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Preface

These are the proceedings of the workshop “Practical inverse problems based on inter-
disciplinary and industry-academia collaboration”, held at IMI, Kyushu University, from
October twenty fourth to October twenty seventh, 2017. During the workshop, the following
investigations were reported and lively discussions were had on them. We had the following
talks during the workshop. Remark that the following comments are brief explanations of
the talks, not the titles.

e Dr. Kenji Hashizume : Original inspection techniques for expressways developed by
West Nippon Expressway Engineering Shikoku Company Limited, and some unsolved
problems for maintenance of the expressways.

e Prof. Yoshifumi Saijo : Ultrasonic medical imaging in relation with non-destructive
inspection for concrete structures.

e Prof. Hiroshi Fujiwara : How to realize multiple-precision arithmetic on MATLAB.

e Prof. Takashi Ohe : Theoretical and numerical research in an inverse problem to
determine moving wave sources by boundary measurements.

e Prof. Cheng Hua : How to give mathematical representation of the crack propagation
in viscoelastic composite material.

e Prof. Yuko Hatano : Mathematical representation of the long-term concentration of
(Cs-137 in Fukushima area and its prediction.

On the first day of the workshop, Doctor Kenji Hashizume gave a talk to introduce the in-
spection techniques for the expressways developed by West Nippon Expressway Engineering
Shikoku Company Limited. It is surprising that his talk necessarily contains new technology
developed by West Nippon Expressway Engineering Shikoku Company Limited every year.
He also proposed several open problems in the maintenance of the tunnels, the bridges and
the expressways, which have a lot to do with integral geometry, propagation of cracks in
viscoelastic bodies and so on, some of which are under investigation by interdisciplinary and
industry-academia collaboration organized by the organizing committee of this workshop.

On the second day, in the morning, Professor Yoshifumi Saijo introduced medical imaging
techniques applying ultrasound. He is a medical doctor as well as a researcher to develop
non-invasive medical imaging techniques. Based on his talk, we discussed how to apply non-
invasive ultrasonic medical imaging techniques to non-destructive inspection for concrete
structures.



In the afternoon, Professor Hiroshi Fujiwara talked about how to transplant the multiple-
precision arithmetic interface, exflib which he developed, onto MATLAB. Numerical imple-
mentation is a must for practicalization of theoretical research. He demonstrated how pow-
erful exflib is even on MATLAB by showing some examples, which are included in these
proceedings as well as their programs.

In the morning on October 26th, Professor Takashi Ohe presented his recent result to
identify moving wave sources and dipoles by boundary measurements. In his talk, he, himself,
asked a question on his treatment of generalized functions, which was discussed by partic-
ipants to be concluded that his treatment is good. Since his research has many potential
applications, a number of questions were asked on the future development.

In the afternoon, Professor Cheng Hua gave a talk on the problem “How to give a
mathematical representation of the crack propagation in viscoelastic composite materials”,
which may be a key research to predict when and where a pothole on the expressway happens.
He proposed a new idea to modify CED method, which is known as a method to analize
elastic cracks, for viscoelastic crack propagation, not modification of K- or J-integral method.
During his talk, many questions are asked on the future development of the modification of
CED method and lively discussions were had on this problem.

On the final day, Professor Yuko Hatano give a talk on important problems. She intro-
duced some mathematical models to describe the migration of radionuclides, Cs-137, near
Fukushima area, for which what is called Richardson’s law is applied. She also introduced
her recent results on the long-term prediction on the concentration of Cs-137 near Fukushima
area. We are very sorry that it is only the abstract to report her talk in these proceedings.
For its compensation, a reference material has been appended.

We wish that we would have more opportunities to hold such workshops to discuss impor-
tant problems in practical inverse problems based on interdisciplinary and industry-academia

collaboration. We also hope that such collaboration be much more popular.

At the end of Preface, we would express our gratefulness to Ms. Kazuko Ito, the secretary
of this workshop, for her faithful help.

February 20,2018

Takashi Takiguchi
Hiroshi Fujiwara

_ii_



Practical inverse problems based on interdisciplinary and
industry-academia collaboration

October 24-27, 2017

IMI, Ito Campus, Kyushu University
C513 Middle lecture room(W1-C-513)
744 Motooka, Nishi-ku Fukuoka 819-0395, Japan

October 24, Tuesday
13:50 Opening

(Chair: C. Hua)
14:00-15:30 Kenji Hashizume (West Nippon Expressway Engineering Shikoku Company
Limited, Japan)

Development of the devices and the methods for inspection of bridges,

tunnels and pavement

15:30-16:30 Discussion

October 25, Wednesday

(Chair: T. Ohe)

11:00-12:30 Yoshifumi Saijo (Tohoku University, Japan)
Ultrasound Imaging in Medicine and Biology

12:30-14:00 Discussion over lunch

14:00-15:30 Hiroshi Fujiwara (Kyoto University, Japan)
Multiple-Precision Arithmetic on MATLAB for reliable computation
of numerically unstable problems

15:30-16:30 Discussion

October 26, Thursday

(Chair: H. Fujiwara)

11:00-12:30 Takashi Ohe (Okayama University of Science, Japan)
Identification of moving wave sources from boundary measurements

12:30-14:00 Discussion over lunch

14:00-15:30 Cheng Hua (Fudan University, China)
A mathematical study for mixed-mode loading crack problem
in viscoelastic composite material

15:30-16:30 Discussion

—lii—



October 27, Friday

(Chair: T. Takiguchi)

11:00-12:30 Yuko Hatano (Tsukuba University, Japan)
Richardson’s law and the concentration of Cs-137 in Fukushima

12:30-14:00 Discussion over lunch
14:00 Closing

Organizers:
Hiroshi Fujiwara (Kyoto University, Japan)
Takashi Takiguchi (National Defense Academy of Japan)

Supported by:
IMI, Kyushu University
JSPS Grant-in-Aid for Scientific Research Research (C) 26400198

_iV_



Table of contents

1. Development of the devices and the methods for inspection of bridges, tunnels

P 4 0 I 0724 1 1) (1 A 1
Kenji Hashizume (West Nippon Expressway Engineering Shikoku Company Limited)

2. Ultrasound Imaging in Medicine and Biology -........ccoooiiiiii, .45
Yoshifumi Saijo (Tohoku University)

3. Multiple-Precision Arithmetic Environment in MATLAB and Its Application to
Reliable Computation of Fractional Order Derivatives ........cooveiiiiiiiiiien... 83
Hiroshi Fujiwara (Kyoto University)

4. Identification of moving wave sources from boundary measurements.......... 121
Takashi Ohe (Okayama University of Science)

5. A mathematical study for mixed-mode loading crack problem in viscoelastic
COMPOSItEe MAELIAl - ..o vt e e 189
Cheng Hua (Fudan University)

6. Richardson's law and the concentration of Cs-137 in Fukushima ................ 231
Yuko Hatano (Tsukuba Unibersity)












Development of the devices and the methods for inspection of
bridges, tunnels and pavement.

Kenji Hashizume

West Nippon Expressway Engineering Shikoku Company Limited
3-1-1 Hanazono-cho, Takamatsu-shi, Kagawa 760-0072, Japan
Email: kenji.hashizume@w-e-shikoku.co.jp

In this talk, our company's development of the devices and the methods for
inspection of expressways is introduced. Here we would like to propose the
method of the inspection of bridges, tunnels, and pavement by using cameras
seeking for their objective evaluations and keeping their records properly, for
which we have also developed new devices for inspection.

Key Words: inspection, non-destructive, infrared, visual image

1. Introduction

It requires a large amount of resources and expenses to develop and
rehabilitate infrastructure. The followings are also essential for the resource
utilization and social sustainability: (i) maintaining, repairing, and rehabilitating
the existing infrastructure more efficiently and effectively. (ii) realizing the society
where we can live safe and sound by reducing serious accidents triggered by
deterioration and damages of infrastructure.

Accordingly the efficient and effective inspection and repairing would be very
important. For the given purpose, the efficient and effective inspections and
maintenance practice shall be necessary. The inspection method using
cameras for the bridges, tunnels, and pavements inspections with objective
evaluations and keeping their records is now proposed.



2. New devices for inspection
2.1 Bridge Inspections

We now explain the “J-System” (Figure-1) for the inspection method using the
infrared cameras. The reinforced concrete fulfill its role with the joint functioning
of rebar and concrete for the concrete structure. When the rebar gathers rust in
the concrete, cracks appear on the concrete
surface along the rebar, the surface concrete
spalls, and so its durability is to be reduced. We
have been inspecting the cracks triggered by the
concrete delaminations along the rebar through
the hammering. The infrared cameras inspection
is the new one detecting the damaged areas such
as concrete delaminations and cracks through
photographing the concrete surface by using
infrared cameras from remote palaces, and
keeping the records of the concrete surface
conditions using digital cameras. The inspections
of bridges surface by infrared cameras are done
by the passive method, and the followings are the
important elements;

figure -1 J-system

thermal imagery

Cameras Quality (Is the cameras suitable
for the inspection environment?)
Inspections are done basically during night, so
it is important to extend the surveillance hours
of the day and increase the annual surveillance
days by using the camera with a short- wave
type which has no the environmental reflections

attachable sheet
t=1mm

void spacel 110x10cm
t=1mm

/
during night and with a enforcing-cooling- Dok et gs
system type with a small thermal resolution. M
thermally uniform
figure -2 J-system EM(S)
Judgment on time zone of the day when
inspections can be done (Do we inspect at a suitable time ?)
We implement the night- time inspection basically, because there are various

bridge types and bridge members which are not suitable to inspect during
daytime. The time zone of the day when inspection is possible is based on data



of the EMS (Environment Measuring System)(Figure-2) mounted on the
inspection bridges.

Simple and Objective Evaluation Method (Is it possible and easy to

evaluate objectively?)
There could be, for individuals, differences among the inspection judgments
because it is sometime impossible to judge the damage evaluation such as
delamination and spalling for the bridge members and damaged parts only by
looking at the infrared
images. It is also
impossible to judge the
crack’s depth along the
rebar. However, the red, |cauton
yellow, and blue cracks’ comnnapirs”
judgment- images at the 1,
2, 3 cm depth from the [wemne
surface are shown at the |

camera monitor (Figure
-3). figure -3 J-System Monitor Image

Damage grade Visible image Infrared image 3 level indication

Observation
Abnormal sound

]

2.2 Tunnel and Pavement Inspection

2.2.1 Tunnel and Pavement Inspection
We now explain the “L & L System”
(Figure-4) inspection method which uses the
Line Censor Camera and Laser Marker. Line
Censor cameras mount the visual image
censors, and can photograph seamless and
continuous imageries. They can also be
applied for the tunnel and pavement =PIl
inspections.Light  Cutting  method is
photographing the laser marker images from
a upper and obliqgue position by using the
laser which is irradiated vertically down on
measuring surfaces and obtain the object
shape. This method is used for road surface
profile measuring.

Tunnel

figure -4  L&L System



i.  Tunnel Inspection
It is possible to
obtain the fine and
colorful  continuous
images (Figure-5) of
tunnel lining by using
Line Censor cameras
mounted on the
inspection cars with
high speed (less than
100km/h). The cracks
of tunnel lining can be
detected up to 0.2mm,
and water leakage
and lime isolation can
be also found. The
damage  spreading
drawings and their
diagonal charts can
easily be produced
based on the captive
pictures, and so we figure -5 Visual image with cracks and the
inspect only the areas accessories
where further close
and detail investigations are necessary. And we can clearly watch the conditions
of rusted accessories in tunnels, and so it is now possible to apply them for the
accessories inspections.

ii. Pavement Inspection

We can inspect the pavement conditions such as cracks and potholes, and
conditions of bridge expansion joints by using Line Censer cameras mounted on
the vehicle with high speed (less than 100km/h). At the same time, we can also
measure rutting, bumps, and upheaval through using laser cameras, and
measure road surface profile such as height, and also evaluate the evenness,
bump and IRI values.

We can also display the grade evaluation for the cracks, rutting, bumps,



evenness, and IRI values obtained by the road surface measurements, and we
can also easily sort and extract some of the data with abnormal ranges which
show more than a certain threshold (Figure-6). Thus, the repairing and renewal
plans of road pavement and the bumps will be made easier.

Visual image ( pavement )

e height image(red:rutting10mm or deeper)
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3. Conclusion

The bridges, tunnels, and pavement inspections by cameras can be used for
the assistances for the on-site inspections or their alternatives, and we can
maintain the objective evaluations and predict the future damages through their
annual transitions. Also the repairing plan can be made easily and efficiently.
The proposed inspection method using the cameras makes it possible to use,
select and combine those inspection tools economically and effectively in
accordance with budges and utilizations patterns of each organization based on
their different road structure maintenance and repairing standards.

This work is partially based on the discussions at 2017 IMI Joint Use Research
Program Workshop (Il) "Practical inverse problems based on interdisciplinary
and industry-academia collaboration”

Reference
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Operation and Maintenance Management

Inspection
Planning

: : _ o Conducting designs
Scheduling for inspection activities and repair works

using stored inspection data

Design

Inspection Conducting

inspections and Repair

C mEE=
EELE
e s

Decision Making Planning for
Meeting Design and Repair
Deciding the necessity of repair works with Scheduling for designs and
updated bridge inventory repair works
Inspection Types
Type Procedure Frequency
Daily Inspection Visible unusual conditions and Once every two days
deformations of structures are daily to
inspected behind the wheels. Once every four days
(Dependent on traffic
volume)

The safety of the structure is regularly | More than once a year
confirmed by distant visual inspection,
cross visual inspection and hammering
test.

Detailed Inspection | The safety of the structure is Once every five years
—— understood by cross visual inspection

and hammering test more in detail.




Proposal of our technology

»We developed this technology to gain effective
inspection in order to comply Road Management rule

» After analyzing accumulated data we propose an
Evaluation Indicator that related in order to understand
deterior mechanism of Architectural structure and to do a
preventive action

[Our approachment]

Not just hand over a complete system, but
we submit a proposal by finding out the
needs from user and design the machine
based on measurement accuracy as
needed and customize soft ware that
easy to use

I . Approach and issues for
preventing concrete accident flaking

I -1. Bridge
( reinforced concrete structure)
[ -2. Tunnel

(unreinforced concrete structure)

II . Approach and issues for
identity of pavement damages



A'New concrete inspection and assessmen

method with safer manipulating, higher
performance, and lower cost based on infrared

__thermography technology.

EM(S) Test-Piece
J Monitor

J Software




Monitor
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Inspection must be done when the temperature difference between

air and concrete is large enough.

daytime : sound <flawed < air

Sound arga

Sound area Flaweded area
temp. temp.
Heat flow Heat flow

Concrete surface

delamination

moming noon  evening  night night-time : sound > flawed >air

Sound area _Flawed area

Temp. differences creates thermal anomalies temp.
view before break| Infrared image | view after break

temp.
Heat flow Heat flow

concrete surface

Direction of heat flow and temperature in damage part

Sunlight |nSpeCt|On

time should
be selected
by bridge

secton | Syrface to be inspected Direct effect Indirect effect
Temperature Temperature _
\ rises due to effect decreases due . / g
0 Damaged - | of sunlight effect of sunlight_, =
87 2 par S \\\_ i a
=] 25 =
8 8 g @ ~. K
= £8a Pavement \\ Q
< a2 ~
o Damagedpart | Syrface to be
s Pavement inspected is not
= directly exposed to
g sunlight —
Q Surface to be Temperature
= inspected decreases due
to effect of
unlig
S
=]
5 e | Surface to be l i l i l
£ ~59Y | inspected is not
B Surface0b Damaged | | directly exposed to I t
O | Surface to be P : . emperature
é inspected s Sun“ght gecreas;s
it ue to effect
@ Surface to be inspectéd of sunlight i

Sunlight type or part
I
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Seto Inland Sea climate during summer/autumn Inspection time period

Bridge . Time ¢
Section
type - 6 1 8110[12]114116118120\P2124| 2 | 4
All bridges ba?ustrade ; .
Overhang - .
RC bridge . .
Floor slab . .

Overhang ==
Me bridge l l
Floor slab  fmem - .

Overhang juem

Box beam
bridge

Floor slab

Overhang [mem

PC bridge |Girder

Floor slab  juem

Almost all bridge types and bridge sections
can be investigated during night time.

Thermal images of different minimum detected temperatures (NETD)
(Daily range = 10°C: photographed at 0 a.m.)

20mminner  30mminner 40mm inner  60mm inner 20mminner  30mminner 40mm inner  60mm inner

Cavity Cavity Cavity Cavity Cavity Cavity

Cavity
L

Cavity

a) Thermal image photographed by Camera A b) Thermal image photographed by Camera B

015 015

0.1 01 |

-0.05 005 |

=01

-0.15 -0.15

Temperature difference (°C)
un

Temperature difference (°C)
3
g
<,

Pixel number

Pixel number
Standard deviation = 0.034 °C Standard deviation = 0.016 °C
a) Temperature variation of Camera A b) Temperature variation of Camera B
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Issues for accurate infrared inspection

-kind of bridge, part
- detection depth
* photographing distance etc

«clarification of inspection depth

*quality guarantee and prevention of
missing damage

*high efficient inspection work and cost
performance

-efficient damage judgment and
objectivity

recording and reproductability

Inspection
terms

Feasible time

Inspection

nvironment performance

-resolving power
- detection wavelength region
*resolution
-detecting element etc

-daily range
-solar radiation
*wind and rain etc

J -SYSTEM

Za A'new concrete inspection and assessmen

method with safer manipulating, higher
performance, and lower cost based on infrared

__thermography technology.

EM(S) Test-Piece
J Monitor

J Software




EM(S) Test-Piece

J Monitor

J Software

To ensure thermal condition of real structure for infrared
testing before and during infrared inspection

To obtain real temperature data under actual
conditions element by element

Gulf side Ocean side

Sensor A (flawed)
Sensor B (sound) Sensor C (Air)

Concrete plate
t =10, 20, 30mm

Conductive layer
t=1mm

Both-sided
adhesive tape

Sensor C (Air)

Sensor B (sound) Sensor A (flawed)
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IR Image
Central cavity is

| observed.
b [OK]
EM(S)
| IR Image
Checking Cavity is not observed.
central Void NG/

The thermal environment should be precisely obtained by
an EM(S) device before any investigation

EM(S) Equipment

J Software
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J Monitor
IR Raw Image | IR Prosess Image
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EM(S) Equipment

J Monitor

Software
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sunlight

131111}

delamination

The thermal gradient of a structure is
filtered to emphasize thermal

thermal anomaly _
=0 anomalies.

1°C

Rating image

foreign body

plastic
(5cm)

easy to spot

thermal anomaly = 0.1°C

B

Thermal gradient of structure

Temperature distribution is interpreted into damage ratings by
using a comprehensive database of temperature patterns.
Visible image: EM(S) test-piece Damage level
: e i Damage pattern indication
?I: i 1 swwwem  crack 4 .
e Observation
lcm 2cm 3cm

reinforcement o
(Insignificant)
DepthZ4cm

Concrete surface _

IR raw image

Caution
reinforcement
"| Depth=2cm
Concrete surface
IR Process image i
. v e reinforcement Critical
o FDSLaR0 Y e quired

Reaching surface

Concrete surface
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Proper investigable time can be assessed.

Damage depth can be obtained in real time

Absolute quality assurance
& Oversight prevention

“J-System” supports investigations
conducted by customers

removal or
flaking

Foreign
substances

S

Surrounding form
is complexity, Red
is out of center.

Surrounding form
is smooth, Red is
in the center.

Form is long thin,
surrounding form
is complexity.

Form is square,
Red occupancy is
high.

