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Preface

These are the proceedings of the workshop “Practical inverse problems based on inter-
disciplinary and industry-academia collaboration”, held at IMI, Kyushu University, from
October twenty fourth to October twenty seventh, 2017. During the workshop, the following
investigations were reported and lively discussions were had on them. We had the following
talks during the workshop. Remark that the following comments are brief explanations of
the talks, not the titles.

• Dr. Kenji Hashizume : Original inspection techniques for expressways developed by
West Nippon Expressway Engineering Shikoku Company Limited, and some unsolved
problems for maintenance of the expressways.

• Prof. Yoshifumi Saijo : Ultrasonic medical imaging in relation with non-destructive
inspection for concrete structures.

• Prof. Hiroshi Fujiwara : How to realize multiple-precision arithmetic on MATLAB.

• Prof. Takashi Ohe : Theoretical and numerical research in an inverse problem to
determine moving wave sources by boundary measurements.

• Prof. Cheng Hua : How to give mathematical representation of the crack propagation
in viscoelastic composite material.

• Prof. Yuko Hatano : Mathematical representation of the long-term concentration of
Cs-137 in Fukushima area and its prediction.

On the first day of the workshop, Doctor Kenji Hashizume gave a talk to introduce the in-
spection techniques for the expressways developed by West Nippon Expressway Engineering
Shikoku Company Limited. It is surprising that his talk necessarily contains new technology
developed by West Nippon Expressway Engineering Shikoku Company Limited every year.
He also proposed several open problems in the maintenance of the tunnels, the bridges and
the expressways, which have a lot to do with integral geometry, propagation of cracks in
viscoelastic bodies and so on, some of which are under investigation by interdisciplinary and
industry-academia collaboration organized by the organizing committee of this workshop.

On the second day, in the morning, Professor Yoshifumi Saijo introduced medical imaging
techniques applying ultrasound. He is a medical doctor as well as a researcher to develop
non-invasive medical imaging techniques. Based on his talk, we discussed how to apply non-
invasive ultrasonic medical imaging techniques to non-destructive inspection for concrete
structures.
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In the afternoon, Professor Hiroshi Fujiwara talked about how to transplant the multiple-
precision arithmetic interface, exflib which he developed, onto MATLAB. Numerical imple-
mentation is a must for practicalization of theoretical research. He demonstrated how pow-
erful exflib is even on MATLAB by showing some examples, which are included in these
proceedings as well as their programs.

In the morning on October 26th, Professor Takashi Ohe presented his recent result to
identify moving wave sources and dipoles by boundary measurements. In his talk, he, himself,
asked a question on his treatment of generalized functions, which was discussed by partic-
ipants to be concluded that his treatment is good. Since his research has many potential
applications, a number of questions were asked on the future development.

In the afternoon, Professor Cheng Hua gave a talk on the problem “How to give a
mathematical representation of the crack propagation in viscoelastic composite materials”,
which may be a key research to predict when and where a pothole on the expressway happens.
He proposed a new idea to modify CED method, which is known as a method to analize
elastic cracks, for viscoelastic crack propagation, not modification ofK- or J-integral method.
During his talk, many questions are asked on the future development of the modification of
CED method and lively discussions were had on this problem.

On the final day, Professor Yuko Hatano give a talk on important problems. She intro-
duced some mathematical models to describe the migration of radionuclides, Cs-137, near
Fukushima area, for which what is called Richardson’s law is applied. She also introduced
her recent results on the long-term prediction on the concentration of Cs-137 near Fukushima
area. We are very sorry that it is only the abstract to report her talk in these proceedings.
For its compensation, a reference material has been appended.

We wish that we would have more opportunities to hold such workshops to discuss impor-
tant problems in practical inverse problems based on interdisciplinary and industry-academia
collaboration. We also hope that such collaboration be much more popular.

At the end of Preface, we would express our gratefulness to Ms. Kazuko Ito, the secretary
of this workshop, for her faithful help.

, 2018

Takashi Takiguchi
Hiroshi Fujiwara

February 20,2018
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Development of the devices and the methods for inspection of 
bridges, tunnels and pavement.

Kenji Hashizume 

West Nippon Expressway Engineering Shikoku Company Limited 

3-1-1 Hanazono-cho, Takamatsu-shi, Kagawa 760-0072, Japan 

Email: kenji.hashizume@w-e-shikoku.co.jp 

In this talk, our company's development of the devices and the methods for 
inspection of expressways is introduced. Here we would like to propose the 
method of the inspection of bridges, tunnels, and pavement by using cameras 
seeking for their objective evaluations and keeping their records properly, for 
which we have also developed new devices for inspection.

Key Words: inspection non-destructive infrared visual image

1. Introduction 
It requires a large amount of resources and expenses to develop and 

rehabilitate infrastructure. The followings are also essential for the resource 
utilization and social sustainability: (i) maintaining, repairing, and rehabilitating 
the existing infrastructure more efficiently and effectively. (ii) realizing the society 
where we can live safe and sound by reducing serious accidents triggered by 
deterioration and damages of infrastructure. 
Accordingly the efficient and effective inspection and repairing would be very 

important. For the given purpose, the efficient and effective inspections and 
maintenance practice shall be necessary.  The inspection method using 
cameras for the bridges, tunnels, and pavements inspections with objective 
evaluations and keeping their records is now proposed. 
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2. New devices for inspection 
2.1 Bridge Inspections 
We now explain the �J-System� (Figure-1) for the inspection method using the 

infrared cameras. The reinforced concrete fulfill its role with the joint functioning 
of rebar and concrete for the concrete structure. When the rebar gathers rust in 
the concrete, cracks appear on the concrete 
surface along the rebar, the surface concrete 
spalls, and so its durability is to be reduced. We 
have been inspecting the cracks triggered by the 
concrete delaminations along the rebar through 
the hammering. The infrared cameras inspection 
is the new one detecting the damaged areas such 
as concrete delaminations and cracks through 
photographing the concrete surface by using 
infrared cameras from remote palaces, and 
keeping the records of the concrete surface 
conditions using digital cameras. The inspections 
of bridges surface by infrared cameras are done 
by the passive method, and the followings are the 
important elements; 

i. Cameras Quality (Is the cameras suitable 
for the inspection environment?) 

Inspections are done basically during night, so 
it is important to extend the surveillance hours 
of the day and increase the annual surveillance 
days by using the camera with a short- wave 
type which has no the environmental reflections 
during night and with a enforcing-cooling- 
system type with a small thermal resolution. 

ii. Judgment on time zone of the day when 
inspections can be done (Do we inspect at a suitable time ?) 

We implement the night- time inspection basically, because there are various 
bridge types and bridge members which are not suitable to inspect during 
daytime. The time zone of the day when inspection is possible is based on data 

figure -1 J-system 

figure -2  J-system EM(S) 
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of the EMS (Environment Measuring System)(Figure-2) mounted on the 
inspection bridges. 

iii. Simple and Objective Evaluation Method (Is it possible and easy to 
evaluate objectively?) 

There could be, for individuals, differences among the inspection judgments 
because it is sometime impossible to judge the damage evaluation such as 
delamination and spalling for the bridge members and damaged parts only by 
looking at the infrared 
images. It is also 
impossible to judge the 
crack�s depth along the 
rebar. However, the red, 
yellow, and blue cracks� 
judgment- images at the 1, 
2, 3 cm depth from the 
surface are shown at the 
camera monitor (Figure 
-3). 

2.2 Tunnel and Pavement Inspection
2.2.1 Tunnel and Pavement Inspection 
We now explain the �L & L System� 

(Figure-4) inspection method which uses the 
Line Censor Camera and Laser Marker. Line 
Censor cameras mount the visual image 
censors, and can photograph seamless and 
continuous imageries. They can also be 
applied for the tunnel and pavement 
inspections.Light Cutting method is 
photographing the laser marker images from 
a upper and oblique position by using the 
laser which is irradiated vertically down on 
measuring surfaces and obtain the object 
shape. This method is used for road surface 
profile measuring. figure -4  L&L System 

Pavement

Tunnel

figure -3 J-System Monitor Image 

Damage grade Visible image Infrared image 3 level indication

Observation
Abnormal sound

Caution
Possibility of falling 
down near future

Warning
Require emergency 
measure
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i. Tunnel Inspection 
It is possible to 

obtain the fine and 
colorful continuous 
images (Figure-5) of 
tunnel lining by using 
Line Censor cameras 
mounted on the 
inspection cars with 
high speed (less than 
100km/h). The cracks 
of tunnel lining can be 
detected up to 0.2mm, 
and water leakage 
and lime isolation can 
be also found. The 
damage spreading 
drawings and their 
diagonal charts can 
easily be produced 
based on the captive 
pictures, and so we 
inspect only the areas 
where further close 
and detail investigations are necessary. And we can clearly watch the conditions 
of rusted accessories in tunnels, and so it is now possible to apply them for the 
accessories inspections.  

ii. Pavement Inspection 
We can inspect the pavement conditions such as cracks and potholes, and 

conditions of bridge expansion joints by using Line Censer cameras mounted on 
the vehicle with high speed (less than 100km/h). At the same time, we can also 
measure rutting, bumps, and upheaval through using laser cameras, and 
measure road surface profile such as height, and also evaluate the evenness, 
bump and IRI values. 
We can also display the grade evaluation for the cracks, rutting, bumps, 

figure -5 Visual image with cracks and the 
accessories 
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evenness, and IRI values obtained by the road surface measurements, and we 
can also easily sort and extract some of the data with abnormal ranges which 
show more than a certain threshold (Figure-6). Thus, the repairing and renewal 
plans of road pavement and the bumps will be made easier.  

figure -6 Pavement evaluation 
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3. Conclusion 
The bridges, tunnels, and pavement inspections by cameras can be used for 

the assistances for the on-site inspections or their alternatives, and we can 
maintain the objective evaluations and predict the future damages through their 
annual transitions. Also the repairing plan can be made easily and efficiently.  
The proposed inspection method using the cameras makes it possible to use, 
select and combine those inspection tools economically and effectively in 
accordance with budges and utilizations patterns of each organization based on 
their different road structure maintenance and repairing standards. 

This work is partially based on the discussions at 2017 IMI Joint Use Research 
Program Workshop (II) "Practical inverse problems based on interdisciplinary 
and industry-academia collaboration" 

Reference 
1) A study for detection accuracy improvement in the infrared thermography 

method,J.JCI,vol.34,No.1,1696-1701,2012 
2) Predictive probability of the concrete delamination and damage by an 

infrared thermography method, ,J.JCI,vol.35,No.1,1813-1818,2013 
3) Study of the infrared thermography method automatic diagnosis support 

system using the co-occurrence matrix, ,J.JCI,vol.36,No.1,2002-2007,2014 
4) One approach of the forecasting method for the pot-hole occurred by the 

deterioration of deeper than binder course on porous asphalt 
pavement,J.JSCE,Ser.E1,vol.70,No.3,I_17-I_24,2014 
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Development of the devices and 
the methods for inspection of 

bridges, tunnels and pavement.

West Nippon Expressway Shikoku Company Limited.

�Practical inverse problems based on interdisciplinary and industry-academia collaboration�
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The NEXCO-West Group Policy
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Operation and Maintenance Management

Inspection 
Planning

Inspection

Decision Making
Meeting

Planning for 
Design and Repair

Design
and Repair

Scheduling for inspection activities 
using stored inspection data

Conducting 
inspections

Deciding the necessity of  repair works with 
updated bridge inventory

Scheduling for designs and 
repair works 

Conducting designs 
and repair works

Inspection

Inspection Types
Type Procedure Frequency

Daily Inspection Visible unusual conditions and 
deformations of structures are  daily 
inspected behind the wheels.

Once every two days 
to
Once every four days
(Dependent on traffic 
volume)

Routine Inspection The safety of the structure is regularly 
confirmed by distant visual inspection, 
cross visual inspection and hammering 
test.

More than once a year 

Detailed Inspection The safety of the structure is 
understood by cross visual inspection 
and hammering test more in detail.

Once every five years
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Proposal of our technology

J-System

Eagle

We developed this technology to gain effective 
inspection in order to comply Road Management rule

After analyzing accumulated data we propose an 
Evaluation Indicator that related in order to understand 
deterior mechanism of Architectural structure and to do a 
preventive action

Our approachment
Not just hand over a complete system, but 
we submit a proposal by finding out the 
needs from  user and design the machine 
based on measurement accuracy as 
needed and customize soft ware that 
easy to use

Contents
. Approach and issues for
preventing concrete accident flaking

. Approach and issues for
identity of pavement damages

-1. Bridge
reinforced concrete structure

-2. Tunnel
unreinforced concrete structure
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A new concrete inspection and assessment 
method with safer manipulating, higher 
performance, and lower cost based on infrared 
thermography technology.

EM(S) Test-Piece

J Monitor

J Software
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Sounding inspection for prevention measure against flaking

Present method needs a lot of costs and time

Infrared inspection situation

Visible image camera

Infrared camera Battery

Monitor 
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Basic Theory of Infrared Thermography
te
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Sound area
temp.

noon evening night

Temp.
difference

Air temp.

night-time

concrete surface

Concrete interior

Flawed area
temp.

Sound area
temp.

Heat flow Heat flow

night-time : sound > flawed >air

Temp. differences creates thermal anomalies
view before break Infrared image view after break

daytime

Concrete surface

Heat flow

Concrete interior

Heat flow

Flaweded area
temp.

Sound area
temp.

daytime : sound <flawed < air

delamination

Inspection must be done when the temperature difference between 
air and concrete is large enough.

Inspection 
time should 
be selected 
by bridge 
type or part

Relationship between Inspection time, and bridge type or part

Direction of heat flow and temperature in damage part
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Inspection time period of each bridge type
Seto Inland Sea climate during summer/autumn

Almost all bridge types and bridge sections 
can be investigated during night time.

Inspection time period

6 8 10 12 14 16 18 20 22 24 2 4
All bridges

Wall 
balustrade

Overhang

Floor slab

Overhang

Floor slab

Overhang

Floor slab

Overhang

Girder

Floor slab

Bridge 
type Section

Time

RC bridge

Me bridge

Box beam 
bridge

PC bridge

Thermal images of different minimum detected temperatures (NETD)                        
(Daily range = 10 C: photographed at 0 a.m.)

20mm inner 
Cavity

30mm inner 
Cavity

40mm inner 
Cavity

60mm inner 
Cavity

20mm inner 
Cavity

30mm inner 
Cavity

40mm inner 
Cavity

60mm inner 
Cavity

a) Thermal image photographed by Camera A b) Thermal image photographed by Camera B
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C
)

a) Temperature variation of Camera A

Pixel number

Standard deviation = 0.034 C

Te
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C
)

b) Temperature variation of Camera B

Pixel number

Standard deviation = 0.016 C

Images of damage from different minimum detected temperatures
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Issues for accurate infrared inspection

Camera 
performance

Inspection 
environment

kind of bridge, part
detection depth

photographing distance etc

resolving power
detection wavelength region

resolution
detecting element etc

Inspection 
terms

daily range
solar radiation

wind and rain etc

clarification of inspection depth
quality guarantee and prevention of 
missing damage
high efficient inspection work and cost 
performance
efficient damage judgment and 
objectivity
recording and reproductability

Feasible time

A new concrete inspection and assessment 
method with safer manipulating, higher 
performance, and lower cost based on infrared 
thermography technology.

EM(S) Test-Piece

J Monitor

J Software
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EM(S): On-the-spot Test Piece

EM(S) Test-Piece

J Monitor

J Software

To ensure thermal condition of real structure for infrared 
testing before and during infrared inspection

To obtain real temperature data under actual 
conditions element by element

EM(S) : On-the-spot Test-Piece

Both-sided
adhesive tape

Gap 10 10cm
t=1mm   Artificial delamination

Thermal exchange

Conductive  layer
t =1mm

Sensor B (sound) Sensor A (flawed)

Sensor C (Air)

Sensor B (sound)
Sensor A (flawed)

Sensor C (Air)
Ocean sideGulf side

Concrete plate
t =10, 20, 30mm

t = 10mm 20mm 30mm

－15－



IR Image
Central cavity is 
observed.

OK
IR Image
Cavity is not observed.

NG

The thermal environment should be precisely obtained by 
an EM(S) device before any investigation

Do we inspect at a suitable time ?

Checking 
central Void

J Monitor A Display for IR images in Real Time 

EM(S) Equipment

J Monitor

J Software
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J Monitor
J-System

IR camera & 

PC

Monitor
IR Raw Image IR Prosess Image

J Software: Infrared Image Processing Software 

EM(S) Equipment

J Monitor

J Software
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Image Emphasizing Thermal Anomalies

The thermal gradient of a structure is 
filtered to emphasize thermal 
anomalies.

sunlight

delamination

thermal anomaly
= 0.1

temp.

thermal anomaly = 0.1
Thermal gradient of structure

Thermo-image Filtered image Rating image

hard to spot

easy to spot

foreign body

plastic
(5cm)

around 5

J Software: Damage Ratings
Temperature distribution is interpreted into damage ratings by 
using a comprehensive database of temperature patterns.

1cm 2cm 3cm

Visible image EM(S) test-piece

IR raw image

IR Process image

Insignificant
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Comparison Between New and Conventional 

Your resources can be focused on the areas that need the most work.

observation
caution
critical

Is it possible and easy to evaluate objectively?
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J-System Features

Absolute quality assurance 
& Oversight prevention

Proper investigable time can be assessed.

Damage depth can be obtained in real time

�J-System� supports investigations 
conducted by customers

Features analyzed image by results of hammering sound
removal or

flaking Cavity Slag Foreign
substances Normal

Surrounding form 
is complexity, Red 
is out of center.

Surrounding form 
is smooth, Red is 
in the center.

