where F is a CDF calculated by \boldsymbol{t}_{0} and a simulated-HKZ basis

Example:
 150-dimension SVP Challenge instance

Improve algorithms

Recall: Sampling reduction

Sampling reduction using SA

How to choose better Ω ? (1/2)

- Minimize output length $\|\boldsymbol{v}\|^{2}=\sum_{i=1}^{n}\left(v_{i}^{*}\right)^{2} \cdot\left\|\boldsymbol{b}_{i}^{*}\right\|^{2}$
- [Fukase-Kashiwabara 2015] and [T et al. 2018] suggested a choice based on the expectation $\mathrm{E}\left[\left\|\pi_{i}(v)\right\|^{2}\right]$
- To choose independently with the basis, use simulated shape of basis and $E\left[\left(v_{i}^{*}\right)^{2}\right]$
- Other candidates: $\inf \left(v_{i}^{*}\right)^{2}$ and $\sup \left(v_{i}^{*}\right)^{2}$
- Shape simulation: Geometric Series Assumption (GSA) and monotonically decreasing sequence

```
Shape of \(\boldsymbol{B}\) is \(\left(\left\|\boldsymbol{b}_{1}^{*}\right\|,\left\|\boldsymbol{b}_{2}^{*}\right\|, \ldots,\left\|\boldsymbol{b}_{n}^{*}\right\|\right)\)
Squared-shape of \(\boldsymbol{B}\) is \(\left(\left\|\boldsymbol{b}_{1}^{*}\right\|^{2},\left\|\boldsymbol{b}_{2}^{*}\right\|^{2}, \ldots,\left\|\boldsymbol{b}_{n}^{*}\right\|^{2}\right)\)
```

GSA: $\left\|\boldsymbol{b}_{i}^{*}\right\| /\left\|\boldsymbol{b}_{1}\right\|=q^{i-1}$, where $3 / 4 \leq q<1$

How to choose better Ω ? (2/2)

- [Aono-Nguyen 2017] showed a general and adaptive way
- Discrete pruning
- To construct better Ω, we can use ENUM without calculating coordinates

Limitation of improvements of Ω

Minimize output length of SA

$$
\|\boldsymbol{v}\|^{2}=\sum_{i=1}^{n}\left(v_{i}^{*}\right)^{2} \cdot\left\|\boldsymbol{b}_{i}^{*}\right\|^{2}
$$

- Under RA, we cannot control the probability of $\left(v_{i}^{*}\right)^{2}$
- A choice based on the expectation seems to be better
- [Fukase-Kashiwabara 2015], [T et al. 2018], [Aono-Nguyen 2017]
- In short, better choice:

$$
\boldsymbol{t}=\left(0,0,0,0,0, \ldots, 0,0, t_{k+1}, \ldots, t_{n-1}, t_{n}\right) \in \mathbb{N}^{n}
$$

- Many zeros from the head
- Should use small natural numbers at the tail

Lattice basis reduction is important

Minimize output length of SA

$$
\|\boldsymbol{v}\|^{2}=\sum_{i=1}^{n}\left(v_{i}^{*}\right)^{2} \cdot\left\|\boldsymbol{b}_{i}^{*}\right\|^{2}
$$

- In the contrast, we can control lattice basis reduction to a certain extent
- Main results of [Fukase-Kashiwabara 2015], [T et al.

2018] are reduction strategies under RA

For some $\boldsymbol{t} \in \Omega \subseteq \mathbb{N}^{n}$ (or consider $\boldsymbol{t}_{0}=(0,0, \ldots, 0)$ only),
let \boldsymbol{B}_{1} and \boldsymbol{B}_{2} be two bases of a lattice such that $\operatorname{Exp}\left(\boldsymbol{B}_{2}\right)<\operatorname{Exp}\left(\boldsymbol{B}_{1}\right)$

$$
\operatorname{Exp}(\boldsymbol{B}):=\mathrm{E}\left[\|\boldsymbol{v}\|^{2}\right]=\sum_{i=1}^{n}\left(\frac{t_{i}^{2}+t_{i}}{4}+\frac{1}{12}\right)\left\|\boldsymbol{b}_{i}^{*}\right\|^{2}
$$

Recall: Sampling reduction

Strategy of sampling reduction (1/3)

Strategy of sampling reduction (2/3)

Strategy of sampling reduction (3/3)

Validity of the randomness assumption

Validity of RA (on boxes)

- GCA is based on RA

- [T 2018] investigated validity of RA
- For input $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ and all $\boldsymbol{t} \in \Omega=\{0\}^{n-u-1} \times\{0,1\}^{u} \times\{1\}$
- Collect all the v_{i}^{*} from all the outputs $\boldsymbol{v}=\sum_{i=1}^{n} v_{i}^{*} \boldsymbol{b}_{i}^{*}$

- Show statistics

- Histograms of all the v_{i}^{*} and chi-square statistics
- Correlation index

Histograms of orthogonalized coefficients

Chi-square statistics

Pearson correlation index heatmap on distinct coordinate indices

Pearson correlation index heatmap on

 distinct lattice vectors50

0
-

- Randomly selected distinct 250 lattice vectors
- Slightly correlated...

Histogram of correlation index on distinct lattice vectors

Ludwig's observation

- "The point it that only the very last v_{i}^{*} will fail simple statistical tests"
- This is a quotation from Ludwig's PhD thesis
- In the previous example, remove all v_{i}^{*}, where $i=$ 121, ... 150

Pearson correlation index heatmap of truncated values on distinct lattice vectors

200
Remove all v_{i}^{*}, where $i=121, \ldots, 150$

Histogram of Pearson correlation index of truncated values on distinct lattice vectors

Chi-square statistics on

$$
n=50
$$ LWE Challenge instance

$$
\alpha=0.010
$$

149 samples used

Conclusion on RA on SA

- RA cannot strictly hold
- However, we cannot simply dismiss RA
- Rather, RA is trustworthy
- Indices at the head (e.g., 1-129), might follow RA
- Indices at the tail (e.g., 130-150), we cannot decide anything because few samples
- On few samples, some statistics might be inappropriate
- E.g., histograms and chi-square statistics, etc.
- In practice, indices at the tail can be ignored

Open question on RA

Q: Can we find algorithms such that its behavior is completely outside of RA? Especially, at the head part indices

Q': If we find such an algorithm, what can we say?

Open question on RA

Q: Can we find algorithms such that its behavior is completely outside of RA? Especially, at the head part indices

Q': If we find such an algorithm, what can we say?

A?: Are lattice basis reduction algorithms the answers?

More observations

Recall: Sampling reduction

SubSieve+ [Ducas 2018]: An overview

$$
\begin{aligned}
\boldsymbol{t} & =(0,0,0,0,0,0,0, \ldots, 0,0,0) \\
\boldsymbol{B}^{*} & =\left(b_{1}^{*}, \boldsymbol{b}_{2}^{*}, \boldsymbol{b}_{3}^{*}, \ldots, \boldsymbol{b}_{d-1}^{*}, \boldsymbol{b}_{d}^{*}, \boldsymbol{b}_{d+1}^{*}, \boldsymbol{b}_{d+2}^{*}, \ldots, \boldsymbol{b}_{n-1}^{*}, \boldsymbol{b}_{n}^{*}\right)
\end{aligned}
$$

Many short lattice vectors $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{N} \in L$

SA with d zeros Many projected (Babai's algorithm)

Repeat and decrease d until solve SVP or ASVP

Update basis
$\boldsymbol{B} \leftarrow \operatorname{LLL}([\boldsymbol{V} \mid \boldsymbol{B}])$

SubSieve+ [Ducas 2018]: An overview

Observations on SubSeive+

- To overcome memory consumption problems, [Ducas 2018] proposed sieving over $\pi_{d}(L)$
- The quality of its output depends on "how reduced" basis
- SubSieve+ [Ducas 2018] alternately iterates:
- Sieving over $\pi_{d}(L)+$ SA with d zeros
- Lattice basis reduction
- "Initial pool" may be similar to stock/link vector [FukaseKashiwabara 2015] and [T et al. 2018]
- SubSieve+ can be seen as a variant of sampling reduction
- Note: Our analysis framework can be applied

Sampling reduction with hybrid approach

- [Laarhoven and Mariano 2018] also mentioned
- Note: Our analysis framework can be applied

