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Preface

These are the proceedings of the conference “Collaboration between theory and prac-
tice in inverse problems”, held at IMI, Kyushu University, from December sixteenth to
December ninteenth, 2014. The main topic in this conference was “Rearrangement of the
infrastructure”. During the conference, the following problems and invetigations on them
were reported and lively dicussions were had on them. We had the following talks during
the conference. Remark that they are brief explanations of the talks, not the titles.

• Mr. Kenji Hashizume : Orginally developed inspection techniques and unsolved prob-
lems for maintenance of the expressways.

• Prof. Kil Hyun Kwon : Sampling theory in relation with the frame theory.

• Prof. Cheng Hua : Evaluation of cracks in view of fracture mechanics and mechanics
of materials.

• Prof. Noriyuki Mita : Basic propertiers of concrete and its non destructive testing
with application of acoustic tomography.

• Prof. Yuko Hatano : Mathematical model for migration of radionuclides near Fukushima.

• Prof. Kohji Ohtsuka : Mathematical treatment of perturbation of singular points in
continuum mechanics and its application to shape optimization.

On the first day of the conference, Mister Kenji Hashizume gave a talk to introduce
the techniques for the inspection of the expressways developed by West Nippon Expressway
Shikoku Company Limited. He also posed several open problems for the development of the
non-destructive testing of the tunnels and bridges of the expressways, which have a lot to
do with mathematical ideas, integral geometry, propagation of cracks in elastic bodies and
so on as well as the concrete structures. In response to his talk, we discussed how to give
mathematical models for the problems posed by Mr. Hashizume and how to solve them.

On the second day, in the morning, Professor Kil Hyun Kwon gave a talk on sampling
theory based on the theory of the frame theory, which will be made use of for the implimen-
tation of the research results applying numerical calculatoin by computers. In the afternoon,
Professor Cheng Hua gave a talk on the cracks in the elastic body, from the viewpoint of
mechanics and engineering science. His lecture will be of help to give mathematical formu-
lations of the problems posed by Mr. Hashizume. In the afternoon, Professor Cheng Hua
gave a talk on how to describe the propagation of cracks in view of fracture mechanics and
mechanics of materials. After thier talks, lively dicussions were had on them.



In the morning on December 18th, Professor Noriyuki Mita talked on basic propertiers
of concrete and its non destructive testing with application of acoustic tomography. No
determinate non-destrucive testing method for concrete structures being known for the time
being, it is very important for rearrangement of infrastracture to study the problem to
establish a determinate non-deestrucive testing method posed in this talk. During his talk, a
number of questiones were asked and we had vigorous dicussions. In the afternoon, Professor
Yuko Hatano gave a talk on very important problems. She introduced some mathematical
models to describe the migration of radionuclides near Fukushima area. She also posed
several problems how to predict migration of radionuclides, which is essentially important for
reconstruction of infrastructure and rearrangement of environment in Fukushima prefecture.
During her talk, there were many questions asked by the audience and many problems,
including a modification of the introduced mathematical models to describe migration of
radionuclides, were discussed.

On the final day, Professor Kohji Ohtsuka introduced theory on the progation of the
cracks in relation with its application to fracture mechanics and shape optimization. It is
very interesting and important in view of its application for the testing methods of concrete
structures. It is also intersting from the viewpoint of mathematics. After his talk, an
application of microlocal approach to the model for crack propagation was discussed, in
addition to which, many queations in view of engineering appraoch were asked and suggestive
and fruitful discussions were had on his talk.

We wish that we would have more opportunities to hold such conferences to discuss
important problems in the rearrangement of infrastructure based on the collaboration be-
tween theory and practice, and that this kind of collaboration would be more popular in
mathematics, engineering and pracitical industry.

At the end of Preface, we would express our gratefulness to Ms. Kyoko Sakaguchi and
Ms. Kazuko Ito, the secretaries of this conference, for their faithful help.

January 31, 2015

Takashi Takiguchi
Hiroshi Fujiwara
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Inspection of bridges, tunnels, and pavement  

by using cameras 

Kenji Hashizume 

West Nippon Expressway Shikoku Company Limited 

I. Outline 
A lot of resources and costs would be necessary for infrastructure 

developments and rehabilitations. So the followings are very important: (i) 
managing, repairing, and renewing the developed infrastructures efficiently and 
effectively, and (ii) eliminating serious accidents triggered by the deteriorations 
and damages, and realizing the society without any anxiety. This is necessary 
for the utilization of the limited resources and the sustainable development of the 
society. For the given purpose, the efficient and effective inspections and 
maintenance practice shall be necessary.  The inspection method using 
cameras for the bridges, tunnels, and pavements inspections with objective 
evaluations and keeping their records is now proposed. 
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II. Bridge Inspections 
We now explain the “J-System” (Figure-1) for the inspection method using 

the infrared cameras.  
The reinforced concrete fulfill its role with the joint functioning of rebar and 

concrete for the concrete structure. When the rebar gathers rust in the concrete, 
cracks appear on the concrete surface along 
the rebar, the surface concrete spalls, and so 
its durability is to be reduced. We have been 
inspecting the cracks triggered by the concrete 
delaminations along the rebar through the 
hammering. The infrared cameras inspection is 
the new one detecting the damaged areas 
such as concrete delaminations and cracks 
through photographing the concrete surface by 
using infrared cameras from remote palaces, 
and keeping the records of the concrete 
surface conditions using digital cameras. The 
inspections of bridges surface by infrared 
cameras are done by the passive method, and 
the followings are the important elements; 

figure -1 J-system 
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i. Cameras Quality (Is the cameras suitable 
for the inspection environment?) 

Inspections are done basically during 
night, so it is important to extend the 
surveillance hours of the day and increase the 
annual surveillance days by using the camera 
with a short- wave type which has no the 
environmental reflections during night and with 
a enforcing-cooling- system type with a small 
thermal resolution. 

ii. judgment on time zone of the day when 
inspections can be done (Do we inspect at a suitable time ?) 

We implement the night- time inspection basically, because there are 
various bridge types and bridge members which are not suitable to inspect 
during daytime. The time zone of the day when inspection is possible is based 
on data of the EMS (Environment Measuring System)(Figure-2) mounted on the 
inspection bridges. 

iii. Simple and Objective Evaluation Method
 (Is it possible and easy to evaluate objectively?)

There could be, for individuals, differences among the inspection judgments 
because it is sometime impossible to judge the damage evaluation such as 
delamination and spalling for the bridge members and damaged parts only by 
looking at the infrared 
images. It is also 
impossible to judge the 
crack’s depth along the 
rebar. However, the red, 
yellow, and blue cracks’ 
judgment- images at 
the 1, 2, 3 cm depth 
from the surface are 
shown at the camera 
monitor (Figure -3).  

figure -2  J-system EM(S)

figure -3 J-System Monitor Image 

Damage grade Visible image Infrared image 3 level indication

Observation
Abnormal sound

Caution
Possibility of falling 
down near future

Warning
Require emergency 
measure

－3－



III. Tunnel and Pavement Inspection 
We now explain the “L & L System” 

(Figure-4) inspection method which uses 
the Line Censor Camera and Laser 
Marker. Line Censor cameras mount the 
visual image censors, and can 
photograph seamless and continuous 
imageries. They can also be applied for 
the tunnel and pavement inspections. 
Light Cutting method is photographing 
the laser marker images from a upper 
and oblique position by using the laser 
which is irradiated vertically down on 
measuring surfaces and obtain the 
object shape. This method is used for 
road surface profile measuring. 

i. Tunnel Inspection
It is possible to obtain the fine and colorful continuous images (Figure-5) 

of tunnel lining by using Line Censor cameras mounted on the inspection cars 
with high speed (less than 100km/h). The cracks of tunnel lining can be detected 
up to 0.2mm, and water leakage and lime isolation can be also found. The 
damage spreading drawings and their diagonal charts can easily be produced 
based on the captive pictures, and so we inspect only the areas where further 
close and detail investigations are necessary. And we can clearly watch the 
conditions of rusted accessories in tunnels, and so it is now possible to apply 
them for the accessories inspections.  

figure -4  L&L System 

Pavement

Tunnel

－4－



ii. Pavement Inspection
We can inspect the pavement conditions such as cracks and potholes, 

and conditions of bridge expansion joints by using Line Censer cameras 
mounted on the vehicle with high speed (less than 100km/h). At the same time, 
we can also measure rutting, bumps, and upheaval through using laser cameras, 
and measure road surface profile such as height, and also evaluate the 
evenness, bump and IRI values. 

figure -5 Visual image with cracks and the accessories 
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We can also display the grade evaluation for the cracks, rutting, bumps, 
evenness, and IRI values obtained by the road surface measurements, and we 
can also easily sort and extract some of the data with abnormal ranges which 
show more than a certain threshold (Figure-6). Thus, the repairing and renewal 
plans of road pavement and the bumps will be made easier.  

figure -6 Pavement evaluation 
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Also, we can measure the inner damages such as  layer delamination and 
cracks of pavement by using infrared cameras (Figure-7).

figure -7 Pavement IR evaluation 

Cracks Image IR Prosess ImageIR Raw Image
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IV. Conclusion 
The bridges, tunnels, and pavement inspections by cameras can be 

used for the assistances for the on-site inspections or their alternatives, and we 
can maintain the objective evaluations and predict the future damages through 
their annual transitions. Also the repairing plan can be made easily and 
efficiently.  

The proposed inspection method using the cameras makes it possible to 
use, select and combine those inspection tools economically and effectively in 
accordance with budges and utilizations patterns of each organization based on 
their different road structure maintenance and repairing standards.  

Finally, we show the demonstration of the inspection technology 
implemented at Singapore in February 2014. We inspected the bridges using 
infrared cameras. For the pavement inspections, we used the Deck Top 
Scanning System which combines the photographing by Line Censer cameras 
mounted on the high-speed vehicles and the repairing survey of the pavement 
by infrared cameras(Figure-8). A lot of participants welcomed and evaluated our 
technology in good favors at the  exhibition.  

Deck Top Scanning System 

figure-8 Situation of the Demonstration 

Deck Top Scanning System  J-System
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  In the first day of the conference, Mr Kenji Hashizume gave a very 
interesting talk on the testing techniques originally developed by 
West Nippon Expressway Shikoku Company Limited, which was 
introduced in the main part of this paper. The organizers of this 
conference were suprized and moved very much at the orinigality 
and creativity of the West Nippon Expressway Shikoku Company 
Limited to develop both the devises and the ideas for the inspection 
of the expressways. 

Although Mr. Hashizume would have not mentioned them in the 
main part of this paper, he introduced a number of unsolved 
problems in the maintenance of the expressways in his talk. Since 
they are interesting and important in view of rearrangement of 
infrastructure, the main topic of this conference, the author of this 
appendix would summarize some of them, as an organizer of this 
conference. Among the problems Mr. Hashizume introduced were 

－10－



How to predict and prevent the concrete flaking accsident  
of tunnels (unreiforced concrete structure). 

How to predict and prevent the concrete flaking accsident 
of expressway bridges (reinforced concrete structure). 
 How to predict and prevent the pot holes on the pavements 

For the first and second problems, confer the references 1  5. 

For the last one, confer the reference 6. 

The main part of this paper were devoted to introduce the devices 
and the testing techniques originally developed by West Nippon 
Expressway Shikoku Company Limited, however, Mr. Hashizume 
mentioned a number of unsolved problems left to be solved for 
further development which would be very important not only for the 
maintenance of expressway but for the maintenance of a lot of 
concrete structures, especially in view of the rearrangement of 
infrastructure. For their solution, it is very important to study the 
cracks, for which will you confer the papers in these proceedings by 
Professor Cheng Hua (Fudan University, China) in view of fracture 
mechanics and mechanics of materials and by Professor Kohji 
Ohtsuka (Hiroshima Kokusai Gakuin University, Japan) from 
mathematical approach?  Since it is very difficult to describe the 
propagation of cracks, together with many other reasons, there are 
many unsolved problems for the inspection of flaking phenomena of 
the concrete structures. 

The author of this appendix is very sorry that we cannot mention 
the open problems mentioned above in detail because of some 
restriction. Instead,  let us introduce another problem possibly 
essentially important for the maintenance of a lot of concrete 
structures in view of the rearrangement of infrastructure. West 
Nippon Expressway Shikoku Company Limited, Professor Noriyuki 
Mita (Polytechnic University of Japan) and the author of this 
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appendix are collaborating to develop a determinate non-destructing 
testing method applying acoustic tomography, for which confer the 
paper in this proceedings by Prof. Mita and the author of this 
appendix. 

The author of this appendix hopes not only that his collaboration 
with West Nippon Expressway Shikoku Company Limited would 
make important contribution to develop determinate testing methods 
for the maintenance of expressways, but that we would make a 
breakthrough in the study of concrete structure through this 
collaboration. 
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Beyond Shannon: Generalized Sampling

Sinuk Kang1, Kil Hyun Kwon2, and Dae Gwan Lee2

Abstract

We give an expository account on the classical sampling theorem and its gen-

eralizations. We first introduce the classical Shannon sampling theorem on Paley-

Wiener spaces with two different proofs. We then treat some extensions of the

theorem from Paley-Wiener spaces to shift invariant spaces. Generalized sampling

such as regular, irregular, multi-channel, average sampling in shift invariant spaces

are considered. We also cover the topics of consistent sampling in abstract Hilbert

spaces and oversampling in MRA.

It is not enough for you to have a good product to sell; you must package it right

and advertise it properly. Otherwise, you will go out of business.

from Personal Opinion by Gian-Carlos Rota, Notices of AMS, Dec. 1992.

1 Introduction
Think analog. But act digital.

In signal processing, “sampling” is the reduction of a continuous-time signal (ana-

log signal) f(t) into a discrete-time signal { f(tn)}n∈Z (discrete signal). Then our goal

is to recover f(t) by { f(tn)}n∈Z as

f(t) =
∑
n∈Z

f(tn)Sn(t)
(

or f(t) =
∑
j

∑
n

Lj(f)(tj,n)Sj,n(t)
)

where {Sn(t)}n∈Z are reconstruction functions, which are independent of individual

signals.

Two fundamental questions are i) what class of analog signals admits such sam-

pling series? and ii) how one can take sample points {tn} and reconstruction functions

{Sn(t)}?
As extreme examples we have: any straight line can be completely recovered by its

values at two distinct points, say at t = 0, 1 as

f(t) = at+ b = f(0) (1− t) + f(1) t,
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and any entire analytic function can be completely recovered by its successive deriva-

tives at z = 0 as

f(z) =

∞∑
n=0

1

n!
f (n)(0)zn.

A signal f(t) of finite energy (i.e., f(t) ∈ L2(R)) is band-limited if its Fourier

transform (frequency spectrum) f̂(ξ) =
∫∞
−∞ f(t)e−itξdt has compact support.

For any B > 0, Paley-Wiener space is defined as

PWB := {f(t) ∈ L2(R) : supp f̂(ξ) ⊆ [−B,B]}
= {f(z) ∈ EB : f(t) ∈ L2(R)}

where EB is the space of entire analytic functions of exponential type ≤ B.

Two early main contributors in signal processing are electrical engineer H. Nyquist

and applied mathematician C. E. Shannon. H. Nyquist ([21]) showed that for a com-

plete recovery, one should sample at a rate at least twice the bandwidth of a signal.

C. E. Shannon introduced, among others, the now everyday word ‘bit’ (binary digit)

and the information theory. See [28] for an excellent survey on the development of the

sampling theory.

Figure 1: H. Nyquist (left) and C. E. Shannon (right)

Theorem 1 (Whittaker-Shannon-Kotel’nikov-Someya sampling theorem)([24, 25]). Any
signal f(t) in PWB can be reconstructed by its uniform sample values as a cardinal
series:

f(t) =
∑
n∈Z

f

(
n
π

B̃

)
sinc

(
B̃

π
t− n

)
for any B̃ ≥ B

which converges both in L2(R) and absolutely and uniformly on R. Here sinct = sinπt
πt

is the cardinal sine function and B̃
π (samples/sec) is the sampling rate and B

π is the
Nyquist rate, the smallest possible sampling rate.

1st proof: For simplicity, assume B̃ = B = π so that f(t) ∈ PWπ . Then f̂(ξ) ∈
L2(R) and f̂(ξ) = 0 a.e. for |ξ| > π so that

f̂(ξ) =
1

2π

∑
n∈Z

〈f̂(ξ), e−inξ〉L2[−π,π]e
−inξ =

∑
n∈Z

f(n)e−inξ in L2[−π, π]
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and so

f̂(ξ) =
∑
n∈Z

f(n)e−inξχ[−π,π](ξ).

Taking its inverse Fourier transform gives

f(t) =
∑
n∈Z

f(n)
sinπ(t− n)

π(t− n)
=

∑
n∈Z

f(n)sinc(t− n).

2nd proof: For any B̃ (≥ B), consider the impulse train

fd(t) :=
∑
n∈Z

f

(
n
π

B̃

)
δ

(
t− n

π

B̃

)
.

Then by the Poisson summation formula, we have

f̂d(ξ) =
∑
n∈Z

f

(
n
π

B̃

)
e−in π

B̃
ξ =

B̃

π

∑
n∈Z

f̂
(
ξ + 2B̃n

)
. (1)

Figure 2: B̃ ≥ B

Figure 2 illustrates how the summation in (1) behaves when B̃ ≥ B. Hence

f̂(ξ) =
∑
n∈Z

f̂
(
ξ + 2B̃n

)
χ[−B̃,B̃](ξ)

=
π

B̃

∑
n∈Z

f

(
n
π

B̃

)
e−in π

B̃
ξχ[−B̃,B̃](ξ)

from which WSKS sampling expansion follows by taking the inverse Fourier trans-

form. Finally, the mode of convergence of the WSKS sampling series follows since

PWB is the so-called ‘reproducing kernel Hilbert space’ with the bounded reproduc-

ing kernel.

Note that if 0 < B̃ < B (see Figure 3), then∑
n∈Z

f̂
(
ξ + 2B̃n

)
χ[−B̃,B̃](ξ) �= f̂(ξ),

which causes some distortion, called the aliasing.
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Figure 3: B̃ < B

Recall that for any f(t) ∈ PWB and any B̃ ≥ B,

f(t) =
∑
n∈Z

f

(
n
π

B̃

)
sinc

(
B̃

π
t− n

)

if and only if

f̂(ξ) =
π

B̃

∑
n∈Z

f

(
n
π

B̃

)
e−in π

B̃
ξχ[−B̃,B̃](ξ)

=
π

B̃

∑
n∈Z

f

(
n
π

B̃

)
e−in π

B̃
ξχ[−B,B](ξ).

So, taking its inverse Fourier transform gives

f(t) =
B

B̃

∑
n∈Z

f

(
n
π

B̃

)
sinc

(
B

π
t− n

B

B̃

)
.

Hence for any f(t) ∈ PWB and any B̃ > B, we have two sampling series:

f(t) =
∑
n∈Z

f
(
n
π

B

)
sinc

(
B

π
t− n

)
which is an orthonormal basis expansion in the Hilbert space PWB , and

f(t) =
B

B̃

∑
n∈Z

f

(
n
π

B̃

)
sinc

(
B

π
t− n

B

B̃

)
which is an oversampling ‘frame’ expansion in the Hilbert space PWB .

By setting t = k π
B̃

in the above oversampling expansion with B̃ > B, we have

f

(
k
π

B̃

)
=

B

B̃

∑
n∈Z

f

(
n
π

B̃

)
sinc

(
B

B̃
(k − n)

)

=
B

B̃

⎡⎣f (
k
π

B̃

)
+

∑
n �=k

f

(
n
π

B̃

)
sinc

(
B

B̃
(k − n)

)⎤⎦
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so that (
1− B

B̃

)
f

(
k
π

B̃

)
=

B

B̃

∑
n �=k

f

(
n
π

B̃

)
sinc

(
B

B̃
(k − n)

)
, k ∈ Z.

Hence by oversampling, we can recover any single (in fact, any finitely many) missing

sample, say, f(k π
B̃
) from the other samples {f(n π

B̃
) : n �= k}.

Even, oversampling can be used to reduce the noise sensitivity or to speed up the

convergence rate of the sampling series.

Classical WSKS sampling theorem has been extended to signals, which are band-

limited in some generalized sense, e.g. signals in Bernstein space

Bp
σ = {f(z) ∈ Eσ : f(t) ∈ Lp(R)} (1 ≤ p ≤ ∞, σ > 0).

In fact, any f(t) ∈ Bp
σ is a tempered distribution, of which its Fourier transform f̂(ξ)

is a compactly supported distribution with supp f̂ ⊆ [−σ, σ].
In order to extend the sampling theorem to signals, which are possibly time-limited

(so not band-limited by Heisenberg’s uncertainty principle), we need the concept of

shift invariant subspaces of L2(R), which are building blocks of multi-resolution anal-

ysis (MRA) and wavelet theory. By Plancherel’s theorem, PWπ is unitarily isomorphic

to L2[−π, π] via 1√
2π
F so PWπ is a Hilbert subspace of L2(R) of which {sinc(t−n) :

n ∈ Z} is an orthonormal basis. Hence we may express PWπ as

PWπ = {f ∈ L2(R) : supp f̂(ξ) ⊂ [−π, π]}
= span{sinc(t− n) : n ∈ Z}
= {

∑
n∈Z

c(n) sinc(t− n) : c = {c(n)}n∈Z ∈ l2},

which is a prototype of shift invariant space generated by sinc t. Here, shift invariance

means: if f(t) ∈ PWπ , then f(t− n) ∈ PWπ for any n ∈ Z. Moreover

1

2π
sinc(· − s) ∈ PWπ for any s in R

and

〈f(t), 1

2π
sinc(t− s)〉L2(R) = f(s) for any f ∈ PWπ.

Hence PWπ is a reproducing kernel Hilbert space (RKHS) with the reproducing kernel

q(t, s) = 1
2π sinc(t− s) in the sense that:

A Hilbert space H consisting of complex valued functions on R is called a repro-

ducing kernel Hilbert space (RKHS) if there is a function q(t, s) on R × R, called the

reproducing kernel of H satisfying

• q(·, s) ∈ H for each s in R;

• 〈f(t), q(t, s)〉 = f(s), f ∈ H.

Then any sequence {fn(t)} converging in an RKHS H converges also uniformly on

any subset of R on which q(s, s) is bounded ([12]).
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2 Sampling on Shift Invariant Spaces
For any φ(t) ∈ L2(R), let V (φ) := span{φ(t−n) : n ∈ Z} be the closed subspace of

L2(R), called the shift invariant space generated by φ(t). Then {φ(t− n) : n ∈ Z} is

• an orthonormal basis (ONB) of V (φ) if

‖
∑
n∈Z

c(n)φ(t− n)‖2 = ‖c‖2 :=
∑
n∈Z

|c(n)|2, c = {c(n)}n∈Z ∈ l2;

• a Riesz basis of V (φ) with Riesz bounds B ≥ A > 0 if

A‖c‖2 ≤ ‖
∑
n∈Z

c(n)φ(t− n)‖2 ≤ B‖c‖2, c = {c(n)}n∈Z ∈ l2;

• a frame of V (φ) with frame bounds B ≥ A > 0 if

A‖f‖2 ≤
∑
n∈Z

|〈f, φ(t− n)〉|2 ≤ B‖f‖2, f ∈ V (φ).

When {φ(t− n) : n ∈ Z} is an ONB or a Riesz basis or a frame of V (φ), we call φ(t)
an orthonormal or a Riesz (or stable) or a frame generator of the shift invariant space

V (φ).
If {φ(t − n) : n ∈ Z} is an ONB (resp. a Riesz basis) of V (φ), then it is a Riesz

basis (resp. a frame) of V (φ) but not conversely in general. If {φ(t− n) : n ∈ Z} is a

frame of V (φ), then there is another frame {ψ(t− n) : n ∈ Z}, called a dual frame of

{φ(t− n) : n ∈ Z}, such that

f(t) =
∑
n∈Z

〈f(t), ψ(t− n)〉φ(t− n), f ∈ V (φ),

which is called the frame expansion of f(t). Note that members of a frame may not be

linearly independent, which is a merit rather than a demerit.

Let φ(t) ∈ L2(R), Gφ(ξ) :=
∑
n∈Z

|φ̂(ξ + 2nπ)|2 and B ≥ A > 0. Then ([3]) φ(t)

is

(a) an orthonormal generator if and only if

Gφ(ξ) = 1 a.e. on R;

(b) a Riesz generator with bounds (A,B) if and only if

A ≤ Gφ(ξ) ≤ B a.e. on R;

(c) a frame generator with bounds (A,B) if and only if

A ≤ Gφ(ξ) ≤ B a.e. on suppGφ.
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For any frame generator φ(t) ∈ L2(R), let

T (c) := (c ∗ φ)(t) =
∑
k∈Z

c(k)φ(t− k), c = {c(k)}k∈Z ∈ l2

be the synthesis operator of the frame {φ(t− n) : n ∈ Z}. Then T is a bounded linear

operator from l2 onto V (φ). Hence T is an isomorphism from N(T )⊥ onto V (φ) so

that

V (φ) = {(c ∗ φ)(t) : c ∈ l2} = {(c ∗ φ)(t) : c ∈ N(T )⊥},
where N(T ) :=

{
c ∈ l2 : T (c) = 0

}
and N(T )⊥ is the orthogonal complement of

N(T ) in l2. If φ(t) is a Riesz generator, then T is an isomorphism from l2 onto

V (φ) = {(c ∗ φ)(t) : c ∈ l2}.
If φ(t) ∈ L2(R) is a frame generator satisfying

φ(t) is everywhere well-defined on R

and (2)

Cφ(t) :=
∑
n∈Z

|φ(t+ n)|2 <∞, t ∈ R,

then

V (φ) = { (c ∗ φ)(t) : c ∈ N(T )⊥}
is an RKHS of which any (c ∗ φ)(t) converges both in L2(R) and absolutely on R

([17]).

For any φ(t) ∈ L2(R) satisfying (2), let

Zφ(t, ξ) :=
∑
n∈Z

φ(t+ n)e−inξ

be the Zak transform of φ(t). Then Zφ(t, ξ) ∈ L2[0, 2π] for each t in R.

For any measurable function f(t) on R, let

‖f‖0 := sup
|E|=0

inf
R\E

|f(t)| and ‖f‖∞ := inf
|E|=0

sup
R\E

|f(t)|

be the essential infimum and the essential supremum of |f(t)| respectively where |E|
is the Lebesgue measure of E.

Theorem 2 (General irregular sampling)([2], [17]). Let φ(t) be a frame generator
satisfying (2) so that V (φ) = {(c ∗ φ)(t) : c ∈ N(T )⊥} is an RKHS. Then for any
sampling points {tn}n∈Z in R, the followings are all equivalent.

(a) There is a frame {Sn(t) : n ∈ Z} of V (φ) such that

f(t) =
∑
n∈Z

f(tn)Sn(t), f(t) ∈ V (φ) (3)
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and {f(tn)}n∈Z is a moment sequence of a function to {Sn(t) : n ∈ Z}, that is,

f(tn) = 〈g(t), Sn(t)〉, n ∈ Z

for some g(t) in V (φ);

(b) (sampling inequality) there are constants β ≥ α > 0 such that

α‖f‖2 ≤
∑
n∈Z

|f(tn)|2 ≤ β‖f‖2, f ∈ V (φ).

(c) {q(t, tn) : n ∈ Z} is a frame of V (φ), where q(t, s) is the reproducing kernel

of V (φ).

Furthermore, if any one of the above three equivalent statements holds, then the

sampling series (3) converges both in L2(R) and absolutely and uniformly on any

subset of R on which Cφ(t) is bounded.

Theorem 3 (Regular shifted sampling)([17]). Let φ(t) be a frame generator satisfying
(2) so that V (φ) =

{
(c ∗ φ)(t) : c ∈ N(T )⊥

}
is an RKHS. Then for any 0 ≤ σ < 1,

the followings are all equivalent.

(a) There is a frame {S(t− n) : n ∈ Z} of V (φ) such that

f(t) =
∑
n∈Z

f(σ + n)S(t− n), f ∈ V (φ); (4)

(b) There are constants β ≥ α > 0 such that

α ≤ |Zφ(σ, ξ)| ≤ β a.e. on suppGφ;

(c) (sampling inequality) there are constants β ≥ α > 0 such that

α‖f‖2 ≤
∑
n∈Z

|f(σ + n)|2 ≤ β‖f‖2, f ∈ V (φ).