Form is long thin, 
surrounding form 
is complexity.

Form is square, 
Red occupancy is 
high.

Yellow occupancy 
is high, Red’s 
barycenter is in 
the midst.
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x,y

Concept figure of analyzed image

Extraction of feature amount  on analyzed image

Analyzed image Area of Red (scale -up

Feature amount
Area s) Σ
Boundary length Σ
Complexity c)= /
Degree  of  circularity cL 4πS L2

Thermal image
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Texture Analysis by Gray-Level Co-occurrence Matrix
Texture Analysis by GLCM
GLCM Gray-Level Co-occurrence Matrix

Method of inspecting colorful density location 
of remote two-pixel pair at certain area 

Computing GLCM

Effective character value for 
evaluating damage level 

Computing 14 different 
character values
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Character value Significance probability
1 Angular Second Moment 0.405 
2 Contrast 0.000 
3 Correlation 0.108 
4 Sum of Square:variance 0.000 
5 Inverse Difference Moment 0.109 
6 Sum Average 0.000 
7 Sum Variance 0.000 
8 Sum Entropy 0.140 
9 Entropy 0.374 

10 Difference Variance 0.160 
11 Difference Entropy 0.135 
12 Information Measure of Correlation1 0.045 
13 Information Measure of Correlation2 0.871 
14 Maximal Correlation Coefficient 0.621 

Character value arising from GLCM
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Background
Conventional visible inspection adds damage 
conditions of tunnel linings concrete , such as 
flaking concrete to be caused  critical 
accident, adopted camera technical and 
developed vehicle to inspect higher accurate 
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Flow chart for tunnel inspection
The captured image of the tunnel Analyzing

Creating an image of the tunnel Inspection

Investigation of cracking and other damages

The width, length, and  number of cracks, efflorescence, and water leakage can be 
investigated with high precision.
Color images allow the inspection of corrosion and damage to the accessories attached to 
the tunnel lining.
High-precision photography/analysis enables a comparison between the previous 
investigation and the current damage progress.
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Visual image tunnel 

Zoom-up visual image Cracks 
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Zoom-up visual image tunnel lighting 

Current of Issues (improvement)
Current problems New technique

No judgeing by the 
front of image whether 
the crack may be 
falling or not

Detecting flaking point by 
obtaining height data of tunnel 
lining surface.
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Measurement of tunnel conditions by height data

Damage of inside 
tunnel for verification
(photo-shooting by 
digital camera)

Visual Image Height Image

Overview of proposed measuring technology
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Simulate gap

Thickness 0.5 5.6

Black
=Large gap

Visual image

Height image

Process image

observation

caution

critical

Overview of proposed measuring technology
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Detailed Inspection pavement investigation

Our product

Inspection Methods 
Daily Inspection (Behind the wheel)

Control Item
Maintenance Target Values of Pavement

Rutting
(mm

Difference in Level mm Coefficient of 
Sliding 
Friction
μV

Flatness
IRI mm/m

Cracking Ratio
%Bridge 

Mounting

Crossing 
Structure 
Mounting

25 20 30 0.25 3.5 20

Crack MeasurementCracksLegend

O
ne Lane

Evaluation Unit 100m

Cracks Evaluation Conceptual Diagram
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Data Acquisition by Periodic Inspection
Road Surface Measurement 3 Elements
Company-owned 
vehicle

RutsCracks Flatness

L&L System

Line Sensor

Camera

Direction of 
movement

Illumination
area

Visual image

The slit laser is situated in 
directions perpendicular.

Slit
Laser

photographed with
an area camera by
a slant

Width profileHeight image
Camera
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Visual image pavement 

Accuracy at a speed of 100km/h
Detecting cracks

Shooting width=4.5m(Color image)
Resolution 0.8mm x 0.8mm/pixel

Accuracy at a speed of 100km/h
Rutting Measurement

Shooting width=4.4m
Dimension of rutting:1mm or less
Resolution 1.68mm(Transversal)

5.60mm (Longitudinal)
0.50mm (Depth) 

Height image
Surface height image

Zoom 4.0m

3.
0m
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a microscopic bump.
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Analyzing highly accurate longitudinal profile

Surface height image
Analyzing highly accurate longitudinal profile

Hi
gh

t
m

m

Manhole Cover profile area

Visual image

Scale 20cm
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Bumps Analyzing
Detecting cracks Abstracting 
cracks from visual image

Detecting rutting Abstracting 
rutting from visual image

Visual image

Surface height
image

Processed surface 
height image

Abstracting crack 
image

Crack+Processed image
(red:bumps 5mm or deeper)

Depth of a rutting is 
contrasted through special 
software, called J-soft.
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Rutting Area Analysing
Surface height image

Processed surface height image(red:rutting10mm or deeper)

Zoom
Transversal cross section
(Left red line)

Cracks can be detected 
as a difference of height.

Crack
Crack

Analyzed imageImage of road surface 
height

Visible image

The form of partial 
damage such as 
blistering can be 
replicated.

New proposal using image analysis (Blistering)

Height (mm) Height of the blister 
Approx. 2cm

Transverse direction 
(cm)

Longitudinal 
direction (cm)
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Bumps height analysis image (3D display)
Earthwork
Section

Joint

Bridge
Section

Visualizing the state of subsidence in an 
embankment at the back of an abutment

Investigation using color images (Joint)

(2) 

(1) 

(1) The degree of concrete corrosion and filling of fine materials can 
be identified.
(2) Small cracks in the protective post-placed concrete cover can be 
photographed.

Magnified image
(1) 

(2) 
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Investigation using color images (Lane markings)

The adhesion status of lane marking paint to 
the road surface can be confirmed.

Investigation using color images (Concrete Pavement)

－38－



Current issues
Due to the spread of Porous asphalt-related road surfaces, 
problems caused by aggregate scattering have increased.
(1) Less noise reduction functionality
(2) Less driving safety and comfort

A quantitative evaluation method has not been established.

Proposal of a new evaluation method (Aggregate scattering) (1) 

We focus on the relationship between 
aggregate scattering and mean profile 
depth (MPD).

Image of aggregate scattering

3D shape measurement by Light-
Section Method allows us to measure the 
form of a  pavement with high precision.

Dents Dents

He
ig

ht
 (m

m
)

pavement

Void generated by aggregate 
scattering

pavement

a) Visible image b) Height image

Proposal

－39－



Warm color: Large 
MPD

Large quantity of 
aggregate scattering is 
observed.

Cool color: Small 
MPD

A place which will 
likely be clogged.

Tr
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fic
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ne
   

3.
5m

Superficial (MPD) quantitative evaluation of aggregate scattering

Small MPD

Large MPD

Analyzing highly accurate longitudinal profile
Future: IRI can be measured thanks to no 
speed dependanc
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Developmental event of pothole on Porous asphalt pavement 

Done to review the objective of 
preventive maintenance 

Proposal new evaluation indicator to 
apply for Porous asphalt pavement

Proposal method of predicting of 
occurrence of pot hole 

Data from periodic measurement

Oct. 2013 Nov. 2013 Dec. 2013 Jan. 2014

Visual image

－41－



Data from periodic measurement

Oct. 2013 Nov. 2013 Dec. 2013 Jan. 2014

Height image

Proposal of a new evaluation indicator

Lane markingLane marking

Red: Shape of the rut at the objective point
Blue: Representative shape of the rut(1)  Area where the overall depth of the rut is high

(2) Area where the overall depth of the rut is low

Proposal method [Evaluation based on the depth of local subsidence]
The relative depth of local subsidence is calculated as the depth of local 
subsidence by calculating the difference between the rut depth of the 
objective point and the representative rut depth which is the central value of 
the maximum rut depth in a vicinity of 10m.

The depth of the rut is high, but that of local subsidence is low.
Low risk of pothole occurrence

Depth of local subsidence

The depth of the rut is low, but that of local subsidence is high.

Potential risk of pothole occurrence Dangerous

Depth of local subsidence
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Discover blistering by attaching J-system to 
Eagle and investigating the runway

Concept

J-System

Eagle
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Abstract 
 

Ultrasound imaging is the most popular clinical imaging modality except conventional X-
ray and usually characterized as easy, portable and safe imaging. Not only that, it has 
achieved temporally and spatially highest resolution imaging in clinical situations. 
Ultrasonic transducer is made of piezo-electric material and it sends ultrasonic signal 
into body and receives the reflected signal to form a tomographic image. Besides the 
conventional morphology imaging, ultrasound can provide functional information such as 
blood flow or biomechanical properties. 
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Multiple-Precision Arithmetic Environment in

MATLAB and Its Application to Reliable

Computation of Fractional Order Derivatives

Hiroshi Fujiwara

Graduate School of Informatics, Kyoto University

Abstract

This technical note introduces a new multiple-precision arithmetic en-
vironment in MATLAB based on exflib. We also show its effective appli-
cation to reliable numerical computation of fractional order derivatives.

1 Introduction

In collaborations between mathematical science and industry, numerical com-
putations play an essential role for understanding each other. From the view
points of numerical analysis and computational science, we should pay attention
to (i) qualitative reliability of numerical schemes, (ii) quantitative accuracy of
numerical results, and (iii) practicality in computational time and resources.
This talk presents a new strategy for (ii) which realizes accurate and reliable
numerical results.

In representation of real numbers and their arithmetic on digital computers,
the double precision arithmetic defined in IEEE754 [1] are commonly used in
scientific and engineering computations, and it has approximately 16 decimal
digits precision. Advanced theory and technologies sometimes involve unstable
processes, and require accurate numerical results beyond the standard precision,
and rounding errors caused by approximation of real numbers sometimes give
serious influences. For instance, most of inverse problems are ill-posed in the
sense of Hadamard, and it yields rapid growth of computational errors in their
numerical treatments.

To overcome the problems caused by rounding errors, we develop fast multiple-
precision arithmetic environment exflib [2], which works with the programming
language C++ and FORTRAN95. In this talk we introduce user-friendly in-
terface in MATLAB to exflib. It enables us to execute fast multiple-precision
arithmetic in MATLAB.

2 Multiple-Precision Arithmetic Library Exflib

in MATLAB

We realize a multiple-precision arithmetic environment in MATLAB based on
exflib [2] which is implemented in the assembly language of Intel 64 architecture
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and the programming language C. MATLAB is one of a commercial software
widely used in the fields of science, engineering, and informatics, and it adopts
double precision arithmetic as default. The proposed environment runs in MAT-
LAB on 64-bit Windows, MacOSX, and Linux, and it can be downloaded from
the home page [2].

The proposed environment consists of two components (Fig. 1): one is defi-
nition of a multiple-precision number type and their methods as MATLAB class
exfloat, and the other is interface between MATLAB and exflib. The formers are
implemented in MATLAB m-files stored in @exfloat folder in the distributed
file. The latter are provided in exflib folder, and are implemented by MAT-
LAB Executable (MEX) [3, 4] which is a mechanism to call C/FORTRAN codes
in MATLAB.
� �

user_source.m

@exfloat/ MP class and methods definition (*.m files)

exflib/ Interface to exflib by MEX (MATLAB Executable)
*.mexa64 for Linux, *.mexmaci64 for MacOSX,
*.mexw64 for Windows 64-bit

� �
Figure 1: Structures of Proposed Environment.

Each user m-file should specify the MEX directory as Fig. 2 with the addpath
function at the fist line, and the user m-file is recommended to be located in
the same directory as @exfloat and exflib (Fig. 1).

addpath( strcat(pwd, ’/exflib’) );

x = exfloat( 1 );
for n=1:100
x = x * n;
fprintf(’fact %d = %s\n’, n, num2str(x, ’%f’) );

end

Figure 2: Example of Factorial Code in Proposed Environment.

User can specify required precision in the file @exfloat/exfloat.m shown
in Fig. 3. According to the precision, the size of exfloat is determined and each
multiple-precision number is stored in a 64-bit unsigned array shown in Fig. 4,
which represents a value

(−1)s × 2eb−BIAS ×
(

1 +
n∑

k=1

fk
264k

)

where eb and fk are 63-bit and 64-bit unsigned integers respectively, and BIAS =
262 −1. The computational precision is determined by n as (log10 2)(1+64n) ≈
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classdef exfloat

properties (Constant, Access=private)

precision10 = 100; % required precision in decimal digits
...

end
...

end

Figure 3: Precision Specification in @exfloat/exfloat.m.

19.27n digits. The auxiliary methods shown in Fig. 5 are useful to get precisions

s eb f1 f2 f3 · · · fn

specified precision

1 63 64 64 64 64

Figure 4: Data Structure of Exfloat Type.

% specified precision (decimal digits)
exfloat.get_req_precision()

% internal precision (decimal digits) ≈ 19.27n
exfloat.get_precision()

% memory size (bytes) = 8(n + 1)
exfloat.get_exfloat_byte()

% size of fraction parts = n
exfloat.get_exfloat_precision64()

Figure 5: Methods to Get Precisions and Size of Proposed Exfloat Type.

and the size information used in execution. Table 1 shows examples of the user
specified precision, precision in computation, and the size of each exfloat number
obtained by methods in Fig. 5. From the table, if you require and specify 100
decimal digits in @exfloat/exfloat.m as Fig. 3, then approximately 115.60
digits are used in computation, and each exfloat type number is the size of 56
bytes.
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Table 1: Specified and Computation Precisions in Decimal Digits.

Specified Digits Computation Digits n Size (Bytes)

50 77.06 4 40
100 115.60 6 56
200 211.93 11 96
500 520.18 27 224
1000 1021.09 53 432

2.1 Initialization, Output, and Arithmetic of Exfloat in
MATLAB

Fig. 6 shows the methods to initialize variables in multiple-precision accuracy.
Each exfloat number should be declared or initialized by exfloat() at the first
appearance. Fig. 7 and Fig. 8 show output methods of the exfloat type. Fig. 9
show initialization of exfloat numbers via a text file.

a = exfloat(); % type declaration
x = exfloat( 1 ); % by literal integer
x = exfloat( i ); % by integer variable ’i’
y = x;

x = exfloat( ’0.1’ ); % by string
x = exfloat( ’1/10’ ); % by string with expression
x = exfloat( ’#PI/2+#E*2’ );

x = 1; % Invalid : INTEGER
x = 0.1; % Invalid : DOUBLE
x = exfloat( 0.1 ); % Invalid : DOUBLE
x = ’#PI/2’; % Invalid : STRING

Figure 6: Initialization and Substitution of Exfloat Numbers.

At present, operations and functions in Table 2 are implemented. Arithmetic
and comparisons between exfloat variables or integers can be used similarly as
built-in type numbers. But those with built-in real numbers are prohibited.
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>> cd C:\Users\...\exflib-MATLAB-distribute % Windows
>> cd /home/.../exflib-MATLAB-distribute % Linux or MacOSX
>> addpath( strcat(pwd, ’/exflib’) );
>> x = exfloat( ’#PI’ );
>> x % 20 digits as default

3.14159265358979323846
>> double( x ) % convert exfloat to double
3.1416
>> num2str( x ) % convert exfloat to string

ans =

’3.1416e+0’

>> num2str( x ); % no output if followed by semicolon
>> disp( num2str(x) ) % remove ’ans =’ line
3.1416e+0
>> disp( num2str(x) );
3.1416e+0

Figure 7: Output of Exfloat Type Variables.

>> disp( num2str(x, ’%f’) ); % fixed-point fmt
3.1416 % 4 digits as default

>> disp( num2str(x, ’%.25f’) ); % fixed-point fmt with 25 digits
3.1415926535897932384626434

>> disp( num2str(x, ’%.25e’) ); % exponential fmt with 25 digits
3.1415926535897932384626434e+0

>> disp( num2str(x, ’%.25g’) ); % general fmt with 25 digits
3.1415926535897932384626434

>> fprintf(’Result : %s\n’, num2str(x, ’%.30e’) );
Result : 3.141592653589793238462643383280e+0

>> fprintf(’%f %e %g\n’, x, x, x); % exfloat is automatocally
3.141593 3.141593+e0 3.14159 % converted to double

Figure 8: Output of Exfloat Type Variables with Format Specification.
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addpath( strcat(pwd, ’/exflib’) );

% result.txt is TSV format
% It contains 3x2 array with delimiter of white space ’ ’
% 1.1 2.2
% 3.3e0 4.4e1
% 5.5 6.6

lines = splitlines( string( fileread( ’result.txt’ ) ) );

for i=1:3
tsvs = strsplit( lines(i) );
for j=1:2

a(i,j) = exfloat( char( strsplit( tsvs(j) ) ) );
end

end

Figure 9: Initialize Exfloat via Text File.

Table 2: Implemented Operation in Proposed Environment.

Arithmetic +(plus) -(minus) *(mtimes) /(mrdivide)
(unary) + (uplus) -(uminus)

Array Operations \(mldivide) ’(transpose) sum dot prod

Entry-wise Operations .*(times) .\(ldivide) ./(rdivide)
.^(power) max min inv

Built-in Functions abs sqrt sin cos tan
asin acos atan atan2 sinh cosh tanh
exp ^(mpower) log log10

Comparisons == ~= < <= > >=

Others double char num2str display

mpower cannot be applicable to a matrix.
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Example (Tikhonov Regularization). Fig. 10 shows an example to solve the
linear equation Hx = B and the Tikhonov regularization (αI+HT H)y = HTB,
where H is the Hilbert matrix and B = (1, 1, . . . , 1).