Conclusion

- We proposed Gram-Charlier A series based probabilistic analysis framework
- For more details, see [Matsuda-T-Kashiwabara 2018]
- To solve SVP and ASVP, combining lattice basis reduction and short lattice vector generation, is important
- LLL/BKZ + sampling: [Schnorr 2003], [Buchmann-Ludwig 2005, 2006], [Fukase-Kashiwabara 2015], and [T et al. 2018]
- SubSieve+ [Ducas 2018]
- Hybrid approach:

Lattice basis reduction + sampling + ENUM + sieving

References

- Aono-Nguyen 2017: Random Sampling Revisited: Lattice Enumeration with Discrete Pruning, EUROCRYPT
- Buchmann-Ludwig 2005, 2006: Practical Lattice Basis Sampling Reduction, ANTS, PhD Thesis
- Brenn-Anfinsen 2017: A Revisit of the Gram-Charlier and Edgeworth Series Expansions, U. Norway
- Ducas 2018: Shortest Vector from Lattice Sieving: A Few Dimensions for Free, EUROCRYPT
- Fukase-Kashiwabara 2015: An Accelerated Algorithm for Solving SVP based on Statistical Analysis, JIP
- Laarhoven-Mariano 2018: Progressive Lattice Sieving, PQCrypto
- Matsuda-T-Kashiwabara 2018: Estimation of the Success Probability of Random Sampling by the Gram-Charlier Approximation, IACR ePrint 2018/815
- Schnorr 2003: Lattice Reduction by Random Sampling and Birthday Methods, STACS
- T 2018: An Observation on the Randomness Assumption over Lattices, ISITA (to appear)
- T et al. 2018: Fast Lattice Basis Reduction suitable for Massive Parallelization and Its Application to the Shortest Vector Problem, PKC

Noboru Kunihiro (The University of Tokyo)

Quantum Factoring Circuit: Resource Estimation and Survey of Experimental Realization

Abstract

In this talk, we discuss quantum circuits for Shor's factoring algorithm. In the first part, we review the resource estimation (the exact number of qubits and gates) of quantum circuits for factoring. We estimate the running time for factoring a large composite such as 768 and 1024 bit numbers by appropriately setting gate operation time. Consequently, we show that if we adopt the long gate operation-time devices or qubit-saving circuits, factorization will not be completed within feasible time on the condition that a new efficient modular exponentiation algorithm will not be proposed. Furthermore, we point out that long gate operation time may become a new problem preventing a realization of quantum computers. In the second part, we summarize the existing physical experiments for factoring of small numbers including 15 and 21.

Quantum Factoring Algorithm: Resource Estimation and Survey of Experimental Realization

The University of Tokyo Noboru Kunihiro

Mathematical Approach for Quantum Information Society
Kyushu University, 19 ${ }^{\text {th }}$, Sep., 2018

Brief History of Quantum Algorithm from the cryptographic aspect

> 1994: Shor's polynomial time algorithms for Factoring and Discrete Logarithm Problem
> 1996: Grover's Database Search Algorithm 1995-1999: Polynomial time algorithms for Hidden Subgroup Problem (extension of Shor's algorithm)

In theory, we can break RSA, ElGamal and Elliptic Curve Cryptosystem in Quantum Polynomial time.

Part I:
 Resource Estimation of Quantum Factoring

N. Kunihiro, "Exact Analysis of Computational Time for Factoring in Quantum Computers," IEICE Trans. Vol. 88-A, No. 12005.

Resource Estimation for Factoring:

Quatum Circuit Construcion

1. Circuit with less qubits is desirable.
2. Circuit with less gates is desirable.

Reason for 1
The maximal number of qubits is seven in the state of the art.
It seems that a large-scale quantum computer cannot be constructed in the near future.

Reason for 2
Quantum states are destroyed by decoherence.

Overview of Shor's Factoring Algorithm

Strategy:
For chosen a, compute the smallest positive integer r such that $a^{r}=1(\bmod N)$.
Step1: Let $m=2\lfloor\log N\rfloor+1$
Step2: Set an initial state: $\underbrace{\mid 0>}_{\text {m qubit }} \mid 1>$
Step3: Perform Hadamard Transformation to obtain

$$
\rightarrow \frac{1}{\sqrt{2^{m}}} \sum_{j=0}^{2^{m}-1}|j\rangle|1\rangle
$$

Step4: Perform the modular exponentiation

$$
\rightarrow \frac{1}{\sqrt{2^{m}}} \sum_{j=0}^{2^{m}-1}|j\rangle\left|a^{j} \bmod N\right\rangle
$$

Step:5 The inverse of QFT $\rightarrow \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|\frac{\widetilde{s}}{r}\right\rangle\left|u_{s}\right\rangle \quad 5$

Step6: Observe the first registration:
$\rightarrow \frac{\widetilde{s}}{r} \quad \widetilde{S}$ can be considered as a random integer [0:r-1].
Step7: Obtain r by classical computation.

Research Target:
 Construct efficient quantum circuits for Modular Exponentiation.

Hadamard Gate: H

$$
\begin{aligned}
& |0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& |1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

Quantum Superposition:

$$
\begin{aligned}
& |00\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle\rangle|0\rangle \rightarrow \frac{1}{2}(|0\rangle+|1\rangle)(|0\rangle+|1\rangle) \\
& =\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle
\end{aligned}
$$

For a fixed a and $k, U_{a^{2}}$ can be described as quantum circuit.

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|1\rangle \rightarrow \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle\left|a^{x} \bmod N\right\rangle
$$

$$
\xlongequal[2]{2} \text { MOD-EXP } \leftarrow \text { Controlled MOD-MUL: }|x\rangle \rightarrow|a x \bmod N\rangle
$$

$$
|z\rangle|y\rangle \rightarrow|z\rangle|y+d z \bmod N\rangle
$$

$$
\text { MOD-PS } \leftarrow \underline{\text { Controlled MOD-ADD }}|b\rangle \rightarrow|b+a \bmod N\rangle
$$

$$
\operatorname{MOD}-\mathrm{ADD} \leftarrow \mathrm{ADD} \quad|b\rangle \rightarrow|b+a\rangle
$$

\downarrow How to construct ADDs

$$
9
$$

Modular Multiplication: MOD - MUL(d)

$$
|z\rangle|0\rangle \rightarrow|d z \bmod N\rangle|0\rangle
$$

$M O D-P S(d):|z\rangle|y\rangle \rightarrow|z\rangle|y+d z \bmod N\rangle$
By applying MOD $-\mathrm{PS}(d)$, SWAP, MOD $-\mathrm{PS}\left(-d^{-1}\right)$, we obtain

$$
\begin{aligned}
|z\rangle|0\rangle & \rightarrow|z\rangle|d z \bmod N\rangle \rightarrow|d z \bmod N\rangle|z\rangle \\
& \rightarrow|d z \bmod N\rangle\left|z-d^{-1}(d z) \bmod N\right\rangle=|d z \bmod N\rangle|0\rangle
\end{aligned}
$$

Modular Product Sum: MOD - PS (d)

$y+d z \bmod N=y+d \sum_{j=0}^{n-1} 2^{j} z_{j} \bmod N=y+\sum_{j=0}^{n-1}\left(2^{j} d \bmod N\right) z_{j} \bmod N$ predetermined, let $e_{b, j}$
For $\left|z_{n-1} z_{n-2} \cdots z_{1} z_{0}\right\rangle|y\rangle$, apply

$$
\mathrm{C}\left(z_{j}\right)-\mathrm{MOD}-\operatorname{ADD}\left(e_{b, j}\right) \text { for } j=0,1,2, \ldots, n-1
$$

Modular Addition: $\quad|b\rangle \rightarrow|b+a \bmod N\rangle$

$$
n \text { : the bit-length of } N
$$

There are two strategies for constructing MOD-ADD from ADD.

Modular addition consists of the following circuits.

	C 3-ADD	C 2-ADD	C-ADD	ADD	others
Type1	1	3	0	0	$(2,4,0,0)$
Type2	0	3	1	1	$(1,2,3)$

Which type is effective?

