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Preface

These are the proceedings of the conference “Collaboration between theory and prac-
tice in inverse problems”, held at IMI, Kyushu University, from December sixteenth to
December ninteenth, 2014. The main topic in this conference was “Rearrangement of the
infrastructure”. During the conference, the following problems and invetigations on them
were reported and lively dicussions were had on them. We had the following talks during
the conference. Remark that they are brief explanations of the talks, not the titles.

e Mr. Kenji Hashizume : Orginally developed inspection techniques and unsolved prob-
lems for maintenance of the expressways.

e Prof. Kil Hyun Kwon : Sampling theory in relation with the frame theory.

e Prof. Cheng Hua : Evaluation of cracks in view of fracture mechanics and mechanics
of materials.

e Prof. Noriyuki Mita : Basic propertiers of concrete and its non destructive testing
with application of acoustic tomography.

e Prof. Yuko Hatano : Mathematical model for migration of radionuclides near Fukushima.

e Prof. Kohji Ohtsuka : Mathematical treatment of perturbation of singular points in
continuum mechanics and its application to shape optimization.

On the first day of the conference, Mister Kenji Hashizume gave a talk to introduce
the techniques for the inspection of the expressways developed by West Nippon Expressway
Shikoku Company Limited. He also posed several open problems for the development of the
non-destructive testing of the tunnels and bridges of the expressways, which have a lot to
do with mathematical ideas, integral geometry, propagation of cracks in elastic bodies and
so on as well as the concrete structures. In response to his talk, we discussed how to give
mathematical models for the problems posed by Mr. Hashizume and how to solve them.

On the second day, in the morning, Professor Kil Hyun Kwon gave a talk on sampling
theory based on the theory of the frame theory, which will be made use of for the implimen-
tation of the research results applying numerical calculatoin by computers. In the afternoon,
Professor Cheng Hua gave a talk on the cracks in the elastic body, from the viewpoint of
mechanics and engineering science. His lecture will be of help to give mathematical formu-
lations of the problems posed by Mr. Hashizume. In the afternoon, Professor Cheng Hua
gave a talk on how to describe the propagation of cracks in view of fracture mechanics and
mechanics of materials. After thier talks, lively dicussions were had on them.



In the morning on December 18th, Professor Noriyuki Mita talked on basic propertiers
of concrete and its non destructive testing with application of acoustic tomography. No
determinate non-destrucive testing method for concrete structures being known for the time
being, it is very important for rearrangement of infrastracture to study the problem to
establish a determinate non-deestrucive testing method posed in this talk. During his talk, a
number of questiones were asked and we had vigorous dicussions. In the afternoon, Professor
Yuko Hatano gave a talk on very important problems. She introduced some mathematical
models to describe the migration of radionuclides near Fukushima area. She also posed
several problems how to predict migration of radionuclides, which is essentially important for
reconstruction of infrastructure and rearrangement of environment in Fukushima prefecture.
During her talk, there were many questions asked by the audience and many problems,
including a modification of the introduced mathematical models to describe migration of
radionuclides, were discussed.

On the final day, Professor Kohji Ohtsuka introduced theory on the progation of the
cracks in relation with its application to fracture mechanics and shape optimization. It is
very interesting and important in view of its application for the testing methods of concrete
structures. It is also intersting from the viewpoint of mathematics. After his talk, an
application of microlocal approach to the model for crack propagation was discussed, in
addition to which, many queations in view of engineering appraoch were asked and suggestive
and fruitful discussions were had on his talk.

We wish that we would have more opportunities to hold such conferences to discuss
important problems in the rearrangement of infrastructure based on the collaboration be-
tween theory and practice, and that this kind of collaboration would be more popular in
mathematics, engineering and pracitical industry.

At the end of Preface, we would express our gratefulness to Ms. Kyoko Sakaguchi and
Ms. Kazuko Ito, the secretaries of this conference, for their faithful help.

January 31, 2015

Takashi Takiguchi
Hiroshi Fujiwara



Collaboration between theory and practice

in inverse problems
December 16-19, 2014

IMI, Tto Campus, Kyushu Univeristy
Seminar Room 7, Faculty of Mathematics building
744 Motooka, Nishi-ku Fukuoka 819-0395, Japan

December 16, Tuesday
13:50 Opening
(Chair: T. Takiguchi)
14:00-15:00 Kenji Hashizume
(West Nippon Expressway Shikoku Company Limited, Japan)
Inspection of bridges, tunnels, and pavement by using cameras

15:30-16:30 Discussion

December 17, Wednesday

(Chair: A. Kaneko)

11:00-12:30 Kil Hyun Kwon (KAIST, Korea)
Beyond Shannon: Generalized Sampling

14:00-15:30 Cheng Hua (Fudan University, China)
Evaluation of crack tip fields and role of fracture mechanics

15:30-16:30 Discussion

December 18, Thursday
(Chair: H. Fujiwara)
11:00-12:30 Noriyuki Mita (Polytechnic University of Japan) and
Takashi Takiguchi (National Defense Academy of Japan)
Basic propertiers of concrete and its non destructive testing

14:00-15:30 Yuko Hatano (Tsukuba University, Japan)
Modeling of atmospheric- and underground migration of radionuclides
in the 100 km vicinity of Fukushima

15:30-16:30 Discussion



December 19, Friday

(Chair: C. Hua)

11:00-12:30 Kohji Ohtsuka (Hiroshima Kokusai Gakuin University, Japan)
Mathematical theory on perturbation of singular points in continuum mechanics
and its application to fracture and shape optimization

13:30 Closing

Organizers:
Hiroshi Fujiwara (Kyoto University, Japan)
Takashi Takiguchi (National Defense Academy of Japan)

Supported by:
IMI, Kyushu University
JSPS Grant-in-Aid for Scientific Research Research (C) 26400184 and (C) 26400198

_ii_



Table of contents

Inspection of bridges, tunnels, and pavement by using cameras ..................... 1
Kenji HASHIZUME (West Nippon Expressway Shikoku Company Limited)

Beyond Shannon: Generalized Sampling -« «.-ceevuieiniiiiiiiiiii i .13
Sinuk KANG, Kil Hyun KWON, and Dae Gwan LEE

[Slides] Beyond Shannon: Generalized Sampling .............cccooviiiiiiiiiinn.. .34
K. H KWON (Department of Mathematical Sciences KAIST)

Evaluation of Crack Tip Fields and Role of Fracture Mechanics .................... 57
Cheng HUA (Department of Mechanics and Engineering Science, Fudan University, Shanghai,

China)

[Slides] Evaluation of Crack Tip Fields and Role of Fracture Mechanics ......... 86
Cheng HUA (Department of Mechanics and Engineering Science, Fudan University, Shanghai,
China)

Basic properties of concrete and its non destructive testing ..........eveieieennna 117
Noriyukt MITA and Takashi TAKIGUCHI

[Slides] Basic Properties of Concrete and its Non Destructive Testing ......... 138
Noriyuki MITA, Takashi TAKIGUCHI (Polytechnic University of Japan)(National Defense

Academy of Japan)

Modeling of atmospheric- and underground migration of radionuclides in the
100km vicinity of Fukushima ........coooiiiiiiiiiiiii i 162
Hiroyuki ICHIGE, Inryo KOU, Yuko HATANO (University of Tsukuba)

[Slides] Modeling of Atmospheric and Underground Migration of Radionuclide in
the 100km vicinity of Fukushima ........cooommniiiiiiii e 183
Yuko HATANO (University of Tsukuba)

Mathematical theory on perturbation of singular points in continuum mechanics
and its application to fracture and to shape optimization ............................ 203
Kohjt OHTSUKA






Inspection of bridges, tunnels, and pavement

by using cameras

Kenji Hashizume

West Nippon Expressway Shikoku Company Limited

I. Outline

A lot of resources and costs would be necessary for infrastructure
developments and rehabilitations. So the followings are very important: (i)
managing, repairing, and renewing the developed infrastructures efficiently and
effectively, and (ii) eliminating serious accidents triggered by the deteriorations
and damages, and realizing the society without any anxiety. This is necessary
for the utilization of the limited resources and the sustainable development of the
society. For the given purpose, the efficient and effective inspections and
maintenance practice shall be necessary. The inspection method using
cameras for the bridges, tunnels, and pavements inspections with objective
evaluations and keeping their records is now proposed.



Il. Bridge Inspections

We now explain the “J-System” (Figure-1) for the inspection method using

the infrared cameras.

The reinforced concrete fulfill its role with the joint functioning of rebar and
concrete for the concrete structure. When the rebar gathers rust in the concrete,

cracks appear on the concrete surface along
the rebar, the surface concrete spalls, and so
its durability is to be reduced. We have been
inspecting the cracks triggered by the concrete
delaminations along the rebar through the
hammering. The infrared cameras inspection is
the new one detecting the damaged areas
such as concrete delaminations and cracks
through photographing the concrete surface by
using infrared cameras from remote palaces,
and keeping the records of the concrete
surface conditions using digital cameras. The
inspections of bridges surface by infrared
cameras are done by the passive method, and
the followings are the important elements;

figure -1 J-system



i. Cameras Quality (Is the cameras suitable
for the inspection environment?)

Inspections are done basically during

night, so it is important to extend the
surveillance hours of the day and increase the
annual surveillance days by using the camera
with a short- wave type which has no the
environmental reflections during night and with
a enforcing-cooling- system type with a small

thermal resolution.

thermal imagery
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ii. judgment on time zone of the day when

inspections can be done (Do we inspect at a suitable time ?)

We implement the night- time inspection basically, because there are
various bridge types and bridge members which are not suitable to inspect
during daytime. The time zone of the day when inspection is possible is based
on data of the EMS (Environment Measuring System)(Figure-2) mounted on the
inspection bridges.

iii. Simple and Objective Evaluation Method
(Is it possible and easy to evaluate objectively?)

There could be, for individuals, differences among the inspection judgments
because it is sometime impossible to judge the damage evaluation such as
delamination and spalling for the bridge members and damaged parts only by
looking at the infrared
images. It is also
impossible to judge the
crack’s depth along the
rebar. However, the red,
yellow, and blue cracks’
judgment- images at
the 1, 2, 3 cm depth
from the surface are
shown at the camera
monitor (Figure -3).

figure -3 J-System Monitor Image



I11.Tunnel and Pavement Inspection

We now explain the “L & L System”
(Figure-4) inspection method which uses
the Line Censor Camera and Laser
Marker. Line Censor cameras mount the
visual image censors, and can
photograph seamless and continuous
imageries. They can also be applied for
the tunnel and pavement inspections.
Light Cutting method is photographing
the laser marker images from a upper
and oblique position by using the laser
which is irradiated vertically down on
measuring surfaces and obtain the
object shape. This method is used for
road surface profile measuring.

Tunnel Inspection

Tunnel

-
.

o=

figure -4 L&L System

It is possible to obtain the fine and colorful continuous images (Figure-5)
of tunnel lining by using Line Censor cameras mounted on the inspection cars
with high speed (less than 100km/h). The cracks of tunnel lining can be detected
up to 0.2mm, and water leakage and lime isolation can be also found. The
damage spreading drawings and their diagonal charts can easily be produced
based on the captive pictures, and so we inspect only the areas where further
close and detail investigations are necessary. And we can clearly watch the
conditions of rusted accessories in tunnels, and so it is now possible to apply

them for the accessories inspections.



figure -5 Visual image with cracks and the accessories

ii. Pavement Inspection
We can inspect the pavement conditions such as cracks and potholes,
and conditions of bridge expansion joints by using Line Censer cameras
mounted on the vehicle with high speed (less than 100km/h). At the same time,
we can also measure rutting, bumps, and upheaval through using laser cameras,
and measure road surface profile such as height, and also evaluate the
evenness, bump and IRI values.



We can also display the grade evaluation for the cracks, rutting, bumps,
evenness, and IRI values obtained by the road surface measurements, and we
can also easily sort and extract some of the data with abnormal ranges which
show more than a certain threshold (Figure-6). Thus, the repairing and renewal
plans of road pavement and the bumps will be made easier.
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figure -6 Pavement evaluation



Also, we can measure the inner damages such as layer delamination and
cracks of pavement by using infrared cameras (Figure-7).
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figure -7 Pavement IR evaluation



IV. Conclusion

The bridges, tunnels, and pavement inspections by cameras can be
used for the assistances for the on-site inspections or their alternatives, and we
can maintain the objective evaluations and predict the future damages through
their annual transitions. Also the repairing plan can be made easily and
efficiently.

The proposed inspection method using the cameras makes it possible to
use, select and combine those inspection tools economically and effectively in
accordance with budges and utilizations patterns of each organization based on
their different road structure maintenance and repairing standards.

Finally, we show the demonstration of the inspection technology
implemented at Singapore in February 2014. We inspected the bridges using
infrared cameras. For the pavement inspections, we used the Deck Top
Scanning System which combines the photographing by Line Censer cameras
mounted on the high-speed vehicles and the repairing survey of the pavement
by infrared cameras(Figure-8). A lot of participants welcomed and evaluated our
technology in good favors at the exhibition.

Deck Top Scanning System
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figure-8 Situation of the Demonstration
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Appendix

About unsolved problems in the maintenance

of the expressways

By Takashi Takiguchi

In the first day of the conference, Mr Kenji Hashizume gave a very
interesting talk on the testing techniques originally developed by
West Nippon Expressway Shikoku Company Limited, which was
introduced in the main part of this paper. The organizers of this
conference were suprized and moved very much at the orinigality
and creativity of the West Nippon Expressway Shikoku Company
Limited to develop both the devises and the ideas for the inspection
of the expressways.

Although Mr. Hashizume would have not mentioned them in the
main part of this paper, he introduced a number of unsolved
problems in the maintenance of the expressways in his talk. Since
they are interesting and important in view of rearrangement of
infrastructure, the main topic of this conference, the author of this
appendix would summarize some of them, as an organizer of this
conference. Among the problems Mr. Hashizume introduced were
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® How to predict and prevent the concrete flaking accsident
of tunnels (unreinforced concrete structures).

® How to predict and prevent the concrete flaking accsident
of expressway bridges (reinforced concrete structures).

® How to predict and prevent the pot holes on the pavements

For the first and second problems, confer the references 1 ~ 5.

For the last one, confer the reference 6.

The main part of this paper were devoted to introduce the devices
and the testing techniques originally developed by West Nippon
Expressway Shikoku Company Limited, however, Mr. Hashizume
mentioned a number of unsolved problems left to be solved for
further development which would be very important not only for the
maintenance of expressway but for the maintenance of a lot of
concrete structures, especially in view of the rearrangement of
infrastructure. For their solution, it is very important to study the
cracks, for which confer the papers in these proceedings by
Professor Cheng Hua (Fudan University, China) in view of fracture
mechanics and mechanics of materials, and by Professor Kohji
Ohtsuka (Hiroshima Kokusai Gakuin University, Japan) from
mathematical approach. Since it is very difficult to describe the
propagation of cracks, together with many other reasons, there are
many unsolved problems for the inspection of flaking phenomena of
the concrete structures.

The author of this appendix is very sorry that we cannot mention
the open problems mentioned above in detail because of some
restriction. Instead, let us introduce another problem possibly
essentially important for the maintenance of a lot of concrete
structures in view of the rearrangement of infrastructure. West
Nippon Expressway Shikoku Company Limited, Professor Noriyuki
Mita (Polytechnic University of Japan) and the author of this

_11_



appendix are collaborating to develop a determinate non-destructing
testing method applying acoustic tomography, for which confer the
paper in this proceedings by Prof. Mita and the author of this
appendix.

The author of this appendix hopes not only that his collaboration
with West Nippon Expressway Shikoku Company Limited would
make important contribution to develop determinate testing methods
for the maintenance of expressways, but that we would make a
breakthrough in the study of concrete structure through this
collaboration.

_12_



Beyond Shannon: Generalized Sampling

Sinuk Kang?, Kil Hyun Kwon?, and Dae Gwan Lee?

Abstract

We give an expository account on the classical sampling theorem and its gen-
eralizations. We first introduce the classical Shannon sampling theorem on Paley-
Wiener spaces with two different proofs. We then treat some extensions of the
theorem from Paley-Wiener spaces to shift invariant spaces. Generalized sampling
such as regular, irregular, multi-channel, average sampling in shift invariant spaces
are considered. We also cover the topics of consistent sampling in abstract Hilbert
spaces and oversampling in MRA.

