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Preface

Inverse problems have been investigated for a long time. However, depending on
our social environments and life styles, their practical demands have been contin-
uously changing; new problems are created day after day. Mathematical science
gives a method to understand their structures and requirements systematically. It
often reveals relations between different modalities and leads innovations.

This volume contains several recent topics on inverse problems from practical
problems to theoretical viewpoints. They were discussed in the conference “Math-
ematical Backgrounds and Future Progress of Practical Inverse Problems”, which
was held at Institute of Mathematics for Industry (IMI) in Kyushu University
during 10th–13th, November, 2015.

One of the aims of the conference has been to make an opportunity of collabo-
rative research between two fields; non-destructive testing of concrete structures,
and non-invasive diagnostic methods of human bodies. The former arises in civil
engineering for safety of our society, and the latter arises in medical science to
realize healthy lives.

In particular, we concentrate on the tomographic techniques, which have been
recognized as an effective modality in both fields and have been developed inde-
pendently. Recently, depending on the progress of measurement devices, high-
resolution image reconstruction has been expected and various algorithms have
been investigated based on experiments in each field. On the other hand, many
mathematical methods are studied for tomographic methods involved with electro-
magnetic phenomenon and acoustic properties. Hence we shall study their back-
grounds and experimental methods, and give systematic understanding of their
empirical strategies by considering them based on mathematical models.

To this end, we invited researchers and engineers from both companies and
universities, and asked them to present not only recent topics, but also funda-
mental knowledges in each fields. All presentations contains valuable aspects and
proposals, and we also found new relations beyond fields and objects throughout
the conference. We hope that this volume helps you to understand each research
foundation, viewpoints and directions.

Finally we would like to express our sincere thanks to secretaries of
IMI. Without their kind supports, the conference would not have succeeded.

1 , , 2016.

Hiroshi Fujiwara (Kyoto University)
Takashi Takiguchi (National Defence Academy of Japan)
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Mathematical Backgrounds and Future Progress of
Practical Inverse Problems

November 10–13, 2015
Lecture Room M W1-C-513, West Zone 1, Ito Campus,

Institute of Mathematics for Industry, Kyushu University
744 Motooka Nishi-ku Fukuoka 819-0395, Japan

November, 10th (Tue.)

13:20 Opening

13:30–14:30 Kenji Hashizume (West Nippon Expressway Shikoku Company Limited)
Inspection of bridges, tunnels, and pavement by using cameras

14:30–15:00 Discussion

15:00–16:00 Takashi Ohe (Okayama University of Science)
Reconstruction of slowly-moving dipole wave sources from boundary obser-
vations

16:00–16:30 Discussion

November, 11th (Wed.)

10:30–11:30 Naoya Oishi (Kyoto University)
Inverse problems in emission tomography

11:30–12:00 Discussion

13:00–14:00 Shinpei Okawa, Takeshi Hirasawa, Toshihiro Kushibiki and Miya Ishihara
(National Defense Medical College)
Numerical and experimental studies on quantification of the optical proper-
ties by use of photoacoustic measurement

14:00–14:30 Discussion

14:30–15:30 Kuo-Ming Lee (National Cheng Kung University)
Integral equations method in inverse problem

15:30–16:00 Discussion
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12 November (Thu.)

10:30–11:30 Alexandru C. Tamasan (University of Central Florida)
Current density based impedance imaging from minimal data

11:30–12:00 Discussion

13:00–14:00 Takeaki Shimokawa (ATR)
Hierarchical Bayesian estimation method for diffuse optical tomography

14:00–14:30 Discussion

14:30–15:30 Gentaro Taga (The University of Tokyo)
Phase dynamics of spontaneous activity in the cerebrovascular system of
human infants

15:30–16:00 Discussion

13 November (Fri.)

10:30–11:30 Noriyuki Mita (Polytechnic University of Japan) and Takashi Takiguchi (Na-
tional Defense Academy of Japan)
Development of ultrasonic tomography for concrete structures

11:30–12:00 Discussion

12:00 Closing

Organizers : Hiroshi Fujiwara (Kyoto University) and Takashi Takiguchi (National Defense
Academy of Japan)

The workshop is supported by IMI (Kyushu University), and partially supported by JSPS
Grant-in-Aid for Scientific Research (C) (No.26400198), (C) (No.26400184).

－ii－



1

27

55

81

111

145

181

203

205

Inspection of bridges, tunnels, and pavement by using cameras ・・・・・・・・・・
Kenji Hashizume

Reconstruction of slowly-moving dipole wave sources from boundary 
observations ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Takashi Ohe

Inverse problems in emission tomography ・・・・・・・・・・・・・・・・・・・・・・・・
Naoya Oishi

Numerical and experimental studies on quantification of the optical properties
by use of photoacoustic measurement ・・・・・・・・・・・・・・・・・・・・・・・・・・・
Shinpei Okawa, Takashi Hirasawa, Toshihiro Kushibiki, and Miya Ishihara

Integral equations method in inverse problem ・・・・・・・・・・・・・・・・・・・・・
Kuo-Ming Lee

On current density based impedance imaging from minimal data ・・・・・・・・・
Alexandru Tamasan

Hierarchical Bayesian estimation method for diffuse optical tomography ・・・
Takeaki Shimokawa

Phase dynamics of spontaneous activity in the cerebrovascular system of human 
infants ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Gentaro Taga

Development of ultrasonic tomography for concrete structures ・・・・・・・・・・
Noriyuki Mita and Takashi Takiguchi

Table of Contents









Inspection of bridges, tunnels, and pavement 

by using cameras 

Kenji Hashizume

West Nippon Expressway Shikoku Company Limited 

I. Outline 
A lot of resources and costs would be necessary for infrastructure 

developments and rehabilitations. So the followings are very important: (i) 
managing, repairing, and renewing the developed infrastructures efficiently and 
effectively, and (ii) eliminating serious accidents triggered by the deteriorations 
and damages, and realizing the society without any anxiety. This is necessary 
for the utilization of the limited resources and the sustainable development of the 
society. For the given purpose, the efficient and effective inspections and 
maintenance practice shall be necessary.  The inspection method using 
cameras for the bridges, tunnels, and pavements inspections with objective 
evaluations and keeping their records is now proposed.
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i. Cameras Quality (Is the cameras suitable 
for the inspection environment?) 

Inspections are done basically during 
night, so it is important to extend the 
surveillance hours of the day and increase the 
annual surveillance days by using the camera 
with a short- wave type which has no the 
environmental reflections during night and with 
a enforcing-cooling- system type with a small 
thermal resolution. 

ii. judgment on time zone of the day when 
inspections can be done (Do we inspect at a suitable time ?) 

We implement the night- time inspection basically, because there are 
various bridge types and bridge members which are not suitable to inspect 
during daytime. The time zone of the day when inspection is possible is based 
on data of the EMS (Environment Measuring System)(Figure-2) mounted on the 
inspection bridges. 

iii. Simple and Objective Evaluation Method (Is it possible and easy to 
evaluate objectively?)

There could be, for individuals, differences among the inspection 
judgments because it is sometime impossible to judge the damage evaluation 
such as delamination and spalling for the bridge members and damaged parts 
only by looking at the 
infrared images. It is 
also impossible to 
judge the crack�s depth 
along the rebar. 
However, the red, 
yellow, and blue cracks� 
judgment- images at 
the 1, 2, 3 cm depth 
from the surface are 
shown at the camera 
monitor (Figure -3).  

figure -2  J-system EM(S)

figure -3 J-System Monitor Image 

Damage grade Visible image Infrared image 3 level indication

Observation
Abnormal sound

Caution
Possibility of falling 
down near future

Warning
Require emergency 
measure
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III. Tunnel and Pavement Inspection 
We now explain the �L & L System� 

(Figure-4) inspection method which 
uses the Line Censor Camera and Laser 
Marker. Line Censor cameras mount the 
visual image censors, and can 
photograph seamless and continuous 
imageries. They can also be applied for 

the tunnel and pavement inspections. 
Light Cutting method is photographing 
the laser marker images from a upper 
and oblique position by using the laser 
which is irradiated vertically down on 
measuring surfaces and obtain the 
object shape. This method is used for 
road surface profile measuring. 

i. Tunnel Inspection
It is possible to obtain the fine and colorful continuous images (Figure-5) 

of tunnel lining by using Line Censor cameras mounted on the inspection cars 
with high speed (less than 100km/h). The cracks of tunnel lining can be detected 
up to 0.2mm, and water leakage and lime isolation can be also found. The 
damage spreading drawings and their diagonal charts can easily be produced 
based on the captive pictures, and so we inspect only the areas where further 
close and detail investigations are necessary. And we can clearly watch the 
conditions of rusted accessories in tunnels, and so it is now possible to apply 
them for the accessories inspections.  

figure -4  L&L System 

Pavement

Tunnel
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ii. Pavement Inspection
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We can also display the grade evaluation for the cracks, rutting, bumps, 
evenness, and IRI values obtained by the road surface measurements, and we 
can also easily sort and extract some of the data with abnormal ranges which 
show more than a certain threshold (Figure-6). Thus, the repairing and renewal 
plans of road pavement and the bumps will be made easier.  
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figure -6 Pavement evaluation 
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11 November, 2015

Inspection of bridges, tunnels, and 
pavement by using cameras

West Nippon Expressway Shikoku Company Limited.

Contents
. Approach and issues for
preventing concrete accident flaking

-1. Bridge
reinforced concrete structure

. Approach and issues for
identity of pavement damages

reinforced concrete structure
-2. Tunnel

unreinforced concrete structure
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A new concrete inspection and assessment 
method with safer manipulating, higher 
performance, and lower cost based on infrared 
thermography technology.

EM(S) Test-Piece

J Monitor

J Software
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Sounding inspection for prevention measure against flaking

Present method needs a lot of costs and time

Infrared inspection situation

Visible image camera
Monitor 

Infrared camera Battery
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Basic Theory of Infrared Thermography
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Inspection time period of each bridge type
Seto Inland Sea climate during summer/autumn Inspection time period

6 8 10 12 14 16 18 20 22 24 2 4
All bridges

Wall 
balustrade

Overhang

Floor slab

Overhang

Bridge 
type Section

Time

RC bridge

Me bridge

Almost all bridge types and bridge sections 
can be investigated during night time.

Floor slab

Overhang

Floor slab

Overhang

Girder

Floor slab

Me bridge

Box beam 
bridge

PC bridge

Thermal images of different minimum detected temperatures (NETD)                        
(Daily range = 10 C: photographed at 0 a.m.)

20mm inner 
Cavity

30mm inner 
Cavity

40mm inner 
Cavity

60mm inner 
Cavity

20mm inner 
Cavity

30mm inner 
Cavity

40mm inner 
Cavity

60mm inner 
Cavity

a) Thermal image photographed by Camera A b) Thermal image photographed by Camera B

Images of damage from different minimum detected temperatures

a) Thermal image photographed by Camera A b) Thermal image photographed by Camera B
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b) Temperature variation of Camera B
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Issues for accurate infrared inspection

EM(S): On-the-spot Test Piece

EM(S) Test-Piece

J Monitor

J Software

To ensure thermal condition of real structure for infrared 
testing before and during infrared inspection
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To obtain real temperature data under actual 
conditions element by element

EM(S) : On-the-spot Test-Piece

Sensor B (sound)
Sensor A (flawed)

Sensor C (Air)
Ocean sideGulf side

Both-sided
adhesive tape

Gap 10 10cm
t=1mm   Artificial delamination

Thermal exchange

Conductive  layer
t =1mm

Sensor B (sound) Sensor A (flawed)

Sensor C (Air)

Concrete plate
t =10, 20, 30mm

t = 10mm 20mm 30mm

IR Image
Central cavity is 
observed.

?  OK

Do we inspect at a suitable time ?

IR Image
Cavity is not observed.

?  NG

The thermal environment should be precisely obtained by 
an EM(S) device before any investigation

Checking 
central Void
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J Monitor A Display for IR images in Real Time 

EM(S) Equipment

J Monitor

J Software

J Monitor
J-System

IR camera & 

PC

Monitor
IR Raw ImageIR Raw Image IR IR ProsessProsess ImageImage
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J Software: Infrared Image Processing Software 

EM(S) Equipment

J Monitor

J Software

Image Emphasizing Thermal Anomalies

The thermal gradient of a structure is 
filtered to emphasize thermal 
anomalies.

sunlight

delamination

thermal anomaly
= 0.1

Thermo-image Filtered image Rating image

temp.

thermal anomaly = 0.1
Thermal gradient of structure

hard to spot

easy to spot

foreign body

plastic
(5cm)

around 5
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J Software: Damage Ratings
Temperature distribution is interpreted into damage ratings by 
using a comprehensive database of temperature patterns.

1cm 2cm 3cm

Visible image EM(S) test-piece

Insignificant

1cm 2cm 3cm

IR raw image

IR Process image

Comparison Between New and Conventional 
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Is it possible and easy to evaluate objectively?

Your resources can be focused on the areas that need the most work.

observation
caution
critical
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Flow chart for tunnel inspection

Investigation of cracking and other damages

The width, length, and  number of cracks, efflorescence, and water leakage can be 
investigated with high precision.
Color images allow the inspection of corrosion and damage to the accessories attached to 
the tunnel lining.
High-precision photography/analysis enables a comparison between the previous 
investigation and the current damage progress.
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Visual image tunnel 

Zoom-up visual image Cracks 
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Zoom-up visual image tunnel lighting 
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Data Acquisition by Periodic Inspection
Road Surface Measurement 3 Elements
Company-owned 
vehicle

RutsCracks Flatness

Visual image pavement 

Accuracy at a speed of 100km/h
Detecting cracks

Shooting width=4.5m(Color image)
Resolution 0.8mm x 0.8mm/pixel
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Height image
Surface height image

3.
0m

Accuracy at a speed of 100km/h
Rutting Measurement

Shooting width=4.4m
Dimension of rutting:1mm or less
Resolution 1.68mm(Transversal)

5.60mm (Longitudinal)
0.50mm (Depth) 

Zoom 4.0m

Ruts

Cracking

Height image (Black part is low.)
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Flatness (Longitudinal profiling)
High-resolution 
allows us to 
accurately profile the 
longitudinal shape of 
a microscopic bump.
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Bumps Analyzing
Detecting cracks Abstracting 
cracks from visual image

Visual image Abstracting crack 

Detecting rutting Abstracting 
rutting from visual image

sua age

Surface height
image

Processed surface 
height image

g
image

Crack+Processed image
(red:bumps 5mm or deeper)

Depth of a rutting is 
contrasted through special 
software, called J-soft.

Rutting Area Analysing
Surface height image

Processed surface height image(red:rutting10mm or deeper)

Zoom
Transversal cross section
(Left red line)

Cracks can be detected 
as a difference of height.

Crack
Crack
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New proposal using image analysis (Blistering)
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Analyzed imageImage of road surface 
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The form of partial 
damage such as 
blistering can be 
replicated.
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Analyzing highly accurate longitudinal profile
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Reconstruction of slowly-moving dipole wave sources

from boundary observations

Takashi Ohe

Department of Applied Mathematics, Faculty of Science, Okayama University of Science

e-mail:ohe@xmath.ous.ac.jp

Abstract

Inverse source problem is an important mathematical model of many problems in science,
engineering, and medical fields. In this talk, we consider an inverse source problem for three
dimensional wave equation, and discuss a reconstruction procedure for wave sources. In general,
uniqueness of the solution of inverse source problem is not guaranteed, and so some a priori
conditions are imposed for sources, for examples, point sources, dipole sources. Here, we assume
that the wave source is expressed by a linear combination of some dipole sources, and they
moves slowly relative to the wave propagation speed. Under these assumptions, we consider a
problem to reconstruct the number, locations, and moments of dipole sources from boundary
observations.

For this problem, we apply a technique based on the reciprocity gap functional. The reci-
procity gap functional is widely used for various inverse problems. We use the same kind of
reciprocity gap functionals used in the reconstruction of point sources[19], and propose a recon-
struction procedure for the number, locations, and moments of unknown dipole sources. We
show the effectiveness of our method by some numerical examples. We also show some open
problems in the reconstruction procedure, and discuss further possibilities of our method.

1 Introduction

Inverse source problem is one of important problems in mathematical sciences for its wide appli-
cations in science, engineering fields[9, 10, 13, 15, 22, 23, 24]. Especially, inverse source problem
for wave equation has many important applications such as passive sonars, estimation of seismic
source, and so on[1, 4]. In this report, we discuss an inverse source problem for scalar wave equation
in a three dimensional domain.

We show the formulation of our inverse problem. Let Ω be a bounded domain in R
3 with smooth

boundary Γ. Let u(r, t) be the solution of initial- and boundary-value problem of the scalar wave
equation: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

c2
∂2u

∂t2
(r, t)−Δu(r, t) = F (r, t), (r, t) ∈ Ω× (0, T ),

u(r, t) = 0, (r, t) ∈ Γ× (0, T ),

u(r, 0) = 0, r ∈ Ω,
∂u

∂t
(r, 0) = 0, r ∈ Ω,

(1)

where c > 0 and T > 2 · diagΩ > 0 are given constants, and F (r, t) is the source term defined
in Ω × (0, T ). Suppose that F (r, t) is unknown, and consider the problem to reconstruct it from
observations of the normal derivative φ = ∂u

∂ν on Γ×(0, T ). This problem is called an inverse source
problem for scalar wave equation.
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Unfortunately, uniqueness of the solution of this inverse problem is not guaranteed in general.
Therefore we usually set some assumptions and restrictions for the source term. The point source
model is one of popular models that guarantee the uniqueness of the solution of inverse problems,
, and widely discussed in theoretical and numerical points of views[5, 7, 8, 11, 12, 16, 18, 19]. The
point source model is represented by three kind of parameters, the number of point sources K,
location pk(t) and magnitude λk(t) of each point source as follows:

F (r, t) =
K∑
k=1

λk(t)δ(r − pk(t)), (2)

where δ denotes the Dirac’s delta distribution. Therefore, for point mass model, the problem is
reduced to reconstruct these parameters from observation φ.

Reconstruction methods, specifically in numerical reconstruction methods, can be classified into
two categories, one is an iterative method, and the other is a non-iterative method. Comparing
iterative and non-iterative methods, the later has an advantage in the necessary computation
resources since we need not to solve the partial differential equation.

In non-iterative reconstruction methods, some papers discussed algebraic method based on
the reciprocity gap functional. The reciprocity gap functional is widely used for various inverse
problems[2, 3, 6, 7, 8]. We also discussed some inverse problems based on the reciprocity gap
functional[18, 19, 20].

In practical applications, point source model describes non-directional sources. However, in the
real world, there are many kind of sources that have directional property, such as dipole antenna,
audio speaker, and so on[1, 4, 8, 14, 17, 21]. One mathematical model for such kind of sources is
the dipole source model that is expressed by

F (r, t) =

K∑
k=1

mk(t) · ∇rδ(r − pk(t)), (3)

where K denotes the number of dipole sources, pk(t) = (pk,x(t), pk,y(t), pk,z(t)) the location of
k-th dipole source, and mk(t) = (mk,x(t), mk,y(t), mk,z(t)) the dipole moment that expresses the
direction of k-th sources. Then, our problem is to reconstruct these parameters from observations
φ on Γ. In Figure 1, we illustrate the situation our problem. The main interest of this report is to
develop the algebraic reconstruction method for dipole sources based on the reciprocity gap.

2 Reconstruction of wave sources

2.1 Reciprocity gap functional

We first explain what the reciprocity gap functional for scalar wave equation is. The reciprocity
gap functional is base on the weak formulation of the partial differential equation. The weak form
of the initial- and boudary value problem of the scalar wave equation (1) is expressed as to find a
function u ∈ C1((0, T );L2(Ω)) that satisfies

1

c2

∫
Ω

∂u

∂t
(r, T )v(r, T )dV (r)− 1

c2

∫
Ω
u(r, T )

∂v

∂t
(r, T )dV (r)

−
∫ T

0

∫
Γ

∂u

∂ν
(r, t)v(r, t)dS(r)dt

+

∫ T

0

∫
Ω
u(r, t)

(
1

c2
∂2v

∂t2
(r, t)−Δv(r, t)

)
dV (r)dt = F(v),

(4)
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Figure 1: Inverse source problem for dipole sources in scalar wave equation.

for any v ∈ H2((0, T );H2(Ω)), where F is a linear functional defined by

F(v) ≡
∫ T

0

∫
Ω
F (r, t)v(r, t)dV (r)dt. (5)

Let W ⊂ H2((0, T );H2(Ω)) be a set of complex-valued functions that satisfy the homogeneous
scalar wave equation

1

c2
∂2v

∂t2
(r, t)−Δv(r, t) = 0, (r, t) ∈ Ω× (0, T ), (6)

and vanishing condition

v(r, T ) =
∂v

∂ν
(r, T ) = 0, r ∈ Ω. (7)

From the observations φ on Γ, we define the reciprocity gap functional Rφ(·) on W by

Rφ(v) = −
∫ T

0

∫
Γ
φ(r, t)v(r, t)dS(r)dt, v ∈ W . (8)

Since v ∈ W satisfies the homogeneous scalar wave equation (6) and the vanishing condition (7),
we obtain

1

c2

∫
Ω

∂u

∂t
(r, T )v(r, T )dV (r)− 1

c2

∫
Ω
u(r, T )

∂v

∂t
(r, T )dV (r)

+

∫ T

0

∫
Ω
u(r, t)

(
1

c2
∂v

∂t
(r, t)−Δv(r, t)

)
dV (r)dt = 0.

(9)

Hence, we derive the equation

Rφ(v) = −
∫ T

0

∫
Γ

∂u

∂ν
v(r, t)dS(r)dt = F(v), v ∈ W . (10)
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Equation (10) suggests that we may reconstruct the source term F from Rφ(v) for suitable choice
functions v ∈ W . From the equation (10), the reciprocity gap functionals are expressed by

Rφ(v) =
K∑
k=1

∫ T

0
λk(t)v(r, t)|r=pk(t)

dt, (11)

for point source model (2), and

Rφ(v) = −
K∑
k=1

∫ T

0
mk(t) · ∇v(r, t)|r=pk(t)

dt, (12)

for dipole source model (3).