The (i, j)-th entry of the Hilbert matrix is hij =
1

i + j − 1
for i, j ≥ 1. But

the statement

H(i,j) = 1 / ( i+j-1 );

or

H(i,j) = exfloat( 1 / ( i+j-1 ) );

is not suitable to initialize H(i,j) as the exfloat type, since the expression
1/(i+j-1) is treated as double precision arithmetic as default in MATLAB,
and the substituted entry H(i,j) is also interpreted as the same type. To
prevent it, the explicit type specification exfloat( 1 ) is used in the example.

addpath( strcat(pwd, ’/exflib’) );

N = 100;

for i=1:N
for j=1:N

H(i,j) = exfloat( 1 ) / (i+j-1);
end

end

B(1:N) = exfloat( 1 ); % row-vector

% solve Hx = B
x = H \ B’;

% Tikhonov regularization
a = exfloat( ’1e-30’ ); % regularization parameter
y = ( a * exflib_eye(N) + H’*H )\( H’*B’ );

Figure 10: Tikhonov Regularization w.r.t. 2-norm for the Hilbert Matrix.
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2.2 Fast Computation by Suppressing Calling Overhead
of MEX

The proposed environment is based on exflib, and operations in MATLAB calls
those in exflib implemented in the assembly language and the programming
language C. Fig. 11 shows a calling procedure. Addition (+) with exfloat
type scalar operands in MATLAB m-file is bound to the method @exfloat/
plus.m which is also written in MATLAB m-code. @exfloat/plus.m calls
the function exflib_float_add() provided by exflib/exflib_float_add.
mexa64 (64-bit Linux), exflib/exflib_float_add.mexmaci64 (MacOSX), or
exflib/exflib_float_add.mexw64 (64-bit Windows). These MEX files are
generated by compiling exflib/exflib_float_add.c with MATLAB MEX
compiler. The file exflib/exflib_float_add.c is written in the programming
language C, and calls exflib_float_add.o written in the assembly language.
Therefore executing addition (+) in MATLAB comes with calling overhead.

� �
expression : ’+’ in m-file

↓
method : @exfloat/plus.m

↓
MEX : exflib/exflib float add.mexa64

↓
“add” (assemble code) in exflib

� �
Figure 11: Calling Procedure of Arithmetic in Exflib from MATLAB M-file.

To estimate calling overhead in MATLAB, we calculate the inner product
with several implementations. The inner product calculated by the program
in Fig. 12 requires at least 2N times MEX calling. Current implementation
also provides dot method which calls exflib_mex_dot.mex*, and it requires
one time MEX calling (Fig. 13). The inner product can be also calculated by
sum(a.*b) and a*b’, and both require at least two times MEX calling. Results
in Table 3 show that dot is significantly fastest among these expressions, and
it can be concluded that crucial algorithms should be implemented in MEX for
the sake of amortizing calling overheads.

Table 3: Computational Time with 100 Decimal Digits by Various Implemen-
tation of Inner Product to Compare Calling Overhead.

unit : sec.

N entry-wise dot(a,b) ratio sum(a.*b) a*b’

10 0.0020 0.0010 2.1 0.0040 0.0012
100 0.015 0.0017 8.9 0.0067 0.0028

1000 0.15 0.012 13 0.060 0.016
10000 1.1 0.097 11 0.43 0.13
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for i=1:N
s = s + a(i) * b(i);

end

Figure 12: Inner Product Implemented by Entry-wise Arithmetic.

� �
plus.m
times.m

2N call

exflib mex add.mexa64
exflib mex mul.mexa64

dot.m

1 call

exflib mex dot.mexa64

2N call 2N call

+ and × in exflib

2N exec.
� �

Figure 13: MEX Calling Procedures in Inner Product.

2.3 Performance Measurements

In MATLAB, Variable Precision Arithmetic (VPA) is provided in “Symbolic
Math Toolbox” for multiple-precision arithmetic as an optional feature. Table 4
shows computational times in solving a system of linear equations Ax = b with
a square matrix A 1 in MATLAB R2017b (Version 9.1.0.441655) on Linux with
Xeon E5-2695 v4 (2.1GHz). The program shown in Fig. 14 was executed to
measure computational time.

The proposed environment is over 15 and 4 times faster than VPA in 100
and 500 decimal digits computation respectively.

The operation \ (mldivide) calls exflib/exflib_mex_gaussian_elimina
tion.mex*, which uses multiple-precision addition, multiplication, and division
in exflib implemented in the assembly language, and they also cause calling over-
heads. We also measure the computational times to solve the same equation
with exflib in the programming language C++, and show them in the right-
most column in Table 4. From the results, overhead in MATLAB is crucial in
computational time.

2.4 Unsupported Features

The following features are frequently used in numerical computations, but they
are not supported in the proposed environment at present.

1In MATLAB, mldivide (\) is applicable to find the least square solution to Ax = b with
a rectangle matrix A.
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Table 4: Computational Time in Solving Linear Equation Ax = b.

unit : sec.

MATLAB C++
digits size VPA proposed ratio exflib

100 100 1.9 0.12 16 0.0066
200 13 0.73 17 0.056
400 101 5.1 20 2.0
800 838 37 22 16

1000 1647 71 23 31

500 100 2.5 0.53 4.6 0.018
200 17 3.9 4.4 1.4
400 129 30 4.3 11
800 1032 237 4.4 89

1000 2008 462 4.3 176

size = 100;

addpath( strcat(pwd, ’/exflib’) ); % exflib folder
A = exflib_hilb(size); % Hilbert matrix in exflib
b = exflib_ones(size,1); % RHS in exflib, column-vector
tic; x = A\b; toc;

clearvars A, b;

digits(100); % specifying VPA precision
A = vpa( hilb(size) ); % Hilbert matrix in VPA
b = vpa( ones(size,1) ); % RHS in VPA
tic; x = A\b; toc;

Figure 14: Program Used in Computational Time Measurement.

• complex numbers and their arithmetic

• rounding control, interval arithmetic

• precision specification in user’s M-files

• dynamic change of computation precision

• special functions

• Matrix Operations : mpower, norm

• BLAS interface
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3 Application to Accurate Computation of Frac-

tional Order Derivatives

We apply the proposed multiple-precision arithmetic to numerical computa-
tion of the fractional order derivative in Caputo’s sense. It is also shown that
multiple-precision arithmetic is effective in quantitative evaluations of reliability.

For f ∈ C1(R≥0) with finite f ′(+0) and 0 < α < 1, the α-th order derivative
of f in Caputo’s sense[5, 6] is given by

cD
α
0 [f ](x) = f (α)(x) =

1
Γ(1 − α)

∫ x

0

f ′(y)
(x − y)α

dy, x > 0, (1)

where Γ(s) is the gamma function. Since the integrand has a singularity at x in
general (Fig 15(a)), we leverage the double exponential variable change [7] as

φ(t) =
x

2

(
tanh

(π

2
sinh t

)
+ 1
)

.

It yields that

f (α)(x) =
1

Γ(1 − α)

∫ ∞

−∞
Fx,α

(
φ(t)

)
φ′(t) dt, (2)

where Fx,α[f ](y) = Fx,α(y) =
f ′(y)

(x − y)α
. Since φ′ decays rapidly as |t| → ∞,

the integrand Fx,α

(
φ(t)

)
φ′(t) also converges to zero at |t| → ∞ (Fig 15(b)).

f(x) = x2, α = 0.5
f(x) = x2, α = 0.9

y
10.80.60.40.20

10

8

6

4

2

0

(a) F1,α(y) =
2y

(1− y)α
.

f(x) = x2, α = 0.5, 100 digits
f(x) = x2, α = 0.9, 100 digits

t
543210−1−2

10

8

6

4

2

0

(b) F1,α

`
φ(t)

´
φ′(t).

Figure 15: Integrand F1,α[x2] with α = 0.5, and 0.9, Calculated with 100 Digits.
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3.1 Reliable Computation of Fractional Order Derivatives
with Multiple-Precision Arithmetic

Fig. 15 are calculated with 100 decimal digits by exflib. On the other hand,
results in the double precision are inaccurate shown in Fig. 16.

f(x) = x2, α = 0.5, double
f(x) = x2, α = 0.9, double

f(x) = x2, α = 0.5, 100 digits
f(x) = x2, α = 0.9, 100 digits

t
543210−1−2

10

8

6

4

2

0

(a) F1,α

`
φ(t)

´
φ′(t) with α = 0.5, 0.9.

f(x) = x2, α = 0.9, double
f(x) = x2, α = 0.9, 100 digits

t
3.23.153.13.0532.952.9

3.5

3

2.5

2

1.5

1

(b) Comparison between 100 Digits
and Double Precision.

Figure 16: Integrand F1,α[x2]
(
φ(t)

)
φ′(t).

In conventional implementation of numerical integration, we calculate 2φ(t),
1/
(
1− φ(t)

)α and φ′(t) separately, and multiply them to evaluate the integrand
2. Particularly, since φ(t) is close to one for large t, it causes catastrophic
cancellation in 1 − φ(t). For instance, if t = 3.16 then 1 − φ(t) is approximately
2.2 × 10−16 in double precision arithmetic, which equals the unit in the last
place, while that is 1.8 × 10−16 in 100 decimal digit (Table 5). Moreover, the
double precision arithmetic returns

1(
1 − φ(t)

)0.9 = +∞, t ≥ 3.17.

This shows that insufficiency of the double precision arithmetic, and efficiency
of multiple-precision arithmetic for reliable computation of the fractional order
derivative in Caputo’s sense by (1).

Table 5: Numerical Results of Components in Integrand in (2) for α = 0.9.

t = 3.16 1 − φ(t)
(
1 − φ(t)

)−0.9
φ′(t) integrand

100 digits 1.8 × 10−16 2.8 × 1014 6.6 × 10−15 1.8

double 2.2 × 10−16 2.3 × 1014 6.6 × 10−15 1.5

2We usually ignore the value of 1/
`
1 − φ(t)´α

if φ′(t) is small enough in the computation
and evaluate the product (integrand) as zero based on a priori estimate. In this study we do
not take this strategy and use the direct product

－94－



3.2 Discretization Parameters

In numerical computation of (2), we introduce discretization parameters Δt > 0
and tk = kΔt, and discretize it by “the trapezoidal rule” as

f (α)(x) ≈ 1
Γ(1 − α)

∑
k∈Z

Fx,α

(
φ(tk)

)
φ′(tk)Δt,

which is truncated to a finite sum with truncation parameters K0 and K1 ∈ Z

as

≈ 1
Γ(1 − α)

∑
K0≤k≤K1

Fx,α

(
φ(tk)

)
φ′(tk)Δt. (3)

Tables 6 and 7 show discretization parameters and numerical results of (3)
for cD

α
0

[
x2
] ∣∣

x=1
for α = 0.5 and 0.9, where L = K0Δt, U = K1Δt and

K = K1 − K0. The exact value

cD
α
0

[
x2
] ∣∣

x=1
=

2
Γ(3 − α)

is also shown in the bottom line. The gamma function is calculated in the
proposed environment as described in the next section.

From tables, the double precision arithmetic is not sufficient for accurate and
reliable computation, particularly for α = 0.9. And we need a larger interval
(L, U) as α is closer to one.

3.3 Examples of the Caputo Derivative of Fundamental
Functions

We show some numerical examples of the Caputo derivative of fundamental
functions.

First we discuss efficiency of multiple-precision arithmetic again. Fig. 17
shows fractional order derivatives for f(x) = x2 with orders α = 0.2, 0.4, 0.6, 0.8
and 0.9. The truncation parameters are (L, U) = (−3, 3.16) in double precision
and (L, U) = (−3, 5) in 100 decimal digits respectively, and K is adaptively
determined with the tolerance 10−5. Results of α = 0.9 in Fig. 17(a) are un-
naturally close to those of α = 0.8 due to lack of precision as stated so far. On
the other hand, we can find reasonable results for all α with 100 decimal digits
shown in Fig. 17(b).
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Table 6: Discretization Parameters in Numerical Integration (3) for α = 0.5.

(a) Varying U and K for Fixed L.

L U K double precision 100 digits

−5.00 3.16 8 1.506521145717490 1.50652118787726
16 1.504513825968471 1.504513847045489
32 1.504505544986518 1.504505555531676

−5.00 3.17 8 +∞ 1.507981691926983
16 +∞ 1.504515197229551
32 +∞ 1.504505555657249

exact value 1.50450555612735 . . .

(b) Varying L and U .

L U K 100 digits

−1.5 4.0 65536 1.50450468520610
−2.0 4.0 65536 1.50450555605588
−2.5 4.0 32 1.50450555612735

−2.5 3.0 65536 1.50450522557433
−2.5 3.5 65536 1.50450555611566
−2.5 4.0 32 1.50450555612735

exact value 1.50450555612735 . . .
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Table 7: Discretization Parameters in Numerical Integration (3) for α = 0.9.

(a) Varying U and K for Fixed L.

L U K double precision 100 digits

−5.00 3.16 8 1.87072828925 1.90636895125
16 1.87900443987 1.89682476417
32 1.87188368373 1.88079405669

−5.00 3.17 8 +∞ 1.90645242453
16 +∞ 1.89759689138
32 +∞ 1.88210055004

−5.00 5.00 8 +∞ 1.90117136452
16 +∞ 1.91113179851
32 +∞ 1.91115819291

exact value 1.911158192930505 . . .

(b) Varying L and U .

L U K 100 digits

−1.5 5.0 32 1.911158170719432
−1.5 5.0 64 1.911158199338609
−2.0 5.0 32 1.911158192926879
−2.0 5.0 64 1.911158192895752
−2.5 5.0 32 1.911158192928194
−2.5 5.0 64 1.911158192902578

−3.0 4.0 32 1.911033316749863
−3.0 4.5 32 1.911158038914574
−3.0 5.0 32 1.911158192928919

exact value 1.911158192930505 . . .
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(b) Results with 100 Decimal Digits.

Figure 17: cD
α
0 [x2].
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The remain of this section is devoted to show profiles of fractional order
derivatives of fundamental functions and their properties. In figures, f and f ′

are drawn as the black curve and the red curve respectively. Other colored curves
are fractional order derivatives f (α). From results, {f (α)} gradually change from
f to f ′ as α changes from zero to one.

• Fig. 18 : f (α) for f(+0) = f ′(+0) = 0.

• Fig. 19 : f (α) for f(+0) = 0, f ′(+0) �= 0. In Fig. 19(a), we note that
f ′(+0) does not exist and

CD1/2
0

[√
x
]
(x) ≡

√
π

2
≈ 0.886, x �= 0.

• Fig. 20 : f and f ′ are periodic functions, but f (α) does not have the same
period. In fact we have f (α)(1) �= f (α)(+0) and

(
d

dx

)1/2

sin(ωx) =
√

ω Im E(ωx),

(
d

dx

)1/2

cos(ωx) =
√

ω Re E(ωx)

where
E(z) = e(z+

π
4 )i erf

(√
z e

π
4 i
)

and erf z is the complex error function defined by

erf z =
2√
π

∞∑
n=0

(−1)nz2n+1

n! (2n + 1)
.

On the other hand, if n is an integer, we have(
d

dx

)n

sin(ωx) = ωn sin
(

ωx +
nπ

2

)
= ωn Im e(ωx+

nπ
2 )i, (4a)(

d

dx

)n

cos(ωx) = ωn cos
(

ωx +
nπ

2

)
= ωn Re e(ωx+

nπ
2 )i, (4b)

which are same as the Riemann-Liouville derivative with the lower termi-
nal at −∞ [8], and have the period 2π/ω in common. It is clear that those
in Caputo’s sense do not coincide with (4).

In order to investigate their periodic behaviours more precisely, we com-
pute CD1/2

0 [sin 2πx] by (3) and compare the results with

s(x) =
√

2π sin
(
2πx +

π

4

)
.

Table 8 shows differences s−CD1/2
0 [sin 2πx] at integers, which converge to

zero numerically. In Fig. 21, the horizontal line is x mod 1, and the graphs
of CD1/2

0 [sin 2πx] on [0, 1], [1, 2], [2, 3] and the function s are shown. Those
on [1, 2] and [2, 3] are almost same as s(x), and these numerical results
strongly imply that cD

α
0 [sin 2πx] asymptotically converge to s which has

the period one.

－99－



• Fig. 22 : The fractional order derivatives of

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0.25;

− 2
(b − a)3

(x − a)2
(

x − 3b − a

2

)
, a < x < b;

1, x > 0.5,

(5)

and

f(x) =

{
(x − a)2(x − b)2, a < x < b;
0, otherwise

(6)

where a = 0.25 and b = 0.5 are shown in Figures (a) and (b) respectively.
In both examples, f(x) does not vary on x ∈ I = (0, 0.25) ∪ (0.5, 1) thus
f ′(x) ≡ 0 on I. But f (α) does not vanish on I. This is called hysteresis
or memory effect of the operator cD

α
0 .
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Figure 18: f (α) with f(+0) = f ′(+0) = 0.
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Figure 19: f (α) with f(+0) = 0 and f ′(+0) �= 0.

－102－



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.5

1

1.5

2

2.5

3

original
0.2
0.4
0.6
0.8
0.9
1st order

(c) cD
α
0 [exp(x)− 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.2

0.4

0.6

0.8

1

original
0.2
0.4
0.6
0.8
0.9
1st order

(d) cD
α
0 [log(1 + x)].

Figure 19: (Continued) f (α) with f(+0) = 0 and f ′(+0) �= 0.
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(b) cD
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0 [cos 2πx].

Figure 20: Periodic Functions and Their Fractional Derivatives f (α).
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Table 8: Periodicity of CD1/2
0 [sin 2πx].

x CD1/2
0 [sin 2πx]

√
2π sin(2πx + π/4) − CD1/2

0 [sin 2πx](x)

0 0.00000 1.77245
1 1.73081 0.04164
2 1.75693 0.01553
3 1.76390 0.00855
4 1.76687 0.00558
5 1.76845 0.00400
6 1.76941 0.00305
7 1.77003 0.00242
8 1.77047 0.00198
9 1.77079 0.00166

10 1.77104 0.00142
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x mod 1
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Figure 21: Profiles of CD1/2
0 [sin 2πx] and

√
2π sin

(
2πx +

π

4

)
.
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Figure 22: Hysteresis Involved in the Fractional Order Derivatives.
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4 Multiple-Precision Arithmetic of the Gamma

Function

Finally we show accurate numerical computation of the gamma function which
appears in the fractional order derivative (1). As stated in the last section, we
concentrate on 100 decimal digit computation.