It is not enough for you to have a good product to sell; you must package it right
and advertise it properly. Otherwise, you will go out of business.

from Personal Opinion by Gian-Carlos Rota, Notices of AMS, Dec. 1992.

1 Introduction

Think analog. But act digital.

In signal processing, “sampling” is the reduction of a continuous-time signal (ana-
log signal) f(t) into a discrete-time signal { f(¢,,) }nez (discrete signal). Then our goal

is to recover f(t) by { f(tn)}nez as

F0 =32 £l Salt) (or 7(8) = 303 £5(N(E50) S3.0(0)

neE”Z

where {S,,(t) }nez are reconstruction functions, which are independent of individual
signals.

Two fundamental questions are i) what class of analog signals admits such sam-
pling series? and ii) how one can take sample points {¢,,} and reconstruction functions
{Sn(t)}?

As extreme examples we have: any straight line can be completely recovered by its
values at two distinct points, say att = 0, 1 as

f@) =at+b=f0)(1-1)+ f(1)t,

_13_



and any entire analytic function can be completely recovered by its successive deriva-

tives at z = 0 as
oo

1
_ =~ r(n) n
A signal f(t) of finite energy (i.e., f(t) € L?*(R)) is band-limited if its Fourier
transform (frequency spectrum) f(§) = [ fooo f(t)e~"&dt has compact support.
For any B > 0, Paley-Wiener space is defined as

PWy = {f(t) € L*(R):supp f(¢) C [-B. B}
= {f(2) € Bp : f(t) € IA(R)}

where Ep is the space of entire analytic functions of exponential type < B.

Two early main contributors in signal processing are electrical engineer H. Nyquist
and applied mathematician C. E. Shannon. H. Nyquist ([21]) showed that for a com-
plete recovery, one should sample at a rate at least twice the bandwidth of a signal.
C. E. Shannon introduced, among others, the now everyday word ‘bit’ (binary digit)
and the information theory. See [28] for an excellent survey on the development of the
sampling theory.

Figure 1: H. Nyquist (left) and C. E. Shannon (right)

Theorem 1 (Whittaker-Shannon-Kotel’ nikov-Someya sampling theorem)([24, 25]). Any
signal f(t) in PWpg can be reconstructed by its uniform sample values as a cardinal

series: .
T . B -
f(t) = nzejzf <TLB> sinc (wt — n) forany B > B

sin 7t
Tt

is the cardinal sine function and g (samples/sec) is the sampling rate and g is the
Nyquist rate, the smallest possible sampling rate.

which converges both in L*(R) and absolutely and uniformly on R. Here sinct =

Ist proof: For simplicity, assume B = B = 7 so that f(t) € PW,. Then f(£) €
L3(R) and (&) = 0 a.e. for [¢] > 7 so that

£ 1 £ —in, —in —iné

f(g) = % Z<f(§)7 € €>L2[77r,7r]e ¢ = Z f(n)e ¢ m LQ[_va]

neZ nez
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and so

= > f)e " X rm (©)-

nez
Taking its inverse Fourier transform gives

Zf sm7r Zf )sinc(t — n).

nez nez

2nd proof: For any B (> B), consider the impulse train
-y ( ) <t - nT) .
ne”Z B

Then by the Poisson summation formula, we have

Zf( ) “ES = ng@*?é”)- 1)

nez neEZ

fle+25) Fle) fle—2B)

.
—B—-2F B-2R —-B B 2B—RB B+2B

tn

Figure 2: B>B
Figure 2 illustrates how the summation in (1) behaves when B > B. Hence

f&) = S F(e+2Bn) x5,

nez
= Zf( > B gX[fé,B](g)

from which WSKS sampling expansion follows by taking the inverse Fourier trans-
form. Finally, the mode of convergence of the WSKS sampling series follows since
PWp is the so-called ‘reproducing kernel Hilbert space’ with the bounded reproduc-
ing kernel. O

Note thatif 0 < B < B (see Figure 3), then

> F(¢+2Bn) x50 # F©),

neE”Z

which causes some distortion, called the aliasing.

_15_



Figure 3: B<B

Recall that for any f(¢) € PWp and any B > B,

nez
if and only if
fe = %Z f (né) e "B p,5(6)
nez
= 5% (4) e
ne”Z

So, taking its inverse Fourier transform gives
B ™ B B
t) == n—= |sinc| —t—n—=|.
(1) BZf( B) (ﬁ B)
neZ
Hence for any f(t) € PWp and any B > B, we have two sampling series:
B
fit)y= Z f (n%) sinc (Wt — n>
nez
which is an orthonormal basis expansion in the Hilbert space PW g, and
B 0 B B
t) == n—= |sinc | —t —n—=
1) ane‘%f( = Jsine (Ze-n2)

which is an oversampling ‘frame’ expansion in the Hilbert space PWp.
By setting t = k% in the above oversampling expansion with B > B, we have

165) = 555 (rg) e (s )
f (k;) +> 7 <n;> sine (g(k - n))

n#k

il
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so that

(1—2) f <k;> :§Zf<ng) sinc (g(k;—n)>, k€ Z.

n#k

Hence by oversampling, we can recover any single (in fact, any finitely many) missing
sample, say, f (k%) from the other samples { f(n%) : n # k}.

Even, oversampling can be used to reduce the noise sensitivity or to speed up the
convergence rate of the sampling series.

Classical WSKS sampling theorem has been extended to signals, which are band-
limited in some generalized sense, e.g. signals in Bernstein space

B = {f(z) € B, : f(t) € L’(R)} (1 < p < o0, o > 0).

~

In fact, any f(t) € BP is a tempered distribution, of which its Fourier transform f (&)
is a compactly supported distribution with supp f C [~a,0].

In order to extend the sampling theorem to signals, which are possibly time-limited
(so not band-limited by Heisenberg’s uncertainty principle), we need the concept of
shift invariant subspaces of L?(IR), which are building blocks of multi-resolution anal-
ysis (MRA) and wavelet theory. By Plancherel’s theorem, PW is unitarily isomorphic
to L2[—m, 7] via \/%]-" so PW, is a Hilbert subspace of L?(R) of which {sinc(t—n) :
n € Z} is an orthonormal basis. Hence we may express PW,; as

PW, = {fecL*R):supp f({) C [-m, 7]}
= span{sinc(t —n):n € Z}

= {Z c(n)sine(t —n) : ¢ ={c(n)}tnez € Z2}7

neZ

which is a prototype of shift invariant space generated by sinc ¢. Here, shift invariance
means: if f(t) € PW,, then f(t —n) € PW, for any n € Z. Moreover

1
2—sinc(- —s) € PW, for any s in R
m
and 1
(f(t), %Sinc(t —5))2wr) = f(s) for any f € PW.
Hence PW, is a reproducing kernel Hilbert space (RKHS) with the reproducing kernel
q(t, s) = 5=sinc(t — s) in the sense that:

A Hilbert space H consisting of complex valued functions on R is called a repro-
ducing kernel Hilbert space (RKHS) if there is a function ¢(¢, s) on R x R, called the
reproducing kernel of H satisfying

e ¢(-,5) € H foreach s in R;
b <f(t)7q(ta S)> = f(5)7 f € H.

Then any sequence {f,(t)} converging in an RKHS H converges also uniformly on
any subset of R on which ¢(s, s) is bounded ([12]).

_17_



2 Sampling on Shift Invariant Spaces

For any ¢(t) € L?(R), let V(¢) := span{¢(t —n) : n € Z} be the closed subspace of
L?(R), called the shift invariant space generated by ¢(t). Then {¢(t —n) : n € Z} is

e an orthonormal basis (ONB) of V' (¢) if

1D etm)glt —m)|* = llell* =D le(m)’, e = {e(n)}nez € %

nez neL
e a Riesz basis of V(¢) with Riesz bounds B > A > 0 if

Alle)? < IS e(n)g(t —n)|)* < Blle|l?, ¢ = {e(n)}nez € %
neZ

o a frame of V' (¢) with frame bounds B > A > 0 if

AIFIP < YKL o =) < BIFIP, f € V(e).

nez

When {¢(t —n) : n € Z} is an ONB or a Riesz basis or a frame of V (¢), we call ¢(t)
an orthonormal or a Riesz (or stable) or a frame generator of the shift invariant space

V().

If {¢(t —n) : n € Z} is an ONB (resp. a Riesz basis) of V(¢), then it is a Riesz
basis (resp. a frame) of V' (¢) but not conversely in general. If {¢(t —n) :n € Z} isa
frame of V' (&), then there is another frame {¢)(t — n) : n € Z}, called a dual frame of
{¢(t —n) : n € Z}, such that

F&) =D (f(), 9t —n)e(t —n), f € V(e),

ne”Z

which is called the frame expansion of f(¢). Note that members of a frame may not be
linearly independent, which is a merit rather than a demerit.
Let ¢(t) € L2(R), G4(&) :== Y |¢(§ + 2nm)|? and B > A > 0. Then ([3]) ¢(¢)
nez

is
(a) an orthonormal generator if and only if

Gy(§) =lae. onR;

(b) aRiesz generator with bounds (A, B) if and only if

A < Gy(§) < B ae.onR;

(c) aframe generator with bounds (A, B) if and only if

A < Gy(§) < B ae.onsuppGy.
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For any frame generator ¢(t) € L?(R), let

T(c):= (cx9)(t) = Y _ck)p(t — k), c={c(k)}rez €

kEZ

be the synthesis operator of the frame {¢(t — n) : n € Z}. Then T is a bounded linear
operator from /2 onto V (¢). Hence T is an isomorphism from N(7)* onto V' (¢) so
that

V( )={(cxe)(t) 1 c €’} ={(c*x9)(t) :c € N(T)"},

where N(T) := {c€1?:T(c) =0} and N(T)* is the orthogonal complement of
N(T) in 12 If ¢(t) is a Riesz generator, then T is an isomorphism from [? onto

V(g) = {(cx <Z>)(t§ c €’}

If ¢(t) € L*(R) is a frame generator satisfying
o(t) is everywhere well-defined on R
and (2)
Cy(t) =Y |(t+n)* < oo, tER,

ne”Z

then
V(9) = {(cxo)(t) : c€ N(T)"}
is an RKHS of which any (c * ¢)(¢) converges both in L?(R) and absolutely on R

([17D.
For any ¢(t) € L?(R) satisfying (2), let

=) olt+n)e "

nezZ

be the Zak transform of ¢(t). Then Zy(t, &) € L?[0, 2n] for each ¢ in R.

For any measurable function f(¢) on R, let

I£llo = sup Ik |70 and | o = inf sup /()

be the essential infimum and the essential supremum of | f(¢)| respectively where |E|
is the Lebesgue measure of E.

Theorem 2 (General irregular sampling)([2], [17]). Let ¢(t) be a frame generator
satisfying (2) so that V(¢) = {(c * ¢)(t) : ¢ € N(T)*} is an RKHS. Then for any
sampling points {t, }nez in R, the followings are all equivalent.

(a) There is a frame { Sy, (t) : n € Z} of V(¢) such that

= f(tn) ft) e V(9) ©)

nez
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and { f (tn) } nez is a moment sequence of a function to {S,(t) : n € Z}, that is,
Sor some g(t) in V(¢);

(b) (sampling inequality) there are constants 8 > « > 0 such that

all £I7 < Y 1)1 < BIfIP £ eV(g).

nez

(©) {q(t,tn) : m € Z} is a frame of V(¢), where ¢(¢, s) is the reproducing kernel
of V(o).

Furthermore, if any one of the above three equivalent statements holds, then the
sampling series (3) converges both in L?(R) and absolutely and uniformly on any
subset of R on which Cg(t) is bounded.

Theorem 3 (Regular shifted sampling)([17]). Let ¢(t) be a frame generator satisfying
(2) so that V(¢) = {(c* ¢)(t) : ¢ € N(T)*} is an RKHS. Then for any 0 < o < 1,
the followings are all equivalent.

(a) There is a frame { S(t —n) : n € Z} of V(¢) such that

f@&) =Y fle+n)S(t—n), feV(e) &)

nez
(b) There are constants 8 > « > 0 such that

a < |Zy(0,8)| < B ae. onsupp Gy;

(c) (sampling inequality) there are constants B > « > 0 such that

alfI? < Y Ifle+n)* < BIfI% feV(e)

ne”Z

Moreover in this case,

S(6) = ﬁxsuppqg(é)-

In Theorem 3, the sampling series (4) converges both in L?(IR) and absolutely on
R. Moreover it converges uniformly on any subset of R on which Cy(t) is bounded.
If ¢(t) € L*(R) N C(R) is a continuous frame generator satisfying supp Cy(t) < oo,
then V(¢) = { (c * ¢)(t) : ¢ € [} is an RKHS and the sampling series (4) converges
uniformly on R.
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Example 1 (Cardinal B-splines). Let ¢o(t) = x[0,1)(t) and

1
Gult) = G (t) * dolt) = /0 G (t—s)ds, n > 1

be the cardinal B-spline of degree n. Then ¢(t) is an orthonormal generator and
@n(t) for n > 1is a continuous Riesz generator.

Moreover since ¢, (t) has compact support, sup Cy, (t) = sup > |¢n(t + k)|> < 00
R R keZ
so that V(¢,,) = {(c * ¢,)(t) : ¢ € 1?} is an RKHS for any n > 0.

For ¢1(t) = txjo,1)(t) + (2 = t)x[1,2)(t) and 0 < 0 < 1,
¢1(0) =0, p1(c+1)=1—0, ¢p1(c +n)=0forn #0,1
so that Zy, (0,&) = 0 + (1 — o)e~%. Then
126, (0, )llo = |20 = 1] and [ Z, (0, &) [|oc = 1.

Hence we have for any o with0 < o < 1 and o # %, a Riesz basis expansion

F@&) =Y flo+n)S(t—n), f€V(h),

ne”Z

which converges in L?(IR) and absolutely and uniformly on R.
For ¢a(t) = 1t2x(0,1)(t) + (6t — 22 — 3)x[1,2) () + (3 — )% x[2,3) (D),

1

1
1Z62(0.)ly = 0 but 0 < 1Z4,(5,6)ll0 < 1 Z6s (5, €) o < o0

so that there is a Riesz basis expansion

7= 32 55 +m)S(t—n), £ € V(6)

ne”Z

which converges in L?(RR) and uniformly on R.

3 Multi-channel Sampling

Reconstructing a signal from samples which are taken from its several channeled (or
modulated) signals is called a multi-channel sampling or a generalized sampling. The
multi-channel sampling method goes back to the works by Shannon [25] and Fogel
[9], where the reconstruction of band-limited signals from samples of the signal and its
derivatives was suggested. Later, Papoulis [22] introduced arbitrary multi-channel sam-
pling on Paley-Wiener spaces. Recently using the Fourier duality between L2[0, 27]
and the shift invariant space V' (¢), Garcia and Pérez-Villarén [11] obtained stable gen-
eralized sampling in shift invariant spaces. See [10, 18, 28] for related and further
extended results.
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Let {L;[-]}}_, be linear time invariant (LTI) systems with suitable impulse re-
sponses {/; (t)}j 1 so that

L;[f](t) = / F(s)lj(t —s)ds, 1 < j <N,

where
@) L(t) =6(t+a), a € Ror
(i) 1;(t) € L2(R) or
(i) 1;(€) € L>(R) when Y, |6(€ + 2nm)| € L2[0,27).
Then our goal is to recover any signal f in V(¢) as
N
=33 Lilf)(oj +rn)sja(t),
j=1nez
where
e 7 is a positive integer;
e 0<0;<r;
o {8j,n(D)}j.n is a frame of V().
Let oy = L;[0], g;(€) = 5= Zy,(05,6),
G(&) = [g;(E+ (k= 1)2), s
and
o Aur(€) = the largest cigenvalue of G(€)*G(€)
o A (€) := the smallest eigenvalue of G(£)*G(¢)
e Bc = [[Am(§)lloo
o ag = [[Am(&)]o-

Theorem 4. (Multi-channel shifted sampling)([11, 15]) Let ¢(t) be a continuous Riesz
generator satisfying (2) so that V (¢) = {(c* ¢)(t) : ¢ € (2} is an RKHS. Assume that
Ba < oo, that is, all g;(€)’s are in L>°(0, 27]. The followings are all equivalent.