Moreover in this case,

Ŝ(ξ) =
φ̂(ξ)

Zφ(σ, ξ)
χsupp φ̂(ξ).

In Theorem 3, the sampling series (4) converges both in L2(R) and absolutely on

R. Moreover it converges uniformly on any subset of R on which Cφ(t) is bounded.

If φ(t) ∈ L2(R) ∩ C(R) is a continuous frame generator satisfying sup
R
Cφ(t) <∞,

then V (φ) = { (c ∗ φ)(t) : c ∈ l2} is an RKHS and the sampling series (4) converges

uniformly on R.
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Example 1 (Cardinal B-splines). Let φ0(t) = χ[0,1)(t) and

φn(t) = φn−1(t) ∗ φ0(t) =

∫ 1

0

φn−1(t− s)ds, n ≥ 1

be the cardinal B-spline of degree n. Then φ0(t) is an orthonormal generator and
φn(t) for n ≥ 1 is a continuous Riesz generator.
Moreover since φn(t) has compact support, sup

R

Cφn(t) = sup
R

∑
k∈Z

|φn(t+ k)|2 <∞
so that V (φn) = {(c ∗ φn)(t) : c ∈ l2} is an RKHS for any n ≥ 0.

For φ1(t) = tχ[0,1)(t) + (2− t)χ[1,2)(t) and 0 ≤ σ < 1,

φ1(σ) = σ, φ1(σ + 1) = 1− σ, φ1(σ + n) = 0 for n �= 0, 1

so that Zφ1
(σ, ξ) = σ + (1− σ)e−iξ. Then

‖Zφ1
(σ, ξ)‖0 = |2σ − 1| and ‖Zφ1

(σ, ξ)‖∞ = 1.

Hence we have for any σ with 0 ≤ σ < 1 and σ �= 1
2 , a Riesz basis expansion

f(t) =
∑
n∈Z

f(σ + n)S(t− n), f ∈ V (φ1),

which converges in L2(R) and absolutely and uniformly on R.

For φ2(t) =
1
2 t

2χ[0,1)(t) +
1
2 (6t− 2t2 − 3)χ[1,2)(t) +

1
2 (3− t)2χ[2,3)(t),

‖Zφ2(0, ξ)‖0 = 0 but 0 < ‖Zφ2(
1

2
, ξ)‖0 < ‖Zφ2(

1

2
, ξ)‖∞ <∞

so that there is a Riesz basis expansion

f(t) =
∑
n∈Z

f(
1

2
+ n)S(t− n), f ∈ V (φ2)

which converges in L2(R) and uniformly on R.

3 Multi-channel Sampling
Reconstructing a signal from samples which are taken from its several channeled (or

modulated) signals is called a multi-channel sampling or a generalized sampling. The

multi-channel sampling method goes back to the works by Shannon [25] and Fogel

[9], where the reconstruction of band-limited signals from samples of the signal and its

derivatives was suggested. Later, Papoulis [22] introduced arbitrary multi-channel sam-

pling on Paley-Wiener spaces. Recently using the Fourier duality between L2[0, 2π]
and the shift invariant space V (φ), Garcı́a and Pérez-Villarón [11] obtained stable gen-

eralized sampling in shift invariant spaces. See [10, 18, 28] for related and further

extended results.
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Let {Lj [·]}Nj=1 be linear time invariant (LTI) systems with suitable impulse re-

sponses {lj(t)}Nj=1 so that

Lj [f ](t) = (f ∗ lj)(t) =
∫ ∞

−∞
f(s)lj(t− s)ds, 1 ≤ j ≤ N,

where

(i) lj(t) = δ(t+ a), a ∈ R or

(ii) lj(t) ∈ L2(R) or

(iii) l̂j(ξ) ∈ L∞(R) when
∑

n∈Z
|φ̂(ξ + 2nπ)| ∈ L2[0, 2π].

Then our goal is to recover any signal f in V (φ) as

f(t) =

N∑
j=1

∑
n∈Z

Lj [f ](σj + rn)sj,n(t),

where

• r is a positive integer;

• 0 ≤ σj < r;

• {sj,n(t)}j,n is a frame of V (φ).

Let ψj = Lj [φ], gj(ξ) =
1
2πZψj (σj , ξ),

G(ξ) = [gj(ξ + (k − 1) 2πr )]Nj=1,
r
k=1

and

• λM (ξ) := the largest eigenvalue of G(ξ)∗G(ξ)

• λm(ξ) := the smallest eigenvalue of G(ξ)∗G(ξ)

• βG := ‖λM (ξ)‖∞
• αG := ‖λm(ξ)‖0.

Theorem 4. (Multi-channel shifted sampling)([11, 15]) Let φ(t) be a continuous Riesz
generator satisfying (2) so that V (φ) = {(c ∗φ)(t) : c ∈ �2} is an RKHS. Assume that
βG <∞, that is, all gj(ξ)’s are in L∞[0, 2π]. The followings are all equivalent.

(a) There is a frame {sj,n(t) : 1 ≤ j ≤ N, n ∈ Z} of V (φ) for which

f(t) =
N∑
j=1

∑
n∈Z

Lj [f ](σj + rn)sj,n(t), f(t) ∈ V (φ);
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(b) There is a frame {sj(t − rn) : 1 ≤ j ≤ N, n ∈ Z} of V (φ) for which for any
f(t) ∈ V (φ)

f(t) =
N∑
j=1

∑
n∈Z

Lj [f ](σj + rn)sj(t− rn);

(c) 0 < αG.

In this case, the sampling series in (a) and (b) converge not only in L2(R) but also
absolutely and uniformly on any subset of R on which Cφ(t) is bounded. Moreover, the
frames in (a) and (b) are Riesz bases if and only if r = N .

Example 2. Let φ(t) = sinct so that V (φ) = PWπ , and

�̂1(ξ) = 1, �̂2(ξ) = −i sgn ξ

so that L1[f ](t) = f(t) and L2[f ](t) = f̃(t) = 1
π p.v.

∫∞
−∞

f(s)
t−s ds, the Hilbert

transform of f(t), where p.v. stands for the Cauchy principal value. Take σ1 = σ2 = 0
and r1 = r2 = 2. Then

f(t) =
∑
n∈Z

f(2n)S1(t− 2n) +
∑
n∈Z

f̃(2n)S2(t− 2n), f ∈ PWπ,

where S1(t) = sinct, S2(t) =
cosπt−1

πt . The series converges absolutely and uniformly
on R.

4 Average sampling
In most physical circumstances, acquisition devices do not produce signal values at the

exact instances. A common substitute is to integrate the signal over small neighbor-

hoods of the sampling instances. We call this sampling procedure an average sampling.

Then our goal is to find a condition under which there is a frame {Sn(t) : n ∈ Z}
of V (φ) such that an average sampling expansion

f(t) =
∑
n∈Z

〈f, un〉Sn(t), f ∈ V (φ)

holds. Here 〈·, ·〉 is the inner product in L2(R) and {un(t) : n ∈ Z} are weight

functions satisfying

• 0 ≤ un(t) ∈ L2(R);

• supp un(t) ⊂ [n− a, n+ b] (a, b ≥ 0 and a+ b > 0);

• ∫∞
−∞ un(t)dt =

∫ n+b

n−a
un(t)dt = 1, n ∈ Z.

Let φ(t) be a frame generator satisfying

• φ(t) is locally absolutely continuous on R, and φ′(t) ∈ L2(R);
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• L := ‖Zφ′(t, ξ)‖∞ <∞;

• there are constants β ≥ α > 0 such that

α ≤ |Zφ(0, ξ)| ≤ β a.e. on supp Gφ. (5)

Then V (φ) is an RKHS, sup
R
Cφ(t) <∞, and any norm converging sequence in V (φ)

also converges absolutely and uniformly on R ([16]). Note also that by Theorem 3, the

condition (5) holds if and only if there is a frame {S(t − n) : n ∈ Z} of V (φ) such

that f(t) =
∑

n∈Z
f(n)S(t− n), f ∈ V (φ).

Theorem 5 ([16, 26]). Let {un(t) : n ∈ Z} be any sequence of weight functions with
supp un(t) ⊂ [n− a, n+ b] and δ := max{a, b}. If√

δ(a+ b) >
α

L
,

then there is a frame {Sn(t) : n ∈ Z} of V (φ) such that

f(t) =
∑
n∈Z

〈f, un〉Sn(t), f ∈ V (φ), (6)

which converges in L2(R) and absolutely and uniformly on R.

If average functions un(t) are uniformly bounded in L∞- or L2-sense, then we

have:

Theorem 6 ([16]). Let {un(t) : n ∈ Z} be any sequence of weight functions with
supp un(t) ⊂ [n− a, n+ b] and δ := max{a, b}.

(a) Assume M := supn∈Z
‖un(t)‖∞ <∞. If

√
δ(a+ b)3/2 < α

LM or
√
δ(a+ b) >

α
L
√
M

, then (6) holds on V (φ).

(b) Assume M := supn∈Z
‖un(t)‖L2(R) <∞. If

√
δ(a+ b) < α

LM , then (6) holds
on V (φ).

5 Consistent Sampling
Let φ(t) ∈ L2(R) be a frame generator and ψ(t) its dual generator. Then

f̃(t) :=
∑
n∈Z

〈f(t), ψ(t− n)〉φ(t− n)

is the orthogonal projection of f(t) ∈ L2(R) onto V (φ). Note here that the analysis

filter ψ(t) and the synthesis filter φ(t) are not independent but are dual each other,

which may fail in other interesting signal processing. Note also that

〈f̃(t), ψ(t− n)〉 = 〈f(t), ψ(t− n)〉, n ∈ Z,

－24－



Figure 4: Approximation-sampling procedure

which means that the input signal f(t) and the output signal f̃(t) provide the same mea-

surements. This approximation-sampling procedure is illustrated in Figure 4, where

means the convolution product.

Let H be a separable Hilbert space, {vj} countable analysis vectors in H, forming

a frame of the sampling space V := span{vj}, and {wk} countable synthesis vectors

inH, forming a frame of the reconstruction spaceW := span{wk}.
Let S(c) =

∑
j

c(j)vj and T (d) =
∑
k

d(k)wk (c, d ∈ �2) be the synthesis opera-

tors for {vj} and {wk} respectively. Then S∗, the adjoint of S, given by

S∗(f) = {〈f, vj〉} ∈ �2, f ∈ H,

is the sampling operator.

We now look for a sampling operator P̃ onH, which approximates an input f inH
by f̃ = P̃ (f) inW from its generalized measurements c = S∗(f). We require

(a) (stability) P̃ ∈ L(H,W), i.e., P̃ is a bounded linear operator fromH intoW ,

(b) (sampling) P̃ (f) = 0 if S∗(f) = 0, i.e., N(S∗) ⊆ N(P̃ ),

(c) (consistency) S∗(P̃ f) = S∗(f), i.e., 〈f, vj〉 = 〈P̃ (f), vj〉 for all j.

Consistency means that the input f and the output P̃ (f) look the same to the observers,

who can observe signals only through the acquisition devices, say {vj}.
We call P̃ satisfying (a), (b), (c) a consistent sampling operator. Note ([23]) that P̃

satisfies (a) and (b) if and only if

P̃ = TQS∗ for some Q ∈ L(�2).

Let C(W,V) be the set of all consistent sampling operators.

Theorem 7 ([20]). The followings are all equivalent.

(a) C(W,V) �= ∅;
(b) H =W + V⊥;
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Figure 5: Consistent sampling

(c) R(S∗T ) = R(S∗).

In this case, C(W,V) = {PL,V⊥ | L ∈ L} where

L := {closed complementary subspaces ofW ∩ V⊥ inW}
and

C(W,V) = {T (S∗T )†S∗ + TPN(S∗T )Y S∗ | Y ∈ L(�2)}.

Figure 6: Consistent approximation

In particular, there is a unique consistent sampling operator P̃ if and only if H =
W ⊕V⊥. In this case, P̃ = PW,V⊥ = T (S∗T )†S∗.
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Note that S∗(f) = S∗(P̃ (f)) if and only if PV(f) = PV(P̃ (f)) since N(S∗) =
V⊥. Hence for any f inH, PV(f) can be visualized as in the Figure 6.

The next theorem provides us a practical method of calculating (or rather approxi-

mating) P̃ (f) of any f inH through the iteration process.

Theorem 8 ([20]). AssumeH =W + V⊥ and P̃ = PL,V⊥ , where L ∈ L. Then

P̃ (f) = lim
n→∞ fn, f ∈ H

and

‖PV(f − fn)‖ ≤ ‖P̃ (f)− fn‖ ≤ α2n−1

1− α
‖PV(f)‖

where α = ‖PV⊥PL‖ and{
f1 := PLPV(f)
fn := f1 + PLPV⊥(fn−1) for n ≥ 2.

We now give concrete expressions of frame expansions of consistent approximation

using the notion of oblique dual frames introduced in [4, 7].

Let A and B be two closed subspaces of H. Given a frame {an}n∈I of A, a dual
frame of {an}n∈I is a frame {ãn}n∈I of A satisfying

f =
∑
n∈I

〈f, ãn〉 an, f ∈ A.

WhenH = A⊕B⊥, a frame {bn}n∈I of B is called an oblique dual frame of {an}n∈I

on B if

f =
∑
n∈I

〈f, bn〉 an, f ∈ A, (7)

or equivalently,

f =
∑
n∈I

〈f, an〉 bn, f ∈ B.

Theorem 9 ([6, 8]). Assume H =W + V⊥ and let L ∈ L and {ui| i ∈ I} a frame of
L with pre-frame operator U . Then PL,V⊥ = U(S∗U)†S∗ and

(a) {ṽi := S(U∗S)†(eIi )| i ∈ I} is an oblique dual frame of {ui}i∈I on V (with
pre-frame operator S(U∗S)†);

(b) {ũj := U(S∗U)†(eJj )| j ∈ J} is an oblique dual frame of {vj}j∈J on L (with
pre-frame operator U(S∗U)†);

(c) For any f ∈ H,

PL,V⊥(f) =
∑
i∈I

〈f, ṽi〉ui =
∑
j∈J

〈f, vj〉 ũj

where b = {〈f, ṽi〉}i∈I and c = S∗(f) = {〈f, vj〉}j∈I have the minimum norm
properties:
‖b‖ ≤ ‖b̃‖ for any b̃ = {b̃(i)}i∈I satisfying f =

∑
i∈I b̃(i)ui,

‖c‖ ≤ ‖c̃‖ for any c̃ = {c̃(j)}j∈J satisfying f =
∑

j∈I c̃(j) ũj .
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Although consistency is very natural in considering the acquisition process of sam-

ples, we are interested in its relative performance compared to the best least square

approximation, i.e., the corresponding orthogonal projection. Assume H = W + V⊥

and let for any fixed L in L = {L|L⊕ (W ∩ V⊥) =W}
P̃ = PL,V⊥ : H −→ L

be the unique consistent sampling operator valued in L.

The question is how good the approximation P̃ f of f ∈ H\L is, compared to orthog-

onal projection PLf of f onto L?

Figure 7: Performance analysis

Figure 7 provides a pictorial motivation for the necessity of the concept ‘angle’

between two closed subspaces of a Hilbert space. For any two non-trivial closed sub-

spaces A and B of a Hilbert spaceH, let

R(A,B) = cosΘR(A,B) = inf
v∈A
‖v‖=1

‖PBv‖ (= R(B⊥, A⊥))

and

S(A,B) = cosΘS(A,B) = sup
v∈A
‖v‖=1

‖PBv‖ (= S(B,A)),

where PB is the orthogonal projection onto B. R(A,B) and S(A,B) are the worst

and the best estimate of the relative length reduction when vectors in A are projected

onto B. The angle ΘS(A,B) is called the Dixmier angle between A and B ([5, 27]).

Theorem 10 ([13, 20, 29]). Assume H = W + V⊥ and let P̃ = PL,V⊥ for L ∈ L.
Then for all f ∈ H\L,
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(a) 0 < R(L,V) ≤ ‖f − PL(f)‖
‖f − P̃ (f)‖ ≤ S(L⊥,V⊥) ≤ 1;

(b) 0 ≤ R(V⊥, L) ≤ ‖PL(f)− P̃ (f)‖
‖f − P̃ (f)‖ ≤ S(L,V⊥) < 1.

6 Oversampling
Let φ(t) be a Riesz generator satisfying (2). Then Theorem 3 claims that the followings

are all equivalent on the shift invariant space V (φ):

(a) There is a Riesz basis {S(t− n) : n ∈ Z} of V (φ) such that

f(t) =
∑
n∈Z

f(n)Sn(t), f ∈ V (φ);

(b) 0 < ‖Zφ(0, ξ)‖0 ≤ ‖Zφ(0, ξ)‖∞ <∞;

(c) (sampling inequality) There are constants β ≥ α > 0 such that

α‖f‖2 ≤
∑
n∈Z

|f(n)|2 ≤ β‖f‖2, f ∈ V (φ).

Moreover, in this case

S(t) = F−1

(
φ̂(ξ)

φ̂∗(ξ)

)
and S(t) is cardinal, i.e., S(n) = δ0,n, n ∈ Z.

Above regular sampling expansion theorem has been studied and extended further

by many authors([1, 14, 30]) under varied conditions on the regularity and/or decaying

property of the generator φ(t).

What can we say on the sampling expansion of signals in V (φ) when the condition

(b) above does not hold?

One way to overcome the difficulty is to raise the sampling rate, that is, to use the

oversampling method, for which we need, a priori, a scale of shift invariant spaces of

L2(R).
Let {Vj}j∈Z be an MRA with a stable scaling function φ(t), that is,

• · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · are closed subspaces of L2(R);

• ∩j Vj = {0} and ∪j Vj = L2(R);
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• f(t) ∈ Vj if and only if f(2t) ∈ Vj+1;

• V0 = V (φ) where φ(t) is a Riesz generator.

Assume further that

• φ̂(ξ) ∈ L2(R) ∩ L1(R) so φ(t) ∈ L2(R) ∩ C(R);

• Cφ(t) =
∑
n∈Z

|φ(t+ n)|2 <∞ for any t in R.

Then each Vj = {
∑
n∈Z

c(n)φ(2jt− n) : c ∈ l2} becomes an RKHS.

Let φ(t) =
∑

n∈Z
p(n)φ(2t− n) with {p(n)}n∈Z

∈ l2 or equivalently,

φ̂(ξ) = mφ

(
ξ

2

)
φ̂

(
ξ

2

)
be the two-scale relation of φ(t), where

mφ(ξ) :=
1

2

∑
n∈Z

p(n)e−inξ ∈ L∞[0, 2π].

Iterating the two-scale relation N(≥ 0) times, we obtain

φ̂
(
2Nξ

)
= RN (ξ)φ̂(ξ),

where R0(ξ) := 1 and RN (ξ) :=
∏N−1

k=0 mφ

(
2kξ

) ∈ L∞[0, 2π] (N ≥ 1). Let

EN := supp RN (ξ). Then E0 = R and EN =
⋂N−1

k=0 2−ksupp mφ(ξ) for N ≥ 1 so

that EN ⊃ EN+1 for N ≥ 0.

Theorem 11 (Oversampling)([19]). Let N ≥ 1 be an integer. Then there is a frame
sequence {S(t− n) : n ∈ Z} in V0 for which the oversampling expansion holds:

f(t) =
∑
n∈Z

f
( n

2N

)
S
(
2N t− n

)
, f ∈ V0 (8)

if and only if there are constants β ≥ α > 0 such that

α ≤
∣∣∣φ̂∗(ξ)

∣∣∣ ≤ β a.e. on EN .

Moreover in this case, we may take S(t) to be such that

Ŝ(ξ) =
φ̂(ξ)

φ̂∗(ξ)
χEN

(ξ) on R

and the oversampling series (8) converges both in L2(R) and absolutely and uniformly
on R.
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Theorem 12 (Oversampling property)([19]). Let N ≥ 0 be an integer. Then φ(t) has
the oversampling property with rate N , i.e.,

f(t) =
∑
n∈Z

f
( n

2N

)
φ
(
2N t− n

)
, f ∈ V0 (9)

if and only if
φ̂∗(ξ) = 1 a.e. on EN .

In this case, the oversampling expansion (9) converges both in L2(R) and absolutely
and uniformly on R.

Theorem 13 (Oversampling property)([19]). Assume that φ̂(ξ) ∈ L2(R) ∩ L1(R).
Then for any integer N ≥ 0, the followings are all equivalent:

(a) φ(t) has the oversampling property with rate N , i.e.,

f(t) =
∑
n∈Z

f
( n

2N

)
φ
(
2N t− n

)
, f ∈ V0;

(b) φ̂(ξ) = φ̂
(

ξ
2N

)∑
n∈Z

φ̂
(
ξ + 2N+1nπ

)
a.e. on R;

(c) Zφ(0, ξ) = 1 a.e. on EN = suppRN ;

(d)
∑
n∈Z

φ̂(ξ + 2nπ) = 1 a.e. on EN = suppRN .

In particular, if φ(t) has the oversampling property with rate N , then φ(t) has the
oversampling property with rate Ñ for any Ñ ≥ N .
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Introduction

Think analog. But act digital.

In signal processing, ”sampling” is the reduction of a

continuous-time signal (analog signal) f(t) into a discrete-time

signal { f(tn)}n∈Z (digital signal).

Goal : Recover f(t) by { f(tn)}n∈Z as f(t) =
∑
n

f(tn)Sn(t) or

f(t) =
∑
j

∑
n

Lj(f)(tj,n)Sj,n(t).

Fundamental questions : What class of analog signals admits

such sampling series?

How to take sample points {tn} and reconstruction functions

{Sn(t)}?

4/ 44

Extreme examples :

any straight line

f(t) = at+ b = f(0)(1− t) + f(1)t

and

any entire analytic function

f(z) =

∞∑
n=0

1

n!
f (n)(0)zn.
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H. Nyquist, Certain topics in telegraph transmission

theory, AIEE Trans., 47 (1928), 617-644.

C. E. Shannon, A mathematical theory of

communications, Bell Lab. Tech. J., 1948

6/ 44

A signal f(t) of finite energy, i.e., f(t) ∈ L2(R) is band-limited if

its Fourier transform (frequency spectrum)

f̂(ξ) =
∫∞
−∞ f(t)e−itξdt has the compact support.

For any B > 0, Paley-Wiener space

PWB := {f(t) ∈ L2(R) : supp f̂(ξ) ⊆ [−B,B]}

= {f(z) ∈ EB : f(t) ∈ L2(R)}

where, EB is the space of entire analytic functions of

exponential type ≤ B.
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WSKS (Whittaker-Shannon-Kotel’nikov-Someya) sampling

theorem

Any signal f(t) ∈ PWB can be reconstructed by its uniform

sample values {f
(
n π

B̃

)
} as a cardinal series :

f(t) =
∑
n∈Z

f

(
n
π

B̃

)
sinc

(
B̃

π
t− n

)
, for any B̃ ≥ B

which converges both in L2(R) and absolutely and uniformly on

R. Here sinct = sinπt
πt

is the cardinal sine function and B̃
π

(samples/sec) is the sampling rate and B
π

is the Nyquist rate,

the smallest possible sampling rate.

8/ 44

Proof.

For simplicity, assume B̃ = B = π so that f(t) ∈ PWπ.

Then f̂(ξ) ∈ L2(R) and f̂(ξ) = 0 a.e. for |ξ| > π so that

f̂(ξ) =
1

2π

∑
n∈Z

〈f̂(ξ), e−inξ〉L2[−π,π]e
−inξ =

∑
n∈Z

f(n)e−inξ in L2[−π, π]

and so

f̂(ξ) =
∑
n∈Z

f(n)e−inξχ[−π,π](ξ).

Taking the inverse Fourier transform gives

f(t) =
∑
n∈Z

f(n)
sinπ(t− n)

π(t− n)
=

∑
n∈Z

f(n)sinc(t− n).

－37－



9/ 44

Classical WSKS-sampling theorem has been extended to

signals, which are band-limited in some generalized sense, e.g.

signals in Bernstein space

Bp
σ = {f(z) ∈ Eσ : f(t) ∈ Lp(R)} (1 ≤ p ≤ ∞, σ > 0).

In order to extend sampling theorem to signals, which are

possibly time-limited (so not band-limited by Heisenberg’s

uncertainty principle), we need the concept of shift invariant

subspaces of L2(R), which are building blocks of MRA and

wavelet theory.

10/ 44

By Plancherel’s theorem, 1√
2π
F : PWπ

∼= L2[−π, π] so PWπ is a

Hilbert subspace of L2(R) of which {sinc(t− n) : n ∈ Z} is an

ONB. Hence we may express PWπ as

PWπ = {f ∈ L2(R) : supp f̂(ξ) ⊂ [−π, π]}

= span{sinc(t− n) : n ∈ Z}

= {
∑
n∈Z

c(n)sinc(t− n) : c = {c(n)} ∈ l2},

which is a shift invariant space generated by sinc t. That is, if

f(t) ∈ PWπ, then f(t− n) ∈ PWπ for any n ∈ Z.
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Moreover
1

2π
sinc(· − s) ∈ PWπ for any s in R

and

〈f(t),
1

2π
sinc(t− s)〉L2(R) = f(s) for any f ∈ PWπ.

Hence PWπ is a reproducing kernel Hilbert space (RKHS) with

reproducing kernel q(t, s) = 1
2π sinc(t− s) in the sense that:

12/ 44

A Hilbert space H consisting of complex valued functions on R

is called a reproducing kernel Hilbert space (RKHS) if there is a

function q(t, s) on R× R, called the reproducing kernel of H

satisfying

• q(·, s) ∈ H for each s in R;

• 〈f(t), q(t, s)〉 = f(s), f ∈ H.

Then any sequence {fn(t)} converging in an RKHS H

converges also uniformly on any set in R on which q(s, s) is

bounded.
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Sampling on Shift Invariant Spaces

For any φ(t) ∈ L2(R), let V (φ) := span{φ(t− n) : n ∈ Z} be the

closed subspace of L2(R), called the shift invariant space

generated by φ(t). Then {φ(t− n) : n ∈ Z} is

• an ONB of V (φ) if

‖
∑
n∈Z

c(n)φ(t−n)‖2 = ‖c‖2 :=
∑
n∈Z

|c(n)|2, c = {c(n)}n∈Z ∈ l2;

14/ 44

• a Riesz basis of V (φ) with Riesz bounds B ≥ A > 0 if

A‖c‖2 ≤ ‖
∑
n∈Z

c(n)φ(t− n)‖2 ≤ B‖c‖2, c = {c(n)}n∈Z ∈ l2;

• a frame of V (φ) with frame bounds B ≥ A > 0 if

A‖f‖2 ≤
∑
n∈Z

|〈f, φ(t− n)〉|2 ≤ B‖f‖2, f ∈ V (φ).

When {φ(t− n) : n ∈ Z} is an ONB or a Riesz basis or a frame

of V (φ), we call φ(t) an orthonormal or a Riesz (or stable) or a

frame generator of the shift invariant space V (φ).
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Then {φ(t− n) : n ∈ Z} is

an ONB of V (φ) =⇒ a Riesz basis of V (φ) =⇒ a frame of V (φ)
=⇒ ∃ a dual frame {ψ(t− n) : n ∈ Z} of V (φ) (not necessarily

unique) such that

f(t) =
∑
n∈Z

〈f(t), ψ(t− n)〉φ(t− n), f ∈ V (φ),

which is called the frame expansion of f(t). Members of a

frame may not be linearly independent, which is a merit rather

than a demerit.

16/ 44

Proposition 1.

Let φ(t) ∈ L2(R), Gφ(ξ) :=
∑
n∈Z

|φ̂(ξ + 2nπ)|2 and B ≥ A > 0.

Then φ(t) is

(a) an orthonormal generator iff

Gφ(ξ) = 1 a.e. on R;

(b) a Riesz generator with bounds (A,B) iff

A ≤ Gφ(ξ) ≤ B a.e. on R;

(c) a frame generator with bounds (A,B) iff

A ≤ Gφ(ξ) ≤ B a.e. on suppGφ.

－41－



17/ 44

For any frame generator φ(t) ∈ L2(R), let

T (c) := (c ∗ φ)(t) =
∑
k∈Z

c(k)φ(t− k), c = { c(k)}k∈Z ∈ l2

be the synthesis operator of the frame {φ(t− n) : n ∈ Z}.

