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Venue : Meeting RoomA Nishijin Plaza, Kyushu University

2-16-23, Nishijin, Sawara-ku, Fukuoka-shi, Fukuoka, 814-0002 JAPAN
URL : http://www.imi.kyushu-u.ac.jp/events/view/2227

February 5 (Mon)
13:00 Reception
13:15 - 13:25 Opening Remarks

13:30-14:30 Speaker : Mehdi Tibouchi (NTT)
Physical attacks on lattice-based schemes
Abstract:
As the NIST competition on postquantum cryptography begins, it becomes
increasingly important to understand not just the theoretical, black-box security
of lattice-based schemes, but also the security of implementations. In this talk,
we will discuss recent developments in this area, and particularly fault and side-
channel attacks on lattice-based signatures, some of which involved interesting

mathematical techniques.

14:45 - 15:45 Speaker : Kim Taechan (NTT)
Use of algebraic subfield structure in cryptanalysis
Abstract:
In this talk, we explain how the algebraic subfield structure can be exploited to
obtain more efficient cryptanalysis in many cryptosystems. Firstly, we describe
"extended tower number field sieve” method (based on my work at Crypto2016 and
PKC2017) that leads a significant security loss in pairing-based cryptosystems using
subfield structures of finite fields. In addition, we also present that lattice reduction
algorithms (e.g. LLL algorithm) can be accelerated when the lattices are defined over a
number field that contains a certain subfield (whose ring of integers are Euclidean ring).
The later topic is based on my recent work that appeared at IMA conference on

Cryptography and Coding.
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16:00 - 17:00

February 6 (Tue)
9:00
9:30-10:30

10:40 - 11:40

Speaker : Suguru Tamaki (Kyoto University)

Fine-grained complexity and cryptography: A personal survey

Abstract:

A major goal of computational complexity theory is to classify computational

problems into tractable and intractable ones. The most adopted definition of tractability
is polynomial time solvability.

Problems are shown to be intractable based on assumptions such as "P is not equal to
NP" or "integer factorization requires super-polynomial time".

The goal of fine-grained complexity theory is to determine more precise complexities
of computational problems using more quantitative but plausible hardness assumptions.
Recently we have seen lots of exciting algorithmic and hardness results in this rapidly
developing field. | will present a personal survey on fine-grained complexity focusing on
topics related to cryptography such as the shortest and closest vector problems, systems

of multivariate polynomial equations and fine-grained average-case hardness.

Reception

Speaker : Masamichi Kuroda (Hokkaido University)

On monomial GAPN (Generalized Almost Perfect Nonlinear) functions and their
classification

Abstract:

APN (Almost Perfect Nonlinear) functions on finite fields of characteristic two

have useful properties and applications in cryptography, coding theory, finite geometry
and so on. On the other hand, APN functions for odd characteristic have quite different
algebraic properties. GAPN (Generalized APN) functions were defined to satisfy some
generalizations of basic properties of APN functions for even characteristic [K and Tsujie,
FFA vol. 47, 2017]. In this talk, we will introduce monomial GAPN functions and their
partial classification. This study is based on a joint work with Shuhei Tsujie (Hokkaido

University).

Speaker : Yusuke Aikawa (Hokkaido University)

Elliptic curve method with complex multiplication method

Abstract:

In SCIS 2017, M. Shirase proposed a new factoring algorithm for integers by
combining elliptic curve method (ECM) with complex multiplication method
which is one of generating methods of elliptic curves. This algorithm works in

polynomial time for a composite having a prime factor of special form which is
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related to the complex multiplication theory. However, the range of application
of this algorithm is limited. We give a generalization and extend the range of
application. In this talk, firstly | will give a brief explanation of ECM and complex
multiplication theory. After that, | will explain the generalized algorithm. This is

a joint work with K. Nuida and M. Shirase.

13:10 - 14:10 Speaker : Norihiro Nakashima (Tokyo Denki University)
A modification of the discrete Fourier transform for the code defined
by Garcia-Stichtenoth tower
Abstract:
A decoding algorithm for algebraic geometry codes is proposed, using the discrete
Fourier transform and Berlekamp-Massey-Sakata algorithm. Meanwhile
Garcia and Stichtenoth explicitly constructed a tower of algebraic curves which
attains the upper bound of Drinfeld-Vladut bound. In this talk, | present a method
to reduce the computational complexity of the discrete Fourier transform for the
algebraic geometry codes defined by Garcia-Stichtenoth tower. A key of this reduction
is to give affine rational points for Garcia-Stichtenoth tower.

This is a joint work with H. Matsui.

14:20 - 15:20 Speaker : Carlos Cid (Royal Holloway, University of London)
Code-based cryptography: design and security
Abstract:
In 1978, Robert McEliece proposed a public-key encryption scheme based on
error-correcting codes. The McEliece scheme (and its variant due to Niederreiter)
is a simple, elegant and efficient design, and has its security based on two
hardness assumptions: the intractability of decoding a random linear code,
and the difficulty of distinguishing some permuted linear binary codes from a random
code. McEliece’s construction is over 40 years, and despite enormous cumulative efforts
by the cryptographic community, it remains unbroken when instantiated with Goppa
codes for suitable parameters. Its main drawback is the large public key, and attempts
to reduce it to more manageable sizes have often resulted on insecure designs.
Code-based cryptography is again attracting considerable attention from the
Cryptographic community, mainly due to the ongoing NIST PQ competition: over 20
submissions are based on errorcorrecting codes. In this talk we give an overview of
code-based cryptography, main designs and their security, and discuss a selected few

submissions to the NIST competition.
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15:30 - 16:30 Speaker : Atsushi Takayasu (The University of Tokyo)
Solving RSA and factoring problems using LLL reduction
Abstract:
In 1996, Coppersmith introduced lattice-based methods for finding small roots
of modular polynomials. By using the method, a number of vulnerability of RSA
have been reported so far. In this talk, | explain the basic approach of the
method. Then, | introduce our attack on small CRT-exponent RSA. The attacks
improve previous ones proposed by Bleichenbacher-May (PKC'06) and
Jochemsz-May (Crypto'07). In general, to recover as large root as possible, we
should design appropriate lattices that relate to algebraic structures of the
target polynomials. We obtain the results by exploiting additional algebraic

structures in a clever way.

16:40- 17:40 Speaker : Koji Nuida (AIST/JST PRESTO)
Towards fully homomorphic encryption without ciphertext noise from group theory
Abstract:
Fully homomorphic encryption (FHE) is a kind of (public key) encryption scheme that
allows anyone to perform arbitrary operations on plain-texts via certain special operations
on the corresponding ciphertexts. In 2008, Ostrovsky and Skeith Il suggested an approach
towards achieving FHE from group-theoretic viewpoint, but no observations on how to
actually construct FHE based on their approach have been given so far. In this talk,
| explain my recent work based on this approach, which is still incomplete but would show

several potential, interesting connections between group theory and cryptography.

18:10 Banquet

February 7 (Wed)
9:00 Reception

9:30-10:30 Speaker : Yasufumi Hashimoto (University of Ryukyu)
A survey on multivariate public key cryptosystem
Abstract:
A multivariate public key cryptosystem (MPKC) is a public key cryptosystem whose public
key is a set of multivariate quadratic forms over a finite field. It has been considered to be
one of candidates of Post Quantum Cryptographies. From 1980s to now, various MPKCs
have been proposed and some of them were already broken. In this talk, we give a survey
on MPKCs.



10:45 - 11:45 Speaker : Shinya Okumura (Osaka University)

On the Security of Homomorphic Encryption Schemes Based on Ring-LWE Problem over
Decomposition Fields

Abstract:

Ring-LWE problem has been an important tool in cryptography to construct cryptosystems,
key exchange protocols and homomorphic encryption schemes, which are expected to be
secure against attacks by quantum computers. Cyclotomic fields are always used as
underlying number fields of Ring-LWE problem from the viewpoints of security and
efficiency. However, especially, in the case of homomorphic encryption schemes,
improving the efficiency is still required. Arita and Handa proposed to use certain subfields
of cyclotomic fields with prime conductors, called decomposition fields, as underlying
number fields of Ring-LWE problem to construct a homomorphic encryption scheme at
ICISC 2017. Their homomorphic encryption scheme can provide many plaintext slots in
which homomorphic arithmetics are easily executed. However, Arita et al. did not analyze
the security of Ring-LWE problem over decomposition fields. In this talk, we will present
experimental results on attacks using lattices and ring structures against Ring-LWE
problem over cyclotomic fields (with prime conductors) and decomposition fields, which
indicate that Arita et al.'s homomorphic encryption scheme would be as secure as
previous ones. This is a joint work with Shota Terada, Hideto Nakano and Atsuko Miyaji

(Osaka University).

Organizing Committee
Takuro Abe(Kyushu Univiersity)
Katsuyuki Takashima(Mitsubishi Electric Corporation)
Koji Nuida(AIST/JST PRESTO)
Masaya Yasuda(Kyushu University)
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Mehdi Tibouchi
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joint work with T. Espitau, P.-A. Fouque and B. Gérard
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Breaking provable crypto is harder

» Most crypto proposed in the last 15-20 years: provably secure

» Breaking it = provably as hard as solving some algorithmic
problem like integer factorization or computing discrete logs

» Hence, cryptanalysis = major algorithmic advance?

4/34 ©2017 NTT Secure Platform Laboratories
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Yet, many attacks against deployed crypto

The crypto protocol

that is perhaps most used in everyday life,

TLS, is attacked all the time!

Internet Engineering Task Force (IETF) Y. Sheffer
Request for Comments: 7457 Porticor
Category: Informational R. Holz

ISSN: 2070-1721

Technische Universitaet Muenchen
P. Saint-Andre

Lyet

February 2015

Summarizing Known Attacks on Transport Layer Security (TLS)

Abstract

and Datagram TLS (DTLS)

Over the last few years, there have been several serious attacks on
Transport Layer Security (TLS), including attacks on its most
commonly used ciphers and modes of operation. This document

summarizes these

attacks, with the goal of motivating generic and

protocol-specific recommendations on the usage of TLS and Datagram

TLS (DTLS).
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Yet, many attacks against deployed crypto

The crypto protocol

that is perhaps most used in everyday life,

TLS, is attacked all the time!
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So how do people actually break crypto?

» Very rarely: major algorithmic improvement

» Biggest one recently: progress on small characteristic discrete
logarithms/pairings
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So how do people actually break crypto?

» Very rarely: major algorithmic improvement
» Biggest one recently: progress on small characteristic discrete
logarithms/pairings
» More commonly: non-provably secure schemes shown to be
insecure

» Several of the TLS attacks
» Many legacy scheme still in use could be broken (e.g.
PKCS+#1v1.5 signatures?)

6/34 ©2017 NTT Secure Platform Laboratories

_5_



So how do people actually break crypto?

» Very rarely: major algorithmic improvement
» Biggest one recently: progress on small characteristic discrete
logarithms/pairings
» More commonly: non-provably secure schemes shown to be
insecure

» Several of the TLS attacks

» Many legacy scheme still in use could be broken (e.g.
PKCS#1v1.5 signatures?)

» Most importantly: implementation attacks!

6/34 ©2017 NTT Secure Platform Laboratories

Black-box vs real-world security

» Consider the security of e.g. RSA signatures

7/34 ©2017 NTT Secure Platform Laboratories
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» Consider the security of e.g. RSA signatures
» Traditional, “black-box" view of security:

» the attacker, Alice, interacts with the signer, Bob

» Alice sends Bob messages to sign, only gets the results of Bob's
computation (no other info about the computation leaks)

» based on that, Alice tries to forge new signatures/extract info
about Bob's signing key

7/34 ©2017 NTT Secure Platform Laboratories

Black-box vs real-world security

» Consider the security of e.g. RSA signatures
» Traditional, “black-box" view of security:
» the attacker, Alice, interacts with the signer, Bob
» Alice sends Bob messages to sign, only gets the results of Bob's
computation (no other info about the computation leaks)

» based on that, Alice tries to forge new signatures/extract info
about Bob's signing key

» Real-world security:

» Bob is actually a smart card, say

» Alice can measure all sorts of emanation from the card as it
operates, or mess with it in various ways

» all that extra information can be useful to break things!

7/34 ©2017 NTT Secure Platform Laboratories
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Implementation attacks

» To break a real-world crypto implementation, no need to play
by the rules of black-box security

8/34 ©2017 NTT Secure Platform Laboratories

Implementation attacks

» To break a real-world crypto implementation, no need to play
by the rules of black-box security

» In particular, provably secure schemes can be broken by
bypassing the (usually black-box) security model

» Remark: some attempts to also capture non black-box attacks
in security proofs (e.g. leakage-resilient crypto...)

8/34 ©2017 NTT Secure Platform Laboratories
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Implementation attacks

» To break a real-world crypto implementation, no need to play
by the rules of black-box security

» In particular, provably secure schemes can be broken by
bypassing the (usually black-box) security model

» Remark: some attempts to also capture non black-box attacks
in security proofs (e.g. leakage-resilient crypto...)

» These are implementation attacks

8/34 ©2017 NTT Secure Platform Laboratories

Various types of implementation attacks

» Correctness attacks: use the implementation as a black box,
but send malformed /incorrect/invalid/malicious inputs

9/34 ©2017 NTT Secure Platform Laboratories

_9_



Various types of implementation attacks

» Correctness attacks: use the implementation as a black box,
but send malformed/incorrect/invalid/malicious inputs

» Side-channel attacks: passive physical attacks, exploiting
information leakage about the computation or the keys

9/34 ©2017 NTT Secure Platform Laboratories

Various types of implementation attacks

» Correctness attacks: use the implementation as a black box,
but send malformed /incorrect/invalid/malicious inputs

» Side-channel attacks: passive physical attacks, exploiting
information leakage about the computation or the keys

» Fault attacks: active physical attacks, trying to extract secret
information by tampering with the device to cause errors
during the cryptographic computation

9/34 ©2017 NTT Secure Platform Laboratories
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Introduction

Implementation attacks on lattice schemes
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Towards postquantum cryptography

» Quantum computers would break all currently deployed
public-key crypto: RSA, discrete logs, elliptic curves

11/34 ©2017 NTT Secure Platform Laboratories
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Towards postquantum cryptography

» Quantum computers would break all currently deployed
public-key crypto: RSA, discrete logs, elliptic curves
» Agencies warn that we should prepare the transition to
quantum-resistant crypto
» NSA deprecating Suite B (elliptic curves)
» NIST starting their postquantum competition
> In theory, plenty of known schemes are quantum-resistant
» Some primitives achieved with codes, hash trees, multivariate

crypto, knapsacks, isogenies...
» Almost everything possible with lattices

11/34 ©2017 NTT Secure Platform Laboratories
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Towards postquantum cryptography

v

Quantum computers would break all currently deployed
public-key crypto: RSA, discrete logs, elliptic curves

v

Agencies warn that we should prepare the transition to
quantum-resistant crypto

» NSA deprecating Suite B (elliptic curves)
» NIST starting their postquantum competition

v

In theory, plenty of known schemes are quantum-resistant
» Some primitives achieved with codes, hash trees, multivariate
crypto, knapsacks, isogenies...
» Almost everything possible with lattices

v

In practice, few actual implementations

» Secure parameters often unclear
» Concrete software/hardware implementation papers quite rare
» Almost no consideration for implementation attacks

» Serious issue if we want practical postquantum crypto

11/34 ©2017 NTT Secure Platform Laboratories
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Implementations of lattice-based schemes (1)

» Implementation work on lattice-based crypto is limited and
mostly academic

12/34 ©2017 NTT Secure Platform Laboratories

Implementations of lattice-based schemes (1)

» Implementation work on lattice-based crypto is limited and
mostly academic
» A number of papers describing implementations of inefficient
schemes
» Encryption: implementation of Lindner—Peikert (CHES'12,

plaintexts of several MBs)
» Signatures: implementation of GPV (SAC'13, keys of dozen

MBs)
» Other primitives: a few papers about ID-schemes,

homomorphic encryption, etc.

12/34 ©2017 NTT Secure Platform Laboratories
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Implementations of lattice-based schemes (Il)

> One scheme has “industry” backing and quite a bit of code:
NTRU

» NTRUEncrypt is an ANSI standard, and believed to be okay
» NTRUSign is a trainwreck that has been patched and broken
many times
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Implementations of lattice-based schemes (I1)

» One scheme has “industry” backing and quite a bit of code:
NTRU
» NTRUEncrypt is an ANSI standard, and believed to be okay

» NTRUSign is a trainwreck that has been patched and broken
many times

» In terms of practical schemes, other than NTRU, main efforts
on signatures

» GLP: improvement of Lyubashevsky signatures, efficient in SW
and HW (CHES'12)

» BLISS: improvement of GPL, even better (CRYPTO'13,
CHES'14)

» DLP: hash-and-sign scheme using GPV sampling on NTRU
lattices (AC'14)

» A few others: PASSSign (ACNS'14), TESLA
(AFRICACRYPT'16), etc.

13/34 ©2017 NTT Secure Platform Laboratories
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Physical attacks against BLISS
The BLISS signature scheme

14/34 ©2017 NTT Secure Platform Laboratories

BLISS: the basics

» One of the top contenders for postquantum signatures

15/34 ©2017 NTT Secure Platform Laboratories
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BLISS: the basics

» One of the top contenders for postquantum signatures

» Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at
CRYPTOQ'13

» Implementations on various platforms: desktop computers,
microcontrollers/smartcards, FPGAs

» Deployed in the VPN library strongSwan

15/34 ©2017 NTT Secure Platform Laboratories

BLISS: signing and verification keys

» Works in the cyclotomic ring R = Z[x]/(x" + 1), n=512
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BLISS: signing and verification keys

» Works in the cyclotomic ring R = Z[x]/(x" + 1), n=512
» Computations modulo the prime g = 12289

» Secret key: random sparse s1,s, € R with coefficients in
{-1,0,1}
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BLISS: signing and verification keys

v

Works in the cyclotomic ring R = Z[x]/(x" + 1), n =512
Computations modulo the prime g = 12289

v

v

Secret key: random sparse s1,sp € R with coefficients in
{-1,0,1}
Verification key: a = —sp/s; mod g

v

» restart if s; not invertible

16/34 ©2017 NTT Secure Platform Laboratories

BLISS: signature (simplified)

1. function SI1GN(u, pk = a, sk =S = (s1,s2))
2: yi,Y2 < Dﬁ,o > Gaussian sampling
3 c< H(a-y1 +yo, 1) > special hashing
4: choose a random bit b
5 z; < y1 + (-1)Ps;c
6 Y 4p) <—y2+(—1)b52c
7 continue with probability
1/(Mexp(-|Sc|?/(202)) cosh({z,Sc)/o?) otherwise restart

8: ZL <~ COMPRESS(z2)
o: return (zl,zg,c)
10: end function

17/34 ©2017 NTT Secure Platform Laboratories
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1. function SI1GN(u, pk = a, sk =S = (s1,s2))
2: yi,Y2 < Dﬁ,o > Gaussian sampling
3 c< H(a-y1 +yo, 1) > special hashing
4: choose a random bit b
5 z; < y1 + (-1)Ps;c
6 Y 4p) <—y2+(—1)b52c
7 continue with probability
1/(Mexp(-|Sc|?/(202)) cosh({z,Sc)/o?) otherwise restart

8: ZL <~ COMPRESS(z2)
o: return (zl,zg,c)
10: end function
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BLISS: verification

To check if (zl,zg,c) is a valid signature:

1. Uncompress zg to essentially get z»

2. Check if 21,25, c are small enough

3. Compute u = a-z; + zy; it satisfies:

u=a-(y1 +(-1)%s1¢) + (y2 + (-1)”sxc)
= (ay1 +y2) + (-1)°(as; +s») = ay; +y» (mod q)

since a = —sy/s; mod q

4. Check whether H(u) lc

Works even with approximate decompression, because H depends
only on the most significant bits of its input

18/34 ©2017 NTT Secure Platform Laboratories

BLISS: parameters

» Parameters proposed by Ducas et al. for 128-bit security
(BLISS-I)
» n=512, g =12289
» 6 = 0.3 (density of sy, s))
» 0 =215 (std. dev. of y1,y»)
» k=23 (number of 1's in c)

19/34 ©2017 NTT Secure Platform Laboratories
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Physical attacks against BLISS

Fault attack on the Gaussian sampling

20/34 ©2017 NTT Secure Platform Laboratories

Attacking y

» The ring element y;, which acts as additive mask in the
relation:
z1=y1+(-1)%sic (mod q)

is sampled according to a discrete Gaussian

21/34 ©2017 NTT Secure Platform Laboratories
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» Sampling carried out coefficient by coefficient
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Attacking y

» The ring element y;, which acts as additive mask in the
relation:

z1=y1 + (-1)Ps;c (mod q)
is sampled according to a discrete Gaussian
» Sampling carried out coefficient by coefficient

» |dea of the attack: use fault injection to abort the sampling
early, so that a faulty signature will be generated with a
low-degree y;
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Attacking y

» The ring element yj, which acts as additive mask in the
relation:
212 y1 +(~1)’sic (mod q)
is sampled according to a discrete Gaussian
» Sampling carried out coefficient by coefficient

» Idea of the attack: use fault injection to abort the sampling
early, so that a faulty signature will be generated with a
low-degree y;1

» Can be done by attacking the branching test of the loop
(voltage spike, clock variation...), or the contents of the loop
counter (lasers, x-rays...)

21/34 ©2017 NTT Secure Platform Laboratories

Attack details (1)

» So let's say we get a signature generated with y; of degree
m<<n

22/34 ©2017 NTT Secure Platform Laboratories
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Attack details (1)

» So let's say we get a signature generated with y; of degree

m<< n
» If ¢ is invertible (probability around (1-1/q)" ~ 96%), we can
compute:
v=clz;=cly; +(-1)Ps; (mod q)

Attack details (1)

» So let's say we get a signature generated with y; of degree
m<<n

» If ¢ is invertible (probability around (1-1/q)" ~ 96%), we can
compute:

v=clz;=cly; + (-1)Ps;  (mod q)

» WLOG, b =0 (equivalent keys)
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Attack details (1)

v

So let's say we get a signature generated with y; of degree
m < n

If c is invertible (probability around (1-1/q)" ~96%), we can
compute:

v

1

v=clz;=cly; +(-1)Ps; (mod q)

v

WLOG, b =0 (equivalent keys)

Since s; is very short, v very close to the lattice L generated
by gZ" and w; =c *x/, i=0,...,m

v
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compute:

v

v=clz;=cly; + (-1)Ps;  (mod q)

v

WLOG, b =0 (equivalent keys)
» Since s; is very short, v very close to the lattice L generated

by gZ" and w; =c'x’, i=0,...,m

v

L of dimension n: too large to apply lattice reduction
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Attack details (1)

» So let's say we get a signature generated with y; of degree
m < n

» If ¢ is invertible (probability around (1-1/q)" ~ 96%), we can
compute:

1

v=clz;=cly; +(-1)Ps; (mod q)

» WLOG, b =0 (equivalent keys)

» Since s7 is very short, v very close to the lattice L generated
by gZ" and w; =c *x/, i=0,...,m

» L of dimension n: too large to apply lattice reduction

» However, we have the same relation on arbitrary subset of
coefficients: we can reduce the dimension

22/34 ©2017 NTT Secure Platform Laboratories

Attack details (1)

» More precisely, fix a subset / c {0,...,n—1} of £ indices, and
let ©:Z" - Z! be the obvious projection
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» More precisely, fix a subset / c {0,...,n—1} of £ indices, and
let ¢:Z" — Z' be the obvious projection

» ¢y(v) is close to the lattice generated by ¢;(w;) and gZ/, and
if £ is large enough, the difference should be (s1).
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» More precisely, fix a subset / c {0,...,n—1} of £ indices, and
let ©:Z" - Z! be the obvious projection

» (V) is close to the lattice generated by ¢;(w;) and gZ', and
if £ is large enough, the difference should be (s1).

» Solve this close vector problem using Babai nearest plane
algorithm. Condition on ¢ to recover ¢;(s1):

m + 2 + |Og \/(514—452
(+12 log g
~ 1- log \/2me(d1+402)
log q
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let ©:Z" - Z! be the obvious projection

» (V) is close to the lattice generated by ¢;(w;) and gZ', and
if £ is large enough, the difference should be (s1).

» Solve this close vector problem using Babai nearest plane
algorithm. Condition on ¢ to recover ¢;(s1):

m + 2 + |Og \/(514—452
(+12 log g
~ 1- log \/2me(d1+402)
log q

» For BLISS—I and BLISS-II, this says ¢~ 1.09-m
» In practice: works fine with LLL for m < 60 and with BKZ
with m <100
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Attack details (1)

» More precisely, fix a subset / c {0,...,n—1} of £ indices, and
let ¢:Z" — Z' be the obvious projection

» ¢y(v) is close to the lattice generated by ¢;(w;) and gZ/, and
if £ is large enough, the difference should be (s1).