The gamma function is defined by

Γ(s) =
∫ ∞

0

e−xxs−1 dx, s > 0,

which satisfies Γ(s + 1) = sΓ(s) and particularly Γ(n + 1) = n! for n ∈ Z≥0.
The double exponential transformations

φ1(t) = exp
(
t − exp(−t)

)
and

φ2(t) = exp
(π

2
sinh(t)

)
yield

Γ(s) =
∫ ∞

−∞
e−φi(t)φi(t)s−1φ′

i(t) dt,

which is approximated similarly as (3) by

≈
∑

K0≤k≤K1

e−φi(tk)φi(tk)s−1φ′
i(tk)Δt. (7)

Table 9 shows the least K and the interval (L, U) which are required to find
Γ(s) for each s of the relative error less than 10−100 obtained by numerical ex-
periments with 150 digits. From the results, computational costs of the trans-
form φ1 is smaller than those of φ2. We also note that since 1 < Γ(s) < 2
for 2 < s < 3, an adaptive error estimate is simple from the stand point of
floating-point arithmetic in this interval. Thus we propose the use of φ1(t)
with parameters (L, U) = (−4.7, 5.5) and adaptively defined K to find Γ(s) for
2 < s < 3 by numerical integration (7) with 100 decimal digits precision. For
other s, we reduce the argument to the interval 2 < s < 3 by the recursive use
of

Γ(s) =

⎧⎨
⎩

Γ(s + 1)
s

, 0 < s < 2;

(s − 1)Γ(s − 1), s > 3.

Additionally we can find Γ(s) for s < 0 by reducing the argument to s > 0 by

Γ(s) =
π

Γ(1 − s) sin(πs)
.
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Table 9: Required Discretization Parameters to Find Γ(s) of the relative error
less than 10−100 by Numerical Integration (7).

φ1(t) φ2(t)
s L U K L U K

0.1 −7.7 5.5 307 −8.0 2.0 1224
0.5 −6.1 5.5 271 −6.4 2.0 1041
1.0 −5.4 5.5 260 −5.7 2.0 964
1.5 −5.0 5.5 254 −5.3 2.0 922
2.0 −4.7 5.5 245 −5.0 2.0 912
2.5 −4.5 5.5 246 −4.8 2.1 892
3.0 −4.4 5.5 243 −4.6 2.0 878
3.5 −4.1 5.6 241 −4.4 2.0 846
4.0 −4.0 5.6 241 −4.3 2.0 855
4.5 −3.9 5.6 240 −4.2 2.1 845
5.0 −3.7 5.6 237 −4.1 2.0 842
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A Sample Codes with Proposed Muptilpe-Precision

Arithmetic

A.1 Computation of the Caputo Derivative

%----------------------------------------------------------
% CaputoDrvPlot.m : Compute and Plot Caputo Derivative
% Copyright (C) 2017, FUJIWARA,Hiroshi
%----------------------------------------------------------
clear classes
addpath( strcat( pwd, ’/exflib’ ) );

BEG = exfloat( ’0’ ); % Find Caputo Drv on BEG < x <= END
END = exfloat( ’1’ ); % (0 <= BEG < END)
STEPS = 100;

dx = (END-BEG)/STEPS;

SS = 2; % sub-division of (BEG,BEG+dx)
for i=1:SS % particularly BEG == 0

x(i) = BEG + (i-1)*dx/SS;
end
for i=SS+1:SS+STEPS

x(i) = BEG + (i-SS)*dx;
end

x(1) = []; % Skip to compute derivative at x=BEG (for BEG == 0)

tic; y2 = CaputoDrv( @df, exfloat( ’0.2’ ), x ); toc;
tic; y4 = CaputoDrv( @df, exfloat( ’0.4’ ), x ); toc;
tic; y6 = CaputoDrv( @df, exfloat( ’0.6’ ), x ); toc;
tic; y8 = CaputoDrv( @df, exfloat( ’0.8’ ), x ); toc;
tic; y9 = CaputoDrv( @df, exfloat( ’0.9’ ), x ); toc;

for i=1:STEPS+1
x0(i) = BEG + (i-1)*dx;

end
y0 = f(x0);
y_classical = df(x0);

Figure 23: Computation of Caputo Derivative : CaputoDrvPlot.m
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% plot
plot( x0,y0,’k’ , x,y2, x,y4, x,y6, x,y8, x,y9, ...

x0,y_classical, ’r’, ’LineWidth’,2 )
legend( ’original’, ’0.2’, ’0.4’, ’0.6’, ’0.8’, ’0.9’, ...

’1st order’, ’location’, ’southwest’ )
xlabel( ’x’ );
grid on
grid minor
pbaspect([3 2 2])
saveas(gcf, ’CaputoDrv’, ’epsc’); % EPS file (for TeX)
saveas(gcf, ’CaputoDrv’, ’png’); % PNG file
%----------------------------------------------------------
function y = f ( x )

PI = exfloat( ’#PI’ );
y = sin(2*PI*x);
% y = x.*x; % y is product as array

end

function y = df ( x )
PI = exfloat( ’#PI’ );
y = 2*PI*cos( 2*PI*x ); % (d/dx)sin(2*pi*x)
% y = 2*x;

end
%----------------------------------------------------------
function y = CaputoDrv ( df, order, x )

% Followings parameters are optimized to 100 digits
L = exfloat( ’-3’ );
U = exfloat( ’5’ );
N_MAX = 2048;
TOLERANCE = exfloat( ’1e-5’ );

persistent PhiArray DPhiArray

if isempty(PhiArray)
[PhiArray, DPhiArray] = de_initialize(L, U, N_MAX);

end

g = gamma( 1-order );

N = length(x);
y(1:N) = exfloat(0);
for i=1:N

y(i) = CaputoDrvCashed( df, order, x(i), g, ...
L, U, N_MAX, ...
PhiArray, DPhiArray, TOLERANCE );

end
end
%----------------------------------------------------------

Figure 23: (continued) Computation of Caputo Derivative : CaputoDrvPlot.m
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% 0 < alpha < 1
function y = CaputoDrvCashed ( df, order, x, g, ...

L, U, N_MAX, ...
PhiArray, DPhiArray, TOLERANCE )

if t == 0
y = 0;
return;

end

y = adaptive_de ( @(s)df(s)/power(x-s,order), ...
exfloat(0), x, L, U, N_MAX, ...
PhiArray, DPhiArray, TOLERANCE ) / g;

end
%----------------------------------------------------------
function [PhiArray, DPhiArray] = de_initialize (L, U, N_MAX)

PhiArray(1:1+N_MAX) = exfloat(0);
DPhiArray(1:1+N_MAX) = exfloat(0);

pih = exfloat( ’#PI/2’ );

function x = phi ( t )

x = tanh( pih * sinh(t) );
end

function x = dphi ( t )

cs = cosh( pih * sinh(t) );
x = pih * cosh(t) / (cs*cs);

end

dx = (U - L) / N_MAX;

for i=1:N_MAX+1
x = (i-1)*dx + L;
PhiArray(i) = phi(x);
DPhiArray(i) = dphi(x);

end

end
%----------------------------------------------------------

Figure 23: (continued) Computation of Caputo Derivative : CaputoDrvPlot.m

－111－



function s = adaptive_de ( f, a, b, L, U, N_MAX, ...

PhiArray, DPhiArray, TOLERANCE )

pih = exfloat( ’#PI/2’ );

function y = linear (x,low,up)
y = (up-low)/2*(x+1)+low;

end

h = U - L;
N = 1;
step = N_MAX;
N_MIN = 16;

s = f( linear(PhiArray(1),a,b) ) * DPhiArray(1) ...
+ f( linear(PhiArray(N_MAX+1),a,b) ) * DPhiArray(N_MAX+1);

s = s * h;

while 1

t = s;
h = h / 2;
if step <= 1

error( ’too small step’ )
end

step = step / 2;

sum = exfloat(0);
for k=1:N

sum = sum ...
+ f( linear(PhiArray(step*(2*k-1)+1),a,b) ) ...
* DPhiArray(step*(2*k-1)+1);

end
sum = sum * h;

s = t/2 + sum;

Figure 23: (continued) Computation of Caputo Derivative : CaputoDrvPlot.m
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if abs( (s-t)/s ) < TOLERANCE && N >= N_MIN
break;

end
if N > N_MAX

break;
end

N = N * 2;

end % while

s = s * (b-a)/2;

end
%----------------------------------------------------------
% End of file
%----------------------------------------------------------

Figure 23: (continued) Computation of Caputo Derivative : CaputoDrvPlot.m

A.2 Gamma Function

The function gamma() in MATLAB compute the gamma function. Most FOR-
TRAN compilers also support GAMMA(), and C++11 has it as tgamma() 3.

%----------------------------------------------------------
% gamma.m : Gamma Function, NOTE : MATLAB supports gamma()
% Copyright (C) 2017, FUJIWARA,Hiroshi
%----------------------------------------------------------
function g = gamma ( s )

g(1:length(s)) = exfloat(0);

for i=1:length(s)
g(i) = gamma_scalar( s(i) );

end
end

Figure 23: Gamma Function : gamma.m

3In C++, gamma() or lgamma() are used to compute the natural logarithm of the gamma
function: log |γ(x)|. The name tgamma() represents “true gamma” (Linux Programmer’s
Manual, TGAMMA(3))
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function g = gamma_scalar ( s )

%---------------------------------------------
% s \in 0,-1,-2, ... => gamma(s) is undefined
% s < 0, gamma(s) = pi/( gamma(1-s) * sin(pi*s) );
%---------------------------------------------
if s < 0

PI = exfloat( ’#PI’ );
g = PI / ( gamma_scalar(1-s) * sin(PI*s) );
return;

end

%---------------------------------------------
% Reducing argument into 2 < s < 3
% using gamma(s+1) = s*gamma(s)
%---------------------------------------------
if s == 2

g = exfloat( 1 );
return;

elseif s < 2
g = gamma_scalar(s+1) / s;
return;

elseif s == 3
g = exfloat( 2 );
return;

elseif s > 3
g = (s-1) * gamma_scalar(s-1);
return;

end

%--------------------------------------------------
% 1 <= gamma(s) < 2, when 2 <= s < 3.
% 2 < s < 3, find gamma(s) by improper integral
% Followings parameters are optimized to 100 digits
U = exfloat( ’5.5’ );
L = exfloat( ’-4.7’ );
N_MAX = 1024;
TOL = exfloat( ’1e-100’ );
%--------------------------------------------------

g = de_adaptive( @(x)integrand_gamma(x,s), ...
@phi_gamma, @dphi_gamma, ...
U, L, N_MAX, TOL );

end
%----------------------------------------------------------

Figure 23: (continued) Gamma Function : gamma.m
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function s = de_adaptive ( integrand, phi, dphi, ...

U, L, N_MAX, TOLERANCE )

N_MIN = 16;
h = U - L;

s = integrand( phi(L) ) * dphi(L) ...
+ integrand( phi(U) ) * dphi(U);

s = s * h;
N = 1;

while 1
t = s;
h = h / 2;

sum = exfloat( 0 );

for k=1:N
x = h*(2*k-1) + L;
sum = sum + integrand( phi(x) ) * dphi(x);

end
sum = sum * h;

s = t/2 + sum;

if abs(s-t)/s < TOLERANCE && N >= N_MIN
break;

end
if N > N_MAX

s = -1;
return;

end
if abs(s - t)/s < TOLERANCE

break;
end
N = N * 2;

end % while

end
%----------------------------------------------------------

Figure 23: (continued) Gamma Function : gamma.m
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function p = phi_gamma ( t )

p = exp( t - exp(-t) );
end

function p = dphi_gamma ( t )

p = exp( t - exp(-t) ) * ( 1 + exp(-t) );
end

function y = integrand_gamma ( x, nu )

y = power(x, nu-1) * exp(-x);
end
%----------------------------------------------------------
% End of file
%----------------------------------------------------------

Figure 23: (continued) Gamma Function : gamma.m

A.3 A Cauchy Problem of the Laplace Equation in 2D

Let Ω = (0, 1)2 ⊂ R
2 and we consider a Cauchy Problem of the Laplace Equa-

tion:

u(x, y) = 0, (x, y) ∈ Ω, (8a)

u(x, 0) = x2, x ∈ R, (8b)
∂u

∂y
(x, 0) = 0, x ∈ R, (8c)

which is known as one of typical ill-posed problems. Fig. 23 is a finite differ-
ence scheme to solve the problem, and Fig. 24(a) and (b) are numerical results
by the standard double precision arithmetic and multiple-precision arithmetic
respectively. Numerical results of double precision oscillates and does not ap-
proximate the exact solution around y = 0.2 due to accumulation of rounding
errors, while those of 100 digits approximate it in y < 0.5 (Fig. 24(b)).

In the example code, the computational precision is determined by uncom-
menting either of the following lines. The first line indicates the multiple-
precision arithmetic, and the second line indicates the double precision arith-
metic.

one = exfloat(1);
one = 1;

The result shows the efficiency of multiple-precision arithmetic in numerical
computation of ill-posed problems.
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%----------------------------------------------------------
% Cauchy Problem of the Laplace Equation in 2D Rectangle
% FDM Computation with 3D plot
%
% Copyright (C) 2017, FUJIWARA,Hiroshi
%----------------------------------------------------------
clear classes
addpath( strcat( pwd, ’/exflib’ ) );

Nx = 80; % division number of the interval 0 <= x <= 1.
Ny = 160; % division number of the interval 0 <= y <= 1.

I = 6*Nx; % Computation Domain
J = Ny/2; % 100 digits

%---------------------------------------------
% Select Computational Precision
% MULTIPLE-PRECISION or DOUBLE
%---------------------------------------------
%one = 1; % double precision arithmetic
one = exfloat(1); % multiple-precision arithmetic

%---------------------------------------------
% Setup Lattice
%---------------------------------------------
dx = one / Nx;
dy = one / Ny;

for i=1:I+1
x( i ) = dx * (i-I/2-1);

end
for j=1:J+1
y( j ) = dy * (j-1);

end

%---------------------------------------------
% Initial Value
%---------------------------------------------
f = x.*x;
g = 0.*x;
%---------------------------------------------
u(1:I+1, 1) = f;
u(1:I+1, 2) = f + dy*g(1:I+1);

Figure 23: Program to Solve Cauchy Problem of the Laplace Equation in 2D
(8)
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%---------------------------------------------
% Finite Difference Scheme
%---------------------------------------------
lambda = dy*dy/(dx*dx);

for j=2:J
% Boundary Condition
u(1,j+1) = 0;

% FDM
u(2:I,j+1) = 2*u(2:I,j) - u(2:I,j-1)...

- lambda.*( u(3:I+1,j) - 2*u(2:I,j) + u(1:I-1,j) );

% Boundary Condition
u(I+1,j+1) = 0;

end
%---------------------------------------------
% Output
%---------------------------------------------
[xx,yy] = meshgrid( -1:double(dx):1, 0:double(dy):double(J*dy) );
uu = double ( u(2*Nx+1:4*Nx+1, 1:J+1) );
plot3 (xx, yy, uu);

xlabel( ’x’ );
ylabel( ’y’ );
zlim( [-0.5 1] );

saveas(gcf, ’CauchyPbLaplace2D’, ’epsc’); % EPS file (for TeX)
saveas(gcf, ’CauchyPbLaplace2D’, ’png’); % PNG file
%----------------------------------------------------------
% End of file
%----------------------------------------------------------

Figure 23: (continued) Program to Solve Cauchy Problem of the Laplace Equa-
tion in 2D (8)
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Figure 24: Numerical Results for a Cauchy Problem of the Laplace Equation
(8) using Program Fig. 23.
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Abstract

Identification of wave sources is an important inverse problem because it has a lot of
applications in various fields. In inverse source problems, choice of source model is a key
point for theoretical and numerical discussions. Point source model and dipole source model
are simple but useful models that are widely discussed in many papers [6, 8, 9, 15]. Here,
we concentrate our attention to an algebraic restriction method for these models.

In the previous workshop in 2015, we consider the case where several unknown dipoles
moves slowly in some region, and discuss a identification procedure the parameters of dipole
[19]. Here, the word ’slowly’ means that moving speed of dipoles are sufficiently small
(smaller than 10% of the wave propagation speed). In this report, we remove this restriction
to which the moving speed of dipoles are only smaller (not sufficiently small) than the wave
propagation speed, and propose a new procedure to reconstruct moving point and dipole
sources.

1 Introduction

Identification problem of waves sources frequently arises in many science and engineering fields
e.g. identification of seismic sources, passive sonar [2, 21]. Assuming that the media is isotropic,
such kind of problem can be mathematically formulated as an inverse source problem for wave
equation[4, 12]. In inverse source problems, the choice of source model is a key point in theoretical
studies on uniqueness or stability, and numerical studies on reconstruction methods. Point source
model and dipole source model are simple but useful models, and are widely discussed in many
papers[5, 9, 13, 16, 17, 20]. In the report, we discuss a real-time algebraic reconstruction method
of these models.