Then T is a bounded linear operator from l2 onto V (φ).
Hence T is an isomorphism from N(T )⊥ onto V (φ) so that

V (φ) = {(c ∗ φ)(t) : c ∈ l2} = {(c ∗ φ)(t) : c ∈ N(T )⊥},

where N(T ) :=
{
c ∈ l2 : T (c) = 0

}
and l2 = N(T )⊕N(T )⊥.

If φ(t) is a Riesz generator, then T is an isomorphism from l2

onto V (φ) = {(c ∗ φ)(t) : c ∈ l2}.

18/ 44

If φ(t) ∈ L2(R) is a frame generator satisfying

(∗) φ(t) is everywhere well defined on R

and Cφ(t) :=
∑

n∈Z |φ(t+ n)|2 < ∞, t ∈ R,

then

V (φ) = { (c ∗ φ)(t) : c ∈ N(T )⊥}

is an RKHS of which any (c ∗ φ)(t) converges both in L2(R) and

absolutely on R.
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For any φ(t) ∈ L2(R) satisfying (∗), let

Zφ(t, ξ) :=
∑
n∈Z

φ(t+ n)e−inξ ∈ L2[0, 2π] for each t in R

be the Zak transform of φ(t).

For any measurable function f(t) on R, let

‖f‖0 := sup
|E|=0

inf
R\E

|f(t)| and ‖f‖∞ := inf
|E|=0

sup
R\E

|f(t)|

be the essential infimum and the essential supremum of |f(t)|
respectively where |E| is the Lebesgue measure of E.

20/ 44

Theorem 2. (General irregular sampling)(CIS, KK)

Let φ(t) be a frame generator satisfying (∗) so

V (φ) = {(c ∗ φ)(t) : c ∈ N(T )⊥} is an RKHS. Then for any

sampling points {tn}n∈Z in R, the followings are all equivalent.

(a) There is a frame {Sn(t) : n ∈ Z} of V (φ) such that

f(t) =
∑
n∈Z

f(tn)Sn(t), f(t) ∈ V (φ)

and {f(tn)}n∈Z is a moment sequence of a function to

{Sn(t) : n ∈ Z}, that is,

f(tn) = 〈g(t), Sn(t)〉, n ∈ Z

for some g(t) in V (φ).
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(b) (sampling inequality) ∃β ≥ α > 0 such that

α‖f‖2 ≤
∑
n∈Z

|f(tn)|
2 ≤ β‖f‖2, f ∈ V (φ).

(c) {q(t, tn) : n ∈ Z} is a frame of V (φ), where q(t, s) is the

reproducing kernel of V (φ).

Furthermore, if any one of the above three equivalent

statements holds, then the sampling series converges both in

L2(R) and absolutely and uniformly on any subset E of R on

which Cφ(t) is bounded.
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Theorem 3. (Regular shifted sampling)(KK)

Let φ(t) be a frame generator satisfying (∗) so

V (φ) =
{
(c ∗ φ)(t) : c ∈ N(T )⊥

}
is an RKHS. Then for any

0 ≤ σ < 1, the followings are equivalent.

(a) There is a frame {S(t− n) : n ∈ Z} of V (φ) such that

f(t) =
∑
n∈Z

f(σ + n)S(t− n), f ∈ V (φ).
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(b) There are constants β ≥ α > 0 such that

α ≤ |Zφ(σ, ξ)| ≤ β a.e. on suppGφ.

(c) (sampling inequality) ∃β ≥ α > 0 such that

α‖f‖2 ≤
∑
n∈Z

|f(σ + n)|2 ≤ β‖f‖2, f ∈ V (φ).

Moreover in this case,

Ŝ(ξ) =
φ̂(ξ)

Zφ(σ, ξ)
χsupp φ̂

(ξ).

24/ 44

In Theorem 3, all sampling series converge both in L2(R) and

absolutely on R. Moreover they converge uniformly on any

subset of R on which Cφ(t) =
∑

n∈Z |φ(t+ n)|2 is bounded.

If φ(t) ∈ L2(R) ∩ C(R) is a continuous frame generator

satisfying supRCφ(t) < ∞, then V (φ) = { (c ∗ φ)(t) : c ∈ l2} is

an RKHS and the sampling series converges uniformly on R.
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Examples

Cardinal B-splines

Let φ0(t) = χ[0,1)(t) and

φn(t) = φn−1(t) ∗ φ0(t) =

∫ 1

0
φn−1(t− s)ds, n ≥ 1

be the cardinal B-spline of degree n. Then φ0(t) is an

orthonormal generator and φn(t) for n ≥ 1 is a continuous

Riesz generator.

Moreover since φn(t) has compact support,

sup
R

Cφn(t) = sup
R

∑
k∈Z

|φn(t+ k)|2 < ∞ so that

V (φn) = {(c ∗ φn)(t) : c ∈ l2} is an RKHS for any n ≥ 0.

26/ 44

For φ1(t) = tχ[0,1)(t) + (2− t)χ[1,2)(t) and 0 ≤ σ < 1,

φ1(σ) = σ, φ1(σ + 1) = 1− σ, φ1(σ + n) = 0 for n �= 0, 1

so that Zφ1
(σ, ξ) = σ + (1− σ)e−iξ. Then

‖Zφ1
(σ, ξ)‖0 = |2σ − 1| and ‖Zφ1

(σ, ξ)‖∞ = 1.

Hence we have for any σ with 0 ≤ σ < 1 and σ �= 1
2 , a Riesz

basis expansion

f(t) =
∑
n∈Z

f(σ + n)S(t− n), f ∈ V (φ1),

which converges in L2(R) and uniformly on R.
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For

φ2(t) =
1
2 t

2χ[0,1)(t) +
1
2(6t− 2t2 − 3)χ[1,2)(t) +

1
2(3− t)2χ[2,3)(t),

‖Zφ2
(0, ξ)‖0 = 0 but 0 < ‖Zφ2

(
1

2
, ξ)‖0 < ‖Zφ2

(
1

2
, ξ)‖∞ < ∞

so that there is a Riesz basis expansion

f(t) =
∑
n∈Z

f(
1

2
+ n)S(t− n), f ∈ V (φ2)

which converges in L2(R) and uniformly on R.
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Multi-channel Sampling

Let {Lj [·]}
N
j=1 be LTI systems with suitable impulse responses

{lj(t)}
N
j=1 so that

Lj [f ](t) = (f ∗ lj)(t) =

∫ ∞

−∞
f(s)lj(t− s)ds, 1 ≤ j ≤ N.

Goal: Recover any signal f in V (φ) as

f(t) =

N∑
j=1

∑
n∈Z

Lj [f ](σj + rn)sj,n(t),

where

• r is a positive integer;

• 0 ≤ σj < r;

• {sj,n(t)}j,n is a frame of V (φ).
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Let ψj = Lj [φ], gj(ξ) =
1
2πZψj

(σj , ξ),

G(ξ) = [gj(ξ + (k − 1)2π
r
)]Nj=1,

r
k=1

and

• λM (ξ) := the largest eigenvalue of G(ξ)∗G(ξ)

• λm(ξ) := the smallest eigenvalue of G(ξ)∗G(ξ)

• βG := ‖λM (ξ)‖∞
• αG := ‖λm(ξ)‖0.

30/ 44

Theorem 4.

Assume that βG < ∞, that is, all gj(ξ) are in L∞[0, 2π]. TFAE.

• There is a frame {sj,n(t) : 1 ≤ j ≤ N, n ∈ Z} of V (φ) for

which

f(t) =
N∑
j=1

∑
n∈Z

Lj [f ](σj + rn)sj,n(t), f(t) ∈ V (φ);

• there is a frame {sj(t− rn) : 1 ≤ j ≤ N, n ∈ Z} of V (φ) for

which for any f(t) ∈ V (φ)

f(t) =
N∑
j=1

∑
n∈Z

Lj [f ](σj + rn)sj(t− rn);

• 0 < αG.

• It is a Riesz basis expansion iff r = N .
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Example

Let φ(t) = sinct so that V (φ) = PWπ and

�̂1(ξ) = 1, �̂2(ξ) = −i sgn ξ

so that L1[f ](t) = f(t) and L2[f ](t) = f̃(t), the Hilbert transform

of f(t). Take σ1 = σ2 = 0 and r1 = r2 = 2. Then

f(t) =
∑
n∈Z

f(2n)S1(t− 2n) +
∑
n∈Z

f̃(2n)S2(t− 2n), f ∈ PWπ,

where S1(t) = sinct, S2(t) =
cosπt−1

πt
.

The series converges absolutely and uniformly on R.

32/ 44

Consistent Sampling

Let φ(t) ∈ L2(R) be a frame generator and ψ(t) its dual

generator. Then

f̃(t) :=
∑
n∈Z

〈f(t), ψ(t− n)〉φ(t− n)

is the orthogonal projection of f(t) ∈ L2(R) onto V (φ). Note

here that the analysis filter ψ(t) and the synthesis filter φ(t) are

not independent but are dual each other, which may fail in other

interesting signal processing. Note also that

〈f̃(t), ψ(t− n)〉 = 〈f(t), ψ(t− n)〉, n ∈ Z.
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We call

the approximation-sampling procedure, where means the

convolution product.

34/ 44

Let H be a separable Hilbert space

{vj} analysis vectors, forming a frame of sampling space

V := span{vj};

{wk} synthesis vectors, forming a frame of reconstruction

space W := span{wk}.

Let S(c) =
∑
j

c(j)vj and T (d) =
∑
k

d(k)wk (c, d ∈ �2) be the

synthesis operators for {vj} and {wk}. Then

S∗ : H � f �−→ S∗(f) = {〈f, vj〉} ∈ �2

is the sampling operator.
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Problem: Look for a sampling operator P̃ on H, which

approximates an input f in H by f̃ = P̃ (f) from its

measurements c = S∗(f).

We require

(a) (stability) P̃ ∈ L(H,W),

(b) (sampling) P̃ (f) = 0 if S∗(f) = 0, i.e., N(S∗) ⊆ N(P̃ ),

(c) (consistency)

S∗(P̃ f) = S∗(f), i.e., 〈f, vj〉 = 〈P̃ (f), vj〉, ∀j.

Consistency means that the input f and the output P̃ (f) look

the same to the observers.

36/ 44

Call P̃ satisfying (a), (b), (c) a consistent sampling operator.

Note that P̃ satisfies (a) and (b) iff

P̃ = TQS∗ for some Q ∈ L(�2)
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Let C(W,V) be the set of all consistent sampling operators.

Theorem 5. (Lee, KK)

The followings are all equivalent.

(a) C(W,V) �= ∅;

(b) H = W + V⊥;

(c) R(S∗T ) = R(S∗).
In this case, C(W,V) = {PL,V⊥ | L ∈ L} where

L := {closed complementary subspaces of W ∩ V⊥ in W}

and

C(W,V) = {T (S∗T )†S∗ + TPN(S∗T )Y S∗ | Y ∈ L(�2)}.

38/ 44

S∗(f) = S∗(P̃ (f)) ⇔ PV(f) = PV(P̃ (f)).

In particular, there is a unique consistent sampling operator P̃

iff H = W ⊕V⊥. In this case, P̃ = PW,V⊥ = T (S∗T )†S∗.

－52－



39/ 44

Theorem 6. (Lee, KK)

Assume H = W + V⊥ and P̃ = PL,V⊥ , where L ∈ L. Then

P̃ (f) = lim
n→∞ fn, f ∈ H

and

‖PV(f − fn)‖ ≤ ‖P̃ (f)− fn‖ ≤
α2n−1

1− α
‖PV(f)‖

where α = ‖PV⊥PL‖ and{
f1 := PLPV(f)
fn := f1 + PLPV⊥(fn−1) for n ≥ 2.
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Performance Analysis

Assume H = W + V⊥ and let for each L in

L = {L|L⊕ (W ∩ V⊥) = W}

P̃ = PL,V⊥ : H −→ L

be the unique consistent approximate operator valued in L.

Question: How good is the approximation P̃ f of f ∈ H\L
compared to orthogonal projection PLf of f onto L?
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For any two non-trivial closed subspaces A and B of a Hilbert

space H, let

R(A,B) = cosΘR(A,B) = inf
v∈A
‖v‖=1

‖PBv‖ (= R(B⊥, A⊥))

and

S(A,B) = cosΘS(A,B) = sup
v∈A
‖v‖=1

‖PBv‖ (= S(B,A)),

where PB is the orthogonal projection onto B. R(A,B) and

S(A,B) are the worst and the best estimate of the relative

length reduction when vectors in A are projected onto B.
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Theorem 7. (Unser, Aldroubi; KK, Lee)

Assume H = W + V⊥ and let P̃ = PL,V⊥ for L ∈ L. Then for all

f ∈ H\L,

(a) 0 < R(L,V) ≤
‖f − PL(f)‖

‖f − P̃ (f)‖
≤ S(L⊥,V⊥) ≤ 1;

(b) 0 ≤ R(V⊥, L) ≤
‖PL(f)− P̃ (f)‖

‖f − P̃ (f)‖
≤ S(L,V⊥) < 1.

44/ 44

Thanks for your attention.
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Evaluation of Crack Tip Fields and Role of Fracture Mechanics

Cheng Hua 
Department of Mechanics and Engineering Science, Fudan University, Shanghai, China 

Abstract: Fracture Mechanics has been accepted as an effective engineering methodology to 
evaluate the behavior of a crack tip fields and it seems to be considered as an almost established 
method. However, its system widely accepted at present contains some substantial problems that 
still remain to be solved. For instance, although the energy release rate is positioned as an important 
parameter in linear fracture mechanics, it cannot be extended inelastic fracture problems and, more-
over, the crack parameters used in fracture mechanics such as stress intensity factor K, J-integral 
and C* parameter are defined just under special constitutive equation. As the results, the scope of 
the application of fracture mechanics is compelled to be limited without due cause. In this lecture, 
the outline of fracture mechanics is introduced first, then, what the basic issues are in the role of 
fracture mechanics is made clear. 

Keywords: crack; fracture mechanics; stress intensity factor; path-independent integral

Introduction: 
Fracture mechanics is mechanics of solids containing displacement discontinuities (cracks) with 

special attention to their growth. Fracture mechanics is a theory that determines material failure by 
fracture criteria. Linear Elastic Fracture Mechanics (LEFM) is the basic theory of fracture that deals 
with sharp cracks in elastic bodies. It is applicable to any materials as long as the material is elastic 
except in a vanishingly small region at the crack tip (assumption of small scale yielding). Elastic-
Plastic Fracture Mechanics (EPFM) is the theory of ductile fracture, usually characterized by stable 
crack growth (ductile metals). The fracture process is accompanied by formation of large plastic 
zone at the crack tip. 

(1) Basic forms of cracks propagating
Crack (opening mode): By normal stress σ, the cracks propagating direction is vertical to 
the direction of loading stress; 
Crack (slipping mode) By shear stress τ, the cracks propagating direction is parallel to 
the direction of loading stress; 
Crack  (tearing mode)  By shear stress τ, the cracks line is parallel to the direction of 
loading stress. 

(2) Stress field at the crack tip

for crack mode I: 

while                       is Stress Intensity Factor (SIF). 
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Generally, the stresses at the crack tip can by expressed as:  

                                                                                        
(p= , , )  

Stress Intensity Factors 

Discussion: 
Ki (i= , , ) are independent of co-ordinate. They are parameters to describe the in-

tensity of the stress field around the crack tips; 

Ki (i= , , ) are close-related with the form, the size and the direction of the cracks;  

Ki (i= , , ) are correlated with the value of the loading and the loading form; 

Ki (i= , , ) are interrelated with the properties of the loaded material; 

The physical meaning of Ki (i= , , ) : They are mechanical parameters which are arti-
ficially introduced to describe the intensity of the stress field around the crack tips; 

By using these factors, the problem of solving the stress fields and displacements is simpli-
fied as just seeking for Ki (i= , , ); 

Unit  Ki (i= , , ) ——[force]×[length]-3/2 =[N]×[m]-3/2  

(3) Fracture criterion

KIC ——fracture tenacity/toughness, describing the resistance of crack propagating, determined 
by test plane stress crack and plane strain crack . 

When the thickness of the sample is small 
enough, the crack tip will be in a state of 
plane stress. When the crack line moves, its 
plastic area is relatively big enough to en-
hance Kic; 
When the thickness of the sample is big 
enough, the crack tip will be in a state of 
plane strain. When the crack line moves, its 
plastic area is relatively small enough to de-
crease Kic →K c . 

( , ) ( , , , )ij pK f r i j x y zσ θ= =

      ( I,II,III)K K ii ic≥ =
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KIC —— plane strain fracture toughness 
      KI = KIC fracture criterion for crack ) 

 KIC is a material constant, independent of the geometry of the testing sample. The thickness of 
the sample should be large enough to guarantee that the crack tip is in a state of plane strain. 

(4) J-integral definition

The J-integral can be defined as a path-independent contour integral that measures the strength of 
the singular stresses and strains near a crack tip. Its value should be approximate constant far-field 
as well as near-crack field. However, J-integral constancy may be questionable after crack initiation. 
Also, dominance of the J-integral becomes more debatable if the structure composition is heteroge-
neous. The following equation shows an expression for J in its 2-D form, where crack lies in the 
XY plane with x-axis parallel to the crack (the following Figure):

x xy yx y
u v u vJ W dy dx
x x x x

σ τ τ σ
Γ

∂ ∂ ∂ ∂= − − + +
∂ ∂ ∂ ∂

                                     

y

x

Γ
ds

n

crack
dsndx

dsndy

y

x

−=
=

Fig.  Definition of contour for J-integral evaluation 

In the above equation, Γ means any path surrounding the crack tip, W is strain energy density, σij
is component stress and ui is displacement vector. 
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1. Stress field near the Crack Tip 
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2. Stress Intensity Factor-SIF 
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3. Elementary Fracture Mechanics 
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4. Griffith's Energy Balance Approach 
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5. J-integral 
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6. Fracture Toughness and Fracture Criterion 
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7. Role of Fracture Mechanics 

7.1 Mechanics of Materials and Fracture Mechanics  
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7.2 Summary of Fracture Parameters 
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7.3 Fracture Parameters and  their Availabilities 
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7.4 Applications to Fracture Phenomena 
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7.5 Problems in Conventional Fracture Mechanics 
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1. Stress field at the crack tip1. Stress field at the crack tip

Stress distribution around circular hole and elliptical hole: Stress distribution around circular hole and elliptical hole: 

circular holecircular hole elliptical holeelliptical hole

Inglis (1913) analyzed for the flat plate with an elliptical hole 
with major axis 2a and minor axis 2b, subjected to far end stress  
Inglis (1913) analyzed for the flat plate with an elliptical hole 
with major axis 2a and minor axis 2b, subjected to far end stress  

The linear elastic solution of the stress 
at the tip of the major axis is given by : 

+=
b
a210max σ

0max 3σ=
For circular hole (b=a) :For circular hole (b=a) :

The Inglis solution

The first step is to consider

The paper looks like: 
(Inglis, 1913) 
The paper looks like: 
(Inglis, 1913) 

The Mathematical Method (Linear Elastic Mechanics)

Inglis solution

1. Stress field at the crack tip1. Stress field at the crack tip
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σ0 applied stress
σmax stress at crack 

tip
ρ crack tip radius

Linear elasticity solution of an elliptic hole in a large plate 
(Inglis solution)

Stress Concentration Factor (SCF)Stress Concentration Factor (SCF)

1. Stress field at the crack tip1. Stress field at the crack tip

SCFSCF

b=a, circular hole

b→ 0 Crack

ρ
σσ a

b
a

00max 221 ≈+=

0max 3σ=

∞→max

3
0

max ==
σ

Kt

==
0

max

σ
Kt

Cracks have a sharp tip and lead to stress singularity

How To Quantify?  
Lead to “Stress 
Intensity Factor (SIF)”

Stress concentration and Stress singularity : Stress concentration and Stress singularity : 

1. Stress field at the crack tip1. Stress field at the crack tip

Stress 
Concentration:

Stress 
Concentration:

Stress 
Singularity:

Stress 
Singularity:

Stress Concentration 
Factor (SCF) 
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Linear Elastic MechanicsLinear Elastic Mechanics

1. Stress field at the crack tip1. Stress field at the crack tip

1( , ) ( 0)ij r r
r

σ θ ∝ →

This feature is called 
Stress Singularity

This feature is called 
Stress Singularity

Stress singularity : Stress singularity : 

Stress near the crack tip

The second to study

OUTLINE
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2. Stress Intensity Factor (SIF)2. Stress Intensity Factor (SIF)
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Why K?Why K? The legend: Irwin chose the letter K 
after J.A. Kies, one of his co-workers
The legend: Irwin chose the letter K 
after J.A. Kies, one of his co-workers

K is called the “Stress 
Intensity Factor”

Irwin (1957) proposed a new physical quantity ---
Stress Intensity Factor (SIF)
Irwin (1957) proposed a new physical quantity ---
Stress Intensity Factor (SIF)
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2 2 22x

K
r

θ θ θσ
π

= −
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K
r

θ θ θσ
π

= +
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2 2 22xy

K
r

θ θ θτ
π

=

Stress Field Near the Crack Tip

1( , ) ( 0)ij r r
r

σ θ ∝ →

Dr George R. Irwin 
(1907-1998)

Solution to an Infinite Cracked Panel: Solution to an Infinite Cracked Panel: 

2. Stress Intensity Factor (SIF)2. Stress Intensity Factor (SIF)
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2. Stress Intensity Factor (SIF)2. Stress Intensity Factor (SIF)
Solution to a Finite Size Cracked Panel : Solution to a Finite Size Cracked Panel : 

1. Rooke DP and Cartwright DJ (1976).  Compendium of Stress Intensity Factors. 
Procurement Executive, Ministry of Defence. H.M.S.O. 

2. Tada H, Paris PC, and Irwin GR (1985). The Stress Intensity Factor Handbook. 
Hellertown, Philadelphia: Del Research Corporation

3. Murakami Y (1987). Stress Intensity Factors Handbook. New York: Pergamon.

2. Stress Intensity Factor (SIF)2. Stress Intensity Factor (SIF)
Solution to a Finite Size Cracked Panel : Solution to a Finite Size Cracked Panel : 

K: Stress Intensity Factor K: Stress Intensity Factor 
K Factor defines the stress field around the crack tip, taking  into 
account crack length, applied stress and shape factor  ( which accounts 
for finite size of the component and local geometric features)

K Factor defines the stress field around the crack tip, taking  into 
account crack length, applied stress and shape factor  ( which accounts 
for finite size of the component and local geometric features)
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2. Stress Intensity Factor (SIF)2. Stress Intensity Factor (SIF)
Solution to a Finite Size Cracked Panel : Solution to a Finite Size Cracked Panel : 

Father of Modern Fracture MechanicsFather of Modern Fracture Mechanics

Dr George R. Irwin 
(1907-1998)

After having received the A.B. in English and Physics from Knox 
College and the M.A. and Ph. D in Physics from the University of
Illinois, George Irwin began his career in 1937, at the U.S. 
Naval Research Lab (NRL) where he developed several new 
ballistics research techniques. As a result, the NRL Ballistics 
Branch, which was headed by Irwin, was able to develop non-
metallic armors for fragment protection. These armors received 
trial use in World War II and extensive use during the Korean and 
Vietnam Wars. The early years of this work led to an interest 
in brittle fracture and provided a basis for Irwin’s pioneering 
work in fracture mechanics. The basic concepts established 
by Irwin and his team from 1946 to 1960 are now used world 
wide for fracture control in aircraft, nuclear reactor vessels 
and other fracture- critical applications.

In the 1950s Irwin and coworkers introduced the concept of Stress Intensity Factor, which 
defines the stress field around the crack tip, taking  into account crack length, applied stress 
and shape factor (which accounts for finite size of the component and local geometric features). 

His numerous awards include ASTM Honorary Member, Timoshenko Medal of ASME, Gold Medal of 
ASM, The Grand Medal of the French Metallurgical Society, Tetmajer Medal o the Technical University of 
Vienna, member of the National Academy of Engineering and foreign membership in the Royal 
Society of London. He was appointed to Boeing University Professor at Lehigh University in 1967. He 
later joined the University of Maryland’s Department of Engineering where he has been and active 
researcher and advisor of graduate students since 1972. 
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Stress Intensity Factor : Stress Intensity Factor : 

KI for Mode I 

KII for Mode II 

KIII for Mode III 

Modes of Fracture (the three modes of crack surface displacement):Modes of Fracture (the three modes of crack surface displacement):

- Opening mode or tensile mode

- Sliding mode or in-plane shear mode

- Tearing mode or anti-plane shear mode

3. Elementary Fracture Mechanics 3. Elementary Fracture Mechanics 
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3. Elementary Fracture Mechanics 3. Elementary Fracture Mechanics 
Similar to Mode I

KII for Mode II                 and             KIII for Mode III: KII for Mode II                 and             KIII for Mode III: 
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Stress near the crack tip
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3. Elementary Fracture Mechanics 3. Elementary Fracture Mechanics 

Mode I + Mode II + 
Mode III 
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3. Elementary Fracture Mechanics 3. Elementary Fracture Mechanics 

Basic types of fracture:
(according to whether the material has 

obvious plastic deformation before fracture)

Basic types of fracture:
(according to whether the material has 

obvious plastic deformation before fracture)

Brittle Fracture 

Ductile Fracture

Ductile fracture 
Crack tip blunting by plastic deformation at tip
Energy spent in plastic deformation at the crack tip

Ductile fracture - involves a large amount of plastic deformation

Brittle fracture 
cracks are sharp & no crack tip blunting
No energy spent in plastic deformation at the crack tip

Brittle fracture - is more catastrophic and has been intensively 
studied

3. Elementary Fracture Mechanics 3. Elementary Fracture Mechanics 
Related SubjectsRelated Subjects

Linear Elastic Fracture Mechanics (LEFM) 
Elastic-Plastic Fracture Mechanics (EPFM) 

Linear Elastic Fracture Mechanics (LEFM) : Linear Elastic Fracture Mechanics (LEFM) : 

Elastic-Plastic Fracture Mechanics (EPFM) : Elastic-Plastic Fracture Mechanics (EPFM) : 

Refer to Brittle material
The structure obeys Hooke’s law and global behavior is linear and if 
any local small scale crack tip plasticity is ignored
Central to LEFM is the concept of K introduced by Irwin

Refer to Ductile material
The structure obeys an elastic-plastic constitutive
Central to EPFM is the concept of J-integral introduced by James R. 
Rice
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The Previous Conditions: The Previous Conditions: 

Suppose a structure with an 
interior crack (existing crack) 

3. Elementary Fracture Mechanics 3. Elementary Fracture Mechanics 

Two different points of viewTwo different points of view

Energy balance Griffith theory (1921, Griffith, UK)

The crack tip stress intensity (1957, Irwin, USA) Stress based

Energy based

OUTLINE
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4. Griffith's Energy Balance Approach 4. Griffith's Energy Balance Approach 

Griffith Proposed:

aBA 2=

BdadA 2=

Griffith AA, The phenomena of rupture and flow in solids, Philosophical Transactions, Series A, 1920(221): 163-198.  

Dr Alan A. Griffith 
(1893-1963)

2
)( cG

A
W ≥

∂
∂−

A: Surface area of specimen
Gc: Amount of energy required to 
tear through a unit area of the 
material         
Factor 2: Two newly formed 
surfaces

A: Surface area of specimen
Gc: Amount of energy required to 
tear through a unit area of the 
material         
Factor 2: Two newly formed 
surfaces

Where, 

Griffith’s Theory : Griffith’s Theory : 

A crack would propagate in a stressed material only when, by doing so, it brought about a reduction in elastically 
stored energy W more than sufficient to meet the free energy requirements of newly formed fracture surfaces   
A crack would propagate in a stressed material only when, by doing so, it brought about a reduction in elastically 
stored energy W more than sufficient to meet the free energy requirements of newly formed fracture surfaces   

4. Griffith's Energy Balance Approach 4. Griffith's Energy Balance Approach 

The core idea of Griffith theory

or named “Crack driving 
force”, The release of 
potential energy Such as 
elastic energy

or named “Material 
resistance”, The new 
surface energy formed 
on the crack surface 
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Strain energy release rate is introduced by Irwin Strain energy release rate is introduced by Irwin 

4. Griffith's Energy Balance Approach 4. Griffith's Energy Balance Approach 
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4. Griffith's Energy Balance Approach 4. Griffith's Energy Balance Approach 

plane stressplane stress

plane strainplane strain

OUTLINE
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5. The J - integral5. The J - integral

By idealizing elastic-plastic deformation as non-linear elastic, 
Rice (1968) proposed J-integral, for egions beyond LEFM
By idealizing elastic-plastic deformation as non-linear elastic, 
Rice (1968) proposed J-integral, for egions beyond LEFM

The Previous Conditions: The Previous Conditions: 

In loading path elastic-plastic can be modeled as non-linear elastic but not in 
unloading part.
Also J-integral uses deformation plasticity. It states that the stress state can be 
determined knowing the initial and final configuration. The plastic strain is in 
proportional load, i.e. d d d d d d
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Under the above conditions, J-integral characterizes the crack tip stress and 
crack tip strain and energy release rate uniquely.
J-integral is numerically equivalent to G for linear elastic material. It is a path-
independent integral.
When the above conditions are not satisfied, J becomes path dependent and 
does not relates to any physical quantities.