2.2 Restriction for dipole sources

In [18] and [19], we have already proposed a reconstruction method of point sources using the
reciprocity gap functional. In our reconstruction procedure, we use the reciprocity gap functionals
for the following three sequences of functions in W :

fn(r, t; τ, ε) = (x+ iy)nρε

(
t+

z

c
− τ

)
, n = 0, 1, 2, · · · , (13)

gn(r, t; τ, ε) = − ∂

∂t
fn(r, t; τ, ε), n = 0, 1, 2, · · · , (14)

hn(r, t; τ, ε) = z

(
∂

∂x
− i

∂

∂y

)
fn(r, t; τ, ε)

−(x− iy)
∂

∂z
fn(r, t; τ, ε), n = 1, 2, 3, · · · , (15)

where τ ∈ R, 0 < ε � 1 and ρε denotes a mollifier function with support [−ε, ε] and satisfies∫∞
−∞ ρ(s)ds = 1. We note that τ is a time parameter that plays an important role in the recon-
struction procedure. As a first step, we consider to apply these sequences to the reconstruction of
dipole sources.

However, the expressions of reciprocity gap functionals Rφ(fn), Rφ(gn), Rφ(hn) for dipole
source are very complicated. As an example, we show the expression of Rφ(fn) below:

Rφ(fn)(τ) = −n
K∑
k=1

αk(tk(τ))(mk,x(tk(τ)) + imk,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−1

+
n

c

K∑
k=1

αk(tk(τ))(m
′
k,z(tk(τ))αk(tk(τ)) +m′

k,z(tk(τ))α
′
k(tk(τ)))

×(pk,x(tk(τ)) + ipk,y(tk(τ)))
n

+
n

c

K∑
k=1

mk,z(tk(τ))α
2
k(tk(τ))(pk,x(tk(τ)) + ipk,y(tk(τ)))

n−1 +O(ε), (16)

where tk(τ) denotes the solution tk to the nonlinear equation τ = tk +
pk,z(tk)

c , and αk(t) =

1/
(
1 +

p′k,z(t)
c

)
. The expressions become more complicated for Rφ(gn) and Rφ(hn).

To make the problem simply, we add the following assumption to the dipole source model (3).
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• The z-component of dipole moment vanishes entirely, i.e. mk,z(t) ≡ 0.

• Dipole sources move slowly relative to the wave propagation speed, i.e.
|p′

k(t)|
c

� 1 for all k.

• For any instant τ , (pk,x(tk(τ)), pk,y(tk(τ))) �= (pj,x(tj(τ)), pj,y(tj(τ))) if k �= j.

Under these assumptions, the expression of the reciprocity gap functional for the sequence of
functions fn, gn, and hn are simplified as follows:

Rφ(fn)(τ) = −n
K∑
k=1

(mk,x(tk(τ)) + imk,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−1

+
K∑
k=1

O(|p′
k|/c) +O(ε), n = 1, 2, · · · , (17)

Rφ(gn)(τ) = n
K∑
k=1

(m′
k,x(tk(τ)) + im′

k,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−1,

+

K∑
k=1

O(|p′
k|/c) +O(ε), n = 1, 2, · · · (18)

Rφ(hn)(τ) = 2n(n− 1)

K∑
k=1

(mk,x(tk(τ)) + imk,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−2

×pk,z(tk(τ))

+
1

c

K∑
k=1

(m′
k,x(tk(τ)) + im′

k,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n

+
n

c

K∑
k=1

(m′
k,x(tk(τ)) + im′

k,y(tk(τ)))

×(pk,x(tk(τ)) + ipk,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−1

+
K∑
k=1

O(|p′
k|/c) +O(ε), n = 2, 3, · · · . (19)

We consider a reconstruction procedure for dipole sources based on these expressions.

2.3 Identification of the number of dipole sources

Firstly, we consider the identification of the number K of dipole sources from Rφ(fn). Neglecting

small terms
∑K

k=1O(|p′
k|/c) +O(ε), R(fn) is approximated by

R(fn)(τ) = −n
K∑
k=1

(mk,x(tk(τ)) + imk,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−1. (20)

For each L ∈ N and μ ∈ N, we define the square matrix HL,μ ∈ C
L×L by

HL,μ(τ) =
(
(Hμ)α,β

)
=

(
− 1

(μ+α+β−2)Rφ(fμ)
)
, (21)
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where α, β denote the row and column indeces, respectively. Using the same discussion for point
source model in [7], we obtain ⎧⎨

⎩
detHL,1 �= 0, for L ≤ K(τ),

detHL,1 = 0, for L > K(τ),
(22)

where K(τ) is the number of dipole sources which satisfy |mk(tk(τ))| �= 0 for every instant τ .
Hence, we can identify the number of dipole sources which do not vanish at instant tk(τ) using
Rφ(fn)(τ). Hereafter, we denote K(τ) by K for simplicity.

2.4 Reconstruction of locations pn and moments mn

Next, we consider the reconstruction of locations and moments of dipole sources using reciprocity
gap functionals Rφ(fn), Rφ(gn) and Rφ(hn). We reconstruct these parameters by the following
three steps:

Step 1. Reconstruct x and y components of the location of dipole sources, i.e. pk,x(tk(τ)) and
pk,y(tk(τ)), and reconstruct dipole moments mk(tk(τ)) using reciprocity gap functionals
Rφ(fn)(τ), n = 1, 2, · · · , 2K.

Step 2. Estimate m′
k(tk(τ)) using Rφ(gn)(τ), n = 1, 2, · · · ,K, where m′

k denotes the derivative
in time of mk.

Step 3. Reconstruct z component of location of each dipole source, i.e. pk,z(tk(τ)), usingRφ(hk)(tk(τ)),
n = 2, 3, · · · ,K + 1.

We describe the detail of each step.

Step 1.
Let us introduce complex numbers

ξk = ξk(tk(τ)) ≡ pk,x(tk(τ)) + ipk,y(tk(τ)), k = 1, 2, · · · ,K, (23)

ak = ak(tk(τ)) ≡ mk,x(tk(τ)) + imk,y(tk(τ)), k = 1, 2, · · · ,K. (24)

Then the equation (17) is rewritten as

Rφ(fn)(τ) = −n
K∑
k=1

akξ
n−1
k +

K∑
k=1

O(|p′
k|/c) +O(ε), n = 1, 2, · · · . (25)

Assume that ak �= 0 for k = 1, 2, · · · ,K. Then, and neglecting smaller terms and using same
discussions for point source model[7], we can reconstruct ξn, n = 1, 2, · · · ,K as eigenvalues of
H−1

K,1HK,2 , where HL,μ is defined in (21). After the reconstruction of ξk, k = 1, 2, · · · ,K, we can
reconstruct ak, k = 1, 2, · · · ,K as a solution of the linear equation

K∑
k=1

ξn−1
k ak = − 1

n
Rφ(fn)(τ), n = 1, 2, · · · ,K. (26)

We note that the equation (26) is uniquely solvable since we assumed that (pk,x(tk(τ)), pk,y(tk(τ))) �=
(pj,x(tj(τ)), pj,y(tj(τ))) for k �= j.

－32－



Step 2.
Under the assumption thatmk,z(t) ≡ 0, the reciprocity gap functionalsRφ(gn) can be expressed

as
Rφ(gn)(τ)

= n

K∑
k=1

(m′
k,x(tk(τ)) + im′

k,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−1

+

K∑
k=1

O(|p′
k|/c) +O(ε)

= n
K∑
k=1

a′k(tk(τ))ξ
n−1
k +

K∑
k=1

O(|p′
k|/c) +O(ε), n = 1, 2, · · · .

(27)

Neglecting smaller terms O(|p′
k|/c) + O(ε) and since we have already reconstructed parameters

pk,x(tk(τ)) and pk,y(tk(τ)), we can uniquely estimate a′k(tk(τ)), i.e. m′
k,x(tk(τ)) and m′

k,y(tk(τ))
from Rφ(gn)(τ), n = 1, 2, · · · ,K.

Step 3.
Under the assumptionmkz(t) ≡ 0 and neglecting smaller terms in the reciprocity gap functionals

Rφ(hn), we obtain

Rφ(hn)(τ)

= 2n(n− 1)

K∑
k=1

(mk,x(tk(τ)) + imk,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−2

×pk,z(tk(τ))

+
1

c

K∑
k=1

(m′
k,x(tk(τ)) + im′

k,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n

+
n

c

K∑
k=1

(m′
k,x(tk(τ)) + im′

k,y(tk(τ)))

×(pk,x(tk(τ)) + ipk,y(tk(τ)))(pk,x(tk(τ)) + ipk,y(tk(τ)))
n−1

= 2n(n− 1)

K∑
k=1

ak(tk(τ)))ξk(tk(τ))
n−2pk,z(tk(τ))

+
1

c

K∑
k=1

a′k(tk(τ)))ξk(tk(τ))
n +

n

c

K∑
k=1

a′k(tk(τ))ξk(tk(τ))ξk(tk(τ))
n−1, n = 2, 3, · · · ,

(28)

In (28), only pk,z(tk(τ)), k = 1, 2, · · · ,K are unknown. From (28), we can derive the following linear
equation for qk = qk(tk(τ)) ≡ pk,z(tk(τ))ak(tk(τ)), k = 1, 2, · · · ,K:

K∑
k=1

ξn−2
k qk =

1

2n(n− 1)
(Rφ(hn)(τ)− dn(τ)) , (29)

where

dn(τ) =
1

c

K∑
k=1

a′k(tk(τ))ξk(tk(τ))
n +

n

c

K∑
k=1

a′k(tk(τ))ξk(tk(τ))ξk(tk(τ))
n−1,

n = 2, 3, · · · .
(30)

Therefore, we can uniquely estimate qk, k = 1, 2, · · · ,K from Rφ(hn)(τ), n = 2, 3, · · · ,K + 1 and
obtain pk,z(tk(τ)) = qk(tk(τ))/ak(tk(τ)).
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3 Numerical Experiments

In this section, we show some numerical experiments for our reconstruction method. We consider
the case where the domain Ω = {r | |r| = 1}, and the wave propagation speed c = 1.

We set the number of dipole sources K = 3. Each dipole source moves as following, and the
trajectories of locations of dipole sources are shown in Figure 2.

Dipole 1: Moves on a line segment.

Dipole 2: Moves on a ellipsoid-like shape.

Dipole 3: Fixed on (0.5, −0.2, 0.3).

In our experiments, moving speed of dipole sources is restricted as max
|p′

k(t)|
c = 15%. Moment of

each dipole changes in time as shown in Figure 3. To give the observation data, we solve the initial-
and boundary-value problem (1) by boudary integral equation method. We give observation data
on 384 points on Γ with time step δt = 0.1. To simulate practical observation condition, we add
0.0%, 1.0%, 5.0% and 10.0% random noise to observation data.
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Figure 2: Trajectories of dipole sources.
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Figure 3: Time-profiles of moments of dipole sources.
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Firstly, we show the reconstruction result for noise-free case. In Figure 4, we give the trajectories
of reconstructed dipole sources. We displayes the time-profile of location of each reconstructed
dipole source in Figures 5 and 6, and dipole moment in Figure 7. From these figures, we may
understand that our method gives precise reconstruction for both locations and moments of dipole
sources.

Next, we examine our method for noisy observation cases. Figures 8-11, 12-15, 16-19 show
the reconstruction results of trajectories, time-profile of locations, and moments of dipoles for
observations with 1.0%, 5.0% and 10.0% noise cases, respectively. Also Table 1 shows the errors of
reconstruction results for noisy observation cases. In Table 1, we use average of absolute values for
errors of locations, and relative errors with respect to L2-norm for errors of dipole moments. From
Figures 8-11, 12-15, 16-19 and Table 1, we consider that our method gives reliable reconstruction
results if noise is smaller than 5%, but noise is larger than 10%, the reconstruction result becomes
bad.

Table 1: Errors of reconstruction results from observations with various noises.

Noise dipole 1 dipole 2 dipole 3

0.0 % location 0.0260 0.0360 0.0250
moment 14.6 % 12.7 % 26.6 %

1.0 % location 0.0264 0.0387 0.0254
moment 14.1 % 12.7 % 26.8 %

5.0 % location 0.0328 0.0648 0.0758
moment 16.6 % 16.2 % 42.4 %

10.0 % location 0.0462 0.0922 0.0706
moment 23.3 % 21.4 % 45.0 %

4 Conclusions and open problems

In this report, we consider a reconstruction method for slowly-moving dipole sources in three
dimensional scalar wave equation. We apply the reciprocity gap functional for three types of
functions, and propose a procedure to reconstruct parameters of dipole sources. We examine
our reconstruction method by some numerical experiments, and find that our method gives good
estimates of locations and moments of dipole sources under noisy observation condition.

We have many open problems for our problem and method as shown in below:

• Remove an assumption that dipoles move slowly.

• Remove an assumption that moments of dipoles have no z−components.
• Limited aperture cases (i.e., we observe ∂u/∂ν on Γu ⊂ Γ).

• Extend results to reconstruct quadrapoles.
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Figure 5: Reconstruction results of time-profiles of locations of dipole sources p1(t1(τ)) from noise-
free observations.
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Figure 6: Reconstruction results of time-profiles of locations of dipole sources p2(t2(τ)) and
p3(t3(τ)) from noise-free observations.
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Figure 7: Reconstruction results of time-profiles of moments of dipole sources from noise-free
observations.
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Figure 8: Reconstruction results of trajectories of dipole sources from observations with 1.0% noise.
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Figure 9: Reconstruction results of time-profiles of locations of dipole sources p1(t1(τ)) from ob-
servations with 1.0% noise.

－43－



-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  5  10  15  20  25  30  35  40

  

τ

p2,x(t2(τ))(Estimated)

p2,x(t2(τ)) (Actual)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  5  10  15  20  25  30  35  40

  

τ

p2,y(t2(τ)) (Estimated)

p2,y(t2(τ)) (Actual)

(a) p2,x(t2(τ)) (b) p2,y(t2(τ))

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  5  10  15  20  25  30  35  40

  

τ

p2,z(t2(τ)) (Estimated)

p2,z(t2(τ)) (Actual)

(c) p2,z(t2(τ))

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25  30  35  40

  

τ

p3,x(t3(τ))(Estimated)

p3,x(t3(τ)) (Actual)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0  5  10  15  20  25  30  35  40

  

τ

p3,y(t3(τ)) (Estimated)

p3,y(t3(τ)) (Actual)

(d) p3,x(t3(τ)) (e) p3,y(t3(τ))

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  5  10  15  20  25  30  35  40

  

τ

p3,z(t3(τ)) (Estimated)

p3,z(t3(τ)) (Actual)

(f) p3,z(t3(τ))

Figure 10: Reconstruction results of time-profiles of locations of dipole sources p2(t2(τ)) and
p3(t3(τ)) from observations with 1.0% noise.
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Figure 11: Reconstruction results of time-profiles of moments of dipole sources from observations
with 1.0% noise.
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Figure 12: Reconstruction results of trajectories of dipole sources from observations with 5.0%
noise.
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Figure 13: Reconstruction results of time-profiles of locations of dipole sources p1(t1(τ)) from
observations with 5.0% noise.
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Figure 14: Reconstruction results of time-profiles of locations of dipole sources p2(t2(τ)) and
p3(t3(τ)) from observations with 5.0% noise.
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Figure 15: Reconstruction results of time-profiles of moments of dipole sources from observations
with 5.0% noise.
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Figure 16: Reconstruction results of trajectories of dipole sources from observations with 10.0%
noise.
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Figure 17: Reconstruction results of time-profiles of locations of dipole sources p1(t1(τ)) from
observations with 10.0% noise.
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Figure 18: Reconstruction results of time-profiles of locations of dipole sources p2(t2(τ)) and
p3(t3(τ)) from observations with 10.0% noise.
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Figure 19: Reconstruction results of time-profiles of moments of dipole sources from observations
with 10.0% noise.
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Abstract
The article reviews methods for image reconstruction from projections (inverse 

problems) in emission tomography with introducing medical imaging, especially 

neuroimaging, and an overview of emission tomography.

Key words - emission tomography, positron emission tomography, single photon 

emission computed tomography, inverse problem

1   Introduction
Emission tomography is a medical imaging technique based on the tracer principle by 

George de Hevesy who got Nobel Prize in Chemistry 1943. It can utilize ionizing radiation emitted 

by radiotracers injected into the body specifically targeting molecular pathways in tissue in vivo. 

Positron emission tomography (PET) and single photon emission computed tomography (SPECT) 

are representative examples of emission tomography and widely used as non-invasive diagnostic 

imaging in clinical medicine. Photons emitted from the radiotracer in the body are detected by the 

detectors as independent events in SPECT and, in PET, the two photons, which are detected by the 

detectors in coincidence, from the annihilation of positrons originally emitted from the radiotracer 

are the basis of image formation. The image reconstruction process from projections in emission 

tomography is an inverse problem for the photon transport equation. The main advantage of PET and 

SPECT is the ability to provide information about regional tissue function, which usually precedes 

structural changes measured by magnetic resonance imaging (MRI) or computed tomography (CT) 
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in the course of the disease. Clinical applications of PET and SPECT are found in oncology, 

neurology, psychiatry, cardiology, and so on and play an important role in malignant tumor detection, 

disease diagnosis, and treatment strategy. Therefore, further advances of emission tomography not 

only in instrumentation for data collection but also in more effective methods for solving the inverse 

problem from the measured data, can improve patient outcomes.

Photons emitted from radiotracers undergo a number of interactions with matter. In the 

range of PET and SPECT, emitted photon interactions with matter occur in the following three ways: 

photoelectric effect, Compton scattering, and Rayleigh scattering. The majority of primary emitted 

photons are either completely absorbed without reaching the detectors or deviate from their original 

emission directions. It causes events to be either lost or misplaced, which distorts the projection data 

and degrades the quantitative accuracy of reconstructed images. Thus, these attenuation and 

scattering effects make the image reconstruction process in emission tomography a difficult ill-posed 

inverse problem.

The first part of the article briefly introduces medical imaging, especially neuroimaging. In 

the next part, an overview of emission tomography including PET and SPECT is described. The last 

part reviews methods for imaging reconstruction from projections in emission tomography.
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2 Introduction to medical imaging and neuroimaging
Medical imaging is widely used not only for a clinical medicine but for a basic research. It 

can also be applied not only for human but for animal. Many medical imaging methods are 

non-invasive and various methodologies have been developed for target organs such as brain.

Neuroimaging depicts not only the structure but also the function of the nervous system, 

including brain. Neuroimaging falls into two broad categories:

1. Structural imaging

2. Functional imaging.

Magnetic resonance imaging (MRI), and computed tomography (CT) are the representatives of 

structural imaging. Positron Emission Tomography (PET), single photon emission CT (SPECT),

functional MRI (fMRI), and functional near-infrared spectroscopy (fNIRS) are the representatives of 

functional imaging. Figure 1 shows various kinds of current neuroimaging not only in humans but 

also in small animals.
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Figure 1. Various kinds of current neuroimaging in humans and animals
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CT is a structural imaging method that employs computer-based tomographic 

reconstruction to delineate bodily structures based on their ability to block an x-ray beam. CT

examinations are preferable for patients who are claustrophobic or unable to remain still for longer 

durations, as is required for MRI imaging. On the other hand, MRI provides higher resolution to 

underlying tissue structure and water content, which allows for the detection of subtle anatomical 

and vascular changes associated with dementia. However, MRI is contraindicated in patients who 

have any ferromagnetic objects, are claustrophobia, or unable to remain still for longer durations.

Table 1 shows a comparison chart between CT and MRI. Figure 2 shows representative human brain 

MRI.

Table 1. A comparison chart between CT and MRI.
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Figure 2. Representative human brain MRI.

2.2 PET and SPECT
In contrast to CT and MRI, PET and SPECT are chemical or functional imaging 

techniques. Table 2 shows a comparison chart between PET and SPECT. There are a lot of clinical 

applications in PET and SPECT. For example, using a radio-labeled analogue of glucose, 
18F-fluorodeoxyglucose (18F-FDG), PET depicts glucose metabolism distribution. Also using a 

radio-labeled tracer, 123I-isopropyl-iodoamphetamine (123I-IMP), SPECT depicts cerebral blood flow 

distribution. They are usually used for diagnosing dementia, for example. Figure 3 shows a 

representative case of cerebral blood flow SPECT imaging in Alzheimer's disease and figure 4 also 

shows a representative case of cerebral blood flow SPECT imaging in dementia with Lewy bodies.

Figure 5 shows a difference of reductions in cerebral blood flow between Alzheimer's disease and 

dementia with Lewy bodies. Thus, SPECT imaging reveals remarkable different patterns in regional 

cerebral blood flow between two representative causes of dementia, while structural changes by MRI 

or CT do not because functional changes usually precede structural ones. Figure 6 shows a 

comparison between SPECT (left) and PET (right) in a patient with Alzheimer's disease. Spatial 

resolution in PET is usually higher than that in SPECT.

Recent advances in PET and SPECT tracers, pathological biomarkers can be imaged by 

PET. The human amyloid PET imaging by 11C-PiB was reported in 2004 by Klunk WE et al. 

Extracellular deposits of amyloid plaques are specific pathological findings in Alzheimer's disease
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and amyloid plaques precedes clinical symptoms more than 10 years ago. Therefore, non-invasive 

detection of amyloid plaques can be useful for early diagnosis and early intervention. Figure 7 shows 

representative amyloid plaque-negative (left) and -positive (right) cases by human brain amyloid 

PET by 11C-PiB. We can easily differentiate frontotemporal lobar degeneration, which is one of the 

common causes of dementia, from Alzheimer's disease by amyloid PET imaging. Thus, we can 

currently estimate brain pathology non-invasively.

Table 2. A comparison chart between PET and SPECT.
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Figure 3. Cerebral blood flow images by 123I-isopropyl-iodoamphetamine (123I-IMP) SPECT in 

Alzheimer's disease. The patient was 81 year-old female. She developed a symptom of forgetfulness 

six years ago. Her mini-mental state examination (MMSE) score was 18/30. Regional cerebral blood

flow in the temporal and parietal lobes were remarkably reduced.

