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Workshop on analysis of mathematical cryptography via algebraic methods 
 

Date February 5 (Mon) - February 7 (Wed), 2018 
Venue Meeting RoomA Nishijin Plaza, Kyushu University 

2-16-23, Nishijin, Sawara-ku, Fukuoka-shi, Fukuoka, 814-0002 JAPAN 
URL  http://www.imi.kyushu-u.ac.jp/events/view/2227 

 
February 5 (Mon) 
 13:00  Reception 
 13:15 - 13:25  Opening Remarks 
 
 13:30 - 14:30 Speaker : Mehdi Tibouchi (NTT) 
   Physical attacks on lattice-based schemes 

Abstract:  
As the NIST competition on postquantum cryptography begins, it becomes 
increasingly important to understand not just the theoretical, black-box security 
of lattice-based schemes, but also the security of implementations. In this talk, 
we will discuss recent developments in this area, and particularly fault and side- 
channel attacks on lattice-based signatures, some of which involved interesting 
mathematical techniques. 

 
 
 14:45 - 15:45 Speaker : Kim Taechan (NTT) 

Use of algebraic subfield structure in cryptanalysis 
   Abstract: 

In this talk, we explain how the algebraic subfield structure can be exploited to 
obtain more efficient cryptanalysis in many cryptosystems. Firstly, we describe  
”extended tower number field sieve” method (based on my work at Crypto2016 and 
PKC2017) that leads a significant security loss in pairing-based cryptosystems using 
subfield structures of finite fields. In addition, we also present that lattice reduction 
algorithms (e.g. LLL algorithm) can be accelerated when the lattices are defined over a 
number field that contains a certain subfield (whose ring of integers are Euclidean ring). 
The later topic is based on my recent work that appeared at IMA conference on 
Cryptography and Coding. 
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16:00 - 17:00 Speaker : Suguru Tamaki (Kyoto University) 
Fine-grained complexity and cryptography: A personal survey 
Abstract: 
A major goal of computational complexity theory is to classify computational 
problems into tractable and intractable ones. The most adopted definition of tractability 
is polynomial time solvability. 

Problems are shown to be intractable based on assumptions such as "P is not equal to 
NP" or "integer factorization requires super-polynomial time". 

The goal of fine-grained complexity theory is to determine more precise complexities 
of computational problems using more quantitative but plausible hardness assumptions. 
Recently we have seen lots of exciting algorithmic and hardness results in this rapidly 
developing field. I will present a personal survey on fine-grained complexity focusing on 
topics related to cryptography such as the shortest and closest vector problems, systems 
of multivariate polynomial equations and fine-grained average-case hardness. 

February 6 (Tue) 
9:00  Reception 
9:30 - 10:30 Speaker : Masamichi Kuroda (Hokkaido University) 

On monomial GAPN (Generalized Almost Perfect Nonlinear) functions and their 
classification 
Abstract: 
APN (Almost Perfect Nonlinear) functions on nite elds of characteristic two 
have useful properties and applications in cryptography, coding theory, nite geometry 
and so on. On the other hand, APN functions for odd characteristic have quite different 
algebraic properties. GAPN (Generalized APN) functions were de ned to satisfy some 
generalizations of basic properties of APN functions for even characteristic [K and Tsujie, 
FFA vol. 47, 2017]. In this talk, we will introduce monomial GAPN functions and their 
partial classi cation. This study is based on a joint work with Shuhei Tsujie (Hokkaido 
University). 

10:40 - 11:40 Speaker : Yusuke Aikawa (Hokkaido University) 
Elliptic curve method with complex multiplication method 
Abstract: 
In SCIS 2017, M. Shirase proposed a new factoring algorithm for integers by 
combining elliptic curve method (ECM) with complex multiplication method 
which is one of generating methods of elliptic curves. This algorithm works in 
polynomial time for a composite having a prime factor of special form which is 
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related to the complex multiplication theory. However, the range of application 
of this algorithm is limited. We give a generalization and extend the range of 
application. In this talk, firstly I will give a brief explanation of ECM and complex 
multiplication theory. After that, I will explain the generalized algorithm. This is 
a joint work with K. Nuida and M. Shirase. 