» Solve this close vector problem using Babai nearest plane
algorithm. Condition on ¢ to recover (s1):

m+2 + Iog\/61+452
(+1> log g
~ 1- log \/2me(d1+462)
log g

» For BLISS—I and BLISS—II, this says ¢~ 1.09-m

» In practice: works fine with LLL for m < 60 and with BKZ
with m < 100

» Just apply the attack for several choices of / to recover all of
s1, and subsequently sy: full key recovery with one fauly sig.!

23/34 ©2017 NTT Secure Platform Laboratories

Implementation results

Fault after iteration number m = 5 10 20 40 80 100
Theoretical minimum dimension min 6 11 22 44 88 110
Dimension ¢ in our experiment 6 12 24 50 110 150
Lattice reduction algorithm LLL LLL LLL BKZ-20 BKZ-25 BKZ-25
Success probability (%) 99 100 100 100 100 98
Avg. CPU time to recover £ coeffs. (s) 0.005 0.022 0.23 7.3 941 33655
Avg. CPU time for full key recovery 05s ls 5s 80 s 80 min 38 h

24/34 ©2017 NTT Secure Platform Laboratories
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Physical attacks against BLISS

SCA on the rejection sampling

25/34 ©2017 NTT Secure Platform Laboratories

Attack overview

» Attack on the rejection sampling
» cornerstone of BLISS security/efficiency
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Attack overview

» Attack on the rejection sampling
» cornerstone of BLISS security/efficiency

» Straightforward implementation of rejection sampling would
be inefficient: use optimized rejection algorithm

» |Idea of the optimization: iterated Bernoulli trials on the bits
of | Sc|?

» Side-channel leakage: can read off |Sc|? on SPA/SEMA
trace!

» From a few of these: recover s; -s7 (“relative norm” of the
secret key)

» Then, algebraic number theory to retrieve s;

26/34 ©2017 NTT Secure Platform Laboratories

BLISS rejection sampling

1: function SAMPLEBERNEXP(x) 1: function SAMPLEBERN-
2 fori=0to/-1do CosH(x)
3 if x; = 1 then 2: Sample a < Beyp(—x/f)
4: Sample a < A.. 3 if a=1 then return 1
5: ifa=0thenreturn0 | 4 Sample b < %1/,
6 end if 5: if b =1 then restart
7 end for 6: Sample ¢ < Beyp(—x/f)
8 return 1 7 if c =1 then restart
9: end function > x=K-|Sc|? | 8  return0
9: end function > x=2-(z Sc)

Sampling algorithms for the distributions B, _x/f) and
B} cosh(x/f) (€i =2'[f precomputed)

27/34 ©2017 NTT Secure Platform Laboratories
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BLISS rejection sampling

1: function SAMPLEBERNEXP(x) 1: function SAMPLEBERN-
2 for i=0to /-1 do CosH(x)
3 if x; =1 then 2: Sample a < Beyp(—x/r)
4: Sample a « 4., 3 if a=1 then return 1
5: ifa=0thenreturn0 | 4 Sample b < %),
6 end if 5: if b =1 then restart
7 end for 6: Sample ¢ < Beyp(—x/f)
8 return 1 7: if c =1 then restart
9: end function > x=K-|[Sc|? | 8  return0
9: end function > x=2-(z Sc)

Sampling algorithms for the distributions Pe,p(x/f) and
'-@1/ cosh(x/f) (Ci = 2’/f precomputed)

27/34 ©2017 NTT Secure Platform Laboratories

Experimental leakage

EMA trace of BLISS rejection sampling on 8-bit AVR for norm
ISc|? = 14404. One reads the value:
K - |Sc||? = 46539 — 14404 = 32135 = 1111101100001115

2

111 11 1 11 11

15

1

0.5

-1.5

150000 200000 250000 300000 350000 400000
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Exploiting the leakage

» From each trace, get:
ISl = |s1-¢| + [s2- ¢|?

for known c, different each time
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for known c, different each time

» Linear equation on s1-S; and sy - Sy
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Exploiting the leakage

» From each trace, get:
ISc|? = ls1- €| +[sz2- |

for known c, different each time
» Linear equation on s1-S; and s, - S»
» Collect ~ 2 x 256 = 512 to recover the relative norms s; - §;

» linear equations are independent w.h.p.
» very efficient in practice
» collecting 512 EM traces an easy task
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Exploiting the leakage

v

From each trace, get:
|Sel? = [s1- €] +[s2- €]

for known c, different each time

v

Linear equation on s; -S; and sp - Sp
Collect ~ 2 x 256 = 512 to recover the relative norms s; - §;

» linear equations are independent w.h.p.
» very efficient in practice
» collecting 512 EM traces an easy task

v

v

Going from s; - 51 to s;: algebraic number theory
(Howgrave-Graham—-Szydlo)

29/34 ©2017 NTT Secure Platform Laboratories
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Howgrave-Graham—-Szydlo in a nutshell

s€Q(¢)

/

r=s§eQ(¢+()
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Howgrave-Graham—-Szydlo in a nutshell

seQ(¢)

/

r=ssecQ(¢+¢1h)
abs. norm

N(r)=peQ
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Howgrave-Graham—-Szydlo in a nutshell

s€Q(¢)

/

r=s§eQ(¢+()

abs. norm

p=m-TeQ(i)

N(r)=peQ
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Howgrave-Graham—-Szydlo in a nutshell

seQ(¢)osR=rRnmR or rRN piR

/

r=s5eQ(¢+¢) .
ITt

abs. norm

p=m-7eQ(i)

N(r)=peQ

30/34 ©2017 NTT Secure Platform Laboratories

_41_



Howgrave-Graham—-Szydlo in a nutshell

seQ(¢)osR=rRnmR or rRN piR

%;ry—Szyd lo

r=sseQ(¢+¢1t) o
It

abs. norm

p=m-7eQ(i)

N(r)=peQ
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Completing the attack

» Previous slide: works if absolute norm is prime
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Completing the attack

v

Previous slide: works if absolute norm is prime

v

Generalizes easily if we can factor the absolute norm

» Then: recover a few candidates for s;, up to a root of unity

v

Easy to check correctness

» compute the corresponding s, as a-s; mod g
» should have coefficients in {-1,0,1} and be sparse
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v

Easy to check correctness

» compute the corresponding s, as a-s; mod g
» should have coefficients in {-1,0,1} and be sparse

v

Multiplying a correct key (s1,s2) by a root of unity results in
an equivalent key, so we are done!
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Completing the attack

» Previous slide: works if absolute norm is prime
» Generalizes easily if we can factor the absolute norm

» Then: recover a few candidates for s;, up to a root of unity

» Easy to check correctness
» compute the corresponding s, as a-s; mod g
» should have coefficients in {-1,0,1} and be sparse
» Multiplying a correct key (s1,s2) by a root of unity results in
an equivalent key, so we are done!

» Attack works for weak keys with factorable absolute norm of
S1 Or S»
» e.g. norm of the form Nyp with p prime and Ny smooth

31/34 ©2017 NTT Secure Platform Laboratories

Efficiency of the attack

n B=5 B=65537 B=655373 B =6553733

BLISS-0 256 3% 3.8% 6% 6.5%
BLISS-1/11 512 1.5% 2% 2.8% 3.7%
BLISS-1I/IV 512 1% 1.75% 2% 2.5%

Experimental density of keys with semi-smooth absolute norm
(N = Np - p with B-smooth Nj) for various BLISS parameters

Field size n 32 64 128 256 512
CPU time 0.6s 13s 21 min. 17h 22 min. 38 days
Clock cycles ~230 23 2% ~ 247 n 253

Average running time of the attack for various field sizes n

32/34 ©2017 NTT Secure Platform Laboratories
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Conclusion and countermeasures countermeasures

» Important to investigate implementation attacks on lattice
schemes
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» We described faults and SCA against BLISS signatures
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Conclusion and countermeasures countermeasures

v

Important to investigate implementation attacks on lattice
schemes

Physical attack resistance should be part of the design goals
for practical schemes

We described faults and SCA against BLISS signatures
Possible countermeasures?

v

v

v
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Conclusion and countermeasures countermeasures

v

Important to investigate implementation attacks on lattice
schemes

Physical attack resistance should be part of the design goals
for practical schemes

We described faults and SCA against BLISS signatures
Possible countermeasures?

Against faults:
» check that the result has > (1 —-¢) - n non zero coeffs.
» randomize the order of generation of the coefficients? (still
risky)
» use double loop counters!

v

v

v

v
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Conclusion and countermeasures countermeasures

» Important to investigate implementation attacks on lattice
schemes

» Physical attack resistance should be part of the design goals
for practical schemes

» We described faults and SCA against BLISS signatures

» Possible countermeasures?
» Against faults:
» check that the result has > (1 —¢) - n non zero coeffs.
» randomize the order of generation of the coefficients? (still
risky)
» use double loop counters!
» Against SCA:
» compute rejection probability with floating point arithmetic
(slow)
» use a constant-time Bernoulli sampling (doable)
» prefer a scheme with simpler structure (GLP) and use masking

33/34 ©2017 NTT Secure Platform Laboratories
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Thank you!
CREHYNEDTIWVWELEL
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Talk at IMI
February 5-7, 2018

Use of algebraic subfield structure in
cryptanalysis

Lattice Reductions over Euclidean Rings
with Applications to Cryptanalysis

Taechan Kim
jointly with Changmin Lee at SNU

NTT Secure Platform Laboratories

T. Kim — LLL over ring 0/24

Backgrounds

Lattice-based cryptography
e post-quantum cryptography
e fully homomorphic encryption
e many other applications

Lattices (classical)

e M: a free Z-module, i.e. closed under addition/multiplication by Z
e A free Z-module has a Z-basis (by,. .., b,,) Cc M"st.

M=17b - &Zb,

M has “infinitely” many number of basis
n, the size of the basis, is “invariant” under the choice of the basis.

n: the rank (or dimension) of M, written as n := rk(M)

T. Kim — LLL over ring 1/24
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Backgrounds

Lattice reduction
e Some basis of lattices are good, but some are not.
e Many lattice problems (SVP/CVP) are easier to solve, if a “good” basis is given.

e Informally, a good basis consists of “reasonably small" and “almost orthogonal”
components.

e “Lattice reduction” is to find such a “good” basis from an arbitrary basis.
e LLL-algorithm is one of the most popular algorithms for lattice reduction.

e A key tool not only for lattice-based crypto, but also for various cryptanalysis (e.g.
RSA attack)

T. Kim — LLL over ring 2/24

LLL-algorithm

LLL-algorithm (classical)
e Given a Z-basis of a lattice M, find an LLL-reduced basis.

e (Gram-Schmidt orthogonalization) Given a basis (b, ..., b,) C Q",
(bi,...,bs) € R™is GS orthogonalization, if bj = b; and

i—=1
b = bi— Y pijb} for wij = (b, b})/ (b, b).
J=1

o (LLL-reduced basis) A basis (b, ..., b,) is LLL-reduced w.r.t § > 0 if
|pij] £1/2for 1 < j < i < n(size reduced) ,
[B5[|? > (6 — i ;_1)||bi_4|| for 1 < i < n (Lovasz conditions)

Note

e LLL algorithm outputs a small vector of lattices
« If (by,...,b,)is LLL-reduced w.r.t. 6 = 3/4, then ||by|| < 2("~1)/* det(M)/".

e Its running time depends on the size of the dimension, n.

T. Kim — LLL over ring 3/24
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Notations

Number fields
e h € Z[t]: an irreducible polynomial of degree n.
o L :=Q[t]/h(t): a number field of degree n.
e Z;: aring of integers of L (e.g. Zg = Z)

Ideal lattices
e Anideal Z C L is a Z;-submodule of L, thus trivially a Z-module.
e T is free, since Z is a PID (Principal Ideal Domain).
e Thus, it is a Z-lattice and called as “ideal-lattice”.
e Typically, rk(Z) =n=[L: Q).

T. Kim — LLL over ring

Motivations

In cryptography,
e [ typically has a proper subfield K # Q.

e E.g. (-th cyclotomic field L = Q[t]/(t" + 1) has a subfield K = Q[t]/(t* + 1),
where ¢ = 2! for some / > 0 and k | ¢.

Ideal lattice as a Zx-module
e Anideal Z C L is also a Zk-module for a subfield K C L.
e If Zk is a PID, then Z is a free Zk-module (Z-lattice), thus

IT=Zkb®---®ZxPy
for a basis (81,...,04) € L and d = [L : K].

Matrices of Lattices

/ 24

e We consider a Zg-lattice as a d x d matrix Mz = [51] ... |B4] € K9, instead of

[b1]...|bs] € Q™" where n=[L:Q] and d = [L : K].

T. Kim — LLL over ring
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Our goal

Motivation

e If a Z-lattice M C L can also be considered as a free Zx-module,
rkz, (M) = [L : K] = d is smaller than rkz(M) = [L: Q] = n.

e Smaller dimension, faster LLL-algorithm?

LLL algorithm over Zxk

e We restrict our concern to “norm-Euclidean domain” Zk (that is, Euclidean
domain w.r.t. algebraic norm N g).

e We propose two heuristic LLL algorithms running over Z-lattices.

Technical hurdles
e For “GS orthogonalization”, one needs to define “inner product” over K¢ x K9
e What would be analogous notions for “size reduced” and “Lovasz conditions”?

T. Kim — LLL over ring 6/

Related works

Related works

e (Napias '96) over Gaussian integers, more generally, quadratic norm-Euclidean
domain
. use "Hermitian product”;
« Euclidean norm (induced by Hermitian product) and algebraic norm coincides,
i.e. Ngga+ b)) =a®+ b =||(a, b)|>
e (Fieker-Phost '96) over arbitrary Dedekind domain, using pseudo-basis
« inner product induced by Hermitian product;
. in a size-reduction step, given a € K, tried to find g € Zg s.t.
Trk/o((a — g)(a — q)) is minimal (in general, not easy to do so).

e (Gan-Ling-Mow '09) over complex fields
« basically the same as Napias's;
. does not consider the number field structures.
e (Fieker-Stehlé '10) over arbitrary Dedekind domain, using pseudo-basis
« convert Zg-lattice into Z-lattice of a higher dimension;
« LLL-algorithm is carried over Z-lattice.

T. Kim — LLL over ring 7/
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Mathematical Background

Euclidean domain
e Aring R is Euclidean if 3¢ : R — N s.t. ¢(a) < ¢(ab) for 0 # a, b € R and there
exists g and r € R s.t.
a=bq+ rwith r =0 or ¢(r) < ¢(b).

e E.g. Z with ¢(a) = |a| and division algorithm
Norm-Euclidean domain

e If Zk in K is Euclidean w.r.t. ¢(a) = | Nk q(a)|, then Z is called norm-Euclidean.
o (Example 1.) Zg for K = Q(Ck), the k-th cyclotomic field, is norm-Euclidean iff

k € {1,3,4,5,7.8,9,11,12, 15, 16, 20, 24}?
e (Example 2.) Zg for K = Q(v/—a, /) is norm-Euclidean iff

a=1 B=235T

a=2 p=-—3.5

a=3, pg=25-7,—-11,17,-19;
a=7, B=5"P

3[Lenstra '75, Masley '75, Ojala '79]

T. .?allqemmrwqﬁn'gul 8/ 24

Mathematical Background

Euclidean minimum
e “norm-Euclideanity” leads us to consider Euclidean minimum of K, 9i(K).
e Forany £ € K, 3q € Zk sit. |Nkjg(é§ — q)| < M(K) < 1.
e Eg. MQ)=1/2

Euclidean minimum of K = Q((y)

K 1 3 4 5 7 [ El 12 15 16 20 NJ
!

mewd) | 3 [ 38| E [ [ d ) k)48

Table: Euclidean minimum of k-th cyclotomic fields [Lezowski '14]

Euclidean minimum of K = Q(\/—a, v/f)

[ (o, ) [ 2 [ @3 a5 [ an [ @3 ]|
| mav==ven | 3 | 4 £ | ¢ | 1 | &
[

[ (o, A) [ Gs) [ 3.7 @10 [ @any [ (a9
3

|'-W[Q(J—_n.\f.’i))] Y [ H 50.46] g |<o.95| ]

Table: Euclidean minimum of biquadratic fields [Lemmermeyer '11]

T. Kim — LLL over ring 9 /24
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Size reduction over norm-Euclidean ring

Size reduction (classical)
e Size reduction is actually the same as “for any given . € Q, find g € Z s.t.
n—ql <1/2".
e This can be done by a simple rounding, i.e. ¢ = |p].
e Note that M(Q) = 1/2 and | - | is the Euclidean function for Z.
e Recall, in size reduction step, b; is set to be b; — qjbj;, where q; = | ;] for
pij € Q.

Rounding function in norm-Euclidean ring

e For size reduction in K, we need an algorithm, for any £ € K, to find g € Zk s.t.
|Nk/o(& = q)] < M(K)
e (Rounding function) For a € K, we write a = E,'-';Ol a;¢" where a; € Q. Define

la] =) lail¢'-

i

e However, [Ny g(a— [a])| < 9M(K) does not hold in general.

T. Kim — LLL over ring 10 / 24

Rounding algorithm for norm-Euclidean ring

Algorithm 1 Rounding algorithm for norm-Euclidean rings

Input A norm-Euclidean number field K, its Euclidean minimum 9%(K), the unit group
K* of K, and an element a € K
Output g € Zg such that N g(a — q) < M(K)

1. Compute r := a — |a]

2: if NK/@(F) < Dﬁ(K) then

3 return q:= |a|

4: else

5.  repeat

6 u <—g KA

7. until Ngg(ur — |ur]) < M(K)
g end if

o return q:= |a] +u | ur]

T. Kim — LLL over ring 11 / 24
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Notes

Notes on the rounding algorithm
e The algorithm may not terminate, but it is unlikely to happen.

e In our experiments, the unit u is chosen from a power of a fundamental unit, e.g.
u < v' for a fundamental unit v.

e In the case of K = Q((ss),
« For 97% of 200,000 uniformly chosen random elements, it suffices to run the
simple rounding (i.e. ¢ = |a] is the desired output).
. For the rests, it was enough to work with only a few units of the form v/ for
1< <3, where v = ((fg + (fg + (3g) is a fundamental unit.

T. Kim — LLL over ring 12 / 24

LLL-reduced basis (1) — biquadratic case

A bilinear map over K9 x K¢

o K=Q(v/=a,v/B). Letv=(w,...,v) € K°.
e Define a bilinear product B : K¢ x K¢ — K by

d
(v, w) — Z v,0(w;),

where (6) = Gal(K/Q(v/—a)) = Z.
« B is bilinear and B(v,w) = 6(B(w,v));
« B(v,v) =0 for v # 0 with negligible prob;
. B(v,v) € Q(v/=a) for all v € K.
e Note that Ny /=s)/0(a + bv/—a) = ||(a, by/a)||*.
e GS-orthogonalization is analogously defined w.r.t. B.

T. Kim — LLL over ring 13 /24
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LLL-reduced basis (1) — biquadratic case

LLL-reduced condition

e A basis (31,...,084) C K9 is called Zx-LLL-reduced w.r.t § > 0 if
1. Ngjg(pij) <M(K) for 1 < j < i < n (size reduced)
2. ||Bil| = (6 = [|pii—160(pi i-1)|]) - || Bi-1]| for 1 < i < n (Lovasz condition),
where B; = B(3!, 3;) € Q(v—a).

Proposition
e Let (B1,...,8q4) be Zk-LLL-reduced basis of L w.r.t. 4, then

|1B1]] < (8 — M(K)M2)~E-D2N o (det(L)) M.

T. Kim — LLL over ring 14 / 24

LLL-algorithm over biquadratic field

Input a basis {by,--- by} of M C Z%, M(K), the unit group K*, and § > 0.
Qutput Z-LLL- reduced basis {by,--- ,bg}.

1: Compute the Gram-Schmidt ba5|s {b -, b4} with respect to the bilinear map B(, -)
2: Compute the coefficients p;; = B(b; _b );’B(b* b) for 1 < j < i < d and B; = B(b},b}) for
1<i<d.

3: Setk=2

4: while kK < d do

5 forj=k—1to1ldo

6: Compute g; € Zk such that Nig(pu; — g;) < M(K) using Algorithm 1
T Set bk:bk_qj'bj

8 Update ji; = B(bg, b})/B(b?,b}) and By for 1 < j < k

9

i end for
10 if Bl > (6 = Nijo(ixk-1)"2) - | Bi-a| then
11: k=k+1
12: else
13: Swap by and by,
14: Update b, b} _,,Bx, Bx—y, and i;j for 1 < j<s
15: k = min{2, k — 1}
16: end if

17: end while

T. Kim — LLL over ring 15 /24
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LLL-reduced basis (2) — general case

Hermitian product
e Define a blinear map H : K¢ x K¢ — K by

d
(v,w) Z Viw;,
i=1

where - denotes the complex conjugation.
e GS-orthogonalization is analogously defined w.r.t. H.

LLL-reduced condition

e Abasis (fi,...,8q4) C K9 is called Zy-LLL-reduced w.r.t 6 > 0 if
o Niso(pij) <M(K) for 1 < j < i < n (size reduced)
« Ngjo(Bi+ pij—1lii—1Bi-1) = 6 - Nig(Bi-1) for 1 < i < n (Lovasz condition),
where B; = H(5:, 7).

Cautions
e Unlike the classical case, the Lovasz condition cannot be replaced with
Nk o(Bi) = (6 — pii-1fii-1) - Nkjg(Biza).
e This is because the triangle inequality does not hold w.r.t. Nk/q.

T. Kim — LLL over ring 16 / 24

LLL-algorithm over norm-Euclidean rings

Input a basis {by,--- by} C K9, M(K), the unit group K*, and § > 0.
Output LLL-reduced basis {b;.--- .by}.

1: Compute the Gram-Schmidt basis {b], - ,bj;} with respect to the bilinear map H(,)

2: Compute the coefficients y;; = H(b;, bj)/H(b}.b}) for 1 < j < i < d and B; = H(b},b;) for
1<i<d.

3: Setk=2

4: while kK < d do

5 forj=k—1to 1l do

6: Compute q; € Zg such that N g(pw; — g;) < M(K) using Algorithm 1

7 Set bk=bk—q_f"bj

8: Update ju; = H(by.b;)/H(bj.b}) and By for 1 < j < k

9:  end for

10: if NK;'Q(BR + Ik k1% k-1 Bk 1) >4 - NK,‘-Q(B}: 1) then

11: k=k+1

12:  else

13: Swap by and by,

14: Update bj,.b}_;, By, Bx—y, and p;jfor 1 <i,j<s

15: k = min{2, k — 1}

16: end if

17: end while

T. Kim — LLL over ring 17 / 24
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Experimental Results

Lattices
e The lattice L is generated by rows of the matrix in K9*?,

q 0

%, 1 0

2 ) 0 1 0 N
ygzg @ e oswe 1

where g and v; € Zg.
e This shape of the lattice basis appears in several cryptanalysis.

Parameter choices

e We carried out the reduction of lattices over K = Q((x) for k = 5,8, 16 of
dimension 10 < d < 50.

e If the lattices are considered as Z-lattices, the dimension 50 over Zy corresponds
to the dimension 200 over Z when k =5 or 8, or 400 when k = 16.

e 0 =3/4

T. Kim — LLL over ring 18 / 24

Experimental Results

Output quality
e Theoretically, we have no guarantee on the output quality.

e In biquadratic case, it is possible to guarantee output quality using a different type
of inner product, but its practical performance is worse than general case that uses
Hermitian product (see our paper).

e Let n=4d - [K : Q], a dimension of L over Z
e Forv:=(w,...,v4) € K9, define ||v||oc = max;||Vi]|s-
e As a measure of output quality, we use

B — ||b1||m
’ NK,/Q(det(ﬁ))I/”.'

where the volume of L over Z is the same as Ny g(det(£)) = Nk/o(q).
e The classical Hermite factor is defined with || - || norm.
e Heuristically, we observe that C ~ 1.02".

e Taking ||v||2 < /n||v|| into account, the Hermite constant of our reduction is
<1.02n'%,

e As n grows, Hermite constant becomes close to the average Hermite factor 1.02.

T. Kim — LLL over ring 19 /24
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Experimental Results
Timing results

o 150 : @ 150 -
20 — Zk-lattices | .- a0 — Z-lattices | .1
§ 100 1| Z-lattices ;-3 100 || Z-lattices
g g
o 90| » 00
.g L ‘g ._'
] ]
10 20 30 40 50 10 20 30 40 50
Z-dimension d Zk-dimension d
(a) Zk = Z[Gs) (b) Zk = Z[(s)
Figure: Time comparison of running time
Note
e Our Zg-lattice reduction is about 3 times faster than the classical reduction done
over Z.

e We did not attempt to compare our naive implementation with already
well-optimized LLL implementation.

e For the consistency of the comparison, we used our own implementation for both
Z and Zg-reduction (see our SAGE codes in Appendix).