Two Construction of C^{2}-ADD

Type 1

1. $\operatorname{ADD}\left(d+2^{n}-N\right)$
2. $\operatorname{NOT}\left(R_{1}\right), \mathrm{C}\left(R_{1}\right)-\operatorname{NOT}\left(R_{3}\right)$, $\operatorname{NOT}\left(R_{1}\right)$
3. $\mathrm{C}\left(R_{3}\right)-\operatorname{ADD}(N)$
4. $\operatorname{NOT}\left(R_{1}\right)$
5. $\operatorname{ADD}\left(2^{n}-d\right)$
6. $\mathrm{C}\left(R_{1}\right)-\mathrm{NOT}\left(R_{3}\right)$
7. $\operatorname{ADD}(d)$
8. $\operatorname{NOT}\left(R_{1}\right)$

All the operation are

Type2

1. $\mathrm{C}^{2}-\operatorname{ADD}(d)$
2. $\operatorname{ADD}\left(2^{n}-N\right)$
3. $\operatorname{NOT}\left(R_{1}\right), \mathrm{C}\left(R_{1}\right)-\mathrm{NOT}\left(R_{3}\right)$, $\operatorname{NOT}\left(R_{1}\right)$
4. $\mathrm{C}\left(R_{3}\right)-\operatorname{ADD}(N)$
5. $\mathrm{C}^{2}-\mathrm{NOT}\left(R_{1}\right)$
6. $\mathrm{C}^{2}-\mathrm{ADD}\left(2^{n}-d\right)$
7. $\mathrm{C}\left(R_{1}\right)-\mathrm{NOT}\left(R_{3}\right)$
8. $\mathrm{C}^{2}-\mathrm{ADD}(d)$
9. $\operatorname{NOT}\left(R_{1}\right)$ controlled-controlled.

Type 2 construction

Elementary gate

Rotation gate R_{k}
C^{k}-NOT gate
$c_{1}-c_{1}$
$c_{2}-c_{2}$
$c_{3}-c_{3}$
$c_{4}-c_{4}$
$t \bigoplus t \oplus\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4}\right)$

$$
|0\rangle \rightarrow|0\rangle, \quad|1\rangle \rightarrow \exp \left(2 \pi i / 2^{k}\right)|1\rangle
$$

Quantum Fourier Transform

$$
|j\rangle \rightarrow \frac{1}{2^{m / 2}} \sum_{k=0}^{2^{m}-1} \exp \left(2 \pi i j k / 2^{m}\right)|k\rangle
$$

Executable by $H, R_{2}, R_{3}, \ldots, R_{m}$.
The number of gate is given by $\mathrm{O}\left(\mathrm{m}^{2}\right)$.

Construction of ADD

1. classical addition (C-ADD)
2. addition using generalized Toffoli gate (GT-ADD)
3. quantum addition (Q-ADD)

Known Facts

	\# of qubits	\# of gates
C-ADD	$3 n+2$	$\mathrm{O}\left(n^{3}\right)$
GT-ADD	$2 n+\alpha$	$\mathrm{O}\left(n^{5}\right)$
Q-ADD	$2 n+3 \rightarrow 2 n+2^{*}$	$\mathrm{O}\left(n^{4}\right)$

- Obtaining the order of the number of gates is an easy task.
-We evaluate the exact number of gates, which is complicated.
* A quantum circuit for Shor's factoring algorithm using $2 \mathrm{n}+2$ qubits,

Takahashi \& \underline{K}, Quantum Information \& Computation 6 (2), 184-192, 2006.

Classical addition (C-ADD)

Basic circuits: CARRY, CARRY¹, SUM operation

$$
A D D(a):|b\rangle \rightarrow|b+a\rangle
$$

$b=b_{n} b_{n-1} b_{n-2} \ldots b_{1} b_{0} \quad:$ quantum number
$a=a_{n-1} a_{n-2} \ldots a_{1} a_{0}$: classical number, or predetermined number

SUM

By combining CARRY, SUM, CARRY ${ }^{-1}$, C -ADD is constructed.
Example: $a=(11010011)_{2}=211$

The number of gates for $\mathrm{C}-\mathrm{ADD}(211)$ is $(13,16,11)$.
The average number for C-ADD is $\left(2 n-3,2 n-\frac{3}{2}, \frac{3}{2} n-2\right)$

The total average number of gates

Type1: $m\left(4 n^{2}-6 n, 16 n^{2}-21 n, 15 n^{2}-9 n, 9 n^{2}-3 n, 2 n, 0\right)$
C^{5}-NOT $\quad \mathrm{C}^{4}$-NOT $\quad \mathrm{C}^{3}$-NOT C^{2}-NOT C -NOT ${ }^{2}$ NOT
Type2: $m\left(12 n^{2}-18 n, 16 n^{2}-15 n, 17 n^{2}-18 n, 7 n^{2}-n, 3 n^{2}+2 n\right)$

Known Facts:

\mathbf{C}^{k} - NOT gate can be decomposed into some Toffoli.

- If there are $k-2$ clean ancilla qubits, $C^{k}-N O T$ can be decomposed into $2 k-3$ Toffoli gate.
- If there are $k-2$ unclean ancilla qubits, C^{k}-NOT can be decomposed into $4 k-8$ Toffoli gate.

Decomposition of C^{5} - NOT into Toffoli Gates

The total average number of gates

Since we can apply the first rule, we can decompose
$\mathrm{C}^{5}, \mathrm{C}^{4}, \mathrm{C}^{3}-\mathrm{NOT}$ into 7, 5, and 3 Toffoli gates, respectively.
The average number is given as follows.

$$
\begin{array}{|lr|}
\hline \text { Type1: } m\left(162 n^{2}-177 n,\right. & 2 n, \\
\text { Type2: } m\left(125 n^{2}-153 n, 7 n^{2}-n, 3 n^{2}+2 n\right)
\end{array}
$$

In this case, Type 2 is better.

$$
\text { The number of qubits : } m+3 n+1
$$

GT-ADD

The average number for GT-ADD is ($1 / 2,1,3 / 2,2, \ldots, n / 2, n / 2$).

Example: $a=(11010011)_{2}=211$

The number of gates for GT-ADD(211) is $(1,2,2,2,3,3,4,5,5)$.

The total number of gates for GT-ADD

Type1, (we omit the Type2)

- \# of C ${ }^{i}$ - NOT : $m\left(4 n^{2}+13 n-4 n i\right)(4 \leqq i \leqq n+3)$
-\# of C ${ }^{3}$ - NOT: $m\left(4 n^{2}+4 n\right)$
- \# of C ${ }^{2}$ - NOT: $m\left(3 n^{2}+9 n\right)$
-\# of C - NOT: $2 m n$
By apply the second rule, we can decompose $\mathrm{C}^{k}-$ NOT into $4 k-8$ Toffoli gates. We obtain

$$
m\left(\frac{8}{3} n^{4}+10 n^{3}+\frac{43}{3} n^{2}+25 n, 2 n, 0\right)
$$

The number of qubits : $m+2 n+3$

Quantum Addition (O-ADD)

$\cdot \mathrm{C}^{2}-R_{i}$ gate:	$3 n(n+2-i)$	$(1 \leqq i \leqq n+1)$
$\cdot \mathrm{C}-R_{i}$ gate:	$n(n+2-i)$	$(1 \leqq i \leqq n+1)$

$\cdot R_{i}$ gate: $\quad(9 n+2)(n+2-i) \quad(2 \leqq i \leqq n+1)$

- R_{1} gate: $\quad n(n+1), H$ gate: $(8 n+2)(n+1)$
$\cdot{ }^{-} \mathrm{C}^{2}$ - NOT, C-NOT, NOT: $n, 6 n+4,4 n+4$.
$\mathrm{C}^{2}-R_{i}$ can be decomposed into six C-NOT and eight 1qubit operation.
C - R_{i} can be decomposed into two C-NOT and four 1qubit operation.

$$
\begin{array}{cc}
\text { Total: } \mathrm{C} \text { - NOT: } & m(10 n(n+1)(n+2)+6 n+4) \\
\text { 1qubit operation: } & m(n+1)(n+2)(37 n+2) / 2
\end{array}
$$

The number of qubits : $m+2 n+2$

\# of qubits and gates for 768 and 1024 bits numbers

	World Record (n=768)		Recommended (n=1024)	
	\# of qubits	\# of gates	\# of qubits	\# of gates
C-ADD	2306	1.22×10^{11}	3074	3.80×10^{11}
GT-ADD	1540	--	2052	6.03×10^{15}
Q-ADD	1539	--	2051	8.48×10^{13}
Q-ADD (with approximation)	1539	8.68×10^{11}	2051	1.22×10^{12}

25

Running time for 1024 bit composite

unit time	1 msec $\left(=10^{-3} \mathrm{sec}\right)$	0.1 msec	$1 \mu \mathrm{sec}$ $\left(=10^{-6} \mathrm{sec}\right)$	1 nano sec $\left(=10^{-9} \mathrm{sec}\right)$
C-ADD	12 years	1.2 years	4.4 days	6.3 min.
GT-ADD	---	---	191 years	70 days
Q-ADD	---	$270 y e a r s$	2.7 years	1 days
Q-ADD (with approx.)	39 years	3.8 years	14 days	20 min