Yellow occupancy
is high, Red’s
barycenter is in
the midst.
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Thermal image Analyzed image Area of Red (scale -up)
i RE |
= _ = T
L 1 o2 [ [ J
el b [ow Lo e e
- P EAEY FI N F FA A BN B Y
| | AR AR S B B B B
X |5 |5 < [ [ x|
I o [ I x |x [ ﬁﬁ
| o e | e [ P :
Pl % % [x L
A < [>¢ [ > | x¢ X %
e [ [ ] B
(1] R

i B mms

Feature amount

Area(s)=%

Boundary length(L) =3 HE

, Complexity (¢)=L/S

| i Degree of circularity (c ) =41S.”/L2

| SERIE .
Concept figure of analyzed image

— Spalling 13%

— Repair
marks
Thermal — Delamination 18% 8%
pictures - !
detecton —— Efflorescence 6% | . oo ¢
17%
— Sound 58% _ |
— Color
L Other materials unevenness
4% | 33%

60% of sound parts

Redistribution of sound parts = repair marks, free lime, and color unevenness

Examining algorism of classifying 7 categories

Utilizing thermal pictures textures
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Thermal recording of foreign Measuring thermal movement

substances through detection

Surface adhesion Lacing
Sound ( color

Efflorescence Repair Marks unevenness )

Spalling Area

Free Lime Foreign substance lacing Delamination Area

With contrast With contrast
(even ) Local contrast ( uneven )

Texture Analysis by GLCM
(GLCM: Gray-Level Co-occurrence Matrix)

Method of inspecting colorful density location
of remote two-pixel pair at certain area

Computing GLCM

¥
Computing 14 different

character values

0

Effective character value for
evaluating damage level
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GLCM

( Probability Matrix )

Probability P. d (i, j) where a

relative pixel’s density is j at a
distance 6= ( r ,0 ) from a
subject pixel density i

12‘0
11 2 | 2
2| o

1 0

( Movement o )

Distance

r Relative pixel

(density, j)
Subject pixel
L (density i) )
-
o 1 2 3
0 o o0 1 2
) b= ! o 0 2 1
T 2 |l270 1 1
2 il 31 o 0

Enlarged thermal picture

(rh8)=(1,0°)

Converting the probability of movement

appearance frequency

Character value Significance probability

1 | Angular Second Moment 0.405

2 | Contrast 0.000 %
3 | Correlation 0.108

4 | Sum of Square:variance 0.000 %
5 | Inverse Difference Moment 0.109

6 | Sum Average 0.000 %
7 | Sum Variance 0.000 X%
8 | Sum Entropy 0.140

9 | Entropy 0.374

10 | Difference Variance 0.160

11 | Difference Entropy 0.135

12 | Information Measure of Correlationl 0.045 X
13 | Information Measure of Correlation2 0.871

14 | Maximal Correlation Coefficient 0.621
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Conventional visible inspection adds damage
conditions of tunnel linings concrete , such as
flaking concrete to be caused critical
accident, adopted camera technical and
developed venhicle to inspect higher accurate

_24_



I. The captured image of the tunnel II. Analyzing

é —

»>The width, length, and number of cracks, efflorescence, and water leakage can be
investigated with high precision.

»Color images allow the inspection of corrosion and damage to the accessories attached to
the tunnel lining.

»>High-precision photography/analysis enables a comparison between the previous
investigation and the current damage progress.

_25_






Current problems New technique

No judgeing by the Detecting flaking point by
front of image whether | obtaining height data of tunnel
the crack may be lining surface.

falling or not
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Damage of inside
tunnel for verification
(photo-shooting by
digital camera)

v'Measuring tiny
shapes of tunnel
linings with vehicle
speed of 50km/h
v'Extracting local
shapes’ changes
automatically through
analyzing shape
information , and
identifying potential
delaminating parts

Height Image

Visual Image
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@ Visual image

@ Height image

Simulate gap
0100 % 100mm
Thickness 0.5~5.6mm

Black
=Large gap

. observation
I:I caution
. critical




Inspection

Daily Inspection (Behind the wheel) ‘

Methods

B Maintenance Target Values of Pavement

Difference in Level (mm) | Coefficient of
Rutting _ Sliding Flatness Cracking Ratio
(mm) Bridge Sct:zft':rge Friction IRI(mm/m) (%)
Mounting Mounting (uv)
25 20 30 0.25 3.5 20

B Cracks Evaluation (Conceptual Diagram)

Evaluation Unit: 100m
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Road Surface Measurement (3 Elements)
Company-owned
vehicle

{ i

Camera
Slit
Laser
Camera

photographed with
an area camera by

Direction of a slant
movement Line Sensor
lllumination The slit laser is situated in

area directions perpendicular.
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Accuracy at a speed of 100km/h

~ Detecting cracks~

Shooting width=4.5m(Color image)
Resolution 0.8mm x 0.8mm/pixel

Surface height image

3.0m

4.0m

Accuracy at a speed of 100km/h

~Rutting Measurement~

Shooting width=4.4m

Dimension of rutting:1mm or less

Resolution 1.68mm(Transversal)
5.60mm (Longitudinal)
0.50mm (Depth)

Zoom

_32_



Height image (Black part is low.)

Ruts on the red line above

90 eI —_—

T w M( XM —

\E/ 70 AN M T"}w

£ P &

.%_J . Cracklnlg | . ‘ Cracking

Width (mm)

High-resolution = o —
aIIOWS us to é ot memearement
accurately profile the 5
longitudinal shape of £ Bump cume

a microscopic bump.

Distance (mm)

(§, -~ Gapsmm *' i )
o Ty Gapl2mm -
0 é-n.ao __n__'ﬂ'__'}

c

9 E 031 Jaltatty WA e i Y

I D o = s e

59 1 )

= -0.33 F e RN D — pa

S  ou:lscale 10mm ; riving

N direction
aled

S Result of longitudinal profiling (magnified) )
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Surface height image

Visual image
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Detecting cracks Abstracting

cracks from visual image

- - ‘%.%L‘\

Visual image Abstracting crack
image
Detecting rutting Abstracting
rutting from visual image

Processed surface

Surface height
height image

image
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Crack+Processed image
(red:bumps 5mm or deeper)

Depth of a rutting is

contrasted through special

software, called J-soft.




Surface height image

Processed surface height image(red:rutting10mm or deeper

Transversal cross section Cracks can be detected

| (Left red line) as a difference of height.
Crack27 \
Crack

Visible image Image of road surface
height
The form of partial o o)
damage such as o
blistering can be o

replicated.

Transverse direction Longitudinal
(cm) o 80 8o direction (cm)
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Earthwork s
Section

Joint

Bridge —
Section ¥

Visualizing the state of subsidence in an
embankment at the back of an abutment

Magnified image

(1) The degree of concrete corrosion and filling of fine materials can
be identified.

(2) Small cracks in the protective post-placed concrete cover can be
photographed.
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The adhesion status of lane marking paint to
the road surface can be confirmed.

Lane 1 Lane 2 Lane 3

Transversal

iransversal Hexagonal Transversal
grack

crack «_crack _crack

Longitudinal
cfack
Longitudinal
crack

Pot hole

Hexagonal
crack

Delamination Hexagonal
crack




B Current issues

Due to the spread of Porous asphalt-related road surfaces,
problems caused by aggregate scattering have increased.

(1) Less noise reduction functionality
(2) Less driving safety and comfort
= A quantitative evaluation method has not been established.

3D shape measurement by Light-
pavement Section Method allows us to measure the
N ICC A form of a pavement with high precision.

h

Void generated by aggregate . .
scattering We focus on the relationship between

-E)_a_v-ement"__% , \ ______ . aggregate scattering and mean profile

depth (MPD).

Image of aggregate scattering

-

Height (mm)
- e ===

a) Visible image

e ——— -
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5 5 Warm color: Large
_— MPD
= - —Large quantity of

Escammmnst T msEE - _ aggregate scattering is
. .-.lf.'!.--.- el [l |

Bl
Ll

O observed.

& Cool color: Small
MPD

=A place which will
likely be clogged.

Large MPD

-.
I Traffic lane 3.5m

Small MPD

Future: IRl can be measured thanks to no
speed dependanc

5 T 10
I —IRI(200) — IRI(100) —IRI(10m)

4 8
g, |~ N UAVF—\ .
= V // \\x X/I :
=, AN | m LA r‘L . E
o
% O (&J

1 2

0 0

105.0 105.5 106.0 106.5 107.0 107.5 108.0 108.5 109.0 109.5 110.0
The kilometer post(km)
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Done to review the objective of
preventive maintenance

»Proposal new evaluation indicator to
apply for Porous asphalt pavement
»Proposal method of predicting of
occurrence of pot hole

Visual image

Oct. 2013 Nov. 2013 Dec. 2013 Jan. 2014
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Oct. 2013 Nov. 2013 Dec. 2013 Jan. 2014

Red: Shape of the rut at the objective point
Blue: Representative shape of the rut

Depth of local subsidence Lane marking
1]

(1) Area where the overall depth of the rut is high
Lane marking

The depth of the rut is high, but that of local subsidence is low.
= Low risk of pothole occurrence

(2) Area where the overall depth of the rut is low
Depth of local subsidence

The depth of the rut is low, but that of local subsidence is high.
= Potential risk of pothole occurrence = Dangerous

Proposal method [Evaluation based on the depth of local subsidence]

The relative depth of local subsidence is calculated as the depth of local
subsidence by calculating the difference between the rut depth of the
objective point and the representative rut depth which is the central value of
the maximum rut depth in a vicinity of 10m.
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Discover blistering by attaching J-system to
Eagle and investigating the runway

1 R
\\

J-System
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Ultrasound Imaging in Medicine and Biology

Yoshifumi Saijo

Biomedical Imaging Laboratory
Graduate School of Biomedical Engineering
Tohoku University
4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, JAPAN
saijo@bme.tohoku.ac.jp

Abstract

Ultrasound imaging is the most popular clinical imaging modality except conventional X-
ray and usually characterized as easy, portable and safe imaging. Not only that, it has
achieved temporally and spatially highest resolution imaging in clinical situations.
Ultrasonic transducer is made of piezo-electric material and it sends ultrasonic signal
into body and receives the reflected signal to form a tomographic image. Besides the
conventional morphology imaging, ultrasound can provide functional information such as
blood flow or biomechanical properties.
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Collaboration of medicine and engineering at Tohoku

University

W World’s first cardiac tomogram

¥ Motonao Tanaka, MD, Institute of Tuberculosis (currently Institute of
Development, Aging and Cancer)

B Yoshimitsu Kikuchi, PhD, Research Institute of Electric Communication

(Ventricular region)

ACTUAL CROSS SECTION

- |
. |
g |
- |
» ?.r 5
; L __—|.ventricte
0w .‘.:_ =
100 R
28 ‘L;i‘
L ¢ . ventri. wall
- ‘Z*h' -_
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Ultrasonic cardiac tomogram

Medical imaging modalities in japan

W Marketing of medical imaging modalities in FY 2014
B Medical CT: 1,286 (8,000in use)
¥ MRI: 548 (4,400in use)

-

B Angiography: 330 . [}

B PET-CT: 46 x I
iy

B Diagnostic ultrasound: 12,075 (uncountable JC ‘l'_"F)

Pl | |

Angiography




Question for doctors:

Innovative medical device to develop medicine?

60

cT
MRI

553

Ultrasound
Stethoscope
X-ray

Pulse oximeter
Endoscope
PET

Respirator

Electric knife
Nikkei Medical Online 2011

Question for doctors:
Favorite medical device in daily practice?

Ultrasound
Stethoscope

Pulse oximeter

CT

MRI

Endoscope
Sphygmomanometer

Cardiac ultrasound

Nikkei Medical Online 2011
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Clinical features of ultrasound diagnosis

W Easy
B Easyand repeatable examinations
B Switch on - image acquired by just placing probe

M Portable
B Smaller than CT or MRI = Available at bedside and operation room
B More portable devices (390~725 g) in market

W Safe

B No radiation exposure
B No accidents in more than 50 years

Siemens P10 GE Vscan

World share of ultrasound devices

B GE

m Philps

B Toshiba
I Hitachi
B Siemens
m Othres

Total: 57.7 billion USD

Mitsubishi Tokyo UFJ Bank, Oct 1, 2013
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A-mode and B-mode

A (Amplitude) mode

J

Amplitude

B (Brightness) mode time

TR 10 T T

Time=Distance

Amplitude of received signal at each time
-» Brightness of each distance
Note that sound speed is assumed to be constant (1530 m/s)

Sound speed distribution and received signal
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Conversion from RF signal to echo signal

Bbssipperlvalue
=Echo signal

% Jfﬂmﬂﬂﬂf )an”mmmh.,

AR ATATATATAY Py, Y
L)

Consistent of spatial resolution and sensitivity

Example of image processing

Log

RF signal Band pass filter compression Low pass filter

Frame
Auto gain control averaging
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Structure of electric scan probe

Acoustic matching layer I Backing material

Piezoelectric element
Acoustic lens - (transducer)
<

Convex type probe

http://www.ndk.com/jp/sensor/ultrasonic/basic02.html!

Principle of synthetic aperture in electronic scan

Synthesis by summation of the peak (or trough) of the pulse
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Delay line_~ /

Synthesis of oblique wave front formation by delay lines

Acoustic field: Simultaneous transmission from the
linearly arranged transducers
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Acoustic field: Delayed transmission from the linearly
arranged transducers

Acoustic field: Simultaneous transmission from the
concave arranged transducers
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Synthetic aperture (Analog)

Focal Point
Array Variable Delays

>
>

*
*
.
+*
"
o

Synthetic aperture (Digital)

Focal Point Variable
Delays

Output
Signal

Sampling
Clock
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Focusing in scanning plane

Piezo
Matching layer

Acoustic lens

Focusing in slicing plane

Acoustic lep
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Piezo

Acoustic lens

Linear probe

VIVID 3

Carotid artery, breast, thyroid
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Sector probe

Echocardiography

Convex probe

.ﬂbd ]
VIVID 3 A

Abdominal US




Radial scan

12/19§2002 16:27:18 0195

Endoscope, intravascular ultrasound

Harmonic echo

Blending the fundamental and
harmonic components to obtain low
noise high contrast image

Spectrum of whole signal

Amplitude

Frequency
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Harmonic echo

Fundamental Harmonic
EurJ Rad. 2007, 17 :1

Boiling and cavitation

1atm

0.025 atm

200 100
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Boiling and cavitation

latm --@------------ -
| '

| |

1 /1

| I

| |

| |

| |

1 I

| I

| |

| s l

| |

] |

1 I

0.025 atm |- -+ :
| I

207C 100C
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Sharpening of hepatic cancer by contrast
enhancement

Contrast (+) - Contrast (-)

Doppler effect

M Siren of the ambulance car
B Approaching = high frequency
B Going away — low frequency




Principle of Doppler effect

Wave front

Observation point

c: sound speed
f: frequency of sound source
v: velocity of sound source

Principle of Doppler effect

Number of the wave in I seconds is ft

= ct —vt
It
_ = cC—V
Observed frequency f > is

,_ ¢ _ J
f_ﬂ.’_ c—vy
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Sound source velocity obtained by frequency shift

[ transmitted frequency
[, received frequency

¢. sound speed

v. velocity of sound source

Doppler measurement of blood flow velocity
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Liver hem
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Early liver cancer

Gall stone: Acoustic shadow
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Normal kidney

B

0= Frq 5.0MHz
Gn 30
E/A 13
Map N0
D 13.0cm
DR 72

4R 13 Hz

ADO 100 %

NATIVE KIDNEY

Vasculature in the kidney (Power Doppler)

FR 9Hz
RS

2D
B3%
C 61
P Low
Res
CPA
BE%e

1000Hz
WF 60Hz
Med

RENAL TRANSPLANT VASCULATURE
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Elastography

W Slightly push the tissue and imaging of the small
displacement
W Targets
M Breast I I
B Thyroid
B Arteries

|
— >

Elastography (Invasive mammary gland cancer)

HITACHI
FR:18

MNo.173/182

-2I30A5 EGSD 414 T-Elasto-L. BG13 7OL2M40AS
9.0M Breast 65mm.  L53 9.0M Breast 65mim
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Shear Wave Elastography

¥ Focused ultrasound pushes the
tissue (push beam) to the beam
propagation &

W Shear wave is generated
perpendicular to the push beam

Shear Wave Elastography

Siemens
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Shear Wave Elastography

FR 53Hz
1dem

20
57%
Ccs0
P Low
HGen




Parasternal short axis view

FR 53Hz
1dem

20
57%
Ccs0
P Low
HGen

Apical 3 chamber view (Color Doppler)

FR 17Hz

15cm




Apical 4 chamber view (Tissue Doppler)

FR 83Hz

15cm

Longitudinal strain rate imaging

COTR N o e S Time: 283 msec  [mL]
Long. Strain

30.00

oo




Progress of ultrasound imaging

B-mode
(mech#mical
High resolution
imaging

High resolution

Difference of reflection Learning of human expert data
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Resolution and Ultrasonic Frequency

10000
EchocardiograpH 1 02Fc¢ * BD: beam width
= f— o F: focal length
D * ¢ sound speed
—E:?OOO * [ frequency
N~ D: lens diameter
C
8
5 100
o
%]
©
10
C‘ o Arwave length
A= * ¢: sound speed
’ f f: frequency i
. 1
1 10 w00
Frequency (MHz)
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Recent development of IVUS

¥ Improvement of image quality by increasing the ultrasonic
frequency

Conventional (40 MHz) New (60 MHZz)

C-mode scan of classical acoustic microscopy

Transducer
* Zn0
* Central frequency: 170 MHz

* Sapphire lens Planar transducer

Acoustic lens
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Acoustical parameters and biomechanical properties

of the tissue

W Elasticity

_ (-o)pe’
E= o))

¢ sound speed
p: density

» Z: acoustic impedance

W Viscosity * R: reflection coefficient
» E: Young's modulus
5 4 * o Poisson’s ratio
o = 2f i + i * a: absorption
_ 3 ”V 77 s ;
3 pc 3 * [ frequency

* 1, volumetric viscosity
* 1, shear viscosity

Attenuation Coefficient of Myocardium in Low

Frequency and High Frequency

30 300 =
Low Frequency High Frequency
1.10 dB/em/MHz 1.13 dB/mm/MHz
25 250
P E
<20 £ 200
@ )
= -
515 £ 150
§ 10 * £ 100
g £
] 50 &
0 = T 1 0 T 1
0 S 10 100 150 200
Frequency (MHz) Frequency (MHz)
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Frequency Dependence of Attenuation of Whole Frequency

Range

Attenuation = a f™ (n=1~2)

Attenuation

0 50 100 150 200
Frequency (MHz)

Ultrasound / impedance microscope
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Atherosclerosis (Vulnerable plaque)

¥ Plaque rupture depends on tissue character of the plaque
rather than stenosis rate.

B Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation.
1995 Aug 1;92(3):657-71

Vulnerable plaque with Ruptured plaque

Stable plaque lipid core with thrombosis

Thickening of the intima in stable plaque

- -

- - - b
h‘.-v’." & Gk B

Optical microscopy (HE)

1.0mm
Acoustic microscopy
(Sound speed)
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Thin fibrous cap in vulnerable plaque

1.0mm
Acoustic microscopy

Optical microscopy (HE) (Sound speed)

Resolution in different frequencies

Y

1.1 GHz

Optical microscopy  Acoustic microscopy
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Renal vascular smooth muscle cell (1.2GHz)
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3T3-L1 fibroblast

1700 [M/s]
1600
1500

1400

1300

Ultrasound microscopy
(sound speed)

Optical microscopy (100x)
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Multiple-Precision Arithmetic Environment in
MATLAB and Its Application to Reliable
Computation of Fractional Order Derivatives

Hiroshi Fujiwara

Graduate School of Informatics, Kyoto University

Abstract
This technical note introduces a new multiple-precision arithmetic en-
vironment in MATLAB based on exflib. We also show its effective appli-
cation to reliable numerical computation of fractional order derivatives.

1 Introduction

In collaborations between mathematical science and industry, numerical com-
putations play an essential role for understanding each other. From the view
points of numerical analysis and computational science, we should pay attention
to (i) qualitative reliability of numerical schemes, (ii) quantitative accuracy of
numerical results, and (iii) practicality in computational time and resources.
This talk presents a new strategy for (ii) which realizes accurate and reliable
numerical results.

In representation of real numbers and their arithmetic on digital computers,
the double precision arithmetic defined in IEEE754 [1] are commonly used in
scientific and engineering computations, and it has approximately 16 decimal
digits precision. Advanced theory and technologies sometimes involve unstable
processes, and require accurate numerical results beyond the standard precision,
and rounding errors caused by approximation of real numbers sometimes give
serious influences. For instance, most of inverse problems are ill-posed in the
sense of Hadamard, and it yields rapid growth of computational errors in their
numerical treatments.

To overcome the problems caused by rounding errors, we develop fast multiple-
precision arithmetic environment ezflib [2], which works with the programming
language C++ and FORTRAN95. In this talk we introduce user-friendly in-
terface in MATLAB to exflib. It enables us to execute fast multiple-precision
arithmetic in MATLAB.

2 Multiple-Precision Arithmetic Library Exflib
in MATLAB

We realize a multiple-precision arithmetic environment in MATLAB based on
exflib [2] which is implemented in the assembly language of Intel 64 architecture
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and the programming language C. MATLAB is one of a commercial software
widely used in the fields of science, engineering, and informatics, and it adopts
double precision arithmetic as default. The proposed environment runs in MAT-
LAB on 64-bit Windows, MacOSX, and Linux, and it can be downloaded from
the home page [2].