In the previous workshop in 2015, we propose a identification procedure the unknown pa-
rameters of dipole source models assuming that dipoles move slowly[19]. Here, the word ’slowly’
means that moving velocities of points or dipole sources are sufficiently small (smaller than 10%)
comparing to the wave propagation speed, and then we can neglect the effect of the moving speed
of sources. In this report, we discuss a method to remove the restriction of our previous result,
and propose a new procedure to identify moving point and dipole sources accounting the effect
of the velocities of these kind of sources.
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2 Mathematical formulation

Let u be a scalar wave field described as a solution of the initial-value boundary-value problem
for three dimensional scalar wave equation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1

c2
∂2
t u(t, r)−Δu(t, r) = F (t, r), in (0, T )× Ω,

u(0, r) = 0, in Ω,
∂tu(0, r) = 0, in Ω,
u(t, r) = 0, on (0, T )× Γ,

(1)

where Ω ⊂ R
3 is a simply connected bounded domain with C∞-class boundary Γ = ∂Ω, c > 0

is the wave propagation speed, T > 2 · diamΩ > 0 is a constant, and F (t, r) describes the
wave source. Suppose that F (t, r) is unknown, and consider the problem to reconstruct it from
observation φ of the normal derivative of u on Γ:

φ(t, r) = ∂νu(t, r), on (0, T )× Γ.

This problem is called inverse source problem for scalar wave equation, and many researchers
discussed this problem from theoretical and numerical points of view, e.g. [5, 9, 18].

In inverse source problems, the choice of source model is a key point for theoretical and
numerical discussions. In this report, we assume that the source term is described by multiple
moving point sources

F (t, r) =

K∑
k=1

qk(t)δ(r − pk(t)), (2)

or moving dipole sources

F (t, r) = −
K∑
k=1

mk(t) · ∇δ(r − pk(t)). (3)

In (2), K denotes the number of point sources, pk(t) ∈ D and qk(t) ∈ R the location and
magnitude of k-th point source at t, where D is a compact subset in Ω. Note that we do not
need to specify the domain D. The symbol δ describes the Dirac’s delta distribution. And in
(3), K denotes the number of dipole sources, pk(t) ∈ D and mk(t) ∈ R

3 the location and dipole
moment of k-th dipole source at t. Hence, we consider the solution u of (1) in a weak sense, i.e.
u ∈ C1([0, T ];L2(Ω)) that satisfies

1

c2

∫
Ω
∂tu(T, r)v(T, r)dV (r)− 1

c2

∫
Ω
u(T, r)∂tv(T, r)dV (r)

−
∫ T

0

∫
Γ
∂νu(t, r)v(t, r)dS(r)dt

+

∫ T

0

∫
Ω
u(t, r)

(
1

c2
∂2
t v(t, r)−Δv(t, r)

)
dV (r)dt

= F(v), (4)

for any v ∈ C∞([0, T ]× Ω). In (4), the right hand side term F(v) is expressed by

F(v) = 〈F, v〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K∑
k=1

∫ T

0
qk(t)v(t,pk(t))dt, for point source model,

K∑
k=1

∫ T

0
mk(t) · ∇v(t,pk(t))dt, for dipole source model.
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With the aid of [14], we obtain the following regularity result for the case that the point and
dipole sources move smoothly in time and space and magnitudes or moments change smoothly
in time:

Proposition 1. Let � be a non-negative integer. For moving point sources (2), assume that
pk ∈ C�+2([0, T ];D), qk ∈ C�+1([0, T ];R), |dtpk(t)| < c and qk(0) = dtqk(0) = d2t qk(0) =

· · · = d
(�+1)
t qk(0) = 0, where dt denotes the derivative with respect to t. Then, the solution u

of (1) satisfies u ∈ C([0, T ];L2(Ω)), ∂tu ∈ C([0, T ];L2(Ω)). Specifically, the restriction u on
[0, T ]× (Ω\D) satisfies

u|[0,T ]×(Ω\D) ∈C([0, T ];H�+1(Ω\D)), (5)

∇u|[0,T ]×(Ω\D) ∈C([0, T ];H�(Ω\D)), (6)

∇∂m
t u|[0,T ]×(Ω\D) ∈C([0, T ];H�−m(Ω\D)), 0 ≤ m ≤ �, (7)

and the normal derivative ∂νu on Γ satisfies

∂νu ∈ H�([0, T ]× Γ). (8)

For moving dipole sources (3), assume that pk ∈ C�+2([0, T ];D), mk ∈ C�+2([0, T ];R3),

|dtpk(t)| < c, and mk(0) = dtmk(0) = d2tmk(0) = · · · = d
(�+2)
t mk(0) = 0. Then, the solution

u satisfies u ∈ C([0, T ];H−1(Ω)), ∂tu ∈ C([0, T ];H−1(Ω)). Specifically, the restriction u on
[0, T ]× (Ω\D) and the normal derivative ∂νu satisfy the same regularities (5)-(8) as the results
for moving point sources.

3 Reconstruction method

3.1 Reciprocity gap functional

In our reconstruction method, the key technique is the reciprocity gap functional that is defined
on the subspace of test functions v in (4). This technique is widely applied to various inverse
problems[1, 3, 7, 8, 11]. First, we show a definition of the reciprocity gap functional for scalar
wave equations.

Let W ⊂ C∞([0, T ]× Ω;C) be a class of complex-valued functions v that satisfy the homo-
geneous wave equation and the zero final state condition:⎧⎪⎨

⎪⎩
1

c2
∂2
t v −Δv = 0, in (0, T )× Ω,

v(T, r) = 0, in Ω,
∂tv(T, r) = 0, in Ω.

(9)

We define the reciprocity gap functional Rφ on W for given observation data φ ∈ L2((0, T )×Γ)
by

Rφ(v) ≡ −
∫ T

0

∫
Γ
φ(t, r)v(t, r)dtdS(r), v ∈ W . (10)

Since u satisfies the weak form (4) and φ = ∂νu, we establish

Rφ(v) = F(v), for any v ∈ W . (11)

The equation (11) shows relation between the reciprocity gap functional Rφ(v) and the source
term F , and suggests that we can pick up some information on the unknown parameters of the
source term using Rφ(v).
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3.2 Reconstruction of moving point sources

In this subsection, we assume that pk ∈ C6([0, T ];D), qk ∈ C5([0, T ];R) and qk(0) = dtqk(0) =
d2t qk(0) = · · · = d5t qk(0) = 0. Then, from proposition 1, we have observation data φ ∈
H4((0, T ) × Γ). For the reconstruction of moving point sources, we choose the following five
sequences of functions in W :

fn,ε(t, r; τ) =(x+ iy)nηε

(
t−

(
τ − z

c

))
, n = 0, 1, 2, · · · , (12)

gn,ε(t, r; τ) =− ∂tfn,ε(t, r; τ), n = 0, 1, 2, · · · , (13)

hn,ε(t, r; τ) =z(∂x − i∂y)fn,ε(t, r; τ)− (x− iy)∂zfn,ε(t, r; τ),

n = 1, 2, · · · , (14)

in,ε(t, r; τ) =∂2
t fn,ε(t, r; τ), n = 0, 1, 2, · · · , (15)

jn,ε(t, r; τ) =− ∂thn,ε(t, r; τ), n = 1, 2, · · · , (16)

where τ ∈ [sup
r∈Ω

z/c + ε, T + inf
r∈Ω

z/c − ε], 0 < ε 	 1, and ηε ∈ C∞(R;R) denotes the standard

mollifier function (see Appendix C in [10]). We note that sequences {fn,ε}, {gn,ε} and {hn,ε}
have already utilized for the reconstruction of fixed point sources [18]. We add sequences {in,ε}
and {jn,ε} to treat the effect of moving velocities of sources.

Due to the assumption for pk(t) and qk(t), the observation data φ is in H4((0, T ) × Γ) ⊂
C2([0, T ] × Γ). Then, reciprocity gap functionals Rφ(fn,ε), Rφ(gn,ε), · · · ,Rφ(jn,ε) converge as
ε → +0, and we have

Rφ(fn)(τ) ≡ lim
ε→+0

R(fn,ε(·, ·; τ))

=− lim
ε→+0

∫ T

0

∫
Γ
φ(t, r)fn,ε(t, r; τ)dS(r)dt

=−
∫
Γ
(x+ iy)nφ

(
τ − z

c
, r
)
dS(r),

Rφ(gn)(τ) ≡ lim
ε→+0

R(gn,ε(·, ·; τ))

=−
∫
Γ
(x+ iy)n∂tφ

(
τ − z

c
, r
)
dS(r),

Rφ(hn)(τ) ≡ lim
ε→+0

R(hn,ε(·, ·; τ))

=−
∫
Γ
2nz(x+ iy)n−1φ

(
τ − z

c
, r
)
dS(r)

− 1

c

∫
Γ
(x− iy)(x+ iy)n∂tφ

(
τ − z

c
, r
)
dS(r),

Rφ(in)(τ) ≡ lim
ε→+0

R(in,ε(·, ·; τ))

=−
∫
Γ
(x+ iy)n∂2

t φ
(
t, τ − z

c

)
dS(r),

Rφ(jn)(τ) ≡ lim
ε→+0

R(jn,ε(·, ·; τ))

=−
∫
Γ
2nz(x+ iy)n−1∂tφ

(
τ − z

c
, r
)
dS(r)

− 1

c

∫
Γ
(x− iy)(x+ iy)n∂2

t φ
(
τ − z

c
, r
)
dS(r).

Also F(fn,ε), F(gn,ε), · · · ,F(in,ε) converge as ε → +0, and we establish the following explicit
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expressions with respect to the parameters of moving point sources:

F(fn)(τ) = lim
ε→+0

F(fn,ε(·, ·; τ))

= lim
ε→+0

K∑
k=1

∫ T

0
qk(t)fn,ε(t,pk(t); τ)

=

K∑
k=1

qk(tk(τ))ξk(tk(τ))(pk,xy(tk(τ)))
n, (17)

F(gn)(τ) = lim
ε→+0

F(gn,ε(·, ·; τ))

=
K∑
k=1

dτ (qkξk) · (pk,xy)n + n
K∑
k=1

qkξk · dτ (pk,xy) · (pk,xy)n−1, (18)

F(hn)(τ) = lim
ε→+0

F(hn,ε(·, ·; τ))

=2n
K∑
k=1

qkξk · pk,z · (pk,xy)n−1

+
1

c

K∑
k=1

{dτ (qkξk) · pk,xy + qkξk · dτ (pk,xy)} (pk,xy)n

+
n

c

K∑
k=1

qkξk · dτ (pk,xy) · pk,xy · (pk,xy)n−1, (19)

F(in)(τ) = lim
ε→+0

F(in,ε(·, ·; τ))

=
K∑
k=1

d2τ (qkξk)pk,xy
n + n

K∑
k=1

{
2dτ (qkξk) · dτ (pk,xy) + qkξk · d2τ (pk,xy)

}
(pk,xy)

n−1

+ n(n− 1)
K∑
k=1

qkξk · (dτ (pk,xy))2 · (pk,xy)n−2, (20)

F(jn)(τ) = lim
ε→+0

F(gn,ε(·, ·; τ))

=2n
K∑
k=1

qkξk · dτ (pk,z) · (pk,xy)n−1 + R̂jn , (21)

where

• The symbol dτ denotes the derivative with respect to τ , e.g. dτ (pk,xy) = dtpk,xy(tk(τ)) ·
ξk(τ),

• pk,xy(tk(τ)) = pk,x(tk(τ)) + ipk,y(tk(τ)),

• tk(τ) is the unique solution t of the equation

t− τ +
pk,z(t)

c
= 0, (22)

for each k and τ ,

• ξk(τ) is the derivative of tk with respect to τ , and it is expressed as

ξk(τ) =
dtk
dτ

(τ) = 1− dτpk,z(tk(τ))

c
, (23)
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• R̂jn is a polynomial defined by

R̂jn =2n
K∑
k=1

{dτ (qkξk) · pk,xy + (n− 1)qkξk · dτ (pk,xy)} · pk,z · (pk,xy)n−2

+
1

c

K∑
k=1

d2τ (qkξk) · pk,xy · (pk,xy)n

+
1

c

K∑
k=1

{
2dτ (qkξk) · dτ (pk,xy) + qkξk · d2τ (pk,xy)

} · (pk,xy)n

+
n

c

K∑
k=1

{
2dτ (qkξk) · dτ (pk,xy) + qkξk · d2τ (pk,xy)

} · pk,xy · (pk,xy)n−1

+
n

c

K∑
k=1

2qkξk · dτ (pk,xy) · dτ (pk,xy) · (pk,xy)n−1

+
n(n− 1)

c

K∑
k=1

qkξk · (dτ (pk,xy))2 · pk,xy · (pk,xy)n−2.

Here, except for (17), we omit the argument (tk(τ)) on qk, pk,xy, pk,z and their derivatives, and
the argument (τ) on ξk to simplify the expression.

Using expressions (17) - (21), we obtain the following reconstruction theorem for moving
point sources:

Theorem 3.1. For each τ , let K(τ) be the number of point sources such that qk(tk(τ)) �= 0.
Assume that K(τ) ≤ KM for some KM > 0, and pj,xy(tj(τ)) �= pk,xy(tk(τ)) if j �= k. Then, we
can determine K(τ) from the reciprocity gap functionals Rφ(fn)(τ), n = 0, 1, 2, · · · , 2KM + 1.
Also we can uniquely determine pk(tk(τ)) and qk(tk(τ)), k = 1, 2, · · · ,K(τ) from the reciprocity
gap functionals

• Rφ(fn)(τ), n = 0, 1, 2, · · · , 2K(τ),

• Rφ(gn)(τ), n = 0, 1, 2, · · · , 2K(τ)− 1,

• Rφ(hn)(τ), n = 1, 2, 3, · · · ,K(τ),

• Rφ(in)(τ), n = 1, 2, 3, · · · , 2K(τ),

• Rφ(jn)(τ), n = 1, 2, 3, · · · ,K(τ).

Sketch of proof
We can prove the theorem by the following five steps. These steps also provide a reconstruc-

tion procedure of moving point sources.

Step 1. Identify K(τ) from Rφ(fn)(τ), n = 0, 1, 2, · · · , 2K(τ) + 1.

Step 2. Reconstruct pk,xy(tk(τ)), k = 1, 2, · · · ,K(τ), and identify perturbed magnitudes qk(tk(τ))ξk(τ)
from Rφ(fn)(τ), n = 0, 1, 2, · · · , 2K(τ).

Step 3. Reconstruct pk,z(tk(τ)), k = 1, 2, · · · ,K(τ) from Rφ(gn)(τ), n = 0, 1, 2, · · · , 2K(τ)−1
and Rφ(hn)(τ), n = 1, 2, 3, · · · ,K(τ).

Step 4. Identify dτ (pk,z(tk(τ))), k = 1, 2, · · · ,K(τ) from Rφ(in)(τ), n = 1, 2, 3, · · · , 2K(τ) and
Rφ(jn)(τ), n = 1, 2, 3, · · · ,K(τ).
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Step 5. Compute ξk(τ) using dτ (pk,z(tk(τ))) for each , k = 1, 2, · · · ,K(τ), and reconstruct
magnitudes qk(tk(τ)).

Step 1. Define L× L Hankel matrix

HL,μ(τ) =

⎛
⎜⎜⎜⎝

Rφ(fμ)(τ) Rφ(fμ+1)(τ) · · · Rφ(fμ+L)(τ)
Rφ(fμ+1)(τ) Rφ(fμ+2)(τ) · · · Rφ(fμ+L−1)(τ)

...
...

. . .
...

Rφ(fμ+L−1)(τ) Rφ(fμ+L)(τ) · · · Rφ(fμ+2L−1)(τ)

⎞
⎟⎟⎟⎠ .

Then, from (17) and using corollary 3 in [17], we can determine K(τ) by

K(τ) = max {L | detHL,0(τ) �= 0} . (24)

Step 2. From the definition of HL,μ(τ) and using Theorem 2 in [8], we can reconstruct
pk,xy(tk(τ)), k = 1, 2, · · · ,K(τ) as eigenvalues of (HK(τ),0(τ))

−1HK(τ),1(τ). Then, we can re-
construct the perturbed magnitudes qk(tk(τ))ξk(τ), k = 1, 2, · · · ,K(τ) as a unique solution of

K∑
k=1

qk(tk(τ))ξk(tk(τ)) · (pk,xy(tk(τ)))n = Rφ(fn)(τ), n = 0, 1, 2, · · · ,K(τ)− 1.

Step 3. Considering the equation (18) for n = 0, 1, 2, · · · , 2K(τ) − 1, we can uniquely solve
(qkξk) · dτ (pk,xy) and dτ (qkξk) for k = 1, 2, · · · ,K(τ) from Rφ(gn), n = 0, 1, 2, · · · , 2K(τ) − 1.
Let

R̂hn =
1

c

K∑
k=1

{dτ (qkξk) · pk,xy + qkξk(τ) · dτ (pk,xy)} (pk,xy)n

+
n

c

K∑
k=1

qkξk · dτ (pk,xy) · pk,xy · (pk,xy)n−1.

Then we can compute R̂hn , and identify qkξk · pk,z, k = 1, 2, · · · ,K(τ) as a solution of the
following system of linear equation:

(qkξk · pk,z) · (pk,xy)n−1 = 1

2n

(
R(hn)(τ)− R̂hn

)
, n = 1, 2, · · · ,K(τ). (25)

Dividing each solution qkξk · pk,z of (25) by qkξk, we reconstruct pk,z, k = 1, 2, · · · ,K(τ).

Step 4. Similar to Step 3, we can solve d2τ (qkξk) and 2dτ (qkξk) · dτ (pk,xy) + qkξk · d2τ (pk,xy)
using the equation (20) for Rφ(in)(τ). Then, we can estimate qkξk · dτ (pk,z) as a solution of the
system of linear equation:

(qkξk · dτ (pk,z)) · (pk,xy)n−1 = 1

2n

(
Rφ(jn)(τ)− R̂jn

)
, n = 1, 2, · · · ,K(τ),

and obtain dτ (pk,z(tk(τ))), k = 1, 2, · · · ,K(τ).