(a) Thereis a frame {s;,(t) : 1 < j < N, n € Z} of V(¢) for which

ZZL (0 +rn)sjn(t), f(t) € V(e);

j=1n€ez
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(b) There is a frame {s;(t —rn) : 1 < j < N, n € Z} of V(¢) for which for any
f(t) e V(o)

F) =" Lilfl(oj +rn)s;(t —rn);

j=1nez
(c) 0 < ag.

In this case, the sampling series in (a) and (b) converge not only in L*(R) but also
absolutely and uniformly on any subset of R on which Cy(t) is bounded. Moreover, the
frames in (a) and (b) are Riesz bases if and only if r = N.

Example 2. Ler ¢(t) = sinct so that V(¢) = PW,, and
0(§) =1, £2(€) = —isgng

so that L1[f](t) = f(t) and Ly[f](t) = f(t) = Lpv [7) {(fg ds, the Hilbert
transform of f(t), where p.v. stands for the Cauchy principal value. Take o1 = o3 = 0

andriy = ro = 2. Then

F&)=>"f@n)Si(t—2n)+ Y f(2n)Sa(t—2n),  f € PW,,

neZ nez

where Sy (t) = sinct, Sa(t) = % The series converges absolutely and uniformly
on R.

4 Average sampling

In most physical circumstances, acquisition devices do not produce signal values at the
exact instances. A common substitute is to integrate the signal over small neighbor-
hoods of the sampling instances. We call this sampling procedure an average sampling.

Then our goal is to find a condition under which there is a frame {S,,(t) : n € Z}
of V(¢) such that an average sampling expansion

F6) = (frun)Su(t), fEV(0)

ne”Z

holds. Here (-,-) is the inner product in L?(R) and {u,(t) : n € Z} are weight
functions satisfying

o 0<un(t) e L*(R);

e supp u,(t) C [n—a,n+b] (a,b>0and a+b>0);
o [Z un(t)dt = [V u,(t)dt =1, n € Z.

Let ¢(t) be a frame generator satisfying

e ¢(t) is locally absolutely continuous on R, and ¢'(¢) € L*(R);
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o L:=|Zy(t,8)lloc < o0;
e there are constants 5 > « > 0 such that

a <1Z4(0,£)| < B ae. onsupp Gg. )

Then V (¢) is an RKHS, supy Cy(t) < oo, and any norm converging sequence in V()
also converges absolutely and uniformly on R ([16]). Note also that by Theorem 3, the
condition (5) holds if and only if there is a frame {S(t — n) : n € Z} of V(¢) such

that f(t) = 32, ez f(n)S(t —n), f € V().

Theorem 5 ([16, 26]). Let {u,(t) : n € Z} be any sequence of weight functions with
supp un,(t) C [n — a,n + b] and § := maxz{a,b}. If

Vola+0b) > %
then there is a frame { S, (t) : n € Z} of V(&) such that

F@&) =D (fun)Sn(t), f € V(9), (6)
neZ

which converges in L*(R) and absolutely and uniformly on R.

If average functions u,,(t) are uniformly bounded in L>°- or L?-sense, then we
have:

Theorem 6 ([16]). Let {u,(t) : n € Z} be any sequence of weight functions with
supp uy,(t) C [n —a,n + b] and § := max{a,b}.

(a) Assume M := sup, ¢z ||un(t)||co < 00. If V(a+b)*/? < 1% or Vé(a+b) >
S, then (6) holds on V(o).

LVM’
(b) Assume M := sup,,cz ||un(t)| L2@) < 00. If \/d(a +b) < 5z, then (6) holds
on V(o).

5 Consistent Sampling

Let ¢(t) € L?(R) be a frame generator and v(t) its dual generator. Then

F) =Y (F(8), (8 =)ot —n)

ne”Z

is the orthogonal projection of f(t) € L?(R) onto V(¢). Note here that the analysis
filter 1(¢) and the synthesis filter ¢(¢) are not independent but are dual each other,
which may fail in other interesting signal processing. Note also that

(F) 0t —n)) = (fF(). bt —n), neZ
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ZG(t—n)

f(t) — <fO. Y- > {<fO P —n) >}, v
—— V(Y o0 F———

input output
signal signal

Prefiltering Sampling Postfiltering

Figure 4: Approximation-sampling procedure

which means that the input signal f (¢) and the output signal f(¢) provide the same mea-
surements. This approximation-sampling procedure is illustrated in Figure 4, where

] means the convolution product.
Let H be a separable Hilbert space, {v;} countable analysis vectors in #, forming
a frame of the sampling space V := span{v, }, and {wy} countable synthesis vectors
in H, forming a frame of the reconstruction space W := span{wy}.
Let S(c) = > c(j)v; and T(d) = > d(k)wy, (c, d € £2) be the synthesis opera-
k

J
tors for {v;} and {wy, } respectively. Then S*, the adjoint of .S, given by

S*(f) ={(f.vj)} € la, f €N,

is the sampling operator. _
‘We now look for a sampling operator P on H, which approximates an input f in H
by f = P(f)in W from its generalized measurements ¢ = S*(f). We require

(a) (stability) Pe L(H, W), ie., P is a bounded linear operator from H into W,
(b) (sampling) P(f) =0 if S*(f) =0, ie.N(S*)C N(P),
(c) (consistency) S*(Pf) = S*(f), ie. (f, vj) = (]B(f),vj) for all j.

Consistency means that the input f and the output P (f) look the same to the observers,
who can observe signals only through the acquisition devices, say {v;}.

We call P satisfying (a), (b), (c) a consistent sampling operator. Note ([23]) that P
satisfies (a) and (b) if and only if

P =TQS* forsome Q € L({s).

Let C(W, V) be the set of all consistent sampling operators.
Theorem 7 ([20]). The followings are all equivalent.
(a) COV,V) £ 0;
(b) H=W+V+;
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input ﬁ output
f > =T
samjpling
S* T
reconstrjuction
. correction filter
S*(E)=c oo 7 d=Q)

Figure 5: Consistent sampling

(c) R(S*T) = R(S™).
In this case, C(OW,V) = {Pp v | L € L} where
L := {closed complementary subspaces of YW N V* in W}

and
COW,V) = {T(S*T)'S* + TPy(s-7Y S* | Y € L(£2)}.

1
v L
P(f)
A
v
/ P
e
(I— P)f

Figure 6: Consistent approximation

In particular, there is a unique consistent sampling operator P if and only if H =
W @ V1. Inthis case, P = Py o = T(S*T)1S*.
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Note that S*(f) = S*(P(f)) if and only if Py(f) = Py(P(f)) since N(S*) =
V1. Hence for any f in H, Py(f) can be visualized as in the Figure 6.

The next theorem provides us a practical method of calculating (or rather approxi-
mating) P(f) of any f in H through the iteration process.

Theorem 8 ([20]). Assume H =W + V- and P= Py vy, where L € L. Then

P(f)=lim fu, feH

n

and
2n—1

1Pu(f = f)ll < I1P(f) = full <

where o = ||Py1 Pr|| and

{ fi=PLPy(f)
fn = fl‘i’Pvai(fn_l) fOI'TLZQ.

We now give concrete expressions of frame expansions of consistent approximation
using the notion of oblique dual frames introduced in [4, 7].

Let A and B be two closed subspaces of . Given a frame {a, }ner of A, a dual
Sframe of {a, }ner is a frame {ay, }necr of A satisfying

f=> (frdn)an, f € A
nel

When H = A® BL, a frame {b, } .1 of B is called an oblique dual frame of {a, }ner
on B if

1Py ()l

o
11—«

F=> (fbn)an, €A, (7)

nel
or equivalently,

f=Y {fan)bn, f € B.

nel
Theorem 9 ([6, 8]). Assume H =W + V+ and let L € L and {u;| i € I} a frame of
L with pre-frame operator U. Then Py, . = U(S*U)'S* and
(a) {0; == S(U*S) (el)| i € I} is an oblique dual frame of {u;}icr on V (with
pre-frame operator S(U*S)T);
(b) {u; := U(S*U)(e])| j € J} is an oblique dual frame of {v;};c; on L (with
pre-frame operator U(S*U)T);
(c) Forany f € H,
Prye(f) =Y (fio)ui= ) (fu) iy
iel jeJ
where b = {(f,0;) }ier and ¢ = S*(f) = {(f,vj) } jer have the minimum norm
properties: ~ R ~
bl < [|bl| for any b = {b(2) }ie1 satisfying f =3 ;¢ p b(i) us,
lell < [[€]| for any € = {&(j) }je s satisfying f =37, c; €(j) ;.
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Although consistency is very natural in considering the acquisition process of sam-
ples, we are interested in its relative performance compared to the best least square
approximation, i.e., the corresponding orthogonal projection. Assume H = W + V+
and let for any fixed L in £ = {L|L® W N V1) =W}

p:PL’vLZH—>L

be the unique consistent sampling operator valued in L.

The question is how good the approximation P f of f € H\L is, compared to orthog-
onal projection Py, f of f onto L?

1
4 . L
P(f)
P.(f)
cos g = I=Pu0l
X — 1—P()l
< o — IPUO=P(O)]
A ! TEZGY
(o
- _\ V
Py (f)

Figure 7: Performance analysis

Figure 7 provides a pictorial motivation for the necessity of the concept ‘angle’
between two closed subspaces of a Hilbert space. For any two non-trivial closed sub-
spaces A and B of a Hilbert space H, let

R(A,B) = cos©% (A, B) = inf [|Ppu] (= R(B*, A%))
S

llvll=1

and
S(A,B) = cos©°(A,B) = sup |Pgv| (= S(B, A)),
vEA
llvll=1
where Pp is the orthogonal projection onto B. R(A, B) and S(A, B) are the worst
and the best estimate of the relative length reduction when vectors in A are projected
onto B. The angle e’ (A, B) is called the Dixmier angle between A and B ([5, 27]).

Theorem 10 ([13, 20, 29]). Assume H = W + V1 and let P = Ppy. for L € L.
Then for all f € H\L,
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IF = Po(hl _

(a) 0 < R(L,V) < - <S(Ltvh <1
<RIV S gy =Y
(b) 0< R(V', L)< w < S(LVh) < 1.
1f =P

6 Oversampling

Let ¢(t) be a Riesz generator satisfying (2). Then Theorem 3 claims that the followings
are all equivalent on the shift invariant space V(¢):

(a) There is a Riesz basis {S(t — n) : n € Z} of V(¢) such that

F@&) =" F()Su(t), f€V(e);

ne”Z

(b) 0 <[1Z(0, )]0 < 11Z4(0,8)]lo0 < 00;

(c) (sampling inequality) There are constants 3 > « > 0 such that

alfIP <D IF P < BIFIP, f e V(g).

neZ

St)y=r"" <?§(§) )
¢*(£)

and S(t) is cardinal, i.e., S(n) = do.n, n € Z.

Moreover, in this case

Above regular sampling expansion theorem has been studied and extended further
by many authors([1, 14, 30]) under varied conditions on the regularity and/or decaying
property of the generator ¢(t).

What can we say on the sampling expansion of signals in V' (¢) when the condition
(b) above does not hold?

One way to overcome the difficulty is to raise the sampling rate, that is, to use the
oversampling method, for which we need, a priori, a scale of shift invariant spaces of
L?(R).

Let {V;};cz be an MRA with a stable scaling function ¢(¢), that is,

e ...CV_;CVyCVp--- areclosed subspaces of L?(R);

e N;V;={0}and U; V; = L*(R);
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o f(t) € V;if and only if f(2t) € Vj41;

o 1 = V(¢) where ¢(t) is a Riesz generator.
Assume further that

e 3(6) € I2(R) N L1 (R) 50 6(t) € L*(R) N C(R);

o Cy(t) = > |p(t+n)|*> < 0o forany tinR.
nez

Then each V; = {3 ¢(n)¢(27t —n) : ¢ € I>} becomes an RKHS.
neZ

Let o(t) = >, .7 p(n)p(2t — n) with {p(n)}, ., € I* or equivalently,

3(e) = my (§>¢(§)

be the two-scale relation of ¢(t), where
1 —in e
my(€) = 5 Y _p(n)e”"¢ € L0, 2],
nez

Iterating the two-scale relation N (> 0) times, we obtain
¢ (2V¢) = Rn()9(¢).

where Ro(€) := 1 and Ry (€) = [[n_y my (2€) € L®[0,27] (N > 1). Let
En = supp Ry(§). Then Ey = Rand Ey = ﬂff:_ol 2 *supp m(€) for N > 1 so
that Exy D Enyq for N > 0.

Theorem 11 (Oversampling)([19]). Let N > 1 be an integer. Then there is a frame
sequence {S(t —n) : n € Z} in V; for which the oversampling expansion holds:

10 = Y f(3w) 8@V -n), fev ®)

neZ

if and only if there are constants 3 > « > 0 such that

a <

q@*(f)’ < B a.e.onFEy.
Moreover in this case, we may take S(t) to be such that

A (&)
S = =
© =3

and the oversampling series (8) converges both in L*(R) and absolutely and uniformly
on R.

XEyN(E) onR
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Theorem 12 (Oversampling property)([19]). Let N > 0 be an integer. Then ¢(t) has
the oversampling property with rate N, i.e.,

F6 =3 f(5x) ¢ @t—n), feV ©)
neZ

if and only if R
¢* () =1 ae.on Ey.

In this case, the oversampling expansion (9) converges both in L*(R) and absolutely
and uniformly on R.

Theorem 13 (Oversampling property)([19]). Assume that $(¢) € L?(R) N L'(R).
Then for any integer N > 0, the followings are all equivalent:

(a) P(t) has the oversampling property with rate N, i.e.,
F =31 (5x) @@Vt —n), f € Vs
ne”Z
(b) $(€) = ¢ (2%) Y onez ) (¢ +2NFInm) ae onRR;
(c) Zy(0,€) =1 a.e. on Exy = suppRn;

(d) Z gbz(f +2n7) = lae on Ey = suppRy.
ne”Z

In particular; if ¢(t) has the oversampling property with rate N, then ¢(t) has the
oversampling property with rate N for any N > N.

Acknowledgements

The second author KHK appreciates deeply the warm and lavish hospitality from the
organizers Prof. T. Takiguchi and Prof H. Fujiwara. The first author is partially sup-
ported by National Institute for Mathematical Sciences funded by the Ministry of
Science, ICT & Future Planning of Korea (B21501), and the second and third au-
thors are partially supported by the National Research Foundation of Korea (NRF)
(2012R1A1A2038650).

References

[1] W. Chen and S. Itoh, A sampling theorem for shift-invariant subspace, IEEE
Trans. Signal Processing, vol. 46, 2822-2824, 1998.

[2] W. Chen, S. Itoh and J. Shiki, On sampling in shift invariant spaces, IEEE Trans.
Inform. Theory, vol. 48, 2802-2810, 2002.

_31_



[3] O. Christensen, An introduction to frames and Riesz bases, Birkhéduser, Boston,
2003.

[4] O. Christensen and Y. C. Eldar, Oblique dual frames and shift invariant spaces,
Appl. Comput. Harmon. Anal., vol. 17, no. 1, 48-68, 2004.

[5] F. Deutsch, The angle between subspaces of a Hilbert space, Approximation The-
ory, Wavelets and Applications, NATO Science Series vol. 454, 107-130, 1995.

[6] Y. C. Eldar, Sampling without input constraints: consistent reconstruction in ar-
bitrary spaces, in: A. Zayed and J. Benedetto (Eds.), Sampling, Wavelets and
Tomography, Birkhduser, Boston, 33-60, 2004.

[7] Y. C. Eldar and C. Christensen, Characterization of oblique dual frame pairs,
EURASIP J. Appl. Signal Process., vol. 2006, 1-11, 2006.

[8] Y. C. Eldar and T. Werther, Generalized framework for consistent sampling in
Hilbert spaces, Int. J. Wavelets Multiresolut. Inf. Process., vol. 3, no. 3, 347-359,
2005.