T. Kim — LLL over ring 20 /24

Applications
Sieving in exTNFS (by K.-Barbulescu)

e exTNFS is a best known algorithm to solve the DLP over F,. (n: composite, p:
not small).

e In a step called special-q method in exTNFS method, we need to consider: find a
small basis of the lattice

7—1
Mgq =< (a0, ...,ar-1) € Z[¢]" : Za;a; =0 modQ
i=0
where Q is a prime ideal in Z, for L = K[a] = K|[x]/f(x) and
K = Q[ = Q[t]/h(t).
e My is the 7-dimensional Zk-lattice.
e A classical approach is to consider the lattice as Z-lattice.

Parameters for BN curves
e Set h(t) = d5(t) = t* + 3+ t2 + t + 1 so that K = Q({s) and Zk = Z[(s].
e Set f(x) = x> — x> — u, where p = P(u) and
P(x) = 36x* 4+ 36x% + 24x?> 4+ 6x + 1 and u = 2158 — 2128 _ 268 1
e Set L = K[x]/f(x).

T. Kim — LLL over ring 21 /24
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Special-q in BN curve parameters

Example (cont.)
e Take a prime ideal Q = (q,ar —7) C Land 7 = 2.
e where,

q = (q) = (—461479¢; — 383970¢2 — 265505¢s — 303923);

~v = 16946578643505257763313.

oThenMQ:( 9 0).

e We obtained

532(3 + 850(2 + 179¢s — 464 224(3 + 132(2 — 13¢5 + 367
LLL (Mg) = ( w F A L G + 13265 — 13¢5 ) .

—649¢2 + 186¢2 + 661(s + 73 11¢3 — 264¢2 + 35¢s — 71

e Note that log,(850) ~ 9.73 and log, (NK;Q(q)ﬁ) ~ 9.29.

T. Kim — LLL over ring 22 /24

Future works

Open questions
e Apply to cryptanalysis of lattice-based cryptography
e BKZ, lattice enumeration over Euclidean ring?
e Prove the output quality

T. Kim — LLL over ring 23 /24
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Thanks for your attention!
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Complexity Theory

Goal
1. understand the power/limits of computational models:

(non)deterministic/probabilistic/quantum Turing machines,
Boolean circuits, etc.

2. classify computational problems according to the
amount of resources to solve them:

time, space, randomness, etc.
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Complexity Theory

The most popular classification criteria
Is Problem Xin P or NP-hard?

Easiness give a polynomial time algorithm for X

Hardness show X is NP-hard via a polynomial time
reduction from some NP-hard problem

Question Are we satisfied with this classification?

Complexity Theory

Possible complaints about theory of NP-hardness
What is the exact time complexity of Problem X?

Case [Xis in PJ:
Is X solvable in linear time?
Does X require quadratic time?

Case [X is NP-hard]:

Is X solvable in sub-exponential time?
Does X require exponential time?
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Fine-Grained Complexity Theory

Goal
Understand tight complexities of problems

How?
Easiness give a faster algorithm for X

Hardness show X requires t(n) time
via an “highly efficient” reduction from a problem
Y that is conjectured to require t(n)’ time

Fine-Grained Complexity Theory

Examples of popular conjectures
ETH (exponential time hypothesis):
3-SAT requires 29M time

SETH (strong ETH):
k-SAT requires 2"(1=°(1) time as k — o

3-SUM: requires n?=°M time

APSP (all pairs shortest path): requires n3=°( time
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(S)ETH

literal: Boolean variable or its negation
k-clause: disjunction of at most k literals
k-CNF: conjunction of k-clauses

k-SAT: given a k-CNF, is there an assignment to the
variables s.t. all the clauses become true?
f(x) = (mx1 VX Vag)(xg Vaxs V—axg)(xy Vg V)

Upper Bounds: k -SAT is in time 2"(1=1/K) [PpZ97,..]
ETH: 3-SAT requires 2% time
SETH: k-SAT requires 2"(1=0(M) time as k — o

Example: SETH hardness of OV

Orthogonal Vector (OV)
Input: U,V € {0,1}4,|U| = V] =n
Output: 3(x,y) EU XV st. T4 x;y;, =07

Trivial upper bound
QV is solvable in time 0 (n?poly(logn))

Theorem [WO05]
SETH implies OV requires Q(n?=°M) time as d — o

10
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Reduction from k-SAT to OV
k-SAT instance: CNF of n variable and m clauses
(_le \% xz \% X3)(x1 \% _IX3 \% _I.X4)(x2 \% x3 \% x4)

OV instance: U = {uy},V = {v)},
U,V c{0,13" U] = V| = 2"/?
For y € {0,1}/2,

T {0 if (x1, ..., %n/2) = ¥ makes ith clause true
S ¢! otherwise

- {O if (Xp/241, -, %) = ¥ makes ith clause true
! otherwise

2 Uy, vy ; > 0 if and only if (y,y") makes some clause false

11

Reduction from k-SAT to OV
k-SAT instance: CNF of n variable and m clauses
(_Ix]_ V xZ V x3)(x1 V _Ix3 V _Ix4)(x2 V X3 V x4) oo

OV instance: U = {u, },V = {v,},
U,v {013 |U| = |v|=2"?

OV with |U| = |V| = n is solvable in 0(n?~9%)
implies

k-SAT is solvable inin 0 (2%(1_5)) = 0(2n1-9/2))

12
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Shortest/Closest Vector Problems

Lattice of rank n and dimension d
For linearly independent vectors by, ..., b, € RY,
L(bl, veny bn) = {Z?zl Zibi “Z € Z}

SVP, compute the minimum #,-length of a non-zero
vector in L(by, ..., by,)

CVP,, compute the minimum £,-distance of a vector t €
R% and L(by, ..., by,)

15

Motivation

Lattice of rank n and dimension d
For linearly independent vectors by, ..., b, € R,
L(bl, ey bn) = {2?=1 Zibi 1Z; € Z}

Question
The best exact algorithms for e.g. SVP, and CVP,

run in time 2n(1+o(1) [ADS15]
Can we improve the running time to 2°™ or 1.1™ ?

16
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M2SH

Max 2-SAT:

given a 2-CNF and an integer [ > 0,
determine whether there exists an assignment
that makes at least [ clauses true or not

Max 2-SAT Hypothesis:

Max 2-SAT requires requires 23 - °M) time
w = 2 is the minimum real s.t. multiplying two n X n
matrices can be computed in time 0(n®)

17

Gap-ETH

Gap(y)-3-SAT:
given a 3-CNF satisfying either
(i) there is an assignment s.t. all the clauses become true, or

(i) there is no assignment s.t. at least a (1 — y) faction of the
clauses become true,

decide (i) or (ii)

Gap-ETH: For some y > 0, Gap(y)-3-SAT requires 2% time

Non-uniform Gap-ETH: For some y > 0, Gap(y)-3-SAT
requires 2™ size circuits

18
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Hardness of CVP

Theorem [BGSD17]

1. M2SH = CVP, requires 23 *7°M) time
2. ETH = CVP, requires 2% time

3. Gap-ETH = CVP, requires 2™ time even for a-
approximation with some constant a > 1

Cf. best exact algorithm in time 27(1+°(1)) [ADS15]

Remark

[BGSD17] shows other hardness results including the case
of CVP,,p # 2

19

Hardness of SVP

LKNH: the lattice kissing number is 200

Theorem [ASD17]
Non-uniform-Gap-ETH & LKNH

= SVP, requires 2 time even for a-approximation with
some constant a > 1

Cf. best exact algorithm in time 2(1+0(1)) [ADS15]

Remark

[ASD17] shows other hardness results including the case of

SVP,,p # 2
20
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Motivation

So far, we have been concerned with worst-case complexity

For cryptography, it is convenient to have a problem that is
solvable in time t(n) but not in time t(n)*~% on average

Can we show such results under some (possibly worst-case
hardness) assumption?

23

Variant of OV

p(n) > n? be the smallest prime, d(n): = [ log?n]|
Define fOV,: Fp*? x F3*® — F,, as
fOVR(U,V) = X jerny Hkera;(1 — UiVik)

For U,V € {0,1}"%¢,

1 if ) UpVik =0
L ety = UiV = {0 ‘otherwise

2. fOV, (U, V) = #{(i,)) € [n]?: Zyeray UiV = 03
fOV,,(U,V) can be computed in time 0(n?poly(logn))

24
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Average-case hardness of fOV,,

p(n) > n? be the smallest prime, d(n): = [ log?n]|
Define fOV,,: Fj*? x F*¢ — F), as
fOVR(U,V) = X jerny Hkera)(X — Ui Vi)

Theorem [BRSV17]
If fOV,,(U,V) can be computed in time 0(n'*%)
for a ¥ fraction of inputs (U, V) € Fj*? x Fp*¢4,

then OV is solvable in time 0 (n'*%) in the worst case
(and SETH is false)

25

Talk Plan

1. Fine-grained complexity

2. Fine-grained complexity and cryptography
[Hardness results]

» Hardness of SVP/CVP

> Average-case hardness
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> Beating Brute Force for Systems of Polynomial Equations
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Motivation

Gap(y)-3-SAT:
given a 3-CNF satisfying either
(i) there is an assignment s.t. all the clauses become true, or

(i) there is no assignment s.t. at least a (1 — y) faction of the
clauses become true,

decide (i) or (ii)
Gap-ETH: For some y > 0, Gap(y)-3-SAT requires 2% time

Can we prove Gap-ETH from ETH ?

The above is open, but [A17] provides a sufficient condition
for Gap-ETH from cryptographic assumptions

28
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Strong OWF

U,, the uniform distribution over {0,1}"

An efficiently computable function f:{0,1}"*— {0,1}™(
is (T(n),e(n)) one-way

if for all randomized T'(n) time algorithm A4,

Pry-pu [AR) € £71()] < e(n) holds

f is an exponentially OWF if f is (25™,27A™) for some 8 > 0

f is local if each of its outputs depends on at most k inputs
for some constant k > 0

29

Strong OWF

Theorem [Al7]

The existence of a family of exponentially-strong locally-
computable OWFs implies Gap-ETH

Remark
1. Candidates of such OWFs:

Exponential hardness of random 3-SAT over sparse
instances [F02,...], Goldreich's OWF [G11] etc.

2. [A17] shows the existence of a family of exponentially-
strong locally-computable PRGs under a similar assumption

30
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4. Multipoint Polynomial Evaluation
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Our Problem: SysPolyEqs(q)

Systems of Multivariate Polynomial Equations over GF[q]

Input:

GF[q] polynomials py,p2, ..., Pm
in formal variables x4, x5, ..., x,,

€.9.q9 =3,p1 = 2X2 x5 X3+ x% X4, Py = XX, + x5 + 1

Task:
find a satisfying assignment a € GF[q]"
i.e.py(a) = py(a) = - = py(a) =0 holds

eg (Xl, xz,X3,x4) = (2,2,1,1)
(#SysPolyEgs(q) denotes the counting version)
34
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Complexity of SysPolyEqgs(q)

Input:

GF[q] polynomials py,p, ..., bm
in formal variables x4, x5, ..., x,,

Parameters: n, g, k := max deg(p;)

m Pif k =1 (linear equations)

m NP-complete evenifk =q =2

m k-SAT is a special case of g = 2

(each clause can be written as a k-variate polynomial)
m Best worst-case upper bound: g™ X poly(input-size)
(evenifqg =k =2)

35

SysPolyEqgs(q) as Hardness Assumption

Crypto-systems assuming the hardness of:

1. Enumerating all satisfying assignments
m Hidden Fields Equations (HFE) [Patarin'96,...]

m Unbalanced Oil and Vinegar signature schemes (UOV) [Kipnis-
Patarin-Goubin'99,...]

m McEliece variants [Faugere-Otmani-Perret-Tillich'10,...]
m Polly cracker [Albrecht-Faugere-Farshim-Perret'11,...]

2. Finding one satisfying assignment
m QUAD [Berbain-Gilbert-Patarin'06,09,...]
m Matsumoto-Imai public key scheme [-'88,...]

36
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SysPolyEqgs(q) as Hardness Assumption

Strong Exponential Time Hypothesis (q™ is necessary)
for SysPolyEqs(q) on degree 2 instances implies:

m The current best algorithm for the Listing Triangles
problem is optimal [Bjérklund-Pagh-Vassilevska Williams-Zwick'14]

m Beating brute force for the GF(q)-weight k-clique
problem is impossible [Vassilevska-Williams'09]

37

Previous Algorithms

m Groebner Basis: used in practice,
double exponential time in the worst case

m 2"'(1=€) or polynomial time algorithms for SysPolyEqgs(2)
on degree 2 instances are known if instances satisfy some

conditions e.g. [Yang-Chen'04,Bardet-Faugere-Salvy-
Spaenlehauer'13,Miura-Hashimoto-Takagi'l3,...]

m ¢"/? length “proof” for the unsatisfiability of
SysPolyEqs(gq) on degree 2 instances [Woods'98]

(i.e. nondeterministic algorithm for UNSAT)

38
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Our Result 1

[randomized, search, bounded degree]

n variables, GF[q], k := max deg(p;)
e = 2.718 ... (the base of the natural logarithm)

Condition _____|Upper Bound

PR £0.8765n
q=2k>2 2(1_%)71
q =p% logp < 4ek q(l‘ﬁ)"
g=pilogp =k (logq)“”‘ « o)
edk !
39

Our Result 2

[deterministic, counting, bounded degree]

n variables, GF[qg], k '= max deg(p;)

Condition______|Upper Bound

q = p%, k: arbitrary (1_ 1 )n
g\ 300kq7d
1
Cf. Our Result 1 q(l‘m)"

(randomized search)

40
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Generalization of SysPolyEqs(2)

GenSysPolyEqs(2)

Input:
ZIIX circuits (sum of products of linear forms)
D1, P2, -, Pm in formal variables x4, x5, ..., x,

eg.p1 = (g +x; +D)(xy +x3) + (21 +x4)x, + 1
[ T J [ T J H_’

Parameters: n, s := total number of products of linear forms

41

Our Result 3

[GenSysPolyEqgs(2), unbounded degree]

n variables, GF[2]
s products of linear forms in total

Upper Bound

Randomized (1-%)11
Search o\ 10log(3)
Deterministic <1 L )n
Counting o\ 110010g(3)

exponentially faster than 2™ if s = 0(n)

42
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(k-)CNF SAT is a special case of SysPolyEqs(2)
(degree k instances)

Cl = (_le VXZ VX3) = P1= Xl(l + xz)(]_ + X3)
CZ - (x1 Vv _IX3 V _IX4) = pzz (1 + xl)xeZ
C3 = (x2 Vx3Vxy) = p3= (14 x)(1 +x)(1 + x3)

Ci=0C=0CG=15p,=p,=p3=0

Optimality of Our Results

m SysPolyEqgs(2) on degree k instances can be solved
in time 2n(1=1/0(k))

Cf. k-CNF SAT can be solved in time 27(1~-1/k)
[Paturi-Pudlak-Zane'97,.. ]

m For s =the total number of products of linear forms,
GenSysPolyEqgs(2) can be solved in time 27(1=1/0og(s/m)))

Cf. For s =the number of clauses,
CNF SAT can be solved in time 27(1~1/(2log(s/n)))
[Schuler’05,Calabro-Impagliazzo-Paturi’06,...]
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Proof Sketch for Our Result 1
[randomized, search, bounded degree]

(In what follows, we will focus on GF(2))

45

Our Techniques

Polynomial Method in Boolean Circuit Complexity

plays a key role in recent results:

B Circuit SAT [Williams'11,...]
B All-pairs shortest paths [Williams'14]
B Partial match queries [Abboud-Williams-Yu'15]

B All-points nearest neighbors in Hamming metric [Aiman-
Williams'15,...]

B Succinct Stable Matching [Moeller-Paturi-Schneider'16]

46
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Our Techniques

Two ingredients of our randomized algorithm:

1. fast evaluation algorithms for polynomials
[Yates'37,...]

2. approximation of polynomials by low degree
probabilistic polynomials [Razborov'87,Smolensky'87]

(originally used for proving circuit size lower
bounds)

47

Our Tool 1

Lemma 1[Fast Evaluation [Yates'37....]]
Let p: {0,1}"*— {0,1} be a GF(2)-polynomial
represented as a sum of monomials, then,
the truth table of p can be generated in time poly(n)2"

Note:
The number of monomials in p can be 2™

If we evaluate p(x) for each x € {0,1}",
then it takes poly(n)4™"

48
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Basic Idea of Our Algorithm

Input: degree k polynomials py,p2, ..., Pm
1. [Represent as a single polynomial]
Define P: {0,1}" - {0,1} as P :== (1 + p1) - (1 + p;)
sothatp;(x) =p,(x) = =pp(x) =0 P(x) =1
2. [Reduce the number of variables]
Define R: {0,1}* " - {0,1} for some n’ < n as
R(y) =1l ¢ (1 + Py, @)
so that 3x,P(x) =1 < 3y,R(y) =0

3. [Apply the Fast Evaluation Lemmal]

Get the truth table of R(y) in time poly(n)Z”‘”'
49

Basic Idea Fails

Input: degree k polynomials py,p2, ..., Pm

After Steps 1, 2,

R(y) = Hae{o,l}"’{l + 17, (1 4 p;(v,a))} is such that
3x,p1(x) = p2(x) = =pn(x) = 0= 3y,R(y) = 0

To apply the Fast Evaluation Lemma,
we have to write R(y) as a sum of monomials,
but straightforward expansion needs 2™ x 2™~ 2™ time

50

_89_



Basic Idea Fails

we have to write R(y) = Hae{o,1}n’{1 + 121+ pi(y, @)}
as a sum of monomials, but straightforward expansion
needs 2™ x 2™~ 2™ time

[Expanding inner products]

For each a € {0,13", [T, (1 + p;(y, @)) is a polynomial

in n —n' variables = may have = 27" monomials

[Expanding outer products]
We have to multiply such dense polynomials 2™ times

Modified Idea: Approximating R(y)
by a low degree (i.e. sparse) polynomial

51

Our Tool 2

Definition:
For Sy, ...,S4 € [m],
define a degree d polynomial Q,;:{0,1}™ — {0,1} as
Q{Si}(z) = niizl(]‘ + ZjESi Z])

Intuition: Qgsy = [iepm(1 + 2)) = Viemm)zi

Lemma 2[Low-Degree Approximation for NOR
[Razborov'87,...]]

Select random S, ..., S; uniformly and independently,
then, for every non-zero z € {0,1}'*,

Pr{Q(2) = 0] =1—— (cf. Pr[Qqy(0) = 1] = 1)
52
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Our Tool 2

For random S, ..., S, € [m],
Q{si}(z) = ?=1(1 + Zjesl- Zj)

1
= Vz € {0,13", Prisy[Qsy(2) = [igpry(1 + 201 21— 5

Qs I1s useful for the following task:

Input: n-variate degree k polynomials p4,p, ..., b (Mm > n)
Task: represent [T, (1 + p;) as a sum of monomials

The task requires more than 2™ time in general, but
the degree dk polynomial [T{-;(1 + ¥ jes, P;)

can be written as a sum of monomials in time (o?k) K 2"

Modified Basic Idea

Input: degree k polynomials py,py, ..., Pm

1-2. Define R: {0,1}"‘"' - {0,1} for some n’ < n as
R(y) = Hae{o,l}n'{l +[172,(1 + p;(y,@))} so that
3x,p1(x) = p2(x) = =pprx) =0 = 3y,R(y) =0

2.5.a. For each a € {0,1}"', approximate 12,1+ pi(y,a)
by P, =12, (1 + s, p;(v,@)) with random Sy, ..., Sy € [m]
2.5.b. Approximate [] (1+P)

a€e{0,1}"
by R =1+ Y,es P, with random S < {0,1}"'

3. [Apply the Fast Evaluation Lemma]
Get the truth table of R(y) in time poly(n)zn‘”'

54
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Correctness of Our Algorithm

Input: degree k polynomials p1,pa, ..., Pm

1-2. Define R:{0,1}"™ - {0,1} for some n’ < n as
R(y) = Hae{o,l}n’{l +[172,(1 + p;(y,@))} so that
3x,p1(x) = p2(x) = = pp(x) =0 = 3y, R(y) = 0
2.5.a. For each a € {0,1}", approximate [, (1 + p;(y, @)
by P, =1, (1 + ¥ s, p;(v,@)) with random Sy, ..., Sy € [m]

2.5.b. Approximate [T _ (1 + P)

by R =1+ Y,cs P, with random S € {0,1}"

Correctness: Settingd — 2 = n’,
vy € {0,1)"™, Pr[R(y) = R(y)] = 2/3

Running Time of Our Algorithm

2.5.a. For each a € {0,1}", approximate [[72,(1 + p;(y, a))
by P = [1{21(1 + X s, pj(v,@)) with random Sy, ..., Sq € [m]

2.5.b. Approximate Moo @+ P)

by R =1+ Y, P, with random S € {0,1}"

3. [Apply the Fast Evaluation Lemma]
Get the truth table of R(y) in time poly(n)2""'

[Time for representing a product as a sum of monomials]
5 n—n' .. 5 n—n' n
each P, takes ( dk ) time, R takes ( dk ) x 2™ time

! / -1
[Total Running Time] (n ;kn) X 2M 421 < 2(1 o)
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Proof Sketch for Results 2, 3

Result 2 [deterministic, counting, bounded degree]
Combining Result 1 and
[Derandomization] Epsilon—biased generator [Naor-Naor...]

[Counting] Modulus amplifying polynomials [Toda, Yao, Beigel-
Tarui]

Result 3 [GenSysPolyEqgs(2), unbounded degree]
Combining Results 1, 2 and

[Degree reduction] (linear algebraic extension of Schuler’s
width reduction for CNF):

reduces an instance with s products of linear forms

into a set of SysPolyEqgs(2) instances with k = 0(log(s/n))
57
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Probabilistic Polynomial

Definition:
For Sy, ..., S84 € [m],
define a degree d polynomial Q,:{0,1}™ — {0,1} as
Q{Si}(z) = Hfi:l(l + ZjESi Z])

Intuition: Qg3 = [iepm)(1 + 2) = Viepm 2

Lemma 2[Low-Degree Approximation for NOR
[Razborov'87,...]]

Select random S, ..., S4 uniformly and independently,
then, for every non-zero z € {0,1}™,

PrlQsy(2) = 0] =1——  (cf. Pr[Qq,(0) = 1] = 1)
59

Proof of Lemma 2

For random Sy, ..., Sq € [m], Qgs3(2) = [Ti=1 (1 + X jes, 7))

Then, for every non-zero z € {0,1}',

Pr[Qsy(2) =0] =1 —zid (cf. Pr[Q;(0) = 1] = 1)

2=0=Vi,Pr[1+Ycs 2 = 1] = 1= Pr[Q(0) = 1] = 1

60
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Proof of Lemma 2

For random Sy, ..., Sq S [m], Qgs(2) = [T5=1 (1 + X jes, %)
Then, for every non-zero z € {0,1}™,
Pr{Qsy(z) = 0] = 1——;  (cf. Pr{Qqsy(0) = 1] = 1)

1.z # 0= Vi,Pr{l+%eg, 2= 0] = Pr{l + X e, 2y = 1] = -
2. Q{Si}(Z) =1 ©Vil +Zj€5i zj = 1

1+2 = Pr[Qgs3(2) = 0] = 1 — Pr{Qs,(2) = 1]

. 1
=1—Pr|Vi,1+Ycs 2 =1] =1—-—

6l

majority & AC°[2]

ACO[2] circuit:

gate set = {AND, OR, NOT, PARITY}
(unbounded fan-in/out)
depth=%k =0(1)

Size (#gates) = s

Theorem [Razborov'87]
An ACP[2] circuit computes
the n-variate majority function

X1 X2 X3 Xy

=5 = zﬂ(nﬁ)

62

_95_



Proof of majority ¢ ACO[2]

Lemma 3

C: ACO[2] circuit, depth = k = 0(1), size (#gates) = s
= Jrandom polynomial P of degree d = 0(log¥s) s.t.
vx € {0,1}", Prp[C(x) = P(x)] = 0.999

Proof Sketch: Replace each

m NOT(y)by1l+y

W PARITY(yq,y5,...) by ys +y, + -

m AND/OR by Low-Degree Approximation for NOR of
Lemma 2 with De Morgan’s Law

P(x) is a composition of polynomials = a single polynomial

the union bound = error probability 63

Proof of majority ¢ ACO[2]

Lemma 3

C: ACO[2] circuit, depth = k = 0(1), size (#gates) = s
= Jrandom polynomial P of degree d = 0(log¥s) s.t.
vx € {0,1}", Prp[C(x) = P(x)] = 0.999

= dpolynomial p of degree d = 0(log*s) s.t.
Pryeo,un[C(x) = p(x)] = 0.999

64
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Proof of majority ¢ ACO[2]

Corollary of Lemma 3

C: ACO[2] circuit, depth = k = 0(1), size (#gates) = s
= Jpolynomial p of degree d = 0(logks) s.t.
Pryero13[C(x) = p(x)] = 0.999

Lemma 4
vpolynomial p of degree d = o(y/n)
Pryeqo,1yn[p(x) = majority(x)] < 2/3

1
s = 2°*K) = 3polynomial p of degree d = o(y/n) s.t.
Pryefo1n[C(x) = p(x)] = 0.999
= Pryefo.137[C(x) = majority(x)] < 2/3 + 0.001
65
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Multipoint Polynomial Evaluation

Lemma 1[Fast Evaluation [Yates'37,...]]
Let p:{0,1}"*— {0,1} be a GF(2)-polynomial
represented as a sum of monomials, then,
the truth table of p can be generated in time poly(n)2"

Note:
The number of monomials in p can be 2"

If we evaluate p(x) for each x € {0,1}",
then it takes poly(n)4™

67

Proof of Lemma 1

Lemma 1[Fast Evaluation [Yates'37....]]
Let p: {0,1}"*— {0,1} be a GF(2)-polynomial
represented as a sum of monomials, then,
the truth table of p can be generated in time poly(n)2"

Several Proofs are known:

1. Dynamic Programming

2. Fast Fourier Transform

3. Fast Rectangular Matrix Multiplication

68
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Proof of Lemma 1

Lemma 1'[Fast Evaluation]
Let p:{0,1}"*— {0,1} be a GF(2)-polynomial
represented as a sum of 0(2™7) monomials, then,
the truth table of p can be generated in time poly(n)2"

3. Fast Rectangular Matrix Multiplication
A: N X N%3 matrix, B: N°3 x N matrix

C = AB can be obtained in O(N?) time
[Coppersmith, Le Gall, ...]