The proposed environment consists of two components (Fig. 1): one is defi-
nition of a multiple-precision number type and their methods as MATLAB class
ezfloat, and the other is interface between MATLAB and exflib. The formers are
implemented in MATLAB m-files stored in @exfloat folder in the distributed
file. The latter are provided in exflib folder, and are implemented by MAT-
LAB FEzecutable (MEX) [3, 4] which is a mechanism to call C/FORTRAN codes
in MATLAB.

4 N

user_source.m

Qexfloat/ MP class and methods definition (*.m files)

exflib/ Interface to exflib by MEX (MATLAB Executable)
* .mexab4 for Linux, *.mexmaci64 for MacOSX,
* .mexw64 for Windows 64-bit

Figure 1: Structures of Proposed Environment.

Each user m-file should specify the MEX directory as Fig. 2 with the addpath
function at the fist line, and the user m-file is recommended to be located in
the same directory as @exfloat and exflib (Fig. 1).

addpath( strcat(pwd, ’/exflib’) );

x = exfloat( 1 );
for n=1:100

X = X * n;

fprintf (°fact %d = %s\n’, n, num2str(x, *%f’) );
end

Figure 2: Example of Factorial Code in Proposed Environment.
User can specify required precision in the file @exfloat/exfloat.m shown
in Fig. 3. According to the precision, the size of exfloat is determined and each

multiple-precision number is stored in a 64-bit unsigned array shown in Fig. 4,
which represents a value

n

- Tk

(_1)s % 2¢b BIAS ™ (1 + Z 561
k=1

where e, and fj, are 63-bit and 64-bit unsigned integers respectively, and BIAS =
262 — 1. The computational precision is determined by n as (log;, 2)(1+ 64n) ~
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classdef exfloat
properties (Constant, Access=private)
precisionl10 = 100; % required precision in decimal digits
end

end

Figure 3: Precision Specification in @exfloat/exfloat.m.

19.27n digits. The auxiliary methods shown in Fig. 5 are useful to get precisions

specified precision

s €p J1 f2 f3 fn
T 63 64 64 64 64

Figure 4: Data Structure of Exfloat Type.

% specified precision (decimal digits)
exfloat.get_req_precision()

% internal precision (decimal digits) ~ 19.27n
exfloat.get_precision()

% memory size (bytes) = 8(n+1)
exfloat.get_exfloat_byte()

% size of fraction parts = n
exfloat.get_exfloat_precision64()

Figure 5: Methods to Get Precisions and Size of Proposed Exfloat Type.

and the size information used in execution. Table 1 shows examples of the user
specified precision, precision in computation, and the size of each exfloat number
obtained by methods in Fig. 5. From the table, if you require and specify 100
decimal digits in @exfloat/exfloat.m as Fig. 3, then approximately 115.60
digits are used in computation, and each exfloat type number is the size of 56
bytes.
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Table 1: Specified and Computation Precisions in Decimal Digits.

Specified Digits | Computation Digits n  Size (Bytes)

50 77.06 4 40
100 115.60 6 56
200 211.93 11 96
500 520.18 27 224

1000 1021.09 93 432

2.1 Initialization, Output, and Arithmetic of Exfloat in
MATLAB

Fig. 6 shows the methods to initialize variables in multiple-precision accuracy.
Each exfloat number should be declared or initialized by exfloat () at the first
appearance. Fig. 7 and Fig. 8 show output methods of the exfloat type. Fig. 9
show initialization of exfloat numbers via a text file.

a = exfloat(); % type declaration

x = exfloat( 1 ); % by literal integer

x = exfloat( i ); % by integer variable ’i’
y =%

x = exfloat( ’0.1° ); % by string

x = exfloat( ’1/10’ ); % by string with expression
x = exfloat( *#PI/2+#E*2’ );

x =1; % Invalid : INTEGER

x = 0.1; % Invalid : DOUBLE

x = exfloat( 0.1 ); % Invalid : DOUBLE

x = #PI/2’; % Invalid : STRING

Figure 6: Initialization and Substitution of Exfloat Numbers.

At present, operations and functions in Table 2 are implemented. Arithmetic
and comparisons between exfloat variables or integers can be used similarly as
built-in type numbers. But those with built-in real numbers are prohibited.
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>> cd C:\Users\...\exflib-MATLAB-distribute 7 Windows

>> cd /home/.../exflib-MATLAB-distribute % Linux or MacOSX
>> addpath( strcat(pwd, ’/exflib’) );

>> x = exfloat( *#PI’ );

>> x % 20 digits as default
3.14159265358979323846
>> double( x ) % convert exfloat to double
3.1416
>> num2str( x ) % convert exfloat to string
ans =
’3.1416e+0’
>> num2str( x ); % no output if followed by semicolon
>> disp( num2str(x) ) % remove ’ans =’ line
3.1416e+0
>> disp( num2str(x) );
3.1416e+0

Figure 7: Output of Exfloat Type Variables.

>> disp( num2str(x, ’%f’) ); % fixed-point fmt
3.1416 % 4 digits as default

>> disp( num2str(x, ’%.25f’) ); 7 fixed-point fmt with 25 digitg
3.1415926535897932384626434

>> disp( num2str(x, ’%.25e’) ); ' exponential fmt with 25 digits
3.1415926535897932384626434e+0

>> disp( num2str(x, ’%.25g’) ); ' general fmt with 25 digits
3.1415926535897932384626434

>> fprintf (’Result : %s\n’, num2str(x, ’%.30e’) );
Result : 3.141592653589793238462643383280e+0

>> fprintf ("% %e %g\n’, x, x, X); % exfloat is automatocally
3.141593 3.141593+e0 3.14159 % converted to double

Figure 8: Output of Exfloat Type Variables with Format Specification.
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addpath( strcat(pwd, ’/exflib’) );

% result.txt is TSV format
% It contains 3x2 array with delimiter of white space ’ °’

1.1
% 3.3e .del
5.5

D O N
BN

lines = splitlines( string( fileread( ’result.txt’ ) ) );

for i=1:3
tsvs = strsplit( lines(i) );
for j=1:2
a(i,j) = exfloat( char( strsplit( tsvs(j) ) ) );
end
end

Figure 9: Initialize Exfloat via Text File.

Table 2: Implemented Operation in Proposed Environment.

Arithmetic +(plus) -(minus) #*(mtimes) /(mrdivide)
(unary) + (uplus) —(uminus)

Array Operations \(mldivide) ’(transpose) sum dot prod

Entry-wise Operations .*(times) .\(1divide) ./(rdivide)
."(power) max min inv

Built-in Functions abs sqrt sin cos tan
asin acos atan atan2 sinh cosh tanh
exp “(mpower) log loglO

Comparisons = "= < <= > >=

Others double char num2str display

mpower cannot be applicable to a matrix.
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Example (Tikhonov Regularization). Fig. 10 shows an example to solve the
linear equation Hz = B and the Tikhonov regularization (aI+H* H)y = HT B,
where H is the Hilbert matrix and B = (1,1,...,1).

1
The (4, j)-th entry of the Hilbert matrix is h;; = P for ¢,j > 1. But

147
the statement

H(i,j) =1/ (Ci+j-1);
or

H(i,j) = exfloat( 1 / ( i+j-1) );

is not suitable to initialize H(i,j) as the exfloat type, since the expression
1/(i+j-1) is treated as double precision arithmetic as default in MATLAB,
and the substituted entry H(i,j) is also interpreted as the same type. To
prevent it, the explicit type specification exfloat( 1 ) is used in the example.

addpath( strcat(pwd, ’/exflib’) );
N = 100;

for i=1:N
for j=1:N
H(i,j) = exfloat( 1 ) / (i+j-1);
end
end

B(1:N) = exfloat( 1 ); % row-vector

% solve Hx = B
x=H\ B;

% Tikhonov regularization
a = exfloat( ’1e-30’ ); % regularization parameter
(a * exflib_eye(N) + H’*H )\( H’*B’ );

<
I

Figure 10: Tikhonov Regularization w.r.t. 2-norm for the Hilbert Matrix.
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2.2 Fast Computation by Suppressing Calling Overhead
of MEX

The proposed environment is based on exflib, and operations in MATLAB calls
those in exflib implemented in the assembly language and the programming
language C. Fig. 11 shows a calling procedure. Addition (+) with exfloat
type scalar operands in MATLAB m-file is bound to the method @exfloat/
plus.m which is also written in MATLAB m-code. @exfloat/plus.m calls
the function exflib_float_add() provided by exflib/exflib_float_add.
mexa64 (64-bit Linux), exflib/exflib_float_add.mexmaci64 (MacOSX), or
exflib/exflib_float_add.mexw64 (64-bit Windows). These MEX files are
generated by compiling exflib/exflib_float_add.c with MATLAB MEX
compiler. The file exflib/exflib_float_add.c is written in the programming
language C, and calls exflib_float_add.o written in the assembly language.
Therefore executing addition (+) in MATLAB comes with calling overhead.

e _ . N
expression : ’+’ in m-file
1
method : Gexfloat/plus.m
1
MEX : exflib/exflib float_add.mexab4
1
“add” (assemble code) in exflib
N /

Figure 11: Calling Procedure of Arithmetic in Exflib from MATLAB M-file.

To estimate calling overhead in MATLAB, we calculate the inner product
with several implementations. The inner product calculated by the program
in Fig. 12 requires at least 2N times MEX calling. Current implementation
also provides dot method which calls exflib_mex_dot.mex*, and it requires
one time MEX calling (Fig. 13). The inner product can be also calculated by
sum(a.*b) and a*b’, and both require at least two times MEX calling. Results
in Table 3 show that dot is significantly fastest among these expressions, and
it can be concluded that crucial algorithms should be implemented in MEX for
the sake of amortizing calling overheads.

Table 3: Computational Time with 100 Decimal Digits by Various Implemen-
tation of Inner Product to Compare Calling Overhead.

unit : sec.

N | entry-wise dot(a,b) ratio | sum(a.*b) axb’

10 | 0.0020 0.0010 2.1 | 0.0040 0.0012
100 | 0.015 0.0017 8.9 | 0.0067 0.0028
1000 | 0.15 0.012 13 | 0.060 0.016
10000 | 1.1 0.097 11 0.43 0.13
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for i=1:N
s =s + a(i) * b(i);

end
Figure 12: Inner Product Implemented by Entry-wise Arithmetic.
4 M
plus.m
times.m dot.m
J 2N call l 1 call
exflib mex add.mexa64d exflib mex dot.mexa64

exflib_mex mul.mexa64

Mcau 2N call

‘Jr and x in exflib
2N exec.

Figure 13: MEX Calling Procedures in Inner Product.

2.3 Performance Measurements

In MATLAB, Variable Precision Arithmetic (VPA) is provided in “Symbolic
Math Toolbox” for multiple-precision arithmetic as an optional feature. Table 4
shows computational times in solving a system of linear equations Ax = b with
a square matrix A ! in MATLAB R2017b (Version 9.1.0.441655) on Linux with
Xeon E5-2695 v4 (2.1GHz). The program shown in Fig. 14 was executed to
measure computational time.

The proposed environment is over 15 and 4 times faster than VPA in 100
and 500 decimal digits computation respectively.

The operation \ (mldivide) calls exflib/exflib_mex_gaussian_elimina
tion.mex*, which uses multiple-precision addition, multiplication, and division
in exflib implemented in the assembly language, and they also cause calling over-
heads. We also measure the computational times to solve the same equation
with exflib in the programming language C++4, and show them in the right-
most column in Table 4. From the results, overhead in MATLAB is crucial in
computational time.

2.4 Unsupported Features

The following features are frequently used in numerical computations, but they
are not supported in the proposed environment at present.

Tn MATLAB, mldivide (\) is applicable to find the least square solution to Az = b with
a rectangle matrix A.
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Table 4: Computational Time in Solving Linear Equation Az = b.

unit : sec.

MATLAB C++

digits  size | VPA  proposed ratio | exflib
100 100 1.9 0.12 16 | 0.0066
200 13 0.73 17 0.056

400 101 51 20 2.0

800 | 838 37 22 16

1000 | 1647 71 23 31

500 100 2.5 0.53 4.6 0.018
200 17 3.9 44 1.4

400 129 30 4.3 11

800 | 1032 237 44 89

1000 | 2008 462 4.3 176

size = 100;

addpath( strcat(pwd, ’/exflib’) ); % exflib folder

A exflib_hilb(size); % Hilbert matrix in exflib

b exflib_ones(size,1); % RHS in exflib, column-vector
tic; x = A\b; toc;

clearvars A, b;

digits(100); % specifying VPA precision
A = vpa( hilb(size) ); % Hilbert matrix in VPA

b = vpa( ones(size,1) ); % RHS in VPA

tic; x = A\b; toc;

Figure 14: Program Used in Computational Time Measurement.

e complex numbers and their arithmetic

e rounding control, interval arithmetic

e precision specification in user’s M-files

e dynamic change of computation precision
e special functions

o Matrix Operations : mpower, norm

e BLAS interface

_92_




3 Application to Accurate Computation of Frac-
tional Order Derivatives

We apply the proposed multiple-precision arithmetic to numerical computa-
tion of the fractional order derivative in Caputo’s sense. It is also shown that
multiple-precision arithmetic is effective in quantitative evaluations of reliability.

For f € C*(Rx() with finite f/(4+0) and 0 < a < 1, the a-th order derivative
of f in Caputo’s sense[5, 6] is given by

1

DEf](@) = /@) = g3 / (

J'(v)
T —y)~

dy, x>0, (1)

where T'(s) is the gamma function. Since the integrand has a singularity at = in
general (Fig 15(a)), we leverage the double exponential variable change [7] as

o(t) = g (tanh (g sinh t) + 1) .

It yields that

F0) = gy [ Fen(00)#(0) . )

/
where F, o[f](y) = Fualy) = % Since ¢’ decays rapidly as [t| — oo,

the integrand F, o (¢(t)) ¢’ (t) also converges to zero at [t| — oo (Fig 15(b)).

10
@) =27, a=09
f(z) =2

8 et = //I 1: 7

ﬂ / U /\

| /) T\
/ / \

2, 0 = 0.9, 100 digits s
r) o = 0.5, 100 digits

(8) Fra(y) = —2 (B) Fia (6(8)) ' (0).

Figure 15: Integrand F ,[2?] with o = 0.5, and 0.9, Calculated with 100 Digits.
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3.1 Reliable Computation of Fractional Order Derivatives
with Multiple-Precision Arithmetic

Fig. 15 are calculated with 100 decimal digits by exflib. On the other hand,
results in the double precision are inaccurate shown in Fig. 16.

3.5

F(@] = 2%, a = 0.9, 100 digits s
J(@) =42 a=09, double o

2.5

pees 14

2
M
oo

'§ $
-2 -1 0 1 2 3 4 5 2.9 2.95 3 3.05 3.1 3.15 3.2

t t

(a) Fi,a(o(t))¢'(t) with o = 0.5,0.9. (b) Comparison between 100 Digits
and Double Precision.

Figure 16: Integrand Fi o [z%](¢(t)) ¢’ (t).

In conventional implementation of numerical integration, we calculate 2¢(t),
1/(1- ¢(t))a and ¢'(t) separately, and multiply them to evaluate the integrand

Particularly, since ¢(t) is close to one for large t, it causes catastrophic
cancellation in 1 — ¢(t). For instance, if t = 3.16 then 1 — ¢(t) is approximately
2.2 x 10710 in double precision arithmetic, which equals the unit in the last
place, while that is 1.8 x 10716 in 100 decimal digit (Table 5). Moreover, the
double precision arithmetic returns

o
(1—o(t)™°

This shows that insufficiency of the double precision arithmetic, and efficiency
of multiple-precision arithmetic for reliable computation of the fractional order
derivative in Caputo’s sense by (1).

= 400, t>3.17.

Table 5: Numerical Results of Components in Integrand in (2) for a = 0.9.

t=3.16 ‘ 1—¢(t) (1- qS(t))fO‘g @' (t) integrand
100 digits | 1.8 x 1071 2.8 x 10" 6.6 x 1071 1.8
double | 2.2x107'¢  23x10™  6.6x1071° L5

2We usually ignore the value of 1/(1 — ¢(t))“ if ¢/(¢) is small enough in the computation
and evaluate the product (integrand) as zero based on a priori estimate. In this study we do
not take this strategy and use the direct product
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3.2 Discretization Parameters

In numerical computation of (2), we introduce discretization parameters At > 0
and t, = kAt, and discretize it by “the trapezoidal rule” as

f(a) (l') ~ ﬁ Z Fx,a (¢(tk))¢/(tk)At,

kEZ

which is truncated to a finite sum with truncation parameters Ky and K; € Z
as

~ m Z Fya (¢(tk)>¢/(tk)At~ (3)

Ko<k<K)

Tables 6 and 7 show discretization parameters and numerical results of (3)
for D [2?] |x=1 for &« = 0.5 and 0.9, where L = KyAt, U = K;At and
K = K; — Ky. The exact value

2
DE ] o= 53—
is also shown in the bottom line. The gamma function is calculated in the
proposed environment as described in the next section.

From tables, the double precision arithmetic is not sufficient for accurate and
reliable computation, particularly for & = 0.9. And we need a larger interval
(L,U) as «a is closer to one.

3.3 Examples of the Caputo Derivative of Fundamental
Functions

We show some numerical examples of the Caputo derivative of fundamental
functions.

First we discuss efficiency of multiple-precision arithmetic again. Fig. 17
shows fractional order derivatives for f(x) = 2 with orders a = 0.2,0.4,0.6,0.8
and 0.9. The truncation parameters are (L,U) = (—3,3.16) in double precision
and (L,U) = (—3,5) in 100 decimal digits respectively, and K is adaptively
determined with the tolerance 107°. Results of a = 0.9 in Fig. 17(a) are un-
naturally close to those of @ = 0.8 due to lack of precision as stated so far. On
the other hand, we can find reasonable results for all o with 100 decimal digits
shown in Fig. 17(b).
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Table 6: Discretization Parameters in Numerical Integration (3) for o = 0.5.

(a) Varying U and K for Fixed L.

L U K ‘ double precision 100 digits
—5.00 3.16 8 | 1.506521145717490 1.50652118787726
16 | 1.504513825968471 1.504513847045489
32 | 1.504505544986518 1.504505555531676
—-5.00 3.17 8 400 1.507981691926983
16 400 1.504515197229551
32 400 1.504505555657249
exact value ‘ 1.50450555612735. ..
(b) Varying L and U.
L U K | 100 digits
—1.5 4.0 65536 | 1.50450468520610
—2.0 4.0 65536 | 1.50450555605588
—2.5 4.0 32 | 1.50450555612735
—2.5 3.0 65536 | 1.50450522557433
—2.5 3.5 65536 | 1.50450555611566
—-2.5 4.0 32 | 1.50450555612735

exact value | 1.50450555612735. ..
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Table 7: Discretization Parameters in Numerical Integration (3) for o = 0.9.

(a) Varying U and K for Fixed L.

L U K ‘ double precision 100 digits
—5.00 3.16 8| 1.87072828925 1.90636895125
16 | 1.87900443987  1.89682476417
32 | 1.87188368373  1.88079405669
—-5.00 3.17 8 +o00 1.90645242453
16 +o00 1.89759689138
32 +00 1.88210055004
—5.00 5.00 8 +o00 1.90117136452
16 +o00 1.91113179851
32 +00 1.91115819291
exact value ‘ 1.911158192930505.. ..

(b) Varying L and U.

L U K | 100 digits

—1.5 5.0 32| 1.911158170719432
—1.5 5.0 64 | 1.911158199338609
—2.0 5.0 32| 1.911158192926879
—2.0 5.0 64 | 1.911158192895752
—2.5 5.0 32| 1.911158192928194
—2.5 5.0 64| 1.911158192902578

—-3.0 4.0 32| 1.911033316749863
—-3.0 4.5 32| 1.911158038914574
—-3.0 5.0 32| 1.911158192928919

exact value ‘ 1.911158192930505. ..
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— 0.2
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—0.8
0.9
= st order
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0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

X
(a) Results with Double Precision, Results of o = 0.9 is Close to Those of ac = 0.8.

2 T T T T T T T T T
e Original
— 0.2
0.4
151 0.6
— .8
0.9
= 1st order
1 -
05 i
0 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

X
(b) Results with 100 Decimal Digits.

Figure 17: .D§[z?].

_98_



The remain of this section is devoted to show profiles of fractional order
derivatives of fundamental functions and their properties. In figures, f and f’
are drawn as the black curve and the red curve respectively. Other colored curves
are fractional order derivatives f(®). From results, {f (0‘)} gradually change from
f to f" as o changes from zero to one.