[9] L.J. Fogel, A note on the sampling theorem, IRE Trans. Inf. Theory, vol. 1, 47-48,
1955.

[10] A. G. Garcia, J. M. Kim, K. H. Kwon, and G. J. Yoon, Multi-channel sam-
pling on shift-invariant spaces with frame generators, Int. J. Wavelets Multireso-
lut. Inf. Process., vol. 10, no. 1, 1250003 (20 pp), 2012.

[11] A. G. Garcia and G. Pérez-Villarén, Dual frames in L*(0,1) connected with
generalized sampling in shift-invariant spaces, Appl. Comput. Harmon. Anal.,
vol. 20, 422-433, 2006.

[12] J. R. Higgins, Sampling theory in Fourier and signal analysis: Foundations, Ox-
ford Univ. Press, Oxford, 1996.

[13] A.Hirabayashi, K. H. Kwon and J. Lee, Consistent sampling with multi-, pre- and
post-filterings, Int. J. Wavelets Multiresolut. Inf. Process., vol. 11, no. 1, 1350008
(16 pp), 2013.

[14] A.J. E. M. Janssen, The Zak-transform and sampling theorem for savelet sub-
spaces, IEEE Trans. Signal Processing, vol. 41, 3360-3364, Dec. 1993.

[15] S.Kang,J. M. Kim, and K. H. Kwon, Asymmetric multi-channel sampling in shift
invariant spaces, J. Math. Anal. Appl., vol. 367, 20-28, 2010.

[16] S.Kang and K.H. Kwon, Generalized average sampling in shift invarinat spaces,
J. Math. Anal. Appl., vol. 377, 70-78, 2011.

[17] J. M. Kim and K. H. Kwon, Sampling expansion in shift invariant spaces,
Int. J. Wavelets Multiresolut. Inf. Process., vol. 6, 223-248, 2008.

_32_



[18] J. M. Kim and K. H. Kwon, Vector sampling expansion in Riesz bases setting and
its aliasing error, Appl. Comput. Harmon. Anal., vol. 25, 315-334, 2008.

[19] K. H. Kwon and D. G. Lee, Oversampling expansion in wavelet subspaces, IEICE
Trans. Fundamentals, vol. E94-A, no. 5, 1184-1193, 2011.

[20] K. H. Kwon and D. G. Lee, Generalized consistent sampling in abstract Hilbert
spaces, submitted for publication.

[21] H. Nyquist, Certain topics in telegraph transmission theory, AIEE Trans., vol. 47,
617-644, 1928.

[22] A.Papoulis, Generalized sampling expansion, IEEE Trans. Circuits Syst., vol. 24,
no. 11, 652-654, 1977.

[23] W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied
Mathematics, McGraw-Hill, NY, 1991.

[24] C. E. Shannon, A mathematical theory of communications, Bell Lab. Tech. J.,
vol. 27, 379-423, 1948.

[25] C. E. Shannon, Communications in the presence of noise, Proc. IRE, vol. 37,
10-21, 1949.

[26] W. Sun and X. Zhou, Average sampling in shift invariant subspaces with symmet-
ric averaging functions, J. Math. Anal. Appl., vol. 287, 279-295, 2003.

[27] W. Tang, Oblique projections, biorthogonal Riesz bases and multiwavelets in
Hilbert spaces, Proc. Amer. Math. Soc., vol. 128, no. 2, 463-473, 1999.

[28] M. Unser, Sampling-50 years after Shannon, Proc. IEEE, vol. 88, no. 4, 569-587,
2000.

[29] M. Unser and A. Aldroubi, A general sampling theory for nonideal acquisition
devices, IEEE Trans. Signal Process., vol. 42, no. 11, 2915-2925, 1994.

[30] G. G. Walter, A sampling theorem for wavelet subspaces, IEEE Trans. on Infor-
mation Theory, vol. 38, pp. 881-884, 1992.

1
Division of Mathematics and Informational Statistics, Wonkwang University

Iksan 570-749, S. Korea
e-mail:skang@wku.ac.kr

2
Department of Mathematical Sciences, KAIST

Daejeon 305-701, S. Korea
e-mail: khkwon@Xkaist.edu, daegwan @kaist.ac.kr

_33_



Beyond Shannon: Generalized Sampling

K. H. Kwon

Department of Mathematical Sciences
KAIST

Fukuoka 2014.12.16-12. 19

Contents

Introduction
Sampling on Shift Invariant Spaces
Multi-channel Sampling

Consistent Sampling

_34_



Introduction

Think analog. But act digital.

In signal processing, "sampling” is the reduction of a
continuous-time signal (analog signal) f(¢) into a discrete-time

signal { f(t,) }nez (digital signal).

Goal : Recover f(t) by { f(tn)}nez as f(t) = >_ f(tn) Sn(t) Or
F@) =222 Li(f)tjn) Sjn(t).

¥ n
Fundamental questions : What class of analog signals admits

such sampling series?
How to take sample points {¢,,} and reconstruction functions

{Sn(1)}?

Extreme examples :
any straight line

ft)=at+b=f(0)(1—1¢t)+ f(1)t

and
any entire analytic function

f2) =3 )
n=0

_35_



H. Nyquist, Certain topics in telegraph transmission
theory, AIEE Trans., 47 (1928), 617-644.

C. E. Shannon, A mathematical theory of
communications, Bell Lab. Tech. J., 1948

A signal f(t) of finite energy, i.e., f(t) € L*(R) is band-limited if
its Fourier transform (frequency spectrum)
f(&) = [ f(t)e~"dt has the compact support.
For any B > 0, Paley-Wiener space
PWp = {f(t) € L*(R) : supp f(¢) C [-B, B]}
={f(2) € Ep: f(t) € L*(R)}

where, Ep is the space of entire analytic functions of
exponential type < B.
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WSKS (Whittaker-Shannon-Kotel’nikov-Someya) sampling
theorem
Any signal f(t) € PWp can be reconstructed by its uniform

sample values { f (n%)} as a cardinal series :

E f( >smc<t—n>, forany B > B
T
nez

which converges both in L2(R) and absolutely and uniformly on

R. Here sinct = 827 js the cardinal sine function and £
(samples/sec) is the sampling rate and % is the Nyquist rate,
the smallest possible sampling rate.

Proof. 3
For simplicity, assume B = B = « so that f(¢) € PWr.
Then f(¢) € L?(R) and f(¢) = 0 a.e. for |¢| > 7 so that

f(é.) 217T Z<f(§) Zn€>L2[77r,7r]e_in§ = Z f(n)e_“lg in LQ[_W7 7.(}
neZ nez

= Z f<n>6_in£X[—7r,Tr] (5)

neEZ
Taking the inverse Fourier transform gives

Zf Sm?;_n Zf )sinc(t —n). O

nez nez
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Classical WSKS-sampling theorem has been extended to
signals, which are band-limited in some generalized sense, e.g.
signals in Bernstein space

BP = {f(z) € Ey: f(t) € LP(R)} (1< p < 00, & > 0).

In order to extend sampling theorem to signals, which are
possibly time-limited (so not band-limited by Heisenberg’s
uncertainty principle), we need the concept of shift invariant
subspaces of L?(IR), which are building blocks of MRA and
wavelet theory.

By Plancherel’s theorem, ﬁ]—“ : PW, = L?|—7, 7] so PW, is a
Hilbert subspace of L?(R) of which {sinc(t —n) : n € Z} is an

ONB. Hence we may express PW, as
PWy = {feL*R):supp f(£) C [-m, 7]}
= span{sinc(t —n):n € Z}

= D c(n)sinc(t —n) : ¢ = {c(n)} € I},

nez

which is a shift invariant space generated by sinc ¢t. That is, if
f(t) € PW,, then f(t —n) € PW, forany n € Z.
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Moreover

Q—Sinc(- —s) € PW, for any s in R
™

and

(D), %sinc(t — )@ = f(s) for any f € P,

Hence PW, is a reproducing kernel Hilbert space (RKHS) with

reproducing kernel ¢(t, s) = s=sinc(t — s) in the sense that:

27

A Hilbert space H consisting of complex valued functions on R
is called a reproducing kernel Hilbert space (RKHS) if there is a
function ¢(¢, s) on R x R, called the reproducing kernel of H
satisfying

e q(-,s) € H for each s in R;
o (f(t),q(t,s)) = f(s), f € H.

Then any sequence {f,(t)} converging in an RKHS H
converges also uniformly on any set in R on which g(s, s) is
bounded.
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Sampling on Shift Invariant Spaces

For any ¢(t) € L*(R), let V(¢) := span{é(t —n) : n € Z} be the
closed subspace of L?(R), called the shift invariant space
generated by ¢(t). Then {¢(t —n) :n € Z} is

o an ONB of V(¢) if

1D etm)d(t=n)|* = llc|® =D le(n)’, e ={e(n)}nez € 1%

nez nez

¢ a Riesz basis of V(¢) with Riesz bounds B > A > 0 if

Allel® < 1Y e(n)g(t — n)|* < Blle|l?, ¢ = {e(n) bnez € 1%
nez

e aframe of V(¢) with frame bounds B > A > 0 if

AFIP < DO 1KF ot =) < BIFI?, f € V(9)-

ne”Z

When {¢(t —n) : n € Z} is an ONB or a Riesz basis or a frame
of V(¢), we call ¢(¢) an orthonormal or a Riesz (or stable) or a
frame generator of the shift invariant space V (¢).
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Then {¢(t —n):n € Z}is

an ONB of V(¢) = a Riesz basis of V(¢) = a frame of V(¢)
= Jadual frame {¢(t —n) : n € Z} of V(¢) (not necessarily
unique) such that

F&) = (f(t), ¢t —n))p(t —n), f€V(e),

nez

which is called the frame expansion of f(¢). Members of a
frame may not be linearly independent, which is a merit rather
than a demerit.

Proposition 1.
Let ¢(t) € L2(R), Gy(€) := 3 |6(€ + 2nm)>and B > A > 0.
nez

Then ¢(t) is
(a) an orthonormal generator iff

Gy(§) =1a.e.onR;

(b) a Riesz generator with bounds (A, B) iff
A < Gy(€) < B ae.onR;

(c) aframe generator with bounds (A, B) iff

A < Gy(€) < B ae.onsuppGy.
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For any frame generator ¢(t) € L?(R), let

T(c) = (cx9)(t) = 3 e(k)o(t — k), e = {e(k)}rez € 1

kEZ

be the synthesis operator of the frame {¢(t — n) : n € Z}.
Then T is a bounded linear operator from 2 onto V().
Hence T is an isomorphism from N (T')* onto V(¢) so that

V($) ={(cxg)(t) :c e’} = {(cx¢)(t) : c € N(T)7},

where N(T) := {c € ?: T(c) =0} and I? = N(T) & N(T)".
If ¢(t) is a Riesz generator, then T is an isomorphism from /2

onto V(¢) = {(c* ¢)(t) : c € I?}.

If o(t) € L?(R) is a frame generator satisfying

() o(t) is everywhere well defined on R
and Cy(t) := Y, 7 |0t +n)[* < oo, t €R,

then
V(g) = {(cxo)(t) : ce N(T)"}

is an RKHS of which any (c * ¢)(t) converges both in L?(R) and
absolutely on R.
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For any ¢(t) € L*(R) satisfying (x), let

Zy(t,€) = Y _o(t+n)e ™ € L?0,2n] foreachtinR
nez

be the Zak transform of ¢(t).
For any measurable function f(¢) on R, let

[fllo := e mf |f(#)] and || flloc := inf sup |f(£)]
E|=0R |E|=0 p\E

be the essential infimum and the essential supremum of | f(¢)]
respectively where |E| is the Lebesgue measure of E.

Theorem 2. (General irregular sampling)(CIS, KK)

Let ¢(t) be a frame generator satisfying () so
V(p) = {(c*p)(t) : c € N(T)*} is an RKHS. Then for any
sampling points {t, }»ez in R, the followings are all equivalent.

(a) There is a frame {S,,(t) : n € Z} of V(¢) such that

=) fltn) f(t) e V()

nez

and {f(t,)}nez is @ moment sequence of a function to
{Sn(t) : n € Z}, that is,

f(tn) = <g(t)78n(t)>7 nez

for some g(t) in V(¢).
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(b) (sampling inequality) 35 > « > 0 such that

alfIP <Y 1 )P < BIFIP, f e Vo).

neL

(c) {q(t,tn) : n € Z} is a frame of V(¢), where ¢(t, s) is the
reproducing kernel of V'(¢).

Furthermore, if any one of the above three equivalent
statements holds, then the sampling series converges both in
L*(R) and absolutely and uniformly on any subset E of R on
which Cy(t) is bounded.

Theorem 3. (Regular shifted sampling)(KK)

Let ¢(¢) be a frame generator satisfying () so
V(¢) = {(c*®)(t) : c € N(T)*+} is an RKHS. Then for any
0 < o < 1, the followings are equivalent.

(a) Thereis aframe {S(t —n) : n € Z} of V(¢) such that

f@&) =Y fle+n)S(t—n), feV(9)

neZ
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(b) There are constants 5 > « > 0 such that
a < | Zy(o,8)] < B a.e.onsuppGy.
(c) (sampling inequality) 945 > « > 0 such that

alflI* < Y I1fle+n)? < BIFIE  feV(e)

nez

Moreover in this case,

In Theorem 3, all sampling series converge both in L?(R) and

absolutely on R. Moreover they converge uniformly on any
subset of R on which Cy(t) = 3=, ., |6(t + n)|* is bounded.

If (t) € L?*(R) N C(R) is a continuous frame generator

satisfying supg Cy(t) < oo, then V(¢) = { (c* ¢)(t) : c € I*}is

an RKHS and the sampling series converges uniformly on R.
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Examples

Cardinal B-splines
Let ¢o(t) = x[o,1)(t) and

1
¢Mﬂ:¢mﬂﬂmﬂﬂ=[;%4@—$¢gnzl

be the cardinal B-spline of degree n. Then ¢¢(¢) is an
orthonormal generator and ¢,,(t) for n > 1 is a continuous
Riesz generator.

Moreover since ¢,,(t) has compact support,

sup Cy, (t) =sup Y. |pn(t + k)* < oo so that
R R kez

V(dn) = {(c*¢,)(t) : c € 1%} is an RKHS for any n > 0.

For ¢1(t) = tx(o,1)(t) + (2 = t)xp2)(t) and 0 < o < 1,
$1(0) =0, p1(c+1)=1—0, ¢p1(c+n)=0forn #0,1
so that Z,, (0,&) = o + (1 — o)e~%. Then
1Z6, (0, )llo = |20 — 1] and [|Zg, (0. ) o = 1.

Hence we have for any o with 0 < o < 1 and o # 3, a Riesz
basis expansion

f&) =Y flo+n)S(t—n), f€V(e),

neL

which converges in L?(R) and uniformly on R.
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For
Pa(t) = 5t2x[0,1) (1) + 5 (6t — 22 — 3)x[1.2)(t) + 5(3 — )2 x2,3) (1),

1 1
1Z62(0,€)llg =0 but 0 < [1Z4,(5,€)llo < 1765 5o < o0

so that there is a Riesz basis expansion
Zf S(t—mn), f € V()
nez

which converges in L?(R) and uniformly on R.

Multi-channel Sampling

Let {Lj[-]}é-vz1 be LTI systems with suitable impulse responses
{1;(t)};Z, so that

LiIAI(H) = (f 1) /f (t—s)ds, 1< j < N.

Goal: Recover any signal f in V(¢) as

ZZL (oj +1rn)s;jn(t),

j=1nez
where
e 1 is a positive integer;
e 0<o; <
e {sjn(t)}jnis aframe of V(¢).
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Let %‘ = LJ[¢]’ g](g) = iz¢j (Uj>€)a
G(&) = [gj (€ + (k= 1)20)) 1 hy

and

e A\ (§) :=the largest eigenvalue of G(£)*G(&)
e A\ (&) :=the smallest eigenvalue of G(£)*G(§)
* Ba = Am(8)lloo

e ag = [[Am(&)lo-

Theorem 4.
Assume that f¢ < oo, that is, all g;(&) are in L>°[0, 27]. TFAE.

e Thereis a frame {s;,(t): 1 < j < N, n € Z} of V(¢) for
which

ZZL (0 + n)s;a(t), f(£) € V(e);

j=1nez

e thereis aframe {s;(t —rn) : 1 < j < N, n € Z} of V(¢) for
which for any f(t) € V(¢)

ZZL (0j +1rn)sj(t —rn);
j=1nez

e 0 <ag.
e It is a Riesz basis expansion iff r = V.
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Example
Let ¢(t) = sinct so that V(¢) = PW, and

01(€) =1, £y(&) = —isgné

so that L1[f](t) = f(t) and Ls[f](t) = f(t), the Hilbert transform
of f(t). Take o1 = 092 =0 andr, =ry = 2. Then

F) = f@n)Si(t—2n)+ Y f(2n)Sa(t—2n),  fe PWy,

ne”Z neZ

where Sy (t) = sinct, So(t) = smt=L

iy

The series converges absolutely and uniformly on R.