Candidates of Devices

We need at least 10^{11} operations.

	maximal available time	gate operation time	max of gate operation
Nuclear Spin	$10^{-2}-10^{8} \mathrm{sec}$	$10^{-3}-10^{5} \mathrm{sec}$	$10^{-5}-10^{14}$
Cleoteon Spin	10-3800	$10-7$ gee	10^{4}
Ion trap	$10^{-1} \mathrm{sec}$	$10^{-14} \mathrm{sec}$	10^{13}
Qumotumin dot	$10-6$ see	$10-9$ see	10^{3}
Opationl onvity	$10-5.500$	$10^{-14} 900$	109
Microwave	$10^{0} \mathrm{sec}$	$10^{-4} \mathrm{sec}$	10^{4}
cavity			

(QIC by Nielsen and Chuang)

Part II:

Experimental Realization of Quantum Factoring

[1] Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature, 2001.
[2] Shor's Quantum Factoring Algorithm on a Photonic Chip, Science, 2009.
[3] Computing prime factors with a Josephson phase qubit quantum processor, Nature Physics, 2012.
[4] Realization of a scalable Shor algorithm, Science, 2016.
[5] Experimental realisation of Shor's quantum factoring algorithm using qubit recycling, Nature Photonics, 2012.

Experimental Realization of Quantum Factoring

Device		Year	Target	Journal
NMR	IBM	2001	15	Nature
Photonic chip	U. of Bristol	2009	15	Science
Superconductivity	UCSB	2012	15	Nature Physics
Ion Trap	U. Innsbruck	2016	15	Science
Photon	U. of Bristol	2012	21	Nature Photonics

The maximal number of qubits is seven.
Consider factoring of 15 ($=4 \mathrm{bits}$),
If we use $\mathrm{C}-\mathrm{ADD}, 14$ qubits are required.
If we use $\mathrm{Q}-\mathrm{ADD}, 11$ qubits are required.
What happens?

Mathematical Preparation

Consider $N=15$.
The order of each element is given as follows:

a	2	4	7	8	11	13	14
r	4	2	4	4	2	4	2

We use $U_{a}, U_{-}\left\{a^{2}\right\}, U_{-}\left\{a^{4}\right\}, U_{-}\left\{a^{8}\right\}, U_{-}\left\{a^{16}\right\}, \ldots$
$\{4,11,14\}^{2} \bmod 15=1,\{ \}^{4} \bmod 15=1,\{ \}^{8} \bmod 15=1, \ldots$
$\{2,7,8,13\}^{2} \bmod 15=4,\{ \}^{4} \bmod 15=1,\{ \}^{8} \bmod 15=1, \ldots$

Modular Exponentiation

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|1\rangle \rightarrow \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle\left|a^{x} \bmod N\right\rangle
$$

	$4^{\text {MOD-EXP }} \leqslant$ Controlled MOD-MUL: $\|x\rangle \rightarrow\|a x \bmod N\rangle$
\bigcirc	MOD-MUL \leftarrow MOD-Product-Sum + SWAP
E	$\|z\rangle\|y\rangle \rightarrow\|z\rangle\|y+d z \bmod N\rangle$
	MOD-PS \leftarrow Controlled MOD-ADD $\|b\rangle \rightarrow\|b+a \bmod N\rangle$
	MOD-ADD \leftarrow ADD $\quad\|b\rangle \rightarrow\|b+a\rangle$
	How to construct ADDs
$\stackrel{\widetilde{N}}{\stackrel{\sim}{0}}$	It is sufficient for constructing MOD-MUL.

Quantum Circuit for Modular Exponetiation:

 The case of Chuang et al. [1]$$
\frac{1}{\sqrt{2^{3}}} \sum_{x=0}^{7}|x\rangle|1\rangle \rightarrow \frac{1}{\sqrt{2^{3}}} \sum_{x=0}^{7}|x\rangle\left|7^{x} \bmod 15\right\rangle
$$

Structure of the quantum computer molecule [1]

The circuit heavily relies on the fact that $N=15$

The fact:
$7^{2} \bmod 15=4$ and $7^{4} \bmod 15=1$

$$
\begin{aligned}
7^{4 x_{1+} 2 x_{2}+x_{3}} \bmod 15 & =\left(7^{4}\right)^{x_{1}} \bullet\left(7^{2}\right)^{x_{2}} \bullet(7)^{x_{3}} \bmod 15 \\
& =4^{x_{2}} \bullet 7^{x_{3}} \bmod 15
\end{aligned}
$$

$$
\begin{aligned}
& 1 \rightarrow \text { if }\left(x_{3}==1\right) \text { then add } 6 \text { to } 1 \\
& \rightarrow \text { if }\left(x_{2}==1\right) \text { then multiply } 4 y \bmod 15 .
\end{aligned}
$$

Letting $y=\left(y_{3} y_{2} y_{1} y_{0}\right)_{2}$,
$4 y=\left(y_{3} y_{2} y_{1} y_{0} 00\right)_{2}=16 \times\left(y_{3} y_{2}\right)_{2}+\left(y_{1} y_{0} 00\right)_{2}$
$4 y \bmod 15=\left(y_{3} y_{2}\right)_{2}+\left(y_{1} y_{0} 00\right)_{2}=\left(y_{1} y_{0} y_{3} y_{2}\right)_{2}$
Executable by two swap operations.

More Simplification

The Circuit of UCSB group [3]

The experiment used $a=4$.
The order of 4 is 2 .

$$
\text { If } x_{2}=1 \text {, add } 3 \text { to } 1 \text { (multiply by } 4 \text {). }
$$

The Circuit of U. of Innsbruck [4]

The experiment used $a=2,7,8$, and 13 .
Their orders are 4.

37

The Circuit U. of Bristol group [2]

The experiment used $a=7$.
Note that $7^{0}=1,7^{1}=7,7^{2}=4,7^{3}=13$ and $7^{4}=1$.
Their Trick:
Encode $1 \rightarrow 00,7 \rightarrow 01,4 \rightarrow 10$, and $13 \rightarrow 11$.
$\mathrm{U}_{7}: 00 \rightarrow 01, \quad \mathrm{U}_{4}: 0 \mathrm{x} \rightarrow 1 \mathrm{x}$
Their circuit uses the fact that the order is 4 .
But, the purpose of Shor's algorithm is finding the order.

Quantum Circuit for Factoring 21 [5]

The experiment used $a=4$.
This circuit heavily relies on the fact that $4^{3} \bmod 21=1$
\rightarrow The order r is 3
Only 1, 4 and 16 appear in $4^{i} \bmod 63$ for $i=0,1,2, \ldots$
$4^{1} \bmod 63=4$
$4^{2} \bmod 63=16$
$4^{4} \bmod 63=4$
$4^{8} \bmod 63=16$

Encode $1 \rightarrow 0,4 \rightarrow 1,16 \rightarrow 2$.
$\mathrm{U}_{+}:|\mathrm{x}>\rightarrow| \mathrm{x}+1 \bmod 3>$
$U_{\text {_ }}:|x>\rightarrow| x-1 \bmod 3>$
$\left|1>\stackrel{U_{-}}{\square}\right| 2>$

In their experiments, they used qutrit (=three state) not qubit.

Their circuit uses the fact that the order is 3 .
But, the purpose of Shor's algorithm is finding the order.

Generalization of the last two circuits

The original form of Shor's Factoring Algorithm

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|1\rangle \rightarrow \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle\left|a^{x} \bmod N\right\rangle
$$

The "simplified" or "compiled" version of Shor's Factoring Algorithm

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|0\rangle \rightarrow \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|x \bmod r\rangle
$$

r is what we want to find.
It is unacceptable simplification for Shor's algorithm.
The paper "Factoring 51 and 85 with 8 qubits"
(Published in Scientific Reports, 2013) follows this idea.

Oversimplifying Quantum Factoring*

Find an element a with order 2. $\left(a^{2} \bmod N=1\right)$

$$
\frac{1}{\sqrt{2}} \sum_{x=0}^{1}|x\rangle|1\rangle \rightarrow \frac{1}{\sqrt{2}} \sum_{x=0}^{1}|x\rangle\left|a^{x} \bmod N\right\rangle
$$

The "oversimplified" version of Shor's Factoring Algorithm

They claimed that
Valid implementations should not make use of the answer sought.
They presented a factorization of a $20,000-$ bit number.