Fig. 18+ [ for [(+0) = //(+0) = .
Fig. 19 : f) for f(+0) = 0, f'(+0) # 0. In Fig. 19(a), we note that
J/(+0) does not exist and

oDy [V (x) = 7” ~0.886, x #0.

Fig. 20 : f and f’ are periodic functions, but f(®) does not have the same
period. In fact we have f(®)(1) # f(®)(40) and

(d%)m sin(wzr) = vwIm E(wa),

%) " cos(u) = B Re ()

where

E(z) = ()i oo <\/E e%i)
and erf z is the complex error function defined by

)n22n+1

2 = (-1
fre=— S L E
e ﬁn;]n!(znﬂ)

On the other hand, if n is an integer, we have

<dix) sin(wz) = w" sin (w:c + T;—W) =w"Im e(“’m+%)i, (4a)
d\" nm oLy,
(%) cos(wz) = w™ cos (wx + 7) = W' Reel#7 5 )1, (4b)

which are same as the Riemann-Liouville derivative with the lower termi-
nal at —oo [8], and have the period 27/w in common. It is clear that those
in Caputo’s sense do not coincide with (4).

In order to investigate their periodic behaviours more precisely, we com-
pute CD(I)/ *[sin272] by (3) and compare the results with

s(x) = V2msin (27rx + %) .

Table 8 shows differences s — cDé/ 2[sin 27rx] at integers, which converge to
zero numerically. In Fig. 21, the horizontal line is x mod 1, and the graphs
of CDé/Z[sin 2mzx] on [0,1], [1,2], [2, 3] and the function s are shown. Those
on [1,2] and [2,3] are almost same as s(z), and these numerical results
strongly imply that D [sin 27| asymptotically converge to s which has
the period one.
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Fig. 22 : The fractional order derivatives of

0, x < 0.25;
2 3b—a
1, x> 0.9,
and
(z —a)*(z — b)?, a<z<b
= 6
1) {0’ otherwise (6)

where a = 0.25 and b = 0.5 are shown in Figures (a) and (b) respectively.
In both examples, f(z) does not vary on = € I = (0,0.25) U (0.5,1) thus
f'() = 0 on I. But f(* does not vanish on I. This is called hysteresis
or memory effect of the operator (D .
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Figure 18: f(®) with f(+0) = f'(40) = 0.
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Figure 19: f(®) with f(+0) = 0 and f’(+0) # 0.
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Figure 19: (Continued) f(®) with f(+0) =0 and f'(+0) # 0.
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Figure 20: Periodic Functions and Their Fractional Derivatives f(®).
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Table 8: Periodicity of CD(I)/ ?[sin 27z

‘ CD(I)/2 [sin27a]  V27wsin(27x + 7/4) — CD(I)/2 [sin 2] (x)

T
0 0.00000 1.77245
1 1.73081 0.04164
2 1.75693 0.01553
3 1.76390 0.00855
4 1.76687 0.00558
) 1.76845 0.00400
6 1.76941 0.00305
7 1.77003 0.00242
8 1.77047 0.00198
9 1.77079 0.00166
10 1.77104 0.00142

—1[01]
—[2
[2.3]
asymptotic
-3 ! ! ! ! ! ! ! ! !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X mod 1

Figure 21: Profiles of cDé/Z[sin 2mz] and /27 sin (27r:c + %)
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Figure 22: Hysteresis Involved in the Fractional Order Derivatives.
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4 Multiple-Precision Arithmetic of the Gamma
Function

Finally we show accurate numerical computation of the gamma function which
appears in the fractional order derivative (1). As stated in the last section, we
concentrate on 100 decimal digit computation.

The gamma function is defined by

I'(s) = / et dr, s3>0,
0

which satisfies I'(s + 1) = sI'(s) and particularly T'(n + 1) = n! for n € Z>o.
The double exponential transformations

o1(t) = exp(t — exp(ft))

and

da(t) = exp (g sinh(t))
yield

(oo}
[(s) = / e Wy (1)1 ¢i(1) dt,
which is approximated similarly as (3) by

ooy e g (n) T g (b At (7)

Ko<k<K)

Table 9 shows the least K and the interval (L,U) which are required to find
I'(s) for each s of the relative error less than 1071%° obtained by numerical ex-
periments with 150 digits. From the results, computational costs of the trans-
form ¢ is smaller than those of ¢2. We also note that since 1 < I'(s) < 2
for 2 < s < 3, an adaptive error estimate is simple from the stand point of
floating-point arithmetic in this interval. Thus we propose the use of ¢1(t)
with parameters (L,U) = (—4.7,5.5) and adaptively defined K to find I'(s) for
2 < s < 3 by numerical integration (7) with 100 decimal digits precision. For
other s, we reduce the argument to the interval 2 < s < 3 by the recursive use
of

I'(s+1) )

M) =d 5 0<s<2;

(s—1DI'(s —1), 5> 3.

Additionally we can find I'(s) for s < 0 by reducing the argument to s > 0 by

s

Fls) = I'(1—s) sin(rs)’
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Table 9: Required Discretization Parameters to Find I'(s) of the relative error
less than 10719 by Numerical Integration (7).

¢1(t) ¢2(t)
s| L U K| L U K

0.1 =77 55 307 | —-80 20 1224
0.5 —6.1 5.5 271 | —6.4 2.0 1041
1.0 | =54 5.5 260 | =57 2.0 964
1.5 =5.0 55 254 | —=53 2.0 922
20| —47 55 245 | =50 2.0 912
25| —45 55 246 | —48 2.1 892
3.0 —44 55 243 | —46 2.0 878
3.5 | —41 5.6 241 | —44 2.0 846
40| —40 56 241 | —43 2.0 835
45| -39 56 240 | —42 21 845
5.0 | =3.7 5.6 237 | —41 2.0 842
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A Sample Codes with Proposed Muptilpe-Precision
Arithmetic

A.1 Computation of the Caputo Derivative

% CaputoDrvPlot.m : Compute and Plot Caputo Derivative
%  Copyright (C) 2017, FUJIWARA,Hiroshi

clear classes
addpath( strcat( pwd, ’/exflib’ ) );

BEG = exfloat( ’0’ ); % Find Caputo Drv on BEG < x <= END
END = exfloat( ’1’ ); 7% (0 <= BEG < END)
STEPS = 100;
dx = (END-BEG)/STEPS;
SS = 2; % sub-division of (BEG,BEG+dx)
for i=1:88 % particularly BEG ==
x(i) = BEG + (i-1)*dx/SS;
end

for i=SS+1:SS+STEPS
x(i) = BEG + (i-SS)*dx;
end

x(1) = [1; % Skip to compute derivative at x=BEG (for BEG == 0)

tic; y2 = CaputoDrv( @df, exfloat( ’0.2’ ), x ); toc;
tic; y4 = CaputoDrv( @df, exfloat( ’0.4° ), x ); toc;
tic; y6 = CaputoDrv( @df, exfloat( 0.6’ ), x ); toc;
tic; y8 = CaputoDrv( @df, exfloat( 0.8’ ), x ); toc;
tic; y9 = CaputoDrv( @df, exfloat( 0.9’ ), x ); toc;

for i=1:8STEPS+1
x0(i) = BEG + (i-1)=dx;
end
yo = £(x0);
y_classical = df(x0);

Figure 23: Computation of Caputo Derivative : CaputoDrvPlot.m
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% plot
plot( x0,y0,°k’ , x,y2, x,y4, x,y6, x,y8, x,y9,
x0,y_classical, ’r’, ’LineWidth’,2 )

legend( ’original’, ’0.2’, ’0.4’, ’0.6’, ’0.8’, ’0.9’,
’1st order’, ’location’, ’southwest’ )

xlabel( ’x’ );

grid on

grid minor

pbaspect([3 2 21)

saveas(gcf, ’CaputoDrv’, ’epsc’); % EPS file (for TeX)

saveas(gcf, ’CaputoDrv’, ’png’); % PNG file

function y = £ ( x )

PI = exfloat( ’#PI’ );

y = sin(2*PI*x);

hy = x.*x; % y is product as array
end

function y = df ( x )
PI = exfloat( ’#PI’ );
y = 2¥PIxcos( 2#PI*x ); 7 (d/dx)sin(2*pixx)
hy = 2%x;

function y = CaputoDrv ( df, order, x )

% Followings parameters are optimized to 100 digits
L = exfloat( -3’ );

U = exfloat( ’5’ );

N_MAX = 2048;

TOLERANCE = exfloat( ’le-5’ );

persistent PhiArray DPhiArray
if isempty(PhiArray)

[PhiArray, DPhiArray] = de_initialize(L, U, N_MAX);
end

g = gamma( l-order );

N = length(x);
y(1:N) = exfloat(0);

for i=1:N
y(i) = CaputoDrvCashed( df, order, x(i), g,
L, U, N_MAX,
PhiArray, DPhiArray, TOLERANCE );
end
end

Figure 23: (continued) Computation of Caputo Derivative : CaputoDrvPlot.m
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% 0 < alpha < 1
function y = CaputoDrvCashed ( df, order, x, g,
L, U, N_MAX,
PhiArray, DPhiArray, TOLERANCE )

return;
end

y = adaptive_de ( @(s)df(s)/power(x-s,order),
exfloat(0), x, L, U, N_MAX,
PhiArray, DPhiArray, TOLERANCE )/ g;

end
.
function [PhiArray, DPhiArray] = de_initialize (L, U, N_MAX)
PhiArray(1:1+N_MAX) = exfloat(0);
DPhiArray(1:1+N_MAX) = exfloat(0);

pih = exfloat( ’#PI/2’ );

function x = phi ( t )
x = tanh( pih * sinh(t) );
end

function x = dphi ( t )

cs = cosh( pih * sinh(t) );

x = pih * cosh(t) / (cs*cs);
end

dx = (U - L) / N_MAX;

for i=1:N_MAX+1
x = (i-1)*dx + L;
PhiArray(i) = phi(x);
DPhiArray(i) = dphi(x);

+

end

Figure 23: (continued) Computation of Caputo Derivative : CaputoDrvPlot.m
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function s = adaptive_de ( f, a, b, L, U, N_MAX,

pih = exfloat( ’#PI/2’ );

function y = linear (x,low,up)
y = (up-low)/2*(x+1)+1low;
end
h=U-1;
N=1;
step = N_MAX;
N_MIN = 16;
s = f( linear(PhiArray(1),a,b) ) * DPhiArray(1)

s =8 * h;
while 1
t = s;
h=nh/ 2;

PhiArray, DPhiArray, TOLERANCE )

+ £( linear (PhiArray(N_MAX+1),a,b) ) * DPhiArray(N_MAX+1)

if step <=1
error( ’too small step’ )
end

step = step / 2;

sum = exfloat(0);
for k=1:N
sum = sum ...
f( linear(PhiArray(step*(2xk-1)+1),a,b) )
DPhiArray (step*(2xk-1)+1);

* +

end
sum = sum * h;

s = t/2 + sum;

Figure 23: (continued) Computation of Caputo Derivative : CaputoDrvPlot.m
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if abs( (s-t)/s ) < TOLERANCE && N >= N_MIN
break;

end

if N > N_MAX
break;

end

N =N * 2;
end % while

s =s *x (b-a)/2;

Figure 23: (continued) Computation of Caputo Derivative : CaputoDrvPlot.m

A.2 Gamma Function

The function gamma () in MATLAB compute the gamma function. Most FOR-
TRAN compilers also support GAMMA (), and C++11 has it as tgamma () 3.

.
% gamma.m : Gamma Function, NOTE : MATLAB supports gamma()

%  Copyright (C) 2017, FUJIWARA,Hiroshi
A —

function g = gamma ( s )
g(1l:length(s)) = exfloat(0);

for i=1:length(s)
g(i) = gamma_scalar( s(i) );
end
end

Figure 23: Gamma Function : gamma.m

3In C++4, gamma() or 1gamma() are used to compute the natural logarithm of the gamma
function: log|y(z)|. The name tgamma() represents “true gamma” (Linux Programmer’s
Manual, TGAMMA(3))
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function g = gamma_scalar ( s )

S —
% s \in 0,-1,-2, ... => gamma(s) is undefined
% s <0, gamma(s) = pi/( gamma(1l-s) * sin(pi*s) );
S —
if s <0
PI = exfloat( ’#PI’ );
g = PI / ( gamma_scalar(1l-s) * sin(PI*s) );
return;
end

% Reducing argument into 2 < s < 3
% using gamma(s+1l) = s*gamma(s)

g = exfloat( 1 );
return;
elseif s < 2
g = gamma_scalar(s+1) / s;
return;
elseif s ==
g = exfloat( 2 );
return;
elseif s > 3
g = (s-1) * gamma_scalar(s-1);
return;
end

% 1 <= gamma(s) < 2, when 2 <= s < 3.

% 2 < s < 3, find gamma(s) by improper integral

% Followings parameters are optimized to 100 digits
U = exfloat( ’5.57 );

L = exfloat( ’-4.7° );

N_MAX = 1024;

TOL = exfloat( ’1e-100’ );

g = de_adaptive( @(x)integrand_gamma(x,s),
Ophi_gamma, @dphi_gamma,
U, L, N_MAX, TOL );

Figure 23: (continued) Gamma Function : gamma.m
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function s = de_adaptive ( integrand, phi, dphi,
U, L, N_MAX, TOLERANCE )

s = integrand( phi(L) ) * dphi(L)
+ integrand( phi(U) ) * dphi(U);

s =8 * h;

N =1;

while 1
t = s;
h=h/ 2;

sum = exfloat( 0 );

for k=1:N

x = h*x(2*k-1) + L;

sum = sum + integrand( phi(x) ) * dphi(x);
end
sum = sum * h;

s = t/2 + sum;

if abs(s-t)/s < TOLERANCE && N >= N_MIN
break;
end
if N > N_MAX
s = -1;
return;
end
if abs(s - t)/s < TOLERANCE
break;

Figure 23: (continued) Gamma Function : gamma.m
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function p = phi_gamma ( t )
p = exp( t - exp(-t) );
end

function p = dphi_gamma ( t )
p=-exp(t - exp(-t) ) x ( 1+ exp(-t) );

end

function y = integrand_gamma ( x, nu )
y = power(x, nu-1) * exp(-x);

end

Figure 23: (continued) Gamma Function : gamma.m

A.3 A Cauchy Problem of the Laplace Equation in 2D

Let © = (0,1)? C R? and we consider a Cauchy Problem of the Laplace Equa-
tion:

Au(z,y) =0, (z,y) € Q, (8a)
u(z,0) = 22, r € R, (8b)

ou

°e — R

ay (1‘70) 07 T € 9 (80)

which is known as one of typical ill-posed problems. Fig. 23 is a finite differ-
ence scheme to solve the problem, and Fig. 24(a) and (b) are numerical results
by the standard double precision arithmetic and multiple-precision arithmetic
respectively. Numerical results of double precision oscillates and does not ap-
proximate the exact solution around y = 0.2 due to accumulation of rounding
errors, while those of 100 digits approximate it in y < 0.5 (Fig. 24(b)).

In the example code, the computational precision is determined by uncom-
menting either of the following lines. The first line indicates the multiple-
precision arithmetic, and the second line indicates the double precision arith-
metic.

one = exfloat(1l);
one = 1;

The result shows the efficiency of multiple-precision arithmetic in numerical
computation of ill-posed problems.
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% Cauchy Problem of the Laplace Equation in 2D Rectangle
% FDM Computation with 3D plot

% Copyright (C) 2017, FUJIWARA,Hiroshi

clear classes
addpath( strcat( pwd, ’/exflib’ ) );

Nx = 80; % division number of the interval 0 <= x <= 1.

Ny = 160; 7 division number of the interval 0 <=y <= 1.
I = 6*Nx; 7 Computation Domain

J = Ny/2; 7 100 digits
.

% Select Computational Precision
% MULTIPLE-PRECISION or DOUBLE

%one = 1; % double precision arithmetic
one = exfloat(1); J multiple-precision arithmetic

S —
% Setup Lattice
S —
dx = one / Nx;
dy = one / Ny;
for i=1:I+1

x( 1) =dx * (i-I/2-1);
end
for j=1:J+1

y( j ) =dy * (j-1);
end
S —
% Initial Value
S —
f = x.*x;
g = 0.%x;
Y

u(l:I+1, 2) = £ + dy*g(1:I+1);

Figure 23: Program to Solve Cauchy Problem of the Laplace Equation in 2D

(8)
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lambda = dy*dy/(dx*dx) ;

for j=2:J
% Boundary Condition
u(l,j+1) = 0;
% FDM

u(2:I,j+1) = 2%xu(2:I1,j) - u(2:I,j-1)...
- lambda.*( u(3:I+1,j) - 2*u(2:I,j) + u(1:I-1,3) );

% Boundary Condition
u(I+1,j+1) = 0;

[xx,yy] = meshgrid( -1:double(dx):1, 0:double(dy) :double(Jxdy) );
uu = double ( u(2*Nx+1:4*Nx+1, 1:J+1) );
plot3 (xx, yy, uu);

xlabel( ’x’ );
ylabel( 'y’ );
z1lim( [-0.5 1] );

saveas(gcf, ’CauchyPblLaplace2D’, ’epsc’); 7% EPS file (for TeX)
saveas(gcf, ’CauchyPbLaplace2D’, ’png’); % PNG file

Figure 23: (continued) Program to Solve Cauchy Problem of the Laplace Equa-
tion in 2D (8)
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(a) Numerical Results by Double Precision Arithmetic

(b) Numerical Results by 100 Decimal Digits.

Figure 24: Numerical Results for a Cauchy Problem of the Laplace Equation
(8) using Program Fig. 23.
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Abstract

Identification of wave sources is an important inverse problem because it has a lot of
applications in various fields. In inverse source problems, choice of source model is a key
point for theoretical and numerical discussions. Point source model and dipole source model
are simple but useful models that are widely discussed in many papers [6, 8, 9, 15]. Here,
we concentrate our attention to an algebraic restriction method for these models.

In the previous workshop in 2015, we consider the case where several unknown dipoles
moves slowly in some region, and discuss a identification procedure the parameters of dipole
[19]. Here, the word ’slowly’ means that moving speed of dipoles are sufficiently small
(smaller than 10% of the wave propagation speed). In this report, we remove this restriction
to which the moving speed of dipoles are only smaller (not sufficiently small) than the wave
propagation speed, and propose a new procedure to reconstruct moving point and dipole
sources.

1 Introduction

Identification problem of waves sources frequently arises in many science and engineering fields
e.g. identification of seismic sources, passive sonar [2, 21]. Assuming that the media is isotropic,
such kind of problem can be mathematically formulated as an inverse source problem for wave
equation[4, 12]. In inverse source problems, the choice of source model is a key point in theoretical
studies on uniqueness or stability, and numerical studies on reconstruction methods. Point source
model and dipole source model are simple but useful models, and are widely discussed in many
papers[5, 9, 13, 16, 17, 20]. In the report, we discuss a real-time algebraic reconstruction method
of these models.

In the previous workshop in 2015, we propose a identification procedure the unknown pa-
rameters of dipole source models assuming that dipoles move slowly[19]. Here, the word ’slowly’
means that moving velocities of points or dipole sources are sufficiently small (smaller than 10%)
comparing to the wave propagation speed, and then we can neglect the effect of the moving speed
of sources. In this report, we discuss a method to remove the restriction of our previous result,
and propose a new procedure to identify moving point and dipole sources accounting the effect
of the velocities of these kind of sources.
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2 Mathematical formulation

Let u be a scalar wave field described as a solution of the initial-value boundary-value problem
for three dimensional scalar wave equation:

c%afu(t,r) CAu(t,r) = F(tr), in (0,T)x O,
u(0,r) =0, in Q, (1)
du(0,7) =0, in Q,
u(t,r) =0, on (0,7) x T,

where Q C R? is a simply connected bounded domain with C*>-class boundary I' = 9Q, ¢ > 0
is the wave propagation speed, T > 2 - diamQ > 0 is a constant, and F'(¢,7) describes the
wave source. Suppose that F'(¢,r) is unknown, and consider the problem to reconstruct it from
observation ¢ of the normal derivative of v on I':

o(t,r) = dyu(t,r), on (0,T) x T

This problem is called inverse source problem for scalar wave equation, and many researchers
discussed this problem from theoretical and numerical points of view, e.g. [5, 9, 18].