5. The J - integral5. The J - integral
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5. The J - integral5. The J - integral
HRR Field (1968, Rice, Rosengren, Hutchinson): HRR Field (1968, Rice, Rosengren, Hutchinson): 
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5. The J - integral5. The J - integral

Evaluation  of J-Integral: Evaluation  of J-Integral: 

1. Deformation theory of plasticity should be valid with 
small strain behavior with monotonic loading. 

2. If finite strain effects dominate and microscopic 
failures occur, then this region should be much 
smaller compared to J dominated region, again based 
on the HRR singularity.
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OUTLINE

6. Fracture Toughness and Fracture Criterion6. Fracture Toughness and Fracture Criterion

Fracture toughness: Fracture toughness: 

The resistance of a material to failure in the presence of a crack. 

required for a crack to propagate describing the resistance of crack propagating, 

determined by test plane stress crack and plane strain crack

Fracture criterion: Fracture criterion:       ( I,II,III)K K ii ic≤ =
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6. Fracture Toughness and Fracture Criterion6. Fracture Toughness and Fracture Criterion

Material test standard : Material test standard : 

6. Fracture Toughness and Fracture Criterion6. Fracture Toughness and Fracture Criterion
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Material or structure fracture control is the following 
three main factors: 

Material or structure fracture control is the following 
three main factors: 

Crack size and shape

Applied Stress

Fracture 
toughness of 
material

Fracture mechanics analysis Material testing

KICKI fracture criterion

6. Fracture Toughness and Fracture Criterion6. Fracture Toughness and Fracture Criterion

: : 

The fracture mechanics approach allows us to design and select 
materials while taking into account the inevitable presence of 
cracks. There are three variables to consider:

The property of the material (Kc or KIc)

The stress that the material must withstand

The size of the crack

6. Fracture Toughness and Fracture Criterion6. Fracture Toughness and Fracture Criterion
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aσ ICKApplied Stress Crack size Fracture toughness

Known Known

Known Known
Determine the 
working stress to 
allow to use

Known KnownDetermine the
allowable crack siz

Choose materials satisfy the
Kic value fracture criterion 
promised not to break

6. Fracture Toughness and Fracture Criterion6. Fracture Toughness and Fracture Criterion

Material Fracture Toughness Material fracture toughness may be defined 
as the ability to carry loads or deform plastically in the presence of a notch. It 
may be described in terms of the critical stress intensity factor, KIc, under a 
variety of conditions. (These terms and conditions are fully discussed in the 
following chapters.)

Crack Size Fractures initiate from discontinuities that can vary from 
extremely small cracks to much larger weld or fatigue cracks. Furthermore, 
although good fabrication practice and inspection can minimize the size and 
number of cracks, most complex mechanical components cannot be 
fabricated without discontinuities of one type or another.

Stress Level For the most part, tensile stresses are necessary for brittle 
fracture to occur. These stresses are determined by a stress analysis of the 
particular component.

Other factors such as temperature, loading rate, stress concentrations, 
residual stresses, etc., influence these three primary factors.

Fracture mechanics identifies three primary factors : Fracture mechanics identifies three primary factors : 

6. Fracture Toughness and Fracture Criterion6. Fracture Toughness and Fracture Criterion
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Mechanics of Materials and Fracture Mechanics

Summary of Fracture Parameters

Fracture Parameters and  their Availabilities

Applications to Fracture Phenomena

Problems in Conventional Fracture Mechanics

Mechanics of Materials and Fracture Mechanics
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Mechanics of Materials and Fracture Mechanics

Strength of
Materials

Mechanics of Materials

Fracture Mechanics

Strength of
Structures

Mechanics of Materials and Fracture Mechanics

Crack Problem Fracture Mechanics

modeling
Stress, Strain, Strain energy density

other parameters are necessary

Fracture Mechanics

Stress around a crack tip

Crack front line
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Summary of Fracture Parameters
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Summary of Fracture Parameters

J integral

( )
Γ

Γ−= duTWdxJ ii 1,2

Ti

ui

x1

x2

P

uO

A

Ba

a + da

C

Bda
dUJ −= =

u
PduU

0

Path Independent Integral

Load-Displacement Curves

(deformation theory)

P, u

da
a

DensityEnergy Strain :       

),,,( 312211

W

fW
ij

ij
ij εεε

ε
σ =

∂
∂=

Summary of Fracture Parameters

G
KKK

G 2
)(

8
1 2

III2
II

2
I +++= κ

Bda
dP λ2

2
1=

( )

n

nn
n

nn

n
n KIKKIKIJ 1

0

1
0

0

1
0

ε
σ

σ
ε ε

εσ
σ

++

===

Energy Release Rate

Meaning is not clear

)1(1

00
0

+
=

n

nI
JK

σε
σσ

( )+= +− nrK ij
n

ij ,~)1(1 θσσ σ

－110－



Summary of Fracture Parameters

Creep- a time dependent, permanent deformation at high 
temperature, occurring at constant load or constant stress.

Creep rate - The rate at which a material deforms when a 
stress is applied at a high temperature.

Evaluation of Creep Behavior: Evaluation of Creep Behavior: 

Summary of Fracture Parameters

Creep Crack (C* parameter)
Analogy to Elastoplastic Problem under Deformation Theory

cr
ij

ij

ijji
cr
ij

jij

W

uu

ε
σ

ε

σ

∂
∂=

+=

=

,

.,

,

)(
2
1

0

ij
ij

ijjiij

jij

W

uu

ε
σ

ε

σ

∂
∂=

+=

=

)(
2
1

0

.,

,

Elastoplastic Stationary Creep

( )
Γ

Γ−= duTWdxJ ii 1,2 ( )
Γ

Γ−= duTdxWC ii 1,2
,*

n

=
00 σ

σ
ε
εn power law

( )+= +−
+

nr
I

J
ij

n
n

n
ij ,~)1(1

)1(1

00
0 θσ

σε
σσ

ncr Aσε =Norton’s rule

( )+= +−
+

nr
AI

C
ij

n
n

n
ij ,~)1(1

)1(1*

0 θσσσ

)0( == p
ij

e
ij εε

－111－



Summary of Fracture Parameters
Actual Deformation around a Crack Tip
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Fracture Parameters and  their Availabilities
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Fracture Parameters and  their Availabilities

Stress Intensity Factor Plastic Stress Strain Intensity Factor
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Applications to Fracture Phenomena
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Applications to Fracture Phenomena

Brittle or Quasi-brittle Fracture
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Problems in Conventional Fracture Mechanics
1. The concept of energy release rate was considered successfully 

applied to elastoplastic fracture under small scale yielding. But, 
it failed to explain elastoplastic fracture under large scale 
yielding.

2. There exists no crack parameter that can be defined without 
depending on constitutive equation. Elastoplastic crack 
parameter J is defined just under deformation theory. It loses 
its meaning when unloading occurs and it is applicable just 
before the onset of crack growth. There is no way to deal with a
growing elastoplastic crack. 

3. There is no parameter for mixed mode elastoplastic crack.

4. Depending on phenomena, different parameters are required 
depending on phenomena.
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Basic properties of concrete and
its non destructive testing

Noriyuki MITA∗ and Takashi TAKIGUCHI†

Abstract

In this article, we first review the basic theory of concrete from the viewpoint
of the building material. It is our goal is to establish a determinate non-destructive
testing method for concrete structures by application of acoustic tomography. In
order to accomplish our purpose, we propose a problem of integral geometry based
on our experiments on the concrete structures. We also discuss how important our
problems is and introduce several examples in practical applications to which the
researches on our problem should be applied.

Keywords: non-destructive testing of concrete structures, inverse problems,
acoustic tomography, integral geometry

1 Introduction

In this article, we first review the outline of concrete theory, with which most of
the readers may not be familiar. For the general theory of concrete, confer [1]. We also
recommend [3] for Japanese readers. It is one of our main purposes is to establish a
determinate non-destructive testing method for concrete structures, which has not been
developed yet for the time being. For this purpose, we propose a problem for the develop-
ment of a new non-destructive testing method for concrete structures applying acoustic
tomography. For the development of the acoustic CT for our purpose, we studied how the
ultrasonic waves and the electromagnetic acoustic pulses propagate in the cement paste,
the mortar and the concrete by experiments. By the results of our experiments, we study
the propagation of the ultrasonic waves and the electromagnetic acoustic pulses in the
cement paste, the mortar and the concrete, which yields an inverse problem of the acous-
tic tomography applied to the determinate non-destructive testing method for concrete
structures we are trying to establish. We shall also discuss its importance in view of both
practice and theory. Especially, we shall claim that theoretical aspect of this problem has
strong connection with the integral geometry.

∗Faculty of Human Resources Development, Polytechnic University of Japan, 2-32-1, OgawaNishi-
machi, Kodaira, Tokyo, 187-0035, JAPAN. email: mitanori@uitec.ac.jp

†Supported in part by JSPS Grant-in-Aid for Scientific Research (C) 26400184.
Department of Mathematics, National Defense Academy of Japan, 1-10-20, Hashirimizu, Yokosuka, Kana-
gawa, 239-8686, JAPAN. email: takashi@nda.ac.jp
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This article consists of the following sections.

§1. Introduction

§2. Basic properties of concrete

§3. Damage by salt on the expressway bridges

§4. Propagation of the ultrasonic waves and the electromagnetic acoustic pulses

§5. An inverse problem of the acoustic tomography

§6. Conclusion

In this section, as the introduction of this article, we introduce the outline of our article.
In the next section, we shall review basic properties of concrete, where we also discuss
how we understand the concrete in this paper. In the third section, we shall introduce
the motivation of our research. The motivation of this research occured from the problem
of the damage by salt on the expressway bridges. In the fourth section, we study how
the ultrasonic waves and the electromagnetic acoustic pulses propagate in the cement
paste, the mortar and the concrete by the experiments, which is a key to discuss our
main purpose, to study how to establish a determinate non-destructive testing method
for concrete structures, in Section 5. We first introduce our experiments to study the
propagation the ultrasonic waves and the electromagnetic acoustic pulses in the cement
paste, the mortar and the concrete. By examining the results of our experiments, we
conclude that we can treat the ultrasonic waves and the electromagnetic acoustic pulses
as linear elastic waves for our purpose. Section 5 is devoted for the main purpose of
this article. We shall pose an inverse problem for establishment of a determinate non-
destructive testing method for concrete structures, for which we shall apply the results
of our experiments and their examination discussed in Section 4. The problem posed in
this section is also interesting in view of pure mathematics, especially, in view of integral
geometry. In the final section, we shall summarize our conclusions.

The authors are grateful to Professors Hisashi Yamasaki and Ryusei Yamashita for
their devoted help for our experiments.
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2 Basic properties of concrete

In this section, we shall review basic properties of concrete. Before reviewing the
definition and some basic properties of concrete, the authors claim that

Claim 2.1. The concrete materials are artificial (gigantic) stones or megaliths.

Let us first discuss why the authors claim Claim 2.1. Take Valley Temple, Egypt
(BC2500?) and Parthenon, Athens (BC447-432), for example, which are made of me-
galiths. At that period around those areas, there were plenty of megaliths available,
therefore they made Valley Temple and Parthenon of megaliths which are very suitable
for edifices. On the other hand, let us turn to Colosseum, Rome (AD70-80). Its bailey or
external wall being made of megaliths, its interior structure is infilled with stones bricks
and sand, which we take as an origin of the concrete. It may be because of the shortage of
the megaliths in Rome about 2000 years ago. Note that the structure of Colosseum safely
exists after about 2000 years after its foundation. Hence we can say that the primitive
concrete materials applied to the interior infillment of Colosseum have played their im-
portant role as the substitute for the megaliths very well for a long time, which is one of
the reasons why the authors claim Claim 2.1. Though we still have many other reasons,
we would not mention them in detail, since they directly have little to do with our main
purpose in this article.

Let us define what the concrete is.

Definition 2.1. The concrete is the mixture of the four materials, the cement (C), the
water (W), the sand (fine aggregate：S) and the gravel (coarse aggregate: G). Sometimes,
if necessary, we add some admixture to the above mixture of the four materials to make
harder concrete.

Remark 2.1.

(i) The mixture of the cement and the water is called the cement paste.

(ii) The mixture of the cement, the water, and the sand (the cement paste and the sand)
is called the mortar.

(iii) The concrete can be understood as the mixture of the mortar and the gravel.

(iv) It being usually said that the concrete is the mixture of the four materials, the
cement, the water, the sand and the gravel as mentioned above, it is very important
to add the air as the fifth component of the concrete, especially for the main purpose
in this article. Since concrete is a porous medium, as is well known, it is very
important to study how the air is included in a concrete structure for its non-
destructive testing.
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Let us introduce the merits of the concrete.

Property 2.1 (Merits of the concrete).
The merits of the concrete as a building material are as follows.

(a) Excellent durability against the weather, the chemical materials and the mechanical
force.

(b) High fire-resistance and water-resistance.

(c) High compressive strength.

(d) High corrosion resistance for steel.

(e) The coefficients of thermal expansion (CTE) of the concrete and the steel are exactly
the same.

(f) Easily made and shaped in any form because of its fluidity before it gets hard.

(g) Its cost is very cheap (about 120 dollars/m3).

Let us give some remarks on Property 2.1. The first three properties are very close
to the ones of the stones and the megaliths, which is one of the reasons why the authors
claimed Claim 2.1. The properties (d) and (e) are essentially important for the reinforced
concrete (RC) structures. The property (d) is by the chemical property of the cement.
Very roughly speaking, the main component of the cement is calcium oxide (CaO), whose
combination with the water yields

CaO +H2O → Ca(OH)2, (1)

which is known as the hydration reaction of the cement. It is well known that calcium hy-
droxide (Ca(OH)2) shows strong alkalinity, which prevents the steel from getting oxidized.
We claim that this property is much better than “being artificial stones or megaliths”,
especially as the material of the RC structures. If the CTE of the concrete and the steel
are different, the RC structure easily have some cracks in their interior by the change of
the temperature. By the properties (d) and (e), the RC was called as “the miracle and
the permanent material” at its initial stage of application to the buildings. It turned out,
however, that it was neither miracle nor permanent. The concrete gets neutralized by the
carbon dioxide (CO2) in the air a few decades after its placing, whose chemical reaction
is represented by

Ca(OH)2 + CO2 → CaCO3 +H2O. (2)

After the neutralization of the concrete, a part of the steel inside the RC structure gets
corroded by the water contained in its interior. The corroded steel intumesces very much,
which would make cracks or ruin the structure. Therefore the life span of the RC structure
is called about a half century, these days. In spite of it, it is true that the reinforced
concrete is very cheap, durable and easily treated material for the buildings before the
steel in its interior gets corroded. By these facts, it is very important to study how to find
the defects in the concrete structures and how to repair and maintain them. We also note
that the properties (f) and (g) are very good, important and superior to the megaliths as
the building material.
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Of course, there are demerits of the concrete.

Property 2.2 (Demerits of the concrete).
The demerits of the concrete as a building material are as follows.

(α) Low tensile strength.

(β) It easily gets cracks in and on itself.

(γ) It is very heavy in the RC structures.

Let us give some remarks on Property 2.2. As for (α), the tensile strength of the
concrete is about 1/10 of its compressive one. It is very weak compared with its bending
strength which is about a third of its compressive one. From this problem, there arises the
necessity to reinforce the concrete. The demerit (β) causes problems in the load bearing
ability and durability. It also causes the water leakage. The RC structures are generally
said to be weak to the damage by the earthquake because of the demerit (γ). The demerits
(α) and (β) are inferior to the megaliths as the building material. The demerit (γ) is the
same one as the megaliths.
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3 Damage by salt on the expressway bridges

It is our main purpose in this article to study how to establish a determinate non-
destructive testing method for concrete structures, which shall be discussed in the fifth
section. In this section, we shall introduce a problem of the damage by salt on the
expressway bridges over the sea, which motived our study to establish a determinate
non-destructive testing method for concrete structures. By the wind or a tide, sea water
blows up and pour over the expressway bridges. As a result, the salt soaks into the
interior of the bridges. In the interior of an expressway bridge, there are a number of
steel wires inbedded for the reinforcement. By the soaked salt, the steel wires would be
corroded by chloridation. In this process, the corrosion of the steel wires is much faster
than the corrosion by oxidization, since chloridation cannot be helped by the alkalinity of
the cement. This damage by the salt is one of the severest problems on the maintenance
of the expressway bridges over the sea. For the time being, they check the damage of
the expressway bridges by salt by application of a destructive test. They first pull out
some pieces of concrete from the brides. By checking whether they contain the salt or
not, they determine the parts of the bridge damaged by salt. This is a typical example of
the destructive test and costs much time and labor costs. For development of the better
testing methods, we pose the following problem.

Problem 3.1. Establish a good non-destructive testing method for the bridges, which also
works well to cut off the testing time and the labor costs for the test.

Remark 3.1. Note that if we solve Problem 3.1 then we could cut off the the testing
time and the labor costs for the test as well as the damage to the bridge by the test.

For simplicity, assume that the bridge is a rectangular parallelepiped. Its damage by
salt must be detected before it soaks into the interior of the bridges longer than 1m from
each edge surface, otherwise the steel wire inside the bridge might be got corroded by the
damage by salt.

Therefore, we pose our problem concretely in the following way.

Problem 3.2. Establish a good non-destructive testing method to determine the place
damaged by salt inside the bridge within the distance less than 1m from each edge surface.

In order to solve this problem. We shall apply an acoustic tomography. In the next
section, we shall study the propagation of the ultrasonic waves and the electromagnetic
acoustic pulses in concrete structures with in the length of 1m by experiments, which
shall be applied to pose a problem for establishment of non-destructive testing method
for concrete structures by acoustic tomography.
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4 Propagation of the ultrasonic waves

and the electromagnetic acoustic pulses

As we have mentioned at the end of the last section, we shall apply the properties
of the sound as a tool of the non-destructive testing for concrete structures. In this
section, as a preparation for the next section, we study how the ultrasonic waves and
the electromagnetic acoustic pulses propagate in the cement paste, the mortar and the
concrete by the experiments. We first introduce our experiments to study the propagation
the ultrasonic waves and the electromagnetic acoustic pulses propagate in the cement
paste, the mortar and the concrete. By the examining the results of our experiments,
we shall study the propagation of the ultrasonic waves and the electromagnetic acoustic
pulses in concrete structures of the length about 1m or less.

Let us introduce the outline of our experiments.

Outline of our experiments

• Velocity of the sound;

– Velocity of the ultrasonic wave is denoted by Vu (m/s).

– Velocity of the electromagnetic acoustic pulse is denoted by Ve (m/s).

• Length of test pieces;
We prepared test pieces of the length 100, 200, 300, 400, 800 and 1200mm in order
to check

– the decay of the acoustic velocity

– the propagation of the sound

• Inclusions;
We prepared two types of test pieces.

– Normal test pieces

– Test pieces with styrofoam of the length 200 and 300mm included in their
inside

These test pieces are made use of to determine the propagation of the sound.

We first made the test pieces made of cement paste and mortar as shown in Figure 1.
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Figure 1: Components of the test pieces

－124－



Figure 2: Length of the test pieces and testing points

Experiment 1.

We first experimented on the normal test pieces. We projected the ultrasonic waves
and the electromagnetic acoustic pulses from the testing points numbered 1©, · · · , 5© on
one end square of the test pieces (see figure 2). We name them as ‘source points’. We
received them at the same-numbered testing points on the other end square. We name
them as ‘observation points’. We have measured the time for the sound to travel between
the source and the observation points. The results of these experiments are summed up
in Figures 3 and 4, where we mean that the age of the test pieces is x weeks by the term
‘xW’.

Remark that the average of the results on the point 1© and 2© are treated as ‘upper
points’, the average of the results on the point 3© and 4© are treated as ‘lower points’and
the point 5© is denoted by the center point.
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Figure 3: Normal test pieces (age of a week)
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Figure 4: Normal test pieces (age of 4 weeks)
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By reviewexamining the results by Experiment 1, we obtain the following properties.

Property 4.1.

• We have rediscovered the well known basic property of concrete; the more time goes
by, the harder the test pieces are, which is caused by the reaction of hydration of
concrete.

• We also have rediscovered the well known basic property, the gravity settling of ce-
ment, in terms of the acoustic velocity; the lower the testing points are, the faster
the acoustic velocity is, which is because of the fact that the lower the points are, the
larger their density is, causeb by the gravity settling of cement.

• We can conclude that for the test pieces of the length less than 1200mm, there is no
decay of the acoustic velocity from the viewpoint of its first arriving time.

The last property is essentially important for our study.

Experiment 2.

We simultaneously made the test pieces of the length 400mm (100mm × 100mm ×
400mm) with styrofoam of the length 200 and 300mm included in their inside (confer
Figure 5). We performed the same experiments as Experiment 1, whose results are re-
viewexamined in the following .

Figure 5: Test pieces with styrofoam
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Figure 6: Propagation of the sound

Applying Hypothesis 4.1, we have modified the length of the orbit along which the
sound propagates, that is, V ′

s and V ′
e are given by

0.00406 (meters)

arriving time (seconds)
(4)

for the lower points in the test pieces with styrofoam of the length 200mm and by

0.00412 (meters)

arriving time (seconds)
(5)

for the lower points in the test pieces with styrofoam of the length 300mm. Confer Figure
6 for the image of these modifications. The results of Experiment 2 with the modification
of the velocities are summarized in Figures 7, 8 and 9.

In Experiment 2, the (formal) velocity, which is calculated by

length of the test piece (meters)

arriving time (sconds)
, (3)

in the lower points is smaller that the that of upper points, applying which we studied
the propagation of the sound in the test pieces. We hypothesized that the propagation of
the sound in the test pieces is as the following Hypothesis which is also shown in Figure
6.

Hypothesis 4.1. The first arrival wave of the ultrasonic one and the electromagnetic
acoustic pulse takes the fastest route in the test pieces of the cement paste, the mortar
and the concrete.
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Figure 7: Tables of modification of the velocity
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Figure 8: Test pieces of cement paste with styrofoam (age of 4 weeks)
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Figure 9: Test pieces of mortar with styrofoam (age of 4 weeks)
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Let us summarize the conclusions of Experiments 1 and 2.

Conclusion 4.1 (Conclusion of Experiments 1 and 2).

• The first arrival wave of the ultrasonic one and the electromagetic acoustic pulse
takes the fastest route in the test pieces of the cement paste, the mortar and the
concrete.

• In the test pieces of the length less than 1200mm, there is no decay of the speed of
the ultrasonic waves and the electromagetic acoustic pulses with respect to the length
of the test pieces.

Remark 4.1. For the time being, there does not exist determinate non-destructive testing
method for concrete structures. It is our newer idea than the existing ones [2, 4] to focus
on the first arrival time of the sound and pose a problem for the development of the
acoustic CT, which may yield a determinate non-destructive testing method. We shall
discuss this problem in the nest section.

The first conclusion in Conclusion 4.1 is so important for our main purpose that we
summarized it as an important property.

Property 4.2. The first arrival wave of the ultrasonic one and the electromagnetic acous-
tic pulse takes the fastest route in the test objects of the cement paste, the mortar and the
concrete.

Property 4.2 plays an important role to pose a problem for establishment of determi-
nate non-destructive testing method in the next section.

Remark 4.2. Having introduced the results of our experiments mainly on the data of
ultrasonic waves, we have almost the same results on electromagnetic acoustic pulses,
which shall be introduced in our forthcoming paper.
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5 An inverse problem of the acoustic tomography

As was studied in the previous section, we know that the the first arrival wave of
the ultrasonic one and the electromagnetic acoustic pulse takes the fastest route in the
concrete structures of the length less than 1.2m and there is no decay in the velocity
of the sound with the length of 1.2m, which is what Conclusion 4.1 claims. In view
these properties, we pose the following problem in order to establish a determinate non-
destructive testing method for concrete structures, which is the main purpose in this
article.

Problem 5.1 (Problem for non-destructive testing for concrete structure).
Let Ω ⊂ R

3 be a domain and f(x), (x ∈ Ω) be the propagation speed of the sound. For
α, β ∈ ∂Ω, we denote by γα,β a route from α to β through Ω. Reconstruct f(x) (x ∈ Ω)
out of the data

min
γα,β

∫
γα,β

1/f(x)dγ, (6)

for ∀α, β ∈ ∂Ω.

By Problem 5.1 we mean the problem “Reconstruct the acoustic velocity f(x) at the
all points x ∈ Ω out of the data of the acoustic arrival time between the all pairs of the
points on the boudary.”Study of Problem 5.1 is very important not only for solution of
Problem 3.2, but to establish a determinate non-destructing testing method for general
concrete structures including RC ones. Let us give some remarks on Problem 5.1.

Remark 5.1 (Remarks on Problem 5.1).

• It is impossible to reconstruct the information of some points x’s where f(x)’s
are very small. For example, we cannot reconstruct the acoustic velocity of the
styrofoam if it is included near the center of the test piece since no acoustic wave
would go through it because of Property 4.2. However, it does not matter very
much, since what we focus on in Problem 3.2 is the part damage by salt where the
density (accordingly the acoustic velocity) is relatively large.

• It is an interesting problem to determine the optimal subset of reconstructible by
the acoustic CT established by the application of Problem 5.1.

As an application of the study of Problem 5.1, we of course have Problem 3.2 in mind.
In Problem 3.2, we have to detect detect the 2 ∼ 3kg of salt included in the 1m3 of
concrete in order to detect the damaged parts of the expressway bridges by salt, which
yields the following problem.

Problem 5.2 (Another problem to solve Problem 3.2).
Is it possible to detect the 2 ∼ 3kg of salt included in the 1m3 of concrete, by the acoustic
tomography as an application of Problem 5.1?

In order to solve this problem, we shall conduct other experiments.
As another application of the study of Problem 5.1, we take non-destructive testing

of RC structures, for which we have to study the propagation of the sound in the longer
concrete structures.
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Problem 5.3 (Another problem for non-destructive testing).
Study the propagation of the ultrasonic wave and the electromagnetic acoustic pulse in the
longer concrete structures and pose a mathematical problem for longer concrete structures.

The study of this problem can be very helpful for non-destructive testing for more
general concrete structures, especially to detect the corroded steel in RC structures.

Remark 5.2. It is very important to develop the study of Problems 3.2 and 5.3, especially
in view of redevelopment of infrastructures.

As we have discussed above, study of Problem 5.1 is very important in view of practice,
especially in view of redevelopment of infrastructures. It is also important in view of
both pure and applied mathematics, especially in integral geometry. Let us mention how
important the study of Problem 5.1 is in view of pure and applied mathematics.

Remark 5.3 (Importance of Problem 5.1 in mathematics).

• It is a very interesting problem to establish an reconstruction formula for Problem
5.1 in view of integral geometry.

• It is another interesting problem in Problem 5.1 to determine the subset of Ω where
the reconstruction is impossible because it was no intersection with any γ giving
(6). This problem is also interesting in view of integral geometry.

• In practice, we have to study various incomplete data problems of Problems 5.1
by the restriction arisen from various reasons, which is interesting in view of pure
mathematics, especially in view of integral geometry, which is also very important
in applied mathematics.
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6 Conclusion

In this section, we summarize our conclusions in the article.

Conclusion 6.1 (Conclusion of this paper).

• For development of the acoustic CT, we studied how the first arrival wave propagates
in the cement paste and the mortar.

• Applying the property of the first arriving wave, we have posed a problem for the
development of the acoustic CT.

• The acoustic CT for concrete structure may be the first determinate non-destructive
testing method for concrete structures.

• The problems posed in this study are interesting in view of the study of mathematics.