* A Smolin, John \& Smith, Graeme \& Vargo, Alexander. (2013).

Oversimplifying quantum factoring. Nature. 499. 163-165.

Summary of Part II

- We survey quantum circuits for Shor's factoring algorithm.
- They are not considered to be naïve implementation of Shor's algorithm.
- Some explicitly use the true value of the order r.
- Some overuse the property of target composite $(=15)$.
- The order is either 1,2 , or 4 .
- $x 4 \bmod 15$ is executable by only SWAP.
- x2, x8, x13, x7, x11 are also executable by SWAP (and NOT).

Summary of this Talk

- We evaluated the necessary resource of Shor's factoring Algorithm (Part I).
- We survey quantum circuits for Shor's factoring algorithm (Part II).
- There is a big gap between theory and experiments.

Future Works

- Design quantum circuits for small composite number (say, 21 and 35) close to the original Shor's algorithm.
- Conduct experiments by simulation (like Microsoft Q\#) and real quantum computers (like IBM Q).

Akinori Hosoyamada (NTT)

On the post-quantum security of symmetric key cryptography

Abstract

It was said that the security of symmetric key cryptography will not be significantly affected by quantum computers, because it does not rely on the hardness of algebraic problems such as the integer factorization problem. However, recent works revealed that some symmetric key schemes such as CBC-MAC and the Even-Mansour construction fall insecure against quantum computers in some specific situations. In this talk, I will survey recent developments related to the post-quantum security of symmetric key cryptography.

On the post-quantum security of symmetric key cryptography

Akinori Hosoyamada
NTT Secure Platform Laboratories
2018.9.19
"Mathematical approach for quantum information society" @ IMI, Kyushu Univ.

Outline

- Basics of symmetric key cryptography
- Researches in symmetric key cryptography
- Quantum Attacks
- Post-quantum provable security (our recent result)
- Summary

Outline

- Basics of symmetric key cryptography

- Researches in symmetric key cryptography

 - Quantum Attacks- Post-auantum nrovable security (our recent result) - Summary
() NTT

Cryptography for secure network

Sym-key and Pub-key: characteristics

- Public key schemes

- High-functioning: keys can be public
- Low-speed in return for high-functioning
-Symmetric key schemes
- Low-functioning :keys cannot be public
- High-speed: "math problem" is not used
- Both are indispensable to realize secure and high-speed communication
- One should be as secure as the other.

Block Cipher

Block Cipher The most basic primitive

Block Cipher

Block Cipher The most basic primitive

-Fixed input/output length
-Key must be shared in advance
-Block cipher do not use "mathematical" problems
-Famous blockciphers :
-DES, AES, Camellia,...
($)$ NTT

The problem with block ciphers

Block
Cipher
: Fixed input/output length (64-bit, 128-bit,...)
How can we encrypt long data?

Mode of operations

Mode of operations:
 Various kinds of schemes

Mode of operations

 Realize functionalities

 Realize functionalities based on block ciphers

-Encryption of long data

 -Cryptographic hash functions -Message authentication codes -Authenticated encryption -etc,...
() NTT

Hash function

Hash function

Compress long data into fixed-length value randomly

It is difficult to make "good" hash function which takes long input data... :

Design Strategy

1. Make fixed-length small function
2. Construct hash function from the small function

($)$ NTT

Design example : Merkle-Damgård construction

Design example :
 Merkle-Damgård construction

Construct from block ciphers! "Davies-Meyer construction"

From block ciphers to small functions: Davies-Meyer construction

From block ciphers to small functions: Davies-Meyer construction

($)$ NTT

Outline

- Basics of symmetric key cryptography
- Researches in symmetric key cryptography

-Quantum Attacks
 - Post-quantum provable security (our recent result)

 - Summary
Questions

What do "sym-key crypto researchers" do?

Research type 1:
Cycle of design and attack

Research type 2:
Probvable security

Research type 1:
 Cycle of design and attack

A strong cipher can be made by iteratively repeating this cycle

Design

Attack

($)$ NTT

Research type 1:
 Cycle of design and attack

No one knows how to break
AES
($)$ ntt

Research type 2:
 Provable security

-1. Come up with a good mode / construction
-2. Make assumption / Idealization
-3. Formally define what "secure" is
-4. Prove the mode / construction is "secure"

Outline

- Basics of symmetric key cryptography
- Researches in symmetric key cryptography
- Quantum Attacks
- Post-quantum provable security (our recent result)
-Summary
($)$ NTT

Symmetric-key \& quantum: backgrounds

"the security of symmetric key crypto will not be affected by quantum computers"

Known quantum attacks:~2010

	Classical	Quantum
Exhaustive Key search	$O\left(2^{n}\right)$	$O\left(2^{n / 2}\right)$
Collision search	$O\left(2^{n / 2}\right)$	$O\left(2^{n / 3}\right)$

"It is sufficient to use 2n-bit keys instead of n-bit keys"

Known attacks: 2018

Classical
 Quantum

Exhaustive Key search
$O\left(2^{n}\right) \quad O\left(2^{n / 2}\right)$

Collision search
$O\left(2^{n / 2}\right)$
$O\left(2^{n / 3}\right)$
Key recovery attack against Even-Mansour
$O\left(2^{n / 2}\right) \quad$ Poly-time
Forgery attack against CBC-like MACs
$O\left(2^{n / 2}\right)$
Poly-time

Note: We assume that quantum oracles are available

Symmetric-key \& quantum: backgrounds

"the security of sylu
 ac key crypto would not be affected im computers"

Poly-time attack is possible !!

-The works by Kuwakado and Morii [KM10,KM12]
-The work by Kaplan et al. [KLLN16a]

We should study post-quantum security of symmetric key crypto carefully

Q1 model:
 Classical Oracle / Quantum computation

Q2 model:

Quantum Oracle / Quantum computation

Previous Q1 attacks (classical query)

- Key Recovery attack on Even-Mansour
[KM12]
- Meet-in-the-middle attacks against iterated blockciphers [kap14]
- Differential/Linear cryptanalysis
[KLLN16b]
-Online-Offline meet-in-the-middle attacks [Hs17a,Hs17b]

Previous Q2 attacks (quantum query)

-3-round Feistel distinguisher [км10]

- Key Recovery attack on Even-Mansour
[KM12]
- Forgery attacks against MACs [Klln16a]
- Key Recovery attack on AEZ [Bon17]
- Differential/Linear cryptanalysis
[KLLN16b]
- Key Recovery attack on FX-construction
[LM17]
- Attack on Poly 1305[bN18]
($)$ NTT

Generic attacks on hash

-The Grover search [Gro96]

- Collision search [внт98]
- Multi-target preimage search [BB18]
- Multicllision finding algorithm[Hsx17]
-Efficient collision search[CNs17]

Previous Q2 attacks (quantum query)

-3-round Feistel distinguisher [км10]

- Key Recovery attack on Even-Mansour
[KM12]
- Forgery attacks against MACs [klln16a]
- Key Recovery attack on AEZ [Bon18]
- Differential/Linear cryptanalysis
[KLLN16b]
- Key Recovery attack on FX-construction
[LM17]
- Attack on Poly 1305[bN18]
($)$ NTT

Simon's Period Finding Algorithm

Problem

Suppose a function $f:\{0,1\}^{n} \rightarrow S$ and $\mathrm{s} \in\{0,1\}^{n}$ satisfies $\forall x \in\{0,1\}^{n} f(x \oplus s)=f(x)$.
Given f, find s.