Figure 4. Cerebral blood flow images by 123I-isopropyl-iodoamphetamine (123I-IMP) SPECT in 

dementia with Lewy bodies. The patient was 70 year-old female. She developed symptoms of tremor, 

bradykinesia, and rigidity 12 years ago, visual hallucination five years ago, and forgetfulness two 
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years ago. Her mini-mental state examination (MMSE) score was 26/30. Regional cerebral blood 

flow in the occipital and parietal lobes were remarkably reduced.

Figure 5. A difference of reductions in cerebral blood flow between Alzheimer's disease (left) and 

dementia with Lewy bodies (right).

Figure 6. A comparison between SPECT (left) and PET (right) in a patient with Alzheimer's disease.

Spatial resolution in PET is higher than that in SPECT.
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Figure 7. Representative amyloid plaque-negative (left) and -positive (right) cases by human brain 

amyloid PET by 11C-PiB. The PET images were overlaid on a structural MRI. We can easily 

differentiate frontotemporal lobar degeneration, which is one of the common causes of dementia, 

from Alzheimer's disease by amyloid PET imaging.
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3   Emission tomography
Several forms of electromagnetic radiation (EMR) are used in medical imaging (Figure 8).

Other new forms of EMR can be used for innovative imaging technology. Emission tomography is a 

medical imaging technique based on ionizing radiation (gamma-ray). It is often called "nuclear 

medicine". The fundamental principles of emission tomography are based on the history of nuclear 

physics, especially around the early 20th century (Figure 9). The X-ray was discovered by Wilhelm 

Conrad Röntgen in 1895 (Novel Prize in 1901). The natural radioactivity was discovered by 

Antoine-Henri Becquerel in 1896 (Novel Prize in 1903). The electron was discovered by Joseph 

John Thomson in 1897 (Novel Prize in 1906). The alpha particle was discovered by Ernest 

Rutherford in 1899 (Novel Prize in 1908). The positron was discovered by Carl David Anderson in 

1932 (Nobel Prize in 1936). The neutron was discovered by James Chadwick in 1932 (Nobel Prize 

in 1935).

Emission tomography is a medical imaging technique based on the tracer principle by 

George de Hevesy (1885 - 1966) who got Nobel Prize in Chemistry 1943 "for his work on the use of 

isotopes as tracers in the study of chemical processes". Radioactive elements have identical chemical 

properties as the nonradioactive form (Figure 10). Radioactive compounds participate in organism's 

physiological processes in the same way as the non-radioactive substances. It can utilize ionizing 

radiation emitted by radiotracers injected into the body specifically targeting molecular pathways in 

tissue in vivo (Figure 11). A radioactive tracer is a chemical compound in which one or more atoms 

have been replaced by a radioisotope. Because it is applied in minimal amount, it has no 

pharmacologic effect in vivo. It can also be used to explore the mechanism of biochemical reactions 

by tracing the path that the radioisotope follows from reactant to product. For example, 370 MBq of 
11C-tracer necessary for a brain scan with 11C-Raclopride (D2-receptor ligand) has no pharmacologic

effect in vivo because it corresponds only to 100 picogram total mass injected.

Positron emission tomography (PET) and single photon emission computed tomography 

(SPECT) are representative examples of emission tomography and widely used as non-invasive 

diagnostic imaging in clinical medicine. Table 3 shows representative PET & SPECT tracers for 

human brain. Not only cerebral blood flow and metabolism but also neurotransmitter functions and 

neuropathological changes can be depicted non-invasively. PET and SPECT are functional imaging 

techniques, which provide information about metabolic and physiological processes. The 

reconstructed images reveal radiopharmaceutical distribution map and selected metabolic processes 

become visible. They are widely used in clinical routine as nuclear medicine in neurology, oncology,

cardiology, and so on.
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Figure 8. Electromagnetic spectrum for medical imaging. PET and SPECT use gamma-rays.

History of nuclear physics
X- 1901)

-

Figure 9. History of nuclear physics. All photos were cited from Wikipedia 

(https://en.wikipedia.org/wiki/Wikipedia).
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Figure 10. Radioactive elements (right) with identical chemical properties as the nonradioactive 

form (left).

Figure 11. Gamma-decay of selected radioactive elements can be used to track the flow and 

distribution of important substances in the body. Illustrations of the middle column were from 11. 

http://intranet.tdmu.edu.te.ua/data/kafedra/internal/pediatria2/classes_stud/en/med/lik/ptn/Propaedeu

tic%20pediatrics/3/Theme%2010%20%20Urinary%20system%20in%20children.htm.
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Table 3. PET & SPECT tracers for human brain. Tracers enclosed in red rectangles are clinically 

available in Japan. The table was modified by Oishi N 2011.

3.1 Principle of SPECT
In SPECT, data collection is based on the recording of photons detected independently 

from each other. Single-photon detection relies on the use of physical collimation in order to obtain 

directional information for the incident photons (Figure 12).

The following three types of decay are considered in SPECT tracers:

1. isomeric transition

2. electron capture

3. 
67Ga, 99mTc, 123I, 111In, 201Tl, and 131I are important radiotracers for SPECT. The first gamma camera 

called Anger camera (NaI-scintillator and photo multipliers) was invented by Hal Oscar Anger 

(1920-2005) in 1957. NaI (Tl), CsI, CsF, CaF2 (Eu), BaF2, BGO, CdWO4, LaCl3 (Ce), LaBr3 (Ce), 

YAP are important gamma scintillator for SPECT.
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Figure 12. Detection of photons is performed by a gamma camera comprising a single or multiple 

detector heads.

3.2 Principle of PET
-rays (Figure 

13). It provides biochemical information about a human body by using positron-emitter-labeled 

pharmaceuticals. It also has higher performance for resolution and quantitative accuracy compared 

with a SPECT system.

The positron is the anti-particle of electron and its charge is positive (m = 9.1x10-28 g ; e = 

4.8x10-19 C). Positrons are emitted from unstable nuclei which are proton-rich. A positron (e+) and a 

neutrino e) are emitted :

p n + e+ + e

A positron travels a short distance and is annihilated with an electron in a substance. The 

positron-range depends on the positron energy. The positron-range contributes uncertainty to the 

localization of the originating nucleus and imposes a lower limit in the spatial resolution of PET.

Positron range increases when increasing initial energy of the positron. When a positron is combined 

with an electron, they are annihilated and produce two 511- -rays. They are emitted in the 

direction of around 180 degrees to each other. A deviation from the strict 180-degree angle between 

the two photons contributes a further uncertainty to the localization of the annihilation, which can 

reduce spatial resolution. The reduction depends on the distance between the two coincidence 

detectors. 11C, 15O, 18F, 64Cu, 68Ga, 76Br, 124I, 89Ze are important radionuclides for PET. The 

scintillation detectors for PET convert radiation to visible light, detected by PMT, SiPMT or APD-,

PIN-diodes. Semiconductor detectors (CdTe or ZnCdTe) are also used for PET. NaI (Tl), BaF2, BGO, 

LSO are examples of gamma scintillator for PET. When two photons are detected by two opposing 

detectors simultaneously (i.e. within a narrow time interval of typically 4–12 ns, state-of-the-art 
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interval of a 200ps–2ns), their originating positron annihilation event is placed along the volume 

defined by the two detectors, which is called a line of response (LOR). The following four types of 

possible coincidences in PET are considered: (Schibli R. 2013) (Figure 14)

1. True coincidences

2. Scatter coincidences

3. Random coincidences

4. -coincidences

In true coincidences, the line drawn between the two hit detector elements for that event passes 

through the point of origin. Scatter coincidences, where one or both 511-keV photons undergo 

Compton scatter, random coincidences, which occur when two distinct radionuclei contribute one 

detected photon, and -coincidences, which occur when a 511 keV photon and a -photon are 

detected, are undesirable coincidences for PET. These photons can interact with electrons of the 

surrounding medium, which causes either the photoelectric absorption or scattering of the photons. 

Photons are detected by tracking their energy loss inside the crystals because of photoelectric 

absorption and Compton-scattering events, discarding those events that are outside a given energy 

range. However, photons can transfer their energy after arbitrary number of bounces, possibly 

occurring in several crystals away from their incident location known as inter-crystal scattering, or 

simply leave the system unnoticed, described by detector sensitivity. The system registers a 

coincidence hit if two photons are detected in the given time window and energy range.

The following physical effects should be considered for PET reconstructions:

1. Positron range

2. Acolinearity of the annihilation -ray

3. Detector efficiency non-uniformity

4. Crystal size (Sampling interval)

5. Statistical Error

6. Counting Loss

7. Detector Penetration (Depth of Interaction)

The positron range results in positional inaccuracies in tomography reconstruction. Because the 

mean free-path length of positrons is typically in a range of up to a few millimeters in tissues, 

positron range is one of the most important limiting factors of the resolution in PET. The spatial 

density on Cartesian axis of the annihilation of a positron born in the origin can be approximated 

by the following:

Parameters , , depend on the actual radiotracer (Levin CS, 1999). The material of the object, 

and can be determined by fitting this function onto data measured or simulated e.g. with a 

Monte-Carlo simulation-based open source software named GATE (Jan S, 2004; 
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http://www.opengatecollaboration.org) (Milan M, 2014). Because of the conservation of momentum, 

the initial directions of the photons have an angular uncertainty, known as acollinearity. The 

acollinearity angle is a Gaussian distribution that has been measured to approximately 0.5 degrees 

FWHM, which introduces a 2-3 mm and a 0.3-0.4 mm positional inaccuracy to human and small 

animal PET imaging, respectively. The image blur due to the acollinearity angle can be more severe 

when the inner diameter of the PET ring is increased (Burdette DJ, 2009; Milan M, 2014).

 
Figure 13. Positron emission and annihilation (left) and detection of annihilation photons by two 

opposing detectors in coincidence (right). (Livieratos L. 2012)

Figure 14. Four types of possible coincidences in PET (Schibli R. 2013)
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4 Inverse problems in emission tomography
The image reconstruction process from projections in emission tomography is an inverse 

problem for the photon transport equation if electromagnetic wave properties such as polarization 

can be ignored. Photons emitted from radiotracers undergo a number of interactions with matter. In 

the range of PET and SPECT, emitted photon interactions with matter occur in the following three 

ways: photoelectric effect, Compton scattering, and Rayleigh scattering. The majority of primary 

emitted photons are either completely absorbed without reaching the detectors or deviate from their 

original emission directions. It causes events to be either lost or misplaced and distorts the projection 

data and degrades the quantitative accuracy of reconstructed images. Thus, these attenuation and 

scattering effects make the image reconstruction process in emission tomography a difficult ill-posed 

inverse problem.

The advent of computed tomography (CT) in 1973 was the beginning of the new

mathematical discipline of imaging. It leads to a mathematical sophistication that was unheard of in 

imaging before. Before inverse problems in emission tomography, those in computed tomography 

are reviewed.

4.1 Inverse problems in CT
Allan Cormack reinvented it for tomography in 1963. Cormack proposed using Radon 

transform, which was invented in 1917 for pure mathematical reasons, to reconstruct the density of 

the body from X-ray images from different directions and won the Nobel Prize in Medicine in 1979. 

He gave a mathematical formula to do the reconstruction and implemented his ideas by building and 

testing a prototype CT scanner. Godfrey Hounsfield shared the prize for his independent work 

deriving an algorithm and making a medical CT scanner.

The simplest mathematical model of CT assumes that the scanner measures the line 

integrals of the absorption coefficient ( ). This gives rise to the Radon transform:

and the mathematical problem is to invert (Natter F. 2006). In principle, this was solved by 

Radon's 1917 inversion formula

where is the backprojection (the adjoint of ),

－72－



and the composition of the derivative and the Hilbert transform (Natter F. 2006):

CT is formulated as an inverse problem for the photon transport equation. Introducing the density ( , ) of the particles at  travelling in direction  we have in ×
and, in the absence of exterior radiation,

with the exterior normal at . It is a reasonable problem that admits a unique solution 

under natural conditions. The inverse problem of CT consists in finding from

The inverse problem reduces immediately to the Radon transform since

(Natter F. 2006)

The photon transport equation ignores such electromagnetic wave properties as 

polarization, and such particle properties as inelastic collisions although it is generally sufficient to 

describe the interaction of electro-magnetic radiation in tissue for many medical imaging modalities.

It needs several following assumptions:

1. The system is assumed to be steady-state.

2. Effects of scatter and diffraction are assumed to be zero.

3. Emissions from internal sources are assumed to be zero.

4.2 Inverse problems in SPECT
SPECT is also formulated as an inverse problem for the photon transport equation. 

Introducing the density ( , ) of the particles at  travelling in direction  with the 
attenuation ( ), we have in ×

(4.2.1)
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(4.2.2)

A radiotracer is injected and the radiation is measured outside the body in a tomographic fashion. We

seek the distribution ( ) of the radiopharmaceutical agent. Two following inverse problems are 

proposed (Natter F. 2006):

Inverse problem 1: Find and from ( , ), , .

Inverse problem 2: Assume to be known. Find from ( , ), , .

The inverse problem 1 is non-linear. It is not uniquely solvable. However, if is modelled by a few 

parameters, these parameters can be determined in favorable circumstances (Natter F. 2006). The 

inverse problem 2 (a so-called inverse source problem) is linear. It corresponds to the case in which 

the attenuation of the body is known. The inverse problem 2 reduces to the attenuated Radon 

transform

(4.2.3)
since the solution of (4.2.1), (4.2.2) is

which is just a reparameterization of (4.2.3) (Natter F. 2006). If is constant on the support of ,

an inversion formula for has been known for a long time. However, it has been an open problem 

whether is always injective for about 20 years. It was an important breakthrough that Novikov 

recently gave an explicit formula for the inverse of for arbitrary Hölder continuous (Novikov 

RG, 2000; 2002). admits an explicit inversion formula very similar to Radon's inversion 

formula: It = , then

where is the Hilbert transform, = 1 2 ( + ) and  is the (weighted) backprojection

This formula was obtained by Novikov in 2000. Natterer later supplied a simpler proof of Novikov’s 

formula (Natterer F, 2001). Novikov also proved injectivity for the attenuated Radon transform with 

the angle variable restricted to an arbitrarily small open set (Novikov RG, 2002). The Novikov's 

explicit inversion formula was applied not only to parallel beam geometries but also nonparallel ones, 

which are often used in the current SPECT scanners (Li T, 2005; Boman J. 2004; Natterer F. 2006).
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4.3 Inverse problems in PET
Photons can interact with electrons of the surrounding medium, which results in either the 

absorption or scattering of the photons. Because the mean free- -photons inside 

tissues is comparable to the diameter of the human chest (it is 10 cm in water for a 511 keV photon), 

accurate attenuation and scattering models become crucial especially for human PET: a roughly 30–

50% of the photons get scattered before reaching the detectors, depending on the scanner geometry 

and the size of the subject (Burdette DJ, 2009; Milan M, 2014). To describe photon–volume 

interaction, it is considered how the photons go through participating media. Let us consider the 

radiant intensity on a linear path of equation ( )= + . The change of radiant intensity on 
differential length d and of direction depends on the following different phenomena (Burdette 

DJ, 2009; Milan M, 2014):

1. Absorption

2. Out-scattering

3. Emission

4. In-scattering

1. Absorption

The intensity is decreased if photons collide with the electrons or atomic cores and are absorbed due 

to the photoelectric effect. The effect is proportional to the number of photons entering the path, i.e. 

the intensity and the probability of this type of collision. If the probability of such collision in a unit 

distance is , called absorption cross section, then the probability of collision along distance d is d . Thus, the total intensity change due to absorption is d . The probability of the 
absorption due to the photoelectric effect depends on the material (grows rapidly with the atomic 

number) and is inversely proportional to the cube of the photon energy:

where = ( )  is the incident photon energy relative to the energy of the electron. 
is the rest mass of the electron, is the speed of light, and = 511 keV is the energy of the 

resting electron (Burdette DJ, 2009; Milan M, 2014).

2. Out-scattering

The radiation is scattered out from its path if photons collide with the material and are reflected after 

collision. The effect is proportional to the number of photons entering the path, and the probability 

of such type of collisions in a unit distance, which is described by the scattering cross section .

The total out-scattering term is d (Burdette DJ, 2009; Milan M, 2014).
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3. Emission

The intensity can be increased by the photons emitted by the medium. This increase in a unit 

distance is expressed by the emission density  . We usually assume that the emission is 
isotropic, i.e. it is independent of the direction (Burdette DJ, 2009; Milan M, 2014).

4. In-scattering

Photons originally flying in a different direction can be scattered into the considered direction. The 

expected number of scattered photons from differential solid angle d equals to the product of 

the number of incoming photons and the probability that a photon is scattered in distance d , and the 

conditional probability density that the photon changes its direction from solid angle d to 

provided that scattering happens. The conditional probability density is called the phase function ( , ), which depends on the angle between the incident and scattered directions:

Taking into account all incoming directions of a sphere, the radiance increase due to in-scattering 

is:

(Burdette DJ, 2009; Milan M, 2014).

There are two types of scattering during photon traveling:

1. Rayleigh scattering

2. Compton scattering

1. Rayleigh scattering

If the photon energy does not change during collision, i.e. elastic scattering, which happens when the 

photon collides with an atomic core or a base state, not excited electron, then the scattering is said to 

be coherent or Rayleigh scattering. Rayleigh scattering was discovered by John William Strutt, 3rd 

Baron Rayleigh (Nobel Prize for Physics in 1904). Rayleigh scattering can be described by the 

Rayleigh phase function

if the particle size is much smaller (at least 10 times smaller) than the wavelength of the radiation 

wave, which is the case of electrons and photons less than 1 MeV energy. As typical detectors are 

sensitive in the 100–600 keV range, photons outside this range can be ignored. In this energy range 
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and typical materials like water, bone and air, Compton scattering is far more likely than Rayleigh 

scattering, thus Rayleigh scattering can be ignored (Burdette DJ, 2009; Milan M, 2014).

2. Compton scattering

If energy is exchanged between the photon and the electron during scattering, i.e. inelastic scattering, 

the scattering is said to be incoherent or Compton scattering. Compton scattering was discovered by 

Arthur Holly Compton (Nobel Prize for Physics in 1927). The energy change is defined by the 

Compton law:

where =  expresses the ratio of the scattered energy and the incident energy , and = ( )  is the incident photon energy relative to the energy of the electron. The differential 
of the scattering cross section, i.e. the probability density that the photon is scattered from direction 

to , is given by the Klein-Nishina formula :

where the proportionality ratio includes the classical electron radius and the electron density of the 

material (Burdette DJ, 2009; Milan M, 2014). Instead of using these physical parameters explicitly, 

the measured cross section of Compton scattering on energy level 511 keV, i.e. = 1 for the 
representation of the material should be used. From this, the phase function that is supposed to be 

normalized can be found as:

The energy dependence of the Compton scattering cross section can be computed from the scaling 

factor in the Klein-Nishina formula:

The ratio between ( ) and (1) is depicted as a function of relative energy (Burdette 

DJ, 2009; Milan M, 2014).

Taking into account all contributions, intensity , , of a particle flow at energy level 
satisfies an integro-differential equation:
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where ,  = ,  + ,  is the extinction parameter that is the sum of the absorption 

cross section and the scattering cross section, ,   is the source intensity, is the directional 
sphere, and are the incident and scattered photon energies, respectively. Scattered photon 

energy is equal to incident photon energy for coherent scattering. For incoherent scattering, 

the scattered and incident photon energies are related via scattering angle cos = as stated 

by the Compton law (Milan M, 2014).
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Abstract
Photoacoustic (PA) imaging in various biomedical applications were summarized, and some studies 

on the quantification of the optical properties of the biological tissues from the PA pressure wave

were reported in this presentation. The optical properties such as scattering and absorption 

coefficients depend on the concentration of the photon absorbers in the biological tissues, such as 

oxy- and deoxy-hemoglobin, which can be useful for monitoring patients’ conditions and diagnosing

cancers. We have tried to estimate the optical properties of rabbit organs in vitro. The PA pressure 

wave from the sample of organs was measured to estimate the optical properties of the organs.

Additionally, the image reconstruction of the distribution of the absorption coefficient has been tried. 

We tested the reconstruction algorithm to investigate the influences of some approximations used in 

the algorithm by some numerical simulations and phantom experiments. The effect of the 

regularization technique minimizing L1-norm of the solution was also investigated.

1 Introduction
The optical properties such as the scattering and absorption coefficients determine the light 

propagation in the biological medium which scatters and absorbs the light [1]. The optical properties 

depend on the concentration of the photon absorbers in the biological tissues, such as oxy- and 

deoxy-hemoglobin, which can be useful for monitoring patients’ conditions and diagnosing cancers. 

Biomedical optical measurement technologies such as diffuse optical tomography and optical 

topography employing near-infrared spectroscopic technique have been developed in recent years

[2,3]. The optical techniques are noninvasive and transportable so that they can be applied to various 

medical imaging and diagnoses, such as breast cancer diagnosis and monitoring brain activities

which are associated with the changes in local blood concentration [4-6].

One of the technical issues of the optical techniques is the low spatial resolution. The biological 

medium scatters light so strongly that it is difficult to locate the changes in the absorption. Compared 
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to the ultrasound imaging, the optical techniques can not image the imaging target deeply inside the 

biological medium owing to the scattering by the tissues.

On the other hand, photoacoustic (PA) imaging employing optical and ultrasound technologies 

has been studied to resolve the technical issues of the optical technique [7,8]. In the PA measurement, 

light is used to excite the PA pressure wave, which is detected by the ultrasound transducer. By 

applying the sophisticated ultrasound imaging technique, the image of the photon absorber 

generating the PA pressure wave can be obtained with higher spatial resolution.