 
 
 13:10 - 14:10 Speaker : Norihiro Nakashima (Tokyo Denki University) 
   A modification of the discrete Fourier transform for the code defined 

by Garcia-Stichtenoth tower 
Abstract: 
A decoding algorithm for algebraic geometry codes is proposed, using the discrete 
Fourier transform and Berlekamp-Massey-Sakata algorithm. Meanwhile 
Garcia and Stichtenoth explicitly constructed a tower of algebraic curves which 
attains the upper bound of Drinfeld-Vladut bound. In this talk, I present a method 
to reduce the computational complexity of the discrete Fourier transform for the  
algebraic geometry codes defined by Garcia-Stichtenoth tower. A key of this reduction 
is to give affine rational points for Garcia-Stichtenoth tower.  
This is a joint work with H. Matsui. 

 
 
 14:20 - 15:20    Speaker : Carlos Cid (Royal Holloway, University of London) 
   Code-based cryptography: design and security 

Abstract: 
In 1978, Robert McEliece proposed a public-key encryption scheme based on 
error-correcting codes. The McEliece scheme (and its variant due to Niederreiter) 
is a simple, elegant and efficient design, and has its security based on two  
hardness assumptions: the intractability of decoding a random linear code,  
and the difficulty of distinguishing some permuted linear binary codes from a random 
code. McElieceʼs construction is over 40 years, and despite enormous cumulative efforts 
by the cryptographic community, it remains unbroken when instantiated with Goppa 
codes for suitable parameters. Its main drawback is the large public key, and attempts  
to reduce it to more manageable sizes have often resulted on insecure designs.  
Code-based cryptography is again attracting considerable attention from the  
Cryptographic community, mainly due to the ongoing NIST PQ competition: over 20 
submissions are based on errorcorrecting codes. In this talk we give an overview of 
code-based cryptography, main designs and their security, and discuss a selected few 
submissions to the NIST competition. 
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 15:30 - 16:30 Speaker : Atsushi Takayasu (The University of Tokyo) 

Solving RSA and factoring problems using LLL reduction 
Abstract: 

  In 1996, Coppersmith introduced lattice-based methods for finding small roots 
of modular polynomials. By using the method, a number of vulnerability of RSA 
have been reported so far. In this talk, I explain the basic approach of the 
method. Then, I introduce our attack on small CRT-exponent RSA. The attacks 
improve previous ones proposed by Bleichenbacher-May (PKC'06) and 
Jochemsz-May (Crypto'07). In general, to recover as large root as possible, we 
should design appropriate lattices that relate to algebraic structures of the  
target polynomials. We obtain the results by exploiting additional algebraic  
structures in a clever way. 

 
 
 16:40 - 17:40 Speaker : Koji Nuida (AIST/JST PRESTO) 

Towards fully homomorphic encryption without ciphertext noise from group theory 
Abstract: 
Fully homomorphic encryption (FHE) is a kind of (public key) encryption scheme that 
allows anyone to perform arbitrary operations on plain-texts via certain special operations 
on the corresponding ciphertexts. In 2008, Ostrovsky and Skeith III suggested an approach 
towards achieving FHE from group-theoretic viewpoint, but no observations on how to 
actually construct FHE based on their approach have been given so far. In this talk,  
I explain my recent work based on this approach, which is still incomplete but would show 
several potential, interesting connections between group theory and cryptography. 
 