69

Proof of Lemma 1

Example: p(x1 X2, ¥1,¥2) = X1 + ¥1Y2 + X1%2Y1 + X1 X201 Y2
Want: 22 x 22 matrix p(00,00), p(00,01),..., p(11,11)
Observation:

A(xyxz) = (x1, 1, 21%2, %1%2), B3, ¥2) = (L, Y12, V1, V1¥2)"
= p(x1X2,Y1,Y2)= A(xl,xZ)B(ylr Y2)

A(00)
_ [ A(01) o
A= A(10) ,B := (B(00),B(01),B(10),B(11))
A(11)
p(00,00) - p(00,11)
= AB = : :
p(11,00) - p(11,11)

70
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Proof of Lemma 1

Let p: {0,1}"*— {0,1} be a GF(2)-polynomial
represented as a sum of 0(2™7) monomials

Let xq, ..., X /2, Y1, =) Yn 2 D€ formal variables
Then, for r = 0(2V7),
P(%X1, s X j20 V1, s Ymy2) = e [:()9:(¥)

Construct 2™2 x r and r x 2™/2 matrices
Ay = fi(x),Biy = gi(y)
= (AB)xy= Xi=1 [i(x)9:(y)
(multiplication of AB in 0(2™) time)
71

Conclusion
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Future Directions

m Improve the running time for g = p%,logp > 4edk

m Improve the running time of deterministic algorithms
m Similar running time in polynomial space

etc...

Thank you for your attention!
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@ Introduction

M. Kuroda Monomial GAPN functions February 2018

Introduction

p: prime, F :=Fpn

Definition (

A function f : F — F is called almost perfect nonlinear (APN) if
Ni(a,b) :=#{z € F | D f(z) := f(z -+ a) — f(z) =0} <2
foranya € F* and b € F.

@ fis called perfect nonlinear (PN) if Ny(a,b) <1 for Ya€ F*, Vb€ F.

0 (f(a) #0).
@ When p = 2, there is no PN function, since D, f(x + a) = D, f(z).
® Whenp=2, f: APN <= N(a,b) =0o0r 2 for Yac F*, Yb€ F.

e If f is linear, then D, f(z) = f(a). Hence N¢(a,b) = { p"  (f(a) =0),

@ When p = 2, there are applications in cryptography, coding theory, etc.

Monomial GAPN functions February 2018 4 /24

—-104 -



Application to cryptography : Substitution box (S-box)

function AESy (M) (AES128)

(Ko, . .., Ki0) + expand (K) :
s+ M & Ky - K : public key, M : plaintext

for r =1 to 10 do . |K|=|M|=128
s+ S(s) Ky, ..., Kyo : keys
,3 ¢ shift-rows(s) ) ) 51:1':1: = o bijections from
if » <9 then s + mix-cols(s) fi : 8l t-rows 128-bit to 128-bit
s+ s K, ©  mix-cols
endfor : (Infact, S : Fos — Fas)
return s

- For resistance to linear and differential attacks, we need properties of S-boxes:
High nonlinearity (i.e., low differential uniformity) and high algebraic degree.

- For practical use, S is the inverse function S(z) = 2!,

- However, when n = 8, the inverse function is not APN (Ng(a,b) < 4).

- No examples of bijective APN functions on [Fys are known.

M. Kuroda Monomial GAPN functions February 2018

Recall that f: F — F : APN

de

EL Ni(a,b) = #{z | Daf(z) = f(z +a) — f(z) =b} <2 (a(#0),be F)
<= Ny(a,b) =0or2for Ya€ F*, b€ F, when p =2 (- Daf(z +a) = Daf()).
When p > 3, there is no reason why N¢(a,b) < 2.

~+ We construct modified definition, which is a generalization of APN.

Definition (

f:F — Fis a generalized almost perfect nonlinear (GAPN) function if
ﬁrf(a,b) =i {:I: eF ’ D,f(z):= ZaeF,, f(z +ia) = b} <p
foranya€ F* and b € F.

@ When p = 2, GAPN functions coincide with APN functions.
e Note that D, f(z + ia) = D, f(z) for Vi € Fp. Hence
f : GAPN <= ﬂ-‘i;(\u. b)=0orpfor'ac F*,"beF.

Today's topic
The classification of monomial GAPN functions.

~» We obtain a partial classification of monomial GAPN functions.

Monomial GAPN functions February 2018 6 /24
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Table 1 gives a complete list (up to CCZ-equivalence) of known monomial

APN functions.

Table 1. Known monomial APN functions f(z) = x% on Fon

| | Exponents d | Conditions | Year |
Gold function 2'+1 ged(i,n) =1 | 1968, 93
Kasami function 2% — 2 +1 ged(i,n) =1 | 1971, 93
Welch function 2t +3 n=2t+1 1999
Niho function 9t + 23 — 1, ¢ : even n=2t+1 1999
2t+23_t5"-_1—1,t:0dd n=2t+1
Inverse function 2" — 2 n is odd 1993
Dobbertin function | 2% 4 23t 422t 4 2t _ ] n = 5t 1999

@ |t is sometimes believed that this list is complete.
@ We give generalizations of Gold, Welch and inverse functions.

M. Kuroda Monomial GAPN functions February 2018

© Notations (algebraic degree and p-exceptional exponent)

Monomial GAPN functions February 2018
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algebraic degree and p-exceptional exponent

Let p>2, F =Fyn and let fy: F — F, fa(z) = 2% with d < p".
Definition ( )

d°(fq) := the total degree of the multivariable function f; on the
n-dimensional vector space F' over I,

n—1 n—1
= wy(d) (;: Z ds) , where Z dsp® is the p-adic expansion of d.

s=0 s=0

SEIPIES

wg (2° + 1) = 2 (Gold functions), wy (2t + 3) =3 (Welch functions),
we (2" —2) =wa (2+ 22+ .-+ 2" 1) =n — 1 (Inverse function).

|

Propositions (K and Tsujie)

(1) Clearly, d°(fs) < n(p—1) (sincep" —1=(p—1)(1+p+---+p"1)).
(2) If d°(fa) < p, then f4 is not GAPN function on F'.

(3) When p > 3, if d°(fq) is even, then f; is not GAPN function on F.

ettt re——————————————————— e ———
M. Kuroda Monomial GAPN functions February 2018 9/24

algebraic degree and p-exceptional exponent

When p > 3, we may assume that
d°(fq) isodd and p < d°(fy) <n(p—1) — 1.
We will give all monomial GAPN functions f; with d°(fs) =p orn(p—1) — 1.

Definition (

The exponent d is p-exceptional if fg(z) = z% is GAPN function on
infinitely many extension fields of IFp,.

@ 2-exceptional exponents are so-called exceptional exponents.

@ The following Theorem was conjectured by Dillon and was proved by
Hernando and McGuire:

Theorem (Hernando and McGuire, 2011)

The only 2-exceptional exponents are Gold numbers (d = 2° + 1) and
Kasami numbers (d = 27 — 2" + 1).

We will give a conjecture for 3-exceptional exponents.

Monomial GAPN functions February 2018 10 / 24
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© A partial classification of monomial GAPN functions

M. Kuroda Monomial GAPN functions February 2018 11 / 24

Monomial GAPN functions f; on F' with d°(f;) = p

We may assume that

d=14p2 4 +p% with 0< iy < -+ < i, (ig,...,0p) 7 (0,...,0).

Theorem (K)

fa is @ GAPN function on F' (= Fpn)
= {BeF,|1+p2+ -+ =0}n{yeF, 1" =1}={1}

Proof : ﬁafd(a:) = Z (x +’ia)d = q? Z (:—;— + i)d =a%D, f, (g) and

iy i€k, -1
0d(X) == —D1fa(X) =X + XP* + .- + XP" =) " a, X"
s=0

In particular, g : F — F'is an [-linear.
Assume that 3z¢ € F s.t. D,fy(xg) = b. Then
Zo

}Vfd(a,b):#{x€F|ﬁafd(:B):b} Z#{weFltpd (g) = pd (E)}
=#{m€F|god (iL‘—.’Eo) =0} = #Ker (¢4 : F — F).

Monomial GAPN functions February 2018 12 / 24
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Monomial GAPN functions f; on F' with d°(f;) = p

Therefore, f4: GAPNon F <= #Ker(pq: F - F)=p
<= dimp, Im (pg: F -+ F)=n-1

n—1
Then the matrix representation of p4(X) = Z asXP w.r.t. {b, b, ..., bpn_l}

s=0

ap Qp-1 - @ J s e |

a; g e Qi and its eigenvalues are

is . . v . ' 1+712+"‘+'}’3PWith’}’n:
' ’ ' (=fg= 1)
Op—1 CQp—3 '+ Qo

Therefore, f4 : GAPN on F (= Fpn)
= {BeF,|1+p2+ -+ pr=0}n{yeF, |y =1} = {1}

Corollary (K)

(i) For ¥d with wy(d) =p, 7n € N s.it. fsis a GAPN function on Fn.

(i) There are infinitely many such n's in (i).

In particular, any exponent d with wy(d) = p is p-exceptional.

M. Kuroda Monomial GAPN functions February 2018 13 / 24

Monomial GAPN functions f; on F' with d°(f;) = p

In particular, when d =p’ +p — 1 (i.e., doa =+ =ip_1 =0, i :=ip > 0),
fa : GAPN function on F <= {B€F, | =1and f" =1} = {1}

=+ ped(i, n)= 1
We called them generalized Gold functions. When p = 2, they are Gold functions.

Example (a generalization of

n—1 :
¢ == (nis odd),
letd=p"+p+1,t= { B (s even). Then

fa is a GAPN function on F;» <= p =2 and n is odd, or p = 3.

@ When p =2 and n is odd, fg is a Welch function.
e When p > 5, f; is not GAPN, since d°(f;) = 3 < p.
@ When p = 3, we can check easily that

{BeFs; | =-(1+B)}n{yeFs|y" =1} ={1}.

Monomial GAPN functions February 2018 14 / 24
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Monomial GAPN functions f; on F/(= F,) with d°(f;) =n(p—1) —1

The inverse function on F' is defined by fyrn_o(z) = 2P" 2. Then
pt—2=p"-1-1=(p-1)(1+p+---+p~ 1) -1
Hence d°(fg) = (n—1)(p—1)+p—2=n(p—1) — 1.

Theorem (K and Tsujie)

When p > 3, the inverse function f,»_2 on F'is a GAPN function.
Note that when p = 2, the inverse function is APN if » is odd.

Proof: Assume that 7z € F s.t. >icF, (o + ia)~t =b.
Then the equation has p solutions zo + ja (j € Fp).
2o & Fpa = b[[;cr, (z0 +ia) = 7g(z0) with degg < p
= b # 0 and the number of solutions outside F,a is exactly p.
zo € Fpa = b= Eier(z'a)_l = gt e,

In any case, {a: &l ‘ > icF, (Z + ia)"1! = b} = zo + Fpa.

M. Kuroda Monomial GAPN functions February 2018 15 / 24

Monomial GAPN functions f; on F/(= F,») with d°(fq) = n(p—1) —1

Since wy(d) =n(p—1) — 1, for some 0 < j < n — 1, we have
d=@p-1)(1+p+---+p* 1) —p/ (=p"-p -1).
Let Fb;(x) := 27"’ (: a Frobenius isomorphism). Then we have
-3 n_pj_l ny p"—Jd n—j _pj n—j =1
(fdoFbJ) (.’I;) = (:I?p 3)10 = (:Bp )p ’ . (pr J) * (:I?p J)

’ wxae]
n—3 _5 =3
=P gL (:Bp )

S L
=gl =P 2,
Therefore

fda is GAPN on F' <= the inverse function fy»_ on F'is GAPN.

Any monomial function f; on F with d°(f;) =n(p—1) — 1 is GAPN. i

Monomial GAPN functions

February 2018 16 / 24
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The other monomial GAPN functions on F

Assume that p = 3.
@ When n € {1, 2,3}, there are no monomial GAPN functions f; on
F3n with 3 < d°(fq) < 2n — 1, clearly.
@ When n = 5, we have the following Table:
Table 2. monomial GAPN functions f; on F3s with d°(f;) =5 or 7

| d°(fa) | Exponents d
5 23, 35, 49, 73, 97, 113, 137, 169, 173, 199
7 79, 107, 197, 227

@ When n € {4,6,7,8}, there are no monomial GAPN functions f; on
Fsn with 3 < d°(f4) < 2n — 1, by simple computations.

For sufficiently large n, there are no monomial GAPN functions f; on Fan
with 3 < d°(fg) < 2n — 1.
In particular, the only 3-exceptional exponents are given by

d=1+3+3 (0<i<j, (i) #(0,0)).

M. Kuroda Monomial GAPN functions February 2018

@ Geometric Characterization of GAPN functions
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Let p>2, F =Fyn and let f4: F — F, fa(z) = 2¢ with d < p™.
Recall that f; is GAPN on F
> # {:c €F ’ Dofa(z) = Dier, (@ + ia)? = b} <pforYaec F*,VbeF.
Definition
¢a(2,Y, 2) == Dy—zfa(x) — Dy—sfa(2)

= Z ((sm —2)) = (z+i(y - 2))?) € Flz,p, 7,

icF,

¢d(m Y,z ) s
P ) G e, e~ et a2

X :=V(q) C A® = Spec (Fpz,y,2]),
X := the projective closure of X in P* = Proj ( Fplz,y, z,t]),
Hes :=V{(t) = P? = Proj ( p[a:,y,z]).

~> Xos = X NHss = V(hg) CP? and X = X U Xos.

Proposition (K)
The following are equivalent:
(i) fais a GAPN function on F(= Fpn).

(i) There are no triples (z,y,2) € F? with z # y and z & v + Fp(y — x)
s.t. ¢a(z,y,2) =0.

(iii) The affine surface X = V/(34) C A3 has all its F-rational points

J€Fp

contained in the surface V' | (z — y) H (z—(z+7(y— :c)))) :

Sketch of proof: Since ¢4(x,y,2z) = Dy_z fa(x) — Dy—zfa(2),
3(z,y,2) € F3 with 2 # y and ze’a:+IF (y —z) s.t. ¢q(z,y,2) =0
< the equation Dy_, f4(w) = D,_,f4(2) has at least p + 1 solutions:

— 2 +i(y—) (i € Fy) and 2 (¢ 2+ Fy(y — 2)).
<= f4is not GAPN function on F.

Vienomial GAPN functions
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Lemma (K)

Assume that
(i) X has an absolutely irreducible component Y of degree d’' > 2.
(ii) fais @ GAPN function on F' (= Fpn).

Then #Y(F) < (p+2) (d'p" + 1).

Sketch of proof:
Let H = Heg, V(o —y) or V(z — (w+j(y —2))) (j € Fy)
By (i), Y N H is a curve of degree d'.
~ Y N H has at most d'p" + 1 rational points (by Serre).

By (i) and the above Proposition, Y (C X = X U X)) has all its rational
points contained in

Heo, V(@ —9), V(z— (@ + iy —2)) (G €Fy).
Therefore we obtain #Y (F) < (p+2) (d'p" + 1).

M. Kuroda Monomial GAPN functions February 2018 21 /24

Assume that X = V(1)4) has an absolutely irreducible component of
degree at least 2. Then f; is not GAPN on [Fj» for sufficiently large n.

Sketch of proof: Let g = p".
Let Y be the absolutely irreducible component of degree d’ > 2.
By the Lang-Weil inequality, we have
[#Y(F) — (@ +q+1)| < (d - 1)(d —2)g2 + 18(d’ +3)%q.
In particular, we have

M:=q¢+q+1—(d —1)(d —2)q2 — 18(d + 3)*q < £V (F).
Assume that f; is a GAPN function. Then by the above Lemma, we have
#Y(F) < (p+2)(d'q+1).

For sufficiently large n, we have (p + 2)(d'q + 1) < M, which is absurd.
Therefore f; is not a GAPN function on F for sufficiently large n.

Monomial GAPN functions February 2018 22 [ 24
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Monomial functions f; with d°(f;) > p

Recall that X = V(y4) C A® = Spec (Fp[z,y, 2]),
X = the projective closure of X in P? = Proj (F,[z,y, 2,1]),
Hoo = V(t) = P? = Proj (Fplz, 9, 4])-

v Xoo =X NHeo = V(1hg) CP? and X = X U Xoo.

Conjecture 2

When p = 3, for any exponents d with d°(fg) > 3, the curve X, = V(2)q)
(C P2) has an absolutely irreducible component of degree at least 2.

Clearly, we have that

Conjecture 2 = Conjecture 1.

Conjecture 1

When p = 3, for sufficiently large n, there are no monomial GAPN functions fy
on F3» with 3 < d°(f4) < 2n — 1. In particular, the only 3-exceptional exponents
aregivenby d=1+3'+3" (0<i<j, (i,7)#(0,0)).

M. Kuroda Monomial GAPN functions February 2018 23 /24

When p = 2

The following conjecture was proved by Hernando and McGuire (2011):

When p = 2, the curve Xoo = V(194) (C P?) has an absolutely irreducible
component of degree at least 2 for all d not of the form 2! + 1 (Gold) or
22t — 2t 4+ 1 (Kasami).

By the above theorem, it is clear that

Theorem (Hernando and McGuire, 2011)

The only 2-exceptional exponents are Gold numbers (2¢ + 1) and Kasami
numbers (2% — 2! 4 1).

Monomial GAPN functions February 2018 24 [ 24
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Hokkaido University
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A joint work with K.Nuida(AIST/JST PRESTO) and
M.Shirase(Future University Hakodate)
2. 6. 2018
Workshop on analysis of mathematical cryptography
via algebraic methods

«a0Or 4aMr «Ep 4« B = o>

@ Present a new factoring algorithm
~+ A combination of the Elliptic Curve Method and the Complex
Multiplication Method

e Input date : a discriminant —D € 7Z and its class polynomial
H-p(X)

e Works in polynomial time for composites having a prime factor
of the special form:

e 4p=1+ Dv?(v € Z)
e 4p=1t2>+ Dv?(vE€Z)and p+1—tisasmooth integer
@ Give an introductory explanation of key tools

e The elliptic curves and the Elliptic Curve Method (ECM)
e The Complex Multiplication Method (CM method)

«0Or 4Fr «EFr 4« B B Q>
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@ Elliptic curves and ECM
@ Elliptic curves and CM method
© Algorithm

e Setting
e Construction

«O» 4Fr «Er «EBE» EF O
. @ 999
@ 7 : the ring of integers
e Z/nZ:={01, --,n—1}

o F, :=7Z/pZ : the finite field of order p
@ Q : the field of rational numbers

@ C : the field of complex numbers
e For f(X) € Z[X], f(X), := f(X) mod n € Z/nZ[X]
@ —D : adiscriminant i.e. a negative integer satisfying:

e D =3 mod 4 and square-free, or
e D =4m with m=1 or 2 mod 4 and m is square-free

~ Assume that D # 3,4

«0Or 4Fr «EFr 4« B B Q>
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Let K be a field with chK # 2, 3.
An elliptic curves over K is an algebraic curves defined by the
so-called Weierstrass equation:

E:Y=XLAX 4 B (A,B € Kand 4A® 1.21B*+#0).
Define the set of rational points of E on a field K:
E(K) == {(x,y) € K x K|ly? =x*>+ Ax+ B} U {o0}
where co = [0: 1: 0] € P2,

~+ E(K) carries a group structure with a unit co (the Mordell-Weil
group of E).

For Py = (x1,y1), P> = (%2, y») with x; # x; and Py, P, # oo, define
P; := Py + Py = (x3, y3) as follows:

= 2
o= (B22) -

X2 — X1

- (}’2 —Nn

X1 —X3) — ¥1.
X — Xl)( 1—X3) = n
In the context of cryptography, the scalar multiplication

n

nP=P+P+...+P

is important.
~ Division polynomials.
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For Y2 = X3 + AX + B, define division polynomials 1,

o = 0
P =1
Py = 2Y

Y3 = 3X*+6AX%+ 12BX — A?
Ye = 4Y(X®+5AX* +20BX3 —5A°X? — 4ABX — 8B? — A%)
Vomil = Pmi2Viy — Ym-1¥ipy (M > 2)

Yim = T miaocs — Ymats) (2 3)

Moreover, define by using the division polynomials v,

O = X?Z),zn — VUm41¥m-1
1
by = W(¢m+2¢r2n—1 = Ym-2Vmi1)

« D0 iy «Ep»r 4« BE» = o>

Let E: Y2 = X3+ AX + B be an elliptic curve.
For

@ P=(x,y): apoint on E,

@ n : a positive integer,
we have

- Pn(X, ) wa(X, y)
P = (e 1 ooV

nP = 0o € E(K) <= tn(x,y) =0€ K
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N € Z is C-smooth if all of the prime factors of N are < C.

e G : agroup

e geG

@ n : a positive integer
Then

#Gln=g"=1

Attempt to factor a positive integer N = pq
Suppose that p — 1 is C-smooth ~» p — 1|C!
Therefore, for a € Z/NZ, we have

aC!:IGIF:j

by key-prop for G =F (#F; = p—1).

@ Choose some bound C

@ Choose a € Z/NZ

@ Compute a¢' € Z/NZ

@ Compute g.c.d(a® — 1, N)
e If it is nontrivial divisor of N, we are done.
e If not, start over with a new choice of C.
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@ p: aprime
@ E : an elliptic curve over [,

p+1—2/p<#E(F,) <p+1+2,p

Table: p =11
| #E(Fy) | 6|7] 8| 9 |10]11]12|13|14|15]|16|17 |18
| [5[/5[10[10[10[ 5 |20 5 |10[10[10] 5 | 5

@ N = pg : a composite
e (a,x,y) € Z/NZ*3
e b:=y>—x®—ax € Z/NZ
E:Y*=X}+aX+b, P=(x,y) € E(Z/NZ) = E(F,) x E(F,)

Take scalar multiplication,

i G
kP = (?’ ﬁ)
If 2 does not exist in Z/NZ,

kP = oo € E(F,) ( or kP = oo € E(F,)).

Hence,

g.c.d(N,d)

returns a non-trivial divisor of N. in Al e AR B SR
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@ Generate a family of pairs {(E;, P;)}; over Z/NZ
@ Choose some bound C

© Compute (C!)P; = | %1;5?', 20
Q Take g.c.d(N,d;)

e If it is non-trivial divisor of N, we are done.
o If not, start over with a new choice C or a new family {(E;, P;)}.

Generate an elliptic curve with “good” order over I, intentionally in
some way

@ N : a composite with a prime factor p
@ E : an elliptic curve with P € E(F,) and #E(F,) = p
Then, NP = o € E(F,).