Consistent Sampling

Let ¢(¢) € L?(R) be a frame generator and ¢ (¢) its dual
generator. Then

F(t) =D (f(8), 9t = n)b(t —n)

ne”L

is the orthogonal projection of f(¢) € L?(R) onto V(¢). Note
here that the analysis filter ¢)(¢) and the synthesis filter ¢(¢) are
not independent but are dual each other, which may fail in other
interesting signal processing. Note also that

(f(£), 0t —n)) = (f(1),¥(t —n)), neEZ
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We call

()

—)—W_t)

Za(t—n)

o

input

signal

Prefiltering

<EOWC -0 > ® (< FOWC —n) >

Sampling

®

Postfiltering

output
signal

the approximation-sampling procedure, where [T means the
convolution product.

Let H be a separable Hilbert space
{v;} analysis vectors, forming a frame of sampling space

V :=span{v;};

{wy} synthesis vectors, forming a frame of reconstruction
space W := span{wy}.

Lot 5(e) = 5 e(j)v; and T() =

synthesis operators for {v;} and {wk} Then

S HS [ — SH(f) =

is the sampling operator.
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Problem: Look for a sampling operator P on #, which
approximates an input f in # by f = P(f) from its
measurements ¢ = S*(f).
We require
(a) (stability) P € L(H, W),
(b) (sampling) P(f) =0 if S*(f) =0, ie., N(S*)C N(P),
(c) (consistency) N

S*(Pf)=5"(f), ie,(f,v;) =(P(f),v;), VJ.
Consistency means that the input f and the output ﬁ(f) look
the same to the observers.

Call P satisfying (a), (b), (c) a consistent sampling operator.
Note that P satisfies (a) and (b) iff

P =TQS* for some Q € L({5)

input ﬁ output
f > =T
samjpling
S* T
reconstrjuction
2 correction filter
§'E)=c ooy d=QE)



Let C(W, V) be the set of all consistent sampling operators.

Theorem 5. (Lee, KK)

The followings are all equivalent.

(@) COW, V) # 0;

(b) H =W+ V4

(c) R(S*T) = R(S*).

In this case, C((W, V) = {P, 1 | L € L} where

L := {closed complementary subspaces of W N V* in W}

and

COW,V) = {T(S*T)'S* + TPy Y S* | Y € L(£s)}.

/!
P
S

#
/!

S*(f) = S*(P(f)) & Pu(f) = Po(P(f)).

In particular, there is a unique consistent sampling operator P
iff 7 = W @ V4. Inthis case, P = Py, = T(S*T)T5*.
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Theorem 6. (Lee, KK)
Assume H =W + V*+and P = Pp,,1, where L € L. Then

P(f)= lim f,, feH

and
2n—1

IR

1Py (f = fu)ll < IP(F) = full <

where a = || P, Pr|| and

{ f1:= PLPy(f)
fni=fi+ PLPyi(fn_1) forn>2.

Performance Analysis

Assume H = W + V1 and let for each L in
L={LIL® WV =W}

P=Ppy:H—1L
be the unique consistent approximate operator valued in L.

Question: How good is the approximation Pf of f € H\L
compared to orthogonal projection P, f of f onto L?
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. L
P(f)
P.(f)
cos 0 = w
?\ _— IIf— P(fl”
< ng — 1PLO=P()I
—Af Sl TEZGY
Lo L Ly
Py (f)

For any two non-trivial closed subspaces A and B of a Hilbert
space H, let

R(A,B) = cos ©%(A, B) = inf |Pgo| (= R(B*, A1)
ve
loll=1

and

S(A,B) = cos©°(A,B) = sup ||Ppv| (= S(B, A)),
vEA

llvfl=1

where Pg is the orthogonal projection onto B. R(A, B) and
S(A, B) are the worst and the best estimate of the relative
length reduction when vectors in A are projected onto B.
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Theorem 7. (Unser, Aldroubi; KK, Lee)
Assume H =W + V- andlet P = P, 1 for L € £. Then for all
feH\L,

@) 0< R(L,v) < W =PI gpo oy <y,
1f = B(A)

(b) 0< R(VJ‘,L) < HPL(f) jfj(f)H < S(L,VJ‘) < 1.
If =PI

Thanks for your attention.
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Evaluation of Crack Tip Fields and Role of Fracture Mechanics

Cheng Hua
Department of Mechanics and Engineering Science, Fudan University, Shanghai, China

Abstract: Fracture Mechanics has been accepted as an effective engineering methodology to
evaluate the behavior of a crack tip fields and it seems to be considered as an almost established
method. However, its system widely accepted at present contains some substantial problems that
still remain to be solved. For instance, although the energy release rate is positioned as an important
parameter in linear fracture mechanics, it cannot be extended inelastic fracture problems and, more-
over, the crack parameters used in fracture mechanics such as stress intensity factor K, J-integral
and C* parameter are defined just under special constitutive equation. As the results, the scope of
the application of fracture mechanics is compelled to be limited without due cause. In this lecture,
the outline of fracture mechanics is introduced first, then, what the basic issues are in the role of
fracture mechanics is made clear.

Keywords: crack; fracture mechanics; stress intensity factor; path-independent integral

Introduction:

Fracture mechanics is mechanics of solids containing displacement discontinuities (cracks) with
special attention to their growth. Fracture mechanics is a theory that determines material failure by
fracture criteria. Linear Elastic Fracture Mechanics (LEFM) is the basic theory of fracture that deals
with sharp cracks in elastic bodies. It is applicable to any materials as long as the material is elastic
except in a vanishingly small region at the crack tip (assumption of small scale yielding). Elastic-
Plastic Fracture Mechanics (EPFM) is the theory of ductile fracture, usually characterized by stable
crack growth (ductile metals). The fracture process is accompanied by formation of large plastic
zone at the crack tip.

(1) Basic forms of cracks propagating:
> Crack I (opening mode): By normal stress o, the cracks propagating direction is vertical to
the direction of loading stress;
» Crack II (slipping mode): By shear stress 1, the cracks propagating direction is parallel to
the direction of loading stress;
» Crack III (tearing mode): By shear stress 1, the cracks line is parallel to the direction of
loading stress.

(2) Stress field at the crack tip

K, 6. . 6 . 36
o, = cos — (1 —sin —sin —)
N2zr 2 2 2
for crack mode I: 7, = 12{1 cosﬂ(l+sinﬁsin ﬁ)
r

K, 6 . 8
T, = CO8 —81I1 —COs —
27 2

kol
2xr

while K, =o+za is Stress Intensity Factor (SIF).
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Generally, the stresses at the crack tip can by expressed as:

o, =K, f(r,0)  (i,j=xy,2) (p=1, 1)

Stress Intensity Factors

Kr=o0~ma
Kir=trma
Krr=tNrma

Discussion:
» (DKi (i= 7, /1,11]) are independent of co-ordinate. They are parameters to describe the in-
tensity of the stress field around the crack tips;

» QKi (i= 7, /1,1]]) are close-related with the form, the size and the direction of the cracks;
» (QKi (i= 7, /1,17]) are correlated with the value of the loading and the loading form;
» @Ki (i= 7, I1,17]) are interrelated with the properties of the loaded material;

» The physical meaning of Ki (i= 7/, //,/l]) : They are mechanical parameters which are arti-
ficially introduced to describe the intensity of the stress field around the crack tips;

» By using these factors, the problem of solving the stress fields and displacements is simpli-
fied as just seeking for Ki (i= 7, //,11]);

> Unit:  Ki (i= 7, //,11]) ——[force]x[length] ** =[N]x[m] "

(3) Fracture criterion

Ki>Kjc  (@i=LILIN)

Kic —fracture tenacity/toughness, describing the resistance of crack propagating, determined
by test (plane stress crack and plane strain crack) .

»  When the thickness of the sample is small % In plane Inmediate  Inplane
enough, the crack tip will be in a state of t Heess (il || |t | strain state
plane stress. When the crack line moves, its N
plastic area is relatively big enough to en-
hance Kic; Kae — ;

> When the thickness of the sample is big
enough, the crack tip will be in a state of
plane strain. When the crack line moves, its
plastic area is relatively small enough to de-
crease Kic —>K .

Thickness of the sample
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Kic plane strain fracture toughness
Ki = K,c (fracture criterion for crack I )

Kic is a material constant, independent of the geometry of the testing sample. The thickness of
the sample should be large enough to guarantee that the crack tip is in a state of plane strain.

(4) J-integral definition

The J-integral can be defined as a path-independent contour integral that measures the strength of
the singular stresses and strains near a crack tip. Its value should be approximate constant far-field
as well as near-crack field. However, J-integral constancy may be questionable after crack initiation.
Also, dominance of the J-integral becomes more debatable if the structure composition is heteroge-
neous. The following equation shows an expression for J in its 2-D form, where crack lies in the
XY plane with x-axis parallel to the crack (the following Figure):

Ju ov Ju ov
J :J' KW 0= Ty axjdy+(ryx(_9x+ay axjdx}

dy =n,ds
dx :—nyds

crack

Fig. Definition of contour for J-integral evaluation

In the above equation, I" means any path surrounding the crack tip, W is strain energy density, oj;
is component stress and u; is displacement vector.
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1. Stress field near the Crack Tip
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5. J-integral
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6. Fracture Toughness and Fracture Criterion
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7. Role of Fracture Mechanics

» 7.1 Mechanics of Materials and Fracture Mechanics
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» 7.2 Summary of Fracture Parameters

Energy Release Rate }Q—(a})

P

a Aa
specified displaceme

specified tractions

7 K,(a)
2 (e _ B ld (b)
’ = 4o U

L NG :
@  K+1
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AU=Work done by external force AL
—2J-Mlcr “ B, dx
0 2 22 2 1
dL du R |

i i _ 1 () @)
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Aa—x,
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» 7.5 Problems in Conventional Fracture Mechanics

1 ront of

A ‘-‘rl" wra
PR
ST

-

i

2

4.

References

J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks.
J. Appl. Mechanics, Trans. ASME E35, 1968, pp. 379-386.

J.R. Rice, Mathematical analysis in the mechanics of fracture. H. Liebowitz, Editor, Treatise on fracture vol. 2,
Academic Press, New York (1968).

H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook (1973, 1985, 2000).
J. W. Hutchinson, Notes on Nonlinear Fracture Mechanics (http://imechanica.org/node/755).

Alan Zehnder, Lecture Notes on Fracture Mechanics (http://hdl.handle.net/1813/3075).

_85_



Evaluation of Crack Tip Fields
and Role of Fracture Mechanics

Cheng Hua
Department of Mechanics and Engineering Science,
Fudan University, Shanghai, China




Inglis (1913) analyzed for the flat plate with an elliptical hole
with major axis 2a and minor axis 2b, subjected to far end stress

The linear elastic solution of the stress
~ at the tip of the major axis is given by : ‘

Omax = Op| 1+ 2(%)

The Inglis solution I

a1+ 24,

;

For circular hole (b=a) : | circular hole | ‘ elliptical hole |

=30,

O-max

IC Vlechanics

Inglis solution

STRESSES IN A PLATE DUE TO THE PRESENCE OF CRACKS AND
SHARP CORNERS.

By C. E. IscLI§, Esq., M.A., Fellow of King's Collegr;-i Cambridge.l

[Read at the Spring Meetings of the Fifty-fourth Session of the Institution of Naval Architects,
March 14, 1913 ; Professor J. H. Brues, LL.D., D.Se., Vice-President, in the Chair.]

PART 1.
Tar 1.nebhod_s of investigation employed for this problem are mathematical rather than




Stress Concentration Factor (SCF)

BEREEEEEE R
b

|<——2a——l ' bzo-
420 C_)\P%“ S P= a -

11111£111110mgzo-;(p<<a)

- _scE_|
Mﬁam{pm%(})%]{! - o0 ‘

= 0, — applied stress

" Gax — Stress at crack \j P

tip
= p — crack tip radius

Stress concentration and Stress singularity :
$7t t

za

bobad

Stress
Concentration:
o
Ki=

O-o

Stress Concentration
Factor (SCF)

t 1ot
n -
' Stress

aa b—0, Crack |4 454 ¢4 Sinqularity:
v Yoy ¥ 2Muany
Omax —2 i o

Ki=—m =7

: o,
a a 2a .
- ~ / How T fy?
e =0 |:1+ 2( b ):| =20 P ¢ ¢m¢ ¢ Lec:g too‘%?raegtsl g

Intensity Factor (SIF)”

Cracks have a shar and lead to stress singularity




Stress singularity :

r---=-=-=-

nrytit

Crack length:2a

Linear Elastic Mechanics

[t
Eelgit2)

G,(r60) <= (r—0)

Jr

This feature is called
Stress Singularity

r

ra
TURUTRA4, vapadaiil, Tl 19=i1v, avi




| 2. Stress Intensity Factor (SIF) =

Irwin (1957) proposed a new physical quantity ---
Stress Intensity Factor (SIF)

Stress Field Near the Crack Tip

K =limy2zro, (r0) 5 __K cosg(l—singsin%e)

X

2rr

cosg(l+ sin gsin %)
2 2 2

K is called the “Stress o, =
y
Intensity Factor” N2zr

K 0 . 6 36
= C0S —Sin —Ccos —
27y 2

G, (r6) == (r—0)

N

The legend: Irwin chose the letter K
after J.A. Kies, one of his co-workers

Dr George R. Irwin
(1907-1998)

A Through Thickness Crack
In an Infinite Plate subject
to Uniform Tensile Stress

a crack

——— ]




Solution to a Finite Size Cracked Panel :

Isida
Westergaard
K=YocJa Irwin(1958)
Koiter(1959)
Fedderson: K=oJma gm%
K =cJma secE 23-
W
More Exact
S -
2 4
ma a a w
K =c+/na [sec— l-—.l(-——] - 0.96(-——) }
W{ W W

....... ~o— irwin ds;
----&---- Feddrson r?
ot
= --0o-- MoreEx o°

1 | i L T e I e ; 1 |
0 01 02 03

A
h 4

K: Stress Intensity Factor |
K Factor defines the stress field around the crack tip, taking into
account crack length, applied stress and shape factor ( which accounts
for finite size of the component and local geometric features)

_91_



| 2. Stress Intensity Factor (SIF) =

I Solution to a Finite Size Cracked Panel :

The Applied Stress
The Crack Shape and Size
The Structural Configuration

l Affect

The Value of The Stress Intensity Factor, K

: Correction factor

I Father of Modern Fracture Mechanics il

In the 1950s Irwin and coworkers introduced the concept of Stress Intensity Factor, which
defines the stress field around the crack tip, taking into account crack length, applied stress
and shape factor (which accounts for finite size of the component and local geometric features).

Dr George R. Irwin
(1907-1998)

After having received the A.B. in English and Physics from Knox
College and the M.A. and Ph. D in Physics from the University of
lllinois, George Irwin began his career in 1937, at the U.S.
Naval Research Lab (NRL) where he developed several new
ballistics research techniques. As a result, the NRL Ballistics
Branch, which was headed by Irwin, was able to develop non-
metallic armors for fragment protection. These armors received
trial use in World War 1l and extensive use during the Korean and
Vietnam Wars. The early years of this work led to an interest
in brittle fracture and provided a basis for Irwin’s pioneering
work in fracture mechanics. The basic concepts established
by Irwin and his team from 1946 to 1960 are now used world
wide for fracture control in aircraft, nuclear reactor vessels
and other fracture- critical applications.