 18:10          Banquet 
 
 
 February 7 (Wed) 
  9:00  Reception 
  9:30 - 10:30 Speaker : Yasufumi Hashimoto (University of Ryukyu) 
   A survey on multivariate public key cryptosystem 

Abstract: 
A multivariate public key cryptosystem (MPKC) is a public key cryptosystem whose public 
key is a set of multivariate quadratic forms over a finite field. It has been considered to be 
one of candidates of Post Quantum Cryptographies. From 1980s to now, various MPKCs 
have been proposed and some of them were already broken. In this talk, we give a survey 
on MPKCs. 
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 10:45 - 11:45 Speaker : Shinya Okumura (Osaka University) 

On the Security of Homomorphic Encryption Schemes Based on Ring-LWE Problem over 
Decomposition Fields 

   Abstract: 
Ring-LWE problem has been an important tool in cryptography to construct cryptosystems, 
key exchange protocols and homomorphic encryption schemes, which are expected to be 
secure against attacks by quantum computers. Cyclotomic fields are always used as 
underlying number fields of Ring-LWE problem from the viewpoints of security and 
efficiency. However, especially, in the case of homomorphic encryption schemes, 
improving the efficiency is still required. Arita and Handa proposed to use certain subfields 
of cyclotomic fields with prime conductors, called decomposition fields, as underlying 
number fields of Ring-LWE problem to construct a homomorphic encryption scheme at 
ICISC 2017. Their homomorphic encryption scheme can provide many plaintext slots in 
which homomorphic arithmetics are easily executed. However, Arita et al. did not analyze 
the security of Ring-LWE problem over decomposition fields. In this talk, we will present 
experimental results on attacks using lattices and ring structures against Ring-LWE 
problem over cyclotomic fields (with prime conductors) and decomposition fields, which 
indicate that Arita et al.'s homomorphic encryption scheme would be as secure as 
previous ones. This is a joint work with Shota Terada, Hideto Nakano and Atsuko Miyaji 
(Osaka University). 

 
 
Organizing Committee 
  Takuro Abe(Kyushu Univiersity) 

Katsuyuki Takashima(Mitsubishi Electric Corporation) 
Koji Nuida(AIST/JST PRESTO) 

   Masaya Yasuda(Kyushu University) 
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Complexity Theory

Goal
1. understand the power/limits of computational models:
(non)deterministic/probabilistic/quantum Turing machines, 
Boolean circuits, etc.

2. classify computational problems according to the 
amount of resources to solve them:
time, space, randomness, etc.

4

References

[VW18] Virginia Vassilevska Williams: Survey on Fine-
Grained Complexity. ICM 2018, to appear

Many papers in STOC, FOCS, SODA, ICALP etc.

3
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Complexity Theory

Possible complaints about theory of NP-hardness
What is the exact time complexity of Problem X?

Case [X is in P]:
Is X solvable in linear time? 
Does X require quadratic time?

Case [X is NP-hard]:
Is X solvable in sub-exponential time?
Does X require exponential time?

6

Complexity Theory

The most popular classification criteria
Is Problem X in P or NP-hard?

Easiness give a polynomial time algorithm for X

Hardness show X is NP-hard via a polynomial time 
reduction from some NP-hard problem

Question Are we satisfied with this classification?

5
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Fine-Grained Complexity Theory

Examples of popular conjectures
ETH (exponential time hypothesis):
3-SAT requires 2 ( ) time

SETH (strong ETH):
-SAT requires 2 ( ( )) time as 

3-SUM: requires ( ) time

APSP (all pairs shortest path): requires ( ) time

8

Fine-Grained Complexity Theory

Goal
Understand tight complexities of problems

How?
Easiness give a faster algorithm for X

Hardness show X requires ( ) time 
via an ``highly efficient’’ reduction from a problem
Y that is conjectured to require ( )’ time

7
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Example: SETH hardness of OV

Orthogonal Vector (OV)
Input: , 0,1 , = =
Output: ( , ) × s.t. = 0 ?