We still have too many unsolved problems for the study of Problem 5.1 to be applied
to both practice and mathematics, some of which have already been discussed throughout
this paper. Therefore we would not dare to summarize open problems to be solved for
further development at the end of this article.
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Velocity of Sound :

Table 2 : Mix Proportion of Cement Mortar

Table 1 : Mix Proportion of Cement Paste
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Modeling of atmospheric- and underground migration
of radionuclides in the 100 km vicinity of Fukushima

Hiroyuki Ichige∗, Inryo Kou∗, Yuko Hatano∗, University of Tsukuba

Abstract

In the field of nuclear engineering, there are a lot of problems with regard to
environmental pollution. After the Fukushima accident, long-term behavior of the
air- and soil concentration of radionuclides are of social interest. The problem is
that we have limited tools for predicting the their behavior over a long period of
time. In the present paper, we explain some of the tools currently available.

1 Introduction

In major nuclear power plant accidents, such as Chernobyl or Fukushima, a huge amount
of radionuclides have been released into the atmosphere. In such accidents, long-lived
radionuclides, ceasium-137 and strontium-90, for example, pose a serious problem. Ra-
dionuclides carried in the initial plume were deposited on the ground, and they keep
imposing a risk to the public health for a long period of time. Therefore, it is very im-
portant to understand and predict the long-term behavior of radionuclides both in the
atmosphere and underground. The problem is that, tools that we can use to cope with
the long-term problem are limited. Indeed, we do have a major model for assessment,
called as the box model or the compartment model; they are consisted with connected
modules indicating the pathways of radionuclides in the environment. The transport
from one module to another is described by a rate constant and we have to measure all
the values of these constants which consume us a lot of time and trouble. Any mathe-
matical approach, if available, would be very helpful for this problem. In this paper, we
describe the problems of radionuclides (a) in the atmosphere and (b) in the soil, then
explain our approach.

2 Atmospheric Radionuclides

Radionuclides in the air pose a risk of inner exposure of radiation1, because inhalation of
radionuclides leads to deposition on the lungs and they may cause lung cancer. The seri-
ousness of health damage of inner exposure is usually much higher than that of external
exposure2 under the same amount of exposure, thereby the aerosol concentration of ra-
dionuclides is an important issue of the society. The ”resuspension3” process is believed

∗1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, hatano@risk.tsukuba.ac.jp
1「内部被曝」 体内に放射性物質を摂取することによる
2「外部被曝」 体の外側から放射線を浴びることによる
3「再浮遊」
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the most significant source of the long-term aerosol risk. Resuspension is re-floating of
particles from the ground surface due to the wind. Once an dust particle (with ceasium
attached) is uplifted by wind from the ground, it stays in the air for a while, and is
deposited on the ground again due to rainfall or the gravity or downward winds. Such a
cycle of resuspension-deposition keeps the air concentration high. Indeed, in the Cher-
nobyl case, it is shown that the resuspension-deposition cycle contributes significantly
to the airborne concentration of radionuclides (Klug et al.,1992; Ishikawa, 1995; Nichol-
son, 1998; Ould-Dada and Baghini, 1992) and health effects on the humans, such as
leukemia and genetic abnormalities have been confirmed (IAEA, 2006; Arkhipov et al.,
1994; Lazjukd et al., 1997; Romanenko et al., 2008).

In our studies (Hatano and Hatano, 1997; Hatano et al., 1998; Hatano and Hatano,
2003; Ichige et al., 2015), we used a stochastic differential equation for the atmospheric
concentration of nuclides as follows. For the atmospheric part,

∂

∂t

∫ 1000[m]

0[m]

C1(t, x, y, ẑ)dẑ = −v(x, y)
∂

∂x

∫ 1000[m]

0[m]

C1(t, x, y, ẑ)dẑ

−λdown

∫ 1000[m]

0[m]

C1(t, x, y, ẑ)dẑ + λup(t)

∫ 0.5[cm]

0[cm]

C2(t, x, y, z)dz. (1)

Here C1 is the atmospheric concentration of a specific nuclide [Bq/m3]. The horizontal
direction is denoted as x, y and the vertical direction as ẑ. The north-south is y-direction,
and east-west is x direction. Since the concentration in the stratosphere is little enough
that we assume the 1000 meters of the height to consider. Explanation of other variables
are in the following.

For the ground-surface exchange part,

∂

∂t

∫ 0.5[cm]

0[cm]

C2(t, x, y, z)dz = λdown

∫ 1000[m]

0[m]

C1(t, x, y, ẑ)dẑ

−λup(t)

∫ 0.5[cm]

0[cm]

C2(t, x, y, z)dz. (2)

The soil part is as follows.

∂C2(t, x, y, z)

∂t
= k

∂2C2(t, x, y, z)

∂z2
− w

∂C2(t, x, y, z)

∂z
. (3)

C2(0, x, y, z) = exp(−z

h
). (4)

k
∂C2(t, x, y, 0)

∂z
+ wC2(t, x, y, 0) = 0. (5)

Equation (2) is a model of the surface migration of nuclide and C2 is the surface con-
centration [Bq/kg-soil], λdown is the deposition rate from the air to the ground, λup is
the resuspension rate. In this model, we assume that the resuspended particles should
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Figure 1: Dose rate at Kouriyama High School.

be within the depth of 0.5cm from the surface. The wind velocity v governs the ad-
vection of nuclides. Equation (3) is a model for the migration in the soil. When the
nuclides migrates into deep in the soil, the covering soil decrease the radiation, hence
the process needs consideration. The constant w is the velocity of infiltration into the
soil depending on the conditions of each site, and k is the diffusion coefficient, and h
is also a site-specific constant. Equations (4) and (5) are the initial condition and the
boundary condition, respectively.

Estimating parameters k, h, v and λup,down in these equations from available data,
we obtain the numerical solution of the above equations. We compare the results with
the Fukushima data. Only the constant w is determined through the fitting of the actual
dose rate. In Fukushima, many sites measure only the dose rate (μSv/hour). Very small
number of site has the data in the unit of Becquerel. Therefore, we had to convert the
data in Becquerel into the air dose rate, following the method of IAEA-TECDOC-1162.
Figures 1∼18 show the results. The significant dropped parts in the dose rate are the
days of snowfall or rainfall. Due to the shielding effect of snow coverage (or water
coverage), the air dose rate becomes lower. At the sites of low dose areas (the initial
dose is less than 1 μSv/hr), the fitting might not so good, but overall results are, we
think so far, satisfactory. However, these are ”point data”. Measured sites are treated
as ”points” in this research. It is a future problem how we can extrapolate the results
to ”area”s.

－164－



Figure 2: Dose rate at Ide Community Center

Figure 3: Dose rate at Takano Elementary School.
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Figure 4: Dose rate at Kouriyama City Health Center.

Figure 5: Dose rate at Kawauchi Village Hall.

－166－



Figure 6: Dose rate at Oodaira Elementary School, Nihonmatsu City.

Figure 7: Dose rate at Tomioka 2nd Elementary School.
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Figure 8: Dose rate at Namie High School, Tsushima part.

Figure 9: Dose rate at Fukushima University.
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Figure 10: Dose rate at Tsushima Elementary School, Namie Town.

Figure 11: Dose rate at Seseragi House, Katsurao Village.
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Figure 12: Dose rate at Kashiwabara, Katsurao Village.

Figure 13: Dose rate at Children’s House, Koori Town.
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Figure 14: Dose rate at Joho Junior High School, Koori Town.

Figure 15: Dose rate at Kura Dum, Minami-Soma.
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Figure 16: Dose rate at Teramatsu Community Center.

Figure 17: Komaru Community Center, NamieTown.

－172－



Figure 18: Dose rate at Children’s House, Shinchi Town.
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3 Radionulides in the soil and their model in porous

media

In the previous section, we explained how the atmospheric concentration of radionuclides
lingers for a long time, even a decade. In the case of soil contamination, it is worse.
Even after 50 years of nuclear tests in the US and the former Soviet Union, we can
measure the evidence, traces of radionuclides of fission products, in rivers and streams
in Japan. As such, migration in underground is a very long-term problem.

In the problem of transport in porous media, a model called as the Continuous-Time
Random Walk (CTRW) has been developed. The original motivation to introduce this
model is that the real experimental data does not fit the classical Advection-Dispersion
Equation (ADE; the heat equation with the convection term) and searched for a new
model to find CTRW. It was developed in order to describe electron transport in a
semi-conductor and is a kind of random-walk model with the distribution of waiting
time between jumps. Many experiments, both in laboratory scale and field scale, have
been shown to follow the CTRW model (Berkowitz and Scher, 1995; Hatano and Hatano,
1998; Bijeljic et al., 2011). When an asymptotically power law is chosen as the waiting-
time distribution, the significance of CTRW emerges, and the experimental results (that
have not been reproduced by ADE) agree very well with CTRW. We expect that the
model may be useful in long-term predictions, because of the power-law characteristics
of CTRW. When a power law function, for example, K(t) = t−4/3 is plotted against t
with the unit of day, the graph is exactly the same shape as when plotted with the t
unit of month or year. That is the reason for our interest in the CTRW model.

Up until today, CTRW seems successful. However, there is a big issue in the model:
values of parameters in the model cannot be determined a priori. Namely, the values of
model parameters cannot be determined until actual measurement data are available.
This means that a“pure”prediction is not possible yet. Of course, ADE has the same
problem, but we find it interesting (and useful) to connect the values of those model
parameters with the characteristics of flows in porous media.

In the present paper, we explain our trial seeking the value of α. It is the index of
the waiting time distribution ψ(t) ∼ t−α of the CTRW model. It defines the distribution
of the waiting time before a random walker takes each jump. We actually measure the
velocity in the pores of porous media and thereby obtain the waiting-time distribution.
We developed a new technique LAT-PTV method. We use a new method LAT-PTV,
the Particle Tracking Velocimetry (PTV) combined with the Laser-Aided Tomography
(LAT), originally developed by Matsushima Group (Konagai et al., 1992; Saomoto et
al., 2007).

3.1 Experimental Method

We show in Fig. 19 the experimental setup of LAT-PTV. The acrylic container is 135
mm x 135 mm x 450 mm and the illumination beam is created by the laser (Melles
Griot 58-GS-305, Nd:UVO 4). The images are taken by CCD camera (Canon EOS-
40D) with the frame rate 1 per second. The microparticles for tracking is shown in
Fig. 20 (Thermo Scientific, Fluoro-Max green fluorescent polymer microspheres). The
PTV computer program is of the ICCRM method (Brevis et al., 2011). Two types of
silicon oils (Shin-Estu Kagaku, HIVAC F-4 and KF-56) is mixed in order to match the
reflection index of the glass 1.514. The peristatic pump (EYELA, MP-1000) is used
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for the circulation of the fluids. The acrylic container is filled with spheres (Fig. 21) or
irregular-shaped particles (Fig. 22). The image of sphere particles immersed in silicon
oil is shown in Fig. 23. Other experimental condition is given in Table 1.

Table 1: Experimental conditions of LAT-PTV.
Run A Run B Run C Run D Run E Run F

Shape Sphere Sphere Sphere Irregular Irregular Irregular
Size 7mmφ 7mmφ 7mmφ 5 ∼ 7 mm 5 ∼ 7 mm 5 ∼ 7 mm

Porosity 0.53 0.58 0.53 0.62 0.62 0.62
Flow rate(ml/h) 445 1358 1920 373 918 2571

mean vz (mm/s, PTV) 0.011 0.014 0.014 0.011 0.014 0.030
mean vz (mm/s, Pump) 0.013 0.035 0.055 0.009 0.023 0.063

3.2 Experimental Results

We measured the velocity of the silicon oil by tracking the polymer particles and found
that the velocity in the pore distributed as Fig. 24. The velocity in sphere-particles media
(Run A, B, C) has rather compact distribution compared with irregular-particles media
(Run D, E, F). In Run A, B, and C, when we increase the flow rate, the distribution, on
the whole, rather shifts to the right. In contrast, in Run D, E, and F, the shape of the
distribution seems to change; in high flow-rate case, high-speed components are append
to the profile of the low flow-rate case. This may be due to the variations of pore size.
In Run D, E, and F, the pore shapes likely have more variation than Run A, B, and C.
Silicon oil may have made itself through in wider pores of the media.

Figures 25, 26 and 27 are our preliminary results of estimating the waiting time
ψ(t) and its comparison with probability distributions. For simplicity, we assume that
the waiting time is proportional to the inverse of the velocity at a specific time. We
made the histogram of Fig. 24 divided into much smaller bins (every 0.0001 mm/s) and
disregard the velocities less than 0.0001 mm/s. They are considered to be staying still
on the glass surfaces. We tried the normal distribution, the exponential distribution,
and the gamma distribution as the candidate for our fit (Figs. 26, 27). The gamma
function, as follows, seems most successful.

f(t) =
1

Γ(α + 1)θα+1
tαe−t/θ, (6)

for α > −1, t > 0. The values of α are approximately from 5 to 7. The sphere cases,
Run A, B, and C have α = 5.3, 5.2 and 4.8, respectively. On the other hand, the
irregular cases, Run D, E, and F, it was 7.2, 7.2, and 5.2. The irregular cases apparently
have larger value of α. The values of θ are around 300 for all the cases. An interesting
fact is that some researchers (Berkowitz-Scher group) have been proposing the waiting
time function of CTRW to be of the form of the gamma function (but the range of
α is different in our case from theirs). We think that it needs more considerations in
converting the velocity into the waiting time.
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Ishikawa, H., Evaluation of the Effect of Horizontal Diffusion on the Long-Range Atmo-
spheric Transport Simulation with Chelnobyl Data, journal of Applied Meteorol-
ogy, 34, 1653- 1665, 1995.

4「除染」

3.3 Summary

In the present paper, we explained the problems of radionuclides due to the Fukushima
accident and explain the methods we are currently developing. It seems that our model
is satisfactory in reproducing the air dose rate in Fukushima. However, further research
should be done for more confident predictions. In the research of soil pollution, we are
still struggling in fixing the values of the model parameter. Further research is needed
until the CTRW model becomes applicable to real problems.

Aids from the field of inverse problems

For the pollution due to the Fukushima accident, what we want to do is as follows:
(1) Estimating the values of parameter from existing data
(2) Making predictions, or evaluation of the degree of decontamination4, using (1).
Therefore, precise estimation of those parameters is very important. Also, discussions
on the scientific soundness of our model would be appreciated from the point of view of
mathematicians.
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Figure 19: Experimental setup of LAT-PTV method.

Figure 20: PTV particles. 80 μm diameter fluorescent polymer microspheres.
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Figure 21: Filling material, sphere particles made of BK-7 glass.

Figure 22: Filling material, irregular-shaped glass.

－179－



Figure 23: A sample image from LAT-PTV. Sphere particles are immersed in silicon oil,
showing their outlines by the green laser light.

Figure 24: Histograms of the z-direction velocities.
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Figure 25: Preliminary result of the waiting time　 distribution.

Figure 26: Comparison of the waiting time distribution with the Gamma-, Normal- and
Exponential distributions for the sphere particles.
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Figure 27: Comparison of the waiting time distribution with the Gamma-, Normal- and
Exponential distributions for the irregular-shaped particles.
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ランダムウォークにおいて
一定だったジャンプ間の待ち時間に分布を与えたモデル

待ち時間分布関数
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Mathematical theory on perturbation of singular

points in continuum mechanics

and its application to fracture

and to shape optimization

Kohji Ohtsuka ∗

February 2, 2015

1 Introduction

The singularity affects the strength of materials greatly. The ideas of this study
came from specific studies based on fracture mechanics[54], the continuum the-
ory of lattice defects by Eshelby[13] and conservation laws[6, 33] by Neother’s
principle[40]. Here, we regard the boundary of material as the set of singu-
lar points, that is, the material is described as a system of partial differential
equations for the boundary value problems defined in the reference configura-
tion Ω0 (3-dimensional domain). We consider the boundary ∂Ω0 as the set
of singular points. We think the matrials to be hyperelastic first of all, that
is, the strain energy density function Ŵ (x, ε) is written with the strain tensor
ε = (εij), i, j = 1, 2, 3, and the stress tensor σ = (σij), i, j = 1, 2, 3 is given by
[10, Chapter 4]

σij = σ(x, ε) = ∂Ŵ (x, ε)/∂εij x ∈ Ω0

Linear stress-strain relations take the form

σij(x, ε) = Cijkl(x)εkl (1.1)

where Cijkl = Cjikl = Cijlk = Cjilk in view of symmetry σij = σji, and

Cijkl = Cklij from the existence of Ŵ . The equations of motion are

ρ
∂2ui

∂t2
− ∂jσij = fi in Ω0, i = 1, 2, 3, (∂j = ∂/∂xj) (1.2)

where f = (f1, f2, f3) is the body force per unit volume, u = (u1, u2, u3) the
displacement, ρ the mass density. Let ΓN be the part of ∂Ω0, on which the force
g = (g1, g2, g3) per unit area act with the outward unit normal n = (n1, n2, n3)

σij(x, ε)nj(x) = gi(x) x ∈ ΓN , i, j = 1, 2, 3 (1.3)

On another part ΓD = ∂Ω0 \ ΓN , the diplacement uD is given

u = uD on ΓD (1.4)

∗Hiroshima Kokusai Gakuin University, e-mail:ohtsuka@hkg.ac.jp
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Figure 1: Hyperelastic material with sets S, T of singular points

1.1 Weak formula

The singular points that we consider are the following

Boundary: Seeing from all space R
3, the boundary ∂Ω0 is the set of singular

points. The boundary conditions are; u = uD on ΓD, σ(u)ijnj =
gi on ΓN . For simplicity, we study the case that uD = 0.

Fracture: The crack surface Σ is the surface of the discontinuity of displace-
ment when stress is free on Σ. In the crack extension, and strong sin-
uglarity is on the edge ∂Σ, in which case the reference configulation is
Ω = Ω0 \ Σ. The boundary condition on Σ is

σij(u)
+νj = σij(u)

−νj = 0 on Σ (1.5)

where σij(u(x))
± = limε→0 σij(u(x + εν±(x))) with the unit normal ν

oriented from the plus side to the minus side of Σ and ν−(x) = −ν+(x)

Void(Cavity): The reference configuration is Ω = Ω0 \Dc where Dc stands for
the void, and the set of singular points is ∂Dc. The boundary condition
is

σij(u)nj = 0 on ∂Dc (1.6)

where n is the inward unit normal of ∂Dc.

Inclusion: The reference configuration Ω satisfies that Ω = Do∪Di, Di∩Do = ∅
Strain energy density has the discontinuity on ∂Di ∩Do, that is,

Ŵ (x, ε(u)) =

{
Ŵ i(x, ε(ui)) in Di

Ŵ o(x, ε(uo)) in Do

(1.7)

where ui,uo are the displacement on Di and Do respcetively. The condi-
tions are

uo = ui on Γi = Di ∩Do (1.8)

σi
ij(x,u

i)ν = σo
ij(x,u

o)ν on Γi (1.9)
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where σi
ij = ∂Ŵ i/∂εij , σ

o
ij = ∂Ŵ o/∂εij and ν the unit normarl oriented

from Do to Di.

Joint parts: The joint part ΓD ∩ΓN of different boudary conditions is the set
of singular points.

The materials with the various singularity stated just above are discribed by
the following variational problem over the space V (Ω,ΓD) in which Ω stands
for the reference configuration, that is,

V (Ω,ΓD) =
{
v : Ω → R

3; v = uD on ΓD

}
In fracture problem, Ω = Ω0 \ Σ; Ω = Ω0 \Dc when the void is contained and
∂Dc ⊂ ΓN ; if there is inclusion, we adopt (1.7).

The displacement u is given as the minimizer of the functional

E(v; Ω, f, g) =
∫
Ω

Ŵ (x, ε(v))dx−
∫
Ω

f · v dx−
∫
ΓN

g · vds (1.10)

over v ∈ V (Ω,ΓD)[10, Theorem 4.1.-2]. In linear elasticity, we can write
V (Ω,ΓD) more precisely as follows

V (Ω,ΓD) =
{
v ∈ W 1,2(Ω,R3); v = uD on ΓD

}
(1.11)

Here for a domain O in d-dimensional space R
d and the vector valued function

v = (v1, · · · , vm),m ≥ 0

W 1,p(O;Rm) =

{
v = (v1, · · · , vm) :

m∑
i=1

(‖vi‖Lp(O) + ‖∇vi‖Lp(O)) < +∞
}

‖∇vi‖Lp(O) =
d∑

j=1

{∫
O
|∂jvi(x)|p dx

}1/p

, ∂j = ∂/∂xj , j = 1, · · · , d

W 1,∞(O;Rm) =

{
v = (v1, v2, v3) :

3∑
i=1

(‖vi‖L∞(O) + ‖∇vi‖L∞(O)) < +∞
}

‖vi‖L∞(O) =

3∑
j=1

ess sup
x∈O

|vi(x)|

where ess supx∈O |vi(x)| means the greatest lower bound of vi(x) almost every-
where (a.e.) on O (see e.g. [2]). In the case m = 1, v stands for the function.

1.2 Perturbation of singular points, and vector field μ

Let γ ∈ Ω be a singular point, and [t �→ φt(γ) ∈ R
3], 0 ≤ t ≤ ε0 the perturbation

of γ, which makes the vector field dφt(γ)/dt. We assume the existence of parallel
extension μφ(x), x ∈ R

3 of dφt(γ)/dt, and the path ϕt(x), x ∈ R
3 of φt(γ).

1.2.1 Field of view ω

In this paper, we consider the various singular points, so we introduce the con-
cept “field of view” to separate in singular points, that is the open set ω. For
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Figure 2: Path by perturbation and vector field of singular points
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Figure 3: Parallel extension μφ(x) of dφt(x)/dt

examples, if there are sets S, T of singular points as shown in Fig.4, and assume
that S � Ω. Let ωS be an open set such that

S ⊂ ωS , T ⊂ D \ ωS

Let us call ωS the field of view focusing on S.

S

T

D

Figure 4: Material containing the sets S, T of singular points

2 Generalized J-integral

The original J-integral is difined by

J =

∫
C

[
Ŵ (x, ε)dx2 − T̂ (u) · ∂u/∂x1 ds

]
(2.1)

where C is the closed curve surrounding the crack tip and n the outward
unit normal of C (see Fig.5). Since C avoid the crack tip, J take finite value
and independent on C. Moreover, J expresses the rate of released energy with
respcet to crack extension as shown in (2.2).
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Figure 5: Curve C surrounding the crack tip

Consider the straight crack extension as shown in Fig.6 inside homogineous
elastic plate when f = 0 near the crack tip. Here � stands for the crack incre-
ment. Denoting ΩΣ(	) = Ω \ Σ(�) with crack surface Σ(�), we write the energy

2

2

( )

( )

Figure 6: Straight crack extension in 2D fracture

at the crack increment � by

E(u(�);f ,ΩΣ(	)) =

∫
ΩΣ(�)

Ŵ (ε(u(�)))dx−
∫
ΩΣ(�)

f · u(�) dx

G.P.Cherepanov[9] and J. Rice[53] showed that

− d

d�
E(u(�);f ,ΩΣ(	)) =

∫
C

(
Ŵ (∇u)dx2 − T̂ (u)

∂u

∂x1
ds

)
(2.2)

The left-hand side of (2.2) expresses the released energy per unit crack length.
If Σ is parametrized by arc length s, that is, Σ = {(x1(s), x2(s)); a ≤ x ≤ b},

then the outward unit norma n = (n1, n2) at (x1(s0), x2(s0)) is equivalent to

n =

(
dx2

ds
(s0),−dx1

ds
(s0)

)
which means that dx2 = n1ds = (n · e1) with the unit vector e1 in the x1-
direction. Then we can rewite (2.1) as

J = Pω(u, e1) (2.3)

Pω(u, e1) =

∫
C

{
Ŵ (x, ε)(e1 · n)− T̂ (u) · ∇u · e1

}
ds
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where ω is the open set containing the crack tip (see Fig.6).
In 3D fracture, the vector field μC obtained crack extension is not constant,

so that Pω(u,μC) dependend on ω. Therefore Generalized J-integral is intro-
duced in [43].

Definition 2.1 (GJ-integral) Let us denote Ŵ (x, ε(u)) by Ŵ (x,∇u) = Ŵ (x, ζ)|ζ=∇u

and write it as Ŵ (u) if there is no ambiguity. For μ ∈ W 1,∞(R3;R3)

Jω(u,μ) = Pω(u,μ) +Rω(u,μ) (2.4)

Pω(u,μ) =

∫
∂ω∩Ω

{
Ŵ (u)(μ · n)− T̂ (u) · (μ · ∇u)

}
ds (2.5)

where
T̂ (u) = n

(
∇ζŴ (x,∇u)

)
S

Tn

Rω(u,μ) = −
∫
ω∩Ω

{
∇xŴ (x,∇u) · μ+ f · (∇u · μ)

}
dx

+

∫
ω∩Ω

{(
∇ζŴ (x,∇u)

)T

(∇μT )∇u− Ŵ (x,∇u)(divμ)

}
dx (2.6)

Generalized J-integral (GJ-integral) is defined on wide variety of (nonlinear)
materials. But, to push forward a mathematical argument, we introduce next.

2.1 Quasilinear elliptic systems of p-structure

For a mathematical example, we try to take up quasilinear elliptic systems of
p-structure (see e.g. [30]). Here, we make them general setting.

Assume that Ω ⊂ R
d (2 ≤ d) is decomposed a finite number of pairwise

disjoint subdomains Ωi ⊂ Ω, i = 1, · · · ,M with local Lipschitz property, such
that Ω =

∑M
i=1 Ωi. For m ≥ 1 and 1 ≤ i ≤ M , let Ŵi(x, ζ) : x ∈ Ω, ζ ∈ R

m×d

be scalar functions. We consider the mathematical model of composite material
(transmission problem): For given functions uD,f , g, find u,ui = u|Ωi such
that

−divx(∇ζŴi(x,∇ui(x))) = f(x) x ∈ Ωi, 1 ≤ i ≤ M (2.7)

ui = uj on Γij = ∂Ωi ∩ ∂Ωj (2.8)

∇ζŴ (x,∇ui)nij = −∇ζŴ (x,∇uj)nji on Γij (2.9)

u = uD on ΓD (2.10)

∇ζŴ (x,∇ui)ni = g on ΓN (2.11)

where ni(x) denote the outword unit vector of Ω at x ∈ ∂Ωi and nij the outward
unit normal to Γij .

The (k, l)-element of ∇ζŴi is(
∇ζŴi(x, ζ)

)
k,l

=
∂Ŵi(x, ζ)

∂ζkl
(1 ≤ k ≤ m, 1 ≤ l ≤ d)
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For ζ, ζ̃, ζ̂ ∈ R
m×d and x ∈ Ωi

∇ζŴi(x, ζ) : ζ̃ =

m∑
k=1

d∑
l=1

∂Ŵi(x, ζ)

∂ζkl
ζ̃kl (1 ≤ k ≤ m, 1 ≤ l ≤ d)

(
divx(∇ζŴi(x,∇ui(x))

)
j

=
d∑

l=1

(
∂

∂xl
∇ζŴi(x,∇u(x))

)
j,l

∇2
ζŴi(x, ζ)[ζ̃, ζ̂] =

m∑
k,j=1

d∑
s,r=1

∂2Ŵi(x, ζ)

∂ζks∂ζjr
ζ̃ksζ̂jr

∣∣∣∇2
ζŴi(x, ζ)

∣∣∣ =

⎛⎝ m∑
k,j=1

d∑
s,r=1

(
∂2Ŵi(x, ζ)

∂ζks∂ζjr

)2
⎞⎠1/2

For 1 < pi < ∞, i = 1, · · · ,M , let p = (p1, · · · , pM ) and pmin = min{pi, 1 ≤ i ≤
M} and define

Lp(Ω) = {v ∈ Lpmin(Ω;Rm); v|Ωi ∈ Lpi(Ωi)}
W 1,p(Ω) =

{
v ∈ W 1,pmin(Ω;Rm); v|Ωi ∈ W 1,pi(Ωi)

}
V (Ω,ΓD) =

{
v ∈ W 1,p(Ω); v = uD on ΓD

}
Problem 2.2 (P (f , g;V (Ω,ΓD))) For given f ∈ Lq(Ω;Rm), q = (q1, · · · , qM ), p−1

i +

q−1
i = 1, uD ∈ W

1− 1
p ,p

(ΓD) and g ∈ Lq(ΓN ), find u ∈ V (Ω,ΓD) such that

E(u;f , g,Ω) = min
u∈V (Ω,ΓD)

E(v;f , g,Ω)

E(v;f , g,Ω) =

∫
Ω

(
Ŵ (x,∇v)− f · v

)
dx−

∫
ΓN

g · v ds

Ŵ (x,∇u(x)) = Ŵi(x,∇ui(x)) if x ∈ Ωi, 1 ≤ i ≤ M

Conditions for Ŵ (x, ζ) are necessary to show the existence of the solution u
mathematically. For example,

Theorem 2.3 If Ŵ (x, ζ) satisfy the following properties and the surface mea-
sure of ΓD is positive, then there is a solution u.