This paper summarizes the presentation by the authors in Institute of Mathematics for Industry,

Kyushu Univiersity. In the presentation, the PA imaging in various biomedical applications were 

introduced, and the quantification of the optical properties of the biological tissues from of the 

photoacoustic (PA) pressure wave are reported. From the features of the PA pressure wave, the 

scattering and absorption coefficient of the biological tissues. The image reconstruction by using the 

equations describing the propagation of the light and PA pressure wave was discussed with 

numerical simulation and phantom experiment. The presentation slides are included at the end of this 

paper.

2 PA measurement and its applications
The PA pressure wave is generated by the irradiation of pulse laser light. The light energy absorbed 

by the biological tissues is transformed to heat. As a result, the thermal expansion of the heated 

tissue causes ultrasound referred to as the PA pressure wave propagating in the biological medium. 

Since the PA pressure wave depends on the distribution of the light energy absorbed by the tissues, 

the detected PA pressure wave contains the information about the absorption and scattering 

coefficients of the tissues. The amplitude depends on the absorbed light energy. The time of arrival 

depends on the distance between the photon absorber and the detector. Therefore the image of the 

distribution of the photon absorbers can be reconstructed from the PA signals (Slide 3).

To obtain the PA image, there are two approaches. One of the approaches is PA microscopy (PAM)

[8], which does not need image reconstruction. To obtain the microscopy image, the PA pressure 

source needs to be located. One method called acoustic-resolution PAM (AR-PAM) uses acoustic 

lens to specify which the PA wave comes from. And the other is optical-resolution PAM (OR-PAM)

which uses optical lens to specify the position of the PA pressure source (Slide 4). The spatial 

resolution of the PAM image is so high that they can image organelle (cell nucleus) and cells. But 

they cannot image deep region of the biological tissues, because the light is diffused by the tissues.

Another approach is PA computed tomography with image reconstruction based on the equations 

of light and PA pressure wave propagation [8]. In the reconstruction of the tomographic image 
image reconstruction method conventionally used in the medical ultrasoud imaging can be used

basically. One can use the circular backprojection and delay-and-sum backprojection [9] (Slide 5).
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The methods calculate the distance between the detector and the source. By adding up the PA 

amplitude in the pixel at the calculated distance, the true source position is highlighted. Xu et al. 

proposed the universal backprojection method for media with various shapes [10].  

A lot of applications of the PA imaging have been reported. Wang et al. presented the PA 

measurement methods and obtained PA images in their review article [11]. The oxygen saturations of 

the blood vessels in mouse ear are obtained by OR-PAM. Oxy and deoxy hemoglobin have different 

optical properties, so by use of two wavelength of the light, it is possible to quantify oxy and 

deoxy-hemoglobin. The blood vessels in palm are imaged by the AR-PAM. This is the tomographic 

image of the sentinel lymph node of rat stained by methylene blue [12]. The change in hemoglobin 

concentration in rat brain was imaged by PA computed tomography. Cell-nuclear images of ex vivo

and in vivo tissue were acquired with ultraviolet photoacoustic microscopy at a wavelength of 250 

nm [13]. The epithelial cells in the ex vivo lip of a mouse were imaged by Yao et al. The PA image of 

melanoma cells in a scaffold were acquired at 14 days post-seeding by Zhang et al [14].

The group in University College London succeeded in precise PA imaging of blood vessels in 

human palm and small animals by using the Fabry-Perot film ultrasound transducer and the light 

with wavelengths from 590 nm to 800 nm [15,16]. The group in National Defense Medical College 

applied PA imaging for monitoring the neurovascular bundles and cancers in prostate [17]. By 

monitoring the blood vessels neighboring to the nerve fibers during the prostatectomy, it is expected 

that the sexual function of the patient will be preserved. The imaging from organelle to organs is 

possible by photoacoustic technology [11] with appropriate wavelength of the pulse laser and 

ultrasound transducer.

 
3 Quantitative PA measurement
The PA pressure wave depends on the absorbed light energy. Therefore, the optical properties of the 

imaging target can be quantified from the detected PA pressure wave. The optical properties, such as 

the absorption and scattering coefficients depend on the constituent and concentration of the photon 

absorber such as oxy- and deoxy-hemoglobin in the imaging target [1] (Slides 7, 8). So, by the 

quantitative PA measurement, the condition of the target containing the photon absorber can be 

investigated quantitatively.

To achieve the quantitative PA measurement, the equations describe the generation and 

propagation of the PA pressure wave. The light propagation in the biological medium is the radiative 

transport of the energy. So the radiative transfer equation (RTE) describes the phenomenon in the

biological medium accurately [18-21] (Slide 9). The absorption and scattering coefficients are the 

parameters of the RTE. Some methods to approximate the light propagation are known.

Monte Carlo method approximates the light propagation statistically [22]. It tracks the 

movements of photon packets. The movement of the photon packet is determined by use of the 
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optical properties and the probability density function called the scattering phase function. Photon 

diffusion equation (PDE) is derived from the first-order approximation using spherical harmonic 

expansion of RTE [18]. When the PDE is used, the isotropic scattering and isotropic light source are 

assumed (Slide 9).

On the other hand, the propagation of the PA pressure wave is described by the PA pressure 

wave equation [8] (Slide 10). The speed of the sound in tissues is close to the speed in water. The 

source term is the absorbed light energy which is described as the product of the absorption 

coefficient and the fluence rate. The efficiency of the transform the energy to pressure is represented 

by Grüneisen parameter.

Based on the equations, we have been trying to quantify the optical properties by use of PA 

measurement, because the optical properties reflect the condition of tissues. For example, the optical 

properties of breast tissues have been reported [23-29]. And the cancer tissue has larger absorption 

coefficient owing to increase of blood concentration caused by angiogenesis. The optical properties 

can be useful for medical diagnoses (Slide 11).

There is another important reason to quantify the optical property. The amplitudes of the PA 
pressure waves from the cancers can be different even when the conditions of cancers are 

identical. The PA pressure from the cancer near the light source is large while the PA pressure from 

the cancer in deeper region is small. This is because the light intensity, which determines the energy 

absorbed by the imaging target, decreased rapidly while propagating. This means that diagnosis only 

with the amplitude of PA pressure may lead to misdiagnosis. The optical properties should be 

quantitatively evaluated in medical diagnosis by solving the inverse problem in the PA measurement

based on the equations about the light and PA pressure wave propagation (Slides 12-14).

4 In vitro approach to quantify the optical properties
To diagnose the tissue conditions, we need to know the optical properties of normal and diseased 

tissues. Additionally, the optical properties of the biological tissues are crucial to solve the forward 

process in the noninvasive image reconstruction. Therefore, we have tried a method to estimate the 

optical properties [30].

Before we tested the estimation method of the optical properties, we have examined that the 

photoacoustic pressure wave was varied by depending on the optical properties in the numerical 

simulations. The absorbed light energy distribution was calculated in the cylindrical region by Monte 

Carlo method. The circular light source was assumed. Then the PA pressure wave was simulated 

from the simulated absorbed light energy distribution. The maximum, minimum and the full width at 

half maximum of the simulated PA pressure wave were investigated. These features of the PA 

pressure wave are varied by depending on the optical properties in the cylindrical region.

In the measurement of the actual biological tissues, we made the lookup table which related the 
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features of PA signal to the optical properties. The features were the maximum, minimum and the 

temporal interval between them. The lookup table was made by measuring the liquid sample with 

known optical properties. Then, we measured the PA pressure wave from tissue sample. And we 

found the absorption and reduced scattering coefficients which minimized the difference between 

measured features and lookup table data (Slide 16).

We used the pulse laser with 532 nm wavelength. It was green light. The light illuminated the 

tissue sample pack in the sample holder via optical fiber (Slide 17). The PA pressure was detected by 

a ring shaped piezoelectric film of P(VDF-TrFE) (KF piezo-film, Kureha Corp., Tokyo, Japan)

surrounding the optical fiber. By measuring the PA pressure wave from the biological tissues 

sampled from the organs of chicken and rabbits, the absorption and reduced scattering coefficients 

were estimated (Slide 18). The reduced scattering coefficients of the chicken muscles, which 
looked white, were larger than the absorption coefficient. This result seems reasonable.

When an object looks white, it scatters the visible lights with wide range of the wavelengths strongly

(Slide 19).

On the other hand, the red tissue such as liver of the chicken had large absorption coefficient. 

The red color indicated that the object strongly absorbed the light except red light, so green light was 

absorbed strongly in this experiment. The similar results were obtained by the rabbit organs (Slide 

20). The estimation method using lookup table relating the feature of the PA pressure wave with the 

optical properties obtained the reasonable results. The precision of the method will be improved in 

future work.

5 In vivo approach to image the optical properties
By the quantitative PA tomography (QPAT), we can diagnose the tissue condition noninvasively.

QPAT reconstructs the optical properties based on light propagation model [31-37]. Currently, we 

have been testing our image reconstruction algorithm with very simple experimental setup [38-40].

Our algorithm uses 2D PDE and linearization. The algorithm will be able to reconstruct the image 

quickly enough to use in clinical practice (Slide 22).

We investigated the error caused by our image reconstruction method when it was used for 

imaging 3D medium [41]. The PA pressure was measured by the PA probe combining optical fiber 

and ring-shaped piezoelectric film like this. So the illumination and detection was carried out at 

identical position. The measurements were done at 11 positions. From the measure PA pressure, the 

changes in the absorption coefficient distribution are reconstructed to find pixel having diseased 

tissues with large absorption coefficient (Slide 23).

According to the photoacoustic wave equation, the PA pressure wave was linear to the source of 

the PA pressure wave which is the light energy absorbed by the photon absorber. The source was 

expanded about the background absorption coefficient, and the relation between the PA pressure 
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wave and the changes in the absorption coefficient from the background was linearized. The 

differential coefficient is calculated based on the 2D PDE with the finite element method [42]. To 

eliminate the background signal, the signals measured at different positions were subtracted. Then 

the set of the subtracted data was formulated as the forward equation which linearly related to the 

changes in absorption coefficient from the background. Based on the forward equation, the inverse 

problem is solved with the Tikhonov regularization (Slides 24, 25).

In the numerical simulation, the light energy absorbed by the target photon absorber was 

calculated by the 2D photon diffusion equation with squared medium and by the 3D MC simulation 

with cylindrical medium. The target photon absorber with 2-mm side and various absorption 

coefficients was placed at the depths of 5, 7, or 9 mm. And the proposed 2D PDE based linearized

image reconstruction was tried. Then, the reconstructed absorption coefficient of the photon absorber 

was investigated (Slide 26).

In the calculated distribution of the absorbed light energy calculated with both of 2D PDE and 

3D RTE, it was shown that the targeted photon absorber strongly absorbed the light energy. However, 

it can be seen that the absorbed light energy decreased more rapidly in 3D MC simulation (Slide 27).

This caused the error in the reconstructed absorption coefficient of the target. Because of the 

difference between the light propagation models with 2D PDE and 3D MC simulation, the 

absorption coefficient reconstructed from the PA pressure wave calculated with 3D MC simulation 

became smaller than that with 2D PDE, although the photon absorbers were reconstructed at the 

correct position successfully from the PA pressure waves calculated with 2D PDE and 3D MC 

simulation. The 2D PDE-based reconstruction cannot overcome the difference in light propagation 

model.

The error caused by the linearization in the algorithm was also observed in the simulation. The 

reconstructed absorption coefficient became larger when the true absorption coefficient of the target 

increased. So the reconstructed image was quantitative to some extent. But, the error in the 

reconstructed value became larger as the true value increased. The amplitude of PA pressure wave 

changes nonlinearly with large absorption coefficient. So the linearized algorithm can not recover 

large absorption coefficient correctly (Slide 28).

To check the validity of the numerical simulation, we tried to reconstruct the image of the liquid 

phantom made of water, intralipid [43] and indocyanine green (ICG). The target photon absorber 

was a tube containing ICG with higher concentration. The depth of the photon absorber was varied 

as 5, 7 and 9 mm. A Ti:sapphire laser pumped by the second harmonic of a Q-switched Nd:YAG 

laser (LT-2211, LS-2134, Lotis Tii, Minsk, Belarus) operated at 765 nm wavelength was used. The 

pulse laser light illuminated the phantom via the optical fiber which was introduced into the center of 

the ring shaped piezoelectric film P(VDF-TrFE) to detect the PA pressure wave. The illumination 

and detection were carried out at 11 positions (Slide 29).

－86－



In the reconstructed images of the phantom, the photon absorbers were reconstructed at the 

correct positions at the depths of 5, 7 and 9 mm. The deeper the photon absorber existed, the smaller 

the reconstructed value was. This result agreed with the previous numerical simulation using the 3D 

Monte Carlo simulation. The results suggested that the error in the image reconstructed by 2D 

PDE-based algorithm can be predicted and may be corrected by use of the simulation data (Slides 30,

31).

We also investigated the effect of the regularization method [44]. The sparsity regularization 

minimizing L1-norm and the Tikhonov regularization were compared. The regularization parameter 

was selected by use of L-curve [45]. Following three regularization methods were tested: (1) the 

sparsity regularization and at the corner of the L-curve, (2) the Tikhonov regularization and at 

the flat point of the L-curve where the difference in the regularization was minimized, and (3) the 

Tikhonov regularization and at the corner of the L-curve (Slide 32).

The numerical simulation was carried out. In the images reconstructed with the regularization 

methods (1) and (2), the photon absorber was clearly reconstructed. But, the artifacts which cased by 

noise were reconstructed by the method (3). The ratios of the reconstructed absorption coefficient to 

its standard deviation (SD) were examined for the cases with the absorption coefficient of 0.6, 1.1 

and 1.7 mm-1 and the cases with the depth of 5, 7, and 9 mm. Each of the regularization methods 

reconstructed absorption coefficient with small SD. The ratios of the reconstructed absorption 

coefficient to the artifacts were investigated. The method (1) with the sparsity regularization 

reconstructed smaller artifact than the others (Slides 33, 34).

In the phantom experiment, the results agreed with the numerical simulations. It was 

demonstrated that the sparsity regularization reconstructed the photon absorber with reducing the 

influence of noise effectively (Slide 35).

6 Conclusion
Photoacoustic (PA) imaging technology provides precise images in biomedical research field by 

exploiting the optical and acoustical techniques. The PA pressure wave reflects the optical properties

of the biological tissues which are useful for medical diagnoses. From the features of the PA pressure 

wave, it can be possible to estimate the optical properties. Non-invasive and quantitative PA 

tomography considering the light propagation in biological medium will support the medical 

diagnosis by quantifying the optical properties. It is important to understand that some errors 

occurred owing to the light propagation model approximations in image reconstruction algorithm.

Adequate regularization technique improves the robustness of the image reconstruction to noise.
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ABSTRACT

In this talk, we discuss integral equations method in inverse problems and the difficulties that

arise. As a model for our discussion, we choose the scattering problem from a sound soft ob-

stacle. The direct problem can be modelled by the exterior Dirichlet problem for the Helmholtz

equation satisfying some radiation condition. The corresponding inverse problem is to identify

the scatterer with some measured far-field data.

We introduce integral equations method to solve both the direct and the inverse problem. This

kind of method transforms the domain into a compact set which is beneficial both from the

theoretical and the numerical point of view. For the direct problem, on the one hand, it allows

elegant analysis as far as the unique solvability and the stability of the problem is concerned

with the power of functional analysis. On the other hand, it reduces the computational cost

by decreasing the dimension. In this case, the problem itself is converted into a system of

boundary integral equations in the framework of Fredholm integral equation of the second

kind with compact integral operators. Thus, the unique solvability of the direct problem follows

directly from the Riesz theory.

Difficulties arise when dealing with the inverse problem. In this case, there is a Fredholm

integral equation of the first kind with a compact integral operator. Formally, this is only a

little bit different from the other equations appears in the direct problem. However, the solving

of this kind of equations is ill-posed. This ill-posedness lies in the problem itself, not in the

method we use. To overcome this dilemma, we incoporate the idea of regulization.

This talk will consist of four parts: The first part is to introduce integral equations and its

solution theory. In the second part, we will briefly discuss inverse problems and ill-posed

problems which is followed by regularization theory in the third part. Finally, we will solve

the scattering problem based on the the above discussion.
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ON CURRENT DENSITY BASED IMPEDANCE IMAGING WITH
MINIMAL DATA

ALEXANDRU TAMASAN

Abstract. In this paper we survey some recent progress in conductivity imaging
that uses the magnitude of one current density field, with particular interest in the
Complete Electrode Model.

1. Introduction

In electrical impedance imaging one seeks quantitative information on the electrical
conductivity σ and the permittivity distribution inside a body. Original formulations
of the problem used boundary measurements of electric voltage potential and cur-
rents [27, 59, 9]. Due to high contrast in biological materials a renewed interest in
conductivity imaging started in mid 1980s geared by applications in the medical field
[17, 5], which soon exploded in developments on both the mathematics and engineer-
ing field. Among some of the most remarkable results on the mathematical facet of
we mention [49, 36, 8]. For an understanding on the breadth of these development we
refer to the reviews [10],[7]. By now, however, it is well understood that the problem
is severely ill-posed, where changes of the conductivity inside induce exponentially
small perturbations in the measured boundary data (inverse with the distance to the
boundary) [11], [33]. Controlled by the level of noise, the ill-posedness impose serious
limitations on the resolution of the image away from the boundary. Current research,
including the ones reviewed here, considers coupled physical phenomena to restore
the well-posedness, see, e.g., [3],[12],[2],[4].

.
Current Density Impedance Imaging (CDII) is one of the hybrid methods in which

the classical model based on Maxwell system is augmented by some interior knowl-
edge of the Current Density field J induced by the applied current (or voltage) at
the boundary. While still nonlinear, under reasonable sufficient assumptions the con-
ductivity imaging problem becomes well-posed. Currently, the interior field data is
obtained from Magnetic Resonance measurements as found by M. Joy at al. in their
pioneering work in Current Density Imaging [19, 46]. They show that the magnetic
flux density B induced by an applied current can be determined from magnetic res-
onance. For very low frequency currents (a few kHz) the effects of permittivity are
negligible, and the current density field is determined from the Maxwell equation
J = 1

μ0
∇ × B, where the magnetic permeability of the tissue μ0 may be assumed

constant and known; see Section 2 for a brief description.

AMS Subject Classification: 35R30, 35J60, 31A25, 62P10.
1
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2 A. Tamasan

The first work proposing to use the knowledge of J to image electrical conductiv-
ity appeared in [61]. In [16] a perturbation method recovers the conductivity in the
linearized case. Based on the fact that J is normal to equipotential lines, the method
in [26] recovers two dimensional conductivities. In [22] Seo et al. reduce the conduc-
tivity imaging problem to the Neumann problem for the 1-Laplacian, show examples
of non-uniqueness and non-existence, and propose the “J-substitution” algorithm to
image conductivity from knowledge of the magnitude of two current density fields
|J1|, |J2|; see also [21]. While this iterative algorithm is shown to be convergent [23],
there is no proof of independence of the starting guess. As a corollary of a result
in here, we will see that the magnitude of two currents does determine the conduc-
tivity uniquely. In [44] the problem is reduced to a first order system of PDEs and
several numerical reconstructions based on solving this system are proposed. A local
formula based on two transversal fields (6 functions) appeared in [20] (see also [15]),
and independently in [28].

Each magnetic resonance experiment determines only the component of the mag-
netic field along the longitudinal axis of the MRI gantry. To obtain the current
density field J (by taking the curl), one currently performs two further rotations of
the object, fact which limits its medical applications. To avoid such rotations, Seo
et al. have developed several methods (known under the name Magnetic Resonance
Electrical Impedance Tomography)for conductivity imaging using the Bz- component
of the magnetic field, see e.g., [43, 45, 25, 29, 60]. While performing well in numerical
simulations and phantom experiments, the unique determination of the conductivity
from just one component of B is still an open problem, except for some special axial
symmetry [30], or under some posteriori assumptions [31]. Most recent results in
MREIT at Larmor frequency show that one can determine Hx + iHy inside (where
both components Hx, and Hy are complex valued) and under further axial assump-
tions an isotropic conductivity is uniquely determined [48]. This is a directions of
intense activity in current mathematical and engineering research and we refer to the
survey [52] for further details.

In Section 3 we survey some of collaborative work of the author in [37],[38] and [39]
on imaging conductivity from the knowledge of the magnitude |J| of just one current
density field when the voltage potential is (partially) known at the boundary.

In Section 4 we review the Complete Electrode Model (CEM) of Somersalo-Cheney
and Isaacson [47] from a minimization point of view introduced in [41, Appendix]. In
Section 5 we announce the most recent results obtained in [41] for the conductivity
imaging with complete electrode model boundary conditions. The pictures at the end
are part of a numerical experiment for the inverse problem for the complete electrode
model based on the theoretical results in Section 5, see [41] for details.

2. Interior data acquisition

In this section we briefly describe the way the interior data is obtained. The
notations used in here are not essential for the other sections of the paper.

In the three dimensional space, assume that z is the longitudinal axis (along the
main static magnetic field) of an MRI machine. Upon injecting a current I+ into
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Current Density based Impedance Imaging with minimal data 3

a body Ω the induced magnetic field B = (Bx, By, Bz) alters the spin of protons
(and their precession time) thus producing a phase change in the Magnetic Reso-
nance signal M . More precisely, the phase change in the transversal plane z = z0 is
proportional with the component Bz and with the duration T of the pulse (injection):

M+(x, y, z0) = M(x, y, z0)e
iγBz(x,y,z0)T+iϕ0 , (x, y, z0) ∈ Ω;

here ϕ0 is the phase due to the static magnetic field and γ is the magnetogyric ratio.
By applying the inversely polarized current I− for the same duration T , one obtains

M−(x, y, z0) = M(x, y, z0)e
−iγBz(x,y,z0)T+iϕ0 , (x, y, z0) ∈ Ω.

Therefore,

Bz(x, y, z0) =
1

2γT
Im log

(
M+(x, y, z0)

M−(x, y, z0)

)
,

where log denotes a continuous branch of the complex logarithm. In practice, one
uses a “phase unwrapping” algorithm to determine such a branch.