Trivial upper bound
OV is solvable in time ( poly(log ))
Theorem [W05]
SETH implies OV requires ( ) time as 

10

(S)ETH

literal: Boolean variable or its negation
-clause: disjunction of at most literals
-CNF: conjunction of -clauses
-SAT: given a -CNF, is there an assignment to the 

variables s.t. all the clauses become true?= ¬ ¬ ¬
Upper Bounds: -SAT is in time 2 ( / ) [PPZ97,…]
ETH: 3-SAT requires 2 ( ) time
SETH: -SAT requires 2 ( ( )) time as 

9
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SETH hardness of OVReduction from -SAT to OV
-SAT instance: CNF of variable and clauses¬ ¬ ¬

OV instance: = , = { },, 0,1 , = = 2 /
OV with = = is solvable in ( )
implies

-SAT is solvable in in 2 = 2 /

12

SETH hardness of OVReduction from -SAT to OV
-SAT instance: CNF of variable and clauses¬ ¬ ¬

OV instance: = , = { },, 0,1 , = = 2 /
For 0,1 / , 

, = 01 if , … , / = makes th clause true
otherwise

, = 01 if / , … , = makes th clause true
otherwise

, , > 0 if and only if ( , ) makes some clause false

11
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References

[BGSD17] Huck Bennett, Alexander Golovnev, Noah 
Stephens-Davidowitz: On the Quantitative Hardness of 
CVP. FOCS 2017
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Motivation

Lattice of rank and dimension 
For linearly independent vectors , … , ,, … , :
Question
The best exact algorithms for e.g. SVP and CVP
run in time 2 ( ( )) [ADS15]
Can we improve the running time to 2 ( ) or 1.1 ?

16

Shortest/Closest Vector Problems

Lattice of rank and dimension 
For linearly independent vectors , … , ,, … , :
SVP compute the minimum -length of a non-zero 
vector in , … ,
CVP compute the minimum -distance of a vector 

and , … ,
15
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Gap-ETH

Gap( )-3-SAT:
given a 3-CNF satisfying either
(i) there is an assignment s.t. all the clauses become true, or
(ii) there is no assignment s.t. at least a (1 ) faction of the 
clauses become true,
decide (i) or (ii)

Gap-ETH: For some > 0, Gap( )-3-SAT requires 2 ( ) time
Non-uniform Gap-ETH: For some > 0, Gap( )-3-SAT 
requires 2 ( ) size circuits

18

M2SH

Max 2-SAT:
given a 2-CNF and an integer > 0, 
determine whether there exists an assignment 
that makes at least clauses true or not

Max 2-SAT Hypothesis:

Max 2-SAT requires requires 2 ( ( )) time2 is the minimum real s.t. multiplying two ×
matrices can be computed in time ( )

17
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Hardness of SVP

LKNH: the lattice kissing number is 2 ( )
Theorem [ASD17]
Non-uniform-Gap-ETH & LKNH 

SVP requires 2 ( ) time even for -approximation with 
some constant > 1
Cf. best exact algorithm in time 2 ( ( )) [ADS15]

Remark
[ASD17] shows other hardness results including the case of 
SVP , 2

20

Hardness of CVP

Theorem [BGSD17]

1. M2SH CVP requires 2 ( ( )) time
2. ETH CVP requires 2 ( ) time
3. Gap-ETH CVP requires 2 ( ) time even for -
approximation with some constant > 1
Cf. best exact algorithm in time 2 ( ( )) [ADS15]

Remark
[BGSD17] shows other hardness results including the case 
of CVP , 2

19
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Variant of OV> be the smallest prime, : = log
Define OV : F × × F × F asOV , = , [ ] [ ](1 )
For , {0,1} × ,

1. [ ](1 ) = 10 if = 0otherwise
2. OV , = #{ , : = 0}
OV , can be computed in time ( poly(log ))

24

Motivation

So far, we have been concerned with worst-case complexity

For cryptography, it is convenient to have a problem that is 
solvable in time ( ) but not in time ( ) on average

Can we show such results under some (possibly worst-case 
hardness) assumption?