(a) There is a β ∈ R such that

β ≤ Ŵ (x, ζ) for all x ∈ Ω, ζ ∈ R
m×d

(b) Convexity: [ζ �→ Ŵ (x, ζ)] is convex for all x ∈ Ω, i.e.

Ŵ (x, λζ + (1− λ)ζ̃) ≤ λŴ (x, ζ) + (1− λ)Ŵ (x, ζ̃) for all λ ∈ [0, 1]

(c) Continuity and measurability: For all x ∈ Ω, [ζ �→ Ŵ (x, ζ)] is continuous,

and [x �→ Ŵ (x, ζ)] is measurable for all ζ ∈ R
m×d.

(d) Coerciveness: There is constants α > 0 such that

Ŵ (x, ζ) ≥ α|ζ|pi + β for all x ∈ Ωi and for ζ ∈ R
m×d
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For the coerciveness (d), we have from 1 < pmin ≤ pi, 1 ≤ i ≤ M ,

Ŵ (x, ζ) ≥ α|ζ|pmin + β

Then we obtain u ∈ W pmin(Ω;Rm) by [10, Therem 7.3-2]. Using (d) again, we
have

α

∫
Ω

|∇ui|pidx+ β ≤
∫
Ωi

Ŵ (x,∇ui(x))dx < ∞

This means u ∈ V (Ω,ΓD). �

Definition 2.4 We say that [v �→ E(v;f , g,Ω)] is weakly lower semicontinuous
on V (Ω,ΓD) if

E(v0;f , g,Ω) ≤ lim
n→∞ inf E(vn;f , g,Ω)

for any v0 ∈ V (Ω,ΓD) and for any sequence {vn}∞n=1 of elements of V (Ω,ΓD)
such that vn → v0 weakly as n → ∞.

In [10, Theorem 7.3-1], it is proven that the condition (a)–(c) derive the weakly
lower semicontinuity of E(·;f , g,Ω).

The inequality(
∇ζŴ (x, ζ)−∇ζŴ (x, ζ̃)

)
: (ζ − ζ̃) > 0 for all ζ, ζ̃ ∈ R

m×d, ζ �= ζ̂ (2.12)

leads that ∫
Ω

(
∇ζŴ (x,∇v)−∇ζŴ (x,∇w)

)
: (∇u−∇w) > 0

for all v,w ∈ V (Ω,ΓD),v �= w, which is called strictly monotone.

Theorem 2.5 If Ŵ (x, ζ) satisfy the following properties and the surface mea-
sure of ΓD is positive, then there is unique solution u.

(a) There is a β ∈ R such that

β ≤ Ŵ (x, ζ) for all x ∈ Ω, ζ ∈ R
m×d

(b) Ŵ (x, ζ) satisfy (2.12).

See e.g. [16, 26.10] for the proof.

Theorem 2.6 If Ŵ (x, ζ) satisfy the following properties and the surface mea-

sure of ΓD is positive, then there is unique solution u. For each 1 ≤ i ≤ M , Ŵi

and their derivatives satisfy the following growth properties for 1 < pi < ∞,

H0 [ζ �→ Ŵi(x, ζ)] ∈ C1(Rm×d) ∩ C2(Rm×d \ {0}) for every x ∈ Ωi. For fixed
ζ ∈ R

m×d, there is a constant Li > 0 such that∣∣∣Ŵi(x, ζ)− Ŵi(x, ζ)
∣∣∣ ≤ Li|x− y|(1 + |ζ|pi) for every x, y ∈ Ωi
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H1 There is ci0 ∈ R, ci1, c
i
2 > 0 such that for every ζ ∈ R

m×d, x ∈ Ωi,

ci0 + ci1|ζ|pi ≤ Ŵi(x, ζ) ≤ ci2(1 + |ζ|pi)

H4 There is ci > 0 and κi ∈ {0, 1} such that for every ζ, ζ̃ ∈ R
m×d, ζ �= 0, x ∈

Ωi,
∇2

ζŴi(x, ζ)[ζ̃, ζ̃] ≥ ci(κi + |ζ|)pi−2|ζ̃|2

See the proof of [30], it is proven that (2.12) holds from the conditions H0 and
H4.

Theorem 2.7 The domain integral (2.6) take finite value for the solution u of

Problem 2.2, if Ŵ (x, ζ) satisfy the following,

H2 There is ci > 0 such that for every ζ ∈ R
m×d, x ∈ Ωi,∣∣∣∇ζŴi(x, ζ)

∣∣∣ ≤ ci
(
1 + |ζ|pi−1

)
(2.13)

Proof. Rω(u,μ) is decomposed as follows

Rω(u,μ) = −
M∑
i=1

∫
ω∩Ωi

{
∇xŴi(x,∇ui) · μ+ f · (∇ui · μ)

}
dx

+

M∑
i=1

∫
ω∩Ωi

{(
∇ζŴi(x,∇ui)

)T

(∇μT )∇ui − Ŵi(x,∇ui)(divμ)

}
dx

The first term in the right hand side is finite by H0, the second term by f ∈
Lq(Ω;Rm),∇u ∈ Lp(Ω;Rm) and the last term by H1. We can show that the
third term is finite by H2 using Hölder’s inequality(see e.g. [2, 2.4]) as follows,∫
ω∩Ωi

∣∣∣∣(∇ζŴi(x,∇ui)
)T

(∇μT )∇ui

∣∣∣∣ dx ≤ c0

∫
Ωi

(1 + |∇u|pi−1)|∇u|dx

≤ c0(1 + ‖|∇u|pi−1‖Lqi (Ωi))‖∇u‖Lpi (Ωi)

≤ c0(1 + ‖u‖pi−1
Lpi (Ωi)

)‖∇u‖Lpi (Ωi)

It is important Rω(u,μ) is finite for the (weak) solution of Problem 2.2, but we
need smoothness of u on ∂(ω ∩ Ω) to show that Pω(u,μ) is finite.

2.2 Properties of GJ-integral

Proposition 2.8 (Green’s formula) If O ⊂ R
d is the domain with local Lip-

schitz property, then the outward unit normal n exists allmost every on ∂O and
the Green’s formula∫

O
g(∂ih)dx =

∫
∂O

ghnids−
∫
O
(∂ig)hdx (2.14)

hold for g ∈ W 1,s(O), h ∈ W 1,q(O) with s−1+q−1 ≤ (d+1)/d if 1 ≤ s < d, 1 ≤
q < d, with q > 1 if s ≥ d and with s > 1 if q ≥ d.
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See [38, Theorem 1.1,Chapter 3] for the proof.

Theorem 2.9 Now we take the field of view ω such that ω ⊂ Ωi for some
0 ≤ i ≤ M . Assume that the solution u of Problem 2.2 has the regularity such
as u|ω ∈ W 2,pi(ω). Then the following holds.

Jω(u,μ) = 0 ∀μ ∈ W 1,∞(R3;R3) (2.15)

Proof. By the chain rule,

μj
∂

∂xj
Ŵ (x,∇u) = μj

∂

∂ξj
Ŵ (ξ,∇u)

∣∣∣∣
ξ=x

+
m∑

k=1

m∑
l=1

μj
∂

∂ζkl
Ŵ (ξ, ζ)

∣∣∣∣
ζ=∇u

∂j∂luk

it follows that μ(x) · ∇xŴ (x,∇u) is integrable.
We can apply Green’s formula∫

ω

(μ · ∇)Ŵ (u)dx =

∫
∂ω

Ŵ (u)(μ · n) ds

−
∫
ω

Ŵ (u)divμ dx (2.16)

We can use the chain rule

(μ · ∇)Ŵ (u) = (μ · ∇x)Ŵ (x,∇u) +∇ζŴ (u) : [∇(μ · ∇u)]

−∇ζŴ (x,∇u)(∇μk)∂ku.

Here we used that ∂k∂jv = ∂j∂kv. Now, we get by Green’s formula∫
ω

(μ · ∇)Ŵ (u) =

∫
ω

{
(μ · ∇x)Ŵ (x,∇u)−∇ζŴ (x,∇u)∇μk∂ku

}
dx

+

∫
ω

∇ζŴ (x,∇u) : [∇(μ · ∇u)]dx (2.17)

The formula (2.7) holds in distribution sense, we obtain the following by Green’s
formula∫

Ω

∇ζŴ (x,∇u) : [∇(μ · ∇u)] dx =

∫
∂ω

T̂ (u) · (μ · ∇u)ds+

∫
ω

f · (μ · ∇u) dx

(2.18)
From (2.16)–(2.18), we get that Jω(u,μ) = 0. �

Remark 2.10 If we take the field of view ω to become Ω ⊂ ω, then ∂ω ∩Ω = ∅
which means

Jω(u,μ) = RΩ(u,μ)

Remark 2.11 Even though u|ω �∈ W 2,pi(ω), the identity (2.15) hold if u sat-
isfies (2.16)–(2.18).

Corollary 2.12 Let ω2 ⊂ ω1 be two open sets such that there (2.16)–(2.18)
hold in ω1 \ ω2. Then

Jω1(u,μ) = Jω2(u,μ) (2.19)
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Proof. Since (2.16)–(2.18) hold in ω1\ω2 Rω1(u,μ)−Rω2(u,μ) = Rω1\ω2
(u,μ)

= −Pω1\ω2
(u,μ)

= −Pω1(u,μ) + Pω2(u,μ)

2ω

n

1ω

2.3 Examples of variational problems P (f , g;V (Ω,ΓD))

2.3.1 Elliptic boundary value problem

There is Poisson equation Ŵ (x, ζ) = |ζ|2/2, ζ ∈ R
d (m = 1) for the simplest

example, whose GJ-integral is the form

Pω(u,μ) =

∫
∂ω∩Ω

{
1

2
|∇u|2(μ · n)− ∂u

∂n
(μ · ∇u)

}
ds,

Rω(u,μ) = −
∫
ω∩Ω

{
f(μ · ∇u)− (∇u · ∇μk)∂ku+

1

2
|∇u|2divμ

}
dx.

The simplest non-linear problem is p-Poisson, that is, Ŵ (x, ζ) = |ζ|p/p for some
1 ≤ p < ∞, which leads the boundary value problem

−div
(|∇u|p−2∇u

)
= f in Ω

u = 0 on ΓD

∂u

∂n
= g on ΓN . (2.20)

whose GJ-integral is

Pω(u,μ) =

∫
∂ω∩Ω

{
1

p
|∇u|p(μ · n)− |∇u|p−2 ∂u

∂n
(μ · ∇u)

}
ds,

Rω(u,μ) = −
∫
ω∩Ω

{
f(μ · ∇u)− |∇u|p−2(∇u · ∇μk)∂ku+

1

p
|∇u|pdivμ

}
dx.

We now consider the case

Ŵ (x, z, ζ) x ∈ Ω, z ∈ R
m, ζ ∈ R

m×d

such as, in the linear equation (m = 1)

−∂jaij(x)∂iu(x) + b(x)u(x) = f(x) in Ω

it become Ŵ (x, z, ζ) = (aijζiζj + bz2)/2. GJ-integral is the same form, even if
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Ŵ = Ŵ (x, z, ζ),

Pω(u,μ) =

∫
∂ω∩Ω

{
1

2
(aijDjuDiu+ bu2)(μ · n)− (niaij∂ju)(μ · ∇u)

}
ds,

Rω(u,μ) = −
∫
ω∩Ω

{
1

2
((μ · ∇aij)∂ju∂iu+ (μ · ∇b)u2) + f(μ · ∇u)

−(aij∂ju∂iμk)∂ku+
1

2
(aij∂ju∂iu+ bu2)divμ

}
dx.

2.3.2 Linear elasticity

We consider the linear elastic field (the case m = d) which is given by the
following formulae

Ŵ (x, z, ζ) =
1

2
σij(x, ζ)eij(ζ), (2.21)

eij(ζ) = (ζi,j + ζj,i) /2 for 1 ≤ i, j ≤ d,

cijkl(x) denotes Hooke’s tensor components, cijkl = cjikl = cklij .

The variational problem P (f , g; V (Ω,ΓD)) corresponding to the space

V (Ω,ΓD) =
{
v ∈ W 1,2(Ω;Rd); v = 0 on ΓD

}
, (2.22)

implies the boundary value problem

−∂jcijklekl(u) = fi in Ω, i = 1, · · · , d, (2.23)

u = 0 on ΓD, σij(u)nj = gi on ΓN . (2.24)

For uniqueness of the solution to the problem P(f , g, V (Ω,ΓD)), we assume that
the elements cijkl satisfy the following inequality

cijklξijξjk ≥ αξijξij for all ξij ∈ R
1; α > 0. (2.25)

GJ-integral is the following

Pω(u,μ) =

∫
∂ω∩Ω

{
1

2
σij(u)eij(u)(μ · n)− σijnj(μ · ∇ui)

}
ds,

Rω(u,μ) = −
∫
ω∩Ω

{
1

2
(μ · ∇cijkl)ekl(u)eij(u) + f i(μ · ∇ui)

− σij(u)∂jμk∂kui +
1

2
σij(u)eij(u)divX

}
dx.

2.3.3 Elasto-plasticity

Consider the case corresponding to elasto-plasticity (see [39, Chapter8]) with
Lamé constants λ and ρ

Ŵ (x,∇v) = k(x)θ2(v)/2 +

∫ Γ(v,v)

0

ρ(x)(x, σ)dσ, (2.26)

where θ(v) = divv,Γ(v,w) = −2θ(v)θ(w)/3 + 2eij(v)eij(w). For coercivity,

we require Ŵ to satisfy the following conditions. Assume that k ∈ C2(Rd),
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ρ ∈ C2(Rd × [0,∞)), and suppose the existence of constants k0 > 0, k1 > 0 and
ρ0 > 0, ρ1 > 0 such that

0 < k0 ≤ k(x) ≤ k1 < ∞, |∇k(x)| ≤ k1 < ∞ for all x ∈ R
d, (2.27)

0 < ρ0 ≤ ρ(x, s) ≤ 3k(x)/2, (2.28)

|∇xρ(x, s)| ≤ ρ1 < ∞, for all x ∈ R
d and s ≥ 0.

We also assume that the inequalities

0 < ξ ≤ ρ(x, s) + 2(∂ρ(x, s)/∂s)s ≤ ξ1 (2.29)

hold with some constants ξ1, ξ.
The problem P (f , g;V (Ω,ΓD)) implies the equation (2.23) with nonlinear

Hooke’s tensor

cijkl =

(
k − 3

2
μ(Γ2(u))

)
δijδkl + μ(Γ2(u))(δikδjl + δilδjk). (2.30)

Here Γ2(u) = Γ(u,u), δij are the elements of Kronecker’s symbol, and (2.30) is
derived from the consideration of generalized Hooke’s law (see [39, Chapter 3]).
GJ-integral is the following

Pω(u,μ) =

∫
∂ω∩Ω

{
Ŵ (x,∇u)(μ · n)− (njcijkl(u)ekl(u))(μ · ∇ui)

}
ds,

Rω(u,X) = −
∫
ω∩Ω

{
(μ · ∇k)(divu)2/2 +

∫ Γ(u,u)

0

μ · ∇xρ(x, σ)dσ

+ fi(μ · ∇ui)− cijkl(u)ekl(u)∂jμp∂pui + Ŵ (x,u)divX

}
dx

2.3.4 Micropolar elasticity

Considering the case d �= m, we introduce micropolar continuum mechanics (see
[14]). For this material, d = 3, m = 6. Let ũ = (u,ψ) be six-component vectors,
and let u = (u1, u2, u3),ψ = (ψ1, ψ2, ψ3) be defined in the domain ψ ⊂ R

3. The
linearized approximation is called the couple-stress theory, see [34, p. 147], in
which (Lamé constants are λ and ρ)

2Ŵ (∇ũ) = {(3λ+ 2ρ)/3}|divu|2 + (ρ/2)
∑
i,j

|∂jui + ∂iuj − (2/3)δijdivu|2

+(α/2)
∑
i,j

|∂jui − ∂iuj + 2εkjiψk|2 + {(3ε+ 2υ)/3}|divψ|2

+(υ/2)
∑
i,j

|∂iψj + ∂jψi − (2/3)δijdivψ|2

+(β/2)
∑
i,j

|∂jψi − ∂iψj |2 (2.31)

where λ, ρ, α, ε, υ, β are constants satisfying the conditions

ρ > 0, 3λ+ 2ρ > 0, α > 0, υ > 0, 3ε+ 2υ > 0, β > 0,
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and εkij is the permutation tensor. If displacements and rotations are zero on
ΓD and the couple stresses are zero on ΓN , then

V (Ω,ΓD) =
{
ṽ = (v,ψ) ∈ W 1,2(Ω;R6)| ṽ = 0 on ΓD

}
. (2.32)

From [44] the following estimate for ũ ∈ V (Ω; ΓD) is obtained,∫
Ω

Ŵ (∇ũ)dx ≥ C3‖ũ‖2W 1,2(Ω;R6) (2.33)

with a constant C3 > 0 independent of ũ. Under the conditions (2.31)–(2.32),
the variational problem P (f , g, V (Ω,ΓD)) implies the following boundary value
problem with f = (f1, f2, f3), fm = (f4, f5, f6), for i = 1, 2, 3,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ρ+ α)Δu+ (λ+ ρ− α)grad divu+ 2αrotψ = −f in Ω,
(υ + β)Δψ + (ε+ υ − β)grad divψ + rotu− 4αψ = −fm in Ω,

u = 0, ψ = 0 on ΓD,
λnidivu+ (ρ+ α)nj∂iuj + (ρ− α)nj∂jui − 2αεijknjψk = 0 on ΓN ,

εnidivψ + (ρ+ β)nj∂iψj + (ρ− β)nj∂jψi = gi on ΓN .

(2.34)

GJ-integral is the following

Pω(u,μ) =

∫
∂ω∩Ω

{
Ŵ (∇ũ)(μ · n)− (σE,ij(u, ψ)nj)(μ · ∇ui)

−(σR,ij(ψ)nj)(μ · ∇ψi)} ds,
Rω(u,μ) = −

∫
ω∩Ω

{
f(μ · ∇ũ)− σE,ij(u,ψ)∂jμp∂pui

−σR,ij(ψ)∂jμp∂pψi + Ŵ (∇ũ)divμ
}
dx,

where

σE,ij(u,ψ) = λδijdivu+ (μ+ α)∂iuj + (μ− α)∂jui − 2αεijkψk,

σR,ij(ψ) = εδijdivψ + (υ + β)∂iψj + (υ − β)∂jψi.

3 Fundamental theorem

3.1 Historical background

3.1.1 2D Fracture

Let ω′ be an open set such that Σ ⊂ ω′ (Fig.7) and ω′ ⊂ Ω. Using the cut-off
function ηω′ such that ηω′(x) = 1 near Σ and suppηω′ ⊂ ω′, then for the vector
field μC

RΩ(u,μC) = RΩ\ω′(u,μC) +Rω′(u,μC)

= −PΩ\ω′(u,μC) +Rω′(u,μC)
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Figure 7: open sets containing the crack tips γ1, γ2

Let ω1, ω2 be open sets containing the crack tips γ1, γ2 (Fig.7), then

Rω′(u,μC) = Rω′\ω1∪ω2
(u,μC) +

2∑
l=1

Rωl
(u,μC)

= −Pω′\ω1∪ω2
(u,μC) +

2∑
l=1

Rωl
(u,μC)

=
2∑

l=1

Jωl
(u,μC)

Here we used the following: On the crack surface, T̂ (u)± = 0 (stress free) and
μC · ν = 0 on Σ where ν stands for the normal vector directed from ’+’ to ‘-’.∫

Σ±

(
Ŵ (x,∇u)(μC · ν)− T̂ (u)(μi · ∇u)

)
ds = 0

From (2.2), we can derive

− d

dt
E(u(t); f,ΩΣ(t)) = RΩ(u,μC) (3.1)

3.1.2 Shape Optimization

Consider the Poisson problem

−Δu = f in Ω, u = 0 on ∂Ω

with C2-boundary and Hadamard’s per-
turbation

∂Ω(t) = {γ + h(γ)tn(γ) : γ ∈ ∂Ω}
the problem

−Δu(t) = f in Ω(t),
u(t) = 0 on ∂Ω(t)

( ) ( )th n

( )t

d

dt

∫
Ω(t)

|∇u(t)|2dx
∣∣∣∣∣
t=0

=

∫
∂Ω

(
∂u

∂n

)2

h ds (see e.g. [24, (3.3.58)])
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d

dt

∫
Ω(t)

(
1

2
|∇u(t)|2 − fu

)
dx

∣∣∣∣∣
t=0

= −
∫
∂Ω

(
∂u

∂n

)2

h ds (3.2)

because
∫
fu(t) dx =

∫ ∇u(t) · ∇u(t) dx.
Since ∇u = n · ∇u + ∇τu (∇τ = ∇ − (n · ∇)n) and ∇τu = 0 on ∂Ω, the

right-hand side of (3.2) become as follows

−
∫
∂Ω

(
∂u

∂n

)2

h ds =

∫
∂Ω

(
1

2
|∇u|2 − n · ∇u(n · ∇)u

)
h ds

Therefore we arrive at the following

d

dt
E(u(t); f)

∣∣∣∣
t=0

= PΩ(u, hn) (3.3)

E(u(t); f.Ω(t)) =
∫
Ω(t)

(
1

2
|∇u(t)|2 − fu(t)

)
dx

let ω be an open set such that ∂Ω ⊂ ω and ñ(x), x ∈ ω the extension of
n(x), x ∈ ∂Ω. Consider the cut-off function ηω. In this case, u ∈ W 2,2(Ω),
which leads from Theorem 2.9 that

0 = JΩ(u, hn) = PΩ(u, hn) +RΩ(u, hηωñ)

We arrive at the following identity

d

dt
E(u(t); f,Ω(t))

∣∣∣∣
t=0

= −RΩ(u, hηωñ) (3.4)

3.1.3 Hadamard’s variational formula[23]

Let Ω be a domain in R
2 with C2-boundary and G(x, y, t), x, y ∈ Ω, 0 ≤ t ≤ t0

Green function, i.e. for y ∈ Ω(t)

−ΔxG(x, y, t) = δ(x− y), G(x, y, t) = 0 ∀x ∈ ∂Ω(t)

∂Ω(t) = {x+ th(γ)n(γ) : γ ∈ ∂Ω}
Hadamard’s variational formula is

dG(w, y, t)

dt

∣∣∣∣
t=0

=

∫
∂Ω

∂

∂nx
G(x, y)

∂

∂nx
G(x,w)h(x) dsx (3.5)

For a function f ∈ C∞0 (Ω),

u(x, t) =

∫
Ω(t)

G(x, y, t)f(y) dy

satisties the boundary value problem

−Δxu(x, t) = f(x) x ∈ Ω; u(x, t) = 0 x ∈ ∂Ω

For a function θ ∈ C∞0 (Ω), we have

〈u(t), θ〉 =

∫
Ω

u(x, t)θ(x) dx

=

∫
Ωx

∫
Ωy

G(x, y, t)f(y)dyθ(x)dx
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Now we obtain

d

dt
〈u(t), θ〉

∣∣∣∣
t=0

=

∫
Ωx

∫
Ωy

d

dt
G(x, y, t)

∣∣∣∣∣
t=0

f(y)dyθ(x)dx

=

∫
Ωx

∫
Ωy

∫
∂Ωξ

∂G(ξ, y)

∂nξ

∂G(ξ, x)

∂nξ
h(ξ) dsξf(y)dyθ(x)dx

=

∫
∂Ω

∂u

∂n
(x)

∂uθ

∂n
(x)h(x)dsx

where uθ is the solution of the problem

−Δuθ = θ in Ω; uθ = 0 on ∂Ω

For ε > 0, we have

PΩ(u+ εuθ, hn)− PΩ(u, hn) =

∫
∂Ω

{
∇u · ∇uθ − 2

∂u

∂n

∂uθ

∂n

}
h ds+O(ε2)

= −ε

∫
∂Ω

∂u

∂n

∂uθ

∂n
h ds+O(ε2)

Here we used that u = 0, uθ = 0 on ∂Ω.
We now arrive at the following

d

dt
〈u(t), θ〉 = −δPΩ(u, uθ;hn) (3.6)

δPΩ(u, uθ;hn) = lim
ε→0

ε−1 {PΩ(u+ εuθ, hn)− PΩ(u, hn)}

From Theorem 2.9, it follows that

d

dt
〈u(t), θ〉 = δRΩ(u, uθ;hn) (3.7)

δRΩ(u, uθ;hn) = lim
ε→0

ε−1 {RΩ(u+ εuθ, hn)−RΩ(u, hn)}

We call the formula (3.7) the generalization of Hadamard formula (GJ-Hadamard
formula).

Let u(t) be minimizers of functionals

E(v; Ω(t),f , g) =
∫
Ω(t)

Ŵ (x,∇v)dx−
∫
Ω(t)

f · v dx (3.8)

over the spaces

V0(Ω(t),Γ(t)D(t)) =
{
v ∈ W 1,p(Ω(t);R3) : v = 0 on Γ(t)D(t)

}
3.1.4 3D Fracture

In 3-dimensional brittle fracture problem (linear case), the relation

− d

dt
E(u(t);f , g,ΩΣ(t)) = Jω(u,μφ) (3.9)

is proven[43], where ΩΣ(t) = Ω \ Σ(t) with the crack surfaces Σ(t) and μφ the
vector field obtained from crack extension.

We now introduce the set SC(Σ(t)|Π) of smooth crack extensions.
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SC1 There is a smooth 2-dimensional manifold Π embedded in R
3 such that

Σ(t) ⊂ Π, 0 ≤ t ≤ T .

SC2 Σ = Σ(0) ⊂ Σ(t) ⊂ Σ(t′) if 0 < t < t′.

SC3 For each t ∈ [0, T ], there is a C∞-diffeomorphism φt : ∂Σ → ∂Σ(t) such
that the map [t �→ φt] ∈ C∞([0, T ];C∞(∂Σ;Π)).

SC4 The limit limt→0 t
−1|Σ(t)−Σ| exists and non zero, where |Σ(t)−Σ| denote

the surface area of Σ(t)− Σ.

The vector field μφ is constructed as follows.

x

Σ

1 xe

, , , 1

0

d
g 0 g

d
e

2 xe

x

,g x x

Figure 8: Smooth crack extension of Σ

1. Let e1(γ), e2(γ) be tangential vector fields at γ ∈ ∂Σ on Π such that
|e1(γ)| = |e2(γ)| = 1, e2(γ) tangent along the curve ∂Σ, let us take e1 in
the crack extension direction and e1(γ) ⊥ e2(γ)

2. There is a neiborhood U(∂Σ) of ∂Σ such that there is only one nearest
point P(x) ∈ Π for all x ∈ U(∂Σ). Let us denote the distance from x to
P(x) ∈ Π by λ3(x), that is,

x = P(x) + λ3(x)e3(P(x)) e3(p) = −ν(p), p ∈ Π

where ν(p) is the unit normal vector at p ∈ Π in the direction from plus
side to minus side of Π.

3. There is a unique geodesic curve through P(x) on Π crossing at γ(P(x)) ∈
∂Σ perpendicularly [35, Lemma 10.2]; for each γ ∈ ∂Σ the geodesic curve
[λ �→ g(γ, λ)] satisfy the second order differential equation (the geodesic
equation [35, §10]) with the initial conditions

g(γ, 0) = γ,
dg

dα
(α, 0) = e1(γ)

We now write the length of the geodesic curve from γ(P(x)) ∈ ∂Σ to
P(x) ∈ Π by λ1(x).
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4. There is a number δ > 0 so that the mapping

F∂Σ : (γ, λ1, λ3) �→ c(γ, λ1) + λ3e3(c(γ, λ1)) (3.10)

become 1-1 mapping from ∂Σ× (−δ, δ)2 into R
3. Now we replace U(∂Σ)

with F∂Σ(∂Σ × (−δ, δ)2). Then F∂Σ become the diffeomorphism from
∂Σ× (−δ, δ)2 onto U(∂Σ).