3. Imaging from the interior data |J|
In this section we assume that a conductive body Ω ⊂ Rn, n ≥ 2, has connected

Lipschitz boundary ∂Ω. The (unknonwn) conductivity σ ∈ L∞(Ω) is isotropic and
bounded away from zero. Further regularity will be assumed as stated in the results.
Let J be the current density field, u be the induced electric potential and E = −∇u
be the induced electric field in Ω. We assume that knowledge of |J| is available inside.

For ideal data, Ohm’s law (J = −σE) implies that |J|/|∇u| ∈ L∞(Ω) and

σ(x) =
|J(x)|
|∇u(x)| , x ∈ Ω.(1)

In the absence of charge sources/sinks the conservation law ∇ · J = 0 together with
(1) lead to the singular, quasilinear, degenerate elliptic equation

∇ ·
( |J|
|∇u|∇u

)
= 0.(2)

The equation (2) appears first in [22] together with examples of non-uniqueness
and non-existence for the associated Neumann problem.

In [37] the equipotential sets of regular solutions of (2) were shown to be minimal
surfaces with respect to the metric g = |J|2/(n−1)I, the same geometric property
enjoyed by solutions of the classical 1-Laplacian, where |J | ≡ 1. Let

A(Σ) =

∫
Σ

|J|dS,(3)

be the surface area of Σ induced by the metric g = |J|2/(n−1)I. In [37] the equipoten-
tial sets were shown to be minimal surfaces with respect to the metric g = |J|2/(n−1)I.
In fact they are not just critical surfaces but they are minimizers. Below we denote
by Hn−1 the (n − 1)-Hausdorff measure and describe (compact) distortions of level
sets of u by level sets of arbitrary functions with the same trace as u at the boundary.
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Theorem 3.1 ([39]). Let u ∈ C2,δ(Ω) be the electric potential inside a C1,δ-smooth
conductive body, generated while maintaining the voltage f ∈ C2,δ(∂Ω)at the bound-
ary, 0 < δ < 1. Assume |J| > 0 in Ω. Let λ ∈ Range(f) be such that Hn−1(f−1(λ)∩
∂Ω) = 0 (valid a.e. λ ∈ Range(f)).

Then, for any v ∈ C2(Ω) with v|∂Ω = f and |∇v| �= 0, we have

A(u−1(λ)) ≤ A(v−1(λ)),(4)

where A is defined in (3).

In the plane the level sets are geodesics, for smooth data, they can be recovered as
solutions of the system

ẍ = −ẋ2 |J |x
|J | (x, y)− 2ẋẏ |J |y

|J | (x, y) + ẏ2 |J |x|J | (x, y),(5)

ÿ = ẋ2 |J |y
|J | (x, y)− 2ẋẏ |J |x

|J | (x, y)− ẏ2 |J |y|J | (x, y),

.
In the Cauchy case we have the following:

Theorem 3.2 ([40]). Let Ω ⊂ R2 be a simply connected, bounded domain with a
piecewise C1-smooth boundary and Γ ⊂ ∂Ω. Given f ∈ C2(Γ), g ∈ C1(Ω), and
|J| ∈ C1(Ω) ∩ C2(Ω), there exists a uniquely defined subregion Ω̃ ⊂ Ω and a unique

pair (σ, u) ∈ C2(Ω̃) × C2(Ω̃) such that u is σ-harmonic and σ|∇u| = |J| in Ω̃, and
u|Γ = f and ∂νu|Γ = g . Moreover, if f is almost two-to-one and Γ is a maximal arc
of monotony, then the above holds with Ω̃=Ω.

Note that in practice the reconstruction method based on Theorem 3.2 needs the
current J, the voltage potential, and σ along the boundary arc Γ. The next method,
based on the Dirichlet boundary value problem associated with (5) only requires
knowledge of the voltage on parts of the boundary:

Theorem 3.3 ([39]). Let Ω ⊂ R2 be a simply connected domain with C2,δ-boundary,
0 < δ < 1. For i = 1, 2 let σi ∈ C2,δ(Ω), ui be σi-harmonic with ui|∂Ω ∈ C3,δ(∂Ω)
almost two-to-one, and |Ji| = |σi∇ui|. For α < β let

(6) Ωα,β := {x ∈ Ω : α < u1(x) < β} and Γ := Ωα,β ∩ ∂Ω.

(i) Assume u1|Γ = u2|Γ and |J1| = |J2| in Ω. Then

u1 = u2 in Ωα,β and

σ1 = σ2 in Ωα,β .

(ii) Assume u1|Γ = u2|Γ and |J1| = |J2| in the interior of Ωα,β. Then

{x ∈ Ω : α < u2(x) < β} = Ωα,β ,(7)

u1 = u2 in Ωα,β and(8)

σ1 = σ2 in Ωα,β .(9)

The reconstruction is based on solving two point boundary value problems to
find geodesics joining pairs of equipotential points at the boundary. Note that, in
general, such boundary value problems may have none or multiple solutions even for
the geodesic system.
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Theorem 3.4 ([39]). Let Ω ⊂ R2 be a simply connected domain with C2,δ-boundary,
0 < δ < 1. Let (f, |J |) ∈ C2,δ(∂Ω) × C1,δ(Ω) be an admissible pair with f almost
two-to-one and let (x0, y0), (x1, y1) ∈ ∂Ω be such that f(x0, y0) = f(x1, y1). Then the
system (5) subject to the boundary conditions

(x(0), y(0)) = (x0, y0) and (x(1), y(1)) = (x1, y1),(10)

has a unique solution γ : [0, 1]→ Ω, γ(t) = (x(t), y(t)). Moreover, the map u : Ω→ R

is constant along γ:

(11) (u ◦ γ)(t) = λ, t ∈ [0, 1].

The results above provide reconstruction methods for the planar case. In theory
they can be extended to three dimensional models, but recovering the potential level
set by level set is not practical. An alternate method based on a variational problem
is proposed. This method is valid in any dimension.

We consider the minimization problem

min

{∫
Ω

|J| |∇v|dx : v ∈ S, v|∂Ω = f

}
,(12)

where S is an appropriate space of competitors (ideally H1(Ω)), J ∈ L2(Ω) is the
current density field induced in Ω whilemaintaining a voltage potential f ∈ H1/2(∂Ω);
we call such a pair (|J|, f) admissible. This problem was first studied for the case
|J| ≡ 1 in [55, 54, 56] where existence of a unique minimizer was proved under the
assumption that f is continuous and ∂Ω has positive mean curvature on a dense
subset of ∂Ω. Existence for the case when S = BV (Ω) is the space of functions
of bounded total variation has been established recently in [18] for |J| ∈ C1,1(Ω)
bounded away from zero and f ∈ C(Ω). However, for the admissible case occurring
in the conductivity imaging problem, the minimization problem above is shown to
have at least one solution in H1(Ω), namely the potential u [38]. Note also that
formally, the Euler-Lagrange equation associated with the (non-smooth) functional
in (12) is the 1-Laplacian equation (2).

Uniqueness results in [38, 39, 34] assume a space of competitors of increasing
generality, with the most general case treated in [35]. In the theorem below |Du|
is the Radon measure induced by the total variation of u (which coincides with |∇u|
if u ∈ W 1,1(Ω)).

Theorem 3.5 ([35]). Let Ω ⊂ R
n be a bounded Lipschitz domain with connected

boundary, f ∈ C(∂Ω), and |J| ∈ C(Ω̄). If |J| > 0 in Ω̄ and

(13) min

{∫
Ω

|J||Du| : u ∈ BV (Ω), u|∂Ω = f

}
,

has a minimizer u ∈ C1(Ω̄) with |∇u| > 0 in Ω̄, then u is the unique minimizer of
(13) in BV (Ω).

For the admissible data (|J|, f) ∈ L2(Ω) × H1/2(∂Ω) a minimization scheme in
[42] shows stability of the minimum value in (12) with respect to the interior data
a ∈ L2(Ω) nearby |J|. Note that arbitrary (a, f) may not be admissible and the
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corresponding minimization problem for
∫
Ω
a|∇v|dxmay not have solutions inH1(Ω).

The stability property of the minimizer of (12) is still an open problem closely related
to the uniqueness question.

The uniqueness result in Theorem 3.5 above, can now be applied to show con-
vergence of the regularized minimization scheme in [42]. In order to state this new
result, let us recall some assumptions in [42]. The domain Ω ⊂ Rd is bounded with
C1,α-smooth boundary, the boundary voltage f ∈ C1,α(∂Ω), and the conductivity σ
is unknown but assumed in Cα(Ω), for some 0 < α < 1. The magnitude |J| of the
current density field (which by elliptic regularity is in Cα(Ω)) is assumed bounded
away from zero. Let u ∈ H1(Ω) denote the unknown σ-harmonic map with trace f at
the boundary (again, elliptic regularity insures u ∈ C1,α), and let u0 be the harmonic
map with same trace f as u.

The minimization scheme will seek the unknown potential u = u0 + h for some
h ∈ H1

0 (Ω) to be determined.
Set

δ :=
minΩ |J|
maxΩ σ

> 0.(14)

For ε > 0 to be specified, δ as in (14), and some a ∈ L2(Ω) consider the following
regularized functional F δ

ε [·; a] : H1
0 (Ω)→ R by

F δ[h; a] :=

∫
Ω

amax{|∇(u0 + h)|, δ}dx+ ε

∫
Ω

|∇h|2dx.(15)

In [42, Proposition 5] it is shown that F δ[·; a] has a unique minimizer. As a conse-
quence of Theorem 3.5 we have

Theorem 3.6. Assume that the data (|J|, f) ∈ Cα(Ω) × C1,α(∂Ω) is as described
above. Let {an} ⊂ L2(Ω) be a sequence with an → J in L2(Ω).

For n ∈ N, let εn =
√‖ |J| − an‖L2, and hn be the unique solution of the mini-

mization problem

hn = argmin{F δ
εn[h; an] : h ∈ H1

0 (Ω)}.
Then, on a subsequence, {hn} converges in Lq(Ω) to some h∗ ∈ Lq(Ω) ∩ BV0(Ω),

1 ≤ q < d/(d− 1). Moreover, h∗ ∈ C1,α
0 (Ω), the sum

u = u0 + h∗,(16)

is the corresponding voltage potential with |∇(u0 + h∗)| > δ, and the conductivity is
recovered by

σ =
|J|

|∇(u0 + h∗)| .(17)

A complete proof of this theorem will appear elsewhere.
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4. A minimization approach for the Complete Electrode Model

In this section we review the Complete Electrode Model for the conductivity equa-
tion introduced by Somersalo, Cheney and Isaacson in [47]. The approach is less
general than the one given in [47] since we assume a real valued conductivity and
positive electrode impedances. However it explains how we are led to the specific
functional essential in solving the CDII problem for this model. For proofs of the
results in this section we refer to [41, Appendix].

Let ek ⊂ ∂Ω denote the surface electrode of impedance zk through which one injects
a net current Ik, k = 0, ..., N . The CEM assumes the voltage potential u inside and
the constant voltages Uk’s on the surface of the electrodes distribute according to the
boundary value problem

∇ · σ∇u = 0, in Ω,(18)

u+ zkσ
∂u

∂ν
= Uk on ek, for k = 0, ..., N,(19) ∫

ek

σ
∂u

∂ν
ds = Ik, for k = 0, ..., N,(20)

∂u

∂ν
= 0, on ∂Ω \

N⋃
k=0

ek,(21)

where ν is the outer unit normal. For brevity. we refer to the problem (18), (19),
(20), and (21) as to the forward problem.

If a solution exists, an integration of (18) over Ω together with (20) and (21) show
that

N∑
k=0

Ik = 0(22)

is necessary. Physically, the zero sum of the boundary currents account for the
absence of sources/sinks of charges. The constants Uk appearing in (19) represent
unknown voltages on the surface of the electrodes, and the difference from the traces
u|ek of the interior voltage potential governs the flux of the current through the skin
to the electrode.

For conductivities of real part bounded away from zero and infinity, the problem
has a unique solution (u; 〈U0, ..., UN〉) ∈ H1(Ω) × CN+1 up to an additive constant,
as shown in [47]. We normalize a constant by imposing the electrode voltages U =
〈U0, ..., UN〉 to lie in the hyperplane

Π := {U ∈ R
N+1 : U0 + ... + UN = 0}.(23)

Let H1(Ω) be the space of functions which together with their gradients lie in
L2(Ω), and Π be the hyperplane in (23). We seek weak solutions to (18), (19) (20),
(21), and (22) in the Hilbert space H1(Ω)× Π, endowed with the product

〈(u, U), (v, V )〉 :=
∫
Ω

uvdx+

∫
Ω

∇u · ∇vdx+

N∑
k=0

UkVk,
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and the induced norm

‖(u, U)‖ := 〈(u, U), (u, U)〉1/2.(24)

We’ll need the following variant of the Poicaré inequality, suitable for the complete
electrode model.

Proposition 4.1. Let Ω ⊂ Rn, n ≥ 2, be an open, connected, bounded domain
with Lipschitz boundary ∂Ω, and Π be the hyperplane in (23). For k = 0, ..., N , let
ek ⊂ ∂Ω be disjoint subsets of the boundary of positive (n − 1)- Hausdorff measure:
|ek| > 0.

There exists a constant C > 0, dependent only on Ω and the ek’s, such that for all
u ∈ H1(Ω) and all U = (U0, ..., UN) ∈ Π, we have∫

Ω

u2dx+
N∑
k=0

U2
k ≤ C

(∫
Ω

|∇u|2dx+
N∑
k=0

∫
ek

(u− Uk)
2ds

)
.(25)

Let Ω, Π, and ek ⊂ ∂Ω, k = 0, ..., N be as above. Let zk’s be satisfying (??), σ be
satisfying (34), and I = (I0, ..., IN) ∈ RN+1.

The forward problem will be treated via a minimization for the energy functional
Fσ : H1(Ω)× Π→ R defined by

Fσ(u, U) :=
1

2

∫
∂Ω

σ|∇u|2dx+
1

2

N∑
k=0

∫
ek

1

zk
(u− Uk)

2ds−
N∑
k=0

IkUk.(26)

The following establishes some of the properties of Fσ needed later.

Proposition 4.2. Let Ω, Π, and ek ⊂ ∂Ω, k = 0, ..., N be as in Proposition 4.1. For
zk’s satisfying (??), σ satisfying (34), and I = (I0, ..., IN) ∈ RN+1, let us consider
the quadratic functional Fσ : H1(Ω)× Π→ R defined by

Fσ(u, U) :=
1

2

∫
∂Ω

σ|∇u|2dx+
1

2

N∑
k=0

∫
ek

1

zk
(u− Uk)

2ds−
N∑
k=0

IkUk.(27)

Then
(i) Fσ is strictly convex
(ii) Fσ is Gateaux differentiable in H1(Ω)×Π, and the derivative at (u, U) in the

direction (v, V ) is given by

〈DFσ(u, U); (v, V )〉 =
∫
Ω

σ∇u · ∇vdx+

N∑
k=0

∫
ek

1

zk
(u− Uk)(v − Vk)ds

−
N∑
k=0

IkVk(28)

(iii) Fσ is coercive, more precisely,

Fσ(u, U) ≥ c

2
‖(u, U)‖ − 1

2c

N∑
k=0

I2k ,(29)
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for some constant c > 0 dependent on the lower bound for the conductivity, on the
lowest surface impedance and on the constant C appearing in the Poincaré inequality
(25).

The proposition below revisits [47, Proposition 3.1.] and separates the role of the
conservation of charge condition (22). This becomes important in our minimization
approach, where we shall see that Fσ has a unique minimizer independently of the
condition of (22) being satisfied. However, it is only for currents satisfying (22), that
the minimizer satisfies (20). This result does not use the reality of σ and of zk’s.
Recall that the Gateaux derivative of DFσ is given in (28).

Proposition 4.3. Let Ω, Π, ek ⊂ ∂Ω, zk, k = 0, ..., N , and σ be as in Proposition
4.2.

(i) If (u, U) ∈ H1(Ω)×Π is a weak solution to (18), (19), (20) and (21), then (22)
holds and

〈DFσ(u, U); (v, V )〉 = 0, ∀ (v, V ) ∈ H1(Ω)× Π.(30)

(ii) If (u, U) ∈ H1(Ω) × Π satisfies (30), then it solves (18), (19) and (21). In
addition, if Ik’s satisfy (22), then (20) also holds.

The existence and uniqueness of the weak solution to the foward CEM problem;
now follows by classical arguments.

Theorem 4.4. Let Ω, Π, ek ⊂ ∂Ω, zk, for k = 0, ..., N , and σ be as in Proposition
4.2. Let Fσ : H1(Ω)×Π→ R be defined in (27).

(i) Then Fσ has a unique minimizer (u, U) ∈ H1(Ω) × Π. If, in addition, the
injected currents Ik’s satisfy (22) the minimizer is the weak solution of the problem
(18), (19), (20), and (21).

(ii) If the problem (18), (19), (20),(21) has a solution, then it is a minimizer of Fσ

in the whole space H1(Ω) × Π and hence unique. Moreover, the current Ik’s satisfy
(22).

Proof. (i) Let

d = inf
H1(Ω)×Π

Fσ(u, U),

and consider a minimizing sequence {(un, U
n)} in H1(Ω)×Π,

d ≤ Fσ(un, U
n) ≤ d+

1

n
.(31)

Since inf Fσ ≥ − 1
4c

∑N
k=0 I

2
k we have d �= −∞. Following (29),

lim
‖(u,U)‖→∞

Fσ(u, U) =∞.

Thus the minimizing sequence must be bounded, hence weakly compact. In particu-
lar, for a subsequence (relabeled for simplicity) there is some (u∗, U∗) ∈ H1(Ω)× Π,
such that

un ⇀ u∗ in H1(Ω), and Un → U∗ in Π, as n→∞.(32)

－153－



10 A. Tamasan

On the other hand since Fσ is convex, and Gateaux differentiable at (u∗, U∗) in the
direction (un − u∗, Un − U∗), we have

Fσ(un, U
n) ≥ Fσ(u∗, U∗) + 〈DFσ(u∗, U∗); (un − u∗, Un − U∗)〉.(33)

We take the limit as n→∞. The weak convergence in (32) yields

〈DFσ(u∗, U∗), (un − u∗, Un − U∗)〉 → 0.

Thus d ≥ Fσ(u∗, U∗) ≥ d which shows that (u∗, U∗) is a global minimizer. Strict
convexity of Fσ implies it is unique. At the minimum (u∗, U∗) the Euler-Lagrange
equations (30) are satisfied. An application of Proposition 4.3 part (ii) shows that
(u∗, U∗) is a weak solution to the forward problem.

(ii) Proposition 4.3 part (i) shows that (u∗, U∗) solves the Euler-Lagrange equa-
tions, and due to the convexity it is a minimizer of Fσ. Due to the strict convexity
of the functional the minimizer is unique, hence the weak solution is unique. �

5. Conductivity Imaging for the Complete Electrode Model

All the results of this sections are from [41], where refer to for their proofs.
In the inverse problem we seek to determine a conductivity σ satisfying

ε < σ < 1/ε,(34)

for some ε > 0, given the magnitude |J| of one current density field inside Ω,

a := |J| = |σ∇u|,(35)

where (u, U) ∈ H1(Ω) × Π is the solution of the forward problem. The electrodes
ek ⊂ ∂Ω and their constant impedances zk > 0, for k = 0, ..., N , are known. The
injected currents I0, ...., IN satisfy (22). We normalize a constant by imposing the
electrode voltages U = 〈U0, ..., UN〉 to lie in the hyperplane Π as in(23).

Similar to the inverse problem for the Dirichlet data, where the reconstruction
was based on the minimization of the functional in (12), for the complete electrode
boundary data problem we introduce the functional Ga : H

1(Ω)×Π :→ R, by

Ga(u, U) :=

∫
∂Ω

a|∇u|dx+
1

2

N∑
k=0

∫
ek

1

zk
(u− Uk)

2ds−
N∑
k=0

IkUk,(36)

which is defined in terms of the data available in the inverse problem. The connection
below between the solutions of the forward problem and global minimizers of Ga is
crucial.

Proposition 5.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with Lipschitz boundary.
Let σ satisfy (34) and, for k = 0, ..., N, let ek be disjoint subsets of the boundary of
positive (n−1)-Hausdorff measure, with impedances zk satisfying (??), and Ik satisfy
(22). Let (u, U) ∈ H1(Ω) × Π be the unique solution of the forward problem (18),
(19), (20), (21). If a := σ|∇u|, then

Ga(v, V ) ≥ Ga(u, U), ∀(v, V ) ∈ H1(Ω)× Π.(37)
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Let us remark first that there is non-uniqueness in the inverse problem stated
above, as can be seen in the following example: Let Ω = (0, 1) × (0, 1) be the unit
square. We inject the current I1 = 1 through the top electrode e1 = {(x, 1) : 0 ≤
x ≤ 1} of impedance z1 > 0, “extract” the current I0 = −1 through the bottom
electrode e0 = {(0, x) : 0 ≤ x ≤ 1} of impedance z0 = z1 + 1, and measure the
magnitude a ≡ 1 of the current density field in Ω. Then, for every ϕ : [0, 1] →
[ϕ(0), ϕ(1)] an increasing Lipschitz continuous function, satisfying ϕ(0) + ϕ(1) =
1, the function uϕ(x, y) := ϕ(y) solves the forward problem (18), (19), (20), and
(21) corresponding to a conductivity σϕ(x, y) = 1/ϕ′(y)), yet the magnitudes of
the corresponding current densities yield the same interior measurements σ|∇u| =
σϕ|∇uϕ| ≡ 1.

The following result shows that this uniqueness is locally generic.