In inverse source problems, the choice of source model is a key point for theoretical and
numerical discussions. In this report, we assume that the source term is described by multiple
moving point sources

K
F(t,r) =Y ar()5(r — pi(t), (2)
k=1

or moving dipole sources

M=

F(t,r) == ) mu(t) - Vo(r — py(t)). ®3)

k=1

In (2), K denotes the number of point sources, p,(t) € D and ¢(t) € R the location and
magnitude of k-th point source at ¢, where D is a compact subset in 2. Note that we do not
need to specify the domain D. The symbol § describes the Dirac’s delta distribution. And in
(3), K denotes the number of dipole sources, p;(t) € D and my(t) € R? the location and dipole
moment of k-th dipole source at ¢. Hence, we consider the solution u of (1) in a weak sense, i.e.
u € CY([0,T]; L*(Q)) that satisfies

1 1

o /Q BT, )o(T, )V (r) — /Q (T, )0p(T, 7)dV (r)

T
- / / Dyu(t, ryu(t, r)dS(r)dt
0 N
T 1
+ / / u(t,r) (?afv(t, r) - Av(t,r)) v (r)dt
JO Q
= F(v),
for any v € C*([0,T] x Q). In (4), the right hand side term F(v) is expressed by

K T
Z/ qr(t)v(t, py(t))dt, for point source model,
Fwy =Ry =4
v) = (F,v) =
K 1
Z/ my(t) - Vo(t,p,(t))dt, for dipole source model.
k=170
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With the aid of [14], we obtain the following regularity result for the case that the point and
dipole sources move smoothly in time and space and magnitudes or moments change smoothly
in time:

PROPOSITION 1. Let ¢ be a non-negative integer. For moving point sources (2), assume that
pi € CP2([0,T]; D), g € CY([0,T;R), |dipy(t)] < ¢ and qr(0) = digr(0) = d7qr(0) =
S = di“l qr(0) = 0, where d; denotes the derivative with respect to t. Then, the solution u
of (1) satisfies u € C([0,T]; L*(Q)), dwu € C([0,T]; L*(2)). Specifically, the restriction u on
[0,T] x (Q\D) satisfies

uljo 1< @\py €C((0,T]; HFH(Q\D)), (5)
Vuljo 1% (0\py €C([0,T]; H (Q\D)), (6)
Vo ulio 1% @\p) €C([0,T); H™(@Q\D)), 0<m <, (7)

and the normal derivative d,u on I satisfies
dyu € H*([0,T] x I). (8)

For moving dipole sources (3), assume that p, € C*%([0,T]; D), my; € C*%([0,T];R?),
dipy(t)] < ¢, and my(0) = dymy(0) = d2mp(0) = -+ = d"™Pmy(0) = 0. Then, the solution
u satisfies u € C([0,T); H-Y(Q)), O € C([0,T); H-Y(Q)). Specifically, the restriction u on
[0,7] x (Q\D) and the normal derivative d,u satisfy the same regularities (5)-(8) as the results
for moving point sources.

3 Reconstruction method

3.1 Reciprocity gap functional

In our reconstruction method, the key technique is the reciprocity gap functional that is defined
on the subspace of test functions v in (4). This technique is widely applied to various inverse
problems[1, 3, 7, 8, 11]. First, we show a definition of the reciprocity gap functional for scalar
wave equations.

Let W C C°([0,T] x €;C) be a class of complex-valued functions v that satisfy the homo-
geneous wave equation and the zero final state condition:

1
0—28,5211 —Av =0, in (0,7) x €,
o(T,r) =0, in Q, 9)
ow(T,r) =0, in Q.

We define the reciprocity gap functional R, on W for given observation data ¢ € L*((0,7') x I)
by

T
Ry(v) = — / / St r)o(t, P)dtdS(r),  veEW. (10)
0o Jr
Since u satisfies the weak form (4) and ¢ = J,u, we establish
Ry(v) = F(v), for any v € W. (11)

The equation (11) shows relation between the reciprocity gap functional Ry (v) and the source
term F', and suggests that we can pick up some information on the unknown parameters of the
source term using R4 (v).
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3.2 Reconstruction of moving point sources

In this subsection, we assume that p, € C5([0,T]; D), qr € C°([0,T];R) and ¢1(0) = dsq(0) =
d?q1(0) = --- = d?qx(0) = 0. Then, from proposition 1, we have observation data ¢ &
H*((0,T) x I'). For the reconstruction of moving point sources, we choose the following five
sequences of functions in W :

et ) =(x 4 1y)"ne (t — (T — %)) , n=0,1,2,--, (12)
Gne(t,m;7) == O fne(t,r;7), n=0,1,2,---, (13)
hne(t, 73 7) =2(0p — 10y) fue(t, 73 7) — (2 — iy)0: fre(t, 73 7),

n=12---, (14)
ine(t, 7 7) =02 frc(t,r;7), n=0,1,2,---, (15)
Jne(t, i T) == Othn(t,r;7), n=12---, (16)

where 7 € [sup z/c+¢,T + ;Ilg z/c—¢], 0 <e <1, and 7. € C®°(R;R) denotes the standard
reQ €
mollifier function (see Appendix C in [10]). We note that sequences {fnc}, {gn.e} and {hnc}

have already utilized for the reconstruction of fixed point sources [18]. We add sequences {i ¢}
and {jn} to treat the effect of moving velocities of sources.

Due to the assumption for p,(t) and q(t), the observation data ¢ is in H*((0,T) x I') C
C?%([0,T] x T'). Then, reciprocity gap functionals Ry (fn.e), Re(gne)s > Rp(jne) converge as
¢ — 40, and we have

Ro((fa) () = i R(fae (7))

=— lim /OT/Fgb(t,r)fn’E(t,r;T)dS(r)dt

£—+0
— [@+inrs (r=Zr) astr)

Ro(gn)(7) = lim R(gne (7))

_ /(x i) (v - 2 ds(r),
r
Ry(hn)(T) = limO R(hne(- 7))

e—+

=— /Fan(;z: +iy)" 1o <7' - %a 7") ds(r)

! i iy)"™ _z r r
— E/F(ac—ly)(m—t—ly) o0 (7’ > )dS( ),
Ro(ia)(r) = lim Rins(-.-57))

e+
== /(x +iy)"0Ps (t,7 - =) dS(r),
r
Rd)(‘]n)(T) Esl_ig_lo R(jn,a('v ) 7'))

=— /Fan(x +iy)" e (7' - %’ 7') ds(r)

! /F(x ~iy)(x + iy) 0% (T - % r) as(r).

C

Also F(fne), F(gne), -+, F(ine) converge as ¢ — +0, and we establish the following explicit
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expressions with respect to the parameters of moving point sources:

]:(fn)(T) = lim ‘F(fn,e('v'?T))

—81_1}3_102/ qr(t fnstpk() 7)

—ZQk ti(7))Ek (81 (7)) (Ph,ay (L (7)™, (17)
F(gn)(T) = hm ]:(gn,s(’a'ﬂ'))

Z ngk pk zy "+n Z qrér - d pk zy) (pk,zy)n_la (18)

k=1
}—(hn)(T) :ELIEO}—(hn,E(’v'aT))

K
=2n Z ngk Pk, (pk,xy)n_
k=1
LK
+ > {dr (@) - Prmy + ks - dr (Przy) } (Proay)”
k=1

kgk (pk,zy) . pk,my : (pk,my)n_la (19)

M:
\Mx

Fin)(r) = 1in+10f(z'n,e(w 7))

K K
Z (@& )Pray” + 1 Z {2d, (qre) - dr (Pray) + @i - A2 Pray) } (Do) "
k=1 k=1

n - ]- Z Qrék pk xy)) ’ (pk,zy)nia (20)

F(jn)(7) = lim J:(gn,a('a'”_))
=2n Z k- d pk 2) (pk,xy)nil + Rjn7 (21)

where

e The symbol d, denotes the derivative with respect to 7, e.g. dr(Pr,ay) = diePhwy (7)) -
gk(T)v

® Phay(th(7)) = Pra(tr(T)) + iy (t:(7)),
e {;(7) is the unique solution ¢ of the equation

t
P EIO (22)
C

for each k and T,

e &i(7) is the derivative of ¢ with respect to 7, and it is expressed as

):1_M7 (23)

k() = dtk
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e R; is a polynomial defined by

n

K
Rjn =2n Z {dr(qk&c) * Py + (n - l)quk . dT(pk,zy)} *Pk,z (pk,zy)n_z
k=1
1 K
+ E I;l dE(Qkfk) *Pkay - (pk,xy)n
1 K
+ 2D {20r (@) - de(Phay) + aui - A2 (Pray) } - (Phay)”
k=1
n K
+= Z {2d-(qeér) - dr (Pryey) + @ - 2 Pray) } - Pray - Pray)”™
k=1
n K
+ Z 2qx8k, - d'r(pk,zy) : d'r(pk,wy) . (pk,zy)nil
k=1
K
2 — n—2
Z @k (dr (Prwy))” Py - (Pray)"

k=1

Here, except for (17), we omit the argument (¢4(7)) on qi, DPrzy, Dk, and their derivatives, and
the argument (7) on & to simplify the expression.

Using expressions (17) - (21), we obtain the following reconstruction theorem for moving
point sources:

THEOREM 3.1. For each 7, let K(T) be the number of point sources such that q(ty(7)) # 0.
Assume that K (1) < Ky for some Ky > 0, and pj oy (tj(7)) # Pray(te(7)) if § # k. Then, we
can determine K(7) from the reciprocity gap functionals Rg(fn)(1), n=0,1,2,--- 2Ky + 1.
Also we can uniquely determine py,(ti(7)) and qi(tp(7)), k =1,2,--- , K(7) from the reciprocity
gap functionals

o Ry(fn)(7), n=0,1,2,--- 2K(7),

L]

gn) (1), n=0,1,2,--- 2K (T) —

(
Ro(

o Ry(hn)(1), n=1,2,3,-- , K(7),
Ry(in)(7), n=1,2,3,--- 2K (1),
Rl

]n)(T ) TL:1,2,3,"' 7K(T)'

Sketch of proof
We can prove the theorem by the following five steps. These steps also provide a reconstruc-
tion procedure of moving point sources.

Step 1. Identify K(7) from Ry(fn)(7), n=0,1,2,--- ,2K(7)+ 1.

Step 2. Reconstruct py, 4, (tx(7)), k=1,2,--- , K(7), and identify perturbed magnitudes g, (¢4 (7))&x ()
from Ry(fn)(7), n=0,1,2,--- ,2K(1).

Step 3. Reconstruct py . (tx(7)), k=1,2,--- , K(7) from Ry(gn)(7), n=10,1,2,--- ,2K(7)—1
and Rg(hp)(7), n=1,2,3,--- , K(1).

Step 4. Identify d;(py - (tx(7))), k =1,2,--- , K(7) from Ry (in)(7), n =1,2,3,--- ,2K(7) and
Ro(jn)(T), n=1,2,3,--- ,K(7).
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Step 5. Compute &;(7) using d-(pk,.(tx(7))) for each , k = 1,2,--- , K(7), and reconstruct
magnitudes g (t5(7)).

Step 1. Define L x L Hankel matrix

Ro(fi)(m)  Re(fur)(1) -+ Ry(furr)(7)
Ro(fur1)(1)  Re(fur2)(7) -+ Rg(furr-1)(7)
Hiplr) = : : o :
Re(furr—1)(T) Reo(furr)(m) - Rg(furar—1)(7)

Then, from (17) and using corollary 3 in [17], we can determine K (7) by

K(7) =max{L| det Hp o(7) # 0} . (24)

Step 2. From the definition of Hp ,(7) and using Theorem 2 in [8], we can reconstruct
Phyay(te(T)), k= 1,2,--- ,K(7) as eigenvalues of (HK(T),O(T))_1HK(T)71(T)‘ Then, we can re-
construct the perturbed magnitudes g (tx(7))&k(7), k= 1,2,--- , K(7) as a unique solution of

K

Z Qi (L (7)) &k (tr (7)) - (pk,zy(tk(T)))n =Ro(fn)(7), n=01,2- K(r)—1

k=1

Step 3. Considering the equation (18) for n = 0,1,2,--- ,2K(7) — 1, we can uniquely solve
(k&) - dr(Pray) and dr(qr€e) for k = 1,2,--- , K(7) from Ry(gn), n =0,1,2,--- ,2K(7) — 1.
Let

K

B, =2 (e (00) Py + ake(r) - s (Pez)} ()"
k=1

K
n _
+ ; @ér + e (Phay) * Pray - (D)™

Then we can compute Rhn, and identify gi&g - prz, k = 1,2,--- ,K(7) as a solution of the
following system of linear equation:

1

n—-1_ -
) T on

(ngk . pk,z) . (pk,zy (R(hn)(T) - Rhn) , n=1,2-.- »K(T)' (25)

Dividing each solution gi& - pi - of (25) by ¢i&k, we reconstruct py ., k=1,2,--- , K(7).

Step 4. Similar to Step 3, we can solve d2(q,&) and 2d;(qk&x) - dr(Phay) + @k - A2 (Pray)
using the equation (20) for Ry (i, )(7). Then, we can estimate g€k - d-(p ) as a solution of the
system of linear equation:

1

(@8 dr(Pr)) - Pry)"™ = 3= (RoG)() = B, ), =12, K(7),

and obtain d,(pg .(tx(7))), k=1,2,--- , K(7).

Step 5. Since we have identified d,(py,.), we can compute & (7) from (23), and reconstruct
magnitude g (tx(7)) of each point source from its perturbed values g (tx(7))&x (7). O
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3.3 Reconstruction of moving dipole sources

Next, we consider the reconstruction of moving dipole sources. Here, we assume that p; €
C5([0,T); D), my, € C%([0,T};R?) and my(0) = dymy(0) = d?m(0) = --- = dm4(0) = 0,
then the observation data is in H*([0,7] x I') ¢ C?([0,T] x T'). In addition, we assume that
m,,(t) = 0 for all k. For the reconstruction of moving dipole sources, we use the same five

sequences of functions { fr e}, {gne}, -+ . {Jnc} as for the reconstruction of moving point sources.
The explicit expression of F(fy), F(gn), - -+ , F (in) for moving dipole sources are given as follows:
K
]:(fn)(T) :nzmk,xyfk : (pk,zy)n717 n=12---, (26)
k=1
K
F(gn)(T) :”Z dr (mi,ayés) - (pk,xy)n_l
k=1
K
+ n(n - 1) Z mk’,xy'fk : d‘r(pk,zy) : (pk,.'ry)n72v n = 17 27 ) (27)
k=1
K
]:(hn)(T) :2n(n - 1) ka,zygk *Pk,z - (pk,my)n72
k=1
1K
+ E ;d‘r(mk,xygk) : (pk,zy)n
K
i d d d-(pi n—1
+ E Z{ T(mk,a:ygk) * Pk,xy + mk,xyfk . T(pk,zy) + mk,wygk . T(pk,xy)} (pk,acy)
k=1
n(n —1) K
+ f Z mk,zyﬁk : dT(pk,my) *Pk,xy - (pk,zy)n_Qv n= 27 37 Tty (28)
k=1
K
Flin)(r) =n Y (i aylr) - (Priay)" ™"
k=1
K
+ n(n - 1) Z {QdT(mk,xygk) . dT(pk,zy) + mkmygk : d?—(pk,zy)} (pk,zy)n_Q
k=1
K
+ n(n - 1)(” - 2) Z mk,wyfk : (d‘r(pk,zy))2 : (pk,xy)n737 n=12---, (29)
k=1
K
]:(jn)(T) :271(71 - 1) Z mk,xyék . dT(ka) . (pk,my)n_2 + Rjn7 n = 2, 37 ey (30)
k=1

where

® My = My (L (7)) + imiy (Ek(7)),
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° f%j is expressed by

n

K
Rjn :2n(n - 1) Z {dr(mk,zyé-k) * Py + (n - Q)mk,zygk . dT(pk,my)} *DPk,z - (pk,xy)n73
k=1
1 K n K
+ E Z dg—(mk,zyék) . (pk,zy)n + E Z d?—(mk,zy'gk) *Pk,xy * (pk,xy)n_l
k=1 k=1
n K
+ — Z {2d'r(mk,;vy£k) . d‘r(pk,zy) + mk,zygk ' d?—(pk,wy)} ' (pk,my)n71
k=1
n K
+ E Z {er(mk,my&c) . d'r(pk,xy) + mk,my&k . d?—(pk,zy)} . (pk,zy)n_l
k=1
K
Z my zyf Pk ly))Q . (pk,:zy)niQ
k=1
K
Z mk myé-k) (pk,xy) + mk,zyé-k : d?—(pk,zy)} *Pk,xy - (pk,my)n7
k;_
K
Z ka xygk (Pk zy) dT (pk,zy) : (pk,xy)n_2
k=
nn—1)(m-—2 s
+ a2 ka,wy&f Py (A (Pray)? - (Pray)" >

C
k=1

As we have already shown for moving point sources, we can establish the following recon-
struction theorem for moving dipole sources:

THEOREM 3.2. For each 7, let K(7) be the number of dipole sources such that my(tx(7)) # O.
Assume that K(1) < Ky for some Ky > 0, and pjoy(tj(7)) # Pray(te(T)) if 7 # k. Then,
we can determine K(1) from the reciprocity gap functionals Ry(fn)(7), n=1,2,--- 2Ky + 2.
Also we can uniquely reconstruct py,(ty(7)) and my(ty (7)) for k=1,2,--- | K(7) from

fo)(T), n=1,2,--- 2K(1)+ 1,
R

gn)(T)y n=1,2,--- [ 2K(1),

°
ﬁ

R(
(

R(h) (1), n =2, K(1) +1,
(in)(7), n=1,2,---,2K(7),
(

°
ﬁ

Jn)(7)y, n=2,--- | K(1) + 1.
We can prove Theorem 3.2 using similar steps in Theorem 3.1, but we omit it here.

4 Numerical Experiments

We give some numerical experiments for the reconstruction method proposed in the previous
section. We consider the case that two point sources move in the domain Q = {r | [r| = 1}, and
the wave propagation speed ¢ = 1. Each point source moves as following, and the orbit of each
point source is shown in Figure 1.

Point source 1: Moves on a circle vertical with respect to xy-plane.
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Point source 2: Moves on a circle horizontal with respect to zy-plane.

In our experiments, moving speed of both point sources are constant, i.e. M =35%, k=1,2.
Magnitude of each point source changes in time as shown in Figure 2. To give the observation
data, we solve (1) by boundary integral equation method, and give observation data on 384
points on I' with time step At = 0.1. To simulate practical observation condition, we add 0.0%,
1.0%, and 5.0% random noise to observation data.

1 T T T 1 T T T
(P10 P1,y) (Actual) (P1x P12) (Actual)
05| ] 05 |
> 0+t N 0
05 | ] 05 |
1 . . . 1 . . .
- 0.5 0 05 1 -4 -05 0 05 1
X X
(a) zy-view of p; (b) xz-view of p,
1 ; ; ‘ 1 ; ; ‘
(P2,x pz‘y) (Actual) - (P2,x P27) (Actual) ----meee
05 | ] 05t
> 0+t N 0
05 | ] 05|
-1 L L L -1 L 1 1
-4 0.5 0 05 1 - 0.5 0 0.5 1
X X
(c) xy-view of p, (d) xz-view of py

Figure 1: The orbit of each point source.

Figures 3 and 4 show the reconstruction result for noise-free case. Figure 3 gives the recon-
structed orbits of point sources, and Figure 4 displays the time-profiles of location and magnitude
of each reconstructed point source. From these reconstruction results, we may consider that our
method gives good estimates for both locations and magnitudes under noise free observation
condition.

Next, we show reconstruction results for noisy observation cases. Figures 5 and 7 show the
reconstruction results of orbits, and Figures 6 and 8 display the time-profiles of estimated loca-
tions, and magnitudes for observations with 1.0%, and 5.0% noise cases, respectively. From these
reconstruction results, we consider that our method gives reliable estimates for both locations
and magnitudes in the case where noise is 1%, but observation noise becomes 5%, the estimates
become unreliable, especially, for magnitudes of point sources.

To avoid the bad effect of noise, we apply 5 points Gaussian filter with respect to t to
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observation data ¢. Figure 9 shows the reconstruction results of orbits of point sources, and
Figure 10 displays the time-profiles of estimated locations, and magnitudes of point sources.
From these results, we can see that the filtering process is effective to remove noise effect on the
reconstruction results.