Therefore, the g.c.d of N and the denominator of NP return a
non-trivial factor of N.

@ No need to repeat generate pairs (E;, P;) and compute kP;
@ No need to choice an integer k for scalar multiplication
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e £, E; : elliptic curves over a field K

@ K : the algebraic closure of K
@ An isogeny between E; and E; is a group homomorphism
Ei(K) — E(K)

which is given by a rational function.

@ E; and E; are isomorphic over L if there is an invertible isogeny
which is given by rational functions with coefficients in L, where
L denotes a field containing K, i.e. K C L C K.
~ Write E]_ gj_ E2.

@ If E; = E,, the isogeny is called an endomorphism.
Set Endg(E) := {endomorphisms of E}

For an elliptic curve over K:
E:Y>=X>+AX+B

define j-invariant jg € K as follows :

443
b IO
JE Sam 1 07Be

Over an algebraically closed field K (e.g. C),

EL =2k B & jg =Js

Twist(E/K):=
{ isomorphism classes of elliptic curves over K with j-invariant jg}
e # Twist(E/C) =1
e # Twist(E/F,)=2 if je # 0,1728 <o i@ B By B QG
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For jo # 0,1728 € K,

3 2
Jo X+ -JO

. y2 _ y3
Bo: Y X+1728—j0 1728 — j,

has j-invariant j.
Over F,, for ¢ € IF, quadratic non-residue,
3C2j0 2C3j0
ES: YV =X+ ——— X+ o
2 18— o 1128 —jo

has same j-invariant as Ej;, but not isomorphic to Ej;; over [F,.

The endomorphisms [n] : E(K) — E(K) ; P+ nP yield
Z — End(E); n+— [n]

@ —D : a discriminant

e Q(v=D) :={a++—Dbe Cla,be Q} : an imaginary
quadratic field

o O_p:=7Z[2E/=DL] : the maximal order of Q(v/~D)

Let E be an elliptic curve over C. Then, End¢(E) is isomorphic to ;
e Z or,
@ an order of some imaginaly quadratic field Q(v/—D).

E has complex multiplication (CM) if End(E) # Z.
« Ende(E) = O_p
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Set Ellc(—D) = {[E]/C | End(E) =~ O_p}.

Ellc(—D) is a finite set.

Write Elle(—D) = {[&], [E], - -+ . [Eal} ~ {U&rsJEr -+ 1JE ) CC
Define the class polynomial of —D as following:
h

Hoo(T) = [[(T - Je)-

=1

~ H_p(T) € Z[T] ~ H_p(T), € Fp[T]

If p does not divide D, the following are equivalent:
@ 4p = t? + Dv? has a solution in Z
@ H_p(T), splits completely in F,[T]

@ —D : a discriminant

® 4p = t? + Dv? : a prime of special form

® jo: arootof H p(T), inF,

@ Ej, : an elliptic curve over [F, with j-invariant jy

Write #E;,(F,) = p+ 1 — a with |a| < 2,/p.
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Generate a family of pairs {(E;, P;)} and compute kP;.
~ Take g.c.d of a composite and the denominator of kP;.
Good Points:

@ We have a rational point.
@ Process of leading a prime factor of N is trivial.
Drawbacks:
@ Not necessarily generates an elliptic curve having smooth order.
@ How do we choose the value k7

—D : a discriminant with the class polynomial H_p(T)
N : a composite having a prime factor 4p = 1 + v2D
Attempt to factor N

@ Generate E with #E(F,) = p by using CM method

© Generate a rational point P of E by extending the coefficient
ring

© Compute NP

@ Construct a system of reduction NP to integers

In SCIS2017, M. Shirase constructs for a discriminant with

deg H p(T) <2, i.e.

|D| € {3,11,19, 35, 43,51, 67,91, 115,123, 163, 187, 235, 267, 403, 427}
~ In present study, delete the condition on the degree of H_p(T).

«<O» <> «Er» «B» E HAG

—125-



First, construct an elliptic curve with good order by CM method.
@ —D : adiscriminant
@ H_p(Ty) : the class polynomial € Z[T]

o p= 1+D" . a prime
® jo: a root of H.p(T1), € F,
o N=pq

@ c € Z/NZ : a random element
We define a ring and its elements:

Ry® = Z/NZ[T1]/(H-on(T1))
3¢2T; 23T,

AP = —_
v (Th) 1798 = T, 1728 — T,

By"(Ty) = € RyP

These lead an elliptic curve over R,GD with j-invariant Ti:

0 Y2 = X0+ APE(T)X + B“(T).

Via the natural morphisms
-D -D
Ry™ — Ry — Fy,

where the second arrow is induced by T; — Jo,
we consider E~P¢ as the elliptic curve over I, :

EZ20 0 Y2 = X3+ AZP%(jo) X + B, 2% (jo).

=Jo

Then

The CM method yields

HETD(F,)=por p+2.

Ti=Jo
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Second, generate a rational point of E~P: artificially.
® xo € Z/NZ : a random element
o 7(T1) = +AD(T)x + B~ D¢(T1) € RyP
Set

Se*T = RYPITITE = 7(Th)
= Z/NZ|Ty, To]/(H-pn(T1), T — 7(T2))

Then
P = s Ti) e E- PRSP

Take scalar multiplication by N:

dn(x0, T2)  wn(xo, T2)

P = ( ) € E-De(5 DTy,

le(Xo, Tz)z, ¢N(x{)1 T2)3

Need to reduce the polynomial d( Ty, T3) := ¥)n(xo, T2) to an integer.
~~ Suppose that 7(jo) € F, is a square, i.e. 0% = 7(jo) for o € F,,

— S0 L F,; Ty o, a0,

= E~Pe(syPT) 5 EZPE(F,) 5 NP = oo,
— d(jo,O') =0¢ ]Fp.

However, we need to compute the values jy and o.

«0Or 4Fr «EFr 4« B B Q>
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@ Previous Rsearch:

e M. Shirase, Factorization of Composite Numbers Having a
Prime Factor of Special Form with Elliptic Curve Il, SCIS2017.

e M. Shirase, Condition on composite numbers easily factored
with elliptic curve method, ePrint, 2017/403.

Let degH_p(T1) = 2.
Write H_p(Ty) = T2 + tT; +s.
For any

F(Ti, To) ={as + aTy) + (@ + Ty T € 5, 0,
define by, by € Z/NZ as follows:

bo + b T7 = (&0 + a1 T1)2 = (32 + az T1)2T( Tl)

Define a map
F:Sy°™ M) L ZINZ ; £(T1, To) = B + b2s — bobyt € Z/NZ.

~» Computable without jy and o.

For F(Ty T2) € 5,09,
fljo,7) =0 € Fp = F(f(Ty, Ta))

Recall that, for NP = (ﬁg“’”) d( Ty, Tz) := ¥n(x0, T2),
we have d(jo,0) = 0.
Proposition implies that

g.c.d(N,F(d(Ty, T2)))

—0cF,

is a non-trivial divisor of N. o 4B < Br < B> B OAG
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Let
@ H_p(Ty) : the class polynomial of any degree

o (T, To) = go(T1) + &u(T1) T € S, 7™
where deg g;(T1) < deg H_p(Ty) (i =0,1)

In the case deg H_p(T;) = 2,

F(f(T1, T2)) = Res(H_p(T1), 80(T1)* — &1(T1)7(Th))-

Recall that, for NP = (%%, ;N) e E-De(s, 0Ty

put d( Ty, T2) = ¥n(xo, T2)-
Write d( -r]_;| T2) — hg(T]_) + hl(Tl)Tz.

If

o #E-25(F,) = p,
e 7(jo) € F, : a square,
then

g.c.d(N,Res(H_p(T1), ho(T1)? — hi(T1)?7(T1))) # L.
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ET]_?-;; (FP) = P!
e 7(jo) € F, : a square,

then

ng(N, RGS(H_D( Tl.), ho_(T]_)2 = hl(TI)Q’T(T]_))) 7é 1

Proof.

Second assumption yields the morphism
— B Ty = Jo = T2—>a
By first assumption NP = oo € E;I
Ie. d(Jo, ) - ho(_[o) + h]_(_jo)(f -

S‘-“D T(Tl)

_Jo(]Fp) hence d(jo,0) =0 € Fp,

Hence,

; ho(Jo)
— 02 = eF,.
Recall that jp is a root of H_p(T;) in IE‘p.
~+ H_p(Ty) and ho(T1)? — hi(T1)?7(T;) have a common root in I, .

In conclusion, obtain

Res(H-p(T1), ho(T1)* — hi(T1)*7(T1)) = 0 mod p

and finish the proof.
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Algorithm 1

Input : a composite N with a prime factor 4p = 1 + Dv?,
a discriminant —D, the class polynomial H_p(T;)
Output : Non-trivial divisor of N

@ Construct Ry"

@ Choose random ¢ € Z/NZ

© Construct the elliptic curve E~P¢ as above

@ Choose random x; € Z/NZ and define 7(T;) € Ry”

@ Construct S,;D’T(Tl) and take P = (xo, T») € E‘D'C(SQD’T(T‘))
© Compute NP

@ Compute g.c.d(N,Res(H_p(T1), ho(T1)? — hi(T1)?7(T1)))

e If it is non-trivial divisor of N, we are done.
o If not, start over with a new choice of ¢ or/and xp.

Yusuke AIKAWA

Algorithm 2

Input : a composite N with a prime factor 4p = t2 + Dv?,
some bound C, a discriminant —D, the class polynomial H_p(T;)
Output : Non-trivial divisor of N

@ Construct Ry"

@ Choose random ¢ € Z/NZ

© Construct the elliptic curve E~P as above.

@ Choose random xy € Z/NZ and define 7(T;) € Ry"

@ Construct S,;D’T(Tl) and take P = (xo, T») € E‘D'C(SQD’T(T‘))
@ Compute (C!)P

@ Compute g.c.d(N,Res(H_p(T1), ho(T1)? — hi(T1)?7(T1)))

e If it is non-trivial divisor of N, we are done.
e If not, start over with a new choice of ¢ or/and xp.

Yusuke AIKAWA
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@ —D =-23degH p(T)=3
4p = 4 x 570942088504121 = 12101342 + D x 99614562
p+1—t=570942087293988 | 2000!
q = 883478470161233
N = p x q = 504415042902280115530654941193
@ —D=-56,degH_p(T) =4
4p = 4 x 804161 = 4502 + D x 2322
p+1—450=2>x3x7x13x23
N = p x q = 488391904291
e —D=-131,degH_p(T)=5
4p =1+ D x 139116657084339? (case t = 1)
q = 868610670601296908562434196197

N = p x q = 550547418976985666816226779885030
828558826986967578267955611

«0Or 4Fr «EFr 4« B B Q>

@ Experiment
@ Theoretical estimate
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A modification of the discrete Fourier transform for the code

defined by Garcia-Stichtenoth tower

Norihiro Nakashima
(Tokyo Denki University)

work with Hajime Matsui

Workshop on analysis of mathematical cryptography via
algebraic methods

2018.2.6

Morihiro Nakashima A modification of the DFT

Error correcting codes
Recover the original information 1. \

(transmitter) — encoder — channel
information ¢ coding ¢ + error e
— decoder 5
remove e { ore¢

e In an encoder, the original information is changed to
a recoverable codeword.

e Errors occur in a noisy channel, and the codeword is
changed to r = c +e.

e Errors are removed in a decoder.

Morihiro Nakashima A modification of the DFT
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a decoder via the syndrome

e ¢ is a prime power.
e [F, is a finite field of ¢ elements.
e (G is a k x n matrix whose entries are in F,,.

8§ = {z’G | i = (1,...,0) € (]Fq)k} is a linear code.
h
o Ct=Sh=|:]|€(F)"|Gh=0 is a dual code of C.
P
Then dim C+ =n — k.
e There is an n x (n — k) matrix H such that GH = 0.

Example (¢ = 2)

1
o= (20 D). -,

0 1 1

a decoder via the syndrome

Encoding

Input. An information
Output. A codeword ¢ = iGG

Decoding

Input. A received word r =c+ e
Output. A codeword ¢
Step 1. Calculate a syndrome s =7rH = (c+e)H = eH.

Step 2. Extend s to § = ¢H, where H = (H|*) is a regular
matrix.

Step 3. c=r—e=r—H13,

Aim

Reduce the computational complexity of Step 3. for the
codes defined by Garcia-Stichtenoth tower.




Discrete Fourier transform

o (F,)" = {(v),eq | vw € F,} for a finite set Q.
e [1] ={0,1,...,i} for a positive integer i.
e Denote 0° = 1.

For W C Fy* and B C [q — 1]™, we define

F :IE*“I’—HFB,( ) . b
U.B - Tgq g \% pew Zcﬁ

Yev beB

We call Fy p a discrete Fourier transform (DFT).

.

Morihiro Nakashima A modification of the DFT

Discrete Fourier transform

Example (m = 1)
U = {91, ¢9, 3} CFy, B={0,1,2} C[9—1]

fllJ,B (Ci,bl: Cipa s c@'i‘:s)

— (Z CT;,-U')U, Z th;i’l1 Z (:1;;@’;2)
el Ppew PYeW

(0 0 0 . 1 1 1
= (Cp Y1 + C¥n + Cys¥3s Cpu W1 + Cyata + Cyats,

.
Cp 1 + ¥t + cys¥3)

1 ’@5‘1 qff f
s 5 /2
- (Ci;f)l » Caa sy C%"x':a) Ly 1!)‘%

il 'Uf,’3 ?j;

A modification of the DFT

Morihiro Nakashima
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Discrete Fourier transform

Example (m = 1)
Fo = Fa[z]/(a* + 2z - 1), a =7, ¥ = {0,0?,a°}, B ={0,1,2}

]:‘IJ,B (CUH. Ca2, Crxﬁ)

= E c_u;.q,-:“)o, E (:ﬂ_,t.bl, E (:.,;,.*t,f’)z

YEV YET vew
= (co0° + ca2(a?)? + c46(a®)?, 00" + ca2(a?)! + cus(a®)’,
c00® + ca2(a?)? + cus(a®)?)
1 0 0

- (CU: Ca2, Ca“) 1 o? X

a
1 o o

Morihiro Nakashima A modification of the DFT

Garcia—Stichtenoth tower

We assume that ¢, is a prime power and ¢ = ¢3.

Theorem (Garcia and Stichtenoth)

The sequences of curves

3'533-1 + Ziy1 = ygﬂﬂa where yo = 1, y; = (= 1), (1)
Yi—1
o *
q0 iy ek
Tip1 T Tit1 = 201 ] (¢ = 1). (2)

1

attain the Drinfeld-Vladut bound, i.e.,

. N
.hm — = do — 1?
1—00 gz
where N; is the number of rational points of ith curve and g; is the
genus of ith curve.

Morihiro Nakashima A modification of the DFT
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Codes defined by the Garcia—Stichtenoth tower

In the rest of this talk, let
U= {¢y € (F)"|v8, + i1 = yPT () for 1 <i<m—1}}.
Definition

For a positive integer [,
B={b=(b1,...,bn) €[qg—2]"|> ", oz;)b; <1}, where o(x;) is

the pole order of x;. Then
- v =
C(B,\IJ) — {(Cﬂ)ietIJ i Fq .FII(’B ((Cﬂ)ﬂeq}) = 0}

is an algebraic geometric code defined by the Garcia—Stichtenoth
tower.

Codes defined by the Garcia—Stichtenoth tower

Fact
It is known that a decoding algorithm via the
Berlekamp—Massey—Sakata algorithm and the discrete
Fourier transform can be applied to C(B, V).

If the number ¢ of error entries satisfies

Ni—k—gi+1 _ (Ni/gi) — (k/gi)) —1+ (1/g:)

t < "
= 5 9 2

then the decoding algorithm computes error word
correctly, where k is the dimension of the dual code of

C(B, D).




Calculation of DFTs

e Vi={YelF, |y +¢=1}
Then |Vi| = q.

Example

Fo = F3[z]/(2® + 2z - 1), a =T.
Vi = {a* a® a’}.

(FQ)X:wQP" :d)‘m e V-l}

v-{(wngen)],

Morihiro Nakashima A modification of the DFT

Calculation of DFTs

-

40 ¥ _ Frr R
C’ﬁ.+1 + Zit1 = Y; Yo =1, yi= 1-i/y-£—1]

qo+1

Example (m = 3,q, = 3)
¥ = (1, Yat)l, Y339t) € U for ¢y € Fy, 93,73 € V1. Indeed

(t/)gtf)il)'g + oty

=ahy + Yot = (%3 + Ya)¥i = U}
:(@/’1/90)4 = y1("#_5)4=

(W31591)* + Yahae)y
=3yt + Ysayy = (Y3 + )Pt = Yoihi
=athi? = Yah® /1 = (2(¥) /1 (¥))*.

Morihiro Nakashima A modification of the DFT
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Calculation of DFTs

We may consider that ¥ is F x V/""! as index sets.

Example (m = 2)

Fo = F3[z]/(z2 + 2z — 1), a =T.

1 a a?2a®atababa’
1 L] L] L ]
a |o|e [
a? oo @
(),'3 L] L] L]
a4 L ] L ] L ]
5
(' L ] L ] L ]
b
L] L] L ]
Ot? [ ] [ ] L ]

e Points are elements in
|\

o U] =qrt! =21.

A modification of the DFT

1 m

1 v
e My=|_

1 Ufi‘u

, where Vi = {vy,vs,...,04}-

qo—1
’qu

e For ¢ € FX \ {1}, we define
A"[u} = A’Ildl&g (1, ?f)(q“'i_l)'l.l — ‘@(qo-l-l)‘(qo—l)).

e The inverse matrix of M, is obtained by
f\/fw_l = diag (1, 1?{)(—00—1).1? o ,1’/)(_?0—1)'(90—1)) A[l_l

Morihiro Nakashima

A modification of the DFT
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Calculation of DFTs

ﬂ/jw = ﬂ/jldlag (1; /q.l')(f."(}—l*l)'l: o ,'$(qo+1)'(QfJ“1))_J

Example

Fo = F3[z]/(2* + 2 - 1), a=7. V1 = {o*,0°,a"}.
/1 o
1 «
\1 o
Mo=[1 o> @*] |0 o 0] =|1 a o

7 0 " y .

\1 « ():6)

M, =

Calculation of DFTs

{A’Lﬁ.‘ = M,diag (1: ’(;’)(‘?“H)"__I_ . ’L,")(Q{}‘f‘])'(qg—])).}

Example

Fo = F3z]/(2® + = —

1), =% V= {a* o’ a '}k

10

My =M |0 1 0 = M.
00 1
L 00

A{[a:j = AIl 0 C\f 0 — '/a-
0 0 1

My =M, =Mus=My, My, = M,s = M,s = M7




Calculation of DFTs

[q - 2] [QU - Q]m I and Ppi= (FX 1/L l) [QU _ Q]m i for
7 E {1 ,Tn,}

Leti € {2,...,m}. We define F;: Fli — Fy'~" by
Fi ((Cg,w,g)g,w,gem) = (h@_,a,g)g,a,gem_lr where 1 = Hi-_:ll Yy, and

(hﬂtasg)ae[qU—Q] — (Cysw!g)wevl Mtu'

for € FX x V2l a€ gy —2i

The inverse map is obtained by

(C'uf:,z‘.*')Tg)i,-")‘EV = (]-LE.(L‘Q)GE[qo—l]Ajgl

for 1,5) e, x Vf_l, a€ [qo - Q]m_("'.

Calculation of DFTs

1 a e (o:)q_2
M=, . . , Where F; = ().

: q-—Q . q—;Z q—2
1 « (ad7%)

We define .Fl : F;\l =7 F’;O by JF1 ((Cip‘g)y,,_qej\l) — (ha,_q)a,ge.'\g: where

(Raa)aelg—2) = (Cw)wewg M

for a € [go — 2]™!

The inverse map F; ' : F} — F2' is obtained by

((-f'tﬁ,g)-;-i‘eiﬁ‘;‘ = (ha,g)ae[q_g] M

for a € [qo - 2]"'” 5




Calculation of DFTs

Definition

F=Fio-0Fy:Fin 5 Fh

F is identified with Fy [;_gx[4—2m-1 as follows.

Theorem (N., Matsui)

2% g0 -2

For (cy)yew € Fi~ , we have

a€lg—2]x[go—2]™m~1

Morihiro Nakashima A modification of the DFT

Calculation of DFTs

Example (m = 2)

Fo = Fs[z]/(z2 + 2 — 1), a ==. V; = {a*,a®,a"}.
My = Mz = Mys = Moo, My = Mys = Mys = M,z

Fa
";{(‘-"‘l")’ i‘(“*’-“’}) E“-“Z’ Multiplying M, M, M,, M,,
A LT M, M, M, M, to all rows
Craziy | Ciamiay | Crasany ] € IF;IJ from right.
Clat,af) | Clat,ab) | Clat,aT)
C(a5,1) C(ab,a) | Clab,a3) -F]_
Clab,a4) | C(ab,a5) | C(a8.a7) Multiplying M to the
Ca1) | CaTa) | YaT.a3) matrix from left.

Morihiro Nakashima A modification of the DFT
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Computational complexity

Table: the numbers of finite field operation of DFTs

Previous method | Proposed method

m 2mgy™ " 2(qp + (m — 1)qo) gy
m =2 4qq 245 + 245
m=3 645 2q5 + 4qp
m =4 8¢5 2y + 645

Morihiro Nakashima

A modification of the DFT
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Code-based cryptography: design and security

Carlos Cid
6 Feb 2018

Royal Holloway, University of London

we give an overview of code-based cryptography: public-key schemes that
are based on error-correcting codes

= design and security: history and state-of-art

» code-based schemes in the NIST PQ competition
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code-based pk schemes

code-based public-key schemes

in 1978, Robert McEliece proposed a public-key encryption scheme based
on error-correcting codes

» the McEliece scheme is a simple, elegant and efficient design, and
has its security based on two hardness assumptions:

= intractability of decoding a random linear code
= the difficulty of distinguishing some permuted linear binary codes

from a random code

= its main drawback is the very large public key:
= attempts to reduce it to more manageable sizes have often resulted

on insecure designs
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code-based public-key schemes I

McEliece's original scheme gave rise to code-based cryptography:
public-key schemes whose security are based in the difficulty of decoding
random linear codes

» the construction is over 40 years, and despite enormous cumulative
efforts by the cryptographic community, it remains unbroken when
instantiated with Goppa codes for suitable parameters

» code-based public-key schemes are again a very popular design:
20 submissions to NIST are based on error-correcting codes

in this talk we give an overview of the main designs in the class of
schemes and discuss their security

background
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error-correcting codes

process of “embedding” redundancy to messages, to allow for detection
or correction of errors during transmission or storage.

C = [n, k, d|,: linear error-correcting code over F, of length n and
dimension k, with minimal distance d.

C is capable of correcting at most 7 = L%J errors

C can be described by a generator matrix G € FSX”,
or a parity-check matrix H € ]Fg’*k)xn, such that G-HT =0

a vector w € [F& can be encoded as a codeword in C as

c=w-Gel;

for any codeword ¢ in C, we have c- H™ = 0.

syndrome

for any v € F2, the vectors =v-H' ¢ Fg_k is called a syndrome

» note that given a syndrome s, and a parity check matrix H, then
finding a vector v € F such that s = v- HT is easy:
= compute Hp = U - H = [Id|Q]
= letv=(s-U’|0)
= then we can show that v-H' =s

however we are usually not interested in any coset representative v, but
rather one with small weight
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syndrome decoding problem

let C be a (binary) code, and H be a parity check matrix for C.
then given v € FJ and its syndrome s =v - HT € ]F'z’*k, decoding is
solving the (equivalent) problems:

= find the closest codeword c € C to v
= find e € v+ C of minimal weight (i.e. s=e-HT)

we usually modify the problem above to look for errors with weight < w

(rather than minimal)

= problem of syndrome decoding: given a syndrome s, find a vector
e € FJ of weight < wsuch thats =e-HT

» the difficulty of this problem obviously depend of the value of w;
we usually consider instances in which there is a single solution (with
high probability)

» syndrome decoding is known to be a hard problem, and is the one

that code-based schemes rely on

codeword finding problem

we may also consider the problem of finding non-zero words of small
weight in a linear code (i.e. finding e in the coset of the zero syndrome)

= in fact, most decoders are often “implemented” as small codeword
finding algorithms:
= let C, and v € F5 and its syndrome s
= let C’ be the code spanned by C and v
= then €’ of small weight such that s =¢e’ - H is in C’

10
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Goppa codes

A binary separable Goppa code Cg is a class of [n, k, d], linear
error-correcting codes defined by a Goppa polynomial
G(z) =go+g1z+ -+ &2 € Fam[z] and d =27 + 1, such that:

» G(z) has no roots in Fom, which implies n = 2™

= G(z) has no repeated roots in any extension field, which guarantees
that Cg is capable of correcting up to 7 errors

Let L = (ap, a1,...,an—1) be a (ordered) sequence of all elements in Fynm.
One can use G(z) and L to construct its binary parity-check matrix and
generator matrix

11

Goppa codes Il

We write the parity-check matrix H,, € F2." of Cg using G(z) and L:

G(20)~° G(a1) 2 Ga)> - Glap-y)?
a()G(ao)_2 al G(al)_2 QQG(az)_2 an—1 G(a,,_l)_2
ag_lG(ao)*2 aI_lG(al)f2 ag_lG(aQ)f2 az:ll G(a,,,l)f2
Let B(a;) = (bp, b, - - -, b,-(m,l)) be a representation of a; over Fy:

aj = bio + by B+ bpf® + -+ + bim_1)8™ "

Then by replacing each entry of H,, with B(~)T, we have the binary
parity-check matrix H € FJ""*", which has rank m7 = n— k.
The generator matrix G € Féx" can then be easily obtained from H.