Theorem 5.2 ([41]). Let Ω ⊂ Rd, d ≥ 2 be a bounded, connected C1,α-domain, for
some 0 < α < 1, and let ek, k = 0, ..., N , be disjoint subsets of the boundary of positive
(n−1)-Hausdorff measure. Assume that the corresponding impedances zk satisfy (??),
and that the given currents Ik are such that (22) holds. Let (u, U), (v, V ) ∈ H1(Ω)×Π,
be the solutions of the forward problem (18), (19), (20), and (21) corresponding to
unknown conductivities σ, σ̃ ∈ Cα(Ω) satisfying (34). Assume that

σ|∇u| = σ̃|∇v| > 0 a.e.in Ω.(38)

Then, for a.e. x0 ∈ Ω, there exists a neighborhood O0 of x0 and an function ϕ ∈
C1(v(O0)), such that

u = ϕ ◦ v, in O0,(39)

and

σ̃ =
σ

ϕ′ ◦ v , in O0.(40)

Moreover, for each k = 0, ..., N ,

u|ek − Uk = v|ek − Vk, a.e. on ek.(41)

The above theorem shows that knowledge of the input currents at the boundary is
sufficient recovers the direction of the current density field.

Corollary 5.3 (Phase retrieval). Let Ω ⊂ Rd, d ≥ 2 be a bounded connected C1,α-
domain, for some 0 < α < 1. Let Ik be known currents on the electrodes ek ⊂ ∂Ω of
impedances zk, k = 0, .., N , which satisfy (22). Let J := σ∇u and J̃ := σ̃∇v, where
(u, U), (v, V ) ∈ H1(Ω)×Π are the solutions of the forward problem (18), (19), (20),
and (21) corresponding to some unknown σ, σ̃ ∈ Cα(Ω) satisfying (34). If

|J | = |J̃ | > 0 a.e.in Ω,(42)

then

J = J̃ in Ω.(43)
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12 A. Tamasan

The proof is immediate: For x0 ∈ Ω\S arbitrarily fixed, let O0 and ϕ : v(O0)→ R

be the corresponding function provided by Theorem 5.2. From (40) and (39) we have
for all x ∈ O0,

J̃(x) = σ̃(x)∇v(x) =
σ(x)

ϕ′ ◦ v(x)∇v(x) = σ(x)∇u(x) = J(x).

Since J, J̃ are continuous in Ω, and Ω \ S is dense in Ω, the result follows.
In order to determine the conductivity uniquely we identify next some additional

data. It will be sufficient to measure the voltage potential u along a boundary curve
Γ. which connects all the electrodes. The main idea of the proof will be to show that
the range of u on the union of this curve and the electrodes is the same as the range
of u in Ω, fact which follows from a maximum principle for the Complete Electrode
Model.

Proposition 5.4 (Maximum principle for CEM[41]). Let Ω, σ, e′ks, zk’s, and Ik’s,
for k = 0, ..., N be as in Theorem 5.2, and let u be a solution of the forward problem.
Then u achieves its minimum and maximum on the electrodes e0∪ ...∪eN . Moreover,
if Γ ⊂ ∂Ω is a curve connecting the electrodes, then the range of u over Γ∪e0∪ ...∪eN
coincides with the range of u over Ω.

Theorem 5.5 (Unique determination[41]). Let Ω ⊂ R
d, d ≥ 2 be a bounded, con-

nected C1,α-domain, for some 0 < α < 1. Let ek ⊂ ∂Ω denote the electrode with
impedance zk satisfying (??), for k = 0, ..., N and Γ be a curve on the boundary
connecting the electrodes. For currents Ik which satisfy (22), let (u, U), (v, V ) ∈
H1(Ω) × Π be the solutions of the forward problem (18), (19), (20), and (21) corre-
sponding to unknown conductivities σ, σ̃ ∈ Cα(Ω) satisfying (34).

Assume that

σ|∇u| = σ̃|∇ũ| > 0, a.e. in Ω,(44)

u|Γ = ũ|Γ,(45)

for some constant C. Then

u = ũ in Ω,(46)

σ = σ̃ in Ω.(47)

6. A numerical experiment

In [41] the following algorithm is shown to produce a minimizing sequence for the
functional Ga, see [41, Lemma 5.1]. We assume the current density never vanishes,
more precisely, that

min
Ω
|J| > 0.(48)

Let ε > 0 be the lower bound in (34), and δ > 0 a measure of error to be used in
the stopping criteria.
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• Step 1: Solve (18, 19, 20) and (21) for σ = 1, and let u0 be its unique solution.
Define

σ1 := min

{
max

{
a

|∇u0| , ε
}
,
1

ε

}
;

• Step 2: For σn given: Solve (18, 19, 20) and (21) for the unique solution un;
• Step 3: If

‖∇un −∇un−1‖C(Ω) > δ
ε

essinfa
,

then define

σn+1 := min

{
max

{
a

|∇un| , ε
}
,
1

ε

}
(49)

and repeat Step 2;
• Else STOP.

We illustrate the theoretical results on a numerical simulation in two dimensions.
The numerical solutions for the forward problem (18), (19), (20), and (21) is being
solved by a finite element method adapted to the CEM boundary conditions, see [41]
for details.

We consider a simulated planar conductivity σ which models the cross section of
a torso embedded in the unit box [0, 1]× [0, 1]; see Figure 6 on the left. The values
of the conductivity range from 1.0 S/m to 1.8 S/m.

Figure 1. The exact conductivity with the electrode set up (left).
The simulated magnitude a of the current density field (right).

Two currents −I0 = I1 = 3 mA are respectively injected/extracted through the
electrodes

e0 = {(x, y) ∈ [0, 1]× [0, 1] : y = 0} and e1 = {(x, y) ∈ [0, 1]× [0, 1] : y = 1}
of equal impedances z0 = z1 = 8.3 mΩ ·m2.

For the given σ we solve the forward problem (18), (19), (20),(21) for (u, U). The
interior data of the magnitude |J| of the current density field (defined by σ|∇u| is
shown in the Figure 6 on the right.
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14 A. Tamasan

Knowing the injected currents I0 and I1, the electrode impedances z0 and z1,
and the corresponding magnitude a of the current density we find an approximate
minimizer of Ga via the iterative algorithm above. The iterations start with the
guess σ0 ≡ 1. An approximate solution v is computed on a 90 × 90 grid. The
stopping criterion (49) for this experiment used δ = 10−7, and was attained with 320
iterations. A pseudo-conductivity σv := a/|∇v| in Figure 2 can be computed using
this minimizer v.

σ
v
: Minimal Conductivity

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. Without any boundarymeasurement a pseudo conductivity
can be recovered
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v

φ(v)

−5 0 5
x 10−5

0.94
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1

1.02

1.04

1.06

1.08

v

(φ
v
(v))−1

Figure 3. Computed voltage on Γ shown as a function of the com-
puted values of v (left) vs. Its derivative is needed to reconstruct σ
(right).

Since the geometry of the level sets is shown to create global coordinates, we
know from Theorem 5.2 that the correct voltage potential is related to v via the
scaling u(x) = ϕ(v(x)), for some unknown scaling ϕ. To apply Theorem 5.5 we
use the additional measurement u|Γ on the curve Γ = {(1, y) : 0 ≤ y ≤ 1}. Since
ϕ(v) = u|Γ(v) (see Figure 3 on the left), an application of the chain rule recovers the
conductivity σ by

σ(x) =
1

ϕ′(v(x))
σv(x), x ∈ Ω.
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Exact Conductivity
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1
Scaled Conductivity
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0.6
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Figure 4. Exact conductivity (left) vs. Reconstructed conductivity (right)

In Figure 6 the reconstructed conductivity σ is shown on the right against the
exact conductivity on the left. The L2 error of the reconstruction is 0.04.
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Coupled Physics Imaging Methods

Combine high contrast & high resolution

� Elastography: elastic waves & ultrasound/MRI ⇒ stiffness
� Thermo/PhotoAcoustic: UV light & sound ⇒ embedded

acoustic sources
� AcoustoOptics: light & sound ⇒ absorption and scattering
� Coupled Physics Electrical Impedance Tomography

� Current density impedance imaging CDII: Joy& Nachman
since 2002, Seo et al. 2002

� MREIT (Bz-methods): Seo et al. since 2003
� Ultrasound modulated EIT: Capdebosq et at. 2008, Bal et

al. 2009
� Impedance acoustic: Scherzer et al. 2009
� Lorentz force driven EIT: Ammari et al. since 2013
� ...
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Current density tracing inside an object

Figure : Courtesy: Joy’s group, U Toronto
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Magnetic resonance data: M : Ω → C

Figure : M±(x , y , z0) = M(x , y , z0) exp(±iγBz(x , y , z0)T + iϕ0)

Aquiring the interior data
One MR scan ⇒ longitudinal component Bz (along gantry) of
the magnetic field B = (Bx ,By ,Bz)

Bz(x , y , z0) =
1

2γT
Im log

(
M+(x , y , z0)

M−(x , y , z0)

)

� MREIT (Seo at al. since 2003): Does Bz uniquely
determine the electrical conductivity? In general, not
known.

� CDII (Nachman et al since 2002, Seo (2002)) : + two
rotation of the object

⇒ B⇒ J =
1
μ0
∇× B

� Anisotropic case: Bal & Monard (2013), unique
determination Hoell-Moradifam-Nachman (2014, within
conformal class)

Today: the magnitude |J| is assumed known inside .
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Model

Inverse Problem for Complete Electrode Model
Characterization of non-uniqueness
Phase retrieval
Restoring uniqueness
A numerical algorithm and experiment
Conclusions

How it appears

J= current density, E= electric field, σ= (isotropic) conductivity

� Ohm’s law: J = σE =⇒ σ =
|J|
|E |

� Charge conservation: ∇ · J = 0
� Maxwell’s eq. (zero frequency): ∇× E = 0 =⇒ E = −∇u

Yield:
� Conductivity eq.: ∇ · σ∇u = 0
� 1-Laplacian eq.:

∇ · |J||∇u|∇u = 0

The equipotential sets of u are minimal surfaces in the
metric |J| n

n−1 Identity !
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Basic Properties

∇ · |J||∇u|∇u = 0

� Degenerate elliptic (no coercivity)
� Singular (where ∇u = 0)
� Solutions defined in the viscosity sense (limits of sub/super

solutions of regularized equation)
� Case |J| = 1 well understood (Sternberg, Ziemer, Williams

1990s)
� Our problem needs regular solutions:

ε ≤ |J|
|∇u| ≤

1
ε

Imaging from |J|: a brief history on BVP for
1-Laplacian

Neumann: ∂νu = given is not well posed in general. Examples
of non-uniqueness or non-existence (Seo et al. ’02)
Cauchy: u = given and ∂νu = given on the same part of the
boundary: Reconstruction & conditional stability
(Nachman-T-Timonov ’07, T-Veras ’12)
Dirichlet: u = given on the entire boundary

� Uniqueness & Reconstruction (Nachman-T-Timonov ’09,
Moradifam-Nachman-Timonov ’12,
Moradifam-Nachman-T’14, Gerard-Moradifam-Nachman
’14

� Local stability for u (Nashed-T’10) + corollaries
(Moradifam-Nachman-T ’14)

� Local stability for σ ( T-Veras’12 (n = 2),
Montalto-Stefanov’15 (n ≥ 3))

CEM: Characterizarion of non-uniqueness (Nachman-T-Veras:
under review)
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Sternberg-Ziemer’s example

Case |J| ≡ 1:

∇ ·
(

1
|∇u|∇u

)
= 0

u(x , y) = x2 − y2

For each λ ∈ [0, 1] ∃uλ

viscosity solution uλ ≡ λ in an
inscribed rectangle.
Note: uλ cannot be voltage
potentials in some conductive
body!

Figure : The viscosity solution u0.

Variational approach to 1-Laplacian

Consider the functional F : H1(Ω)→ R, defined by

F|J|[u] :=
∫
Ω
|J||∇u|dx .

� If u ∈ H1(Ω), with ε ≤ |J|
|∇u| ≤

1
ε

, then F|J| is Gateaux diff.

at u and

DF|J|[u](φ) =
∫
Ω

|J|
|∇u|∇u · ∇φdx , ∀φ ∈ H !(Ω).

� If u is σ-harmonic and a := |σ∇u|, then

Fa[u] ≤ Fa[v ], ∀v ∈ H1(Ω), v |∂Ω = u|∂Ω.

Remark: In SZ -example only u0 is a minimizer of

v �→
∫
Ω
|∇v |dx , v(x , y) = x2 − y2 on ∂D.
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Unique determination

Theorem: (Nachman-T-Timonov’09, Moradifam- Nachman-T ’12)
Let (f , |J|) ∈ C1,α(∂Ω)× Cα(Ω) be admissible, generated by
some unknown σ ∈ Cα(Ω). Assume |J| > 0. Then the
corresponding voltage potential

u ∈ argmin
{∫

Ω
|J||∇v |dx : v ∈ W 1,1(Ω)/BV (Ω), v |∂Ω = f

}
.

and σ = |J|
|∇u| .

Remark: |J| may be allowed to vanish in open sets. Then σ
can be recovered outside the zeros of |J|.

Outline
In motivation

Hybrid methods in Inverse Problems
Current density based EIT
Acquiring the interior data

The 1-Laplacian
1-Laplacian in Conductivity Imaging
The Dirichlet problem

The Complete Electrode Model
A boundary value problem for the Complete Electrode
Model

Inverse Problem for Complete Electrode Model
Characterization of non-uniqueness
Phase retrieval
Restoring uniqueness
A numerical algorithm and experiment
Conclusions
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Complete Electrode Model
(Somersalo-Cheney-Isaacson ’92)

Ω ⊂ R
n bounded with Lipschitz boundary ∂Ω,

N + 1 electrodes: ek ⊂ ∂Ω, k = 0, ...,N,
ε ≤ Re{σ} ≤ 1/ε,
ε ≤ Re{zk} ≤ 1/ε, k = 0, 1, ...,N,

∇ · σ∇u = 0, in Ω,

u + zkσ
∂u
∂ν

≡ const = Uk on ek , for k = 0, ...,N,∫
ek

σ
∂u
∂ν

ds = Ik , for k = 0, ...,N,

∂u
∂ν
= 0, on ∂Ω \

N⋃
k=0

ek ,

Well-posedness

Based on Lax-Milgram lemma:
Theorem (Somersalo- Cheney- Isaacson ’92) Provided

N∑
k=0

Ik = 0,

there is a unique solution 〈u(x), (U0, ....,UN)〉 ∈ H1(Ω)× C
N+1

up to a constant.
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Normalization

Uniqueness up to a constant:
〈u(x) + c, (U0 + c, ....,UN + c)〉 also a solution.

∇ · σ∇(u + c) = 0, in Ω,

(u + c) + zkσ
∂(u + c)

∂ν
≡ const = Uk + c on ek , for k = 0, ...,N,∫

ek

σ
∂(u + c)

∂ν
ds = Ik , for k = 0, ...,N,

∂(u + c)
∂ν

= 0, on ∂Ω \
N⋃

k=0

ek ,

Normalization: fix a constant by seeking U = (U0, ...,UN) with∑N
k=0 Uk = 0.

New properties in the real valued case

σ(x), z0(x), ..., zN(x) ∈ R

U ∈ Π := {(U0, ...UN) ∈ R
N+1 :

N∑
k=0

Uk = 0}

� Maximum Principle for CEM: The maximum and minimum
of the voltage potential u occur on the electrodes.

� A Poicaré Inequality (not necessarily connected with
CEM): ∃C > 0 dependent only on Ω and ek ⊂ ∂Ω such that
∀u ∈ H1(Ω) and ∀U = (U0, ...,UN) ∈ Π :

∫
Ω

u2 +
N∑

k=0

U2
k ≤ C

(∫
Ω
|∇u|2dx +

N∑
k=0

∫
ek

(u − Uk )
2ds

)
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The Dirichlet principle for the CEM
Consider the functional

Fσ(u,U) :=
1
2

∫
∂Ω

σ|∇u|2dx +
1
2

N∑
k=0

∫
ek

1
zk
(u − Uk )

2ds −
N∑

k=0

IkUk .

Recall Ω, Π, ek ⊂ ∂Ω, zk , for k = 0, ...,N, σ, and

N∑
k=0

Ik = 0 (�)

Theorem(Nachman-T-Veras ’14)
(i) Independently of (�):

∃! (u,U) = argminH1(Ω)×ΠFσ

(ii) If (�) holds:

(u,U) = argminH1(Ω)×ΠFσ ⇔ (u,U) solves CEM

Formulation of an Inverse Problem

Given: Ω, ek ⊂ ∂Ω with zk > 0, and I1, ...., IN ,
(then I0 := −

∑N
k=1 Ik ),

and |J| = σ|∇u| inside Ω,

Find σ.
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Formulation of an Inverse Problem

Given: Ω, ek ⊂ ∂Ω with zk > 0, and Ik , k = 1, ..., N (then
I0 := −

∑N
k=1 Ik ), and |J| = σ|∇u| inside,

Find σ.
Not possible:
Ω = (0, 1)× (0, 1),
Top side: e1 with z1 > 0, inject I1 = 1
Bottom side: e0 with z0 = z1 + 1, extract I0 = −1
Measure the magnitude |J| ≡ 1 inside.
Arbitrary ϕ : [0, 1]→ [ϕ(0), ϕ(1)] increasing, Lipschitz with
ϕ(0) + ϕ(1) = 1.
Then: uϕ(x , y) := ϕ(y) voltage for σϕ(x , y) = 1/ϕ′(y).
Yet for all such ϕ,

σϕ|∇uϕ| ≡ 1!

Generic non-uniqueness

Let (u,U) ∈ H1(Ω)× Π be the solution of CEM for some σ.
ϕ ∈ Lip(u(Ω)) be an increasing function of one variable,
ϕ(t) = t + ck whenever t ∈ u(ek ), for each k = 0, ...,N, and
constants ck satisfying

∑N
k=0 ck = 0. Then

uϕ := ϕ ◦ u (1)

is a voltage potential for CEM with

σϕ :=
σ

ϕ′ ◦ u
, (2)

and has the same interior data

σ|∇u| = σϕ|∇uϕ|.
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Characterization of Non-uniqueness
Theorem (Nachman-T-Veras ’14) Recall assumptions on
Ω ⊂ R

d be bounded, connected C1,α, ek ⊂ ∂Ω, zk > 0, Ik ,
k = 0, ...,N.
Let (u,U), (v ,V ) ∈ H1(Ω)× Π, be the CEM solutions for
unknown conductivities σ, σ̃ ∈ Cα(Ω) with

|J| := σ|∇u| = σ̃|∇v | ≥ δ > 0 in Ω.

Then ∃ϕ ∈ C1(u(Ω)), with ϕ′(t) > 0 a.e. in Ω, such that

v = ϕ ◦ u, in Ω,

σ̃ =
σ

ϕ′ ◦ u
, a.e. in Ω.

Moreover, for each k = 0, ...,N and t ∈ v(ek ),

ϕ(t) = t + (Uk − Vk ).

Idea: reduction to a minimization problem

Inverse hybrid problem: Consider

G|J|(v ,V ) =
∫
Ω
|J| |∇v |dx +

1
2

N∑
k=0

∫
ek

1
zk
(v − Vk )

2ds −
N∑

k=0

IkVk ,

� solutions of CEM are global minimizers of G|J| over
H1(Ω)× Π.

� Geometry of the equipotential sets are uniquely
determined! Contrast with Dirichlet

Contrast with functional in the forward model

Fσ(v ,V) :=
1
2

∫
∂Ω

σ|∇v |2dx +
1
2

N∑
k=0

∫
ek

1
zk
(v − Vk )

2ds −
N∑

k=0

IkVk .
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Corollaries

� Phase retrieval (Nachman-T-Veras’14) Same hypotheses
(recall).

|J| = |J̃| ⇒ J = J̃.

� There is uniqueness (and a reconstruction method) from
the magnitudes of two currents via a local formula
(Nachman et al., Lee 2004)

� The J-substitution algorithm via magnitudes of two
currents (Seo et al 2002) converges to the unique solution.

Knowledge of the potential on a boundary curve
joining the electrodes restores uniqueness

Theorem (Nachman-T-Veras ’14) In addition to the hypotheses
of the characterization theorem if

u|Γ = ũ|Γ + C,

for some C, and Γ a curve joining the electrodes,
then

u = ũ + C in Ω,
σ = σ̃ in Ω.
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A minimization algorithm for G

G|J|(v ,V ) =
∫
Ω
|J| |∇v |dx +

N∑
k=0

∫
ek

1
2zk

(v − Vk )
2ds −

N∑
k=0

IkVk ,

Lemma Assume that v ∈ H1(Ω) satisfies

ε ≤ a
|∇v | ≤

1
ε
,

for some ε > 0, and let (u,U) ∈ H1(Ω)× Π be the unique
solution for CEM with σ := a/|∇v |. Then

Ga(u,U) ≤ Ga(v ,V ), for all V ∈ Π.

Moreover, if equality holds then (u,U) = (v ,V ).

A minimization algorithm

� With σn given: Solve CEM for the unique solution (un,Un);
� If

essinf‖∇un −∇un−1‖ > δ
ε

essinf|J| ,

update

σn+1 := min
{

max
{ |J|
|∇un| , ε

}
,
1
ε

}

and repeat;
� else STOP.

Enough for the phase retrieval:

J ≈ |J| ∇un

|∇un|
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Using the voltage on Γ

Let n be the last iteration and set

σn+1 :=
|J|
∇un

.

The Characterization Theorem

⇒ u(x) ≈ f (un(x)).

Read off the measured data on Γ to determine the scaling
function f : u(Γ)→ un(Γ).
Then

σ(x) ≈ 1
f ′(un(x))

σn+1(x).

Reconstruction results in a numerical experiment

1S/m ≤ σ ≤ 1.8S/m, −I0 = I1 = 3mA, z0 = z1 = 8.3mΩ ·m2

Figure : Exact conductivity (left) vs. reconstructed conductivity (right)
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Voltage potential scaling along Γ

Figure : The scaling function f and its derivative.

Figure : L2-Error: Understood from the stability in the linearized case
Kuchment&Steinhauer (2011), Bal (2012)
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Some learnings and open questions
� knowledge of the magnitude of one current and of

boundary voltage potential is sufficient to determine an
isotropic conductivity

� in the more realistic CEM. the magnitude of one current
density by itself cannot determine an isotropic conductivity

� but the magnitude recovers the phase ! (not known in the
anisotropic case)

� the magnitude of two currents uniquely determine the
conductivity (up to an additive constant)

� knowledge of the voltage potential along a curve joining
electrodes restores uniqueness in a well determined region
inside.