His numerous awards include ASTM Honorary Member, Timoshenko Medal of ASME, Gold Medal of
ASM, The Grand Medal of the French Metallurgical Society, Tetmajer Medal o the Technical University of
Vienna, member of the National Academy of Engineering and foreign membership in the Royal
Society of London. He was appointed to Boeing University Professor at Lehigh University in 1967. He
later joined the University of Maryland’'s Department of Engineering where he has been and active
researcher and advisor of graduate students since 1972.
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ode 11

mode
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Modes of Fracture (the three modes of crack surface displacement)

Stress Intensity Factor
e K, for Mode |

e K,, for Mode 11

e K,,, for Mode IlI




: .
| 3.Elementary Fracture Mechanics aa

Similar to Mode | v

K, for Mode I1 and K, for Mode I11:
Stress near the crack tip
K
o, (r,0)= fi' (6) o;(r,0)=—4"L-f." (0
] \/T j( ) «/ﬁ ( )

K, =limv2zrz, (r,0) Ky =limv2nrz,, (r,0)
- = = T

Y }
i = |

7T 44— €4+ <4

| 3.Elementary Fracture Mechanics =

Mode | + Mode Il +
Mode Il
AXZ -t»O'

mode I mode II mode III
I II KIII

n_ £ (9)+0(1) m=1, 1, 1l
m=1 \ 27T i,j=1,2,3

[

A




Basic types of fracture:
(according to whether the material has

obvious plastic deformation before fracture)

Brittle

Brittle fracture - is more catastrophic and has been intensively -

; ='B¥fttle fracture —
| » cracks are sharp & no crack tip blunting
» No energy spent in plastic deformation at the crack tip

I/

Ductile fracture - involves a large amount of plastic deformation

o

= Ductile fracture —
» Crack tip blunting by plastic deformation at tip
» Energy spent in plastic deformation at the crack tip

Related Subjects

Linear Elastic Fracture Mechanics (LEFM) :

® Refer to Brittle material

® The structure obeys Hooke’s law and global behavior is linear and if
any local small scale crack tip plasticity is ignored

® Central to LEFM is the concept of K introduced by Irwin

® Refer to Ductile material
® The structure obeys an elastic-plastic constitutive
® Central to EPFM is the concept of J-integral introduced by James R.

Rice




The Previous Conditions:

Two different points of view

Energy based

¢ Energy balance Griffith theory (1921, Griffith, UK)

& The crack tip stress intensity (1957, Irwin, USA) Stress based

~
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| 4. Griffith's Energy Balance Approach m

Griffith Proposed:

oW, _G
() > e
(aA)_ 2

Where,

‘ A: Surface area of specimen
vidlid G.: Amount of energy required to
o

tear through a unit area of the Dr Alan A. Griffth
A=2aB material (1893-1963)
Factor 2: Two newly formed
surfaces

dA=2Bda

Griffith’s Theory : |

A crack would propagate in a stressed material only when, by doing so, it brought about a reduction in elastically
stored energy W more than sufficient to meet the free energy requirements of newly formed fracture surfaces

Griffith AA, The phenomena of rupture and flow in solids, Philosophical Transactions, Series A, 1920(221): 163-198.

| 4. Griffith's Energy Balance Approach .

The core idea of Griffith theory

rack extension force
= crack growth resistance




AV = — (plane stress)
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By idealizing elastic-plastic deformation as non-linear elastic,
Rice (1968) proposed J-integral, for egions beyond LEFM

The Previous Conditions:

unloading part.
® Also J-integral uses deformation plasticity. It states that the stress state can be

determined knowing the initial and final configuration. The plastic strain is in
proportional load, i.e.

® Under the above conditions, J-integral characterizes the crack tip stress and
crack tip strain and energy release rate uniquely.

® J-integral is numerically equivalent to G for linear elastic material. It is a path-
independent integral.

® \When the above conditions are not satisfied, J becomes path dependent and

1
Strain energy density W = EO'U-Eij

Traction force T, =0 in;

J is a path-independent integral




HRR Field (1968, Rice, Rosengren, Hutchinson):

= J m
B < Eij(r, 0) = a'inl’ gij (9, n)
> X 1
u.(r,0) = J rl+1r1+1”h (8,n)
i\r,o)= o, i\0,

Evaluation of J-Integral:

--J integral provides a unique measure of the strength of the singular fields in nonlinea
fracture. However there are a few important Limitations, (Hutchinson, 1993)
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Fracture toughness:

Ki<Kic  (i=1ILI)

/(,-C required for a crack to propagate describing the resistance of crack propagating,

determined by test (plane stress crack and plane strain crack)

2001 ! The fracture toughness . of a
g : high yield strength steel
- 150: decreases with increasing
100f8 : thickness, eventually leveling off
B ! at the plane strain fracture

0.4 0.8
Thickness (in.)




-
| 6. Fracture Toughness and Fracture Criterion -I.

Effect of plate thickness on fracture toughness

PLANE_STRESS K¢

=
4
Bl

.

TRANSITIONAL Kie

BEHAVIOUR

CRITICAL STRESS INTENSITY FACTOR, K¢

PLANE STRAIN

THICKNESS, B

o L
| 6. Fracture Toughness and Fracture Criterion -l.
I Material test standard :

3,
(ﬂ.[_ll. M) Designation: E 399 — 90 (Reapproved 1997)
—yl’

INTERNATIONAL

Standard Test Method for
Plane-Strain Fracture Toughness of Metallic Materials’

This standard 1s issued under the fixed designation E 399; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epstlon (€) mdicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

by
LGPI. »7 Designation: E 1820 — 01
]

INTER! ONAL

Standard Test Method for
Measurement of Fracture Toughness'

This standard 1s 1ssued under the fixed designation E 1820; the number immediately following the dest; 1 da s the year of
original adoption or. in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (€) mdicates an editonal change since the last revision or reapproval.
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| 6. Fracture Toughness and Fracture Criterion -I.

Material or structure fracture control is the following
three main factors:

Crack size and shape Fracture
_ toughness of
Applled Stress material
= o

Fracture mechanics analysis

L4

Material testing

hetween the
W ni

-
| 6. Fracture Toughness and Fracture Criterion -l.

I The Importance of Fracture Mechanics:

The fracture mechanics approach allows us to design and select
materials while taking into account the inevitable presence of
cracks. There are three variables to consider:

» The property of the material (K, or K, )

» The stress ¢ that the material must withstand

> Thesize of the crack _

third can be determined.

| If we know two of these variables, the

‘Aatlaharatin
LCHablratio




6. Fracture Toughness and Fracture Criterion ii'

K=f(;—y,---)mfm§ch

Applied Stress ¢ Crack size @ Fracture toughness K.

Choose materials satisfy the
K. value fracture criterion
promised not to break

Determine the

working stress to Known Known
allow to use
e Determine the Known

allowable crack siz

6. Fracture Toughness and Fracture Criterion il!

Fracture mechanics identifies three primary factors :

Material fracture toughness may be defined
as the ability to carry loads or deform plastically in the presence of a notch. It
may be described in terms of the critical stress intensity factor, Klc, under a
variety of conditions. (These terms and conditions are fully discussed in the
following chapters.)

Fractures initiate from discontinuities that can vary from
extremely small cracks to much larger weld or fatigue cracks. Furthermore,
although good fabrication practice and inspection can minimize the size and
number of cracks, most complex mechanical components cannot be
fabricated without discontinuities of one type or another.

For the most part, tensile stresses are necessary for brittle
fracture to occur. These stresses are determined by a stress analysis of the
particular component.

> Other factors such as temperature, loading rate, stress concentrations,




Role of Fracture Mechanics

> Mechanics of Materials and Fracture Mechanics

»Summary of Fracture Parameters

> Fracture Parameters and their Availabilities

» Applications to Fracture Phenomena

»Problems in Conventional Fracture Mechanics

/Equilibrium equation \
90, . 90, + 90y, _ 0
oX,  OX,  OX,

O3, =0,

Relation between
Displacement and strain

_aul
= 9

Continuum mechanics
under small

fu= oX
1

|splacemelut

e, = L[  ou,
22 0%, ox,

Mechanics of Materials

\Stress-strain relation

Boundary conditionT =T on S;

u =0 on Sy
(i=1,2,3)




»Mechanics of Materials and Fracture Mechanics | g" ' m

Mechanics of Materials Strength of

Structures

: Fracture Mechanics;

Strength of
Materials

Mechanics of Materials and Fracture Mechanics

-
Crack Problem (Fracture Mechanics) H
N ——
Stress, Strain, Strain energy density —» ©°
‘ modeling |
other parameters are necessary
}

I r2ctre Mechanics

Stress around a crack tip

Linear Elasticity

0y =2 1,2(0)+ A1, (6) + AT T, (6) -
\/?

K=+27r A, : Stress Intensity Factor ”

Collaboration between theo
Coillaboration between th
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»Summary of Fracture Parameters .!l
Energy Release Rate jé o

P, E——

a Aa
specified tractions
u Ti 1
@ _K (a) u,®
22 \/_

,© K+1K (a+Aa)‘/

AU= Work done by external force AL
ZJ'Aa ,@Bu,®dx,
dL du




d. dU 1 _,di «x+1,. , o K2
- - —_—pr == _ K K 11}
974 4A 2 Bda SG('+")+
u=AP A: Compliance
U=£Pu
2

_ —n/(n+1) = . (7)
g =K,r g (6,n)+
HRR singularity
K, : Plastic stress intensity factor
K. : Plastic strain intensity factor

n
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»Summary of Fracture Parameters

I Evaluation of Creep Behavior:

Creep- a time dependent, permanent deformation at high
temperature, occurring at constant load or constant stress.

Creep rate - The rate at which a material deforms when a

stress is applied at a high temperature.

During the
creep test, Constant stress
strain or Constant temperature

elongation is
measured as a
function of
time and
plotted to give

Strain

stage At

AE Ae

The resulting curve shows
three stages. During the
first stage, dislocations
climb and break free from

Rupture

1
A% — creep rate them. The second stage
of creep is characterized

L)
L)
L)
L)
L)
L)
L)
L)
L)
-
L
L)
whatever was pinning 3
L)
L)
L)
E)
L)
L)
E)
L)
F
L
L)
F
E
L)

I
the creep curve. v | Second stage | Third by a steady rate of strain.
y 1 . (steady state) ! stage In the third stage,
£, = Blastic : Rugie: necking and failure occur.
strain ; time
Time
|
»Summary of Fracture Parameters -!l

Creep Crack (C* parameter)
Analogy to Elastoplastic Problem under Deformation Theory

Elastoplastic
O =0
&jj :%(ui,j +U;;)
o, =W
' dg
!
J = _[r (de2 —Tiui'ldl")

n power law (8] - [f’j
Eﬂ 0-0

YD)
0 =0, r’l/("”)&ij (9,n)+---
1,€,0,

Stationary Creep (& =&; =0)

0y, =0
o 1, .
& =E(ui'j+uj'i)

W
Y

C' = W dx,~Tu,dr)

Norton’s rule &% = Ag"
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»Summary of Fracture Parameters -
Actual Deformation around a Crack Tip
- Ay 1
@ . a,
|L . !
(b) \/ ¢ |
a,—— ¢: COD
(or CTOD )
_ _J

lﬁ (c) Ao,

COD: Crack Opening Displacement |

»Fracture Parameters and their Availabilities -

Stress Intensity Factor L L Fract Mechani
Energy Release Rate inear Fracture Mechanics

Plastic Stress Intensity Factor

(Plastic Strain Intensity Nonlinear Fracture Mechanics

Fgctor) (Elastoplastic Fracture Mechanics)
J integral
COD

Small Scale Yielding

r<a
=59 B - rocure vechanics |
Large Scale Yielding
¢ 2 r ~a




Stress Intensity Factor I Plastic Stress (Strain) Intensity Factor

K, =K. (also for a stably growing crack)
or

G=Gic

_k+1

TS KZ (= 2y, Griffith - Orowan)

Ductile Fracture (large scale yielding)

J=J, (7 forastably growing crack)




Brittle or Quasi-brittle Fracture

Ductile Fracture

Stable Unstable
dd dR dJ _ dR
—F — _2_
da da da da

Mixed Mode Fracture

Fatigue Crack

da
—=f(AK
= (AK)

Creep Crack
da

—=1f(C") for stationary creep

dt




>Problems in Conventional Fracture Mechanics | g™m

1.

The concept of energy release rate was considered successfully
applied to elastoplastic fracture under small scale yielding. But,
it failed to explain elastoplastic fracture under large scale
yielding.

. There exists no crack parameter that can be defined without

depending on constitutive equation. Elastoplastic crack
parameter J is defined just under deformation theory. It loses
its meaning when unloading occurs and it is applicable just
before the onset of crack growth. There is no way to deal with a
growing elastoplastic crack.

. There is no parameter for mixed mode elastoplastic crack.

. Depending on phenomena, different parameters are required

depending on phenomena.
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Basic properties of concrete and
its non destructive testing

Noriyuki MITA* and Takashi TAKIGUCHI'

Abstract

In this article, we first review the basic theory of concrete from the viewpoint
of the building material. It is our goal is to establish a determinate non-destructive
testing method for concrete structures by application of acoustic tomography. In
order to accomplish our purpose, we propose a problem of integral geometry based
on our experiments on the concrete structures. We also discuss how important our
problems is and introduce several examples in practical applications to which the
researches on our problem should be applied.

Keywords: non-destructive testing of concrete structures, inverse problems,
acoustic tomography, integral geometry

1 Introduction

In this article, we first review the outline of concrete theory, with which most of
the readers may not be familiar. For the general theory of concrete, confer [1]. We also
recommend [3] for Japanese readers. It is one of our main purposes to establish a
determinate non-destructive testing method for concrete structures, which has not been
developed yet for the time being. For this purpose, we propose a problem for the develop-
ment of a new non-destructive testing method for concrete structures applying acoustic
tomography. For the development of the acoustic CT for our purpose, we studied how the
ultrasonic waves and the electromagnetic acoustic pulses propagate in the cement paste,
the mortar and the concrete by experiments. By the results of our experiments, we study
the propagation of the ultrasonic waves and the electromagnetic acoustic pulses in the
cement paste, the mortar and the concrete, which yields an inverse problem of the acous-
tic tomography applied to the determinate non-destructive testing method for concrete
structures we are trying to establish. We shall also discuss its importance in view of both
practice and theory. Especially, we shall claim that theoretical aspect of this problem has
strong connection with the integral geometry.

*Faculty of Human Resources Development, Polytechnic University of Japan, 2-32-1, OgawaNishi-
machi, Kodaira, Tokyo, 187-0035, JAPAN. email: mitanori@uitec.ac.jp

tSupported in part by JSPS Grant-in-Aid for Scientific Research (C) 26400184.
Department of Mathematics, National Defense Academy of Japan, 1-10-20, Hashirimizu, Yokosuka, Kana-
gawa, 239-8686, JAPAN. email: takashi@nda.ac.jp
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This article consists of the following sections.
81. Introduction
§2. Basic properties of concrete
§3. Damage by salt on the expressway bridges
§4. Propagation of the ultrasonic waves and the electromagnetic acoustic pulses
85. An inverse problem of the acoustic tomography
86. Conclusion

In this section, as the introduction of this article, we introduce the outline of our article.
In the next section, we shall review basic properties of concrete, where we also discuss
how we understand the concrete in this paper. In the third section, we shall introduce
the motivation of our research. The motivation of this research occured from the problem
of the damage by salt on the expressway bridges. In the fourth section, we study how
the ultrasonic waves and the electromagnetic acoustic pulses propagate in the cement
paste, the mortar and the concrete by the experiments, which is a key to discuss our
main purpose, to study how to establish a determinate non-destructive testing method
for concrete structures, in Section 5. We first introduce our experiments to study the
propagation the ultrasonic waves and the electromagnetic acoustic pulses in the cement
paste, the mortar and the concrete. By examining the results of our experiments, we
conclude that we can treat the ultrasonic waves and the electromagnetic acoustic pulses
as linear elastic waves for our purpose. Section 5 is devoted for the main purpose of
this article. We shall pose an inverse problem for establishment of a determinate non-
destructive testing method for concrete structures, for which we shall apply the results
of our experiments and their examination discussed in Section 4. The problem posed in
this section is also interesting in view of pure mathematics, especially, in view of integral
geometry. In the final section, we shall summarize our conclusions.