12
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Goppa codes Il

Binary Goppa codes are algebraic codes with high error correction
capability in relation to the code rate (k/n):

» with knowledge of its structure, binary Goppa codes can be
efficiently decoded by using Patterson’s method or the
Berlekamp-Massey algorithm

= however if the code structure is hidden, then decoding binary Goppa
codes is expected to be as hard as decoding a random linear code
= in fact, it is conjectured to be “indistinguishable” from random linear
codes (you cannot tell generator matrices apart)...
= ... and the best currently known algorithms are based on the

technique known as information-set decoding, originally proposed by
Prange

13

McEliece PKE scheme
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McEliece public-key encryption scheme

key generation

= generate a Goppa polynomial G(z) of degree 7, which defines a
binary Goppa code Cg with generator matrix G’ € F5<"

» generated at random S a non-singular matrix in FéXk and P a
permutation matrix in F5*". Then, define G=S-G'-P

= public key is pk = (G, 7); the private key is sk = (G(z),S™1,P~1)
encryption

= to encrypt a message m € F%, sample e € FJ with Hamming weight
7 and output the ciphertext c=m -G + e € )

decryption

» computec’ =c-P'=m-S-G' +e-P! and decode ¢’ using an
algebraic decoder for Cg to recover the permuted e, and hence
m’ = (m - S) € F&. Finally, recover m = m’ - S~1

Niederreiter public-key encryption scheme

key generation

= generate a Goppa polynomial G(z) of degree T, which defines a
binary Goppa code Cg with parity-check matrix H' € Fé"ik)xn

= generate at random S a non-singular matrix in an_k)x("_k), and P
a permutation matrix in F7*". Then define H=S-H'-P

= public key is pk = (H, 7); the private key is sk = (G(z),S~!,P~1)

encryption

= to encrypt m, encode it as a vector u € F] with Hamming weight 7
using a keyless, invertible encoding scheme ¢
= The ciphertextisc=H-u’ € IF’Z’_"

decryption

= compute S~!.-c=H’'-P-u’, perform a syndrome decoding
algorithm on S—!.cto recover P-u’, then compute P~1-P-u’ to
recover u. Finally, recover m from u as m = ¢~ 1(u)

—-152-
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McEliece & Niederreiter schemes

a few remarks:

» McEliece: message is encoded by Cg, and random errors are added
to produce the ciphertext;
Niederreiter: message is encoded as a low-weight vector u, and the
ciphertext is represented as the syndrome of u
» security based on two hardness assumptions:
= intractability of decoding a random linear code
= difficulty of distinguishing permuted Goppa code from random code
= note that, as presented, they are neither IND-CPA or IND-CCA
secure

= they satisfiy a weaker notion of security: one-wayness (OW)

a few remarks:

= Niederreiter's scheme was originally proposed with Reed-Solomon
codes (and subsequently broken)
= when using Goppa codes, it is known that the security of the
Niederreiter and the McEliece schemes are equivalent

= the schemes have efficient operation (particularly encryption) and
compact ciphertexts.
= public key is however very large! (a matrix in F5*")
= for example, for n = 8192, k = 7815, 7 = 29, offering ~ 128-bit
(classical) security, the public key has ~ 360KB
= for ~ 256-bit security, we are looking at ~ 1MB public keys
= note that Niederreiter's scheme allows for a reduction of the public
key: H can be given in “systematic form"”; however many attempts
to further “compress” the public key have led to insecure designs
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McEliece & Niederreiter schemes Il
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code-based vs lattice-based

note a relationship between code-based and lattice-based crypto

» lattice-based schemes try to hide a secret vector in a
high-dimensional lattice over q by introducing small errors to all
coordinates

» code-based schemes try to hide a secret vector in a very
high-dimensional lattice over 2 by introducing errors to some
coordinates

19

code-based crypto: security
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possible attacks:

1. message recovery: try to determine the error vector from the
ciphertext and the public key

2. key recovery: try to recover the original structure of the code Cg

one may also perform chosen-ciphertext attacks, exploring the lack of
IND-CPA and IND-CCA security (it may be addressed by turning
McEliece into a IND-CCA secure PKE scheme)

McEliece scheme: all known attacks for (2) are less efficient than (1)

= information-set decoding (ISD): originally proposed by Prange in the
1960s, is the best message-recovery attack against McEliece

21

information-set decoding: basic idea

let c =m -G + e € ] be a McEliece ciphertext of a message m € Fk
where e € [ has Hamming weight 7

1. assume G = [M|Q], where M € F5*¥ is invertible

2. assume that the first k entries of c are error-free
then we can recover m:

= if ¢/ € F§ is the vector of the first k entries of ¢, then it is clear that
m=c  -M!

= we can also recovere =c+m-G
how can we check whether assumption (2) is valid?

= compute m’ = ¢’ - M™%, and check whether ¢ = c+ m’ - G has
Hamming weight 7

22
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information-set decoding

Prange's basic ISD algorithm works as:

1.

2.
3.
4.

randomly select k columns of the generator matrix G
(an “information set”)

if M is not invertible, go to 1.
compute e =c+ (c’-M~1). G

if € has Hamming weight 7, return €’; otherwise go to 1

for an information-set attack to work, the selected k bits of the

ciphertext need to be free from error;

one can work out this probability (and that the resulting k x k matrix is

invertible) to derive the complexity of the (basic) ISD attack against
McEliece

23

information-set decoding Il

several improvements have followed from the basic ISD algorithm

proposed by Prange

= Leon, Lee-Brickel, Stern, Canteaut-Chabaud,

Bernstein-Lange-Peters, Finiasz-Sendrier, Becker-Joux-May-Meurer,
May-Ozerov, ...

most modern ISD attacks are based on collisions between the
calculated syndrome of the target ciphertext and syndromes
calculated from selected columns of the parity-check matrix.

no closed form formula for complexity given parameter set — rather
one can estimate total cost as binary work factor

recent work have resulted on improved asymptotic complexity for
syndrome decoding algorithms

24
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information-set decoding IlI

quantum attacks?

= currently, there are no known dedicated quantum algorithms for
attacking code-based schemes

» best approach to exploit quantum computers to attack code-based
schemes is the application of generic quantum techniques (e.g.
Grover's algorithm) to speed up ISD

= recent work indicates that quantum attacks will at best offer a
square-root reduction in the classical security levels

25

structural attacks: private-key recovery

so far we have considered message recovery attacks under the assumption
that the structure of the (secret) code cannot be recovered from the
public key

» in this case, we assume the best attacks are based on generic
decoding algorithms for random linear codes

» however McEliece public keys are not random codes, but rather an
algebraic code (Goppa code) for which its structure has been hidden
(via the permutation of its columns).

» security of McEliece PKE relies on the secrecy of the permutation
matrix P

Structural attacks: attacks which attempt to recover the original code
structure from the public key

» for Goppa codes, the best known attack for recovery of the original
code is essentially an exhaustive search for irreducible Goppa
polynomials G(z)
26
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codes for code-based crypto

to be used in code-based cryptography, you want:

= good error-correcting capability and efficient decoding

= to be able to hide the code (algebraic) structure via a secret
isometry (in the case of binary linear codes, equivalent to a
permutation of its support)

= that it is hard to recover the original structure from the generator
matrix of the permuted code

= that the generator matrix of the permuted code is indistinguishable
from the generator matrix of a random code

currently, binary Goppa codes are the only class of codes that we know
that satisfies these properties; it however results on very large codes.

= search for alternatives have often failed: Generalised Reed-Solomon
codes, Reed-Muller codes, rank metric codes, (quasi) cyclic codes,...

27

NTS-KEM: a NIST submission
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NTS-KEM: a code-based KEM scheme

NTS-KEM: a IND-CCA, code-based KEM scheme, submitted to NIST
(submitters: Tjhai, Tomlinson, Albrecht, Cid and Paterson)

a variant of the McEliece and Niederreiter schemes

proven to be secure against chosen ciphertext attacks, under the
assumption that inverting the McEliece pk encryption is hard

ciphertexts are relatively compact, making the scheme suitable for
applications with limited communication bandwidth.

conservative choice of code and parameters (leading to large public
keys)

main goal: offer long-term post-quantum security for suitable
applications

29

NTS-KEM: operations |

key generation is similar to McEliece, but with generator matrix G = [1|Q]

in systematic form for public key (and some reduction in the private key)

encapsulation
1. generate random error vector e € F5 with Hamming weight 7
2. partition e = (e, | e | ec), where e, € Féfe, ey € IF% and e. € ngk.
3. compute ke = Hy(e) € F5.
4. construct the message vector m = (e, | ke) € F5.
5. perform systematic encoding of m with Q:

c=(m|m-Q)+e
= (ea | ke | (ea | ke) - Q) + (ea | €5 | €c)
=(0, | ke +ep|(es|ke) Q+ec)
=(0a|cp|ee),

where ¢, = ke + €, and cc = (es | ke) - Q + ec;

remove the first k — £ coordinates from ¢ to obtain ¢* = (cp | cc) € Fg_”e.

output the pair (k;, c*) where k, = Hy(ke | €) € F5.
30

—-159-



NTS-KEM: operations |l

decapsulation: given ciphertext ¢* = (¢, | ¢.):

1. let ¢ = (0, | cp | cc) € FS, and apply a decoding algorithm — using
the secret key — to recover a permuted error pattern e’.

2. compute the error vector e = m,(e’).

3. partition e = (e, | e, | e.), where e, € F5*, e, € F5 and e, € F5 ¥,
and compute ke = ¢, — €.

4. verify that Hy(e) = k. and hw(e) = 7.

= if yes, return k, = He(ke | €) € F%; otherwise return L.

31

NTS-KEM: parameters

parameters
algorithm security  security pk size sk size  ctext size
version category  target n k d 7 (in bytes) (in bytes)  (in bits)
NTS-KEM(12,64) 1 128-bit 4096 3328 129 64 319,488 9,216 1,024
NTS-KEM(13,80) 8 192-bit 8192 7152 161 80 929,760 17,524 1,296
NTS-KEM(13,136) 5 256-bit 8192 6424 273 136 1,419,704 19,890 2,024

32
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NTS-KEM: features

= conservative design, with strong security guarantees and

conservative parameter sets
» security based on a simple and well-understood mathematical
problem
» scheme with high degree of flexibility in the setting of parameters
» private-public key pairs may be deployed for long periods of time
= compact ciphertexts, around 2,000 bits at the highest security level.
» efficient operations, particularly encapsulation, leading to reasonably
fast software implementations.
= simplicity of the operations and subroutines allow for the
straightforward deployment of protection measures against
side-channel attacks

notable disadvantage: size of the public key

» at the highest security level proposed, the public key is approximately
1.39MB in size (312KB for the 128-bit security version).

33

NIST PQ competition
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NIST PQ standardization process

not a “competition” but a “process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptographic algorithms”:

= to eventually replace the NIST pk standards for signature (FIPS
186) and key establishment (SP 800-56A/B)
» call for quantum-resistant signature, pk encryption and
key-establishment mechanisms (KEM) schemes.
= main criteria: security (classic/quantum attacks, different security
levels) and performance (mainly software)... plus other desirable
features (e.g. simplicity and flexibility, suitability to existing/new
applications, resistance against side-channel attacks, etc).
» timeline:
= Feb 2016: NIST official announcement at PQCrypto 2016 in Fukuoka
= Dec 2016: call for proposals
= 30 Nov 2017: deadline for submissions
= 3-5 years: analysis phase, in 2-3 phases, resulting on official reports,
events and narrowing of pool of candidates
= mid-2020s: draft standards available for public comments 35

NIST PQ standardization process
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NIST PQ standardization process

Signaturss Overall
Lattice-based E-EE;; 26
[aesea
= 30 Dec 2017: 82 submissions received
(23 signature; 59 PKE/KEM)
= 2 submissions were withdrawn,
leading to 80 (=23+457) schemes -
= 21 Dec 2017: NIST announces the 69 | f:j
(=20+4-49) "complete and proper” ot beued il o 7] 20
submissions to be considered in the ??-“:‘..
process _ o™
= soon after, attacks led to 3 &ﬁm L_,
submissions being officially withdrawn ARy s < 2| 9
(SRTPI, HK17, RVB) T ::;wm; =
= another 9 are considered either -
broken or seriously wounded Others L ey 6 8
57
Total 46 | 66
withdrawn 3 3
Round 1 Submissions 49 -G8

37

* table due to Ryo Fujita.

NIST PQ standardization process

NIST PQ process is a very challenging one:

= call for proposals for three primitives (signature, pke and kem), with
several applications and possible trade-offs
= very large number of submissions:

= AES (1997-2001): 15 submissions

= eStream (2004-2008): 34 submissions
= SHA-3 (2007-2012): 51 submissions
= CAESAR (2013- ): 57 submissions

» transition and migration also very challenging, may take 10 years
(potentially to “hybrid mode"” deployment)

38
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code-based schemes in NIST PQSP

NIST is considering 17 code-based submissions
(16 KEM/PKE + 1 signature)

= common approaches to reduce public-key sizes: based on
cyclic/quasi-cyclic structures and/or reduced-density codes (e.g.
MDPC codes), use of rank metric, etc

= some issues: efficiency of decoding; attacks based on decoding
failures; key-recovery security

= many of these approaches have led to insecure designs in the past

for over 40 years of research in code-based cryptography, only Goppa
code based schemes have resisted attacks and shown to be secure...

39

NIST code-based submissions: examples

Classic McEliece (by Bernstein et al.)

= modern version of Niederreiter's scheme (using Goppa codes and
offering IND-CCA security)

= two versions (both cat 5, claiming 256-bit classic security):
= KEM with m =13, n = 6960, and 7 = 119
= 1,047,319-byte public keys, 13,908-byte private keys, 226-byte
ciphertexts, and 32-byte session keys
= KEM with m =13, n = 8192, and 7 = 128
= 1,357,824-byte public keys, 14,080-byte private keys, 240-byte
ciphertexts, and 32-byte session keys

comparison: for cat 5, NTS-KEM has m = 13, n = 8192, and 7 = 136,
leading to 1,419,704-byte public keys, 19,890-byte private keys, 253-byte
ciphertexts, and 32-byte session keys

» but pk and ciphertext sizes would be the same if using 7 = 128
(NTS-KEM sk would be longer)

40
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NIST code-based submissions: examples

BIKE: Bit Flipping Key Encapsulation (Aragon et al.)

» KEM based on quasi-cyclic moderate density parity-check
(QC-MDPC) codes that can be decoded using bit flipping decoding
techniques

= QC codes have block-circulant matrices as generator matrix

= MDPC (Moderate Density Parity Check) codes admit a somewhat
sparse parity check matrix; allowing for the use of iterative decoders
(in particular, bit flipping decoders)

= three versions (based on McEliece, Niederreiter, Ouroboros)

» use of QC codes lead to more compact public keys (though larger
parameters)

= early version was broken via a reaction attack in 2016

= iterative decoding can fail with some small probability, and one may
identify a dependence between the secret key and the failure in
decoding

= as a result, BIKE now uses ephemeral KEM key pairs

= LAKE (Aragon et al.): Ideal-LRPC (Low Rank Parity Check) codes,
using rank metric

» RLCE (Wang): generalised Reed-Solomon code with a number of
random parity check columns appended

= etc

—165—
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NIST code-based submissions: examples
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final thoughts
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thank you ... questions?
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Workshop on analysis of mathematical cryptography via algebraic methods

@Nishijin Praza, Fukuoka, Japan

Solving RSA and factoring problems
using LLL reduction

Atsushi Takayasu
The University of Tokyo, AIST
2018/2/6

1/55

Today’s talk

» Coppersmith’s methods
Constructing polynomial time algorithms for solving

integer/modular equations with small roots using the LLL
lattice basis reduction.

Basic applications: Solving RSA and factorization problems

Today’s talk

* Basic concepts

* Overview of the methods

* Recent results [TLP@EC'17]
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Background

3/55

RSA

Public Key: (N = pq, e) Secret Key: (p, ¢, d)
ed=1 mod (p—1)(qg—1)
* Encryption of m € chp—l)(q—l)
c=m° mod N
» Decryption of ¢ € Zi,,_1)(,—1)

m=c® mod N

How about its security?
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Factoring attack

Public Key: (N = pq, e) Secret Key: (p, q, d)
ed=1 mod (p—1)(qg—1)
c=m° mod N m=c* mod N

If we can efficiently solve a bivariate integer equation

flz,y) =xy— N =0,

we can recover all secret (p, q, d).

It seems infeasible for large N.

5/55

Plaintext recovery attack

Public Key: (N = pq, e) Secret Key: (p, ¢, d)
ed=1 mod (p—1)(qg—1)

c=m° mod N m=c* mod N

If we can efficiently solve a univariate modular equation
f(x)=2°—c=0 mod N,{}

we can recover a plaintext 1.

It seems infeasible when the factorization of N is hard.
6/55
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Coppersmith’s methods

In [Cop@EC’'96a], [Cop@EC'96b], Coppersmith partially
resolved the problem.

Coppersmith methods solve integer/modular equations with
small roots in polynomial time.

7/55

Factoring attack with hint

In general, it seems computationally infeasible to solve
and recover (p, q).

What happens if we get the most significant bits (p’, q’) ?
Coppersmith’s methods can solve an integer equation

flz,y) =@ +2)(¢ +y) - N=0
iflp—p'| < N4, |g—q| < N'* \
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Plaintext recovery attack with hint

In general, it seems computationally infeasible to solve
flx)=2°—-c=0 mod N
and recover m.

What happens if we get the most significant bits m’?
Coppersmith’s methods can solve an integer equation

flz)=(m'+2)°—¢c=0 mod N
ifm —m'| < N/e. !

Coppersmith’s methods

In [Cop@EC’'96a], [Cop@EC'96b], Coppersmith partially
resolved the problem.

Coppersmith methods solve integer/modular equations with
small roots in polynomial time.

So far, the methods reveal numerous cryptanalytic results
especially for RSA and factorization problems.

The core trick is the LLL lattice basis reduction algorithm.

- Next: Overview of the modular method due to
[How@IMACC’'97]

10/55
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Coppersmith’s method

11/55

Target modular equation

f(x) =0 mod N

f(:r;) monic, univariate polynomial
We want to find the root  such that |Z| < X.

If we can obtain a polynomial g() such that

9(z) =0

holds over the integers, then we can recover the root .

How can we obtain g(x)?

12/55
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Howgrave-Graham’s lemma
[How@IMACC'97]

For an arbitrary integer polynomial /() with at most &
monomials, if the polynomial satisfies

()—0 modW\a:]<X

holds over the integers.

then

13/55

Proof

W) = oW
holds for some integer ¢ since h(Z) =0 mod W.

A(@)] < h(zX)[h < VE[R(zX)]l2
holds since |Z| < X.

|h(Z)| < W
holds since || (zX) > < W/VE.
Then,
h(F) = 0.

-173-

14/55



Approach

Tosolve f(z) =0 mod N and recover 7,

Generate 71 polynomials g1 (58), e ,gn(a’?) such that
gi(x) =0 mod N™
for a positive integer m.

Then, we compute a low norm polynomial h(x) by an
integer linear combination of g1 ($), ceos9n (-CU)

How can we do it?

# LLL algorithm!
15/55

(Integer) Lattices

An additive discrete subgroup of Z'".
Integer linear combinations of a basis {b1, ..., by, }.




LLL algorithm

Given a basis {01, ..., b, }, output another “short” basis
{v1,...,U,} inpolynomial time.

Output quality

Basis matrix: B := (51, . ,gn)T
Volume of a lattice spanned by B:
vol(L(B)) := 1/det(BBY)
— | det(B)| for n = m

Norms of vectors output by LLL are roughly bounded by
20) . vol(L(B))/™.

18/55
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Approach

Tosolve f(z) =0 mod N and recover 7,

Generate 71 polynomials g1 (fﬂ), ‘e ,Qn(ﬁf) such that

gi(x) =0 mod N™

for a positive integer m.

Then, we compute a low norm polynomial h(x) by an
integer linear combination of g1 ($), e agn(x)'

Utilizing LLL algorithm!

19/55

Approach using the LLL

Tosolve f(z) =0 mod N and recover 7,

Generate 71 polynomials g1 (fﬂ), ‘e ,Qn(ﬁf) such that

for a positive integer m.
Let 5; be a coefficient vector of g;(2.X).

Find a short vector ¢; using the LLL reduction.

A polynomial h(x) derived from ¥ is an integer linear
combination of g1 (), ..

., gn () and its norm is small.

20/55
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Condition

h(z) =0
holds over the integers when

|h(zX)]l2 < N™/Vk

20(m) . vol(L(B)Y/™ < N™/vk

X

|det(B)|1/” < N™

21/55

Example for m=1

Tosolve f(z) =a+bx +2° =0 mod N,

Construct a matrix

" Lt

for m = 1, with 91
92(x )—Nx

Coefficients of each
polynomial g;(xX)

g3(z) = f(z)
that have the same root modulo /V. 22/55
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Example for m=1

Tosolve f(z) =a+bx +2° =0 mod N,

Construct a matrix

N
B = NX
a bX
form =1, with g1(z) = N
Coefficients of each
g2(z) = Nz variable X/
g3(z) = f(z)
that have the same root modulo /V. 23/55

Condition for m=1

Tosolve f(z) =a+bx +2° =0 mod N,

Construct a matrix

Condition:

24/55



Example for nn—

Coefficients of each
Tosolve f(z) = a + bz + x° = 0| polynomial g;(xX)

Construct a matrix

[ )
N?X
B = Na NbX NX?
NaX NbhX? N X3

@@ 2abX (2a+b2)X% 2bX° XTI p

for m = 2, with N2, N*z, N f(z), Nz f(x), f*(z)

that have the same root modulo V<.

25/55

Example for nn—>
Coefficients of each

Tosolve f(z) = a + bx + 22 =0 variable X/

Construct a matrix

o \

N2X
B=| Na NbX  NX?
NaX ~ NbX?  NX3
\ a® 20X (2a+0b?)X? 2bX° )

for m = 2, with N2, N?z, N f(z), Nz f(x), f*(z)

that have the same root modulo N ~.
26/55
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Condition for m=2

Tosolve f(z) =a+bx +2° =0 mod N,
Construct a matrix
i \
N?X
B = Na NbX NX?
NaX NbX? NX3
\ a® 2abX (2a+b%)X2 26X° X'

Condition:

]det(B)]l/n _ N6/5X10/5 & N2

X & N5 27/58

Example for gen
Coefficients of each

Tosolve f(z) = a + bz + x° = 0| polynomial g;(xX)
Construct a matrix
[ "

N™X
B _ N'm—la Nm—le Nm—lXQ

- .
with (Nm_ifi, Nm_ixfi)izo,l,...,m—la f(x)

that have the same root modulo N,

28/55
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Example for genp==t=

Coefficients of each
Tosolve f(z) = a + bx + 22 =0 variable X/

Construct a matrix

( ¥
NTILX

B — Nm—la Nm—le Nm—lx?

_ - \xmf )
with (N f* N"™ 2 f"Y)i—o1....m—1, f ()

that have the same root modulo V""",

29/55

Condition for general m

Tosolve f(z) =a+bx +2° =0 mod N,

Construct a matrix

( Nm N?’ILX \
B — No=1ls N@-lpX NWB—:X2
Conditio\n )

]det l/n Nm(m—l—l)/(Zm—i—l)Xm < N™
g X < N2 forlarge m 3055
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Multivariate extension

Tosolve f(x1,...,2;) =0 mod N and recover
(ff’}l,... ,ﬁfk) s.t. |%J| < Xj,

Generate 2 polynomials (gi(Zl, ce 7$k))i=1?2“_?n 5L
& = _ m
gi(Z1,...,Zx) =0 mod N
for a positive integer m.