23
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Talk Plan

1. Fine-grained complexity
2. Fine-grained complexity and cryptography
[Hardness results]

Hardness of SVP/CVP
Average-case hardness
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over Finite Fields

26

Average-case hardness of OV> be the smallest prime, : = log
Define OV : F × × F × F asOV , = , [ ] [ ](1 )
Theorem [BRSV17]
If OV , can be computed in time 
for a ¾ fraction of inputs ( , ) F × × F × , 
then OV is solvable in time in the worst case
(and SETH is false)

25
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Motivation

Gap( )-3-SAT:
given a 3-CNF satisfying either
(i) there is an assignment s.t. all the clauses become true, or
(ii) there is no assignment s.t. at least a (1 ) faction of the 
clauses become true,
decide (i) or (ii)
Gap-ETH: For some > 0, Gap( )-3-SAT requires 2 ( ) time

Can we prove Gap-ETH from ETH ?
The above is open, but [A17] provides a sufficient condition 
for Gap-ETH from cryptographic assumptions

28

References

[A17] Benny Applebaum: Exponentially-Hard gap-CSP 
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Strong OWF

Theorem [A17]
The existence of a family of exponentially-strong locally-
computable OWFs implies Gap-ETH

Remark
1. Candidates of such OWFs:
Exponential hardness of random 3-SAT over sparse 
instances [F02,…], Goldreich’s OWF [G11] etc.
2. [A17] shows the existence of a family of exponentially-
strong locally-computable PRGs under a similar assumption

30

Strong OWF

the uniform distribution over {0,1}
An efficiently computable function : {0,1} {0,1} ( )
is ( ( ), ( )) one-way
if for all randomized ( ) time algorithm ,Pr ~ ( )[ ( ) ( )] ( ) holds

is an exponentially OWF if is (2 , 2 ) for some > 0
is local if each of its outputs depends on at most inputs 

for some constant > 0
29
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Our Problem: SysPolyEqs( )

Systems of Multivariate Polynomial Equations over GF[ ]

Input: 
GF[ ] polynomials , , … ,
in formal variables , , … ,

e.g. = 3, = 2 + , = + + 1
Task:

find a satisfying assignment GF[ ]
i.e. ( ) = ( ) = = ( ) = 0 holds

e.g. ( , , , ) = (2,2,1,1)
(#SysPolyEqs( ) denotes the counting version)

34

Talk Plan

Part I: Beating Brute Force for Systems of Polynomial 
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SysPolyEqs( ) as Hardness Assumption

Crypto-systems assuming the hardness of:
1. Enumerating all satisfying assignments

Hidden Fields Equations (HFE) [Patarin’96,…]
Unbalanced Oil and Vinegar signature schemes (UOV) [Kipnis-

Patarin-Goubin’99,…]
McEliece variants [Faugere-Otmani-Perret-Tillich’10,…]
Polly cracker [Albrecht-Faugere-Farshim-Perret’11,…]

…

2. Finding one satisfying assignment
QUAD [Berbain-Gilbert-Patarin’06,09,…]
Matsumoto-Imai public key scheme [-’88,…]

…

36

Complexity of SysPolyEqs( )

Input: 
GF[ ] polynomials , , … ,
in formal variables , , … ,

Parameters: , , max deg( )
P if = 1 (linear equations)
NP-complete even if = = 2

-SAT is a special case of = 2
(each clause can be written as a -variate polynomial)

Best worst-case upper bound: × poly(input-size)
(even if = = 2)

35
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Previous Algorithms

Groebner Basis: used in practice,
double exponential time in the worst case2 ( ) or polynomial time algorithms for SysPolyEqs(2)

on degree 2 instances are known if instances satisfy some 
conditions e.g. [Yang-Chen'04,Bardet-Faugere-Salvy-
Spaenlehauer'13,Miura-Hashimoto-Takagi'13,…]/ length ``proof’’ for the unsatisfiability of 
SysPolyEqs( ) on degree 2 instances [Woods’98]

(i.e. nondeterministic algorithm for UNSAT)

38

SysPolyEqs( ) as Hardness Assumption

Strong Exponential Time Hypothesis ( is necessary)
for SysPolyEqs( ) on degree 2 instances implies:

The current best algorithm for the Listing Triangles 
problem is optimal [Björklund-Pagh-Vassilevska Williams-Zwick'14]

Beating brute force for the GF( )-weight -clique 
problem is impossible [Vassilevska-Williams'09]

37
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Our Result 2
[deterministic, counting, bounded degree]

40

variables, GF[ ], maxdeg( )
Condition Upper Bound= , : arbitrary

Cf. Our Result 1                 
(randomized search)

variables, GF[ ], maxdeg( )= 2.718… (the base of the natural logarithm)

Our Result 1
[randomized, search, bounded degree]

39

Condition Upper Bound= = 2 2 .= 2, > 2 2= , log <= , log log
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Our Result 3
[GenSysPolyEqs(2), unbounded degree]

42

Type Upper Bound
Randomized
Search 2
Deterministic
Counting 2

variables, GF[2]
products of linear forms in total

exponentially faster than 2 if = ( )

Generalization of SysPolyEqs(2)

GenSysPolyEqs(2)
Input: 

circuits (sum of products of linear forms), , … , in formal variables , , … ,
e.g. = + + 1 + + + + 1

Parameters: , total number of products of linear forms

41
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Optimality of Our Results

SysPolyEqs(2) on degree instances can be solved
in time 2 ( / ( ))
Cf. -CNF SAT can be solved in time 2 ( / )

[Paturi-Pudlak-Zane’97,…]

For =the total number of products of linear forms,  
GenSysPolyEqs(2) can be solved in time 2 ( / ( ( / )))
Cf. For =the number of clauses,

CNF SAT can be solved in time 2 ( /( ( / )))
[Schuler’05,Calabro-Impagliazzo-Paturi’06,…]

44

Remark

( -)CNF SAT is a special case of SysPolyEqs(2)
(degree instances)
e.g.= ¬ = 1 + 1 += ¬ ¬ = 1 += = 1 + 1 + 1 +

= = = 1 = = = 0
43
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Our Techniques

Polynomial Method in Boolean Circuit Complexity
plays a key role in recent results:

Circuit SAT [Williams’11,…]

All-pairs shortest paths [Williams’14]

Partial match queries [Abboud-Williams-Yu’15]

All-points nearest neighbors in Hamming metric [Alman-
Williams’15,…] 

Succinct Stable Matching [Moeller-Paturi-Schneider’16]

…

46

Proof Sketch for Our Result 1
[randomized, search, bounded degree]

45

(In what follows, we will focus on GF(2))

－87－



Our Tool 1

Lemma 1[Fast Evaluation [Yates’37,…]]
Let : {0,1} 0,1 be a GF(2)-polynomial
represented as a sum of monomials, then, 
the truth table of can be generated in time poly 2

Note: 
The number of monomials in can be 2
If we evaluate ( ) for each {0,1} ,
then it takes poly 4

48

Our Techniques

Two ingredients of our randomized algorithm:

1. fast evaluation algorithms for polynomials 
[Yates’37,…]

2. approximation of polynomials by low degree 
probabilistic polynomials [Razborov’87,Smolensky’87]

(originally used for proving circuit size lower 
bounds)

47
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Basic Idea Fails

Input: degree polynomials , , … ,
After Steps 1, 2,= , 1 + 1 + , is such that, = = = = 0 , = 0
To apply the Fast Evaluation Lemma,
we have to write as a sum of monomials,
but straightforward expansion needs 2 × 2 2 time

50

Basic Idea of Our Algorithm

Input: degree polynomials , , … ,
1. [Represent as a single polynomial] 

Define : 0,1 0,1 as (1 + ) (1 + )
so that = = = = 0 = 1

2. [Reduce the number of variables]

Define : 0,1 0,1 for some < as, (1 + , )
so that , = 1 , = 0

3. [Apply the Fast Evaluation Lemma]

Get the truth table of in time poly 2
49
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Our Tool 2