The authors are grateful to Professors Hisashi Yamasaki and Ryusei Yamashita for
their devoted help for our experiments.
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2 Basic properties of concrete

In this section, we shall review basic properties of concrete. Before reviewing the
definition and some basic properties of concrete, the authors claim that

Claim 2.1. The concrete materials are artificial (gigantic) stones or megaliths.

Let us first discuss why the authors claim Claim 2.1. Take Valley Temple, Egypt
(BC25007) and Parthenon, Athens (BC447-432), for example, which are made of me-
galiths. At that period around those areas, there were plenty of megaliths available,
therefore they made Valley Temple and Parthenon of megaliths which are very suitable
for edifices. On the other hand, let us turn to Colosseum, Rome (AD70-80). Its bailey or
external wall being made of megaliths, its interior structure is infilled with stones bricks
and sand, which we take as an origin of the concrete. It may be because of the shortage of
the megaliths in Rome about 2000 years ago. Note that the structure of Colosseum safely
exists more than 2000 years after its foundation. Hence we can say that the primitive
concrete materials applied to the interior infillment of Colosseum have played their im-
portant role as the substitute for the megaliths very well for a long time, which is one of
the reasons why the authors claim Claim 2.1. Though we still have many other reasons,
we would not mention them in detail, since they directly have little to do with our main
purpose in this article.

Let us define what the concrete is.

Definition 2.1. The concrete is the mixture of the four materials, the cement (C), the
water (W), the sand (fine aggregate : S) and the gravel (coarse aggregate: G). Sometimes,
if necessary, we add some admixture to the above mixture of the four materials to make
harder concrete.

Remark 2.1.
(i) The mixture of the cement and the water is called the cement paste.

(ii) The mixture of the cement, the water, and the sand (the cement paste and the sand)
is called the mortar.

(iii) The concrete can be understood as the mixture of the mortar and the gravel.

(iv) It being usually said that the concrete is the mixture of the four materials, the
cement, the water, the sand and the gravel as mentioned above, it is very important
to add the air as the fifth component of the concrete, especially for the main purpose
in this article. Since concrete is a porous medium, as is well known, it is very
important to study how the air is included in a concrete structure for its non-
destructive testing.
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Let us introduce the merits of the concrete.

Property 2.1 (Merits of the concrete).
The merits of the concrete as a building material are as follows.

(a) Excellent durability against the weather, the chemical materials and the mechanical
force.

High fire-resistance and water-resistance.
High compressive strength.
High corrosion resistance for steel.

The coefficients of thermal expansion (CTE) of the concrete and the steel are exactly
the same.

(f) Easily made and shaped in any form because of its fluidity before it gets hard.
(g) Its cost is very cheap (about 120 dollars/m?).

Let us give some remarks on Property 2.1. The first three properties are very close
to the ones of the stones and the megaliths, which is one of the reasons why the authors
claimed Claim 2.1. The properties (d) and (e) are essentially important for the reinforced
concrete (RC) structures. The property (d) is by the chemical property of the cement.
Very roughly speaking, the main component of the cement is calcium oxide (CaQ), whose
combination with the water yields

CaO + HQO — CCL(OH)Q, (1)

which is known as the hydration reaction of the cement. It is well known that calcium hy-
droxide (Ca(OH)3) shows strong alkalinity, which prevents the steel from getting oxidized.
We claim that this property is much better than “being artificial stones or megaliths”,
especially as the material of the RC structures. If the CTE of the concrete and the steel
are different, the RC structures easily have some cracks in their interior by the change of
the temperature. By the properties (d) and (e), the RC was called as “the miracle and
the permanent material” at its initial stage of application to the buildings. It turned out,
however, that it was neither miracle nor permanent. The concrete gets neutralized by the
carbon dioxide (COs) in the air a few decades after its placing, whose chemical reaction

is represented by
Ca(OH)y + COy — CaCO5 + Hy0. (2)

After the neutralization of the concrete, a part of the steel inside the RC structure gets
corroded by the water contained in its interior. The corroded steel intumesces very much,
which would make cracks or ruin the structure. Therefore the life span of the RC structure
i1s referred about a half century, these days. In spite of it, it is true that the reinforced
concrete is very cheap, durable and easily treated material for the buildings before the
steel in its interior gets corroded. By these facts, it is very important to study how to find
the defects in the concrete structures and how to repair and maintain them. We also note
that the properties (f) and (g) are very good, important and superior to the megaliths as
the building material.
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Of course, there are demerits of the concrete.

Property 2.2 (Demerits of the concrete).
The demerits of the concrete as a building material are as follows.

(o) Low tensile strength.
(B) It easily gets cracks in and on itself.
(v) It is very heavy in the RC structures.

Let us give some remarks on Property 2.2. As for (a), the tensile strength of the
concrete is about 1/10 of its compressive one. It is very weak compared with its bending
strength which is about a third of its compressive one. From this problem, there arises the
necessity to reinforce the concrete. The demerit (3) causes problems in the load bearing
ability and durability. It also causes the water leakage. The RC structures are generally
said to be weak to the damage by the earthquake because of the demerit (7). The demerits
(o) and (B) are inferior to the megaliths as the building material. The demerit () is the
same one as the megaliths.
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3 Damage by salt on the expressway bridges

It is our main purpose in this article to study how to establish a determinate non-
destructive testing method for concrete structures, which shall be discussed in the fifth
section. In this section, we shall introduce a problem of the damage by salt on the
expressway bridges over the sea, which motived our study to establish a determinate
non-destructive testing method for concrete structures. By the wind or a tide, sea water
blows up and pour over the expressway bridges. As a result, the salt soaks into the
interior of the bridges. In the interior of an expressway bridge, there are a number of
steel wires inbedded for the reinforcement. By the soaked salt, the steel wires would be
corroded by chloridation. In this process, the corrosion of the steel wires is much faster
than the corrosion by oxidization, since chloridation cannot be helped by the alkalinity of
the cement. This damage by the salt is one of the severest problems on the maintenance
of the expressway bridges over the sea. For the time being, they check the damage of
the expressway bridges by salt by application of a destructive test. They first pull out
some pieces of concrete from the brides. By checking whether they contain the salt or
not, they determine the parts of the bridge damaged by salt. This is a typical example of
the destructive test and costs much time and labor costs. For development of the better
testing methods, we pose the following problem.

Problem 3.1. FEstablish a good non-destructive testing method for the bridges, which also
works well to cut off the testing time and the labor costs for the test.

Remark 3.1. Note that if we solve Problem 3.1 then we could cut off the the testing
time and the labor costs for the test as well as the damage to the bridge by the test.

For simplicity, assume that the bridge is a rectangular parallelepiped. Its damage by
salt must be detected before it soaks into the interior of the bridges longer than 1m from
each edge surface, otherwise the steel wire inside the bridge might be got corroded by the
damage by salt.

Therefore, we pose our problem concretely in the following way.

Problem 3.2. FEstablish a good non-destructive testing method to determine the place
damaged by salt inside the bridge within the distance less than 1m from each edge surface.

In order to solve this problem, we shall apply an acoustic tomography. In the next
section, we shall study the propagation of the ultrasonic waves and the electromagnetic
acoustic pulses in concrete structures within the length of 1m by experiments, which
shall be applied to pose a problem for establishment of non-destructive testing method
for concrete structures by acoustic tomography.
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4 Propagation of the ultrasonic waves
and the electromagnetic acoustic pulses

As we have mentioned at the end of the last section, we shall apply the properties
of the sound as a tool of the non-destructive testing for concrete structures. In this
section, as a preparation for the next section, we study how the ultrasonic waves and
the electromagnetic acoustic pulses propagate in the cement paste, the mortar and the
concrete by the experiments. We first introduce our experiments to study the propagation
the ultrasonic waves and the electromagnetic acoustic pulses propagate in the cement
paste, the mortar and the concrete. By the examining the results of our experiments,
we shall study the propagation of the ultrasonic waves and the electromagnetic acoustic
pulses in concrete structures of the length about 1m or less.

Let us introduce the outline of our experiments.

Outline of our experiments

e Velocity of the sound;

— Velocity of the ultrasonic wave is denoted by V,, (m/s).

— Velocity of the electromagnetic acoustic pulse is denoted by V. (m/s).

e Length of test pieces;
We prepared test pieces of the length 100, 200, 300, 400, 800 and 1200mm in order
to check

— the decay of the acoustic velocity

— the propagation of the sound

e Inclusions;
We prepared two types of test pieces.

— Normal test pieces

— Test pieces with styrofoam of the length 200 or 300 mm included in their
inside

These test pieces are made use of to determine the propagation of the sound.

We first made the test pieces of cement paste and mortar as shown in Figure 1.
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Table 1 : Mix Proportion of Cement Paste

Water | Cement | Air Total
Weight(kg) 003 1382 - 1939
Volume(2) 993 437 10 1 00q

XW/C=40% , Air=1%

Table 2 : Mix Proportion of Cement Mortar

Water (Gement| Sand | Air | Total
Weightkg) 331 828 1039 - 2195
Voume(0)) 331|262 397 10 1000

XW/C=40% , 5/C=1.25, Air=1%

Figure 1: Components of the test pieces
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Length of the test pieces

100mm
- NOmo
L_1 200mm S
C—1 300mm 3 @
— SO0
— 400mm ; 4
C 7 800mm ~100(mm)
. > Testing points

1200mm

of the end section

Figure 2: Length of the test pieces and testing points

Experiment 1.

We first experimented on the normal test pieces. We projected the ultrasonic waves
and the electromagnetic acoustic pulses from the testing points numbered @), --- ,®) on
one end square of the test pieces (see figure 2). We name them as ‘source points’. We
received them at the same-numbered testing points on the other end square. We name
them as ‘observation points’. We have measured the time for the sound to travel between
the source and the observation points. The results of these experiments are summed up
in Figures 3 and 4, where we mean that the age of the test pieces is © weeks by the term
‘W,

Remark that the average of the results on the point ) and @) are treated as ‘upper
points’, the average of the results on the point @) and @) are treated as ‘lower points’and
the point () is denoted by the center point.
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Figure 3: Normal test pieces (age of a week)
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Figure 4: Normal test pieces (age of 4 weeks)
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By reviewexamining the results by Experiment 1, we obtain the following properties.

Property 4.1.

o We have rediscovered the well known basic property of concrete; the more time goes
by, the harder the test pieces are, which is caused by the reaction of hydration of
concrete.

o We also have rediscovered the well known basic property, the gravity settling of ce-
ment, in terms of the acoustic velocity, the lower the testing points are, the faster
the acoustic velocity is, which is because of the fact that the lower the points are, the
larger their density is, causeb by the gravity settling of cement.

o We can conclude that for the test pieces of the length less than 1200mm, there is no
decay of the acoustic velocity from the viewpoint of its first arriving time.

The last property is essentially important for our study.

Experiment 2.

We simultaneously made the test pieces of the length 400mm (100mm x 100mm x
400mm) with styrofoam of the length 200 and 300mm included in their inside (confer
Figure 5). We performed the same experiments as Experiment 1, whose results are re-
viewexamined in the following .

Test pieces with styrofoam inside :
normal, styrofoam (200mm, 300mm)

Test pieces with styrofoam

>
— 1 2
Test piece p=4 \) O
No.®D E) @
Test piece 3
oD styroromn | ) @ @ Lower
Mp———-
Test piece 100(mm)
No.® [ Styrofoam | Testing points

ofthe end section

W

h 400mm

Figure 5: Test pieces with styrofoam

-128 -



In Experiment 2, the (formal) velocity, which is calculated by

length of the test piece (meters)

) 3
arriving time (sconds) ®)
in the lower points is smaller than the that of upper points, applying which we studied
the propagation of the sound in the test pieces. We hypothesized that the propagation of
the sound in the test pieces is as the following Hypothesis which is also shown in Figure
6.

Hypothesis 4.1. The first arrival wave of the ultrasonic one and the electromagnetic
acoustic pulse takes the fastest route in the test pieces of the cement paste, the mortar
and the concrete.

~
_/

? 1

100mm  200mm

25mm

Y4
A\

I)

25mm

AU - X 7% =412 mm
\_20mm Y,

Figure 6: Propagation of the sound

Applying Hypothesis 4.1, we have modified the length of the orbit along which the
sound propagates, that is, V, and V/ are given by

0.00406 (meters)
arriving time (seconds)

(4)

for the lower points in the test pieces with styrofoam of the length 200mm and by

0.00412 (meters)
arriving time (seconds)

()

for the lower points in the test pieces with styrofoam of the length 300mm. Confer Figure
6 for the image of these modifications. The results of Experiment 2 with the modification
of the velocities are summarized in Figures 7, 8 and 9.
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Table 3 : Modified Data of Cement Paste

Test Piece  [Testing Paint  [Vs(m/s)| Vs(m/s) |Velm/s) Ve m/s)

Upper 3777 B 3506 -

No-Styrofoam Center 3788 -| 3% -

Lower 3808 - 3648 -

Styrofoam Upper 3800 - 3508 -

Center 3824 - 3663 -

200mm Lawer 3701 3831 3540 505

Styrofoam Upper 3867 - 3664 -

Center 3873 - 36% -

300mm Lawer 3731 3866 3406 %86
Table 4 : Modified Data of Cement Mortar

Test Piece [Testing Point  Vs(m/s)| Vs(m/s) [Velm/s) Ve m/s)

Unper 4223 - 3952 -

No-otyrofoam Center 4903 - 402 -

Lower 4229 - 4021 -

Unper 4207 - 3960 -

Styrofoam Center 4160 - 3999 -

200mm Lover i T T T

Styrofoam Unger 1) 1 e -

Center 4191 - 4034 -

300mm Lover T T T
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Let us summarize the conclusions of Experiments 1 and 2.
Conclusion 4.1 (Conclusion of Experiments 1 and 2).

e The first arrival wave of the ultrasonic one and the electromagetic acoustic pulse
takes the fastest route in the test pieces of the cement paste, the mortar and the
concrete.

e In the test pieces of the length less than 1200mm, there is no decay of the speed of
the ultrasonic waves and the electromagetic acoustic pulses with respect to the length
of the test pieces.

Remark 4.1. For the time being, there does not exist determinate non-destructive testing
method for concrete structures. It is our newer idea than the existing ones [2, 4] to focus
on the first arrival time of the sound and pose a problem for the development of the
acoustic CT, which may yield a determinate non-destructive testing method. We shall
discuss this problem in the nest section.

The first conclusion in Conclusion 4.1 is so important for our main purpose that we
summarized it as an important property.

Property 4.2. The first arrival wave of the ultrasonic one and the electromagnetic acous-
tic pulse takes the fastest route in the test pieces of the cement paste, the mortar and the
concrete.

Property 4.2 plays an important role to pose a problem for establishment of a determi-
nate non-destructive testing method in the next section.

Remark 4.2. Having introduced the results of our experiments mainly on the data of
ultrasonic waves, we have almost the same results on electromagnetic acoustic pulses,
which shall be introduced in our forthcoming paper.
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5 An inverse problem of the acoustic tomography

As was studied in the previous section, we know that the the first arrival wave of
the ultrasonic one and the electromagnetic acoustic pulse takes the fastest route in the
concrete structures of the length less than 1.2m and there is no decay in the velocity
of the sound within the length of 1:2m, which is what Conclusion 4.1 claims. In view
these properties, we pose the following problem in order to establish a determinate non-
destructive testing method for concrete structures, which is the main purpose in this
article.

Problem 5.1 (Problem for non-destructive testing for concrete structure).

Let Q C R? be a domain and f(x), (z € Q) be the propagation speed of the sound. For
a, B € 09, we denote by Va5 a route from a to (B through Q. Reconstruct f(x) (x € Q)
out of the data

min/ 1/f(x)dy, (6)

Yo, .

forVa, 5 € 09.

By Problem 5.1 we mean the problem “Reconstruct the acoustic velocity f(z) at the
all points x €  out of the data of the acoustic arrival time between the all pairs of the
points on the boudary.”Study of Problem 5.1 is very important not only for solution of
Problem 3.2, but to establish a determinate non-destructing testing method for general
concrete structures including RC ones. Let us give some remarks on Problem 5.1.