Classical computer needs exponential time

Simon's quantum algorithm [Sim97]:
Can solve in polynomial time

Poly-time attack
 Example: Attack on Even-Mansour

Even-Mansour cipher $E_{k_{1}, k_{2}}$
(P:public permutation)

- An adversary needs to make $2^{n / 2}$ queries to recover keys (CCA) [EM97]

Poly-time attack
 Example: Attack on Even-Mansour

Even-Mansour cipher $E_{k_{1}, k_{2}}$ (P:public permutation)

- An adversary needs to make $2^{n / 2}$ queries to recover keys (CCA) [EM97]
-A quantum adversary with access to quantum oracles can recover keys in polynomial time [KM12]

Quantum query CCA

() NTT

Poly-time attack
 Example: Attack on Even-Mansour

Even-Mansour cipher $E_{k_{1}, k_{2}}$
(P:public permutation)

[Kuwakado and Morii 12]
Define $f(x):=E_{k_{1}, k_{2}}(x) \oplus P(x)$ \Rightarrow then $f\left(x \oplus k_{1}\right)=f(x)$ holds

- We can recover k_{1} in polynomial time with Simon's algorithm
- k_{2} can easily be recovered since we have

$$
E_{k_{1}, k_{2}}(x) \oplus P\left(x \oplus k_{1}\right)=k_{2}
$$

($)$ NTT

Outline

- Basics of symmetric key cryptography
-Researches in symmetric key cryptography
- Quantum Attacks
- Post-quantum provable security (our recent result)

Hash based signatures

-Hash-based signature

- signature made from hash functions
(signature ‥public key scheme for authentication)
- Some of them are post-quantum secure if the underlying hash function is postquantum secure
- Hash functions are assumed to be postquantum secure
($)$ NTT

Typical hash function: Merkle-Damgard with Davies Meyer

Typical hash function:
Merkle-Damgard with Davies Meyer

Quantum insecure construction:

Even-Mansour cipher

Quantum insecure

Permutation \& XOR

Typical hash function:
Merkle-Damgard with Davies Meyer
Hash function
Assumed to be secure

Permutation \& XOR
() NTT

Typical hash function:
 Merkle-Damgard with Davies Mever

Secure????

Hash fulturur
Assumed to be secure

Typical hash function: Merkle-Damgard with Davies Mever

It is hard to make poly-time attacks...

Why impossible?

- Strategy of quantum poly-time attacks:

1. Make a periodic function with a secret period
2. Apply Simon's period finding algorithm

Hash functions have no secret information!!

It is hard to make poly-time attacks...

Let's come up with a security proof Poly-time attack that breaks one of them!

Security definitions of hash functions

1. Preimage resistance (One-wayness)
2. Second preimage resistance
3. Collision resistance
"Post-quantum secure" hash functions must satisfy all of them against quantum superposition attackers

Hash functions are public, and have no secret information
($)$ NTT

Security definitions of hash functions

1. Preimage resistance (One-wayness)

Recent result [HY18]

Results

1. Proposal of a quantum version of the ideal cipher model
2. Proof of optimal one-wayness ($2^{n / 2}$ quantum queries are required to break one-wayness) of the combination of Merkle-Damgård with DaviesMeyer (fixed-length, use a specific padding)
3. Some proof technique for quantum oracle indistinguishability

Recent result [HY18]

Results

1. Proposal of a quantum version of the ideal cipher model
2. Proof of optimal one-wayness
\square combination of Merkle-Damgård with DaviesMeyer (fixed-length, use a specific padding) Some proof technique for quantum oracle indistinguishability

Security Proof:
 ideal permutation model

- Ideal permutation model

- Permutation P is chosen at random, and given to the adversary as a black-box
- Adversary can make both forward and backword queries

Security Proof: ideal permutation model

- Ideal permutation model

- Permutation P is chosen at random, and given to the adversary as a black-box
- Adversary can make both forward and backword queries

In the classical setting, sym-key schemes based on permutations are often proven in this model

Security Proof:

quantum ideal permutation model

-Quantum ideal permutation model

- Permutation P is chosen at random, and given to the adversary as a quantum black-box oracle
- Adversary can make both forward and backword quantum queries

Security Proof:
 quantum ideal permutation model

- Quantum ideal permutation model
- Permutation P is chosen at random, and given to the adversary as a quantum black-box oracle
- Adversary can make both forward and backword quantum queries

Quantum security of sym-key schemes based on permutations should be proven in this model

Security Proof: ideal cipher model

- Ideal cipher model

- Permutation E_{K} is chosen at random for each key K, and given to the adversary as a black-box oracle
- Adversary can make both forward and backword queries

Security Proof: ideal cipher model

- Ideal cipher model

- Permutation E_{K} is chosen at random for each key K, and given to the adversary as a black-box oracle
- Adversary can make both forward and backword queries

Security of sym-key schemes based on block ciphers are often proven in this model

Security Proof:

Quantum ideal cipher model

- Quantum ideal cipher model

- Permutation E_{K} is chosen at random for each key K, and given to the adversary as a quantum black-box oracle
- Adversary can make both forward and backword quantum queries

Security Proof:
 Quantum ideal cipher model

- Quantum ideal cipher model
- Permutation E_{K} is chosen at random for each key K, and given to the adversary as a quantum black-box oracle
- Adversary can make both forward and backword

Quantum security of sym-key schemes based on block ciphers should be proven in this model

Quantum oracles

Quantum ideal permutation model
$P \leftarrow{ }^{\$} \operatorname{Perm}\left(\{0,1\}^{n}\right)$
Oracle O_{P} :

$$
|0\rangle|x\rangle|y\rangle \mapsto|0\rangle|x\rangle|y \oplus P(x)\rangle
$$

$|1\rangle|x\rangle|y\rangle \mapsto|1\rangle|x\rangle\left|y \oplus P^{-1}(x)\right\rangle$
Quantum ideal cipher model
$E_{K} \leftarrow \$ \operatorname{Perm}\left(\{0,1\}^{n}\right)$ for each K
Oracle O_{E} :
$|0\rangle|k\rangle|x\rangle|y\rangle \mapsto|0\rangle|x\rangle|k\rangle\left|y \oplus E_{k}(x)\right\rangle$
$|1\rangle|k\rangle|x\rangle|y\rangle \mapsto|1\rangle|k\rangle|x\rangle\left|y \oplus D_{k}(x)\right\rangle$

© ntt

Recent result [HY18]

Results

2. Proof of optimal one-wayness ($2^{n / 2}$ quantum queries are required to break one-wayness) of the combination of Merkle-Damgård with DaviesMeyer (fixed-length, use a specific padding)

Merkle-Damgard

Merkle-Damgard

() NTT

Davies Meyer

(C) NTT

Merkle-Damgård with Davies-Meyer

() NTT

Merkle-Damgård with Davies-Meyer (with a specific padding)

Security Definition

- A function $H^{E}(x)$ is one-way if any adversary has to make many ($\approx 2^{n / 2}$) queries to win the following game:
-1. Choose an ideal cipher E uniformly at random
- 2. Choose x from the domain of H^{E} uniformly at random
- 3. Adversary is given $y=H^{E}(x)$ and oracle access to O_{E}
- 4. After making queries, adversary outputs x^{\prime}
- 5. Adversary wins if $H^{E}\left(x^{\prime}\right)=y$

Our second result

Theorem ([HY18] Thm. 5.2)
To break one-wayness of the combination of Merkle-Damgard With Davies-Meyer and our padding function,

$$
\Omega\left(2^{n / 2} / n^{1 / 2}\right)
$$

quantum queries are needed.

Giving a proof
 $=$ giving a quantum query lower bound

Query lower bound

Research Area	Problems	Backward query?
Quantum computation	Worst case	\times
Pub-key crypto	Average case (randomized)	\times
Sym-key crypto	Average case (randomized)	\bigcirc

Our theorem is the first result on quantum query lower bound that takes backward queries into account

($)$ NTT

Merkle-Damgård with Davies-Meyer

(with a specific padding)

Let's simplify the problem!

Merkle-Damgård with Davies-Meyer (with a specific padding)

Lets' show this function is one-way

() NTT

One-wayness: proof strategy

It can be easily shown that:
Breaking one-wayness of $\longrightarrow P$
is almost as hard as
Finding a fixed point of P

One-wayness: proof strategy

It can be easily shown that:
Finding a fixed point of $\quad P$
is almost as hard as

Distinguishing random permutations from random derangements
($)$ NTT
Permutation without fixed points

One-wayness: proof strategy

Next: I want to reduce
Distinguishing random permutations from random derangements
to
Distinguishing two distributions D_{1}, D_{2} on the set of boolean functions $\operatorname{Func}\left(\{0,1\}^{\text {n }},\{0,1\}\right)$

Since Boolean functions are much simpler than permutations

distributions D_{1}, D_{2} on the set of boolean functions

- Define D_{1} on Func $\left(\{0,1\}^{\mathrm{n}},\{0,1\}\right)$ as the distribution which corresponds to the following sampling:

1. $P \leftarrow \$ \operatorname{Perm}\left(\{0,1\}^{n}\right)$
2. Define $f:\{0,1\}^{n} \rightarrow\{0,1\}$ by $f(x)=1$ iff $P(x)=x$
3. Return f

- D_{1} is the "distribution of fixed points"
- Define D_{2} as the degenerate distribution on the zero function