Step 5. Since we have identified dτ (pk,z), we can compute ξk(τ) from (23), and reconstruct
magnitude qk(tk(τ)) of each point source from its perturbed values qk(tk(τ))ξk(τ). �
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3.3 Reconstruction of moving dipole sources

Next, we consider the reconstruction of moving dipole sources. Here, we assume that pk ∈
C6([0, T ];D), mk ∈ C6([0, T ];R3) and mk(0) = dtmk(0) = d2tmk(0) = · · · = d6tmk(0) = 0,
then the observation data is in H4([0, T ] × Γ) ⊂ C2([0, T ] × Γ). In addition, we assume that
mz,k(t) ≡ 0 for all k. For the reconstruction of moving dipole sources, we use the same five
sequences of functions {fn,ε}, {gn,ε}, · · · , {jn,ε} as for the reconstruction of moving point sources.
The explicit expression of F(fn), F(gn), · · · ,F(in) for moving dipole sources are given as follows:

F(fn)(τ) =n
K∑
k=1

mk,xyξk · (pk,xy)n−1, n = 1, 2, · · · , (26)

F(gn)(τ) =n

K∑
k=1

dτ (mk,xyξk) · (pk,xy)n−1

+ n(n− 1)
K∑
k=1

mk,xyξk · dτ (pk,xy) · (pk,xy)n−2, n = 1, 2, · · · , (27)

F(hn)(τ) =2n(n− 1)
K∑
k=1

mk,xyξk · pk,z · (pk,xy)n−2

+
1

c

K∑
k=1

dτ (mk,xyξk) · (pk,xy)n

+
n

c

K∑
k=1

{dτ (mk,xyξk) · pk,xy +mk,xyξk · dτ (pk,xy) +mk,xyξk · dτ (pk,xy)} (pk,xy)n−1

+
n(n− 1)

c

K∑
k=1

mk,xyξk · dτ (pk,xy) · pk,xy · (pk,xy)n−2, n = 2, 3, · · · , (28)

F(in)(τ) =n

K∑
k=1

d2τ (mk,xyξk) · (pk,xy)n−1

+ n(n− 1)

K∑
k=1

{
2dτ (mk,xyξk) · dτ (pk,xy) +mkxyξk · d2τ (pk,xy)

}
(pk,xy)

n−2

+ n(n− 1)(n− 2)
K∑
k=1

mk,xyξk · (dτ (pk,xy))2 · (pk,xy)n−3, n = 1, 2, · · · , (29)

F(jn)(τ) =2n(n− 1)
K∑
k=1

mk,xyξk · dτ (pk,z) · (pk,xy)n−2 + R̂jn , n = 2, 3, · · · , (30)

where

• mk,xy ≡ mk,x(tk(τ)) + imk,y(tk(τ)),
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• R̂jn is expressed by

R̂jn =2n(n− 1)
K∑
k=1

{dτ (mk,xyξk) · pk,xy + (n− 2)mk,xyξk · dτ (pk,xy)} · pk,z · (pk,xy)n−3

+
1

c

K∑
k=1

d2τ (mk,xyξk) · (pk,xy)n +
n

c

K∑
k=1

d2τ (mk,xyξk) · pk,xy · (pk,xy)n−1

+
n

c

K∑
k=1

{
2dτ (mk,xyξk) · dτ (pk,xy) +mk,xyξk · d2τ (pk,xy)

} · (pk,xy)n−1

+
n

c

K∑
k=1

{
2dτ (mk,xyξk) · dτ (pk,xy) +mk,xyξk · d2τ (pk,xy)

} · (pk,xy)n−1

+
n(n− 1)

c

K∑
k=1

mk,xyξ · (dτ (pk,xy))2 · (pk,xy)n−2

+
n(n− 1)

c

K∑
k=1

{
2dτ (mk,xyξk) · dτ (pk,xy) +mk,xyξk · d2τ (pk,xy)

} · pk,xy · (pk,xy)n−2

+
n(n− 1)

c

K∑
k=1

2mk,xyξk · dτ (pk,xy) · dτ (pk,xy) · (pk,xy)n−2

+
n(n− 1)(n− 2)

c

K∑
k=1

mk,xyξk · pk,xy · (dτ (pk,xy))2 · (pk,xy)n−3.

As we have already shown for moving point sources, we can establish the following recon-
struction theorem for moving dipole sources:

Theorem 3.2. For each τ , let K(τ) be the number of dipole sources such that mk(tk(τ)) �= 0.
Assume that K(τ) ≤ KM for some KM > 0, and pj,xy(tj(τ)) �= pk,xy(tk(τ)) if j �= k. Then,
we can determine K(τ) from the reciprocity gap functionals Rφ(fn)(τ), n = 1, 2, · · · , 2KM + 2.
Also we can uniquely reconstruct pk(tk(τ)) and mk(tk(τ)) for k = 1, 2, · · · ,K(τ) from

• R(fn)(τ), n = 1, 2, · · · , 2K(τ) + 1,

• R(gn)(τ), n = 1, 2, · · · , 2K(τ),

• R(hn)(τ), n = 2, · · · ,K(τ) + 1,

• R(in)(τ), n = 1, 2, · · · , 2K(τ),

• R(jn)(τ), n = 2, · · · ,K(τ) + 1.

We can prove Theorem 3.2 using similar steps in Theorem 3.1, but we omit it here.

4 Numerical Experiments

We give some numerical experiments for the reconstruction method proposed in the previous
section. We consider the case that two point sources move in the domain Ω = {r | |r| = 1}, and
the wave propagation speed c = 1. Each point source moves as following, and the orbit of each
point source is shown in Figure 1.

Point source 1: Moves on a circle vertical with respect to xy-plane.
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Point source 2: Moves on a circle horizontal with respect to xy-plane.

In our experiments, moving speed of both point sources are constant, i.e.
|p′

k(t)|
c = 35%, k = 1, 2.

Magnitude of each point source changes in time as shown in Figure 2. To give the observation
data, we solve (1) by boundary integral equation method, and give observation data on 384
points on Γ with time step Δt = 0.1. To simulate practical observation condition, we add 0.0%,
1.0%, and 5.0% random noise to observation data.
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Figure 1: The orbit of each point source.

Figures 3 and 4 show the reconstruction result for noise-free case. Figure 3 gives the recon-
structed orbits of point sources, and Figure 4 displays the time-profiles of location and magnitude
of each reconstructed point source. From these reconstruction results, we may consider that our
method gives good estimates for both locations and magnitudes under noise free observation
condition.

Next, we show reconstruction results for noisy observation cases. Figures 5 and 7 show the
reconstruction results of orbits, and Figures 6 and 8 display the time-profiles of estimated loca-
tions, and magnitudes for observations with 1.0%, and 5.0% noise cases, respectively. From these
reconstruction results, we consider that our method gives reliable estimates for both locations
and magnitudes in the case where noise is 1%, but observation noise becomes 5%, the estimates
become unreliable, especially, for magnitudes of point sources.

To avoid the bad effect of noise, we apply 5 points Gaussian filter with respect to t to
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observation data φ. Figure 9 shows the reconstruction results of orbits of point sources, and
Figure 10 displays the time-profiles of estimated locations, and magnitudes of point sources.
From these results, we can see that the filtering process is effective to remove noise effect on the
reconstruction results.

5 Conclusions

In this report, we discuss a reconstruction of moving point and dipole sources in three dimen-
sional scalar wave equation. We propose a real-time algebraic procedure for unknown parameters
of moving point and dipole sources. We examine proposed method by some numerical experi-
ments. Numerical results shows that our method gives good estimates of parameters of moving
point sources in the case where the noise is smaller than 1%. However reconstruction results
become unreliable if the observation noise is larger than 5%, and we need filtering process to
observation data to obtain better reconstruction results.
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Figure 2: Time-profiles of locations and magnitudes of point sources.
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Figure 3: Reconstructed orbits of point sources for noise free case.
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Figure 4: Time-profiles of estimated locations and magnitudes of point sources for noise free
case.
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Figure 5: Estimated orbits of point sources for 1% noisy observation case.
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Figure 6: Time-profiles of estimated locations and magnitudes of point sources for 1% noisy
observation case.
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Figure 7: Estimated orbits of point sources for 5% noisy observation case.
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Figure 8: Time-profiles of estimated locations and magnitudes of point sources for 5% noisy
observation case.
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Figure 10: Time-profiles of estimated locations and magnitudes of point sources for 5% noisy
observation case with filtering process to observation data.
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1 Problem formulation
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Estimation of wave source

Applications

Estimation of seismic source
Estimation of acoustic source (passive sonar)
Estimation of action of brain (electromagnetic source)
· · ·

Mathematical formulation

inverse source problem for wave equation
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Model of unknown source 1: point sources model

� �

F (t, r) =
K∑

k=1

qk(t)δ(r − pk(t))

� �
K : number of sources (unknown)

pk(t) ∈ C 6([0,T ];D) : location of k-th source(unknown)

|ṗk(t)| < c (D ⊂ Ω: compact)

qk(t) ∈ C 5([0,T ];R) : magnitude of k-th source(unknown)

qk(0) = q̇k(0) = · · · = q
(5)
k (0) = 0

(Continuity conditions for pk and qk are given for sufficient regularity on
observation data)
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Inverse source problem for scalar wave equations

Ω : bounded domain in R
3, simply connected.

Γ = ∂Ω : the boundary of Ω (C∞-class)

F (t, r) : the source term (unknown)

u(t, r) : The solution of initial-value-boundary-value problem

(E )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

c2
∂2
t u(t, r)−Δu(t, r) = F (t, r), (t, r) ∈ (0,T )× Ω,

u(t, r) = 0, (t, r) ∈ (0,T )× Γ,
u(0, r) = 0, r ∈ Ω,

∂tu(0, r) = 0, r ∈ Ω,

(c > 0, T > 0: given constants)
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Problem

Given information φ : the normal derivative ∂νu on (0,T )× Γ.� �
Reconstruct K , pk(t), and qk(t) (for point sources)

or mk(t) (for dipole sources)

� �
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Model of unknown source 2: dipole sources model

� �

F (t, r) = −
K∑

k=1

mk(t) · ∇δ(r − pk(t))

� �
K : number of sources (unknown)

pk(t) ∈ C 6([0,T ];D) : location of k-th source(unknown)

|ṗk(t)| < c (D ⊂ Ω: compact)

mk(t) ∈ C 6([0,T ];R3) : moment of k-th source(unknown)

mk(0) = ṁk(0) = · · · = m
(6)
k (0) = 0

(Continuity Conditions for pk and mk are given for sufficient regularity on
observation data)
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2 Known results
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In both cases, we consider the solution u in a weak sense, i.e.
u ∈ C 1([0,T ]; L2(Ω)) satisfies that ∂νu ∈ C ([0,T ]; L2(Γ)) and

1

c2

∫
Ω

∂tu(T , r)v(T , r)dV (r)−
1

c2

∫
Ω

u(T , r)∂tv(T , r)dV (r)

−

∫ T

0

∫
Γ

∂νu(t, r)v(t, r)dS(r)dt

+

∫ T

0

∫
Ω

u(t, r)

(
1

c2
∂2
t v(t, r)−Δv(t, r)

)
dV (r)dt

= F(v) for any v ∈ C∞([0,T ]× Ω)

where

F(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K∑
k=1

∫ T

0

qk(t) v(t,pk(t))dt point sources

K∑
k=1

∫ T

0

mk(t) · ∇v(t,pk(t))dt dipole sources
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Known results for ISP for wave equations
(Numerical, summary)

Ohnaka (1991) · · · one or two fixed point sources, 2 dimensional
space, optimization method.

El Badia & Ha Duong (2001) · · · multiple fixed point sources,
algebraic method.

Ohe, Inui & Ohnaka (2011) · · · multiple fixed point sources, real-time
algebraic method.

Nakaguchi, Inui & Ohnaka (2011) · · · moving single point source,
algebraic method.

Ando, Nara & Levy(2013) · · · fixed, single point source, algebraic
method.
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Known results for ISP for wave equations
(Theoretical, summary)

El Badia & Ha Duong (2001) · · · uniqueness of fixed point sources,
algebraic approach.

Komornik & Yamamoto (2005) · · · uniqueness and stability of fixed
point sources with same magnitudes, analytic approach.

As long as I know, no result is presented for uniqueness of of the
solution for moving point sources (and dipoles). (Also for stability)
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Target

In the previous conference in 2015, we extend Ohe-Inui-Ohnaka(IP,
2011) to slowly-moving (|ṗk(t)|/c � 1) multiple moving point sources.

Our target: Extend Ohe-Inui-Ohnaka(IP, 2011) to multiple moving
(not slowly!) point and/or dipole sources.
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Problems in known results

In El Badia-Ha Duong (2001), they applied the Fourier in the time
domain. Therefore, they can not estimate unknown sources
instantaneously.
Using the method in Ohe-Inui-Ohnaka (2011), one can estimate
parameters of point sources in a small delay if the locations of point
sources are fixed. However, if point sources move fast, estimation
results are perturbed by moving speeds of point sources.
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Fig. An example of effect of the moving-speed of sources (|ṗk,z/c| = 35%).
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Regularity results for observation data φ = ∂νu

Proposition 1 (for point sources)

Let � be a non-negative integer. For moving point sources model, assume
that pk ∈ C �+2([0,T ];D), qk ∈ C �+1([0,T ];R). Also assume that |ṗk(t)| < c

and q(m)(0) = 0 for m = 0, 1, 2, · · · , �+ 1. Then, the solution u of (E)
satisfies u ∈ ([0,T ]; L2(Ω)). More specifically, the restriction of u on Ω\D
satisfies

u|[0,T ]×Ω\D ∈ C ([0,T ];H�+1(Ω\D))

∇u|[0,T ]×Ω\D ∈ C ([0,T ];H�(Ω\D))

∇∂m
t u|[0,T ]×Ω\D ∈ C ([0,T ];H�−m(Ω\D)), 0 ≤ m ≤ �

and the normal derivative on Γ satisfies

∂νu ∈ H�(Σ). (Σ = (0,T )× Γ)
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3 Regularity results for observation data
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Proof of Proposition 1

Divide u into u = up + uh, where up and uh are the solutions of

(N)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

c2
∂2
t up(t, r)−Δup(t, r) =

K∑
k=1

qk(t)δ(r − pk(t)), (t, r) ∈ (0,T )× R

up(0, r) = 0, r ∈ R
3,

∂tup(0, r) = 0, r ∈ R
3,

(H)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

c2
∂2
t uh(t, r)−Δuh(t, r) = 0, (t, r) ∈ (0,T )× Ω,

uh(t, r) = −up(t, r), (t, r) ∈ (0,T )× Γ
uh(0, r) = 0, r ∈ Ω,

∂tuh(0, r) = 0, r ∈ Ω,
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Regularity results for observation data φ = ∂νu

Proposition 2 (for dipole sources)

Let � be a non-negative integer. For moving dipole sources model, assume
that pk ∈ C �+2([0,T ];D), mk ∈ C �+2([0,T ];R). Also assume that |ṗk(t)| < c

and q(m)(0) = 0 for m = 0, 1, 2, · · · , �+ 2. Then, the solution u of (E)
satisfies u ∈ ([0,T ];H−1(Ω)). More specifically, the restriction of u on Ω\D
satisfies

u|[0,T ]×Ω\D ∈ C ([0,T ];H�+1(Ω\D))

∇u|[0,T ]×Ω\D ∈ C ([0,T ];H�(Ω\D))

∇∂m
t u|[0,T ]×Ω\D ∈ C ([0,T ];H�−m(Ω\D)), 0 ≤ m ≤ �

and the normal derivative on Γ satisfies

∂νu ∈ H�(Σ).
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Moreover

up|[0,T ]×Γ ∈ C �+1([0,T ]× Γ) ⊂ H�+1((0,T )× Γ)
ν · ∇up|[0,T ]×Γ ∈ C �([0,T ]× Γ) ⊂ H�((0,T )× Γ)

By Lasiecka-Lions-Triggani(1986), The solution uh of (H) satisfies

uh ∈ C([0,T ];H�+1(Ω)),
∂m
t uh ∈ C([0,T ];H�−m+1(Ω))

∂νuh ∈ H�(Σ).