5. Take ω so that ω ⊂ U(∂Σ).

6. d
dtφt|t=0 �→ Jω(u,μφ) depend only on [43, Theorem 5.4]

vφ(γ)e1(γ), vφ(γ) =

〈
d

dt
φt(γ)

∣∣∣∣
t=0

, e1(γ)

〉
(3.11)

where 〈, 〉 stands for the inner product in R
3. We call vφ the velocity of

crack extension.

7. μφ(x) = vφ(γ(P(x)))e1(γ(P(x))).

x

3

t

x

( )U
1

,
2

Diffeomorphism

F

2e

1e

3e

Figure 9: Tubular neighborhood of ∂Σ

The identity (3.9) is rewritten as follows

d

dt
E(u(t);f , g,ΩΣ(t)) = −RΩ(u, ηω0μφ) (3.12)

where ω ⊂ ω0 and ηω0 = 1 on ω. Indeed, there is no singularity inside Ω \ ω
except Σ ∩ Ω \ ω, however∫

Σ∩(Ω\ω)

{
Ŵ (x,∇u)±(μφ · ν)− T̂ (u)±(∇u · μφ

}
= 0

because μφ tanget to Σ leads that μφ · ν = 0 and T̂ (u)± = 0 on Σ. Hence by
Theorem 2.9

RΩ(u, ηω0μφ) = RΩ\ω(u, ηω0μφ) +Rω(u, ηω0μφ)

= −P∂Ω(u, ηω0μφ) + Jω(u, ηω0μφ)

= Jω(u, ηω0μφ) (ηω0 = 0 on ∂Ω)
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3.1.5 Shape sensitivity analysis

For [t �→ ϕt(x)] ∈ C∞([0, ε], C2(Rd,Rd)) and linear elliptic boundary value
problem

E(v;f ,Ω(t)) =

∫
Ω(t)

{
Ŵ (x,∇v)− f · v

}
dx

∀v ∈ V0(Ω(t),Γ(t)D(t)) =
{
v ∈ W 1,2(Ω(t),Rm); v = 0 on Γ(t)D(t)

}
where Ω(t) = ϕt(Ω), Γ(t)D(t) = ϕt(ΓD), it is proven in [44] that

d

dt
E(u(t);f ,Ω(t))

∣∣∣∣
t=0

= −RΩ(u,μϕ)

μϕ =
d

dt
ϕt|t=0

in the case that f = 0 near ∂Ω. In the proof, the coercivity with α > 0∫
Ω

∇ζŴ (x,∇v) : ∇v dx ≥ α‖v‖1,Ω ∀v ∈ V0(Ω,ΓD)

is essential, and key estimation is that

‖u− ϕ∗tu(t)‖1,Ω ≤ Ct‖f‖0,R3 with C > 0

where ϕ∗tu(t) is the pullback ϕ∗tu(x, t) = u(ϕt(y), t), y ∈ Ω (slightly changed
form [44]).

3.2 Fundamental theorem of GJ-integral

From 3.1 Historical background, we have the following conjecture:

Conjecture 3.1 (Fundamental theorem) Assume that the extension ϕt of
perturbation of singularities is 1-1 mapping from R

d onto R
d for each t and

[t �→ ϕt] ∈ C1([0, ε);W 1,∞(Rd;Rd)). Let u(t) be the minimizer of the potential
energy functional

E(v;f ,Ω(t)) =
∫
Ω(t)

{
Ŵ (x,∇v)− f · v

}
dx

over V0(Ω(t),Γ(t)D(t)). Then the following will hold

d

dt
E(u(t);f ,Ω(t))

∣∣∣∣
t=0

= −RΩ(u,μϕ)−
∫
∂Ω

f · u(μϕ · n)ds (3.13)

μϕ(x) =
d

dt
ϕt(x)

∣∣∣∣
t=0

(3.14)

In [48], (3.13) is proven when [t �→ ϕt] ∈ C2([0, T ],W 2,∞(R3;R3)).
In [28, 29], (3.13) is proven for linear problem when [t �→ ϕt] ∈ C1([0, T ],W 1,∞(R3;R3))

using the following theorem.
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Theorem 3.2 Let X and M be real Banach spaces. For U0 ⊂ X and an open
subset O0 ⊂ M , we consider a real valued functional J : U0 × O0 → R and a
map u : O0 → U0. We define J∗(μ) = J (u(μ), μ) for μ ∈ O0. We suppose the
following conditions.

1. J ∈ C0(U0 × O0), [μ �→ J (w, μ)] ∈ C1(O0) for w ∈ U0, and ∂MJ ∈
C0(U0 ×O0,M

′).

2. u ∈ C0(O0, X) and u(μ) is a global minimizer of J (·, μ) in U0 for each
μ ∈ O0.

Then we have J∗ ∈ C1(O0) and

J ′∗(μ) = ∂MJ (u(μ), μ) (μ ∈ O0). (3.15)

3.3 Fundamental theorem in nonlinear case

In fracture mechanics, it was shown that (2.2) will hold in nonlinear problems.
There are some mathematical results[30, 31, 32] and the results in [44, 28, 29]
are applicable to nonlinear case (nearly linear). Before proof, we prepare for an
abstract result.

Under the same assumption in Theorem 3.2, for u ∈ U0 and w ∈ X, the
Gâteaux derivative δXJ (v, μ)[w] ∈ R is defined as

δXJ (u, μ)[w] =
d

dt
J (u+ tw, μ)

∣∣∣∣
t=0

,

where ∂X , ∂M are partial Fréchet derivative operators for J (u, μ) with respect
to u ∈ X and μ ∈ M . Assume the following.

(F1) [μ �→ J (w, μ)] ∈ C1(O0) for all w ∈ U0, and ∂MJ : U0 × O0 → M ′ is
continuous at (u(μ0), μ0).

(F2) The Banach space X is reflexive and U0 is closed and convex in X.

(F3) For the functional [v �→ J (v, μ0)], u0 is a unique minimizer over U0.

(F4) The functional [v �→ J (v, μ0)] is sequentially lower semicontinuous with
respect to the weak topology of X.

(F5) There is a monotone nondecreasing function β0 defined on [0,∞) with
lims→∞ β0(s) = ∞ such that

β0 (‖v‖X) ≤ J (v, μ) (v ∈ U0, μ ∈ O0).

(F6) For any ε > 0 and R > 0, there exists δ > 0 such that

|J (v, μ)− J (v, μ0)| ≤ ε

(v ∈ U0, ‖v‖X ≤ R, μ ∈ O0, ‖μ− μ0‖M ≤ δ).

(F7) For v ∈ U0, the function [t �→ J (u0 + t(v − u0), μ0)] belongs to C1((0, 1]).
Moreover, for a sequence {un}n ⊂ U0 which weakly converges to u0 as
n → ∞, the condition limn→∞δXJ (un, μ0)[un − u0] ≤ 0 implies that
un → u0 strongly in X as n → ∞.
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In particular, under the condition (F7),

δXJ (v, μ0)[v − u0] =
d

dt
J (u0 + t(v − u0), μ0)

∣∣∣∣
t=1

exists for all v ∈ U0. The condition (F7) is often called the (S+)-property.

Theorem 3.3 Under the conditions (F1)–(F7), [μ �→ J∗(μ)] is Fréchet differ-
entiable at μ = μ0 and the following holds.

Dμ[J (u(μ0), μ0)] = ∂MJ (u(μ0), μ0) (3.16)

where the Dμ denotes the Fréchet differential operator with respect to μ ∈ M .

Now, we apply Theorem 3.3 with X = W 1,p(Ω),M = W 1,∞(Rd;Rd) to
prove Conjecture 3.1 for the solution u(t) ∈ W 1,1(Ω,Rm) of Problem 2.2 over
V0(Ω(t),Γ(t)D(t)) with g = 0 when [t �→ x + tμ] ∈ C∞([0, T ];W 1,∞(Rd;Rd)).
Here we notice that

Rω(u,μ) = −
M∑
i=1

∫
ω∩Ωi

{
∇xŴi(x,∇ui) · μ+ f · (∇ui · μ)

}
dx

+
M∑
i=1

∫
ω∩Ωi

{(
∇ζŴi(x,∇ui)

)T

(∇μT )∇u− Ŵi(x,∇ui)(divμ)

}
dx (3.17)

Assume the additional condition for Ŵi in Theorem 2.7.

H0’ Ŵi satisfy H0 and [x �→ Ŵi(x, ζ)] ∈ C1(Ωi) for all ζ ∈ R
m×d.

Now, we consider the case that ϕt(x) = x+tμ(x) for any μ ∈ W 1,∞(Rd;Rd).
For a function v ∈ W 1,1(Ω;Rm), we define the pushforward

ϕt∗v(x) = v(ϕ−1
t (x)) x ∈ Ω(t)

which satisfy the following

[∇(ϕt∗v)] ◦ ϕt = A(ϕt)∇v a.e in Ω for v ∈ W 1,1(Ω)

A(ϕ) =
(∇ϕT

)−1 ∈ L∞(Rd,Rd×d)

∇ϕT (x) =

(
∂ϕj

∂xi
(x)

)
1≤i≤d,1≤j≤d

∈ R
d×d for x ∈ R

d

∫
Ω(t)

(ϕt∗v)(y)dy =

∫
Ω

v(x)κ(ϕt)(x)dx for v ∈ L1(Ω)

κ(ϕ) = det∇ϕT ∈ L∞(Rd,R)

The mapping ϕt∗ : v �→ ϕt∗v become 1-1 mapping from V0(Ω,ΓD) onto V0(Ω(t),Γ(t)D(t)).
Then u(t) = ϕt∗u0,

E(u(t);f ,Ω(t)) = min
v∈V0(Ω(t),Γ(t)D(t))

E(v;f ,Ω(t))

E(u0;f ,Ω, ϕt) = min
v∈V (Ω,ΓD)

Ẽ(v;f , ϕt)
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where

Ẽ(v;f , ϕt) =

∫
Ω(t)

{
Ŵ (x,∇(ϕt∗v))− f · ϕt∗v

}
dx

=

M∑
i=1

∫
Ωi

{
Ŵi(ϕt(x), A(ϕt)∇vi)− ϕ∗tf · vi

}
κ(ϕt)dx(3.18)

The differentiability of [t �→ Ẽ(v;f , ϕt)] is given by the following [29, Theo-
rem 3.3].

Proposition 3.4

1. [ϕ �→ κ(ϕ)] ∈ C∞(W 1,∞(Rd,Rd), L∞(Rd)). More precisely, the (d+ 1)-th
Fréchet derivative of κ vanishes, i.e., κ(d+1) = 0. In particular, we have

d

dt
κ(x+ tμ)

∣∣∣∣
t=0

= divμ for μ ∈ W 1,∞(Rd,Rd)

2. We define an open subset of W 1,∞(Rd,Rd),

O0(R
d) = {ϕ ∈ W 1,∞(Rd,Rd); ess- inf

Rd
κ(ϕ) > 0}

Then we have [ϕ �→ A(ϕ)] ∈ C∞(O0(R
d), L∞(Rd,Rd×d)). In particular,

d

dt
A(x+ tμ)

∣∣∣∣
t=0

= −∇μT for μ ∈ W 1,∞(Rd,Rd)

Here we notice that

A(x+ tμ)(I + t∇μT ) = I (I : identity matrix of degree d)

we have
d

dt
A(x+ tμ)|t=0 = −A(x)∇μT = −∇μT

We now arrive at the following for f ∈ W 1,qmin(Ω;Rm), q−1
min + p−1

min = 1

IΩi(v, x+ tμ) =

∫
Ωi

{
Ŵi(x+ tμ, A(x+ tμ)∇v)− ϕ∗tf · v

}
κ(x+ tμ)dx

d

dt
IΩi(v, x+ tμ)

∣∣∣∣
t=0

=

∫
Ωi

{
∇xŴi(x,∇v) · μ− (∇ζŴi(x,∇v))T (∇μT )∇v

}
dx

+

∫
Ωi

Ŵi(x,∇v)divμdx

−
∫
Ωi

((∇f · μ) · v + f · vdivμ) dx (3.19)

By Green’s formula, it follows that, if f ∈ W 1,q(Rd;Rm)∫
Ωi

f · v∂jμj dx =

∫
Γi

f · vμjnij ds−
∫
Ωi

∂j(f · v)μj dx

=

∫
Γi

f · vμjnij ds−
∫
Ωi

{∂jf · v + f · ∂jv}μjdx
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where ni = (ni1, · · · , nid) stands for the outward unit normal to ∂Ωi. This
means that∫
Ω

{f · vdivμ+ (∇f · μ) · v} dx =
M∑
i=1

∫
Ωi

{f · vdivμ+ (∇f · μ) · v} dx

=
M∑
i=1

∫
Γi

f · v(μ · ni)ds−
∫
Ω

f · (∇u · μ)dx

=

∫
∂Ω

f · v(μ · n)ds−
∫
Ω

f · (∇u · μ)dx (3.20)

Here we used that vi = vj on Γij because v ∈ W 1,pmin(Ω), and nij = −nij on
Γij = Γi ∩ Γj , i �= j and f ∈ W 1,qmin(Ω).

By combining (3.18)-(3.20), we have the folloing

d

dt
Ẽ(v;f , ϕt)

∣∣∣∣
t=0

=

M∑
i=1

∫
Ωi

{
∇xŴi(x,∇v) · μ−

M∑
i=1

(∇ζŴi(x,∇v))T (∇μT )∇v

}
dx

+

∫
Ω

{
Ŵi(x,∇v)divμdx+ f · (∇v · μ)

}
dx

−
∫
∂Ω

f · v(μ · n)ds

= −RΩ(v,μ)−
∫
∂Ω

f · v(μ · n)ds (3.21)

RΩ(v,μj)−
∫
∂Ω

f · v(μj · n)ds → RΩ(u,μ0)−
∫
∂Ω

f · v(μ0 · n)ds

as j → ∞ for μj , j = 1, · · · ,∞ such that μj → μ0 in W 1,∞)(Rd;Rd).
We now check (F1)–(F7) in Theorem 3.3.

(F1) ∂ϕẼ(v;f , ϕ) exists and continuous at ϕ0(x) = x.

(F2) W 1,p(Ω), 1 < pi < ∞, 1 ≤ i ≤ M is rerlexive and V0(Ω,ΓD) is closed and
convex in W 1,p(Ω).

(F3) The unique minimizer is shown in Thoerem 2.5.

(F4) (2.12) leads that [v �→ Ẽ(v;f , ϕ0)] is sequentially lower semiconinuous in
W 1,p(Ω).

(F5) By H1, there is a constant c0

β0(‖v‖1,p) = c0

M∑
i=1

‖v‖pi

W 1,pi (Ω)

Ẽ(v;f , ϕ) ≥ β0(‖v‖)
for ϕ near ϕ0.

(F6) From H1 and H2, we have the estimation

|Ẽ(v;f , ϕ)− Ẽ(v;f , ϕ0)| ≤ c1‖ϕ− ϕ0‖1,∞,Rd

(
M∑
i=1

‖v‖pi

W 1,pi (Ωi)

)
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(F7) If pi ≥ 2, then from H4 we can derive the following with constants ci >
0, 1 ≤ i ≤ M such that

(∇ζŴ (x, ζ)−∇ζŴ (x, ζ̃)) : (ζ − ζ̃) ≥ ci|ζ − ζ̃|pi (3.22)

so we can derive∫
Ωi

(
∇ζŴ (x,∇v)−∇ζŴ (x,∇w)

)
: (∇v −∇w)dx

≥ c′i‖∇v −∇w‖pi

0,pi,Ωi

with c′i > 0, which implies (S+)-property.

Detail in (F7): For a sequence vn, n = 1, · · · converging to v0 such that

δXE(vn,f , ϕ0)[vn − v0]

=
M∑
i=1

∫
Ωi

{
∇ζŴi(x,∇vn) : (∇vn −∇v0)− f · (vn − v0)

}
dx

lim
n→∞δXE(vn,f , ϕ0)[vn − v0] ≤ 0

we can derive vn → v0 as n → ∞ strongly in Lp(Ωi;R
d) by Rellich-Kondrachov

theorem[2], this means∫
Ωi

f · (vn − v0)dx → 0∫
Ωi

∇ζŴi(x,∇v0) : (∇vn −∇v0)dx → 0

as n → ∞.

limn→∞
∫
Ωi

{
∇ζŴi(x,∇vn) : (∇vn −∇v0)− f · (vn − v0)

}
dx

= limn→∞
∫
Ωi

∇ζ

(
Ŵi(x,∇vn)− Ŵi(x,∇v0)

)
: (∇vn −∇v0)dx

≥ c′ilimn→∞‖∇vn −∇v0‖pi

0,pi,Ωi

Assumption limn→∞δXE(vn,f , ϕ0)[vn − v0] ≤ 0 implies

limn→∞‖∇vn −∇v0‖pi

0,pi,Ωi
≤ 0

This means ∇vn → ∇v0 as n → ∞ strongly in Lpi(Ω;Rd). Therefore vn → v0

as n → ∞ in W 1,p(Ω) strongly.

Theorem 3.5 For the perturbation x+tμ,μ ∈ W 1,∞(Rd,Rd), f ∈ W 1,q(Rd;Rm)
and g = 0, let u(t) be the solution of Problem 2.2 with the conditions H0’, H1,
H2, H4 and pmin ≥ 2 over V0(Ω(t),Γ(t)D(t)). Then the following hold

d

dt
E(u(t);f ,Ω(t))

∣∣∣∣
t=0

= −RΩ(u,μ)−
∫
∂Ω

f · u(μ · n)ds (3.23)

For the energy E(u(t) : f , g,Ω(t)), Theorem 3.5 is valid if μ = 0 on the closure
of {x; g(x) �= 0}.
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Remark 3.6 In the case 1 < pi < 2 for some i, 1 ≤ i ≤ M , then we cannot
derive (3.22) in general. Notice that (F7) will hold even if 1 < pi < 2 in some
case, for example, p-Poisson equation as shown in [52].

In 3D-fracure problem, it is difficult that

Σ(t) = {x+ tμ(x) : x ∈ Σ} for some μ ∈ W 1,∞(Rd,Rd)

In 3D-fracture problem, we consider the mapping for h ∈ C1(∂Σ)

ϕh(x) =

{
F∂Σ(γ(x), λ1(x) + ηωh(γ(x)), λ3(x)) for x ∈ U(∂Σ)

0 for x �∈ U(∂Σ)
(3.24)

Then Ẽ(v;f , ϕh) = Ẽ(v;f , h) and
d

dt
Ẽ(v;f , th)

∣∣∣∣
t=0

= −RΩ(v;f , ηωμh)

where μh(x) = h(γ(x)).

Theorem 3.7 Let Σ be a 2-dimensional surface such that Σ ⊂ Ωk for some
1 ≤ k ≤ M . With h ∈ C1(∂Σ), consider the crack extension given in (3.24).
For f ∈ W 1,q(Ω;Rd), g = 0, let u(t) be the solution of Problem 2.2 with the
conditions H0’, H1, H2, H4 and pmin ≥ 2, which is minimizer of energy
functinal over V0(ΩΣ(t),ΓD).

d

dt
E(u(t);f ,ΩΣ(t))

∣∣∣∣
t=0

= −RΩΣ(u,μh) (3.25)

with μh = dϕth/dt|t=0.

For a smooth crack extension {Σ(t)}0≤t≤T ,Σ(t) ⊂ Π, h is the velocity (3.11).

3.4 GJ-Hadamard formula

Under the same assumption in Theorem 3.5 in the case of Problem 2.2 is linear,
M = 1 and g = 0, let ϑ ∈ W 1,2(Rd;Rm) and the solution uϑ(t) such that

E(uϑ(t);ϑ,Ω(t)) = min
v∈V0(Ω(t),Γ(t)D(t))

E(v;ϑ,Ω(t))

Writing μ = μϕ for simplicity, we then have

d

dt
E(uϑ(t);ϑ,Ω(t))

∣∣∣∣
t=0

= −RΩ(uϑ,μϕ)−
∫
∂Ω

ϑ · uϑ(μ · n) ds (3.26)

We assumed that Problem 2.2 is linear, so that u+ εuϑ is the solution, we then
have we have

E(u(t) + εuϑ(t);f + εϑ,Ω(t)) = min
v∈V0(Ω(t),Γ(t)D(t))

E(v;f + εϑ,Ω(t))

d

dt
E(u(t) + εuϑ(t);f + εϑ,Ω(t))

∣∣∣∣
t=0

= −RΩ(u+ εuϑ,μ)

−
∫
∂Ω

(f + εϑ) · (u+ εuϑ)(μ · n) ds
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By linearity it follows that

Ŵ (x,∇u(t)+ε∇uϑ(t)) = Ŵ (x,∇u(t))+ε∇ζŴ (x,∇u(t)) : ∇uϑ(t)+ε2Ŵ (x,∇uϑ(t))

This implies the following

E(u(t) + εuϑ(t);f + εϑ,Ω(t))

=

∫
Ω(t)

{
Ŵ (x,u(t) + εuϑ(t))−

(
f · u(t) + εf · uϑ(t) + εϑ · u(t) + ε2ϑ · uϑ

)}
dx

= E(u(t);f ,Ω(t)) + ε

∫
Ω(t)

{
∇ζŴ (x,∇u(t)) : ∇uϑ(t)− f · uϑ(t)

}
dx

−ε

∫
Ω(t)

ϑ · u(t) dx+ ε2
∫
Ω(t)

{
Ŵ (x,uϑ)− ϑ · uϑ

}
dx

Hence we can derive

−ε

∫
Ω(t)

ϑ · u(t) dx = E(u(t) + εuϑ(t);f + εϑ,Ω(t))− E(u(t);f ,Ω(t))

+ε2E(uϑ(t);ϑ,Ω(t))

− d

dt
ε

∫
Ω(t)

ϑ · u(t) dx
∣∣∣∣∣
t=0

=
d

dt
E(u(t) + εuϑ(t);f + εϑ,Ω(t))

∣∣∣∣
t=0

− d

dt
E(u(t);f ,Ω(t))

∣∣∣∣
t=0

+ ε2
d

dt
E(uϑ(t);ϑ,Ω(t))

∣∣∣∣
t=0

= −RΩ(u+ εuϑ,μ)−
∫
∂Ω

(f + εϑ) · (u+ εuϑ)(μ · n)ds

+RΩ(u,μ) +

∫
∂Ω

f · u(μ · n)ds

−ε2
{
RΩ(uϑ,μ) +

∫
∂Ω

ϑ · uϑ(μ · n)ds
}

Therefore we have the following

d

dt

∫
Ω(t)

ϑ · u(t) dx
∣∣∣∣∣
t=0

= ε−1 {RΩ(u+ εuϑ,μ)−RΩ(u,μ)}

+

∫
∂Ω

ϑ · u(μ · n)ds+
∫
∂Ω

f · uϑ(μ · n)ds
+o(ε) (3.27)

= δRΩ(u,uϑ;μ)

+

∫
∂Ω

{ϑ · u+ f · uϑ} (μ · n)ds (3.28)

δRΩ(u,uϑ;μ) = lim
ε→0

ε−1 {RΩ(u+ εuϑ,μ)−RΩ(u,μ)}

Theorem 3.8 (GJ-Hadamard) Consider the case that M = 1. For any ϑ ∈
C∞

(
Ω;Rm

)
, f ∈ W 1,q(Rd;Rm) and g = 0, let u(t) be the solution of the

problem 2.2 in the case of linear.

E(u(t);f ,Ω(t)) = min
v∈V0(Ω(t),Γ(t)D(t))

E(v;f ,Ω(t))
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Then the following generalization of (3.7) holds

d

dt

∫
Ω(t)

ϑ · u(t) dx
∣∣∣∣∣
t=0

= δRΩ(u,uϑ;μϕ) +

∫
∂Ω

{ϑ · u+ f · uϑ} (μϕ · n)ds
(3.29)

Theorem is proven in [48].
We now find the form Rω(u,uϑ). Writing

δŴ (x,∇u)[uϑ] = lim
ε→0

1

ε

{
Ŵ (x,∇u+ ε∇uϑ)− Ŵ (x,∇u)

}
we have

δRω(u,∇uϑ;μ) = −
∫
ω∩Ω

{
∇xδŴ (x,∇u)[∇uϑ] · μ+ f · (∇uϑ · μ)

}
dx

+

∫
ω∩Ω

(
∇ζδŴ (x,∇u)[∇uϑ]

)T

(∇μT )∇u dx

+

∫
ω∩Ω

(
∇ζŴ (x,∇u)

)T

(∇μT )∇uϑ dx

−
∫
ω∩Ω

δŴ (x,∇u)[∇uϑ](divμ)dx (3.30)

If u(t) = u(x, t), x ∈ Ω(t) is smooth, we define the material derivative and shape

derivative as follows.

Definition 3.9 The material derivative u̇ of u(t) in the direction of a vector
field μ is defined by

u̇(x) = lim
t→0

1

t
{u(ϕt(x), t)− u(x)} for x ∈ Ω (3.31)

The shape derivative u′ of u(t) in the direction μ is defined by

u′(x) = u̇(x)−∇u(x) · μ(x) (3.32)

Lemma 3.10 If u(t) is smooth, we have

d

dt

∫
Ω(t)

ϑ · u(t) dx
∣∣∣∣∣
t=0

=

∫
Ω

ϑ · u′dx+

∫
∂Ω

ϑ · u(μϕ · n)ds (3.33)

Proof. Putting u(t) ◦ ϕt(x) = u(ϕt(x), t), ω(t) = det∇ϕt

d

dt

∫
Ω(t)

ϑ · u(t) dx
∣∣∣∣∣
t=0

=
d

dt

∫
Ω

ϑ ◦ ϕt · u(t) ◦ ϕt ω(t)dx

∣∣∣∣
=

∫
Ω

{
ϑ · u̇+ (∇ϑ · μϕ) · ∇u+ ϑ · udivμϕ

}
dx∫

Ω

(∇ϑ · μϕ) · ∇u dx =

∫
∂Ω

ϑ · u(μϕ · n)ds−
∫
Ω

{
ϑ · (∇u · μϕ) + ϑ · udivμϕ

}
dx
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Therefore, we can derive (3.33). �

If u(t) is smooth, it follows that∫
Ω

ϑ · u′dx+

∫
∂Ω

ϑ · u(μϕ · n)ds = δRΩ(u,uϑ;μϕ) (3.34)

+

∫
∂Ω

{ϑ · u+ f · uϑ} (μϕ · n)ds

which implies the following theorem.

Theorem 3.11 Under the same condition in Theorem 3.8, the shape derivative
u′ ∈ L2(Ω;Rm) exist, and∫

Ω

ϑ · u′ dx = RΩ(u,uϑ;μϕ) +

∫
∂Ω

f · uϑ(μϕ · n) ds (3.35)

Proof For any ϑ ∈ C∞0 (Ω;Rm), we have by Theorem 3.8,

d

dt

∫
Ω(t)

ϑ · u(t) dx
∣∣∣∣∣
t=0

= δRΩ(u,uϑ;μϕ) +

∫
∂Ω

f · uϑ(μϕ · n) ds

Since [ϑ �→ uϑ] is continuous linear mapping from L2(Ω;Rm) to W 1,2(Ω;Rm),
we have the estimation with a constant C > 0∣∣∣∣δRΩ(u,uϑ;μϕ) +

∫
∂Ω

f · uϑ(μϕ · n) ds
∣∣∣∣

≤ C‖μϕ‖1,∞,Rd (‖u‖1,2,Ω + ‖f‖0,2,Ω) ‖uϑ‖1,2,Ω
Then tere is a function K ∈ L2(Ω;Rm) such that∫

Ω

ϑ ·K dx = δRΩ(u,uϑ;μϕ) +

∫
∂Ω

f · uϑ(μϕ · n) ds

for any ϑ ∈ C∞0 (Ω;Rm). From Lemma 3.10, K is the natural extension of u′.
From (3.34), we can prove (3.35). �

From Theorem 2.9, the following holds.