5 Conclusions

In this report, we discuss a reconstruction of moving point and dipole sources in three dimen-
sional scalar wave equation. We propose a real-time algebraic procedure for unknown parameters
of moving point and dipole sources. We examine proposed method by some numerical experi-
ments. Numerical results shows that our method gives good estimates of parameters of moving
point sources in the case where the noise is smaller than 1%. However reconstruction results
become unreliable if the observation noise is larger than 5%, and we need filtering process to
observation data to obtain better reconstruction results.
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Figure 2: Time-profiles of locations and magnitudes of point sources.
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Figure 3: Reconstructed orbits of point sources for noise free case.
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Figure 5: Estimated orbits of point sources for 1% noisy observation case.
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Known results Regularity Key idea Reconstruction method Dipole source Numerical experiments Conclusions

Inverse source problem for scalar wave equations

e Q : bounded domain in R3, simply connected.
e [ =0Q : the boundary of Q (C*-class)
e F(t,r) : the source term (unknown)

@ u(t,r) : The solution of initial-value-boundary-value problem

é@fu(t, r) — Au(t,r) = F(t,r), (t,r)€(0,T)xQ,

(E) u(tr) =0, (6 €(0,T)xT,
u(0,r) =0, reQ,
Oru(0,r) =0, re,

(¢ >0, T > 0: given constants)

Known results Regularity Key idea Reconstruction method Dipole source Numerical experiments Conclusions

Model of unknown source 1: point sources model

F(t.r) = au(t)(r—p, (1))
k=1

@ K : number of sources (unknown)
e p,(t) € C5([0, T]; D) : location of k-th source(unknown)
|pe(t)| < ¢ (D C Q: compact)
e qx(t) € C°([0, T];R) : magnitude of k-th source(unknown)
ai(0) = 4 (0) = -+~ = g (0) = 0
(Continuity conditions for p, and g, are given for sufficient regularity on
observation data)
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Known results Regularity Key idea Reconstruction method Dipole source Numerical experiments Conclusions

Model of unknown source 2: dipole sources model

@ K : number of sources (unknown)
e p,(t) € C5([0, T]; D) : location of k-th source(unknown)

|pk(t)] < ¢ (D C Q: compact)
e my(t) € C°([0, T];R®) : moment of k-th source(unknown)

m(0) = m(0) =--- =m®(0) =0
(Continuity Conditions for p, and m, are given for sufficient regularity on

observation data)

Known results Regularity Key idea Reconstruction method Dipole source Numerical experiments Conclusions

Problem
x T.

Given information ¢ : the normal derivative 0, u on (0, T)

Reconstruct K, p,(t), and q.(t) (for point sources)
or my(t) (for dipole sources)

$ =g : observation data

I'=0Q

ofu(tn) - Au(tr) = Ftn

. . ' ¢

P
LK

K
F(tr) =3, q(H)5(r-p,(t) (monopole)
k=1

K
u=0on T =-2, m (tyvS(r-p,t) (dipole)
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In both cases, we consider the solution v in a weak sense, i.e.
u e CY([0, T]; L2(Q)) satisfies that 0,u € C([0, T]; L(T")) and

5 [a(TUTdv() - 5 [ u(T.noe(T.navie)

_/OT/ral,u(t,r)v(t, r)dS(r)dt

+/OT/Qu(t, r) (éafvw r) = Av(t, r)) av(r)dt
= F(v) for any v € C=([0, T] x Q)

where
K T
Z/ qr(t) v(t,p,(t))dt point sources
_ ) k=170
‘F(V) - K T
Z/ my(t) - Vv(t,p,(t))dt dipole sources
k=10
Problem formulation Regularity Key idea Reconstruction method Dipole source Numerical experiments
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Known results for ISP for wave equations

(Theoretical, summary)

o El Badia & Ha Duong (2001) --- uniqueness of fixed point sources,
algebraic approach.

e Komornik & Yamamoto (2005) - - - uniqueness and stability of fixed
point sources with same magnitudes, analytic approach.

@ As long as | know, no result is presented for uniqueness of of the
solution for moving point sources (and dipoles). (Also for stability)

11/92
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Known results for or wave equations

(Numerical, summary)

@ Ohnaka (1991) --- one or two fixed point sources, 2 dimensional
space, optimization method.

e El Badia & Ha Duong (2001) --- multiple fixed point sources,
algebraic method.

@ Ohe, Inui & Ohnaka (2011) --- multiple fixed point sources, real-time
algebraic method.

@ Nakaguchi, Inui & Ohnaka (2011) --- moving single point source,
algebraic method.

e Ando, Nara & Levy(2013) --- fixed, single point source, algebraic
method.

12 /92
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Problems in known results

e In El Badia-Ha Duong (2001), they applied the Fourier in the time
domain. Therefore, they can not estimate unknown sources
instantaneously.

@ Using the method in Ohe-Inui-Ohnaka (2011), one can estimate
parameters of point sources in a small delay if the locations of point
sources are fixed. However, if point sources move fast, estimation
results are perturbed by moving speeds of point sources.

0 5 10 15 20 25 30 35 40
T
Fig. An example of effect of the moving-speed of sources (|i’k,z/c| = 35%).
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@ In the previous conference in 2015, we extend Ohe-Inui-Ohnaka(IP,
2011) to slowly-moving (|p,(t)|/c < 1) multiple moving point sources.

@ Our target: Extend Ohe-Inui-Ohnaka(IP, 2011) to multiple moving
(not slowly!) point and/or dipole sources.
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© Regularity results for observation data

15/92
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Regularity results for observation data ¢ = d,u

Proposition 1 (for point sources)

Let / be a non-negative integer. For moving point sources model, assume
that p, € C**2([0, T]; D), qx € C*"1([0, T]; R). Also assume that |p,(t)| < c
and ¢ (0) =0 for m=0,1,2,--- ,/+ 1. Then, the solution v of (E)
satisfies u € ([0, T]; L2(R2)). More specifically, the restriction of u on Q\D
satisfies

ulp,ixevo € C([0, TT; HZH(Q\D))
Vulp,xevp € C([0, T]; H(Q\D))
Volulp,rxenp € C([0, T H™(Q\D)), 0<m<¢

and the normal derivative on [ satisfies

Oyu € HY(Z). (Z=(0,T)xT)

16 /92
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Regularity results for observation data ¢ = 0, u

Proposition 2 (for dipole sources)

Let / be a non-negative integer. For moving dipole sources model, assume
that p, € C**2([0, T]; D), m, € C**2([0, T|;R). Also assume that |p,(t)| < c
and ¢(™(0) =0 for m=0,1,2,--- ,£/+2. Then, the solution v of (E)
satisfies u € ([0, T]; H71(R2)). More specifically, the restriction of u on Q\D
satisfies

ulp,rixp € C([0, T]; HH(Q\D))
Vulprixavo € C([0, T]; HY(Q\D))
V@f’u“o,r]xg\p S C([O, T], Hg_m(Q\D)), 0 S m § /

and the normal derivative on [ satisfies

dyu € HY(X).
17 /92
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Proof of Proposition 1

@ Divide v into u = u, + uy, where u, and uy, are the solutions of

ar(t)o(r — p(t)), (t,r) € (0, T) xR

Mx

1
E@fup(t, r)— Auy(t,r) =
(N) k=1

up(0,r) =0, rc R3,
Oeup(0,r) =0, r € R3,
1
SOu(tr) — Au(tr) =0, (t.) € (0, T) x Q.
(H) un(t,r) = —up(t,r), (t,r)e(0,T)xT
up(0,r) =0, reQ,
8tUh(0, I‘) =0, re Qa

18 /92
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@ The solution u, of (N) is expressed by

K

up(t,r) = Z 1 ak(sk(t,r))

= 4n v — py(s(t, )] - hu(se(t, 1), 1)’

where
o si(t,r): a solution s of the equation

s hfen 1 B9 (= p(s)
e =1 )
o s € C2(Q\{(¢,p(t)), t€[0,T]})
o he € CTHQ\{(t, p(t)), t€[0, TI})
@ Then
* Up|[0,T]><Q € C([07 T]' LZ(Q))

° uplp, Tx@\0) € CTHO, T] x (Q\D))
o Vup o, rix@\0) € C([0, T] x (2\D)

19/92
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@ Moreover
o Uplio,rxr € CTH([0, T] x ) C H*H((0, T) x T)
e v Vup|o,mxr € C([0, T] x ') € H((0, T) xT)

e By Lasiecka-Lions-Triggani(1986), The solution u;, of (H) satisfies
o up € C([0, T]; HH(Q)),
e Oun € C([0, T]; H™(Q))
o dyun € HY(X).

@ Hence, for u = u, + uy, we have

ulp, rixa\p € C([0, TY; HHI(Q\D))

Vulp,rixavo € C([0, T]; HY(Q\D))

Voulp rxa\p € C([0, T]; H™(Q\D)), 0<m<¢
dyu € HY(X).
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Proof of Proposition 2 (Outline)

@ Using the same decomposition as proposition 1, we obtain
K
N L mu(se(tr) - (r = pi(sk(t, 1))
Ir = pi(sk(t, 1) hu(se(t,7),7)

4
1 d [ mesdtn) - (r = pulsi(t.)) )
24 (|r—pk<sk(t ) - (st 1), 1))?

@ Then
° uplp,11xa € C([0, TI; H1(Q))

o uplp,Tx@\0) € CTH([0, T] x (Q\D))
o Vip|po,rx@p) € C([0, T] x (Q\D)

@ And hence, we obtain the same regularity results for u outside of the
domain D.

21/92
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© Key idea of the identification scheme : Reciprocity gap functional
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Definition of reciprocity gap

e Weak form of the wave equation: u € C*([0, T]; L?(Q)) satisfies that
d,u € C([0, T]; L2(T)) and

1 1
?/Q&U(T,r)v(T, r)dV(r)—g/Qu(T, r)o:v(T,r)dV(r)

—/T/BVu(t, r)v(t,r)dS(r)dt
/ /u(t (é@fv(t, r) — Av(t, r)) dV/(r)dt

= F(v) for any v € C*°([0, T] x Q)
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e W C C®([0,T] x Q) : a set of complex-valued solutions of adjoint
problem: Homogeneous scalar wave equation

O2v(t,r) — Av(t,r) =0, (t,r)eQx(0,T)

with final state condition

v(T,r)=0v(T,r)=0, reQ

® R4() : The reciprocity gap functional on VW

/ / ot 1) (t, 1)dS(r)dt

24 /92
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Since v € W

.
Ro(v) = —/0 /ra,,u(t,r)v(t,r)dS(r)dt

1 1
= —E/Qatu(T,r)v(T,r)dV(r)—i-E/QU(T,T)atV(TJ)dV(r)

_/OT/Qu(t,r)<Cl2a§v(t,r)—Av(t,r))dV(r)dt

+F(v)

= FW)
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Reciprocity gap functional for point sources and
dipole sources

@ For point sources model

]
Ro(v) = F(v) = /O gi(t) - v(t, py (1)) dt

@ For dipole sources model

K T
Ro(v) = F() =Y [ mue) - vl py(0))et
k=170

@ In both cases, we can pick up some information on the parameters of

sources choosing suitable functions v in W.
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© Reconstruction of moving point sources

27/92
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Choice of v(t,r) in VW for moving point sources
4 foe(t,r;7) = (x—{—iy)”pa(t—(T—%)), n=0,1,2,---, N

gn,s(ta v 7-) = _atfn,s(ta I’;T), n= 07 1727 T

hne(t,r;7) = z(0x —i0y) fuc(t,0;7) — (x —1iy)0.foc(t,r; T),
n:1>273a"' ’

in,f:‘(t? I’;T): 81.?7["75(1-7";7—)7 n:0>1>27"' )

jn,a(ta r;T) = _8thn,s(ta v T)7 n=123,---,
N J

@ p. € C>*(R): a standard mollifier function.
e 7e€[0, T+infgz/c—¢],0<ex 1.
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From our assumption, ¢ € H*(I' x [0, T]) € C*(T x [0, T]), then, although
fn,e does not converges in C>°([0, T] x Q), lim._,o R(f,(+,-; 7)) exists, and
we have

Ro(f)(T) = lim Ro(foc(,:7))
T
= —;@O/o /r(x-l-iy)”pa <t—(7—§)>¢(t,r)d5(r)dt

_ _;@O/F(H iy)" {/OTPE (t _ (T _ f)) o(t, r)dt} dS(r)
= — /r(x—i— iy)"¢ (7‘ — g,r> dS(r)

Problem formulation Known results Regularity Key idea Dipole source Numerical experiments Conclusions
Similarly, we have
. \n z
Ry(gn)(T) = — /(x +iy)"0o (r - r) dsS(r)
r
Ro(hn)(T) = — /2nz(x +iy)" e (7’ — ;, r) dS(r)
r
1 . \n z
== [=i)(x +iy)"0es (7 - Z,r) dS(r)
cJr c
30/92
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R (in)(7) = /r(x +iy)"0% (T - g r) ds(r)

R (jn)(7) :/r2nz(x +iy)" 19,0 (r - g r) ds(r)

1 [+ inrozo (r = Zor) as(e)

C
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Reconstruction theorem for moving point sources

Theorem 1 (for point sources)

Let K(7) be the number of point sources such that g, (tx(7)) # 0 for each
7. Assume that pj ., (tj(7)) # pkxy(t(7)) if j # k. Then, for each 7, we can
uniquely determine K(7), p.(t«(7)) and qk(tx(7)), k =1,2,--- ,K(7) from
the reciprocity gap functionals

@ Ry(f)(r), n=0,1,2,--- 2K(7)+ 1,
® Ry(gn)(7), n=0,1,2,--- ) 2K(7) — 1,
® Ry(hn)(7), n=1,2,3,--- ,K(7),

® Ry(in)(7), n=1,2,3,--- ,2K(7),

® Ry(n)(7), n=1,2,3,--- , K(7).
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Reconstruction theorem for moving dipole sources

Theorem 2 (for dipole sources)

Let K(7) be the number of dipole sources such that m,(t(7)) # 0 for each
7. Assume that p; ., (tj(7)) # pixy (t(7)) if j # k, and my ,(t) =0, i.e. the
dipole moments have only xy-components. Then, for each 7, we can
uniquely determine K(7), p,(t«(7)) and m(tx(7)), k =1,2,--- ,K(7) from
the reciprocity gap functionals

® R¢(fn)(7)7 n=1223--- ,2K(T) 42,
® Ry(gn)(7), n=1,2,3,--- ,2K(7),

o Ry(hn)(7), n=12,3,4,---  K(7) +1,
@ R¢(in)(7), n=1,2,3,--- ,2K(T),

® R¢(jn)(7), n=234--, K(T) 41,

33/92

Problem formulation Known results Regularity Key idea Dipole source Numerical experiments Conclusions

Dutline of the proot of theorem 1: summary o

reconstruction procedure for moving point sources

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Identify the number K(7) of point sources from

Ro(f)(7), n=0,1,2,--- 2K(7) + 1.

Reconstruct x and y components of the locations of point sources
Pry (tk(7)) from Ry(fp)(7), n=10,1,2,--- ,2K(7).

Identify perturbed magnitudes q.(tx(7))&x(7) from

Ro(fa)(7), n=0,1,2,--- | K(7) — 1. (&«(7): perturbation term)
Reconstruct z component of the locations of point sources
pr,z(te(7)) from Ry(gn)(7), n=0,1,2,--- ,2K(7) — 1 and
Rﬁb(h”)(T)? n= 17 27 37 Ty K(T)

Identify of z-component of perturbed velocity of point sources
Pr.z(te(7))ék(7) from Ry (in)(7), n=1,2,3,--- ,2K(7) and
R¢U“)(T)’ n= 1a 27 37 Tt K(T)

Compute &,(7) using perturbed velocity px - (t«(7))ék(7), and
reconstrct the magnitudes g, (t.(7)) from perturbed ones

i (t(7))€x(7)-
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tep 1. ldentification of the number of point
sources from R, (f,)(7)

e Relation between R,(f,)(7) and parameters of moving point sources

Ro(f2)(1) = D au(t(7))ék(T) - (Prcry (8(T)))",

where

pk%(tk) for each k and 7

e t,(7): the solution of 7 = ¢, +

@ Piesy (th(7)) = Prex(te(7)) + ipx,y (tc (7))
o &ulr)= T = (HM)

C
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@ For each 7, define L x [-Hankel matrix

Ro(fu)  Ro(furr)  Ro(fur2) -+ Ro(furr-1)

Ro(fur1)  Re(fur2)  Ro(furs) - Re(fusr)
Hoo(r) = | Relfe)  Ro(furs)  Rolfura) o Rolfusrrin)
Ro(fusi—1) Ro(furr) Ro(furir1) -+ Ro(fusar—2)

(for simplicity, we omit the argument (7) for R,(f,))
Then, we can identify the number K(7) of point sources such that
qx(t(7)) # 0 by

K(7) = max{L| det H; o(7) # 0}

(Ref. El Badia-Ha Duong(2000) or Nara-Ando(2003))
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tep 2. Reconstruction of xy-components o

locations from R, (f,)(7)

K

Ro(fa)(r) = Y a(t(7))ék(T) - (Prry (t(7)))",

k=1

e We can determine py ,,(tx(7)) using the relation
{pk,Xy(tk(T))? k = 17 2) ) K(T)}
= { eigenvalues of (Hk(r)o(7)) ' Hk(r)1(7)}
(Ref. El Badia-Ha Duong (2000))
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tep 3. Reconstruction of perturbed magnitudes

from R, (f,)(7)

@ Let us consider K(7) x K(7)-matrix

1 1 . 1
Pé,xy P2,xy T pg(T)xy
VK(T) — pl:xy p2.,xy T pK(T),xy ,
K(:r)—l K(;)—l . K(:r)—l
P1,xy 2,xy K()xy

and let Qk(-) and Fi(,) be K(7)-vectors defined by

q1&1 Ry (fo)(T)
q2&2 Ro(f)(7)
Qk(r) = : , Fky = :
ak(r)ék(r) Ro(fr(r)-1)(7)
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@ Then, we have
Vic(r)Qk(r) = Fr(r) (%)

e Since V(7)) is a Vandermonde matrix, assuming

Pixy(£(T))) 7 Py (tu(T)) for j 7 k, det Vi) # 0.
Therefore, (*) is uniquely solvable.

@ Hence, we can obtain perturbed magnitudes
ak(te(7))ék(7), k=1,2,---  K(7)
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tep 4. Reconstruction of z-component of location
of moving point sourcess from R;(g,)(7) and

Ro(hn)(7)

4 Ra(ho)(7) h

= 2nz Qkék * Pk,z Pk,xyn_1

k=1
K

1 _ — n
+ E Z {(qkﬁk), * Pk, xy - +Qk§k . (pk,xy)/} Pk,xy
k=1

K
n .
+ E Z qkék : (pk,xy)/ * Pk,xy * pk,xyn 17 n= 17 27 37 o
k=1
- /
(For simplicity, we omit the arguments (7) for &, and (t,(7)) for qi, pr
and py ;.)

d
@ the symbol ' means —.
T
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e If we know (qi&x)" and (pr ), we can identify q.&. - pi . as the
solution of linear equations

K
Z quk * Pk,z pk,xyn_
k=1
1
= 0

2nc Z {(quk pk,xy + quk . (pk,xy)/} pk,xyn
K

1 _
_qukfk : (pk,xy)/'pk,xy'pk,xyn 17 n= 1727"' 7K
k=1

@ Then, dividing by g.{, we can reconstruct p ..
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Identification of (q«&k)" and (pk sy ) from R, (g,)(7)

K

K
Ro(8n)(T) =D (k) Proy” + 1> Qubic (Prey)* Preoy™
k=1 k=1

@ We can estimate (q.&k) and qiéx - (pr.xy) from
R(gn)(7), n=10,1,2,--- ,2K—~1and p, ,,, k=1,2,-, K. (see next slide)

@ Since g,&x have been already estimated, we can reconstruct (py ., )’
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@ Coefficient matrix of the linear equation derived from the expression
of Ry(&n)(7)

1 1 S 1 0 0 e 0
,g’xy pg,xy o pg’xy 1 1 o 1
p]3.,xy p%,xy e PK ,xy 2Pé,xy 2p§7’<y o 2p£<,><y
v=| Plxy P2y T PK ,xy 3P1,xy 3P2,xy o 3K xy
2K—1 2K—1 2K—1 "\ ok—2 ' (2K—2) "\ ok—2
P1,xy 2,xy e 3pK,xy (2K — 1)pl,xy (2K — 1)p2,xy (2K — 1)PK,xy

@ We can establish

detV = (—].)K(Kil)/2 H(pj,xy - pk,xy)4
J>k
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. Estimation of perturbation term

What do we need to estimate?