Let Ez be a coefficient vector of g; (1 X1, ..., T Xk).

Find short vectors 7/, . . . , U using the LLL reduction.
A polynomial hi(xl, c ,mk) derived from ¢; is an integer
linear combination of g; (:1:1, i v gy :L’k;) and its norm is small.

31/55

Multivariate Coppersmith Heuristic

Can we also solve the equation if
| det(B)|Y/™ < N™?

Unfortunately, although ¥;s are linearly independent vectors,
there are no assurance that h; (1, ...,z )’s are
algebraically independent.

Since h;(x1,...,x)’s are algebraically independent in
practice, we assume the fact in multivariate cases.

32/55
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Research direction

Towards resolving the multivariate heuristic [BJ@EC'07]
Proof of the optimality [AASW®@ACISP’12],[CHHS@AC’16]
Utilizing existing algorithms[BCC+@AC’13],[NSS+@CCS’17]
Speed-up the implementation [BCF+@PKC'14]
Constructing new (multivariate) algorithms

— General lattice construction strategy [J[M@AC’'06],[TK@ACISP’13]

— Small secret exponent attack [BD@IEEE TIT’'00], [HM@PKC’10]

— Partial key exposure attack [BM@Crypto’03],[EJMW@EC’05],
[TK@SAC'14],[TK@CT-RSA’17]

— Small CRT exponent attack [TLP@EC'17]
— Attacks on RSA variants [LZPL@AC’15],[TK@PKC'15] 33/55

Small CRT-exponent attack

A. Takayasu, Y. Lu, and L. Peng. Small CRT-exponent RSA revisited.
Proc. Eurocrypt 2017.
Journal of Cryptology 2018.

IACR ePrint: 2017/092

34/55
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Small secret exponent attack
Public Key: (N = pq, e) Secret Key: (p, ¢, d)
ed=1 mod (p—1)(qg—1)

[Boneh-Durfee@IEEE TIT'00] proposed a polynomial time
factorization attack on RSA for

d < NO.292 .

35/55

CRT-RSA
Public Key: (N = pq, e) Secret Key: (p, q,d,, d,)
ed,=1 modp—1, ed;=1 modgqg-—1

Are there analogous polynomial time factorization attacks
for small CRT-exponents?

36/55
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Small dq attack

* D is significantly smaller thanq.

dy is significantly smaller than ¢. Can we reach
e [May@Crypto’02] p<NO->?
D < N0.382
* [Bleichenbacher-May@PKC’'06]
D < N0.468

v’ Variants: [SIK@IEICE Trans.’11],[PHL+@Indocrypt’15]
v Extensions: [BM@Crypto’03],[LZL@ACNS’14],
[TK@ACNS'15],[TK@ISC’'16] 37/55

Small dp and dq attack

* D, q are the same bit-size.
dp, dq are significantly smaller than P, q.

* [Jochemsz-May@Crypto’07]
0.073
dp; g < N

v Extensions: [SM@ACNS’09],[TK@ACNS’15]

Can we improve the bound?

38/55
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Our results

* Small d, attack
D o NO.5
* Small d;, and d,; attack

dpadq B N0.122

* Improved attacks on the variants

v’ Improved lattice constructions that are specialized to CRT-
RSA key generation. o

Comparison

Our Improvements

0.2

0 0.05 0.1 0.15

02 025 03 035 04 045 05
log NP 40/55
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Formulation

Solving the latter equation seems
better approach since
* Wecanfactorize N p is much smaller than g.

fq(mqayq) =1 ‘|‘ LL‘q(yq ) =0 mod e

and recover (24, Yq) k@
e Multiplying p :

edgp=p+ k(N —p)=N+(k—1)(N —p)
We can factorize /\V by solving a modular equation

fo(@p,Yp) =N +2p(N —y,) =0 mode

and recover (z,,y,) = (kK — 1

There is an integer L su(

41/55

[May@Crypto’02]’s matrix

/ ¢ fo(@p,yp) = N + 2p(N — yp)

0 ek,

N NX, -XY, Ypo(Tp, Up)

0 0 0 e

0 0 NYY, NY, -X)Y:

00 0 0 0 ey
V000 0 R N -KTTY

42/55
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[May@Crypto’02]’s matrix

/ A natural construction \
following [JM@AC'06]
eXp Aok
| det(B)| = e* X2

NX, -XY,

0 0 A

0 NX)Y, NY, —Xpr2
0

0

R R
0 0 NXY! NYP -XV3)

43/55

= o = = == o

[BM@PKC'06]’s matrix

fo(@p,Yp) = N + 2p(N — yp) \
eX,

£

0

N NX, -XY, O Yafo(@p:4p) >
0 eY,

o

0

00 e,
) NXY, NY, -X,Y2
0 00 0

q
S e o

44/55
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o s o O 2 o oY

[BM@PKC'06]’s matrix

L | T
NX, -XY,|— |det(B)] = X 30K
0 0 eY)

) NXY, NY, -X)2

00 0 0 e

X, 0 0 0 Y XY

45/55

[BM@PKC'06]’s matrix

By using YpYq = IV, \
either Yp or Y, appears
BXP P g app

in each monomial.
N XP _XPY}J
| ( eY)
0 NXY, NY, -X,Y’

= oo = 2 o o

0 0 0 0 ¢,
X, 00 0 Y, XY

46/55
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Observation

* [May@Crypto’02]
Solving fp(2p,yp) =0 smce P is much smaller than g.
- Not effective for p < N2

* [Bleichenbacher-May@PKC’'06]
Reducing the determinant by using ¥, = q.
—>Should they follow the previous approach?

We solve simultaneous modular equations

fo(@p,yq) =0, @

and recover a:p.yp, Yq) —1,k,p,q).
Our matrix
/ e Since (ajp?x@?) = (k—1,k), \
0 BXp T L = By
N NX, -XY,
)00 e
) 0 NKY, NY, -XY’
\ 0 =4 0 0 0

48/55
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Our matrix

/ e Successfully eliminating a large
diagonal €Y.
0 eX,
.[\I .[\];;KTI) -_';)iigj}/})

0 0 0 eY,
XY, NY, XY

)0
N D # ~

| 49/55

Our matrix
/ e Tp appears only when \
Yq does not exist.
0 BX L4 appears only when
P Yq exists.
N NX, -XY,

0 0 0 eY,
VLY, NY, XY

0 0
D 0 | m

50/55

—-191-



Our matrix

/

m=1,\=1/2 \

&

0 eX,

N NX, -XY
00 0 e,

0 0 NXY, NY, -XY

0 -X, 0 0 0 XY

51/55

\

Our matrix

p = 8 X =12 \

Xpeg .
NE
“p
Xgeg
) Xyl
Ny .\'XEEE Lyt
A\'x;eg ,.\-'X;'e? —Xﬁi"peg
. g 1yl 2
s 1 =3 ) )
.Xpe .hge N Xp}pe Xq:qe
-l X% Ny -Nhie X;’qu
1L R ¢ 05 ¢ ad axxﬁr Vrdy,  xdy?
N A Tt e S Ty )
\ Xyt Xhye! /
) 3 ki wle el 302
moow L A K

52/55
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Our matrix

(83 X m= 3, A= 2/3

2.3
Xpe
X3
P
Ne* NXpé ~Xo¥yet
NXpet NX -Xiye
E 2 3,2 4 3y 2
NXpe NXFe —Xp‘t’pe
N N Xpe NPXe -INX,Ype —2NXEYpe X2yl
N2Xpe 2N?xée N2x3e -INX2Ype -INXIVpe Xyl
3 -1y2 -1y3 -2ydy2 gl
-;sz -6X) -3X] NLX2Y, aNIX3Y, N2 X3, o
ke & glqt
~2pe -2XZe NIXe X2ye
Xte 2Xy¥ye ~2K2¥pe X212
2 3 =13 3
X, 3K -NIKY, 3K, 3K Yy Xy

53/55

Comparison

0.8

Our Improvements

0.2

0 005 01 015 02 025 03 035 04 045 05
log NP 54/55
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Summary

e Coppersmith’ methods
Effective in the context of RSA and factorization problems.
Polynomial time algorithms by using the LLL reduction.

* To obtain the better algorithms, we should work out
constructing the better basis matrices.

* Introducing our small CRT-exponent attack [TLP@EC’17].

o 55/55
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Towards Fully Homomorphic Encryption without

Ciphertext Noise from Group Theory

gl Jtwl (NUIDA, Koji)

AIST /JST PRESTO

IMI Workshop 2018/2/6

(¢) Koji Nuida February 6, 2018 Towards FHE from Group Theory 1/29

o Background & problem setting

o Realization of bit operators on groups
o Detailed problem setting

o First approach (ongoing)

o Second approach (ongoing)

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 2/29
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o Background & problem setting
Q
o

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 3/29

Public Key Encryption (PKE)

o Encryption (probabilistic operation):
plaintext m — ciphertext ¢ = [[m]]

o with given public encryption key pk
o Decryption: [[m]] — m

o with given secret decryption key sk

o Security requirement: no information on m
should be available from [[m]] and pk

o In particular, computing sk from pk should
be infeasible

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 4/29
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Fully Homomorphic Encryption (FHE)

o Any operation on plaintexts can be performed
“homomorphically” in encrypted form

[Lm]] % [[mo]] = [[m1 * mo]]

o Examples of plaintext spaces (M, %):

o M =Ty, x € {+, x} ([Gen09] etc.)
o M =TF,, x € {+, x} ([NK15])
« M = {0,1}, * = NAND ([DM15])

(¢) Koji Nuida February 6, 2018 Towards FHE from Group Theory 5/29

Example: Simplified Version of [DGHV10]

o Ciphertext for m € {0,1}: ¢ = pg+2r+m
o Dec(c) = (¢ mod p) mod 2 (if r is small)

e Homomorphic + and X preserve shapes of
ciphertexts, but “noise” r amplified

o Finally yielding decryption failure!

o Noise reduction required: “Bootstrapping”
([Gen09]), which is in general expensive

(¢) Koji Nuida February 6, 2018 Towards FHE from Group Theory 6/29
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Existing Approaches

o High-dimensional lattices ([Gen09] etc.)

o “Almost nested” integer residue rings
([DGHV10] etc.)

o (Linear codes, but not succeeded)

o My research: new approach to FHE

» towards “noise-free” FHE

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 7/29

Suggestion by Ostrovsky—Skeith Il (2008)

o Theorem: NAND can be “realized” on any
non-commutative finite simple groups G

o Then FHE will be obtained once G can be
homomorphically encrypted

o However, no concrete way is proposed

o My research goes along this direction

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 8/29
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Realization of bit operators on groups

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 9/29

Preliminaries

o Words: sequences of variables x;, x;~*

2 3

° E.g., W(leXQ) = X1X0°X1

o Substituting group elements into a word yields
a group element

o« E.g., w(g1, &) = g1e°g1 >

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 10/29
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A Formalization

o Realization of a set F of bit operators on
group G consists of:

o non-empty, disjoint Xy, X; C G
o for each f € F, word w¢(X, y) and random
variables ¥ on G with

gi € Xp, (Vi)
= Pr[wf(gl: <5 8ny F) g Xf(bl._....bn)] ~ 0
(Note: ¥ can be constant elements)

o Can be generalized to realization on G”

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 11/29

Example: [OS08]

o NAND on any non-commutative finite simple
group G

o Sketch: consider subgroup generated by
commutators [g, h| (cf., Barrington's
Theorem)

o Concrete construction only for G = As

o Might be too huge, for large groups G

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 12/29
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Example [N.15 (preprint)]

o G =55, Xo={1}, X1 = {01} = {(123)}
o Idea: “approximating” OR, NAND, XOR, = by
group operation on Z /37 ~ (o)
o Some of values 1 (— o7) are “overflowed”
to 2 (= 01°)
o E.g., wii(8) = g182, w(8) = g1g201 7"
o Then substituting into word with 1 +— 1,
a4 0'12 = 01

“(g) = (1,5)(2,3,4)g(2,3,4)g(3,4)g
((2,3)(4,5)g(2,3,4)2(3,4)g%(1,4,2,5)

e W

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 13/29

Example [N.14 (preprint)]

o On G? where G = PSLy(F,) (p~* =~ 0)
o Xo={(g1,2) € G’ g1 #1,8 =1},

Xi={(g,@) G la#l =g}
o wnoT(g) = (81,8 ta1)

° WAND(g:g_;) = ([ug1iu™", g1], [ugou™, g3)]),
with uniformly random v € G

« When g € X, g € Xy, we have
wanp(&, &’) € Xanp(s,p) With prob. ~ 1

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 14/29
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Q
Q
o Detailed problem setting
9

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 15/29

Lift of Realization of Bit Operators

o Group homomorphism 7: G— 6

o Random variables r; where 7(r;) = r; as
distributions

o Then for m(g;) = gi € Xp,, we have
W(Wf(gl, C e pgm?la c e ;?k))

:Wf(g1:°-°agmr1?°“3rk)GXf(bl ----- bn)
with prob. ~ 1

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 16/29
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Framework towards FHE: Requirements

o Key generation: Lift 7: G — G of realization of
bit operators,wrandom variable r, on ker,
geng, gen; € G with 7(gen,) € X,

o pk consists of G, W, Ti, Teer, 8ENg, EEN;

o Encryption: [[b]] = geny, - feer

o Decryption: check if m(c) € X,

o Operator f: compute word wr on G

o Security: given pk, value of rie should look
uniformly random over G

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 17/29

Failed Example of Lift

A x\ - 4
0 *)T | Ae G}

(T: secret random matrix)

o G =SLy(F,), G = {T(

o m(g): upper-left block of T-1gT
o Before conjugating by T, matrices in ker 7
satisfy linear constraint (2, 1)-entry is 0"
o Linear constraint for ker m remains even after
taking conjugation
o while not satisfied by generic elements

o Membership test for ker 7 is possible by
checking if dimension of span(ker ) is increased
when appending a given element

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 18/29
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First approach (ongoing)

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 19/29

Preliminaries: Generator-Relator Presentation of Groups

e S: set, R: set of words on S

o Group (S| R): quotient of words on S by
“words in R are equivalent to empty word"

o Multiplication: concatenation of words

o Eg, 5y = <51, 5 ¥ @ PR3
| si?, (sisi+1)” (Vi), (sis;)? (Vi # J))
o generator s; is transposition (/,7 4+ 1)

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 20/29
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Coxeter Groups

o Coxeter matrix [: [; =1,
I",;,- = I‘j,- = {2,3,...}U{OO}

o Coxeter group W/(I'): generating set S consists
of rows of I', relations (elements of R) are

(sis;)" (i < Jj, Ty # o0)
eEg., Type Ap: ;i1 =3, T;j=2
(li=Jj1=2)
o i.e., 5, is a Coxeter group of type A,_1

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 21/29

Matrix Representation for Coxeter Groups

o Generator s; acts on unit vectors «; by
sj-aj = o + 2cos(m /I ) (where
cos(m/o0) = cos(0) = 1)

o yielding matrix representation p(w) of
we W(T)
o 0: W(I') — GL,(R) is injective
e recursive computation of ¢ ~!: if i-th column of

¢©(w) has negative entry, then ws; is shorter
than w

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 22/29

—205—



Homomorphisms between Coxeter Groups

o Suppose A is a set of rows of [ and A" C A
satisfies: / € A" and j € A\ A imply
I',-j- €27 U {OO}

o Matrix I": with row set A, and for i,j € N,
F,;,-zooorrj;,-“—,-j

o Then removal of generators s; (i € A\ A') from
words defines a surjective homomorphism
W(r) — w(l’)

o We expect that this map is “non-linear”

(¢) Koji Nuida February 6, 2018 Towards FHE from Group Theory 23/29

Candidate Lift up to Infinite Groups

o G=5=W(T4)
o [: I',j =16 (Vl #_])
o G={T-pw) - T'|we W)}
o G is infinite group ~~ “non-compact”
FHE
o m(g): image of o }(T1.-g-T)e W(I) by
W(T) — W(T 4,)

e security evaluation is future research topic

(¢) Koji Nuida February 6, 2018 Towards FHE from Group Theory 24/29
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Question: Why Not Using Finite Groups?

o Only “irreducible” T yielding W(I') — W(T 4,)
(n > 4) are of type B,1

( 2\
~ r3n+1 - I_A” 2
4

\2 -+ 24 1)

o Then matrices in ker are lower-triangular, hence
linear constraint “upper entries are 0" remains

o Groups other than Coxeter groups needed

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 25/29

o Second approach (ongoing)

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 26/29
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Another Approach from Combinatorial Group Theory

o G X H with efficiently presentable finite group H
o projection G x H — G will be 7: GG

o ldea: to hide m, randomly modifying
presentation of G x H while keeping
isomorphism class

o E.g., adding a random subword into the
generating set

o Problem: how to choose H (see below), how to
efficiently compute group operations

o Reduction of concatenated words becomes
infeasible ~~ “non-compact” FHE again

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 27/29

How to Choose the Group H

o Any element of G ~ G x H with
“G-component” # 1 and “H-component” =1
implies membership test for kerm ~ H

o € H if commutative with that element
o Bad example: for H = A,, h € H satisfies w.h.p.
h?> = 1, yielding a “bad" element
o Better example: H = SLy(F,), p 1 =~ 0
o If h € H satisfies w.h.p. ht =1, then L is a
large factor of p — 1

o Such an L would be difficult to find provided
p is hidden (details: future research topic)

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 28/29
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o Going along Ostrovsky—Skeith Ill's approach
towards FHE

o formalizing by “realization of bit operators
on groups”’ and its “lift"
o Observation: “linear” construction cannot be

secure

o “non-linearization” 1: using maps between
Coxeter groups

o ‘non-linearization” 2: using random
modification of group presentation

o “non-compact” FHE so far: to be continued ...

(c) Koji Nuida February 6, 2018 Towards FHE from Group Theory 29/29
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A survey on Multivariate Public Key Cryptosystem

Yasufumi Hashimoto (Univ. Ryukyu)

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

Multivariate Public Key Cryptosystem, MPKC

A public key cryptosytem whose public key is a set of multivariate
quadratic polynomials over a finite field.

1<i<j<n 1<i<n

Fon{ X175 5) = Z ag,m}x,-xj+ Z bgm)x,-Jrc(m).

1<i<j<n 1<i<n
For a plain-text (xi,...,X,), the cipher-text (yi,...,ym) is given
by
yi=h(x, %), <oy Ym=fm(x1, -+, Xn).

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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It is, in general, too difficult to find a solution of

A() =y, s fn(X) = Ym

for randomly chosen quadratic forms fi,. .., f;, (NP-hard).

It has been expected that MPKC will be one of
Post-Quantum Cryptographies.

The encryption is efficient.
RSA: y = x€ mod n,
(x,y,e,n are hundreds or thousands bits).
MPKC: y = F(x),
(q is 2 ~ 2577, n, m are 40 ~ 2007?).

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

Matsumoto-Imai’s Cryptosystem (Eurocrypt’88)

nz 1,

k: a finite field of even char., g := #k,
K: an n-extension of k,

¢ : k" — K: a one-to-one map,
G:K— K:

G(X)=Xx"  (I>1,gcd(q"—1,¢' +1)=1).

Secret key: S, T : k" — k": invertible affine (or linear) maps,
Public key: F:=To¢p 1oGo¢poS.

FoknSkn bk Gk 2 jn T, g

F is a quadratic map.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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X =x1601 + - - - + xp0p, ((61,...,0,) is a k-basis of K)

X9 =xq09 + 43,09 ((a+b)T =2 + b9, x7 = x;)
=(X1,...,Xp-linear) - Oy + - -- + (x1, ..., x,-linear) - 4,,.
Encryption: For a plain-text x € k", the cipher y € k" is
y = F(x).
Decryption:
x =S o He(T DY),

where N is an integer with (14 ¢)N = 1 mod ¢" — 1, namely
N = X

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

Moon Letter Cryptosystem (Tsujii-Kurosawa-Itoh-Fujioka-
Matsumoto, 1986)

k: a finite field,

q := #k,
n>1,
X=Xt 55)"

G(x) = (g1(x), .- .,&n(x))": a quadratic map defined by

g1(x) =(x1-linear form),
£2(x) =x2 - (x1-linear form) + (x1-quadratic form),

g3(x) =x3 - (x1, xo-linear form) + (x1, xp-quadratic form),

gn(x) =xp - (x1,...,Xp—1-linear form) + (x1, ..., x,—1-quadratic form).

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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Secret key: S, T : k" — k": invertible affine (or linear) maps,
Public key: F:=To Go S.

Encryption: For a plain-text x € k", the cipher-text is y = F(x).
Decryption: For z = (z1,...,2,)" := T 1(y), first find x; with

gi(x) = =1, (x1-linear equation)
and substitute it into other polynomials. Next, find x> with
& (x) = 2, (x2-linear equation)

and substitute it into other polynomials. Contitue it and find
X3, ...,Xn recursively.
Finally, compute S™1(x1,...,x,)f, which is the plain-text.

Remark: Later in Crypto'93, Shamir proposed a similar scheme
almost same to it.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

General construction

Most MPKCs are constructed as follows.

n > 1: the number of variables.
m > 1: the number of quadratic forms.
k: a finite field, q := #k.
Secret key.
S : k™ — k", an invertible affine (or linear) map.
G : k" — k™, a quadratic map “inverted feasibly”.
T : k™ — k™, an invertible affine (or linear) map.
Public key.
F:=ToGoS:k"— k™,
Encryption.
For a plain-text x € k", the cipher-text is y = F(x) € k™.

Decryption.
The plain-text x is given by x = S71(G YT 1(y))).

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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G: a quadratic map inverted feasibly.

fi(x) g1(5x)
: =T ;
fm(x) gm(Sx)

F: a quadratic map, not inverted feasibly?

Q. Is it really secure ?

A. Not necessarily.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

An attack on MI (Patarin, Crypto'95)

Since the encryption is by Y = XH‘?;, it holds
BT ==X ),

Y, Y9 linear forms of the cipher-text y = (Y1s---sYn)
X, X9 linear forms of the plain-text x = (X155 25 Xa)-

There exist polynomial equations in the forms

Z e X Vi + Z?xﬂrZ’}ij%—ﬁ—O

1<ij<n 1<i<n 1<j<n

which hold for any plaintext-ciphertext pairs (x, y).
Generate (x, y) sufficiently many and find such polynomials. U]

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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Attack on ML (Hasegawa-Kaneko, 1987,

Coppersmith-Sten-Vaudenay, Crypto'93)

The coefficient matrices Gy, ..., G, of gi(x),...,&n(x) (i.e.
gi(x) = x'G;jx + (linear)) are written by

* * *k 0
G :( o o)= G”—lz( 0 0)’

Since the public quadratic forms are linear sums of linear
transforms of the aboves, there exists o € k such that

rank(F; — aFy) < n— 1<« det(F, — aFy) =0.

This av is a part of T. Once such an « is found, S is recovered
partially.

After that, we can recover further information of S, T

recursively. O

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

There are many G's generating insecure MPKCs.

Q. Which kind of G generates a secure MPKCs?

A. There are no schemes with provable security.

We know several properties of G to be broken.

We give several major attacks on MPKCs.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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Major Attacks on MPKCs

1. Direct attacks.

It is to solve the system of multivariate quadratic equations

Fil oy e v Xii) = Vi

directly to recover the plain-text x = (xq, ..., Xp).

Exhaustive search: O(q™" (™" . (polyn.)).
Grover's (quantum) algorithm: O(q% min (m.n) . (polyn.)).

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

Grobner basis algorithm.
Buchberger's algorithm: O (22").
——— F4-, Fs-algorithms (Faugere, 2001~):
If n = m, the complexity seems O(A™) where A ~ 10.

If m > n (over-defined), it is more efficient.

Especially if m > Zn(n+ 1), it solves in polynomial time (if a
solution exists).

t
A(X]?-.XI)Q:"'?Xr%:xla"'axn) =b: Ol

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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If n > m (under-defined), there are efficient algorithms.

Especially if n > %m(m + 1), we can find a solution in polynomial
time (H, Miura-H-Takagi, Cheng-H-M-T, 2009~2014).

(f(x) = w1 ((x1-quadratic) = 0
fQ(X) =2 linear transf. ) (Xlﬂ XQ—quadratic) =0
LX) =% L (x1, - -, Xm-quadratic) = 0

Even if n < %m(m—l— 1), there are efficient algorithms by combining
the Grobner basis algorithm.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

n> im(m+ 1) | polynomial time

T more efficient

n=m almost O(10")

| more efficient

zn(n+1) < m | polynomial time

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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2. Rank attacks.

To recover T partially by checking the ranks of coefficient matrices
of the quadratic forms in F and G.

Gi, ..., Gy nx n matrices with gj(x) = x*G;x + (linear).
Fi,...,Fm: nx n matrices with fj(x) = x*F;x + (linear).