One-wayness: proof strategy

It is sufficient to show that

Distinguishing two distributions D_{1}, D_{2} on the set of boolean functions $\operatorname{Func}\left(\{0,1\}^{\mathrm{n}},\{0,1\}\right)$ is hard
to show

Breaking one-wayness of
 is hard

One-wayness: proof strategy

It is sufficient to show that
Distinguishing two distributions D_{1}, D_{2} on the set of boolean functions $\operatorname{Func}\left(\{0,1\}^{\text {n }},\{0,1\}\right)$ is hard

How to show it? \rightarrow our third result

Recent result [HY18]

Distinguishing advantage of quantum query adversary

- A function $f:\{\mathbf{0}, \mathbf{1}\}^{\mathbf{n}} \rightarrow\{\mathbf{0}, \mathbf{1}\}$ is chosen according to D_{1} or D_{2}, and given to the adversary A as a quantum oracle
- After making q-queries, A outpus " 1 " or " 2 " according to its guess
- A has unlimited computational resources
- Indicator of adversary's "distinguishing advantage":
$\operatorname{Adv} \operatorname{Dist}_{D_{1}, D_{2}}^{\operatorname{dit}}(A):=\mid \operatorname{Pr}_{f \sim D_{1}}\left[A^{f}\right.$ outputs 1$]-\operatorname{Pr}_{f \sim D_{2}}\left[A^{f}\right.$ outputs 1$] \mid$
Our goal is to show $\operatorname{Adv}_{D_{1}, D_{2}}^{\text {dist }}(A)$ is small

Mathematical model of quantum query adversary

Oracle of $\mathrm{f} \ldots O_{f}:|x\rangle|y\rangle \mapsto|x\rangle|y \oplus f(x)\rangle$
q-query adversary... $\quad U_{q} O_{f} U_{q-1} \cdots U_{1} O_{f} U_{0}$
State of the adversary after q queries to $f . .$.

$$
\left|\psi_{f}\right\rangle:=U_{q} O_{f} U_{q-1} \cdots U_{1} O_{f} U_{0}|0\rangle
$$

f is chosen according to D_{1}
the quantum state of the adversary becomes

$$
\left|\psi_{f}\right\rangle \text { with probability } p_{f}^{1}:=\operatorname{Pr}_{F \sim D_{1}}[F=f]
$$

Mathematical model of quantum query adversary

If \mathbf{f} is chosen according to D_{1}, the state of the adversary after q queries is

$$
\rho^{1}:=\sum_{f} p_{f}^{1}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right|
$$

and generally it can be shown that

$$
\begin{aligned}
& \operatorname{Adv}_{D_{1}, D_{2}}^{\operatorname{dist}}(A) \leq \operatorname{td}\left(\rho^{1}, \rho^{2}\right) \\
& \quad \text { We need an upper bound of this }
\end{aligned}
$$

Our third result

Proposition ([HY18] Prop. 3.2)
Let D_{1} be arbitrary distribution on $\operatorname{Func}\left(\{0,1\}^{n},\{0,1\}\right)$, and D_{2} be the degenerate distribution on the zero function. Then

$$
\begin{array}{r}
\left.\operatorname{td}\left(\rho^{1}, \rho^{2}\right) \leq 2 q \sum_{\alpha} p_{1}^{\operatorname{good}_{\alpha}} \sqrt{p_{1}^{f \mid \operatorname{good}_{\alpha}} \max _{x} \mid\{f} \in \operatorname{good}_{\alpha} \mid f(x)=1\right\} \mid \\
+\operatorname{Pr}_{F \sim D_{1}}[F \in \operatorname{bad}] \quad \text { holds. }
\end{array}
$$

$\left\{\operatorname{good}_{\alpha}\right\}_{\alpha} \cdots$ a set of subsets of Func $\left(\{0,1\}^{n},\{0,1\}\right)$
bad $:=\operatorname{Func}\left(\{0,1\}^{n},\{0,1\}\right) \backslash\left(U_{\alpha} \operatorname{good}_{\alpha}\right)$

$$
p_{1}^{\operatorname{good}_{\alpha}}:=\operatorname{Pr}_{\mathrm{F} \sim D_{1}}\left[F \in \operatorname{good}_{\alpha}\right], p_{1}^{f \mid \operatorname{good}_{\alpha}}:=\operatorname{Pr}_{\mathrm{F} \sim D_{1}}\left[F=f \mid F \in \operatorname{good}_{\alpha}\right]
$$

Condition: $\operatorname{good}_{\alpha} \cap \operatorname{good}_{\beta}=\emptyset$, and $p_{1}^{f \mid \operatorname{good}_{\alpha}}$ is independendet of f

Recall our distributions $D_{1}, D_{2} \cdots$

- Define D_{1} on Func $\left(\{0,1\}^{\mathrm{n}},\{0,1\}\right)$ as the distribution which corresponds to the following sampling:

1. $P \leftarrow \$ \operatorname{Perm}\left(\{0,1\}^{n}\right)$
2. Define $f:\{0,1\}^{n} \rightarrow\{0,1\}$ by $f(x)=1$ iff $P(x)=x$
3. Return f

- D_{1} is the "distribution of fixed points"
- Define D_{2} as the degenerate distribution on the zero function

($)$ NTT

Apply the third result to our D_{1}, D_{2}

Proposition ([HY18] Prop. 3.2)
Let D_{1} be arbitrary distribution on $\operatorname{Func}\left(\{0,1\}^{n},\{0,1\}\right)$, and D_{2} be the degenerate distribution on the zero function. Then

$$
\begin{array}{r}
\operatorname{td}\left(\rho^{1}, \rho^{2}\right) \leq 2 q \sum_{\alpha} p_{1}^{\operatorname{good}_{\alpha}} \sqrt{p_{1}^{f \mid \operatorname{good}_{\alpha}} \max _{x}\left|\left\{f \in \operatorname{good}_{\alpha} \mid f(x)=1\right\}\right|} \\
+\operatorname{Pr}_{F \sim D_{1}}[F \in \text { bad }] \quad \text { holds. }
\end{array}
$$

$$
\left\{\operatorname{good}_{\alpha}\right\}_{\alpha} \cdots \operatorname{good}_{\alpha}:=\left\{f| | f^{-1}(1) \mid=\alpha\right\}
$$

$$
\text { bad }:=\operatorname{Func}\left(\{0,1\}^{n},\{0,1\}\right) \backslash\left(\cup_{\alpha} \operatorname{good}_{\alpha}\right)=\emptyset
$$

$$
p_{1}^{\operatorname{good}_{\alpha}}:=\operatorname{Pr}_{\mathrm{F} \sim D_{1}}\left[F \in \operatorname{good}_{\alpha}\right], p_{1}^{f \mid \operatorname{good}_{\alpha}}:=\operatorname{Pr}_{\mathrm{F} \sim D_{1}}\left[F=f \mid F \in \operatorname{good}_{\alpha}\right]
$$

Condition: $\operatorname{good}_{\alpha} \cap \operatorname{good}_{\beta}=\emptyset$, and $p_{1}^{f \mid \operatorname{good}_{\alpha}}$ is independendet of f

Apply the third result to our D_{1}, D_{2}

We obtain

$$
\operatorname{Adv}_{D_{1}, D_{2}}^{\text {dist }}(A) \leq \operatorname{td}\left(\rho^{1}, \rho^{2}\right) \leq O\left(q / 2^{n / 2}\right)
$$

$O\left(2^{n / 2}\right)$ queries are need to distinguish D_{1}, D_{2} with a constant probability

Recall arguments on our second result...

It is sufficient to show that

Distinguishing two distributions D_{1}, D_{2} on the set of boolean functions Func $\left(\{0,1\}^{n},\{0,1\}\right)$ is hard
to show
Breaking one-wayness of
 is hard

Recall arguments on our second result...