Definition:
For , … , [ ], 
define a degree polynomial { }: 0,1 0,1 as( ) 1 +

Intuition: { } 1 + = ¬
Lemma 2[Low-Degree Approximation for NOR 
[Razborov’87,…]]

Select random , … , uniformly and independently,
then, for every non-zero 0,1 ,Pr[ = 0] = 1 (cf. Pr[ 0 = 1] = 1)

52

Basic Idea Fails

we have to write = , 1 + 1 + ,
as a sum of monomials,but straightforward expansion 
needs 2 × 2 2 time

[Expanding inner products]
For each 0,1 , 1 + , is a polynomial 
in variables may have 2 monomials

[Expanding outer products]
We have to multiply such dense polynomials 2 times

Modified Idea: Approximating 
by a low degree (i.e. sparse) polynomial

51
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Modified Basic Idea
Input: degree polynomials , , … ,
1-2. Define : 0,1 0,1 for some < as

, 1 + 1 + , so that, = = = = 0 , = 0
2.5.a. For each 0,1 , approximate (1 + ( , ))

by 1 + ( , ) with random , … , [ ]
2.5.b. Approximate , (1 + )

by 1 + with random 0,1
3. [Apply the Fast Evaluation Lemma]

Get the truth table of in time poly 2
54

Our Tool 2
For random , … , [ ], ( ) 1 +0,1 , Pr [ = 1 + ] 1

is useful for the following task:
Input: -variate degree polynomials , , … , ( )
Task: represent (1 + ) as a sum of monomials

The task requires more than 2 time in general, but
the degree polynomial 1 +
can be written as a sum of monomials in time 2

53
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Running Time of Our Algorithm

2.5.a. For each 0,1 , approximate (1 + ( , ))
by 1 + ( , ) with random , … , [ ]

2.5.b. Approximate , (1 + )
by 1 + with random 0,1

3. [Apply the Fast Evaluation Lemma]

Get the truth table of in time poly 2
[Time for representing a product as a sum of monomials]

each takes time, takes × 2 time

[Total Running Time] × 2 +2 < 2
56

Correctness of Our Algorithm
Input: degree polynomials , , … ,
1-2. Define : 0,1 0,1 for some < as

, 1 + 1 + , so that, = = = = 0 , = 0
2.5.a. For each 0,1 , approximate (1 + ( , ))

by 1 + ( , ) with random , … , [ ]
2.5.b. Approximate , (1 + )

by 1 + with random 0,1
Correctness: Setting 2 = , 0,1 , Pr[ = ] 2/3

55
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Talk Plan
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Equations over Finite Fields

1. Background and Our Results
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3. Probabilistic Polynomial + majority AC0[2]
4. Multipoint Polynomial Evaluation 
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Proof Sketch for Results 2, 3

Result 2 [deterministic, counting, bounded degree]
Combining Result 1 and
[Derandomization] Epsilon–biased generator [Naor-Naor,…]

[Counting] Modulus amplifying polynomials [Toda, Yao, Beigel-
Tarui]

Result 3 [GenSysPolyEqs(2), unbounded degree]
Combining Results 1, 2 and 
[Degree reduction] (linear algebraic extension of Schuler’s 
width reduction for CNF):

reduces an instance with products of linear forms
into a set of SysPolyEqs(2) instances with = (log( / ))

57
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Proof of Lemma 2

For random , … , [ ], ( ) 1 +
Then, for every non-zero 0,1 ,Pr[ = 0] = 1 (cf. Pr[ 0 = 1] = 1)

z = 0 , Pr[1 + = 1] = 1 Pr[ 0 = 1] = 1

60

Probabilistic Polynomial

Definition:
For , … , [ ], 
define a degree polynomial { }: 0,1 0,1 as( ) 1 +

Intuition: { } 1 + = ¬
Lemma 2[Low-Degree Approximation for NOR 
[Razborov’87,…]]

Select random , … , uniformly and independently,
then, for every non-zero 0,1 ,Pr[ = 0] = 1 (cf. Pr[ 0 = 1] = 1)