Fi= 3 (S'GS)=S"| 3 4G ]S, (T =(t)

1<i<m 1<i<m

Example. ML.
Gp: rank n, Gnh_1: rank n—1, ...
= Ja € k s.t. rank(F — aFy) < n—1.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

Min-rank attack: Jaj,...,a, € kand R > 1 s.t.
rank(ayF1 + -+ amFm) < R.
If R is smaller, the min-rank attack is more efficient.
High-rank attack: 3R, L > 1 and 31,...,0, € k s.t.
rank(F, — f1F1 — -+ — BLFL) < R.

If L is smaller, the high-rank attack is more efficient.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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When q is small enough, we can find {«;} or {3;} exhaustively.
The complexity is

MR: (gf - (polyn.)), quantum: (g®/2-(polyn.)),

HR: (g* - (polyn.)), quantum: (q%/2- (polyn.)).

When q is large, generate a system of polynomial equations
derived from the condition for the rank and solve it. It is

MR: m variables, degree R + 1,
HR: L variables, degree R + 1.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

3. Conjugation attack.

When the coefficient matrices Gy, ..., G,, are in special forms,
recover S by using its conjugation properties.

F;i = S'H;S, (H; is a linear sum of Gi,..., Gp),
= F YR =STY(HHy)S.

If H1_1H2 is in special form, one can recover S easily.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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Ex. 1. An attack on Oil-Vinegar signature scheme
(Kipnis-Shamir, 1997)

I - (0”’ *)
¥k *m

> = x * ES
The inversions of these matrices are ( : 0 )
m

e L * *
= F'hR=S5 1(6” *m)s
% -1 - | *m *
Find $; s.t. S{(F{ "F2)51 = .

Then S; satisfies SS; = <*m ¥ )

[ JE

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

Ex. 2. An attack on Multi-HFE (H, 2015)
*N
él}"':ém: 1

*N
The inversions of these matrices are same.

*N
= ofy HRp= 5t 5
N
After diagonalizing Fl_le,
N
one can recover Sy s.t. SS; = - (perm.).

*N

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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4. Linearization attack.

An attack to recover polynomial equations

H(Xla"':xn:yia"' :ym) — 0:
if arbitrary pairs of plaintext x = (xy,...,x,)" and ciphertext
y=(y1,--.,ym)" satisfy them.

Prepare sufficiently many p-c pairs (x, y), substitute them in
H(x, y) and determine the coefficients of H(x, y).

MI: H is linear in x and in y.

If the degree of H is smaller, this attack is more efficient.
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CPA (Chosen Plaintext Attack).
(x,y): x —y.

Available on MI.

CCA (Chosen Ciphertext Attack).

(x,¥): y — x.

If a special polynomial are used in the decryption process,
it can be recovered by CCA.
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5. Differential attack.

An attack by using the difference
DF(x,c) := F(x+ ¢) — F(x) — F(c) + F(0).
If there exist a polynomial H(a) s.t.
DF (ax, c) + DF(x, ac) = H(a) - DF(x, c),

one can recover useful information to decrypt.

Sflash, selected in NESSIE (2003), was broken by
Dubois-Fouque-Shamir-Stern (2007).
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6. Physical attacks.

Side channel attack.
Available on Sflash (Okeya-Takagi-Vuillaume, 2005)

Fault attack.
Available on most MPKCs (H-T, 2011).

There is a simple contermeasure.
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1. Direct attack: Solving a system of quadratic equations directly
to recover a plain-text.

2. Rank attack: Using the property of the ranks of coefficient
matrices to recover a secret key.

3. Conjugation attack: Using the conjugation property of
coefficient matrices to recover a secret key.

4. Linearization attack: Recovering (non-trivial) polynomial
equations by plaintext-ciphertext pairs.

5. Differential attack: Using the properties of differentials of the
quadratic forms.

6. Physical attacks: Available on most MPKCs under naive
implementations. There is a simple countermeasure.

etc.
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Proposed MPKCs

Stepwise type schemes.

The quadratic equations are solved step-by-step.

ML.

g1(x) =(xi-linear),
g2(x) =x2 - (xq-linear) + (x;-quadratic),
g3(x) =x3 - (x1, xo-linear) + (x1, xo-quadratic),

gn(x) =xp - (x1, ..., xp—1-linear) + (xi, ..., x,—1-quadratic).

Broken by the high-rank attack.
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Oil-Vinegar signature scheme (Patarin, 1997).

n = 2m (under-defined).

gi1(x), ..., &8m(x) = Z Xi + (Xm+1, - - ., Xom-linear)

1<i<m

+ (Xm+1, - - - » Xom-quadratic).

Signature generation.
1. Choose uy,...,uyn € k randomly.

2. Solve a system of linear equations

81(X15 2« s Xy ULy + =+ 5 Um) = Y1,
gm(XL cees Xmy ULy e ey um) = Ym-
t _1 . . .
Transform (x1,...,Xm, U1,...,Um)" by S7*, which is a signature.
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; x . 0 L N
Since the coefficient matrices are : % ) it is broken by the
m

conjugation attack (Kipnis-Shamir, 1997).

Unbalanced Oil-Vinegar signature scheme.
(UOV, Kipnis-Patarin-Goubin, 1999)
n=2m+v, (v > 1).

0
gi(x); .. gm(x) = x* ( "

* *m+v
Not broken by the conjugation attack directly.

But an arranged one recovers an equivalent key in time
O(g" - (polyn.))

Good: Signature generation is simple, and the security seems
enough under suitable parameter selection.

*

) x + (linear form).

Not good: Key size is relatively large.
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Rainbow. (Multi-layer UOV, Hybrid of ML and UOV,
Ding-Schmidt, 2005)

Double-layer version.
01,02,V & 1.
n:=o0+0+v, m:= o0+ 0.

g1(x);: - 380 (x) = Z Xi(Xoy+15 - - - y Xp-linear)
1<i<o;

o1 +1<i<m
+ (Xm+1, - - -, Xp-quadratic).
Signature generation: Substite random values into xy,1,..., X

and solve systems of linear equations step-by-step.
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Coefficient matrices are as follows.

0o, * *

G, .,Gol—(* O

* k %y

0Oy 0 O
GOI_H_,...?Gm_(O 002 *
0 ok

Security:

High-rank attack: O(g° - (polyn.)),
quantum: O(q°/2 - (polyn.)).

Min-rank attack: O(g®™" - (polyn.)),
quantum: O(g(®*+¥)/2. (polyn.)).

Arranged conjugation attack: O(q®™V~° - (polyn.)),
quantum: O(g(%2tv=21)/2. (polyn.)).
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If 01,00, v are similar, n ~ 1.5m
the security is about O(g° - (polyn.))
(quantum: O(g°/? - (polyn.))).

Good: The signature generation is simple and the security is
enough under suitable parameter selection.
Key size is smaller than UOV.

There are many ideas to reduce the key size more.
e.g. Chen-Yang (2003), Petzold-Bulygin-Buchmann (2010~),
Yasuda-Takagi-Sakurai (2014), ...
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Linear Comp. Security Size

ML Small, Many times Bad Small
Rainbow Middle, Twice (maybe) Good | Middle
uov Large, Once (maybe) Good | Large

Security and the speed of signature generation are good.

The key size is relatively large.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem

—227—



Extension field type

Generating a quadratic map by a polynomial map over an
extension field.

k: a finite field.
K: an extension field of k.
G: a polynomial map over K.

G:k" XL kN 9, kM 1, ym

M1 (1980's)
N=M=1.
G(X) = X9

Broken by the linearization attack (Patarin, 1995).
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HFE (Hidden Field Equation, Patarin, 1996)
N=M=1(n=m),
r<n-—1.

GX)= Y X9t + Y BiXT 4.

0<i<j<r 0<i<r

Decryption: Solve a univariate equation G(X) — Y = 0.

The complexity by Berlekamp's algorithm is about g*~°".

= relatively heavy!

Security: The min-rank attack is available if r is small.
x=(X1,..., %)t — (X,Xq,...._an_l)t =: X

n+r+1

Th lexity is about
e complexity i1s abou ( Fl

)w, (2<w<3).
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Smaller g" is better for decryption,
larger r is better for security.

= g should be small (g = 2 for most cases).
= n should be large if g is small.
= Key size is relatively large.

The original HFE is not very practical...
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Arrangements.

Minus: Reducing (hiding) several quadratic forms.
Plus: Adding several quadratic forms.
Vinegar: Adding variables.

Projection: Reducing several variables.

Sflash (Patarin-Goubin-Courtois, 2001):

Minus of Matsumoto-Imai,

Selected by NESSIE, 2003,

Broken by the differencial attack (Dubois-Fouque-Shamir-Stern,
2007).

Quartz (Courtois et al., 2001), Gui (Petzold et al., 2015):
Minus and Vinegar of HFE (HFEv-).

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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Multi-HFE (Chen-Chen-Ding-Werner-Yang, 2008)
Constructed by Multivariate quadratic map.

N>1,
G: KN - KN,

g;(X]_, e ,XN) = Z Ozg)X;Xj + Z ,6§”X,— -+ ’YU).

1<i<j<N 1<i<N

Decryption: Solve a system of N quadratic equations of N
variables.

If N is small enough, it is efficient.

If N is large, a special structure of G is necessary to be inverted
feasibley.

— It can be used as “padding out” the size.
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Security: Since
GiI(X) = Xt (*N ) X + (linear),

the min-rank attack is available if N is small
(Bettale-Faugere-Perret, 2013).

N+ 1\"
The complexity is about (n J;! +—I ) ; 125 wieg 3)
Since
*N
fi(x)=%"S" Sx + (linear),
N

the conjugation attack is available (H, 2015).
It is in polynmoial time (not highly depending on N).
= "“Padding out” is not useful.
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HMFEv. (Petzoldt et al, 2017)
A vinegar variant of Multi-HFE.

The security against the min-rank attack and the conjugation
attack is much better than Multi-HFE.

However, if N is small, the security against the high-rank attack is
not enough (H, 2017).
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ZHFE (Porras-Baena-Ding, 2014).

An over-defined type HFE using cubic polynomials in the
decryption process.
N=1,M=2(m=2n). G: K — K2
G1(X), G2(X): quadratic forms of (X, X9,..., X9 ") s.t. the
degree of

X - G1(X) + X9 - Ga(X)

is small.
Decryption: For Y7 = G1(X), Y2 = G2(X), solve the univariate
polynomial

X(G1(X) = Y1) + X9(G2(X) — Y2) = 0.

Since the degree is small, it seems efficient.

Security: a little secure than HFE against the min-rank attack.
Using a CCA approach, one can recover the decryption polynoimal.

= ZHFE is not much more practical than HFE.
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Extension field type:

MI: a univariate monomial, broken.

HFE: a univariate polynomial, serious trade-off between security
and efficiency, arrangements are better (7)

Multi-HFE: multivariate quadratic polynomials, broken.

ZHFE: two univariate polynomials, not much more secure than
HFE.
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Q. How about an extension “(non-commutative) ring”, not an
extension “field”?

A. Not recommended.

Artin-Wedderburn's theorem.

If the ring R is semi-simple, there exist integers ny,...,n; > 1 and
division rings Ki,..., K] s.t.

R ~ NI‘dtnl(K]) B+ B Matm(K,«).

— Taking the basis carefully, the attacker can reduce the security
against the rank attacks and the conjugation attacks.
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Other schemes

ABC Encryption scheme. (Diene-Tao-Ding, 2013)

r>1, n=r? m = 2n (over-defined).

A, B, C € Mat,(k[x]): entries are linear forms of xi, ..., Xp.

Gl = AB. Gg = AC

G : k" — k™: the quadratic map given by the quadratic forms in
G, Go.

Decryption: Solve a system of linear equations of xi, ..., x,
derived from B = C(G, ' G).

Security: O(qV" - (polyn.) against the min-rank attack and the
linearization attack.

The decryption fails with the probability (about) g~ 1.
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YTS signature scheme. (Yasuda-Takagi-Sakurai, 2013)
r>1, n=r? n~ 2m (under-defined).

X € Mat,(k[x]): the entries are xi, ..., X,.

Yii= XX, Ys i= Xf(""l 5))(, (6/p) = —1.

G : k" — k™: the quadratic map given by the quadratic forms in
G

Signature generation: Find X such that Y := X'X or
V=gl X,

Security: O(qV" - (polyn.)) against the min-rank attack,
polynomial time by the conjugation attack. (H, 2014).
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Summary and open problems

It seems that there are good signature schemes (UOV, Rainbow,
HFEv-), while the key sizes are relatively large.

The encryption schemes seem less practical than the signature
schemes.

It is (maybe) because generating a one-to-one quadratic map G
is difficult.

If G is “strictly” one-to-one, G may have a special structure
(then insecure?).
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Q. The maps F, G are quadratic. How about (higher than) cubic?
The key size is larger.
The security is not much more than quadratic ones

(weakness often appear in the quadratic parts).

Q. Are there security proofs?

A. Not at all. Most “secure” MPKCs are “presently” unbroken.

Q. Are there another expressions of MPKCs?

Writing down MPKCs over [F, by another (NP-complete or
-hard) problems seems interesting.

Yasufumi Hashimoto (Univ. Ryukyu) A survey on Multivariate Public Key Cryptosystem
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On the Security of
Homomorphic Encryption Schemes
Based on Ring-LWE Problem
over Decomposition Fields

Shinya Okumura (Osaka University)
This is a joint work with
Shota Terada, Hideto Nakano and Atsuko Miyaji (Osaka University)

1. Introduction

Motivation
* Ring-LWE problem provides efficient cryptographic applications
- Post-quantum public key cryptosystems
- Fully homomorphic encryption (FHE) schemes
- Difficulty of Ring-LWE mainly depends on
- Parameters on Noise
- Underlying number fields
* Such schemes use Ring-LWE over cyclotomic fields
from viewpoints of efficiency and security
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- (Especially, in the case of FHE) improving efficiency is still needed
- Arita and Handa proposed to use decomposition fields of
cyclotomic fields

Our Work
- Experimental analysis of the security of Arita et al.’s HE scheme
- Execute basic lattice attacks against Ring-LWE over
- m-th cyclotomic fields (m : prime number)
- Decomposition fields

Today'’s topics

- Brief description of HE, Ring-LWE, Arita et al.’s idea,
Lattice attack we used

- Show some our experimental results

2. Homomorphic Encryption

Homomorphic Encryption Scheme
- Homomorphic encryption (HE) schemes can compute addition,
multiplication or both operations of plaintexts without decrypting

(P’m\ Enc@=b — Ciphertext
Space a . b Space
__Space Dec(b)= a P

Additive HE : Dec(Enc(ay) + (% )Enc(ay)) = a; + a,
Multiplicative HE : Dec(Enc(a;) x (+)Enc(ay)) = a; x a,
Additive+Multiplicative : Somewhat/Fully HE
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Application
- HE schemes have many application to cloud computing area

Not HE ~Untrusted cloud server

Encrypted data D¢

' ~Owner of cloud server can know information of
— Computation | user’s (decrypted) data

results
Return

af

~Untrusted cloud server

HE

Encrypted data Dg

COmII:utaﬁon —Owner of cloud server cannot know
— results information of user’s (decrypted) data

Return
v

3. Ring-L WE

Ring-LWE (RLWE) over number fields
K : Number field of [K: Q] =n

R=0K
qEZ
R, = R/qR

D, q : Discrete Gaussian distribution over R,
(with mean 0 and variance o?)

U(X) :Uniform distribution over a set X

acUR,), sUR,), ecDyp, b=as+e

(a,b) : RLWE sample

R = R(R,q,0,s) : Set of RLWE samples
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- Search Ring-LWE over K (SRLWE(R))

Find s from arbitrary number of RLWE samples
(ai, bi = a;s + el-) — R

- Decision Ring-LWE over K (DRLWE(R))
Distinguish RLWE samples and samples from U(R, X R,)

4. A | attice Attack on Ring-l. WE

Lattices
neN

by, ..., b,, € R™: R-linearly independent vectors (m < n)
L :=7by + -+ + Zb,, : Lattice in R with basis {by, ..., b,,}
dim(£) :=n : dimension of £

rank(£) := m : rank of £ ) sh .t .
= poNOrest * aiven point
- v$:tor /_, p
. /J:“”""Cﬁlz)?est vector
2.1. 2. Problems on Lattices ' o ’
1. Shortest Vector Problem (SVP) * . ‘
2. Closest Vector Problem (CVP) [ ’

SVP and CVP on a 2-dimensional lattice
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~

p

SVPon<:

For a given norm || - || on R", find a shortest non-zero vector s € £, i.e.,

|s|| = min{||x||| x € £,x # 0}

\_ J

ge R™ : Given point A

CVPon (£,0) :

For a given norm || - || on R", find a vector c € £ closest to t, i.e.,

L It — cll = min|lt — x|| | x € £} )
Small Large

Rank of £

Difficulty Easy Difficult

of SVP/CVP

Reduced Basis

To solve lattice problems, reduced bases:

- Almost orthogonal

- Short

are required

LLL and BKZ are famous as algorithms for computing such bases
We use root hermite factor to evaluate the quality of reduced basis
L : n-dimensional lattice

b € £: Shortest vector in reduced basis vectors

Root hermite factor is defined to be the value satisfying

1
||by| = Y™ det(L)n
y is smaller->Quality of reduced basis is better
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Lattice Attack [1]

Wo, U1, .-, Un—1 : Z-basis of R

(ag, aq, ..., an_1)" € (Z/qZ)" . Uniformly random

(S0, S1, - Sn—1)T € (Z/qZ)"™ : Random (Js;| < 1 in the case of FHE)
(e, €1, ...,en—1)" € (Z/qZ)" : From D, g, (q > 0)

a=aoly+ajpy + -+ ay_1ln1

5 =SoMo + S1H1 t -+ Sp_1Hn-1

e =eolptept tey 1l

b=as+e=bouyg+bips+ -+ by 1Mn-1

b = (bg, by, ... by_1)T, s = (5'0,8'1, e, S )T, @ = (€', €1, ..., € n1)T
s';,e'; - Variables

[2] Guillaume Bonnoron, Caroline Fontaine “A Note on Ring-LWE Security in the Case of
Fully Homomorphic Encryption”, INDOCRYPT 2017, LNCS, vol. 10698, pp. 27-43, Springer, Cham, 2017.

b=as+e
= (S0, 51, ) Sp—1, €0, €1, ., €n—1)T is @ (short) solution to
As+e=hb(mod. q)- () (4 € M,(Z/qT))
Short solution to () can be expected to be
(50,51, ) Sn—1,€0,€1, .., €1)"
* Method of finding short solution
A=A,
(x) = 43() = b (mod. g)-- (%)
(3) : Solution to ()
L ={v e z?"|A'v= 0 (mod. q)} : Lattice

column vectors of (_’A (2,) form a basis of £’
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f : Solution to approximate CVP w.r.t. £; and (7)

@)= -f

Each entry of (3) is small = (a, b) : (Probably) RLWE sample

We used

- Babai’s nearest plane algorithm
- Kannan’s embedding technique
to solve approximate CVP

h. Arita-Handa's Propopsal

Plaintext slots of HE based on Ring-LWE
{m - m-th root of unity (N > m > 2, prime)
K = Q({,,) : m-th cyclotomic field

p(m) = |(Z/mZ)"|

R = Z[{,,] - ring of integers of K

p : prime number

PR : ideal of R generated by p

ptm = pR =B;B, - B,_, : prime ideal decomposition
(8B, : prime ideal, i # j = B; # B;)

R/B; = F, (d = ¢(m)/g)
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R/pR : plaintext space
R/PR=TF,a @ - @D Fpa- (*) (Chinise Remainder Theorem)

|
g plaintext slots = g plaintexts can be encrypted at the same time

(+) =HE schemes need arithmetics on F
d may be large =HE will be inefficient

¥p =1 (mod. m)= p splits completelyinK =d =1
However, p should be small from the viewpoint of efficiency
Eg.p=2

Arita et al.’s idea [2]

Use a subring R, of R (called the decomposition ring w.r.t. p)
having special properties :

() Rz/pR; =F, ® - @ F,

- Rank of lattices occurring in lattice attack is
- mth cyclotomic field : m -1
- Decomposition field : g

* The number of plaintext slots

- mth cyclotomic field : mT_l

- Decomposition field : g

[2] Seiko Arita and Sari Handa “Subring Homomorphic Encryption”, accepted to ICISC 2017.
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(ii) Advantages of R (for cryptographic application) are inherited
- Having good bases
- Equivalence of search Ring-LWE and decision Ring-LWE
- Quantum polynomial-time reduction from approximate
shortest vector problem on ideal lattices exists

Arita et al. constructed a HE scheme with IND-CPA secure
if Ring-LWE over R; is hard
*Arita et al. assume m is a prime number

Decomposition Field and Decomposition Ring
G =Gal(K/Q) :={0:K = K|o(a) = a,Va € Q}

Gy ={0€EG|o(B;)=B;(i=0,..,g— 1)} : Decomposition group
of Kw.r.t.p
Z :={a € K|o(a) = a,Vo € Gy} : Decomposition field of K w.r.t. p

Rz := Rn Z : Decomposition Ring
pi=Rz;NDB;

Gy acts on R/B; = [« as pth Frobenius map
i.e., o(x) = x?» (mod B;), Vo € Gy, VX ER
= R;/p; = F,= Rz/pR; = F, @ --- @ F, : plaintext space
q= p{) | g plain'text slofs
R;/qR; = Z/p’Z @ --- ® Z/p*’Z : plaintext space
in some application
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Gal(K/Q)= (Z/mZ)*
Gg = (p (mod. m)) c (Z/mZ)*

{to, ..., t4_1} : Complete set of representatives of (Z/mZ)*/(p)
to,...,tg—1 € Zsuch that t; represents t;forall0 <i<g-1

d

= |Gyl

kg, .
M= ) P 0<isg-1D

0<k=d-1

1Mo, -, Mg-1 IS @ Z-basis of R,

6. Our Experiments

Procedure of Our Experiments

Parameters i p=2,q=2",r"<r,q' =2"

1.

2.
2.
3.

Generate 100 RLWE samples (mod. q)

Execute samples (mod. q')

Construct lattices from samples

Execute Two attacks against search Ring-LWE
- Babai’s nearest plane algorithm

(i) Apply BKZ with block size = 10 to ( I 0O )

-A ql
(ii) Compute root hermite factor to evaluate the quality of BKZ
(iii) Apply Babai’s nearest plane algorithm to BKZ reduced basis
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- Kannan’s embedding technique

(i) Construct lattices (f,q o t) from (_’A ‘21) and ¢ = (})
o 1

(ii) Apply BKZ to (fA pe t) (After that compute root hermite factor)
o 1

We used the following CPU and software

« CPU: Intel(R) Xeon(R) CPU E7-4830 v4 (2.00GHz) x4
* RAM: 1534GB

* OS: Ubuntu 16.04

- SageMath version 7.5.1( Sample generation )

- Magma version 2.23-1(Attack)

Experimental Results (Babai’s nearest plane algorithm)

Decompo 0 eld
m 1801 4051 2731
m 73 83 107
g 72 82 105
r 180 180 180 r 180 180 180
r 20 20 20 r 20 20 20
The "”mb%&; 100/ | 100/ 20/ Ul "umb% of 100/ 100/ 33/
successes 100 100 100 successes/100 100 100 100
Average of Average of
root hermite factors| 10144 | 1.0144 1.0196 || coot hermite factors | 10144 | 1.0145 | 1.0196
Average of running Average running
times [sec] 261.22 | 520.171 | 2402.339 times [sec] 238.419 | 480.640 | 2512.291
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Experimental Results (Kannan’s embedding technique)

Decompo 0 eld
m 1801 4051 2731
m 73 83 107
g 72 82 105
r 180 180 180 r 180 180 180
r 20 20 20 r 20 20 20
The number of 100/ | 100/ 74/ Uiz "”mbergg 100/ | 100/ 58/
successes/100 100 100 100 successes/1 100 100 74 *
Average of Average of
root hermite factors | 0-9818 | 0.9843 0.9966 | e I £ 0.9841 | 0.9952
Average of running Average running
times [sec] 37.671 95.961 540.751 times [sec] 38.880 96.865 769.902

* BKZ did not terminate, and so we give incomplete result

/. Conclusion and Future Work

Conclusion
1. We executed (basic) lattice attacks
- Babai’s nearest plane algorithm
- Kannan’s embedding technique
against Ring-LWE over decomposition/cyclotomic fields
2. We could not find the disadvantage of using Ring-LWE
over decomposition fields, but more analysis should be done
Future Work
- Execute more experiments on lattice/other attacks
- Improve attacks or find advantage by using properties of
decomposition fields
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Thank you for your attention!
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