� in the isotropic case: the phase of the current is uniquely
determined from its magnitude (not known in the
anisotropic case)

� Develop efficient algorithms for the 1-Laplacian
� What can be recovered in the anisotropic case from the

magnitudes of the current? How many such currents?

Thank you!
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Hierarchical Bayesian estimation method for

diffuse optical tomography

Takeaki Shimokawa

ATR Neural Information Analysis Laboratories

Abstract

Functional near-infrared spectroscopy (fNIRS) is a technique that non-invasively
measures human hemodynamic responses to neuronal activation in the cerebral
cortex. In fNIRS measurements, optical topography has been widely used as an
imaging method, but recently diffuse optical tomography (DOT) has collected much
attention as an advanced technique for visualizing the cortical activities. The large
number of overlapping measurement channels due to the use of high-density probe
arrays permits the reconstruction of the internal activities. However, accurate three-
dimensional reconstruction is still a challenging problem because of highly diffusive
nature of the photon propagation in biological tissue. It has also been a problem that
the observation signal is contaminated by the artifact signal from the hemodynamic
response in the scalp.

To address these difficulties, we have been developing a hierarchical Bayesian es-
timation methods. Firstly, we introduced sensitivity-normalized regularization and
sparsity into the Bayesian method to improve depth accuracy and spatial resolution
of DOT [1]. Secondly, we extended it to be able to estimate scalp blood flow as
well as cortical activity by introducing different types of regularization models for
the cortex and the scalp [2]. We show several estimation results of our methods
through computer simulations, phantom experiments, and human experiments [3].
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resolution of diffuse optical tomography,” Biomed. Opt. Express 4, 2411–2432
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“Hierarchical Bayesian model for diffuse optical tomography of the human
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Hierarchical Bayesian estimation method 
for diffuse optical tomography

IMI Conference on Inverse Problems
Nov. 12th@ Kyushu Univ.
Takeaki Shimokawa (ATR)

Kyoto,
Kansai Science City
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Neuroimaging devices in ATR

fMRI

MEG

fNIRS

EEG

Shimadzu corp.

biosemi

Neuroimaging devices in ATR

fMRI

MEG

• high spatial resolution: ~2mm      
(no need to solve inverse problem)

• low time resolution: ~1s

• high time resolution: ~1ms
• need to solve inverse problem
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ATR Neural Information Laboratory

Yoshioka, NeuroImage, 2008

Toda, NeuroImage, 2011

application

validation

• Develop methods for neuroscientist
Hierarchical Bayesian estimation method 
from MEG data with fMRI prior
[Sato, NeuroImage, 2004]

fMRI

MEG

fNIRS

EEG

For application study

Shimadzu corp.

biosemi

Portable & Low cost
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• functional Near-InfraRed Spectroscopy fNIRS
• Advanteges small and portable device, safety, low cost, few 

physical restrictions

fNIRS and its advantages

Shimadzu corp.

Near Infrared light easily go 
through biological tissue

Light source
(Laser or LED) DetectorNeural activity

Oxy Hb , Deoxy Hb

Absorption a

Light Intensity

History of fNIRS
Current study Today’s topic

Ferrari,
NeuroImage, 2012

Called as “Diffuse Optical Tomography (DOT)”
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Diffuse optical tomography (DOT)
• Estimate inner brain activity from light intensity change 

observed outside the head
• DOT consists of two steps: 

forward problem and inverse problem
Observed

light intensity 
change

Cortical
activity

Inverse 
problem

Calculate optical path from source to
detector

Diffusion eq., Monte Carlo method

Forward
problem

• We develop the inversion methods

Use Rytov 
approximation to 
diffusion eqation

DOT by Linear approximation
Observed

light intensity 
change

Cortical
activity

Inverse 
problem

Forward
problem

Y

X
Forward
problem

Sensitivity matrix
AXY

ss
a rr

D
Srr

D
v ,0

2

Xa Y0ln

Obtain sensitvity matrix A

Map of sensitivity

Inverse 
problem

Estimate X from
observed Y

AXY
?X

Dim of X is large. 
Dim of Y is small.

ill-posed problem
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Recent DOT studies

Eggebrecht, NeuroImage 2012 Habermehl, NeuroImage 2011

• Remarkable results. However, the 3D estimation remains 
incomplete

3D tomography by NIR light is difficult

• NIR light does not penetrate large tissues
 difficulty of estimation in depth direction

• NIR light scatters in biological tissues
 blurred. Low spatial resolution.

source & 
detector

source

detector

easydifficult

Diffuse Optical Tomography(DOT)
by near-infrared light

Computed Tomography (CT)
by X-ray
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Problems of conventional inversion method

Light intensity

Tikhonov Regularization

1. biased toward surface
2. low spatial resolution

i
iyX

XAXYX 221 ||||minˆ

penaltyobservation error

improve by two steps

observe

reconstruct
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Proposed 3D estimation method

[Shimokawa et al, Opt Express, 2012]

Weighted regularization

Light intensity

Tikhonov regularization

221 ||||||||minˆ XAXYX yX

penaltyobservation error

observe

reconstruct Biased because this penalty is 
homogeneous

Sensitivity A:
Very strong in shallow layer
Very weak in deep layer
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Not biased 
toward surface

i
iiiyX

XDAXYX 221 ||||minˆ

IAAdiagD y
T 1

weighted penalty

Sensitivity-normalized
Tikhonov Regularization

Penalize shallow layers strongly
and deep layers weakly

Light intensity

[Pogue 1999, Culver 2003, Niu 2010]

observe

reconstruct

Weighted regularization

Introduce sparsity

tionregularizaAXYX yX

21 ||||minˆ

normnormnorm Tikhonov

sparse

|| X ||2
2 || X ||1 || X ||0 || X ||p lim

� 0
| xi |p �

i 1

N

Hierarchical Bayes using ARD prior

• Each Brain function is localized.
• The sparse estimation can increase spatial resolution 

if true solution is sparse.

• The sparseness of solution depends on 
regularization term

dense
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Hierarchical Bayesian estimation

Hierarchical Bayesian estimation
with ARD prior

i
iiyX

XAXYX 221 ||||minˆ

The solution become sparse [Faul, 2002].

2. low spatial resolution

Sensitivity-normalized
Tikhonov Regularization

Iteratively optimize

Use as an 
initial value

High spatial 
resolution

each voxel regularization

initial
value

iteratively
optimized

Remove unimportant activities

Phantom experiment

optical parameter
Absorption: a=0.019mm-1,
Scattering: s‘=1.1mm-1

(similar to cerebral cortex)

Sources & Detectors
at the bottom

(probe interval: 
18mm)

light 
absorbers
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7.5mm 10.0mm 12.5mm 15.0mm 17.5mm 20.0mm 22.5mm

depth

Estimation accuracy in depth direction

: true absorber position : estimation was succeeded

Probe interval: 18 mm

depth

True depth(mm)

Estimated
depth (mm)

depth

Spatial resolution

depth

distance

12.5mm

15.0mm

17.5mm

20.0mm

15.0mm10.0mm 12.5mm

: true absorber position : estimation was succeeded

17.5mm

We can estimate accurately in many cases.

probe interval: 18 mm

distance
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Extended method for removing scalp 
artifact

[Shimokawa et al, Biomed Opt Express, 2013]

Extension of the method

• We assumed sparsity to the cortical activity
• However, hemodynamic response in scalp is not sparse but global.

3D estimation was possible

estimate both cortical activity and
scalp activity

scalpscalpcortexcortex XAXAY

Apply different types of regularizations

introduce sparsity
by ARD prior

penalize Laplacian of the activity
2||||min scalpX
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Weighted
regularization

Extended
method

3D sparse 
estimation

Estimation 
example

Light intensity

Validation
• 2-layer phantom experiment

1

1

1.1'

019.0

mm

mm

s

a

1

1

9.0'

016.0

mm

mm

s

a
1

1

9.0'

015.0

mm

mm

s

a

• Scalp activity is mimicked by 
replacing the silicone plate

• Cortical activity is mimicked 
by absorber
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Performance of the method

Two absorbers of 12.5 mm distance can be discriminated 
with 18 mm interval probe arrangement.

probe interval: 18 mm

depth

distance depth

distance

12.5mm

15.0mm

17.5mm

15.0mm10.0mm 12.5mm

: true absorber position : estimation was succeeded

17.5mm
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Realistic Simulation Study

[Shimokawa et al, Biomed Opt Express, 2013]

Validation by MRI-based head-model 
simulations

5-layer head model
scalp active
skull
CSF
gray matter active
white matter

MRI image
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Validation by MRI-based head-model 
simulations

Depth of cortical activity

We tested the localization error changing 
the position of cortical activity 

Validation by MRI-based head-model 
simulations
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Human Experiment

[Yamashita et al, JACIII, 2014]

Validation by human experiment

L R 

• Right-finger-tapping

fMRI DOT
(proposed
method)
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Validation by human experiment
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Summary
• We developed the diffuse optical tomography method for 

visualizing the 3-dimensional distribution of hemodynamic 
changes inside the brain.

• The methods introduced the following two idea:
weighted regularization sparsity

• We extended it for removing scalp artifact

• We validated the proposed method through phantom 
experiments, realistic simulations, and human experiments.
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"Phase dynamics of spontaneous activity in the cerebrovascular system of 

human infants"

While the structural network of the white matter pathways in the human brain is 

mostly established during the fetal period, the local hemodynamics in relation to 
the neural activation and the global functional network of the brain are

postnatally generated in daily life activity such as sleeping, moving and 

interacting with the environment. Empirical evidences have shown that dynamic 
changes occur in local cerebral hemodynamics and global network of the cortex 

in the first few months of life after birth. The safe and non-invasive method of 

neuroimaging based on multi-channel (94CH) near infrared spectroscopy (NIRS)
has been used to measure spontaneous fluctuations (0.01-0.1 Hz) in 

oxygenated and deoxygenated hemoglobin (oxy- and deoxy-Hb) in the cerebral 

blood, which are assumed to change in response to neural activation while 
infants were sleeping. I will first focus on the phase dynamics in oxy- and

deoxy-Hb signals, which are extracted by performing Hilbert transformation.

While newborn infants showed in-phase oscillations between local oxy- and 
deoxy-Hb changes, 3-month-old infants showed anti-phase oscillations between 

the same signals. To understand the physiological mechanisms underlying this 

change, I will demonstrate a biophysical model for the systemic and cerebral 
circulation, gas exchange and neurovascular coupling, which are described as 

nonlinear differential equations and present preliminary results of simulation. 

The second focus is on state-dependent changes in the global functional 
networks shown in the form of correlation and/or phase synchronization of 

oxy-Hb signals over different channels. Empirical data showed that the oxy-Hb

signals over the global regions of the cortex exhibited synchronous and 
asynchronous fluctuations during active and quiet sleeping, respectively. I will 

discuss the mechanism for the sleep-state-dependent changes in phase 

dynamics of the hemodynamics of the brain in infants.
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Development of ultrasonic tomography
for concrete structures
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Abstract

In this article, we first review the basic theory of concrete from the viewpoint
of the building material. It is our motivation for this article is to establish a deter-
minate non-destructive inspection method for concrete structures by application of
integral geometry. It would enable us to detect the interior structure of the con-
crete structures concretely, which has not been developed yet, unfortunately. For
our purpose, we study how to establish an acoustic tomography by ultrasonic waves,
where we pose a mathematical problem of integral geometry based on our exper-
iments on the concrete structures and their review-examination. We also discuss
how important our problem is and introduce several examples in practical applica-
tions to which the researches on our problem should be applied. We shall study this
problem in view of both theoretical mathematics and practical applications.
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1 Introduction

In this article, we first review the outline of concrete theory, with which most of
the readers may not be familiar. For the general theory of concrete, confer [1]. We also
recommend [3] for Japanese readers. It is one of our main purposes is to establish a de-
terminate non-destructive inspection method for concrete structures, which has not been
developed yet for the time being. For this purpose, we propose a problem in integral
geometry the solution of which would yield the development of a new non-destructive
inspection method for concrete structures applying acoustic tomography. For the devel-
opment of the acoustic CT for our purpose, we studied how the ultrasonic waves and the
electromagnetic acoustic pulses propagate in the cement paste, the mortar and the con-
crete by experiments. By the results of our experiments, we study the propagation of the
ultrasonic waves and the electromagnetic acoustic pulses in the cement paste, the mortar
and the concrete, which yields an inverse problem of the acoustic tomography applied to
the determinate non-destructive inspection method for concrete structures we are trying
to establish. It is interesting that the main problem (Problem 4.1 below) posed in this
paper is very interesting in view of theoretical study of integral geometry. Having the
above argument in mind, we shall discuss the importance of our main problem (Problem
4.1 below) in view of both practice and theory.

This article consists of the following sections.

§1. Introduction

§2. Basic properties of concrete

§3. Propagation of the ultrasonic waves and the electromagnetic acoustic pulses

§4. An inverse problem of the acoustic tomography

§5. Examples in practice

§6. Conclusion

In this section, as the introduction of this article, we introduce the outline of our article.
In the next section, we shall review basic properties of concrete. We also discuss how we
understand the concrete in this paper, we claim that this understanding (Claim 2.1 below)
is very important for the study of concrete as a building material. In the third section, we
study how the ultrasonic waves and the electromagnetic acoustic pulses propagate in the
cement paste, the mortar and the concrete by the experiments, which is a key to discuss
our main purpose, to study how to establish a determinate non-destructive inspection
method for concrete structures, in Section 4. We first introduce our experiments to
study the propagation the ultrasonic waves and the electromagnetic acoustic pulses in the
cement paste, the mortar and the concrete. By examining the results of our experiments,
we conclude that we can treat the ultrasonic waves and the electromagnetic acoustic pulses
as linear elastic waves for our purpose if we only focus on the first arriving waves and ignore
all the other waves. Section 4 is devoted for the main purpose of this article. We shall
pose an inverse problem for establishment of a determinate non-destructive inspection
method for concrete structures, for which we shall apply the results of our experiments
and their examination discussed in Section 4. The problem posed in this section is also
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interesting in view of pure mathematics, especially, in view of integral geometry. In the
fourth section, as well as posing the main problem (Problem 4.1), we also give some
studies on it, especially in view of theoretical mathematics. In the section five, we shall
introduce some applications of our main problem and discuss how to solve them, where
we study our main problem (Problem 4.1) from the viewpoint of practical applications.
In the final section, we shall summarize our conclusions and mention some open problems
left to be solved for further development.

As the origin of this research, we would like the readers to confer [5] published in
the proceedings of the conference “Collaboration between theory and practice in inverse
problems” held at IMI, Kyushu University, Japan, from Dec. 16th to Dec. 19th, 2014.

At the end of Introduction of this article, the authors would express their gratefulness
to Professors Hisashi Yamasaki for his devoted help for our experiments.
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2 Basic properties of concrete

In this section, we shall review basic properties of concrete. Before reviewing the
definition and some basic properties of concrete, the authors claim that

Claim 2.1. The concrete materials are artificial (gigantic) stones or megaliths.

Let us first discuss why the authors claim Claim 2.1. Take Valley Temple, Egypt
(BC2500?) and Parthenon, Athens (BC447-432), for example, which are made of me-
galiths. At that period around those areas, there were plenty of megaliths available,
therefore they made Valley Temple and Parthenon of megaliths which are very suitable
for edifices. On the other hand, let us turn to Colosseum, Rome (AD70-80). Its bailey or
external wall being made of megaliths, its interior structure is infilled with stones bricks
and sand, which we take as an origin of the concrete. It may be because of the shortage of
the megaliths in Rome about 2000 years ago. Note that the structure of Colosseum safely
exists after about 2000 years after its foundation. Hence we can say that the primitive
concrete materials applied to the interior infillment of Colosseum have played their im-
portant role as the substitute for the megaliths very well for a long time, which is one of
the reasons why the authors claim Claim 2.1. Though we still have many other reasons,
we would not mention them in detail, since they directly have little to do with our main
purpose in this article.

Let us define what the concrete is.

Definition 2.1. The concrete is the mixture of the four materials, the cement (C), the
water (W), the sand (fine aggregate：S) and the gravel (coarse aggregate: G). Sometimes,
if necessary, we add some admixture to the above mixture of the four materials to make
harder concrete.

Remark 2.1.

(i) The mixture of the cement and the water is called the cement paste.

(ii) The mixture of the cement, the water, and the sand (the cement paste and the sand)
is called the mortar.

(iii) The concrete can be understood as the mixture of the mortar and the gravel.

(iv) It being usually said that the concrete is the mixture of the four materials, the
cement, the water, the sand and the gravel as mentioned above, it is very important
to add the air as the fifth component of the concrete, especially for the main purpose
in this article. Since concrete is a porous medium, as is well known, it is very
important to study how the air is included in a concrete structure for its non-
destructive inspection, for typical examples of which, confer Problems 5.1, 5.2 and
5.3 and thier solutions in the fifth section.
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Let us introduce the merits of the concrete.

Property 2.1 (Merits of the concrete).
The merits of the concrete as a building material are as follows.

(a) Excellent durability against the weather, the chemical materials and the mechanical
force.

(b) High fire-resistance and water-resistance.

(c) High compressive strength.

(d) High corrosion resistance for steel.

(e) The coefficients of thermal expansion (CTE) of the concrete and the steel are exactly
the same.

(f) Easily made and shaped in any form because of its fluidity before it gets hard.

(g) Its cost is very cheap.

Let us give some remarks on Property 2.1. The first three properties are very close
to the ones of the stones and the megaliths, which is one of the reasons why the authors
claimed Claim 2.1. The properties (d) and (e) are essentially important for the reinforced
concrete (RC) structures. The property (d) is by the chemical property of the cement.
Very roughly speaking, the main component of the cement is calcium oxide (CaO), whose
combination with the water yields

CaO +H2O → Ca(OH)2, (1)

which is known as the hydration reaction of the cement. It is well known that calcium hy-
droxide (Ca(OH)2) shows strong alkalinity, which prevents the steel from getting oxidized.
We claim that this property is much better than “being artificial stones or megaliths”,
especially as the material of the RC structures. If the CTE of the concrete and the steel
are different, the RC structure easily have some cracks in their interior by the change of
the temperature. By the properties (d) and (e), the RC was called as “the miracle and
the permanent material” at its initial stage of application to the buildings. It turned out,
however, that it was neither miracle nor permanent. The concrete gets neutralized by the
carbon dioxide (CO2) in the air a few decades after its placing, whose chemical reaction
is represented by

Ca(OH)2 + CO2 → CaCO3 +H2O. (2)

After the neutralization of the concrete, a part of the steel inside the RC structure gets
corroded by the water contained in its interior. The corroded steel intumesces very much,
which would make cracks or ruin the structure. Therefore the life span of the RC structure
is called about a half century, these days. In spite of it, it is true that the reinforced
concrete is very cheap, durable and easily treated material for the buildings before the
steel in its interior gets corroded. By these facts, it is very important to study how to find
the defects in the concrete structures and how to repair and maintain them. We also note
that the properties (f) and (g) are very good, important and superior to the megaliths as
the building material.
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Of course, there are demerits of the concrete.

Property 2.2 (Demerits of the concrete).
The demerits of the concrete as a building material are as follows.

(α) Low tensile strength.

(β) It easily gets cracks in and on itself.

(γ) It is very heavy in the RC structures.

Let us give some remarks on Property 2.2. As for (α), the tensile strength of the
concrete is about 1/10 of its compressive one. It is very weak compared to its bending
strength which is about a third of its compressive one. In view of this argument, there
arises the necessity to reinforce the concrete. The demerit (β) causes problems in the
load bearing ability and durability. It also causes the water leakage. The RC structures
are generally said to be weak to the damage by the earthquake because of the demerit
(γ). The demerits (α) and (β) are inferior to the megaliths as the building material. The
demerit (γ) is the same one as the megaliths.

For the time being, in order to improve the demerit (α), concrete is reinforced by steel
included in the interior of concrete structures. As we have claimed in Claim 2.1, we would
like concrete materials to be alternatives for megaliths. In this context, the lifespan of
RC materials , about 50 to 75 years is much shorter than the one of megaliths. For the
solution to this problems, we pose the following problems.

Problem 2.1 (Concrete as alternatives for the megaliths).
For the lifespan of RC materials to be much longer, we have to solve either of the following
problems.

(i) Develop a method to make solid, stubborn and stable concrete without reinforcement,
by which we can literally make artificial megaliths.

(ii) Develop a method to maintain RC structures in order that their lifespan can be much
longer.

The problem Problem 2.1 (i) is very important and challenging where we are try to
make very cheap, easily shaped in any form, and easily transportable artificial megaliths,
literally. Therefore, the solution of Problem 2.1 (i) yields that the concrete material would
be mush superior building materials to the megaliths. We claim that the solution to this
problem would give a big breakthrough in the study and application of building materials,
which is under investigation by the authors. Since Problem 2.1 (i) is very hard problem
to solve, for the time being, it is much more likely that we solve Problem 2.1 (ii) and
apply our solution to practice, where we admit the defects of RC materials and try to
keep them staying safe as long as possible by application of suitable maintenance.

In view of the above argument about Problem 2.1, we pose the following problems.

Problem 2.2. From the viewpoint of Problem 2.1, we pose the following two problems.