Hence, for u = up + uh, we have

u|[0,T ]×Ω\D ∈ C([0,T ];H�+1(Ω\D))
∇u|[0,T ]×Ω\D ∈ C([0,T ];H�(Ω\D))
∇∂m

t u|[0,T ]×Ω\D ∈ C([0,T ];H�−m(Ω\D)), 0 ≤ m ≤ �

∂νu ∈ H�(Σ).
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The solution up of (N) is expressed by

up(t, r) =

K∑
k=1

1

4π
·

qk(sk(t, r))

|r − pk(sk(t, r))| · hk(sk(t, r), r)
,

where

sk(t, r): a solution s of the equation

t = s +
|r − pk(s)|

c
,

hk(s, r) = 1−
ṗk(s) · (r − pk(s))

c |r − pk(s)|
.

sk ∈ C l+2(Ω\{(t, pk(t)), t ∈ [0,T ]})
hk ∈ C l+1(Ω\{(t, pk(t)), t ∈ [0,T ]})

Then

up|[0,T ]×Ω ∈ C([0,T ]; L2(Ω))

up|[0,T ]×(Ω\D) ∈ C �+1([0,T ]× (Ω\D))
∇up|[0,T ]×(Ω\D) ∈ C �([0,T ]× (Ω\D)
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4 Key idea of the identification scheme : Reciprocity gap functional
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Proof of Proposition 2 (Outline)

Using the same decomposition as proposition 1, we obtain

up(t, r) =

K∑
k=1

1

4π
·
mk(sk(t, r)) · (r − pk(sk(t, r)))

|r − pk(sk(t, r))|
3
· hk(sk(t, r), r)

+

K∑
k=1

1

4πc
·
d

dt

(
mk(sk(t, r)) · (r − pk(sk(t, r)))

|r − pk(sk(t, r))|
2
· (hk(sk(t, r), r))2

)

Then

up|[0,T ]×Ω ∈ C([0,T ];H−1(Ω))

up|[0,T ]×(Ω\D) ∈ C �+1([0,T ]× (Ω\D))
∇up|[0,T ]×(Ω\D) ∈ C �([0,T ]× (Ω\D)

And hence, we obtain the same regularity results for u outside of the
domain D.
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W ⊂ C∞([0,T ]× Ω) : a set of complex-valued solutions of adjoint
problem: Homogeneous scalar wave equation

1

c2
∂2
t v(t, r)−Δv(t, r) = 0, (t, r) ∈ Ω× (0,T )

with final state condition

v(T , r) = ∂tv(T , r) = 0, r ∈ Ω

Rφ(·) : The reciprocity gap functional on W� �

Rφ(v) = −

∫ T

0

∫
Γ

φ(t, r)v(t, r)dS(r)dt

� �
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Definition of reciprocity gap

Weak form of the wave equation: u ∈ C 1([0,T ]; L2(Ω)) satisfies that
∂νu ∈ C ([0,T ]; L2(Γ)) and

1

c2

∫
Ω

∂tu(T , r)v(T , r)dV (r)−
1

c2

∫
Ω

u(T , r)∂tv(T , r)dV (r)

−

∫ T

0

∫
Γ

∂νu(t, r)v(t, r)dS(r)dt

+

∫ T

0

∫
Ω

u(t, r)

(
1

c2
∂2
t v(t, r)−Δv(t, r)

)
dV (r)dt

= F(v) for any v ∈ C∞([0,T ]× Ω)
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Reciprocity gap functional for point sources and
dipole sources

For point sources model� �

Rφ(v) = F(v) =

K∑
k=1

∫ T

0

qk(t) · v(t,pk(t))dt

� �
For dipole sources model� �

Rφ(v) = F(v) =
K∑

k=1

∫ T

0

mk(t) · ∇v(t,pk(t))dt

� �

In both cases, we can pick up some information on the parameters of
sources choosing suitable functions v in W.
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Since v ∈ W

Rφ(v) = −

∫ T

0

∫
Γ

∂νu(t, r)v(t, r)dS(r)dt

= −
1

c2

∫
Ω

∂tu(T , r)v(T , r)dV (r) +
1

c2

∫
Ω

u(T , r)∂tv(T , r)dV (r)

−

∫ T

0

∫
Ω

u(t, r)

(
1

c2
∂2
t v(t, r)−Δv(t, r)

)
dV (r)dt

+F(v)

= F(v)
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Choice of v(t, r) in W for moving point sources

� �
fn,ε(t, r; τ) = (x + iy)nρε

(
t −

(
τ − z

c

))
, n = 0, 1, 2, · · · ,

gn,ε(t, r; τ) = −∂t fn,ε(t, r; τ), n = 0, 1, 2, · · · ,

hn,ε(t, r; τ) = z (∂x − i∂y ) fn,ε(t, r; τ)− (x − iy)∂z fn,ε(t, r; τ),
n = 1, 2, 3, · · · ,

in,ε(t, r; τ) = ∂2
t fn,ε(t, r; τ), n = 0, 1, 2, · · · ,

jn,ε(t, r; τ) = −∂thn,ε(t, r; τ), n = 1, 2, 3, · · · ,

� �
ρε ∈ C∞(R): a standard mollifier function.

τ ∈ [0,T + infΩ z/c − ε], 0 < ε � 1.
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5 Reconstruction of moving point sources

27 / 92

－155－



Problem formulation Known results Regularity Key idea Reconstruction method Dipole source Numerical experiments Conclusions

Similarly, we have

Rφ(gn)(τ) =−

∫
Γ

(x + iy)n∂tφ
(
τ −

z

c
, r
)
dS(r)

Rφ(hn)(τ) =−

∫
Γ

2nz(x + iy)n−1φ
(
τ −

z

c
, r
)
dS(r)

−
1

c

∫
Γ

(x − iy)(x + iy)n∂tφ
(
τ −

z

c
, r
)
dS(r)
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From our assumption, φ ∈ H4(Γ× [0,T ]) ⊂ C 2(Γ× [0,T ]), then, although
fn,ε does not converges in C∞([0,T ]× Ω), limε→0 R(fn,ε(·, ·; τ)) exists, and
we have

Rφ(fn)(τ) ≡ lim
ε→0

Rφ(fn,ε(·, ·; τ))

= − lim
ε→0

∫ T

0

∫
Γ

(x + iy)nρε

(
t −

(
τ −

z

c

))
φ(t, r)dS(r)dt

= − lim
ε→0

∫
Γ

(x + iy)n

{∫ T

0

ρε

(
t −

(
τ −

z

c

))
φ(t, r)dt

}
dS(r)

= −

∫
Γ

(x + iy)nφ
(
τ −

z

c
, r
)
dS(r)
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Reconstruction theorem for moving point sources

Theorem 1 (for point sources)

Let K (τ) be the number of point sources such that qk(tk(τ)) �= 0 for each
τ . Assume that pj,xy (tj(τ)) �= pk,xy (tk(τ)) if j �= k. Then, for each τ , we can
uniquely determine K (τ), pk(tk(τ)) and qk(tk(τ)), k = 1, 2, · · · ,K (τ) from
the reciprocity gap functionals

Rφ(fn)(τ), n = 0, 1, 2, · · · , 2K (τ) + 1,

Rφ(gn)(τ), n = 0, 1, 2, · · · , 2K (τ)− 1,

Rφ(hn)(τ), n = 1, 2, 3, · · · ,K (τ),

Rφ(in)(τ), n = 1, 2, 3, · · · , 2K (τ),

Rφ(jn)(τ), n = 1, 2, 3, · · · ,K (τ).
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Rφ(in)(τ) =

∫
Γ

(x + iy)n∂2
t φ
(
τ −

z

c
, r
)
dS(r)

Rφ(jn)(τ) =

∫
Γ

2nz(x + iy)n−1∂tφ
(
τ −

z

c
, r
)
dS(r)

+
1

c

∫
Γ

(x − iy)(x + iy)n∂2
t φ
(
τ −

z

c
, r
)
dS(r)
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Outline of the proof of theorem 1: summary of
reconstruction procedure for moving point sources

Step 1. Identify the number K(τ) of point sources from
Rφ(fn)(τ), n = 0, 1, 2, · · · , 2K(τ) + 1.

Step 2. Reconstruct x and y components of the locations of point sources
pk,xy (tk(τ)) from Rφ(fn)(τ), n = 0, 1, 2, · · · , 2K(τ).

Step 3. Identify perturbed magnitudes qk(tk(τ))ξk(τ) from
Rφ(fn)(τ), n = 0, 1, 2, · · · ,K(τ)− 1. (ξk(τ): perturbation term)

Step 4. Reconstruct z component of the locations of point sources
pk,z(tk(τ)) from Rφ(gn)(τ), n = 0, 1, 2, · · · , 2K(τ)− 1 and
Rφ(hn)(τ), n = 1, 2, 3, · · · ,K(τ).

Step 5. Identify of z-component of perturbed velocity of point sources
ṗk,z(tk(τ))ξk(τ) from Rφ(in)(τ), n = 1, 2, 3, · · · , 2K(τ) and
Rφ(jn)(τ), n = 1, 2, 3, · · · ,K(τ).

Step 6. Compute ξk(τ) using perturbed velocity ṗk,z(tk(τ))ξk(τ), and
reconstrct the magnitudes qk(tk(τ)) from perturbed ones
qk(tk(τ))ξk(τ).
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Reconstruction theorem for moving dipole sources

Theorem 2 (for dipole sources)

Let K (τ) be the number of dipole sources such that mk(tk(τ)) �= 0 for each
τ . Assume that pj,xy (tj(τ)) �= pk,xy (tk(τ)) if j �= k, and mk,z(t) ≡ 0, i.e. the
dipole moments have only xy-components. Then, for each τ , we can
uniquely determine K (τ), pk(tk(τ)) and mk(tk(τ)), k = 1, 2, · · · ,K (τ) from
the reciprocity gap functionals

Rφ(fn)(τ), n = 1, 2, 3, · · · , 2K (τ) + 2,

Rφ(gn)(τ), n = 1, 2, 3, · · · , 2K (τ),

Rφ(hn)(τ), n = 2, 3, 4, · · · ,K (τ) + 1,

Rφ(in)(τ), n = 1, 2, 3, · · · , 2K (τ),

Rφ(jn)(τ), n = 2, 3, 4, · · · ,K (τ) + 1.

33 / 92

－158－



Problem formulation Known results Regularity Key idea Reconstruction method Dipole source Numerical experiments Conclusions

For each τ , define L× L-Hankel matrix

HL,μ(τ) =

⎛
⎜⎜⎜⎜⎜⎝

Rφ(fμ) Rφ(fμ+1) Rφ(fμ+2) · · · Rφ(fμ+L−1)
Rφ(fμ+1) Rφ(fμ+2) Rφ(fμ+3) · · · Rφ(fμ+L)
Rφ(fμ+2) Rφ(fμ+3) Rφ(fμ+4) · · · Rφ(fμ+L+1)

...
...

...
. . .

...
Rφ(fμ+L−1) Rφ(fμ+L) Rφ(fμ+L+1) · · · Rφ(fμ+2L−2)

⎞
⎟⎟⎟⎟⎟⎠

.

(for simplicity, we omit the argument (τ) for Rφ(fn))
Then, we can identify the number K (τ) of point sources such that
qk(tk(τ)) �= 0 by

K (τ) = max{L | detHL,0(τ) �= 0}

(Ref. El Badia-Ha Duong(2000) or Nara-Ando(2003))
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Step 1. Identification of the number of point
sources from Rφ(fn)(τ)

Relation between Rφ(fn)(τ) and parameters of moving point sources� �
Rφ(fn)(τ) =

K∑
k=1

qk(tk(τ))ξk(τ) · (pk,xy (tk(τ)))
n,

� �
where

tk(τ): the solution of τ = tk +
pk,z(tk)

c
for each k and τ

pk,xy (tk(τ)) = pk,x(tk(τ)) + ipk,y (tk(τ))

ξk(τ) ≡
dtk

dτ
=

(
1 +

ṗk,z(tk(τ))

c

)−1
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Step 3. Reconstruction of perturbed magnitudes
from Rφ(fn)(τ)

Let us consider K(τ)× K(τ)-matrix

VK(τ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
p1,xy p2,xy · · · pK(τ),xy

p2
1,xy p2

2,xy · · · p2
K(τ),xy

...
...

. . .
...

p
K(τ)−1
1,xy p

K(τ)−1
2,xy · · · p

K(τ)−1

K(τ),xy

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and let QK(τ) and FK(τ) be K(τ)-vectors defined by

QK(τ) =

⎛
⎜⎜⎜⎝

q1ξ1
q2ξ2
...

qK(τ)ξK(τ)

⎞
⎟⎟⎟⎠ , FK(τ) =

⎛
⎜⎜⎜⎝

Rφ(f0)(τ)
Rφ(f2)(τ)

...
Rφ(fK(τ)−1)(τ)

⎞
⎟⎟⎟⎠.
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Step 2. Reconstruction of xy-components of
locations from Rφ(fn)(τ)

� �
Rφ(fn)(τ) =

K∑
k=1

qk(tk(τ))ξk(τ) · (pk,xy (tk(τ)))
n,

� �

We can determine pk,xy (tk(τ)) using the relation

{pk,xy (tk(τ)), k = 1, 2, · · · ,K (τ)}

= { eigenvalues of (HK(τ),0(τ))
−1HK(τ),1(τ)}.

(Ref. El Badia-Ha Duong (2000))
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Step 4. Reconstruction of z-component of location
of moving point sourcess from Rφ(gn)(τ) and
Rφ(hn)(τ)
� �

Rφ(hn)(τ)

= 2n
K∑

k=1

qkξk · pk,z · pk,xy
n−1

+
1

c

K∑
k=1

{(qkξk)
′ · pk,xy ·+qkξk · (pk,xy )

′} pk,xy
n

+
n

c

K∑
k=1

qkξk · (pk,xy )
′ · pk,xy · pk,xy

n−1, n = 1, 2, 3, · · ·

� �
(For simplicity, we omit the arguments (τ) for ξk , and (tk(τ)) for qk , pk,xy
and pk,z .)

the symbol ′ means
d

dτ
.
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Then, we have
VK(τ)QK(τ) = FK(τ) (∗)

Since VK (τ)) is a Vandermonde matrix, assuming
pj,xy (tj(τ))) �= pk,xy (tk(τ)) for j �= k, detVK(τ) �= 0.
Therefore, (*) is uniquely solvable.

Hence, we can obtain perturbed magnitudes
qk(tk(τ))ξk(τ), k = 1, 2, · · · ,K (τ)
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Identification of (qkξk)
′ and (pk ,xy)

′ from Rφ(gn)(τ)

� �
Rφ(gn)(τ) =

K∑
k=1

(qkξk)
′ · pk,xy

n + n

K∑
k=1

qkξk · (pk,xy )
′ · pk,xy

n−1,

� �
We can estimate (qkξk)

′ and qkξk · (pk,xy )
′ from

R(gn)(τ), n = 0, 1, 2, · · · , 2K − 1 and pk,xy , k = 1, 2, ·,K . (see next slide)

Since qkξk have been already estimated, we can reconstruct (pk,xy )
′.
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If we know (qkξk)
′ and (pk,xy )

′, we can identify qkξk · pk,z as the
solution of linear equations

K∑
k=1

qkξk · pk,z · pk,xy
n−1

=
1

2n
R(hn)(τ)

−
1

2nc

K∑
k=1

{(qkξk)
′ · pk,xy + qkξk · (pk,xy )

′} pk,xy
n

−
1

2c

K∑
k=1

qkξk · (pk,xy )
′ · pk,xy · pk,xy

n−1, n = 1, 2, · · · ,K

Then, dividing by qkξk we can reconstruct pk,z .
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Steps 5 and 6. Estimation of perturbation term
ξk(τ): What do we need to estimate?

Perturbation term ξk is defined by

ξk(τ) ≡
dtk

dτ
=

(
1 +

ṗk,z(tk(τ))

c

)−1

Hence, it seems that we need to estimate ṗk,z(tk(τ)), however, we can
easily derive another expression

ξk(τ) = 1−
(pk,z(tk(τ)))

′

c

Therefore we estimate (pk,z(tk(τ)))
′ instead of ṗk,z(tk(τ)).
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Coefficient matrix of the linear equation derived from the expression
of Rφ(gn)(τ)

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 0 0 · · · 0
p1,xy p2,xy · · · pK,xy 1 1 · · · 1

p21,xy p22,xy · · · p2
K,xy 2p1,xy 2p2,xy · · · 2pK,xy

p31,xy p32,xy · · · p2
K,xy 3p21,xy 3p22,xy · · · 3p2

K,xy

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

p
2K−1
1,xy

p
2K−1
2,xy

· · · 3p
2K−1
K,xy

(2K − 1)p
2K−2
1,xy

(2K − 1)p
(2K−2)
2,xy

· · · (2K − 1)p
2K−2
K,xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We can establish

detV = (−1)K(K−1)/2
∏
j>k

(pj,xy − pk,xy )
4
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� �
Rφ(in)(τ)

=
K∑

k=1

(qk)
′′ · pk,xy

n + n

K∑
k=1

qkξk ·(pk,xy )
′′ · pk,xy

n−1

+2n
K∑

k=1

(qkξk)
′ · (pk,xy )

′ · pk,xy
n−1

+n(n − 1)
K∑

k=1

qkξk · ((pk,xy )
′)2 · pk,xy

n−2,

� �
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Step 5. Estimation of (pk ,z)
′ from Rφ(in)(τ) and

Rφ(jn)(τ)

� �
Rφ(jn)(τ) = 2n

K∑
k=1

qkξk · (pk,z)
′ · pk,xy

n−1 + Rn

� �

Rn : a polynomial consists of terms

pk,xy , (pk,xy )
′ and (pk,xy )

′′

qkξk , (qkξk)
′ and (qkξk)

′′

and their complex conjugates.
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Note 1

Our procedure have a merit in the sense of ’realtimeness’ comparing
to the method by El Badia & Ha Duong.

Rφ(fn)(τ) = −

∫
Γ

(x + iy)nφ
(
τ −

z

c
, r
)
dS(r)
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Steps 5 and 6.

We can estimate (qk)
′′ and qkξk · (pk,xy )

′′ uniquely from
Rφ(in)(τ), n = 0, 1, 2, · · · , 2K (τ)− 1, since we have already estimated
pk,xy , qkξk , (pk,xy )

′ and (qkξk)
′.

Substituting these terms into Rn of the expression of R(jn)(τ), we can
identify qkξk · (pk,z)

′ from Rφ(jn), n = 1, 2, · · · ,K , and then, dividing by
qkξk we can identify (pk,z)

′ .