@ Perturbation term & is defined by

@ Hence, it seems that we need to estimate p ,(tc(7)), however, we can
easily derive another expression

(Pr.2(tk(7)))’

C

E(m) =1~

Therefore we estimate (py .(t«(7))) instead of py ,(tx(7)).
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Step 5. Estimation of (px )" from R,(i,)(7) and

R (Un)(T)

Conclusions

K
Rd)(]n)(T) - 2”2 qkfk : (pk,z)/ . pk,xyn_l + Rn
k=1

@ R, : a polynomial consists of terms

@ Dl xy» (pk,xy)/ and (pk,xy)//
o qiék, (qréi)” and (qiér)”
e and their complex conjugates.

45/92

Problem formulation Known results Regularity Key idea Dipole source Numerical experiments Conclusions
- R (in)(7) h
K K
= Z (k)" - Prosy” + "Z Ak (Prory)”  Prosy™ "
k=1 k=1
K
+2n7)  (akék)" - (Proy) - Proo ™
k=1
K
+n(n - 1) Z quk : ((pk7xy)/)2 : pk,xyn_27
k=1
- /
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Steps 5 and 6.

@ We can estimate (qx)"” and qi&x - (pk.x,)” uniquely from
Rg(in)(7), n=0,1,2,--- ,2K(7) — 1, since we have already estimated
Pk.xy» Gk€ks (Prxy)” and (qiéx)’-

@ Substituting these terms into R, of the expression of R(j,)(7), we can
identify &k - (pr.)’ from Ry(jn), n=1,2,---, K, and then, dividing by
qkéx we can identify (py .) .

@ Substituting (py ) to the equation

Ee=1-— (pk:)

we can estimate perturbation terms &, for each k and 7, and we can
correct perturbed magnitudes g,&.
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@ Our procedure have a merit in the sense of ’realtimeness’ comparing
to the method by El Badia & Ha Duong.

Ro(fo)(7) = — /r(x +iy)"¢ (7= Z.r) dS(r)

Interval needed for reconstruction of
locations and magnitudes at { = tk (1)

0 e T
| [ RVIRV | |
N
4 T-min 2
T_U,r]eaéc reQ €
pk,z
t(T)~T-7
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@ Our method reconstructs the locations and magnitudes at t,(7).
Therefore, we have to correct the "time’ variable using p, ,(t.(7)).
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© Reconstruction scheme for moving dipole sources
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Reconstruction theorem for moving dipole sources

Theorem 2 (for dipole sources)

Let K(7) be the number of dipole sources such that m,(t(7)) # 0 for each
7. Assume that p; ., (tj(7)) # pkx (t(7)) if j # k, and my ,(t) =0, i.e. the
dipole moments have only xy-components. Then, for each 7, we can
uniquely determine K(7), p,(t«(7)) and m(tx(7)), k =1,2,--- ,K(7) from
the reciprocity gap functionals

@ R¢’(fn)(7), n=1223--- ,2K(T) + 2,
® Ry(gn)(7), n=1,2,3,--- ,2K(7),

o Ry(hn)(7), n=12,3,4,---  K(7) +1,
@ R¢(in)(7), n=1,2,3,--- ,2K(T),

® R¢(jn)(7), n=234--, K(T) 41,
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Relation between R 4(f and parameters of

moving dipole sources

K
Ro(fa)(7) = 1Y Moy (6(7))Ek(t(7)) - Prery (t1(7))"
k=1

where

® iy (t (7)) = Micx(ta(7)) + imicy (8 (7))
e c.f. For moving point sources, we have

K
Ro(fa)(1) = D au(t(7))ek(t(7)) - Proy (8(7))",
k=1
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Relation between R ,(g,)(7), Re(h,)(7) and

parameters of moving dipole sources

- N

K K
Ro(gn)(T) = ”Z (mk,xyfk)/'Pk,xy"71+n(n—1) Z mk,xyﬁk-(Pk,xy)'-Pk,Xy”’2,

k=1 et

> /)

4 P 2

Rd)(h”)(’r) - 2n(n - 1) Z My xSk * Pk,z * Pk,xyn_2 + H,
k=1
> %

where H, is a polynomial consists of the terms
® Pixy and (px )’
® My &k and (my . &x)
@ and their complex conjugates
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Relation between R ,(/)(7) and parameters of

moving dipole sources

~ ™
R (in)(7)
K K
= HZ (M) Py + n(n = 1) Z MicsyCic - (Presy)” * Proy™
k=1 B k=1
+2n(n = 1) (M)~ (Proy) * Prooy” >
=
+n(n—1)(n-2) Z M€k - ((Phroy)' ) Prory ™,
o - %
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Relation between RR,(j,)(7) and parameters of

moving dipole sources

K

Rd)(j,;)(T) - 2n(n - 1) Z mk,xygk : (pk,z)/ : pk,xyn_1 + Jn
k=1

J, : a polynomial consists of the terms
e Pk, xy > (pk,xy)/ and (pk,xy)//
@ My xySks (Mixy ) and (my &)

@ and their complex conjugates.
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e Without assumption that my .(t) =0, the relation between the
reciprocity gap functional and parameters of dipole sources becomes
more complicated. For example

4 B\
K
Rﬁb(fn)(T) =n Z mk,xy&k : pk,xyni1
k=1
1« n &
o E Z(mk,xygk)/ ’ pk,xyn o E Z ml@xyﬁk ’ (pk,xy)/ ’ pk,xynil
k=1 k=1
S J
56 /92

-169—



Problem formulation Known results Regularity Key idea Reconstruction method Dipole source Conclusions

@ Numerical experiments
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Numerical experiments

@ Domain: Q= {r||r] =1}

@ wave propagation speed : c =1

e Time interval : 0 <t < T =40.0

@ Solver for the wave equation: boundary integral equation method.
@ The number of observation points for 0, u(r,t): 384

@ The observation time step : At =0.1

@ The noise of observation data : 0.0%, 5.0%, 5.0%
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Parameters of point sources

@ Number of point sources : K =2

e Locations p,(t) of point sources

point source 1: moves on a vertical circle with respect to xy-plane
point source 2: moves on a horizontal circle with respect to xy-plane

0, (t
@ Moving speed: ’pk—(fﬂ =35%
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Identification Process

@ Time interval for identification: AT =0.5

@ Approximation of the time derivative in the compuation of the
reciprocity gap functionals: central differences
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Time profile of locations of source 1

P14t (1) (Actual)

0.5
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05 05
0 0
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1 -1
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T

piy (£2(7)) p12(t(7))
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The orbit of source 1: xy-view and xz-view

1 . , 1 . ,
(P15 P1,y) (Actual) —— (P10 P1,2) (Actual) ——
05 4 05 | 4
> 0+ 4 N 0+ 4
05 4 0.5 | 4
_1 L L L _1 L L L
-1 05 0 0.5 1 -1 05 0 0.5 1
X - X -
Xy-view XZ-view
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Time profile of location of source 2

Pox(ta(®) (Actual) -

05 [
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The orbit of source 2: xy-view and xz-view

1 1 . ,
(P2, P2,2) (Actual) ------me

05 4 05 | 4
> 0+ 4 N 0+ 4
_05 L .\‘\._._______.A"" B »05 L B
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Time profile of magnitudes of point sources

ay(t4(%) (Actual) —— alta(D) (Adtual)
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Reconstruction result for noise free case: Time

profile of location of source 1

P1 x(t (1)) (Estimated) —=-
P1x(t1(2)) (Actual) e

0.5

0 5 10 15 20 25 30 35 40

pLx(t1(7))

Pyt (7)) (Estimated) —=— P1,(t;(7)) (Estimated) —e—
Py y(t1(1)) (Actual) - Py ,(t (1) (Actual) -

0.5

-0.5

: 0 5 10 15 20 25 30 35 40 l 0 5 10 15 20 25 30 35 40
T T
pry(ti(7)) pr.z(t1(7))
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Reconstruction result for noise free case: the orbit

of source 1 --- xy-view and xz-view

1 T — T 1 T — T
(P4, P1,y)(Estimated) —e— (P1,x Py,2) (Estimated) —s—
(P10 P1y) (Actual) - (P10 P12 (Actual) ----oooooe
05 - 1 0.5 r 1
> 0+ ; 4 N 0+ 4
0.5 - 1 0.5 1
1 . . . 1
1 0.5 0 0.5 1 1 1
X,
xy-view
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Reconstruction result for noise free case:

profile of magnitude of point sources 1

q4(t; (7} (Estimated) —=— : q4(ty(7)) (Estimated) —=—
q4(ty(x)) (Actual) - q‘(1(1)) (Actual)

e 0 ‘5 1‘0 1‘5 éO éﬁ C;O 1;5 40 ‘5 1‘0 1‘5 éO 2‘5 50 C;S 40
T T
perturbed magnitude corrected magnitude
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Reconstruction result for noise free case:

profile of location of source 2
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Reconstruction result for noise free case: The orbit

of source 2 --- xy-view and xz-view

1 . — . 1 . — .
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Reconstruction result for noise free case: Time

profile of magnitude of point sources 2

Qalty(r)) (Estimated) —s—
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Reconstruction result under 1% noise: Time profile

of location of source 1

Py x(t1(1))(Estimated) —=
P1x(t1() (Actual) e
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T
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Reconstruction result under 1% noise: The orbit of

source 1 --- xy-view and xz-view

1 T T T 1 T T T
(P1,% Py vy)(Estimated) — (P1,% Py,2) (Estimated) —e—
(P15 Pyy) (Actual) (P1 P1,z) (Actual) —-
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1 . . . A
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X,
Xy-view
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Reconstruction result under 1% noise: Time profile

of magnitude of point sources 1
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Reconstruction result under 1% noise: Time profile

of location of source 2
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Reconstruction result under 1% noise: The orbit of

source 2 --- xy-view and xz-view
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Reconstruction result under 1% noise: Time profile

of magnitude of point sources 2
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Problem formulation
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Reconstruction result under 5% noise: Time profile

of location of source 1
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Reconstruction result under 5% noise: The orbit of

source 1 --- xy-view and xz-view
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Reconstruction result under 5% noise: Time profile

of magnitude of point sources 1
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Reconstruction result under 5% noise: Time profile

of location of source 2
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Reconstruction result under 5% noise: The orbit of
source 2 --- xy-view and xz-view
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Reconstruction result under 5% noise: Time profile

of magnitude of point sources 2
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To reduct the effect of noise

@ The estimation results become worse as the noise becomes large.
Especially, under 5% noise, the estimation results becomes very bad!

@ This phenomenon is caused by the instability of the numerical
differentiation.

e To avoid this instability, we apply a filtering process (5 points Gaussian
filter) before numerical differentiation
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Reconstruction result with Gaussian filter under 5%

noise: Time profile of location of source 1

Py x(ty(1))(Estimated) —=—
P1x(t4(2) (Actual) e

0.5

0 5 10 15 20 25 30 35 40

pLx(ta(7))

Py (t (1)) (Estimated) —e—

Py 2(t4(%)) (Estimated) —e—
Py y(t1(1)) (Actual) e (

4t (7)) (Actual) —-—

0.5 0.5

-0.5 -0.5

1 -1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
T T
p1y(t1(7)) p1z(t1(7))
85/92
Problem formulation Known results Regularity Key idea Reconstruction method Dipole source Conclusions

Reconstruction result with Gaussian filter under 5%

noise: The orbit of source 1 --- xy-view and xz-view
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Reconstruction result with Gaussian filter under 5%

noise: Time profile of magnitude of point sources 1
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Reconstruction result with Gaussian filter under 5%

noise: Time profile of location of source 2
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Reconstruction result with Gaussian filter under 5%

noise: The orbit of source 2 --- xy-view and xz-view
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Reconstruction result with Gaussian filter under 5%

noise: Time profile of magnitude of point sources 2
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Conclusion

@ We consider a reconstruction problem of unknown moving point or
dipole sources from boundary measurements. This problem is a kind of
inverse source problem for the scalar wave equation.

@ We give some theorems to guarantee the regularity of observation
data.

@ We extend the results in Ohe-Inui-Ohnaka (2011), which is for fixed
point sources, for the reconstruction of several moving point or dipole
sources.

@ We present some numerical experiments, and the results show that
our procedure gives good reconstruction of unknown sources under
small noises

@ We need further discussions to distinguish point and dipole sources
when they are convined, and to reconstruct the z—component of
dipole sources
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A mathematical study for mixed-mode loading crack problem in
viscoelastic composite material

Cheng Hua
Department of Aeronautics and Astronautics, Fudan University, Shanghai, China

Abstract: When subjected to a series of long-term repeated application of loads (stress) or ther-
mal cycling or a combination of the two cases, viscoelastic materials experience a time-dependent
increase in deformation (strain). This phenomenon is known as viscoelastic creep. Viscoelastic
creep is important when considering long-term structural design, given loading and temperature
conditions, designers can choose viscoelastic materials that best suit component lifetimes.

Asphalt concrete is a kind of viscoelastic and composite material commonly used to ground roads
and other industries. Due to effect of repeated traffic loads, viscoelastic creep phenomenon widely
exists in asphalt concrete pavements. In addition, cracking is also considered as one of the major
structural damage in such a special material. From the point of view of mathematical modeling, the
creep-fracture mechanics parameter J’ or C* is widely accepted for a cracked viscoelastic body un-
dergoing creep deformation, but this is valid only for mode I loading conditions . While cracks in
viscoelastic composite materials are mostly of mixed mode, thus the fracture criteria for mixed-
mode crack under creep loadings are very important in mathematical modeling on structural design
of viscoelastic composite materials. Although a lot of effort has been made, mathematical modeling
for mixed-mode creep crack problem has not been well solved so far.

This study tries to propose a method to characterize mixed-mode crack undergoing creep defor-
mation of viscoelastic composite materials using a new path-independent integral, based on CED
(Crack Energy Density) 2! and Hoff analogy [*!. It is expected that the new path-independent inte-
gral will be applicable to predict creep crack growth in an arbitrary direction for mixed-mode creep
crack problem in viscoelastic composite materials, such as asphalt concrete.

Keywords: viscoelastic creep; mixed-mode crack; fracture mechanics parameter; path-independent
integral
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Basic concepts of Fracture Mechanics:

Fracture Mechanics is mechanics of solids containing displacement discontinuities (cracks) with
special attention to their growth. Fracture mechanics is a theory that determines material failure by
fracture criteria. Linear Elastic Fracture Mechanics (LEFM) is the basic theory of fracture that deals
with sharp cracks in elastic bodies. It is applicable to any materials only as long as they are elastic
except in a vanishingly small region at the crack tip (assumption of small scale yielding). Elastic-
Plastic Fracture Mechanics (EPFM) is the theory of ductile fracture, usually characterized by stable
crack growth (ductile metals). The fracture process is accompanied by formation of large plastic
zone at the crack tip.

Fracture Mechanics has been accepted as an effective engineering methodology to evaluate the
behavior of a crack tip fields and it seems to be considered as an almost established method. How-
ever, its system widely accepted at present contains some substantial problems that remain to be
solved. For instance, although the energy release rate G is positioned as an important parameter in
linear fracture mechanics, it cannot be extended inelastic fracture problems and, moreover, the
crack parameters used in fracture mechanics such as stress intensity factor K, J-integral and C* pa-
rameter are defined just under special constitutive equation. As the results, the scope of the applica-
tion of fracture mechanics is compelled to be limited without due cause. In this lecture, the outline
of fracture mechanics is introduced first, then, what the basic issues are in the role of fracture me-
chanics is made clear.

1. Basic forms of cracks propagating:
» Crack I (opening mode): By normal stress o, the cracks propagating direction is vertical to
the direction of loading stress;
» Crack Il (slipping mode): By shear stress 7, the cracks propagating direction is parallel to
the direction of loading stress;
» Crack III (tearing mode): By shear stress 7, the cracks line is parallel to the direction of
loading stress.

2. Stress field at the crack tip
o B
M=

Y L

for crack mode I: e o (1+gin £ E)
~2mr 2

COSE(I — §in Esin E)
2 2 2

£ 6 . 0
T, = CO8 —81Il — CO8 —

2rr 2 2 0

while K. =a+fza is Stress Intensity Factor (SIF).

Generally, the stresses at the crack tip can by expressed as:

0, =K, f(r.0) (.j=xy2) (p=1,III

Stress Intensity Factors
Ky =0nnra
Ki=1tra

Kpyr=t~Nza
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Discussion:
» ® K;(i= 1, Il [l]) are independent of co-ordinate. They are parameters to describe the in-
tensity of the stress field around the crack tips;

» @ K;(i= 1, Il,1l]) are close-related with the form, the size and the direction of the cracks;
» O K;(i= [, Il,1]]) are correlated with the value of the loading and the loading form;
» ® K;(i= [, Il,1]]) are interrelated with the properties of the loaded material;

» The physical meaning of K; (i= 7, /[, 1l]) : They are mechanical parameters which are arti-
ficially introduced to describe the intensity of the stress field around the crack tips;

» By using these factors, the problem of solving the stress fields and displacements is simpli-
fied as just seeking for K; (i= 7, /], /1)),

> Unit: K (i= [, I[,/I) ——[force]x[length]*? =[N]x[m]~?

3. Fracture criterion

K;>K;. (i=LILI)

Kic fracture tenacity/toughness, describing the resistance of crack propagating, determined
by test (plane stress crack and plane strain crack) .

» When the thickness of the sample is small K In plane Inmediate  Inplane
enough, the crack tip will be in a state of ic SEEeSESIaten] Estaic | strain state
plane stress. When the crack line moves, its t
plastic area is relatively big enough to en- E |
hance Ki; Kacf- o

» When the thickness of the sample is big 'E
enough, the crack tip will be in a state of !
plane strain. When the crack line moves, its |
plastic area is relatively small enough to de- |
crease Kic >K rc. l

Thickness of the sample

Kic plane strain fracture toughness
K;=K;c (fracture criterion for crack I )

Kicis a material constant, independent of the geometry of the testing sample. The thickness of
the sample should be large enough to guarantee that the crack tip is in a state of plane strain.

4. J-integral definition

The J-integral can be defined as a path-independent contour integral that measures the strength of
the singular stresses and strains near a crack tip. Its value should be approximate constant far-field
as well as near-crack field. However, J-integral constancy may be questionable after crack initiation.
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Also, dominance of the J-integral becomes more debatable if the structure composition is heteroge-
neous. The following equation shows an expression for J in its 2-D form, where crack lies in the
XY plane with x-axis parallel to the crack (the following Figure):

J='[ (W—O'xau—rxyév)dy+(rvxau+a,avjdx
J ox ox Tox o T ox

crack dy = n.ds

dx = —nyds

Fig. Definition of contour for J-integral evaluation

In the above equation, I' means any path surrounding the crack tip, /¥ is strain energy density, o
is component stress and u; is displacement vector.

5. Energy Release Rate G

(5.1) Strain energy

Work done by the external force is changed to the strain energy stored in the elastic deformation.
The strain energy can be released and the elastic deformation then disappears.

Strain energy density w: strain energy per unit volume.

(for linear elastic body)

Ejj *d * 1
W—IO c, gij—Ecijsij,

Total strain energy U (Internal force potential): total energy stored in the volume V'

U:ijdV

(5.2) External force potential Up: the negative value of virtual work done by the external force. As-
sume that the body force is B, and the surface force is 7, on the stress boundary. The external force

potential U, is

Up=—(] BudV +|[_Tu,ds)

(5.3) Total potential IT:
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M=U+U, = [ wdV —([ BudV+[_ Tuds)

(5.4) Energy Release Rate G
The body force B,, the surface force 7, on S, and the displacement i, on S, are given. Assume

that the crack size is changed from a to a+Aa. Accordingly, the displacement, strain, stress, stain
energy density, internal force potential, external force potential and total potential are also changed.
The total potential IT is changed to IT+ AIT. AIT is the increment caused by the crack growth Aa.
Assume that the plate thickness is . AS =¢-Aa denotes the single surface area increment. The en-

ergy release rate G is defined as

Go—lim A __dl
Aa—0 AS ds
If the plate thickness ¢ is a constant, the energy release rate G is
. ATl 1dI1
G=-1lim = _dit

Aa—0f . Ag t da

(5.5) Constant force and constant displacement conditions

Constant force condition:

A plate with a crack is applied by a constant force F’ as shown in Fig. 3.1(b). The external force
virtual work W and external force potential Up, respectively, are

W=F6,U,=-W=-F6
The total strain energy U (internal force potential) is

U=1F5
2

Then, the total potential IT is
n=U+U,=U-W
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Now, W =2U , [I1 =-U . The energy release rate G under the constant force condition can be
written as

o1 oU
———=(—=), forconstant F.

oS oS
In this case, OU > 0, the strain energy in the body in fact increases rather than releases with the
crack growth. G can not be called as the strain energy release rate.