(1) How to establish a determinate non-destructive inspection technique for RC struc-
tures
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(2) How to repair the RC structures in order that they would safely live for a very long
time

By Problem 2.2, we mean that it is very important to establish a good method to check
RC structures without destructing them and to develop a nice method to maintain the
RC structures in order that their lifespan would be very long, in order for RC materials
to play a role as substitutes of megaliths. It is our main theme to study how to solve
the problem (1) in Problem 2.2, for which we shall study how acoustic waves propagate
in concrete materials in the next section, by which we pose our main problem (Problem
4.1) in the fourth section in order to give a solution to Problem 2.2 (1). Confer Section 5,
for application of an answer to Problem 2.2 (1) to practice, for example, confer Problems
5.1, 5.3 and 5.4 below.
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3 Propagation of the ultrasonic waves

and the electromagnetic acoustic pulses

As we have mentioned at the end of the last section, we shall apply the properties
of the sound as a tool of the non-destructive inspection for concrete structures. In this
section, as a preparation for the next section, we study how the ultrasonic waves and
the electromagnetic acoustic pulses propagate in the cement paste, the mortar and the
concrete by the experiments. We first introduce our experiments to study the propagation
the ultrasonic waves and the electromagnetic acoustic pulses propagate in the cement
paste, the mortar and the concrete. By the examining the results of our experiments,
we shall study the propagation of the ultrasonic waves and the electromagnetic acoustic
pulses in concrete structures of the length about 1m or less.

Let us introduce the outline of our experiments.

Outline of our experiments

• Velocity of the sound;

– Velocity of the ultrasonic wave is denoted by Vs (m/s).

– Velocity of the electromagnetic acoustic pulse is denoted by Ve (m/s).

• Length of test pieces;
We prepared test pieces of the length 100, 200, 300, 400, 800 and 1200mm in order
to check

– the decay of the acoustic velocity

– the propagation of the sound

• Inclusions;
We prepared two types of test pieces.

– Normal test pieces

– Test pieces with styrofoam of the length 200 and 300mm included in their
inside

These test pieces are made use of to determine the propagation of the sound.

We first made the test pieces made of cement paste and mortar as shown in Table 1.
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Table 1: Components of the test pieces
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Figure 1: Length of the test pieces and inspection points

Experiment 1.

We first experimented on the normal test pieces. We projected the ultrasonic waves
and the electromagnetic acoustic pulses from the inspection points numbered 1©, · · · , 5©
on one end square of the test pieces (see figure 1). We name them as ‘source points’. We
received them at the same-numbered inspection points on the other end square. We name
them as ‘observation points’. We have measured the time for the sound to travel between
the source and the observation points. The results of these experiments are summed up
in Figures 2 and 3, where we mean that the age of the test pieces is x weeks by the term
‘xW’.

Remark that the average of the results on the point 1© and 2© are treated as ‘upper
points’, the average of the results on the point 3© and 4© are treated as ‘lower points’and
the point 5© is denoted by the center point.
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Figure 2: Normal test pieces (age of a week)
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Figure 3: Normal test pieces (age of 4 weeks)
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By reviewexamining the results by Experiment 1, we obtain the following properties.

Property 3.1.

• We have rediscovered the well known basic property of concrete; the more time goes
by, the harder the test pieces are, which is caused by the reaction of hydration of
concrete.

• We also have rediscovered the well known basic property, the gravity settling of ce-
ment, in terms of the acoustic velocity; the lower the inspection points are, the faster
the acoustic velocity is, which is because of the fact that the lower the points are, the
larger their density is, which is caused by the gravity settling of cement.

• We can conclude that for the test pieces of the length less than 1200mm, there is no
decay of the acoustic velocity from the viewpoint of its first arriving time.

The last property is essentially important for our study.

Experiment 2.

We simultaneously made the test pieces of the length 400mm (100mm × 100mm ×
400mm) with styrofoam of the length 200 and 300mm included in their inside (confer
Figure 4). We performed the same experiments as Experiment 1, whose results are re-
viewexamined in the following .

Figure 4: Test pieces with styrofoam
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In Experiment 2, the (formal) velocity, which is calculated by

length of the test piece (meters)

arriving time (sconds)
, (3)

in the lower points is smaller that the that of upper points, applying which we studied
the propagation of the sound in the test pieces. We hypothesized that the propagation of
the sound in the test pieces is as the following Hypothesis which is also shown in Figure
5.

Hypothesis 3.1. The first arrival wave of the ultrasonic one and the electromagnetic
acoustic pulse takes the fastest route in the test pieces of the cement paste, the mortar
and the concrete.

Figure 5: Propagation of the sound

Applying Hypothesis 3.1, we have modified the length of the orbit along which the
sound propagates, that is, V ′

s and V ′
e are given by

0.00406 (meters)

arriving time (seconds)
(4)

for the lower points in the test pieces with styrofoam of the length 200mm and by

0.00412 (meters)

arriving time (seconds)
(5)

for the lower points in the test pieces with styrofoam of the length 300mm. Confer Figure
5 for the image of these modifications. The results of Experiment 2 with the modification
of the velocities are summarized in Figures 6, 7 and 8.
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Figure 6: Tables of modification of the velocity
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Figure 7: Test pieces of cement paste with styrofoam (age of 4 weeks)
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Figure 8: Test pieces of mortar with styrofoam (age of 4 weeks)
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Let us summarize the conclusions of Experiments 1 and 2.

Conclusion 3.1 (Conclusion of Experiments 1 and 2).

• The first arrival wave of the ultrasonic one and the electromagetic acoustic pulse
takes the fastest route in the test pieces of the cement paste, the mortar and the
concrete.

• In the test pieces of the length less than 1200mm, there is no decay of the speed of
the ultrasonic waves and the electromagetic acoustic pulses with respect to the length
of the test pieces.

Remark 3.1. For the time being, there does not exist determinate non-destructive in-
spection method for concrete structures. It is our newer idea than the existing ones [2, 4]
to focus on the first arrival time of the sound and pose a problem for the development of
the acoustic CT, which may yield a determinate non-destructive inspection method. We
shall discuss this problem in the nest section.

The first conclusion in Conclusion 3.1 is so important for our main purpose that we
summarized it as an important property.

Property 3.2. The first arrival wave of the ultrasonic one and the electromagnetic acous-
tic pulse takes the fastest route in the test objects of the cement paste, the mortar and the
concrete.

Property 3.2 plays an important role to pose a problem for establishment of determi-
nate non-destructive inspection method in the next section.

Remark 3.2. Having introduced the results of our experiments mainly on the data of
ultrasonic waves, we have almost the same results on electromagnetic acoustic pulses,
which shall be introduced in our forthcoming paper.
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4 An inverse problem of the acoustic tomography

As was studied in the previous section, we know that the the first arrival wave of
the ultrasonic one and the electromagnetic acoustic pulse takes the fastest route in the
concrete structures of the length less than 1.2m and there is no decay in the velocity
of the sound with the length of 1.2m, which is what Conclusion 3.1 claims. In view
these properties, we pose the following problem in order to establish a determinate non-
destructive inspection method for concrete structures, which is the main purpose in this
article.

Problem 4.1 (Problem for non-destructive inspection for concrete structure).
Let Ω ⊂ R

3 be a domain and f(x), (x ∈ Ω) be the propagation speed of the sound. For
α, β ∈ ∂Ω, we denote by γα,β a route from α to β through Ω. Reconstruct f(x) (x ∈ Ω)
out of the data

min
γα,β

∫
γα,β

1/f(x)dγ, (6)

for ∀α, β ∈ ∂Ω.

By Problem 4.1 we mean the problem “Reconstruct the acoustic velocity f(x) at the
all points x ∈ Ω out of the data of the acoustic arrival time between the all pairs of the
points on the boundary.”Study of Problem 4.1 is very important to establish a determinate
non-destructing inspection method for concrete structures including RC ones, for which
confer the examples in the next section. Let us give some remarks on Problem 4.1.

Remark 4.1 (Remarks on Problem 4.1).

• It is impossible to reconstruct the information of some points x’s where f(x)’s
are very small. For example, we cannot reconstruct the acoustic velocity of the
styrofoam if it is included near the center of the test piece since no acoustic wave
would go through it because of Property 3.2. However, it does not matter very
much, since what we focus on in Problem 5.3 is the part damage by salt where the
density (accordingly the acoustic velocity) is relatively large.

• It is an interesting problem to determine the optimal subset of reconstructible by
the acoustic CT established by the application of Problem 4.1.

Study of this problems would be applied for non-destructive investigation of concrete
structures, as examples of which, we shall discuss the following problems in the next
section.

• Non-destructive inspection for the damage by salt on the expressway bridges

• Non-destructive inspection for RC pillars

As we have discussed above, study of Problem 4.1 is very important in view of the
maintenance of concrete structures, which would play an important role in redevelopment
and prolonging life of infrastructures. It is also important in view of both pure and applied
mathematics, especially in integral geometry. Let us mention how important the study
of Problem 4.1 is in view of pure and applied mathematics.
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Remark 4.2 (Importance of Problem 4.1 in mathematics).

• It is a very interesting problem to establish an reconstruction formula for Problem
4.1 in view of integral geometry.

• It is another interesting problem in Problem 4.1 to determine the subset of Ω where
the reconstruction is impossible because it was no intersection with any γ giving
(6). This problem is also interesting in view of integral geometry.

• In practice, we have to study various incomplete data problems of Problems 4.1
by the restriction arisen from various reasons, which is interesting in view of pure
mathematics, especially in view of integral geometry, which is also very important
in applied mathematics.

In the rest of this section, let us study some mathematical problems relating to Problem
4.1.

We first introduce that the unique solvability in Problem 4.1 would not hold in general.

Theorem 4.1. In general, unique solvability of Problem 4.1 would not hold.

Let us remember Experiment 2 in the third section. The ultrasonic waves would not go
through the styrofoam. We obtain the exactly the same data if we replace the styrofoam
in Experiment 2 by the cavity, which proves the non-unique solvability of Problem 4.1.
By this argument, we can easily imagine that there are a number of examples of the
non-unique solvability of Problem 4.1.

Next, let us study a simple problem. For simplicity, let us assume that there is a cavity
of a disc whose center and radius are unknown in the two dimensional homogeneous object.
The motivation to study this problem is as follows. Almost all standards of concrete
materials are determined based on the mortar structure since it is the most important
that how to make the mortar part in the construction of the concrete materials. The
authors claim that we can take the mortar as a homogeneous material since the particles
of the cement and the fine gravel are so small that together with the water and the air they
make a homogeneous material from macro viewpoint. It can be very basic and important
problem to study a cavity of a disc in the mortar, which yields the following problem.

Theorem 4.2. Let us study the 2-dimensional case. Assume that a homogeneous rectangle
contains a cavity of a disk in its interior. In this case, the cavity is reconstructed by
appropriate three data of our acoustic tomography.

In this theorem, by the term “appropriate three data” we mean the data which would
determine the disc. For simplicity, we assume the acoustic velocity in the homogeneous
rectangle is 1 and the cavity is of radius r and centered at (x0, y0). In Figure 9 below, the
length of the detour of the acoustic wave is given by

Li =
(
(X1

i − x1
i )

2 + (Y 1
i − y1i )

2+)
) 1

2 +
(
(X2

i − x2
i )

2 + (Y 2
i − y2i )

2)
) 1

2 + rθi, (7)

where i = 1, 2, 3, j = 1, 2, (x1
i , y

1
i ) are the points where we project the acoustic wave and

(x2
i , y

2
i ) are the points where receive the acoustic wave (x1

i = −R , x2
i = R).
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Figure 9: A cavity of a circle in the 2-dimensional molar structure

We can solve the system (7) of three equations to determine x0, y0 and r, since we can
determine Xj

i , Y
j
i by{
(Xj

i − x0)
2 + (Y j

i − y0)
2 = (Xj

i − xj
i )

2 + (Y j
i − yji )

2 + r2

(Xj
i − x0)(X

j
i − xj

i ) + (Y j
i − y0)(Y

j
i − yji ) = 0.

(8)

and θi by

θi = cos−1 (X1
i − x0)(X

2
i − x0) + (Y 1

i − y0)(Y
2
i − y0)√

(X1
i − x0)2 + (Y 1

i − y0)2
√

(X2
i − x0)2 + (Y 2

i − y0)2
. (9)

Note that there being quadratic equations in the systems (7) and (8), they have two
solutions, however, by virtue of the condition that the detour is the shortest way we can
determine the unique solution. We also note that thetai in (9) must be acute.

It is very easy to extent Theorem 4.2 to the 3-dimensional case.

Theorem 4.3. In the three dimensional case, a cavity of a ball in its interior of a homo-
geneous object is reconstructed by appropriate four data of our acoustic tomography.

In this case, what we have to do is determine the four unknowns, the coordinate
(x0, y0, z0) of the center and the radius r. It is sufficient to have appropriate four data.
The reconstruction algorithm is easily obtained by extending the algorithm for the 2-
dimensional case.
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5 Examples in practice

In this section, we shall introduce some examples where the study of Problem 4.1 is
very important.

Let us first discuss a problem of the damage by salt on the expressway bridges. First,
we consider the expressway bridges over the sea. By the wind or a tide, sea water blows
up and pours on the expressway bridge. As a result, the salt soaks into the interior of the
bridge. In the interior of an expressway bridge, there are a number of steel wires inbedded
for reinforcement. The electric erosion induced by the soaked salt promotes the corrosion
of the steel by oxidization very fast. In this process, the corrosion of the steel wires is much
faster than the usual corrosion by oxidization induced by the neutralization of concrete,
since oxidization induced by electric erosion cannot be helped by the alkalinity of the
cement. It may happen before the concrete gets neutralized. This damage by the salt is
one of the severest problems on the maintenance of the expressway bridges over the sea.
It is also very severe to maintain the expressways in the cold season and areas, where they
use much road surface antifreezing agent containing much chlorine compound (CaCl2),
where the mechanism of the steel wire to get corroded is exaclty the same as the above
argument. For the time being, people in the companies to maintain the expressways check
the damage of the expressway damaged by salt by application of a destructive inspection.
They first pull out some pieces of concrete from the brides. By checking whether they
contain the salt or not, they determine the parts of the bridge damaged by salt. This is
a typical example of the destructive inspection, which costs much time and labor. For
development of the better inspection methods, we pose the following problem.

Problem 5.1. Establish a good non-destructive inspection method for the expressways
damaged by salt within the distance less than 40cm from each edge surface, which also
works to cut off the inspection time and the labor costs for the inspection.

There are many steel wires inbedded into the expressway bridges for their reinforce-
ment. The closest steel wire to the boundary surface of the bridge locates about 40cm
away from the boundary. That is why we pose Problem 5.1.

As an application of the study of Problem 4.1, we have Problem 5.1 in mind. In
Problem 5.1, we have to detect detect the 2 ∼ 3kg of salt included in the 1m3 of concrete
in order to detect the damaged parts of the expressway bridges by salt, which yields the
following problem.

Problem 5.2 (Another problem to solve Problem 5.3).
Is it possible to detect the 2 ∼ 3kg of salt included in the 1m3 of concrete, by the acoustic
tomography as an application of Problem 4.1?

By an experiment, we conclude that the answer to Problem 5.2 is positive. In Table 2,
we summaries the result of our experiment. In this experiment, we have included salt in
the concrete when cast it, in the rate of 3kg per 1m3. Therefore our experiment is different
from the real damage of expressway bridges by salt. In the damage of expressway bridges
by salt, the image of the damage is that the air of the concrete is replaced by salt, after
the concrete itself gets completed or gets hard 4 weeks or more after it was cast.

In our experiment, we have obtained good data on the upper points where the acoustic
velocity is faster in the test pieces with salt. The authors are afraid that the gravity
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settlement of cement was prevented by salt, especially in the middle and lower points, in
the test pieces with salt.

Anyway, the real damage of expressway bridges by salt, is caused by the phenomenon
that the air in the concrete is replaced by salt, by which we mean the trend in the upper
points in our experiment (Table 2) would be much clearer in the real damage of expressway
bridges by salt. Therefore we conclude that the answer to Problem 5.2 is positive.

Table 2: Test pieces with and without salt

Without salt With salt
age 4w 19w 4w 19w

Velocity (m/s)
upper 4331.8 4503.4 4488.0 4554.3
middle 4420.4 4549.0 4381.2 4582.1
lower 4487.8 4602.3 4419.3 4549.0

Now we are experimenting more practical experiments of the damage of expressway
bridges by salt, whose result shall be presented and studied in our forthcoming paper.

Remark 5.1. Note that if we solve Problems 5.1 then we could cut off the the inspection
time and the labor costs for the inspection as well as the damage to the bridge by the
inspection. We also note that by application of the research of Problem 4.1, we can exactly
determine the place damaged by salt in a non-destructive way, which is one of the reasons
why the authors claim that the study of Problem 4.1 is very important.

For simplicity, assume that the bridge is a rectangular parallelepiped. Its damage by
salt must be detected before the salt soaks into the interior of the bridges longer than 1m
from each edge surface, otherwise the steel wire inside the bridge might get damaged by
corrosion with chloridation.

Therefore, we pose our problem concretely in the following way.

Problem 5.3. Establish a good non-destructive inspection method to determine the place
damaged by salt inside the expressway within the distance less than 40cm from each edge
surface.

By virtue of the third property in Property 3.1, the study of Problem 4.1 is applicable
to solve Problem 5.3.

We can solve Problem 5.3 by our acoustic CT.

Theorem 5.1. We can establish a non-destructive inspection method to determine the
place damaged by salt inside the expressway within the distance less than 40cm from each
edge surface.
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If we project the acoustic wave from the point on the boundary, close to the wire, it
would propagates in the image shown in Figure 10.

Figure 10: Propagation of ultrasonic waves in the bridge

Therefore we can detect the place damaged by salt as the place where the acoustic
velocity is relatively large since the place of air is replaced by salt.

Remark 5.2. In Theorem 5.1, we do not have to determine the place damaged by salt
very precisely. What is required is to give a rough sketch of the damaged place including
the whole damaged area, by which they cut off the whole area supposed to be damaged
and patch it with new mortar or concrete in order that the lifespan of the bridge would
be longer.

As another application of the study of Problem 4.1, we take non-destructive inspection
of RC structures, for which we have to study the propagation of the sound in the longer
concrete structures.

Problem 5.4 (Another problem for non-destructive inspection of concrete structures).

(i) Establish a non-destructive inspection method to detect the corroded steel in RC
buildings.

(ii) Detest the cavity in RC pillars.

For the study Problem 5.4 (i), by application of the research of Problem 4.1, we know
not only whether the steel in the interior of the concrete structure is corroded or not,
but also the exact place where the steel is corroded, which is much better and newer
that the existing non-destructive inspection for concrete structures and may yield a good
method how to fix or repair such corroded steel in the interior of RC structures. The
study of this problem can be very helpful for non-destructive inspection for more general
concrete structures, especially to detect the corroded steel in RC structures. The width
of the wall and pillar in RC buildings being usually less than 1m, the third property in
Property 3.1 is very essential for the solution to Problem 5.4 by application of Problem
4.1. By application of the research of Problem 4.1, we know not only whether the steel
in the interior of the concrete structure is corroded or not, but also the exact place where
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the steel is corroded, which is much better and newer that the existing non-destructive
inspection for concrete structures and may yield a good method how to fix or repair such
corroded steel in the interior of RC structures.

In the casting RC structures, concrete sometimes does not pour well and there makes
some cavities near the steel. The radius of the cavity being not so large, it would not
damage the strength of the structure very much, it would be very serious if the radius od
a cavity is very large. Having this argument in mind for studying Problem 5.4 (ii), let us
note the following two important points.

• The width of RC pillars is more than 50 centimeters.

• It is serious if the radius of the cavity is larger than 10 centimeters.

Let us consider the worst case to be reconstructed. Look at Figures 11 and 12 below.

Figure 11: A cavity of radius 6cm
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Figure 12: A cavity of radius 10cm

In the case in Figure 11, the length of the detour is 100.5% of the route where there
is no cavity in the interior, which cannot be detected by our acoustic CT since the gap of
0.5% is included in the errors in the Experiments shown in the third section.

On the other hand, in the case in Figure 12, the length of the detour is more than
101%. We can detect the gap more than 1% by our acoustic CT.

Therefore, we conclude the following.

Theorem 5.2. We can detect the serious cavities in RC pillars by our acoustic CT.

Remark 5.3. It is very important to develop the study of Problems 2.1, 2.2, 5.3, and
5.4, especially in view of redevelopment and prolonging life of infrastructures.
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6 Conclusion

In this section, we summarize our conclusions in the article.

Conclusion 6.1 (Conclusion of this paper).

(i) For development of the acoustic CT, we studied how the first arrival wave propagates
in the cement paste and the mortar.

(ii) Applying the property of the first arriving wave, we have posed a problem (Problem
4.1) for the development of the acoustic CT.

(iii) We have studied basic problems relating Problem 4.1 (Theorems 4.1, 4.2 and 4.3)

(iv) The acoustic CT for concrete structure may be the first determinate non-destructive
inspection method for concrete structures.

(v) The problems posed in this study are interesting in view of the study of mathematics.

(vi) We have proved that our acoustic CT can be theoretically allied to the non-destructive
inspection for expressway bridges damaged by salt (Theorem 5.1) and RC pillars
(Theorem 5.2), though no concrete reconstruction algorithm has been developed yet.

We still have too many unsolved problems for the study of Problem 4.1 to be applied
to both practice and mathematics, some of which have already been discussed throughout
this paper.

At the end of this paper, we shall introduce some open problems left to be solved for
our acoustic CT to develop further.

At the end of the fourth section, we discussed reconstruction of a ball (or a disc) in a
homogeneous object, which can be a basic theory for reconstruction of general cavities.

Problem 6.1. Approximate cavities in a homogeneous medium by a joint of balls (or
discs) and approximately reconstruct the cavities by such a joint of balls (or discs) by
application of Theorems 4.2 and 4.3.

In the previous section, we posed three examples of non-destructive inspection of
concrete structures;

• expressway bridges damaged by salt

• corroded steel in RC structures

• cavities in RC pillars

We have studied the first and the third problems but we gave no concrete result for
the second problem, in view of which we pose the following.

Problem 6.2. Give a concrete study of Problem 5.4 (i).

Though we have some studies on the first and the third problems, they are a little far
from being applied for practice, in view of which we pose the following problem.
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Problem 6.3. Give concrete reconstruction formulas for Problem 5.3 and Problem 5.4
(ii).

Since our acoustic CT is a quite new study, there are many open problems in view of
both theory and practice. We would like to solve them by collaboration between academia
and industry and by interdisciplinary collaboration in order that our study would con-
tribute to theoretical and applied mathematics, civil engineering, building materials and
practical industry.
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