Substituting (pk,z)
′ to the equation

ξk = 1−
(pk,z)

′

c

we can estimate perturbation terms ξk for each k and τ , and we can
correct perturbed magnitudes qkξk .
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6 Reconstruction scheme for moving dipole sources
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Note 2

Our method reconstructs the locations and magnitudes at tk(τ).
Therefore, we have to correct the ’time’ variable using pk,z(tk(τ)).
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Relation between Rφ(f )(τ) and parameters of
moving dipole sources

� �
Rφ(fn)(τ) = n

K∑
k=1

mk,xy (tk(τ))ξk(tk(τ)) · pk,xy (tk(τ))
n−1,

� �
where

mk,xy (tk(τ)) ≡ mk,x(tk(τ)) + imk,y (tk(τ))

c.f. For moving point sources, we have� �
Rφ(fn)(τ) =

K∑
k=1

qk(tk(τ))ξk(tk(τ)) · pk,xy (tk(τ))
n,

� �
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Reconstruction theorem for moving dipole sources

Theorem 2 (for dipole sources)

Let K (τ) be the number of dipole sources such that mk(tk(τ)) �= 0 for each
τ . Assume that pj,xy (tj(τ)) �= pk,xy (tk(τ)) if j �= k, and mk,z(t) ≡ 0, i.e. the
dipole moments have only xy-components. Then, for each τ , we can
uniquely determine K (τ), pk(tk(τ)) and mk(tk(τ)), k = 1, 2, · · · ,K (τ) from
the reciprocity gap functionals

Rφ(fn)(τ), n = 1, 2, 3, · · · , 2K (τ) + 2,

Rφ(gn)(τ), n = 1, 2, 3, · · · , 2K (τ),

Rφ(hn)(τ), n = 2, 3, 4, · · · ,K (τ) + 1,

Rφ(in)(τ), n = 1, 2, 3, · · · , 2K (τ),

Rφ(jn)(τ), n = 2, 3, 4, · · · ,K (τ) + 1.
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Relation between Rφ(i)(τ) and parameters of
moving dipole sources

� �
Rφ(in)(τ)

= n

K∑
k=1

(mk,xyξk)
′′ · pk,xy

n−1 + n(n − 1)
K∑

k=1

mk,xyξk · (pk,xy )
′′ · pk,xy

n−2

+2n(n − 1)

K∑
k=1

(mk,xyξk)
′ · (pk,xy )

′ · pk,xy
n−2

+n(n − 1)(n − 2)

K∑
k=1

mk,xyξk · ((pk,xy )
′)2pk,xy

n−3,

� �
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Relation between Rφ(gn)(τ), Rφ(hn)(τ) and
parameters of moving dipole sources

� �

Rφ(gn)(τ) = n

K∑
k=1

(mk,xyξk)
′·pk,xy

n−1+n(n−1)

K∑
k=1

mk,xyξk ·(pk,xy )
′·pk,xy

n−2,

� �� �
Rφ(hn)(τ) = 2n(n − 1)

K∑
k=1

mk,xyξk · pk,z · pk,xy
n−2 + Hn

� �
where Hn is a polynomial consists of the terms

pk,xy and (pk,xy )
′

mk,xyξk and (mk,xyξk)
′

and their complex conjugates
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Note

Without assumption that mk,z(t) ≡ 0, the relation between the
reciprocity gap functional and parameters of dipole sources becomes
more complicated. For example� �

Rφ(fn)(τ) =n

K∑
k=1

mk,xyξk · pk,xy
n−1

−
1

c

K∑
k=1

(mk,xyξk)
′ · pk,xy

n −
n

c

K∑
k=1

mk,xyξk · (pk,xy )
′ · pk,xy

n−1

� �
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Relation between Rφ(jn)(τ) and parameters of
moving dipole sources

� �
Rφ(jn)(τ) = 2n(n − 1)

K∑
k=1

mk,xyξk · (pk,z)
′ · pk,xy

n−1 + Jn

� �
Jn : a polynomial consists of the terms

pk,xy , (pk,xy )
′ and (pk,xy )

′′

mk,xyξk , (mk,xyξk)
′ and (mk,xyξk)

′′

and their complex conjugates.
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Numerical experiments

Domain : Ω = {r | |r| = 1}

wave propagation speed : c = 1

Time interval : 0 < t < T = 40.0

Solver for the wave equation: boundary integral equation method.

The number of observation points for ∂νu(r, t): 384

The observation time step : Δt = 0.1

The noise of observation data : 0.0%, 5.0%, 5.0%
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7 Numerical experiments
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Identification Process

Time interval for identification: Δτ = 0.5

Approximation of the time derivative in the compuation of the
reciprocity gap functionals: central differences
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Parameters of point sources

Number of point sources : K = 2

Locations pk(t) of point sources

point source 1: moves on a vertical circle with respect to xy-plane
point source 2: moves on a horizontal circle with respect to xy-plane

Moving speed:
|ṗk(t)|

c
= 35%
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The orbit of source 1: xy-view and xz-view
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Time profile of locations of source 1
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The orbit of source 2: xy-view and xz-view
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Time profile of location of source 2
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Reconstruction result for noise free case: Time
profile of location of source 1
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Time profile of magnitudes of point sources 1 and 2
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Reconstruction result for noise free case: Time
profile of magnitude of point sources 1
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Reconstruction result for noise free case: the orbit
of source 1 · · · xy-view and xz-view
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Reconstruction result for noise free case: The orbit
of source 2 · · · xy-view and xz-view
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Reconstruction result for noise free case: Time
profile of location of source 2
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Reconstruction result under 1% noise: Time profile
of location of source 1
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Reconstruction result for noise free case: Time
profile of magnitude of point sources 2
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Reconstruction result under 1% noise: Time profile
of magnitude of point sources 1
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Reconstruction result under 1% noise: The orbit of
source 1 · · · xy-view and xz-view
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Reconstruction result under 1% noise: The orbit of
source 2 · · · xy-view and xz-view
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Reconstruction result under 1% noise: Time profile
of location of source 2
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Reconstruction result under 5% noise: Time profile
of location of source 1
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Reconstruction result under 1% noise: Time profile
of magnitude of point sources 2
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Reconstruction result under 5% noise: Time profile
of magnitude of point sources 1
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Reconstruction result under 5% noise: The orbit of
source 1 · · · xy-view and xz-view
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Reconstruction result under 5% noise: The orbit of
source 2 · · · xy-view and xz-view
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Reconstruction result under 5% noise: Time profile
of location of source 2
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To reduct the effect of noise

The estimation results become worse as the noise becomes large.
Especially, under 5% noise, the estimation results becomes very bad!

This phenomenon is caused by the instability of the numerical
differentiation.

To avoid this instability, we apply a filtering process (5 points Gaussian
filter) before numerical differentiation
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Reconstruction result under 5% noise: Time profile
of magnitude of point sources 2
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Reconstruction result with Gaussian filter under 5%
noise: The orbit of source 1 · · · xy-view and xz-view
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Reconstruction result with Gaussian filter under 5%
noise: Time profile of location of source 1
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Reconstruction result with Gaussian filter under 5%
noise: Time profile of location of source 2
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Reconstruction result with Gaussian filter under 5%
noise: Time profile of magnitude of point sources 1
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Reconstruction result with Gaussian filter under 5%
noise: Time profile of magnitude of point sources 2
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Reconstruction result with Gaussian filter under 5%
noise: The orbit of source 2 · · · xy-view and xz-view
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Conclusion

We consider a reconstruction problem of unknown moving point or
dipole sources from boundary measurements. This problem is a kind of
inverse source problem for the scalar wave equation.

We give some theorems to guarantee the regularity of observation
data.

We extend the results in Ohe-Inui-Ohnaka (2011), which is for fixed
point sources, for the reconstruction of several moving point or dipole
sources.

We present some numerical experiments, and the results show that
our procedure gives good reconstruction of unknown sources under
small noises

We need further discussions to distinguish point and dipole sources
when they are convined, and to reconstruct the z−component of
dipole sources
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8 Conclusions
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            A mathematical study for mixed-mode loading crack problem in 
viscoelastic composite material 
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Abstract: When subjected to a series of long-term repeated application of loads (stress) or ther-
mal cycling or a combination of the two cases, viscoelastic materials experience a time-dependent 
increase in deformation (strain). This phenomenon is known as viscoelastic creep. Viscoelastic 
creep is important when considering long-term structural design, given loading and temperature 
conditions, designers can choose viscoelastic materials that best suit component lifetimes.  

Asphalt concrete is a kind of viscoelastic and composite material commonly used to ground roads 
and other industries. Due to effect of repeated traffic loads, viscoelastic creep phenomenon widely 
exists in asphalt concrete pavements. In addition, cracking is also considered as one of the major 
structural damage in such a special material. From the point of view of mathematical modeling, the 
creep-fracture mechanics parameter J’ or C* is widely accepted for a cracked viscoelastic body un-
dergoing creep deformation, but this is valid only for mode I loading conditions [1]. While cracks in 
viscoelastic composite materials are mostly of mixed mode, thus the fracture criteria for mixed-
mode crack under creep loadings are very important in mathematical modeling on structural design 
of viscoelastic composite materials. Although a lot of effort has been made, mathematical modeling 
for mixed-mode creep crack problem has not been well solved so far. 

This study tries to propose a method to characterize mixed-mode crack undergoing creep defor-
mation of viscoelastic composite materials using a new path-independent integral, based on CED 
(Crack Energy Density) [2] and Hoff analogy [3]. It is expected that the new path-independent inte-
gral will be applicable to predict creep crack growth in an arbitrary direction for mixed-mode creep 
crack problem in viscoelastic composite materials, such as asphalt concrete. 

Keywords:  viscoelastic creep; mixed-mode crack; fracture mechanics parameter; path-independent 
integral 
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Basic concepts of Fracture Mechanics: 

Fracture Mechanics is mechanics of solids containing displacement discontinuities (cracks) with 
special attention to their growth. Fracture mechanics is a theory that determines material failure by 
fracture criteria. Linear Elastic Fracture Mechanics (LEFM) is the basic theory of fracture that deals 
with sharp cracks in elastic bodies. It is applicable to any materials only as long as they are elastic 
except in a vanishingly small region at the crack tip (assumption of small scale yielding). Elastic-
Plastic Fracture Mechanics (EPFM) is the theory of ductile fracture, usually characterized by stable 
crack growth (ductile metals). The fracture process is accompanied by formation of large plastic 
zone at the crack tip.  

Fracture Mechanics has been accepted as an effective engineering methodology to evaluate the 
behavior of a crack tip fields and it seems to be considered as an almost established method. How-
ever, its system widely accepted at present contains some substantial problems that remain to be 
solved. For instance, although the energy release rate G is positioned as an important parameter in 
linear fracture mechanics, it cannot be extended inelastic fracture problems and, moreover, the 
crack parameters used in fracture mechanics such as stress intensity factor K, J-integral and C* pa-
rameter are defined just under special constitutive equation. As the results, the scope of the applica-
tion of fracture mechanics is compelled to be limited without due cause. In this lecture, the outline 
of fracture mechanics is introduced first, then, what the basic issues are in the role of fracture me-
chanics is made clear. 
 
1. Basic forms of cracks propagating  

 Crack (opening mode): By normal stress , the cracks propagating direction is vertical to 
the direction of loading stress; 

 Crack (slipping mode) By shear stress , the cracks propagating direction is parallel to 
the direction of loading stress; 

 Crack  (tearing mode)  By shear stress , the cracks line is parallel to the direction of 
loading stress. 

 
2. Stress field at the crack tip 
 
 
 

for crack mode I: 
 
 
 
 

while                       is Stress Intensity Factor (SIF). 
                                                                                             

Generally, the stresses at the crack tip can by expressed as:  
                                                                                        

(p= , , )  
 
 

Stress Intensity Factors 
 
 
 

( , ) ( , , , )ij pK f r i j x y z
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Discussion: 

 ①  Ki (i= , , ) are independent of co-ordinate. They are parameters to describe the in-
tensity of the stress field around the crack tips; 

 ②  Ki (i= , , ) are close-related with the form, the size and the direction of the cracks;  

 ③  Ki (i= , , ) are correlated with the value of the loading and the loading form; 

 ④  Ki (i= , , ) are interrelated with the properties of the loaded material; 

 The physical meaning of Ki (i= , , ) : They are mechanical parameters which are arti-
ficially introduced to describe the intensity of the stress field around the crack tips; 

 By using these factors, the problem of solving the stress fields and displacements is simpli-
fied as just seeking for Ki (i= , , ); 

 Unit  Ki (i= , , ) ——[force]×[length]-3/2 =[N]×[m]-3/2  

 
 
3. Fracture criterion 
 
 
 
 

KIC ——fracture tenacity/toughness, describing the resistance of crack propagating, determined 
by test plane stress crack and plane strain crack . 
 

 When the thickness of the sample is small 
enough, the crack tip will be in a state of 
plane stress. When the crack line moves, its 
plastic area is relatively big enough to en-
hance Kic; 

 When the thickness of the sample is big 
enough, the crack tip will be in a state of 
plane strain. When the crack line moves, its 
plastic area is relatively small enough to de-
crease Kic K c . 

 
KIC —— plane strain fracture toughness 

      KI = KIC fracture criterion for crack ) 
 

 KIC is a material constant, independent of the geometry of the testing sample. The thickness of 
the sample should be large enough to guarantee that the crack tip is in a state of plane strain. 
 
 
 
4. J-integral definition 
 
The J-integral can be defined as a path-independent contour integral that measures the strength of 
the singular stresses and strains near a crack tip. Its value should be approximate constant far-field 
as well as near-crack field. However, J-integral constancy may be questionable after crack initiation. 

      ( I,II,III)K K ii ic
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Also, dominance of the J-integral becomes more debatable if the structure composition is heteroge-
neous. The following equation shows an expression for J in its 2-D form, where crack lies in the 
XY plane with x-axis parallel to the crack (the following Figure): 

 

 x xy yx y
u v u vJ W dy dx
x x x x

                                     

 

y

x
ds

n

crack

 

 
 
 

dsndx
dsndy

y

x  

  
Fig.  Definition of contour for J-integral evaluation 

 
In the above equation,  means any path surrounding the crack tip, W is strain energy density, ij 

is component stress and ui is displacement vector. 
 
 
 
 
5. Energy Release Rate G 
 
(5.1) Strain energy 

Work done by the external force is changed to the strain energy stored in the elastic deformation. 
The strain energy can be released and the elastic deformation then disappears.  

Strain energy density w: strain energy per unit volume. 

ijijijij
ij dw

2
1

0

** , (for linear elastic body) 

Total strain energy U (Internal force potential): total energy stored in the volume V 

V
wdVU  

(5.2) External force potential UP: the negative value of virtual work done by the external force. As-
sume that the body force is iB  and the surface force is iT  on the stress boundary. The external force 
potential PU  is  

)(
S iiV iiP dSuTdVuBU  

(5.3) Total potential : 
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)(
S iiV iiVP dSuTdVuBwdVUU  

 

(5.4) Energy Release Rate G 

  The body force iB , the surface force iT  on S  and the displacement iu  on uS  are given. Assume 
that the crack size is changed from a to a+ a. Accordingly, the displacement, strain, stress, stain 
energy density, internal force potential, external force potential and total potential are also changed. 
The total potential  is changed to .  is the increment caused by the crack growth a . 
Assume that the plate thickness is t. atS  denotes the single surface area increment. The en-
ergy release rate G is defined as 

dS
d

S
G

a 0
lim  

If the plate thickness t is a constant, the energy release rate G is 

da
d

tat
G

a

1lim
0

 

 

(5.5) Constant force and constant displacement conditions 

 
Constant force condition: 

A plate with a crack is applied by a constant force F as shown in Fig. 3.1(b). The external force 
virtual work W and external force potential UP, respectively, are  

FW , FWU P  

The total strain energy U (internal force potential) is 

FU
2
1   

Then, the total potential  is 

WUUU P  
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Now, UW 2 U . The energy release rate G under the constant force condition can be 
written as  

FS
U

S
G )( for constant F. 

In this case, 0U , the strain energy in the body in fact increases rather than releases with the 
crack growth. G can not be called as the strain energy release rate.  

Constant displacement condition: 

After a displacement  occurs, the plate is clamped. This is the constant displacement condition 
as shown in Fig. 3.1(c). In this case, there is 

W 0 UWU  

)(
S
U

S
G , for constant displacement . 

It is seen that only for the constant displacement condition, G can be called as the strain energy 
release rate. Since W=0, the energy needed by the crack growth comes from the release of strain en-
ergy stored in the body. That is the strain energy stored in the body decreases with the crack growth. 
Foe the constant force condition, the increment of external work is FddW  in which a part is 
used to increase strain energy dU while the other part is used for crack growth.  

However, the values of G for two cases are equal.  

Constant force case:  

22
1 2CFFU

S
CF

S
UG F 2

)(
2

. C is the compliance of the plate.  

Constant displacement case: 

C
FU

22
1 2

S
CP

S
C

CCSS
EG

2
1

2
)1

2
()(

2

2

22

 

It is seen that the values of G for two cases are equal. 
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Summary of Mechanics of Materials 
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Summary of Fracture Parameters 
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Applications to Fracture Phenomena 
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email: hatano@risk.tsukuba.ac.jp

In the diffusion theory of tracers in the atmosphere, the Richardson’s 4/3 law is well
known. It says that the mean square of the distances between two particles in the turbulent
atmosphere will increase in time as t3 [1,2]. On the other hand, we have been observing that
the concentration of Cs-137 in the air, measured at several fixed sites in Fukushima, seems
decreasing in time asymptotically as t−4/3. We examine the Richardson’s theory to find out
its connection to the observations.

Reference
[1] Richardson, L.F., Atmospheric Diffusion shown on a distance-neighbor graph. Proc. Roy.
Soc. London Ser.A, 110, 709-737, 1926.
[2] Kanatani, K. et al., The self-similar telegraph model of relative dispersions in turbulence,
RIMS Kokyuroku 1543, 118-127, 2007 (in Japanese).

Yuko Hatano
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Richardson’s law and the concentration of Cs-137 in Fukushima
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