G:

Constant displacement condition:

After a displacement o occurs, the plate is clamped. This is the constant displacement condition
as shown in Fig. 3.1(c). In this case, there is

W=0, II=U-W=U

_on = —(a—U) s» for constant displacement &.
oS oS
It is seen that only for the constant displacement condition, G can be called as the strain energy
release rate. Since W=0, the energy needed by the crack growth comes from the release of strain en-
ergy stored in the body. That is the strain energy stored in the body decreases with the crack growth.
Foe the constant force condition, the increment of external work is dW = Fdo in which a part is
used to increase strain energy dU while the other part is used for crack growth.

G=

However, the values of G for two cases are equal.

Constant force case:

2 2
U= lF5 _E ¢ , G= (a—U)F = F—£ C is the compliance of the plate.
2 oS 2 08
Constant displacement case:
1 o’ O0E o 51 6 -10C P*oC
2 2C oS oS 2 C 2C°0S 208

It is seen that the values of G for two cases are equal.
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A mathematical study for mixed-
mode loading crack problem in
viscoelastic composite material

Cheng Hua
Department of Aeronautics and Astronautics, Fudan
University, Shanghai, China

Practical inverse problems based on inferdisciplinary and industry-
academia collaboration Fukuoka, Japan, Oct, 24-28, 2017
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Summary of Mechanics of Materials

/équilibrium equation
oy, 20y, & 2oy,

9%, 9%y oxy

=0

O, =04

Relation between
Displacement and strain

-

KStress-strain relation

Role of Fracture Mechanics

Strength of
Materials

Boundary condition;; =T onS,
u{ = ﬂ:_ on Su
(=1,2,3) /
Mechanics of Materials Strength of
..... |  Structures

i Fracture Mechanics

o

Continuum mechanics
under small

?ﬁlﬁme[lt

Mechanics of Materials

Mechanics of Materials and Fracture Mechanics
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Crack Problem (Fracture Mechanics)

e
Stress, Strain, Strain energy density —> 00O
l modeling |
other parameters are necessary
l

[ (O ¢ Micchaics

Stress around a crack tip

Linear Elasticity - Gag

o, = % £,0(0)+ 4,1, 2(0)+ A, £,P(6) + -

K=+2m A, : Stress Intensity Factor h

Crack front line

X
- BB
8 8
O3z {“1}_ £, — cosg[fc—l+2sm E]
T UM L sty E[Ic+l—2cosgg]
—0;
9 I\'IO(I'E ]I _ g[ g 351]
R e e e e e s e —_— i —| 2 4cos —cos5 —
_/,/O X1 i “w
G; —O0> sin—cos—cos%
B8 l, 0_2 cosg[l—smgsmg—f]

smg[r+1+2wsgg]
{“l}zﬁ/L 2 2
u| 20V o g(x—l—zsmﬂf]

“E0E = >
Mode II1
B plane strain
= - K=3—dv

plane stress

Mode 1 Mode 11 Mode 111
r=03-v)/1+v)
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Summary of Fracture Parameters

Energy Release Rate ji

P

a Aa
specified displaceme specified tractions ] J,
u; A /ﬁ{
K (a)
@ _ B (b)
; o = e U2
@ 4/ 2
uztb):LHKl(a_}_Aa) M+...
2G 7

AU=Work done by external force AL
— 2jm lO' “ By, dx
0 2 20 2 1

dL dU B
o i L 1 () &
T ad G = lim |~ By
dd = Bda K+l .2 ’

P
| | A
%A
. a
aﬂid}é a+|da
lP, u 0 C D .
dL dUu 1 _, dA -
G P K+1(KIZ+K]12)+KE
d4 d4 2 Bda G 205
u=AP A: Compliance
1
U=—Fu
i
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Elastoplastic Body

nn power law (deformation theory):

X2
g) (&) e
9 |
& T —
S = & >
o,=K, p e g (9 n) GZ//T_ on
S -—K r—n/(n+1 (9 n) J O3

HRR singularity

2
K, : Plasticstress intensity factor ﬁ
K. : Plastic strain intensity factor

K K

n
g | 22 mode | mode 11
&y 0,

mode ITI
J integral oW
g X2 O, :_:ﬁj(81‘17€22’."7831)
A 66'1..
Z W : Strain Energy Density
r U, (deformation theory)
;’( - Path Independent Integral
J = [ (wex, —Tu,,dr)
B
L___| A
Load-Displacement Curves
a B
dn
l P U
o G
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ElasticBody ====p Energy Release Rate

Linear Elastic Body

1 | da
S KT loptip oty Bm oo o pr O
G SG (s x) 2G 2 Bda

Elastoplastic Body (deformation theory)

n power law === Meaning is not clear

T 41 i 5B (n+l)fn
J= HUHG =IHKJK£= r’zﬂlj:‘n
JU gﬂ
o, = Kﬂ_}”_lj(wrl)&g (9:‘ F’I)+ —
Ks; =09 ——
Iye000

Stress Intensity Factor  Plagtic Stress (Strain) Intensity Factor

1—sin§5in% fin+1)
G o, =K »""VE (6,n)+
oy =_JI2i cos%l+sin§sin%} ’ Ka—n,f(ml)""lzi) ))
O ¥ .8 38 =Ry B\, 2epk =
sin —cos—
2 2
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Actual Deformation around a Crack Tip

Aa,

[ %
(b) K/é |
e ao 4 ¢ . COD

{or CTOD )

h=
r (c)

COD: Crack Opening Displacement |

Fracture Parameters and their availabilities

Stress Intensity Factor
Energy R eleasi/e Rate } Linear Fracture Mechanics

Plastic Stress Intensity Factor

(Plastic Strain Intensity Nonlinear Fracture Mechanics

Fgotor ) (Elastoplastic Fracture Mechanics)
Jintegral
cobD

Small Scale Yielding

r«<a
=50 Rl - Froctue vechani |
Large Scale Yielding
?5 Qp r —a

_
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Applications to Fracture Phenomena

Brittle Fracture (no plasticity)

K, =K. (also fora stably growing
crack)

or
K+1 .
G = G,c = —— K2 (= 2y, Griffith)

Quasi-brittle Fracture (small scale yielding)

K, =K,. (also fora stably growing crack)

or

G= Bt ’;;1 & (= 2y, Griffith - Orowan)

Ductile Fracture (large scale yielding)

of Sl ( 7 for a stably growing crack)

Brittle or Quasi-brittle Fracture

Stable : Unstable
dK, K\ | dK, K o
| >0(=
da ) ! da = )
Ductile Fracture '
Stable | Unstable
dl dR dJ dR

_<_
da da da da
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Mixed Mode Fracture

Brittle or quasi-brittle fracture

criterion

Ductile fracture
?

Fatigue Crack

da
E—f(AK)

Creep Crack

da
dt

= f(C™) for stationary creep

Problems in Conventional Fracture Mechanics

1. The concept of energy release rate was considered successfully
applied to elastoplastic fracture under small scale yielding. But,
it failed to explain elastoplastic fracture under large scale
vielding.

2. There exists no crack parameter that can be defined without
depending on constitutive equation. Elastoplastic crack
parameter J is defined just under deformation theory. It loses
its meaning when unloading occurs and it is applicable just
before the onset of crack growth. There is no way to deal with a
growing elastoplastic crack.

3. There is no parameter for mixed mode elastoplastic crack.

4. Depending on phenomena, different parameters are required
depending on phenomena.
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&1, X))

p—0

Foracrackof p=0 €9 =limE(t,a)= 1imj WdXx,
ol p—0 ¢TI (a)

oW
'\-thn ﬂ'-_u- = E=ﬁr(£l]\gu$“‘\83[):

if

Therefore, Eo =7

., WX, = [ vdx, —Tu,,dr)

When p is sufficiently small, €% = £(1,q) =L_{ } WdX,
r 2
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Elastic Body == Energy Release Rate

Linear Elastic Body
e oML, L K L g R

Elastoplastic Body (deformation theory)

n power law ===> Meaning is not clear

(w1 )1
IHJ{JK&.‘
1in
i}

F

n+l
i IFF EDKG
"

Ty

= I.I‘I‘Kﬂ' KE =

_ —1f(n+1) =
o,=K,r ﬂ'#(ﬁ,n)+-~
; ]1;(n+1}

Ky =09 ———
4 ﬂ[fnb‘nﬂ'n
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‘the work, expressed per unit area in the crack plane,
done at the crack tip during deformation *

Stress between

atomic planes ¢

CED

0

Distance between
atomic planes ¢
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Stable Growth of an Elastoplastic Crack

2,/ ¥=05.0.35.0.5 2410.2

08507075 £ e

2

i

E I

;_ 3 | (k)
508 (=) |
635 ‘
nn.15+<g
unit: mm
S.G.A%)=(B-B,)X100/B DETAIL A

Load-Displacement and Crack Extension Length-Displacement curves

1.2 F/B ayfW = 0.5

o
+
=

=
4
=

Load to Unit Thickness P/B (KN/mm)
= -
- -

Crack Extension Length a-a, (mm)

=1
i

=
(=]

] 0.5 1.0 1.5 .0 2.5
Displacement at Loading Point wu(mm)
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(KHAmm)

CTRD I

Comparison of Load-Displacement Curve from Generation Type
FEM Crack Growth Simulation with Experimental Result

f.

E = EXPERIMENT
1.2F SIMULATION:
[ O h=0.2 (mm)
P L + h=0.5 (mm)
E E: O h=l.0 (mm)
T
0.8
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=
0.4
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U.u i3 L P | i " 1 L 1 " " L al i L " a1 L A a
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I:.Eﬂ-t;!sullzlen.lnfl-ﬂ.ﬂj
Ji{path integral a,/L=0.5]
J{path inrt;ﬂl_lqu-ﬂ.-H:l
J'E[uynill“. 1, L=0.5]) +
J'E:uptrlsl_-.t_ Ioufl'.-ﬂ_lﬂ

®»4od el
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E=E.=J,

is always available,

J=J,

is available
only as the onset condition



LOAD P/B(KH mn)

Application Type FEM Crack Growth Simulation
Based on Crack Growth Criterionof € =&

E O 8pfL = 0.85 1.8
E [=] aullrL = 0.5 L — gimlarien
L = axpariment &0 experizent
L.af
P 2/l = 0.5 g
o
] of
=
= '_—ﬂ—:!—n—-h__n
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Zoap a0 “Bag,
2.0 L

B0 2.0 4.0 &4 20
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Mixed Mode Crack
CED in an Arbitrary Direction

X’z g E _ Wd
Xz x o s X,
\ t
K @ Here, W = L J[J'Ei:rdr
] >
\ i X1 For a crack of 2=0
/ Fu'
Q- lmm €
w p— n #

Division into mode I, mode IT and maode TIT contributions

£ _ glle)  olilc) ol
@ @ P @
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Fracture Criterion

gl criterion G EH criterion @
@ max © mAx
S - When €' =& .
When Ea max EIC = ch' @ WK e
mode [ fracture occurs in the maode I fracture occurs in the
direction of &' direction of &1
@ max Pmax

@ K
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Brittle Fracture under Mixed Mode Load

EXPERIMENTS
O SHIOMI
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O EXPERIMENT
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Direction of crack growth
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| Weld Line

{a) Mode 1 fracture

HTED

(b) Change from moda il fracture
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Crack tip

(e} Mede | fracture

Crack growth behavior



Conventional Fracture Mechanics

Brite Fracture (no plasticity)

K, = K ¢ (also for a stably growing crack)

or

G=5e=

K+1
8G
Quasi-brittle Fracture (small scale yielding)

—— K,.(= 2y, Griffith)

KI = KIC (also for a stably growing crack)

or

=G = “TL K2 (= 2y, Griffith - Orowan)

BG
(?)
Ductile Fracture (large scale yielding)

J=Je (7 for a stably growing crack)
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CED-based Fracture Mechanics

| o

Always,

E=E.2J,

Linear elastic
x+1
EII:! - K -
5G M =k
Smal Scale Yielding
1
grul gl
BG Y

In these cases, the fracture condition
above can be expressed also by

K, =K,



Mixed Maode Fracture ; Mixed Mode Fracture

Brittle or quasi-brittle fracture

T 5 maxCriterion or

Ductile fracture g - £

{ max nc
;i

Fatigue Crack

Fatique Crack |

S

C'l'rﬂ' I-'.I:\/ 4.

= AK [ o A
il =188

Creep Crack Creep Crack

da o ki :
e st
5 e = =)

for stationary creep | & . Cumulative Damage

»Summary of Creep Fracture Parameters (Mode-n

Evaluation of Creep Behavior:

Creep- a time dependent, permanent deformation at high
temperature, occurring at constant load or constant stress.

Cl‘EEp rate - The rate at which a material deforms when a
stress is applied at a high temperature.

Rupture

gThe resulting curve shows 3
i three stages. During the
2 first stage, dislocations

i climb and break free from 3

During the
creep test, Constant stress

strain or Constant temperature
elongation is

|

I

1

I

I

= 1
8 — I 3 - = 3
;r:ea:_uredfas - = | | § whatever was pinning i
S “2 | First AE A 1 % them. The second stage of
time and stage A Ap = creeprate | 3 e BRI
plotted to give | | ! gcreel. Is characterized by a :
the creep curve. /l ; Second stage ! Third !  steady rate of strain. In i
I _._'_:_' (steady state) '_:_- stage | ;the third stage, necking :
_/ , ' L2 and failure occur. 3
£y = Elastic Ruptur‘i T i

strain ume

Time
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»Summary of Creep Fracture Parameters (vode-1)

Creep Crack (C* parameter)
Analogy to Elastoplastic Problem under Deformation Theory( o+ 4 i)

Elastoplastic Stationary Creep (
ﬂ-fn'._l' = {} ii.J {l’

e J-intepral
« Path-independent

C* parameter
Steady state creep conditions

Mixed-mode




The analysis method

Energy variation method
— The principal aspect of crack analysis

Basic Model: A crack in a two-dimensional deformation field

_|_

Auxiliary Model: Due to the diferrence of initial crack
An arbitrary integration path
surrounding the crack,
A new path-independent integral

l Creep Analogy

Steady-state creep crack problem

The Creep Analogy | _Hork

Plastic fjr')e:fbr’mczﬁun Tﬁfm:v é’tﬂﬂdj'—ﬁfdtﬂ Creep

displacement 1/ displacement velocity 1.

Power law

J |. “F""’L _I;-'”.-.L]dl.

r




The Previous Conditions

o A two-dimensional crack in a homogeneous,
elastic-plastic body

o A sharp (not necessarily straight) crack_

o A stationary crack/stable crack growth before
final fracture

. ~_S‘i}‘;r.t_;_m'.r.;f ﬁlad}}fg conditions

]—integm[ — as a fracture criterion parameter

J = (Wn, ;rr'nr_l).f.n"

¢ Avoid concentrated stresses and strains

in the vicinity of a crack tip
Arbitrary integration path

Path-independent

Small strain deformation
Deformation Plasticity

No body force
Homogeneous, at least in x,
Straightforward Crack

}Xl

Fig. 1 An arbitrary integration path summonnding a crack

An Arbitrary Direction




A New Path-independent Integral

I (Aa,t),u(Aa,T)

T(r).u{r) Loadprocess
0<r<¢t

3 " N
a) Basic Model b} Auxiliary Model

I, _L | I r{..i: t, (Fi ! ATdl | — m Palh-independenlm

=

Under a kind of boundary conditions

I Analysis Methods ‘

1. Comparison of two cracked bodies differing in geometry

« ldentical shape

» |dentical composition

« Identical loading by displacements
« Differing in crack size only

2. A study of energy variations ...

» A crack in an arbitrary structure
s Contour " is commen to both bodies
s Plastic defermation theory or nenlinear elastic behavior

3. Treatments of potential energy difference and path independence . ..

1




Two specimens with a different initial crack_lengths

ulr). Pl ulr).Plaa.r)

T{r).ulr) I'(Aa,t).u (Aa. 7)

TR ITE

<< et o < T
Fig. 3-a Oviginal model L= = | Fig. 3=b Auxiliary model =14

7777777777 7777777, LTI 777777

s Fig.3-a and Fig.3-b Comparison of two cracked bodies of identical shape,
compaosition, and loading by displacements, except the crack of bedy 1-b is
loenger by an amount Aa in an arbitrary direction ¢

on any arbitrary common contourl

Load-displacement P-u curves Traction-displacement 1, - u, curves

on any arbitrary common contourl

Load-displacement P-u curves Traction-displacement T, - u, curves

- U ' U,

Fig.4 : Difference between potential energies of Fig.5 : Areo between Traction-disglacement curves when
of 1-a and 1-b loading i= by displacements alone

Potential energies of both models :
I'(r.r} =—r P(a,r)udr
Ula+Aa) | (a+ Aa,r)udr

Difference between potential energies :

AU =U(a+Aa) F.e"{fr}




In the special case of ¢=0°

j contour I?I te g T a[ A Straightforward J-integral

L ; . .
— lim i AU : Difference between potential energies
\a—0 Ag
o

Rate of potential energy decrease for two bodies Energy release rate
differing in crack length by an infinitesimal amount  can be interpreted us Crack driving force

1
i

T2

. j (Wn, ~Tu,, )dr
w

Conventional definition of J integral

[ ?f%dl' [ Gl

g 4 da

Referred to virtual crack extension force

Fig. 1 An arbitrary infegration path surrounding a crack

In the general case of ¢ # 0°

Load-displacement and Traction-displacement curves

C

Fig. 6 Load-displacement cirves Fig. 7 Tractioti-displacement

Increment As: , I, I

i, et G kel
A=l +—Aag T+—LAa 1 | I ——u —=~
T yitis por P
o oo ca ]

u +uAr T+ E-.:="‘T 1

Area between traction-displacement curves for the two bodies :

AS = [ Area(O'4'B)dT = Aa| j e T .I|cfm’1

oa oa )




Traction-displacement curves within

Tla+har+Ar)
ula+AqT+AT)

Fig. 7 Trachon-displacement curves within Ar

based on Calculus and A na{}lsiﬁ'grumet@
Increment A 5 (as indicated by the shaded area in Fig.7) :
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In the general case of ¢ # 0°
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Creep Analogy

For Steady-state creep crack problem

‘lﬁ New Path-independent Integral . -Integral
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A New Contour Integral Iw

D'-Integral

:—j L mf dit dT

1. Path-independent Integral = ?

In the special case of p=0°

2. D"Integral = C*-Integral = ?

D'-Integral: | Path-independent |

a) Basic Model 7 il v p crack faces b)] Auxiliary Model

wherel’y I'; are two arbitrary contours, I', isa closed path

D -integral can be concluded that
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L__ ju ‘it dT L o= 8 “Tdi, T 204l

ca oa
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—[I o,dédV Iﬁ—u’l —[(

oa” v da
Therefore, the I)'-integralis path-independent




In the special case of ¢=0

2. D"Integral = C*-Integral

Partial derivative in OX X,

(
—  Partial derivative in 0X;X;
od Crack length ¢

Then

Crack length & + Ada
-

Fig.& Coordinate system move with the crack tip
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l da

the first term

the last term
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Levea
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i

oa
then, D'-Integral becomes

, = ol J
D,y = |.¥n T, =G
I

Therefore, in the special case D'-Integral = C*-Integral




1.

differing in geome

was obtained.

nected to be used as a new
y fracture parameter, determining the mixed-mode for creep

crack_problems.

. The CED in an arbitrary direction can be evaluated and

calculated by the new path-independent integral in next lecture.

Thank You Very Much!

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

FUDAN UNIVERSITY
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Richardson’s law and the concentration of Cs-137 in Fukushima

Yuko Hatano
Department of Risk Engineering, Tsukuba University, Japan
email: hatano@risk.tsukuba.ac.jp

In the diffusion theory of tracers in the atmosphere, the Richardson’s 4/3 law is well
known. It says that the mean square of the distances between two particles in the turbulent
atmosphere will increase in time as ¢* [1,2]. On the other hand, we have been observing that
the concentration of Cs-137 in the air, measured at several fixed sites in Fukushima, seems
decreasing in time asymptotically as ¢t~*®. We examine the Richardson’s theory to find out
its connection to the observations.

Reference

[1] Richardson, L.F., Atmospheric Diffusion shown on a distance-neighbor graph. Proc. Roy.
Soc. London Ser.A, 110, 709-737, 1926.

[2] Kanatani, K. et al., The self-similar telegraph model of relative dispersions in turbulence,
RIMS Kokyuroku 1543, 118-127, 2007 (in Japanese).
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