59
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majority AC0[2]

AC0[2] circuit: 
gate set = {AND, OR, NOT, PARITY}
(unbounded fan-in/out)
depth = = (1)
size (#gates) =
Theorem [Razborov’87]
An AC0[2] circuit computes 
the -variate majority function= 2 ( )

62

AND

OR

NOT

PAR

AND

PAR

PAR

AND

Proof of Lemma 2

For random , … , [ ], ( ) 1 +
Then, for every non-zero 0,1 ,Pr[ = 0] = 1 (cf. Pr[ 0 = 1] = 1)

1. 0 , Pr[1 + = 0] = Pr[1 + = 1] =
2. = 1 , 1 + = 1
1+2 Pr = 0 = 1 Pr = 1= 1 Pr , 1 + = 1 =1

61
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Proof of majority AC0[2]

Lemma 3
: AC0[2] circuit, depth = = (1), size (#gates) =

random polynomial of degree = (log ) s.t.0,1 , Pr = 0.999
polynomial of degree = (log ) s.t.Pr , = 0.999

64

Proof of majority AC0[2]

Lemma 3
: AC0[2] circuit, depth = = (1), size (#gates) =

random polynomial of degree = (log ) s.t.0,1 , Pr = 0.999
Proof Sketch: Replace each

NOT by 1 +
PARITY , , … by + +
AND/OR by Low-Degree Approximation for NOR of 

Lemma 2 with De Morgan’s Law
is a composition of polynomials = a single polynomial

the union bound error probability
63
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Proof of majority AC0[2]

Corollary of Lemma 3
: AC0[2] circuit, depth = = (1), size (#gates) =

polynomial of degree = (log ) s.t.Pr , = 0.999
Lemma 4

polynomial of degree = ( )Pr , = majority( ) < 2/3
= 2 ( ) polynomial of degree = ( ) s.t.Pr , = 0.999Pr , = majority( ) < 2/3 + 0.001

65
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Proof of Lemma 1

Lemma 1[Fast Evaluation [Yates’37,…]]
Let : {0,1} 0,1 be a GF(2)-polynomial
represented as a sum of monomials, then, 
the truth table of can be generated in time poly 2

Several Proofs are known:
1. Dynamic Programming
2. Fast Fourier Transform
3. Fast Rectangular Matrix Multiplication

68

Multipoint Polynomial Evaluation

Lemma 1[Fast Evaluation [Yates’37,…]]
Let : {0,1} 0,1 be a GF(2)-polynomial
represented as a sum of monomials, then, 
the truth table of can be generated in time poly 2

Note: 
The number of monomials in can be 2
If we evaluate ( ) for each {0,1} ,
then it takes poly 4

67
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Proof of Lemma 1
Example: ( , , , ) = + + +
Want: 2 × 2 matrix 00,00 , 00,01 ,…, 11,11
Observation:, , 1, , , ( , ) (1, , , )( , , , )= , ( , )00011011 , ( 00 , 01 , 10 , (11))

= 00,00 00,1111,00 11,11
70

Proof of Lemma 1

Lemma 1’[Fast Evaluation]
Let : {0,1} 0,1 be a GF(2)-polynomial
represented as a sum of (2 / ) monomials, then, 
the truth table of can be generated in time poly 2

3. Fast Rectangular Matrix Multiplication: × . matrix, : . × matrix= can be obtained in ( ) time
[Coppersmith, Le Gall, …]

69
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Conclusion

72

Proof of Lemma 1

Let : {0,1} 0,1 be a GF(2)-polynomial
represented as a sum of (2 / ) monomials

Let , … , / , , … , / be formal variables
Then, for = (2 / ),, … , / , , … , / = ( ) ( )
Construct 2 / × and × 2 / matrices, , , ( )( ) , = ( ) ( )
(multiplication of in (2 ) time)

71
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Future Directions

Improve the running time for = , log
Improve the running time of deterministic algorithms
Similar running time in polynomial space

etc…

Thank you for your attention!
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