We have shown
$O\left(2^{n / 2}\right)$ queries are need to distinguish D_{1}, D_{2} with a constant probability
thus

Breaking one-wayness of

 is hard
($)$ NTT
Our third result:
Generalized version

Proposition 3.1 (Generalized version). Let D_{1}, D_{2} be any distributions on Func $\left(\{0,1\}^{n},\{0,1\}^{c}\right)$, and \bar{D} be any distribution that satisfies (9). Let bad $_{\text {all }}$, $\operatorname{bad}^{g}, \operatorname{good}^{g}$, and $\left\{\operatorname{good}_{\alpha}^{g}\right\}_{\alpha \in A_{g}}$ be the sets as stated above. Then, for any quantum algorithm \mathcal{A} that makes at most q quantum queries, $\operatorname{Adv}_{D_{1}, D_{2}}^{\text {dist }}(\mathcal{A})$ is upper bounded by

$$
\begin{align*}
& 2 q \cdot \mathbf{E}_{G \sim D_{2}}\left[\sum_{\alpha \in A_{G}} p_{\delta D \mid G}^{\operatorname{good}_{\alpha}^{G}} \sqrt{p_{\delta D \mid G}^{\gamma \mid \operatorname{good}_{\alpha}^{G}} \cdot \max _{x}\left|\left\{\gamma \in \operatorname{good}_{\alpha}^{G} \mid \gamma(x)=1\right\}\right|}\right] \\
& \quad+2 q \underset{(F, G) \sim \bar{D}}{ }\left[(F, G) \in \operatorname{Pad}_{\text {all }}\right] . \tag{10}
\end{align*}
$$

Future work

- How about second preimage resistance? Collision resistance (or, collapsing)?
- How to get rid of our padding?
- How about other hash functions?

Outline

- Basics of symmetric key cryptography
-Researches in symmetric key cryptography
- Quantum Attacks
- Post-quantum provable security (our recent result)
- Summary

Summary

1. Some sym-key schemes are broken in polytime by quantum superposition query attacks

2. We should study post-quantum security of symmetric key crypto carefully

3. Merkle-Damgard with Davies-Meyer is oneway

3. To prove security of sym-key schemes against quantum superposition attacks, we should treat average case \& backward quantum oracle queries Thank you!

Reference

[BB18] G. Banegas and D.J. Bernstein: Low-Communication Parallel Quantum Multi-Target Preimage Search. In: Adams C. and Camenisch J., editors, SAC 2017, volume 10719 of LNCS, pages 325-335, Springer, 2018.
[BHT97] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the collision problem. CoRR, quant-ph/9705002, 1997. Quantum Cryptanalysis of Hash and Claw-Free Functions. LATIN 1998: 163-169.
[Bon18] Xavier Bonnetain. Quantum key-recovery on full AEZ. In: Adams C. and Camenisch J., editors, SAC 2017, volume 10719 of LNCS, pages 394-406, Springer, 2018.
[BN18] Xavier Bonnetain and María Naya-Plasencia, Hidden Shift Quantum
Cryptanalysis and Implications. To appear at ASIACRYPT 2018.
[CNS17] André Chailloux , María Naya-Plasencia, and André Schrottenloher. An Efficient Quantum Collision Search Algorithm and Implications on Symmetric Cryptography. In Takagi, Tsuyoshi and Peyrin, Thomas, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 211-240. Springer, 2017.

Reference

[EM97] S. Even and Y. Mansour, "A construction of a cipher from a single pseudorandom permutation," Journal of Cryptology, vol. 10, no. 3, pp. 151-161, 1997.
[Gro96] Lov. K Grover. A fast quantum mechanical algorithm for database search. In STOC 1996, pages 212-219, 1996.
[HS18a] Akinori Hosoyamada and Yu Sasaki. Cryptanalysis against symmetric-key Schemes with online classical queries and offline quantum computations. In N. Smart, Editors, CT-RSA 2018, volume 10808 of LNCS, pages 198-218, Springer, 2018.
[HS18b] Akinori Hosoyamada and Yu Sasaki. Quantum Demiric-Selçuk Meet-in-theMiddle Attacks: Applications to 6-Round Generic Feistel Constructions. In: Catalano D., De Prisco R, editors, SCN 2018, volume 11035 of LNCS, pages 386-403. Springer, 2018.
[HSX17] Akinori Hosoyamada, Yu Sasaki, and Keita Xagawa. Quantum MulticollisionFinding Algorithm. In Takagi, Tsuyoshi and Peyrin, Thomas, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 179-210. Springer, 2017.

() NTT

Reference

[Kap14] Marc Kaplan. Quantum attacks against iterated block ciphers. arXiv preprint arXiv:1410.1434, 2014.
[KLLN16a] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María NayaPlasencia. Breaking symmetric cryptosystems using quantum period finding. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 207-237. Springer, 2016.
[KLLN16b] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María NayaPlasencia. Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol., 2016(1):71-94, 2016.
[KM10] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In ISIT 2010, pages 2682-2685. IEEE, 2010.
[KM12] Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type Even-Mansour cipher. In ISITA 2012, pages 312-316. IEEE, 2012.

Reference

[LM17] Gregor Leander and Alexander May. Grover meets Simon - quantumly attacking the FX-construction. In Takagi, Tsuyoshi and Peyrin, Thomas, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 161-178. Springer, 2017.
[Sim97] Daniel R Simon. On the power of quantum computation. SIAM journal on computing, 26(5):1474-1483, 1997.

「マス・フォア・インダストリ研究」シリーズ刊行にあたり

本シリーズは，平成 23 年 4 月に設立された九州大学マス・フォア・インダストリ研究所 （IMI）が，平成 25 年 4 月に共同利用•共同研究拠点「産業数学の先進的•基礎的共同研究拠点」として，文部科学大臣より認定を受けたことにともない刊行するものである。本シ リーズでは，主として，マス・フォア・インダストリに関する研究集会の会議録，共同研究の成果報告等を出版する。 各巻はマス・フォア・インダストリの最新の研究成果に加え， その新たな視点からのサーベイ及びレビューなども収録し，マス・フォア・インダストリ の展開に資するものとする。

平成 30 年 10 月
マス・フォア・インダストリ研究所
所長 佐伯修

量子情報社会に向けた数理的アプローチ

マス・フォア・インダストリ研究 No．10，IMI，九州大学
ISSN 2188－286X
発行日 2018年12月26日
編 集 阿部拓郎，落合啓之，高島克幸，縫田光司，安田雅哉
発 行 九州大学マス・フォア・インダストリ研究所
〒819－0395 福岡市西区元岡 744
九州大学数理•IMI 事務室
TEL 092－802－4402 FAX 092－802－4405
URL http：／／www．imi．kyushu－u．ac．jp／
印 刷 社会福祉法人 福岡コロニー
〒811－0119 福岡県糟屋郡新宮町緑ヶ浜1丁目 11 番 1 号
TEL 092－962－0764 FAX 092－962－0768

シリーズ既刊

Issue	Author／Editor	Title	Published
マス・フォア・インダストリ 研究 No． 1	穴田 啓晃 安田貴徳 Xavier Dahan櫻井 幸一	Functional Encryption as a Social Infrastructure and Its Realization by Elliptic Curves and Lattices	26 February 2015
マス・フォア・インダストリ 研究 No． 2	滝口 孝志藤原 宏志	Collaboration Between Theory and Practice in Inverse Problems	12 March 2015
$\begin{aligned} & \text { マス・フォア・インダストリ } \\ & \text { 研究 No. } 3 \end{aligned}$	筧三郎	```非線形数理モデルの諸相: 連続, 囄散, 超離散, その先 \(\binom{\) Various aspects of nonlinear mathematical models }{ : continuous, discrete, ultra-discrete, and beyond }```	24 March 2015
マス・フォア・インダストリ 研究 No． 4	穴田 啓晃 安田 貴徳 櫻井 幸一 寺西 勇	Next－generation Cryptography for Privacy Protection and Decentralized Control and Mathematical Structures to Support Techniques	29 January 2016
マス・フォア・インダストリ 研究 No． 5	藤原 宏志 滝口 孝志	Mathematical Backgrounds and Future Progress of Practical Inverse Problems	1 March 2016
マス・フォア・インダストリ 研究 No． 6	松谷 茂樹佐伯 修中川 淳一上坂 正晃溑田 裕康	結晶のらせん転位の数理	10 January 2017
マス・フォア・インダストリ 研究 No． 7	滝口 孝志 藤原 宏志	Collaboration among mathematics，engineering and industry on various problems in infrastructure and environment	1 March 2017
マス・フォア・インダストリ 研究 No． 8	藤原 宏志 滝口 孝志	Practical inverse problems based on interdisciplinary and industry－academia collaboration	20 February 2018
マス・フォア・インダストリ 研究 No． 9	阿部 拓郎 高島 克幸 縫田 光司 安田 雅哉	代数的手法による数理暗号解析 Workshop on analysis of mathematical cryptography via algebraic methods	1 March 2018

Institute of Mathematics for Industry Kyushu University
九州大学マス・フォア・インダストリ研究所
〒819－0395 福岡市西区元岡744
URL http：／／www．imi．kyushu－u．ac．jp／