Corollary 3.12 If u ∈ W 2,2(Ω;Rm), then

d

dt

∫
Ω(t)

ϑ · u(t) dx
∣∣∣∣∣
t=0

= −δPΩ(u,uϑ;μϕ) +

∫
∂Ω

{ϑ · u+ f · uϑ} (μϕ · n)ds

with δPΩ(u,uϑ;μ) = lim
ε→0

1

ε
{PΩ(u+ εuϑ,μ)− PΩ(u,μ)} (3.36)

δPΩ(u,uϑ;μ) =

∫
∂Ω

{
δŴ (x,u)[uϑ](μϕ · n)

−T̂ (x,u)(∇uϑ · μϕ)− T̂ (x,uϑ)(∇u · μϕ)
}
ds
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In the case that boundary condition is mixed, non-smooth boundary, we
use Green kernel by Schwartz’s theorem of kernels therem (see e.g.[12, Ap-
pendix,§3,12]), there is a Gt ∈ D′xy such that

u(ξ, t) = 〈Gt(ξ, x),f(x)〉Ω(t),x for f ∈ C∞0 (Ω;Rm)

uϑ(ξ, t) = 〈Gt(ξ, y),ϑ(y)〉Ω(t),y for ϑ ∈ C∞0 (Ω;Rm)

and the following hold for D = C∞0 (Ω;Rm),

δRΩ(u,uϑ;μϕ) = δRΩ(〈G(ξ, ·),f(·)〉Ω,x, 〈G(ξ, ·),ϑ(·)〉Ω,y;μϕ)

=
〈
δRΩ(G(·, x),G(·, y);μϕ)f(x),ϑ(y)

〉
Dx×Dy

Theorem 3.13 Under the same condition in Theorem 3.8, the material deriva-
tive of Green’s kernel Gt is

G′(x, y) = δRΩ(G(·, x),G(·, y);μϕ)

Moreover, if all solutions are in W 2,2(Ω), then

G′(x, y) = −δPΩ(G(·, x),G(·, y);μϕ)

3.5 Finite Element Analysis

In this paper, we assume the existence of singular points. Because solutions
may not be smooth, attention is necessary about finite element method.

3.5.1 FEM solution

In this section, we consider the linear elasticity, that is, Hooke’s tensor Cijkl(x)
exist such as σij(u) = Cijklεkl(u) Consider the bilinear form

a(u,v) =

∫
Ω

σij(u)εij(v) dx

The displacement u satisfy

a(u,v) =

∫
Ω

f · v dx+

∫
ΓN

g · vds ∀v ∈ V (Ω,ΓD)

and is approximated by the piesewize linear function uh, that is P1-element
Vh(Ω,ΓD). Here we assume that Ω is the polygonal/polyhedral domain for
simplicity. By Céa’s lemma [15, Lemma 2.28] we have estimation with a constant
C0 > 0,

‖u− uh‖1,Ω ≤ C0 inf
vh∈Vh

‖u− vh‖1,Ω Vh = Vh(Ω,ΓD)

Let Ph be the orthogonal projection from Vh into V (Ω,ΓD). If v ∈ H2(Ω;R3),
then (see e.g.[15, Corollary 1.141]

‖v − Phv‖1,Ω ≤ C1h‖v‖2,Ω
with a constant C1 independent h, and for v ∈ H1(Ω;R3) we have

‖v − Phv‖1,Ω ≤ ‖v‖1,Ω
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They means that the operator norm of I − Ph is C1h when I − Ph is linear
operator H2(Ω,ΓD)∩V (Ω,ΓD) to V (Ω,ΓD), and is 1 on H1(Ω,ΓD)∩V (Ω,ΓD)
to V (Ω,ΓD). Then using the interpolation of operator[2, 7.23], we have

‖v − Phv‖1,Ω ≤ C2h
s−1‖v‖s,Ω

for any v ∈ Hs(Ω;R3) ∩ V (Ω,ΓD) for 1 ≤ s ≤ 2. Using the Céa’s lemma, we
arrive at the estimation

‖u− uh‖1,Ω ≤ C2C0h
s−1‖u‖s,Ω (3.37)

if the solution u is in W s,2(Ω,Rm) with s > 1.

3.5.2 Numerical calculation of GJ-integral

Jω(uh,μ) = Pω(uh,μ) +Rω(uh,μ)

By singularity, in usual FEM, we can only prove that ‖u− uh‖1,Ω → 0, so it is
difficult that Pω(uh,μ) → Pω(u,μ) as h → 0.

Let ηω be the cut-off function such that

ηω = 1 on ω′ ω′ ⊂ ω

suppηω ⊂ ω

S

1

Jω(u,μ) = Jω′(u,μ) = Jω′(u, ηωμ)

= Jω(u, ηωμ) = Rω(u, ηωμ)

The functional Rω(u, ηωμ) is bounded in W 1,p(Ω)-norm, so we can prove that
Rω(uh, ηωμ) → Rω(u, ηωμ) as h → 0.

4 Fracture Problem

4.1 Energy release rate

The elastic body with a crack Σ is described as the boundary value problem:

−∂jσij(u) = f in ΩΣ(= Ω \ Σ)
νjσij(u)

+ = νjσij(u)
− = 0 on Σ

u = 0 on ΓD njσij(u) = g on ΓN

Surface force

Body Force

Fixed

Crack

DΩ Σ

Σ

g

f

ν
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Let us denote by C(Σ(t)|Π) the crack extension, that is,

(C1) Π is a part of the boundary of domain DΠ with local Lipschitz property.

(C2) Σ(t) ⊂ Π and Σ = Σ(t) ⊂ Σ(t′) if 0 < t < t′.

Dviding ΩΣ into Ω+ = Ω \DΠ, Ω− = Ω∩DΠ and using Green’s formula (2.14),
we can prove the existence of the displacement u(t) as the minimizer of energy
functional

E(v; ΩΣ(t),f , g) =

∫
ΩΣ(t)

{
Ŵ (x,∇v)− f · v

}
dx−

∫
ΓN

g · v ds

over the space

V0(ΩΣ(t),ΓD) =
{
v ∈ W 1,2(ΩΣ(t);R

3) : v = 0 on ΓD

}
Because V0(ΩΣ(t1),ΓD) ⊂ V0(ΩΣ(t2),ΓD) if t1 < t2, the following inequality
holds

E(u(t1); ΩΣ(t1),f , g) ≥ E(u(t2); ΩΣ(t2),f , g) (4.1)

Then the released energy will serve as the drivinig force for the crack extension
if the released energy exceeds the fracture resistance, that is, the crack Σ will
grow if F(ΩΣ(t),f , g) ≥ 0

F(Σ(·),f , g) = E(u(t); ΩΣ(t),f , g)− E(u; ΩΣ,f , g)−
∫
Σ(t)\Σ

γR ds (4.2)

where γR is the resistance force per unit surface.

Remark 4.1 Griffith[20, 21] considered a through thickness crack of lenghth �,
subjected to a uniform tensile stress σ∞, at infinity. Griffith get the released
strain energy W1 by the crack

W1 =
π�2σ2

∞
4E

{
1− ν2 plain strain
1 plain stress (generalized)

where E is Young’s modulus and ν Poisson ratio (see also [55]). Using the
energy balance

∂

∂�
W1 = γR ⇔ �πσ2

∞
2E

= 2γS

where he used γR = 2γS(surface energy). He get the length of crack

� =
4πγS
σ2∞

(4.3)

He substituted γS = 5.6× 10−4kg/cm, E= 7× 105kg/cm
2
and σ∞ = 700kg/cm

2

to ed the surface energy γS on the crack surface Σ(t) \ Σ and set γR = 2γS to
(4.3) and get the rough size of � ∼ 1× 10−3cm.

We now introduce the concept of energy release reate

G(L; Σ(·)) = lim
t→+0

E(u; Ω,L)− E(u(t); ΩΣ(t),L)
|Σ(t) \ Σ| , L = (f , g) (4.4)
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Now we call
VΣ(t+ 0) = lim

δt↓0
|Σ(t+ δt) \ Σ(t)|

the speed of crack extension {Σ(t)}0≤t≤T and using (4.4) we can rewrite (4.2)
with

F(Σ(·),L) � t(G(L; Σ(·))− γR)VΣ(+0) (4.5)

Definition 4.2 (Crack initiation) Assume that the crack is at a stop in t <
0. If VΣ(0+) > 0, then the crack Σ grow at t = 0.

Griffith’s criterion is the following.

If G(L; Σ(·)) ≥ γR, then VΣ(+0) > 0.

Remark 4.3 The inequality (4.1) is valid only if L(t) = L for t ≥ 0, where
L(t) = (f(t), g(t)). Because we can construct examples in which (4.1) holds and
the stress intensity KI(t) decrease when L(t) �= L. By this reason, Griffith’s
criterion is true in crack initiation, but

Theorem 4.4

G(L; Σ(·)) = Jω(u,μφ)

(∫
∂Σ

vφ(γ) dγ

)−1

(4.6)

where

vφ(γ) =

〈
dφt

dt
(γ)

∣∣∣∣
t=0

, e1(γ)

〉
Π

and μφ the parallel extension

μφ(x) = F∂Σ(γ(x), λ1(x) + vφ(γ(x)), ζ(x))

where < ·, · >Π denote the inner product on tangent space of Π.

Refer [43] in linear case, and use Theorem 3.3 in non-linear case when ht(γ) =
h(γ)t.

Since the mappings for h ∈ C1(∂Σ)

h �→ μh(x) = F∂Σ(γ(x), λ1(x) + h(γ(x)), λ3(x))

μh �→ Jω(u,μh)

are linear, we can write

[h �→ Jω(u,μh)] = 〈K(γ), h(γ)〉∂Σ
We assume that K ∈ C(∂Σ). The dual space of C(∂Σ) is Radon measure on

∂Σ, since ∂Σ is compact[5, Chap.III-2.2]. containig

δλ0
=

{
1 if λ = λ0

= 0 if λ �= λ0

∫
∂Σ

δλ0
dγ = 1

We put Ra(∂Σ) =
{
λ : λ is radon measure on ∂Σ,

∫
∂Σ

λ dγ = 1
}
. The criterion

become; Find λmax ∈ Ra(∂Σ) such that

〈K(γ), λmax(γ)〉∂Σ = max
λ∈Ra(∂Σ)

〈K(γ), λ(γ)〉∂Σ ≥ RC

We can easily show by taking λ = γmax the following

max
λ∈Ra(∂Σ)

〈K(γ), λ(γ)〉∂Σ = K(γmax),K(γmax) = max
γ∈∂Σ

K(γ)

This means that the crack extends if K(γmax) ≥ γR.
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Figure 10: field of view ω and vector field μφ

4.2 Griffith-Irwin theory

In fracture mechanics, they consider the stress near the edge ∂Σ will behave like
the plate which is perpendicular to ∂Σ. By 2-dimensional analysis, they derive
3 modes near ∂Σ, as follows.

22

23

21

31

32

33
11

13

12

Crack front

Stress tensor at P
Crack

x
1

P
x
2

r
( )1e

( )3e

At the point (λ,x′), x′ = (x1, x2) on the plate, the following exapansion will
hold

u(γ,x′) =
3∑

i=1

SC
i (γ, (r, θ)) + higher order of r, (4.7)

SC
i (γ, (r, θ)) =

Ki(γ)

2μ

√
r

2π
Φi(θ) for i = 1, 2; (4.8)

SC
3 (γ, (r, θ)) =

2K3(γ)

μ

√
r

2π
Φ3(θ)e2 (4.9)

－236－



where the constant Ki(γ) for γ ∈ ∂Σ are called the stress intensity factors and

Φ1(θ) =

⎡⎢⎣ ϕ11(θ)

ϕ12(θ)
0

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
cos

θ

2

(
κ− 1 + 2 sin2

θ

2

)
sin

θ

2

(
κ+ 1− 2 cos2

θ

2

)
0

⎤⎥⎥⎥⎥⎥⎦ (4.10)

Φ2(θ) =

⎡⎢⎣ ϕ21(θ)

ϕ22(θ)
0

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
sin

θ

2

(
κ+ 1 + 2 cos2

θ

2

)
− cos

θ

2

(
κ− 1− 2 sin2

θ

2

)
0

⎤⎥⎥⎥⎥⎥⎦ (4.11)

Φ3(θ) = sin
θ

2
(4.12)

where κ = (3− ν)/(1 + ν) with the Poisson radio ν.
The constantsKi(γ), i = 1, 2, 3 for each γ ∈ ∂Σ exress the modes of following

manner.

22

Opening

Sliding
Tearing

Using the asymptotic expansions in (4.7), we can derive under rough con-
sideration

K(γ) � 1

E

(
K2

1 (γ) +K2
2 (γ)

)
+

1

2G
K2

3 (γ) γ ∈ ∂Σ

where E,G denotes Young’s modulus and shear modulus, respectively. Here
� become = in the case of the homogeneous isotropic elastic plane stress (see
e.g.[54] and [19, 46] for mathematical result).

Remark 4.5 The calculations in (4.7)-(4.12) are made in 2D case (homoge-
neous isotropic elastic plane), so asymptotic expansion in 3-dimensional case
will be open in mathematical view point.

4.3 Crack path

In fracture mechanics, crack paths are calculated by means of broken line paths,
that is, we need the direction and length (See [56, Chapter 7] for detail). We
discuss them with the following simple example: For the straight initial crack
Σ and the virtual kinked crack extension

Σα(t) = Σ ∪ δΣ(t), δΣα(t) = {(x, y); x = l cosα, y = l sinα, 0 ≤ l ≤ t},
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Figure 11: Kinked crack extension

There are famous criterions for the direction of crack extension:

Maximum energy release rate criterion: Find α∗ which take the maxi-
mum value of [α �→ G(L; Σα(·))] on −π < α < π.

Local symmetry criterion: Find the angle α# that satisfies the condition
K2,α#(γ(+0)) = 0.

Maximum stress criterion: Find α∗∗ such that

σα∗∗ = max
θ

σθ and σrα∗∗ = 0. (4.13)

Consider the open neighborhood ωα(t) of the crack tip γα(t) = (t cosα, t sinα)
as shown in Fig.11.

By mean value theorem, there is a number 0 < τ < t such that

E(u; ΩΣ,L)− E(uα(t); ΩΣα(t),L) = tJωα(τ)(u
α(τ),μα)

μα = e1 cosα+ e2 sinα

Hence we have the relation

GΩ(L; Σ(·)) = lim
τ→0

lim
|ωα(τ)|→0

Jωα(τ)(u(τ);μα)

= lim
τ→0

1

E′
(
K1(γ

α(τ))2 +K2(γ
α(τ))2

)
=

1

E′
(
K1(γ, α)

2 +K2(γ, α)
2
)

where Kl(γ, α) = limτ→0 Kl(γ
α(τ)), l = 1, 2. By Maximum energy release rate

criterion, we have

0 = K1(γ, α
∗)

d

dα
K1(γ, α

∗) +K2(γ, α
∗)

d

dα
K2(γ, α

∗)

If α∗ � 0, then Kl(γ, α
∗) � K̃l(γ, α

∗∗), l = 1, 2, where α∗∗ is the angle obtained
by Maximun stess criterion and K̃l(γ, α) is introduced in [49]

K̃1(γ, α) = lim
r→0

(2πr)−1/2σθ(u)|θ=α, K̃2(γ, α) = lim
r→0

(2πr)−1/2σrθ(u)|θ=α,(4.14)
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which is expressed as follows,

K̃l(γ, α) = F̃l1(α)K1(γ) + F̃l2(α)K2(γ), l = 1, 2, (4.15)

F̃11(θ) =
3

4
cos(θ/2) +

1

4
cos(3θ/2),

F̃12(θ) = −3

4
sin(θ/2)− 3

4
sin(3θ/2),

F̃21(θ) =
1

4
sin(θ/2) +

1

4
sin(3θ/2),

F̃22(θ) =
1

4
cos(θ/2) +

3

4
cos(3θ/2).

Maximum stress criterion is equivalent to find α∗∗ such that

K̃1(γ, α
∗∗) = max

−π≤α≤π
K̃1(γ, α), K2(γ, α

∗∗) = 0

Moreover

d

dα

(
K̃1(γ, α)

2 + K̃2(γ, α)
2
)∣∣∣∣

α=α∗∗
= 2K̃1(γ, α

∗∗)
d

dα
K̃1(γ, α)

∣∣∣∣
α=α∗∗

+2K̃2(γ, α
∗∗)

d

dα
K̃2(γ, α)

∣∣∣∣
α=α∗∗

= 0

The difference between Kl(α, γ) and K̃l(γ, α) will be

Kl(α, γ)− K̃l(γ, α) = O(α2), l = 1, 2

using the result[1].

5 Shape optimization

In this section, we consider the perturbation Γ(t) = ∂Ω(t) of boundary and
Joint Γ(t)D(t) ∩ Γ(t)N(t).

5.1 Mixed boundary value problem

Let us consider Poisson equation with Dirichlet condition on ΓD ⊂ Γ and Neu-
mann condition on ΓN = Γ \ ΓD, and perturbation Γ(t) = {φt(x); x ∈ Γ}

−Δu(t) = f in Ω(t)

u(t) = 0 on ΓD(t)

∂u(t)

∂n
= 0 on ΓN (t)

D

N
2

1

t 2

t 1
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u(t) is disintegrated by singular and regular terms

2∑
j=1

K(γj(t))ηj(rj)S(rj(t), θj(t))

+uR(t), (5.1)

uR(t) ∈ H2(Ω(t))

S(r, θ) =
√
r sin(θ/2).

1B

tn

N t

D t

D

1

1 tN

P

1

K(γi), i = 1, 2: constants depending on Γ, f etc.
(ri(t), θi(t)), i = 1, 2: local polar coordinate with origin at γi(t) and γi = γi(0)

RΩ(u,μϕ) = RΩ\(Bδ(γ1)∪Bδ(γ2)(u,μϕ) +

2∑
j=1

RBδ(γj)(u,μϕ)

= −PΩ\(Bδ(γ1)∪Bδ(γ2)(u,μϕ) +
2∑

i=1

JBδ(γj)(u,μϕ)

PBδ(γi)(u,μϕ) =
π

8
K(γi)

2sgnDτ (γi)(μϕ(γi) · τ (γi))

where τ denotes the unit tangential vector along ∂Ω.

Theorem 5.1 If the domain Ω has tha smooth boundary Γ, then

d

dt
E(u(t); f,Ω(t))

∣∣∣∣
t=0

= lim
δ→0

1

2

∫
ΓN (δ)

(∂τu)
2(μϕ · n)ds

− lim
δ→0

1

2

∫
ΓD(δ)

(∂nu)
2(μϕ · n)ds−

∫
ΓN

fu(μϕ · n)ds

−π

8

2∑
i=1

K(γi)
2sgnDτ (γi)(μϕ(γj) · τ (γi)).

where τ stands for the unit tangent vector on Γ corresponds to the natural
orientation on Γ, ∂τu = ∇u − (∂nu)n and sngDτ (γi) = 1 if τ (γi) has the
direction from ΓN to ΓD and otherwise sngτ (γi) = −1.

5.2 Shape optimization

For a given domain Ω0, let u(Ω0) be the solution of boundary value problem.
For domains Ω, consider the cost functional

J(Ω) =

∫
Ω

ĵ(x, u(Ω),∇u(Ω)) ĵ ∈ C2(Rd,Rm,Rm×d)

Under the constraint Jc(Ω) = constant, find the domain Ωo

J(Ωopt) ≤ J(Ω0)
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The problem is to find better shape Ωopt than Ω0 using the const function. In
real problem, there would be many constraints, so that we can find unique min-
imizer. However, in mathematical situation, we suppose only few constraints,
for example, the volume(area) |Ω| of Ω is constant.

5.2.1 Procedure

1. Shape sensitivity: For perturbation Ω(t) = ϕt(Ω
0), 0 ≤ t � 1, find the

shape gradient G(Ω0),

d

dt
J(Ω(t)) = 〈G(Ω0),μϕ〉

2. Minimum search: H1 gradient method(Azegami’s method): Find the vec-
tor field μ0 such that

bΩ0(μ,η) =

∫
Ω0

d∑
i=1

{∇μi∇ηi + μiηi} ∀μ,η ∈ H1(Rd;Rd)

bΩ0(μ0,η) = −〈G(Ω0),η〉 ∀η ∈ H1(Ω0;Rd) ∩ {fix condi.}

3. Constraint: Use Lagrange multiplier λ, such as

bΩ0(μc,η) = −〈Gc(Ω0),η〉 ∀η ∈ H1(Ω0;Rd) ∩ {fix condi.}
Ωopt = {x+ ε0μ

opt(x) : x ∈ Ω0} μopt = μ0 + λμc

5.3 Energy optimization

Problem: Find the solution ui−1 such that∫
Ω

δŴ (x, ui−1,∇ui−1)[v]dx =

∫
Ω

fv dx ∀v ∈ V (Ω,ΓD)

Azegami’s method [4]: Find a vector field μi
0 such that

bΩi−1(μi
0,η) = RΩi−1(ui−1,η) +

∫
ΓN

fui−1(η · n)ds ∀η

bΩi−1(μ,η) =

∫
Ω

{∇μ : ∇η + μ · η} dx

with conditions for μi
0

Find μi
1 for the constraint with same conditions for μi

1,

bΩi−1(μi
1,η) = −

∫
Ωi−1

divη dx ∀η

Lagrange multiplier: λ = −(J1(Ωi−1)− J1(Ω0) + �0)/�1

�0 =

∫
Ωi−1

divμi
0 dx, �1 =

∫
Ωi−1

divμi
1 dx

－241－



Better shape: V i = μi
0 + λμi

1 put the new shape with a small number 0 < εi

Ωi = {x+ εiV i(x) : x ∈ Ωi−1} (5.2)

By Tayler’s expansion w.r.t. Ω(ε) = {x+ εμi
0(x) : x ∈ Ωi−1}

E(ui; f,Ωi) = E(u; f,Ωi−1) + t
d

dε
E(u(ε); f,Ω(ε))

∣∣∣∣
ε=0

+ o(ε)

= E(ui−1; f,Ωi−1)− tbΩi−1(μi
0,μ

i
0) + o(ε)

= E(ui−1; f,Ωi−1)− t‖μi
0‖1,Ωi−1 + o(ε)

5.3.1 Example (Energy optimization)

Consider the domain Ω0

Ω0 =
{
(x1, x2) : x

2
1 + x2

2 < 1
}
,ΓD = {(x1, x2) : x

2
1 + x2

2 = 1, x2 > 0}
We calculate two cases: Case1 : ΓD is fixed. Case2 : ΓD is changed.

on D

2

on N

u
0

n

1

n

inu 1

on Du 0

u 0

J0(u(Ω)) =

∫
Ω

{
1

2
|∇u|2 − u

}
dx

J1(Ω) = |Ω| (constant)

Numerical calculation in Case1:

0
contour map of u

0
vector diagram of V

1
contour map of u

10
contour map of u 20

contour map of u
30

contour map of u
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70
contour map of u

90
contour map of u

93
contour map of u

Numerical calculation in Case2:

5
contour map of u

5
vector diagram of V

20
contour map of u

40
contour map of u

60
contour map of u

75
contour map of u

78
contour map of u

5.4 Mean compliance problem

The problem is considered in the variational problem

aΩ(u(Ω), v) = �Ω(v) ∀v ∈ v(Ω)

E(u(Ω); Ω, �) = 1
2aΩ(u(Ω), u(Ω))− �Ω(u(Ω))

－243－



and means a stiffness maximization problem for the shape optimization with
respect to J(Ω) = �Ω(u(Ω)). The cost function is equal to

J(Ω) = −2E(u(Ω); Ω, �)
by which we can use GJ-integral at shape sensitivity

d

dt
J(Ω(t))

∣∣∣∣
t=0

= −2
d

dt
E(u(Ω(t)); Ω, �)

∣∣∣∣
t=0

= 2RΩ(u,μϕ) + 2

∫
∂Ω

f · u, dx

Here, in the case that �(v) =
∫
ΓN

g · v ds, the part ΓN is fixed, that is,

μ0 = μc = η = 0 on ΓN

Elasticity: Find the displacement ui−1 in the reference configuration Ωi−1.
Azegami’s method Find a vector field μi

0 such that

bΩi−1(μi
0,η) = −2RΩi−1(ui−1,η)− 2

∫
ΓN

fui−1(η · n)ds ∀η

with conditions for μi
0

Find μi
1 for the constraint with same conditions for μi

1,

bΩi−1(μi
1,η) = −

∫
Ωi−1

divη dx for all η

Lagrange multiplier: λ = −(J1(Ωi−1)− J1(Ω0) + �0)/�1

�0 =

∫
Ωi−1

divμi
0 dx, �1 =

∫
Ωi−1

divμi
1 dx

Better shape: V i = μi
0 + λμi

1 put the new shape with a small number 0 < εi

Ωi = {x+ εiV i(x) : x ∈ Ωi−1} (5.3)

5.4.1 Example (cantilever)

b1  label=Middle

b2 label=

Neumman

b3 label=Free

b4 label=Free

b5 label=

Dirichlet

(g1=0,g2=-0.5)

width

height(Dirichlet)
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Iteration 5, Compliance 1.5174, Volume 10.0555

Iteration 4, Compliance 1.5809, Volume 10.0498

Iteration 48, Compliance 1.38367, Volume 10.0687

Iteration 47, Compliance 1.38367, Volume 10.0687

5.4.2 Example (cantilever by Allier[3])

4

2

-2

-4

9
a

b

d

c1

c2

c3
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5.4.3 Example (cantilever by Allier[3], no hole)

5.4.4 Example (cantilever by Allier[3], 7 holes)

Iteration 145, Compliance 2.74167, Volume 39.9308

5.5 Other cost functionals

Cost functional is given by the density ĵ(z), z ∈ R
m

J(Ω) =

∫
Ω

ĵ(u(Ω))dx
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For example, to find Ωopt, u(Ωopt) becomes near to ud(m = 1), in this case, we
put ĵ(z) = (z − ud)

2

d

dt
J(Ω(t))dx

∣∣∣∣
t=0

=
d

dt

∫
Ω(t)

ĵ(u(t))

∣∣∣∣∣
t=0

=

∫
Ω

{
∇z ĵ(u)ĵ(u)(μϕ · n)dotu+ ĵ(u)divμϕ)

}
dx

=

∫
Ω

{
∇z ĵ(u)(u̇−∇u · μϕ

}
dx+

∫
∂Ω0

ĵ(u)(μϕ · n)ds

=

∫
Ω0

(∇z ĵ)(u) · u′dx+

∫
∂Ω0

ĵ(u)(μϕ · n)ds

For example, ĵ(z) = (z − ud)
2, ∇ĵ = ĵ′ = 2z.

5.5.1 Shape optimizer (adjoint variable method)

Let uj be the solution of ajoint problem

aΩ0(uj , v) =

∫
Ω0

(∇ĵ)(u) · v dx ∀v ∈ V (Ω)

then from Theorem 3.11 we have∫
Ω

(∇ĵ)(u) · u′ dx = δRΩ0(u, uj ;μϕ) +

∫
∂Ω0

f · uj(μϕ · n) ds

J ′(Ω0) = δRΩ0(u, uj ;μϕ) +

∫
∂Ω0

{
f · uj + ĵ(u)

}
(μϕ · n) ds

5.5.2 Example (ĵ(z) = z2)

Dirichlet condition on upper semicircle, and Neumann condition on lower semi-
circle. All circle change is permitted.

−Δu = 2 in Ω

u = 0 on upper semicircle

∂u/∂n = 0 on lower semicircleΓN
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i = 1

Shape: Iteration 1, Cost 3.6371, Volume 3.13836

Ω1

Shape: Iteration 1, Cost 3.6371, Volume 3.13836

{x : −0.2 < u(x) < 0.2}

Vector field μopt

Cost= 3.6371

Vector: Iteration 1, Cost 3.6371, Volume 3.13836

i = 1000

Shape: Iteration 1000, Cost 0.29897, Volume 3.13944

Ω1000

Shape: Iteration 1000, Cost 0.29897, Volume 3.13944

{x : −0.2 < u(x) < 0.2}

Vector field μopt

Cost= 0.29897
0.355013 when i = 800.

Vector: Iteration 1000, Cost 0.29897, Volume 3.13944

i = 1000

5.5.3 Example (ĵ(z) = z2)

Upper semicircle is fixed.

−Δu = 2 in Ω

u = 0 on upper semicircle

∂u/∂n = 0 on lower semicircleΓN
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i = 1000

Shape: Iteration 1000, Cost 0.206676, Volume 3.13639

Ω1000

Shape: Iteration 1000, Cost 0.206676, Volume 3.13639

{x : −0.2 < u(x) < 0.2}

Vector field μopt

Cost= 0.206676
0.250123 when i = 800.

Vector: Iteration 1000, Cost 0.206676, Volume 3.13639

i = 1000

My deepest appreciation goes to Prof. Kimura, because joint work founded
the new prospects to non-linear problems. I also owe a very important debt to
Prof. Azegami who provided the knowledge on shape optimization.
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