Remark 5.1 (Remarks on Problem 5.1).

e It is impossible to reconstruct the information of some points z’s where f(z)’s
are very small. For example, we cannot reconstruct the acoustic velocity of the
styrofoam if it is included near the center of the test piece since no acoustic wave
would go through it because of Property 4.2. However, it does not matter very
much, since what we focus on in Problem 3.2 is the part damage by salt where the
density (accordingly the acoustic velocity) is relatively large.

e [t is an interesting problem to determine the optimal subset of reconstructible by
the acoustic CT established by the application of Problem 5.1.

As an application of the study of Problem 5.1, we of course have Problem 3.2 in mind.
In Problem 3.2, we have to detect detect the 2 ~ 3kg of salt included in the 1m? of
concrete in order to detect the damaged parts of the expressway bridges by salt, which
yields the following problem.

Problem 5.2 (Another problem to solve Problem 3.2).
Is it possible to detect the 2 ~ 3kg of salt included in the 1m? of concrete, by the acoustic
tomography as an application of Problem 5.17

In order to solve this problem, we shall conduct other experiments.

As another application of the study of Problem 5.1, we take non-destructive testing
of RC structures, for which we have to study the propagation of the sound in the longer
concrete structures.
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Problem 5.3 (Another problem for non-destructive testing).
Study the propagation of the ultrasonic wave and the electromagnetic acoustic pulse in the
longer concrete structures and pose a mathematical problem for longer concrete structures.

The study of this problem can be very helpful for non-destructive testing for more
general concrete structures, especially to detect the corroded steel in RC structures.

Remark 5.2. It is very important to develop the study of Problems 3.2 and 5.3, especially
in view of redevelopment of infrastructures.

As we have discussed above, study of Problem 5.1 is very important in view of practice,
especially in view of redevelopment of infrastructures. It is also important in view of
both pure and applied mathematics, especially in integral geometry. Let us mention how
important the study of Problem 5.1 is in view of pure and applied mathematics.

Remark 5.3 (Importance of Problem 5.1 in mathematics).

e [t is a very interesting problem to establish an reconstruction formula for Problem
5.1 in view of integral geometry.

e [t is another interesting problem in Problem 5.1 to determine the subset of 2 where
the reconstruction is impossible because it has no intersection with any ~y giving
(6). This problem is also interesting in view of integral geometry.

e In practice, we have to study various incomplete data problems of Problems 5.1
by the restriction arisen from various reasons, which is interesting in view of pure
mathematics, especially in view of integral geometry, which is also very important
in applied mathematics.
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6 Conclusion

In this section, we summarize our conclusions in the article.
Conclusion 6.1 (Conclusion of this paper).

e For development of the acoustic CT, we studied how the first arrival wave propagates
in the cement paste and the mortar.

o Applying the property of the first arriving wave, we have posed a problem for the
development of the acoustic CT.

e The acoustic CT for concrete structure may be the first determinate non-destructive
testing method for concrete structures.

e The problems posed in this study are interesting in view of the study of mathematics.

We still have too many unsolved problems for the study of Problem 5.1 to be applied
to both practice and mathematics, some of which have already been discussed throughout
this paper. Therefore we would not dare to summarize open problems to be solved for
further development at the end of this article.
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Parthenon, Athens (BC447-432)

Made of Gigantic Stone
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Valley Temple, Egypt (BC2500?)

Lintel Stone
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Colosseum Rome (AD70-80)

‘ Made of (Roman) Cor{crete

Concrete of Colossem

Form : Made of Stne and BIic, Inﬁllfe Concrete
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Concrete

Concrete is an Artificial Stone.

Made of : Cement(C),
Water(S),
Sand (Fine Aggregate:S),
Gravel (Coarse Aggregate:G)
Admixture etc.

:Cement + Water
Mortar : + Sand
Concrete :Mortar + Gravel

Materials of Concrete (1m?3)

Concrete 1m3:

® Cement

® Water :200 ¢
°

®

~
(Volume) <

-,
o]
Q

n oY co
<

Q
0T
(
Q
[}
{

Ny P
[len) (=) () Q
P g e ]

= Aggregate(Sand+Gravel):70%

Materials of Concrete 1m3 Void of Aggregate
(Water / Cement ratio 409%, — Filling with Cement Paste
Aggregate / Cement ratio 4. O)
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General Characteristics of Concrete

Merit :

- Excellent Durability
(Weather,Chemical,Mechanical, Highly
Fire-Resistance, Water Resistance)

- High Compressive Strength

- High Corrosion Resistance for Steel
- How to make is simple

- Cheap — 15000yen/m3

General Characteristics of Concrete

Demerit :

- Low Tensile Strength

(1/10 of Compressive Strength)

cf. Bending Strength—1/3 of Compressive Strength

— Necessity of Reinforcement

- Easily Cracked
— Problems for Load Bearing Ability,

Durability, Water Leakage

- Large Mass

— Damage at Earthquake Time
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Compressive Strength and Workability

Water Cement ratio theory :

Compressive Strength of Concrete is determined
by the Weight ratio of Water / Cement (W/C).

Compressive

Strength Workability
W/C : High = _—l S e I
-Compressive Strength : Low | |, %] Wl
-Workability : High & s00 #
W/ C:lLow % o] %
-Compressive Strength : High 200-| [ . "
Workability : Low epogna . TSt TG SRR (REAN |
KA
Water Cement ratio (W/C)

Relnforced Concrete(RC) Constuctlon Site
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Reinforcement

Concrete Form
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Placing of Concrete

Defect of Concrete Placing

Many Holes
(Honeycombs)
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Compressive Strength Test of Concrete

In case of Existing Building

Collecting for Test Piece Compresse Stenh Test
Problems :

-Damage of the Skeleton

-Damage of the Reinforcement

- Collecting for Test Piece at the Narrow Space

C[} Necessity of Nondestructive Testing Method

Standard Nondestructive Testing Method of Concrete
Rebound Hammer Method

s
\ s

Problems :

-Estimation from
Surface Hardness

-Destruction at the Test

Problems :

- Small Input Energy
(Electric Power : 1W)
— High Attenuation

- Big Sensor

(@50mm)

Testing Machine
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Supersonic Waves Method

2
Detail
Received Waveform . .
’ a ! Propagation Time : Te
S Mdﬂﬂﬂflﬁﬁf\/\ﬁ\f\mnn i iﬂ
8° Wwwwwvvvw v
S v 2
Supersonic Waves
2 s)
Steel Plate Receive Sensor :

| | Sound Velocity : Vs

\

\/\ =L /Te (km/s)

£ .
gm/ Test Piece L : Length
¥ | Te : Propagation Time

|
Length 160mm

Pulsed Electromagnetic Force Acoustic Method

Characteristics

*Large Input Energy
(Electric Power: 700kW)

*Small Sensor (¢ 11mm)

Receive Sensor

Counter F\

Coil Steel
Plate

Test Piece
Receive (AE)Sensor

A\

|

Condenser

Pulsed Electromagnetic Force Acoustic Method
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il
’ Receive Sensor ‘
Test Piece _))_)_) esitPees ))))H

Magnetic Field \ Sound Sound

’ Generating Magnetic Field — Generated by Sound — Receive Sound ‘

Principle of Pulsed EIectromagn?tlc Force Acoustic Method

amp.)
2 0.012 -
The primary natural frequency
. 0.010 f
Received Waveform )
/ Sound Velocity
AR (1 Y
) T /
s WWWWWMW / \ Vi=2LF (m/s)
g \I L:Length |
Frequency Analysis I/ﬂ f Iirlmary Natural
0.002 ww CI ency
_p Lisi 0.000
i i 0 10 20 30 40 50 60 70 80 90 100
Fig. Received Waveform Frequency (kHz)
Sampling Period :1 ' s Fig. Frequency Component

Number of data : 10,000

Outline of Test

Materials of Cement Paste and Mortar
Cement(C) |Ordinary Density: 3.16g/cm?
Portland Cement Specific Surface Area:3340cm2/g
Compressive Strength for 4weeks : 63.5N/mm?
Sand(S) Silica Sand No.6 Surface-dry Density : 2.62g/cm?®
\Water Absorption:0.69%
Unit Weight: 1.37kg/2
Fineness Modulus:1.40

Mix Proportion Factor of Mortar

®Sand / Cement ratio(S/C) : 3 levels 1.0, 2.0, 3.0
®Water / Cement ratio(W/C) : 5 levels 20%~60% every10%

Mix Proportion Factor of Cement Paste
®Water / Cement ratio(W/C) : 5 levels 20%~60% every10%

Test Piece : Size 40 x 40 X 160(mm), 3 pieces for every condition
Curing : Standard (20°C in the water)
Measuring Items : Sound Velocity, Compressive Strength
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Relations between Sound Velocity Vf and Compressive Strength

200 ————

I $/Cly 02030 - Sound Velocity : Vf
P AW[e of Pulsed Elect_romagnenc
Force Acoustic Method
. ) Fast

[<=d
o

$

Compressive Strength
—> High

N
o

Compressive Strength(N/mm2)

0

20 25 30 35 40 45
Sound Velocity Vf (km/s)

Fig. Sound Velocity — Compressive Strength

Relations between Sound Velocity Vf and Compressive Strength

200 200
o < [ Age T'W T aw T 1w
£ °o S Symbol] 1| M| OJ °o
£160 | og £160
£ W/C=20%.° =
£ £
= —200,
2120 W/C=30%.. & 2120
g W/C=40% 2
7 ey o8 )
o go | WOTOR 2 80
‘0 =B60Y )
2 W/C=60% _ 2
S 40 % 40
S S
0 ‘ 0
20 25 30 35 40 45 20 25 30 35 40 45
Sound Velocity Vf (km/s) Sound Velocity Vf (km/s)
Fig. Effect of W/C Fig. Effect of Age
WIC and Age : Low = High
_ — ) Sweep the same
Sound Velocity Vf and Compressive Strength : line
Low = High on the each SIC.
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Pulsed Electromagnetic Force Acoustic Sound Velocity
and Supersonic Sound Velocity

200 200

S/C 10
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| Mortar |A
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Sound Velocity Vi (km/s)

Fig. Pulsed Electromagnetic Force Acoustic Method

Pulsed Electromagnetic Force < Supersonic
Acoustic Sound Velocity Vf Sound Velocity

Sensor
| = =

i
Supersonic
Sound

oW W o w7 W

A 4
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Propagation of Sound in Cement Paste and Mortar

Velocity of Sound :
Velocity of Supersonic : Vs(m/s)
Velocity of Pulsed Electromagnetic Acoustic Sound : Ve (m/s)

e

® Changing Length of Test Pieces :
100, 200, 300, 400, 800, 1200 mm

= Attenuation of Sonic Wave

® Test Pieces with Pores inside :
Normal, Styrofoam(200mm, 300mm)
=* Propagation of Sonic Wave

Table 1 : Mix Proportion of Cement Paste

Water | Cement Air Total
Weight(kg) 553 1382 = 1935
Volume() 553 437 10 1000

SXW/C=40% , Air=1%

Table 2 : Mix Proportion of Cement Mortar

Water |Cement| Sand Air Total
Weight(kg) 331 828 1035 - 2195

Volume(2) 331 262 397 10 1000
XW/C=40% , S/C=1 .25, Air=1%
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Attenuation of Sonic Wave

Changing Length of Test Pieces :
100, 200, 300, 400, 800, 1200 mm

Length of Test Piece
] 100mm

—] 200mm
——1 300mm
——J 400mm
[

<
<

(ww)oot

OO
®

] 800mm

@ @ Lower

~ 100(mm)

Testing Point of Section

<
<
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4200
4000 —2—lower
N mann
v 30UV
= S —
= Sl A - S
fnYalaV N i
& ODUV

Vs(mfs)

——jower

100 200 300 400 800 1200

Length of Test Piece{mm}

100 200 300 400 800 1200
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W n»n N~ N

w O M b
Q O ©Q ©
o O O O

Ve(m/'s)

Ve(m/s)
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Propagation of Sonic Wave

Test Pieces with Pores inside :
Normal, Styrofoam(200mm, 300mm)

Test Pieces with Pores inside

Test Piece

No.(D

Test Piece

No.

Test Piece

No.®

| Styrofoam |

A

v

400mm

D@
®@@

~100(mm)

(ww)ooT

Lower

Testing Point of Section
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Propagation of Sonic Wave

Sonic Wave ]

Styrofoam

Velocity of Sound : Ve, (m/s)

~

J

£
S X 1 =406 mm
\_100mm  200mm

-

E 22 Velocity of Sound : Ve, (m/s)
QLB X Q2 =412 mm
\_50mm 300mm

~

J

Table 3 : Modified Data of Cement Paste

Test Piece |Testing Point [Vs(m/s)| Vs'(m/s) |Ve(m/s)|Ve'(m/s)

Upper 3777 — 3506 —

No—Styrofoam Center 3788 — 3626 —

Lower 3808 — 3648 —

Styrofoam Upper 3800 — 3508 —

Center 3824 — 3663 —

200mm Lower 3701 3831 3540 3595

Styrofoam Upper 3867 — 3664 —

Center 3873 — 3695 —

300mm Lower 3731 3866 3496 3686
Table 4 : Modified Data of Cement Mortar

Test Piece |Testing Point  |[Vs(m/s)| Vs'(m/s) |Ve(m/s)|Ve'(m/s)

Upper 4223 — 3952 —

No—Styrofoam Center 4203 = 4022 =

Lower 4229 = 4021 =

Styrofoam Upper 4207 — 3968 -

Center 4160 — 3999 —

200mm Lower 4079 4186 3918 4009

Styrofoam Upper 4222 — 3983 —

Center 4191 — 4034 —

300mm Lowar 4035 4239 3893 4085

¥Vs’, Ve’ : Modified Data
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Conclucion of the experiments

= The first arrival wave of the ultrasonic
one and the electromagetic acoustic
pulse one takes the fastest route in the
test pieces of the cement paste, the
mortar and the concrete.

= In the length less than 1200mm, there
is no decay of the speed of the
ultrasonic waves nor the electromagetic
acoustic pulse ones with respect to the
length of test pieces.

For the time being, there does not
exist deteminate non-destructive testing
method for concrete structures.

It is our new idea to focus on the first
arrivel wave and pose a problem for the
development of the acoustic CT, which
may Yield a determinate non-
destructive testing method.
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Remark 2

It is very important and useful for the
development of the acoustic CT that the
first arrivel wave would not decay in the
test pieces of the length less than 1200
mm.

Problem for the acoustic CT

—-157-




Some Problems

= It is impossible to reconstruct the
information of some points x’s
where f(x)’s are very small.

— It does not matter very much.

= [t is an interesting problem to
determine the optimal subset of
reconstructible by the acoustic CT.

Application 1

= Non-destructive testing of the

expressway bridges over the
oceans.

— We have to detect the 2 to 3
kg of salt included in the 1 m3
of concrete.
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Our homework

It is our homework to study
whether it is possible to detect the
2 to 3 kg of salt in the 1 m3 of
concrete,

for which we shall conduct other
experiments.

Application 2

= Non-destructive testing of RC
structures.

— It may be possible to detect
the corroded steel in RC
structures.
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Remark

It is very important to develop the
study of the Applications 1 and 2,
especially in view of redevelopment
of infrastructures.

Conclusion

= For development of the acoustic
CT, we studied how the first arrival
wave propagates in the cement
paste and the mortar.

= Applying the property of the first
arriving wave, we have posed a
problem for the development of the
acoustic CT.
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Conclusion (continued)

s The acoustic CT for concrete
structure may be the first
determinate non-destructive testing
method for concrete structures.

= The problems posed in this study
are interesting in view of the study
of mathematics.
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Modeling of atmospheric- and underground migration
of radionuclides in the 100 km vicinity of Fukushima

Hiroyuki Ichige*, Inryo Kou*, Yuko Hatano} University of Tsukuba

Abstract

In the field of nuclear engineering, there are a lot of problems with regard to
environmental pollution. After the Fukushima accident, long-term behavior of the
air- and soil concentration of radionuclides are of social interest. The problem is
that we have limited tools for predicting the their behavior over a long period of
time. In the present paper, we explain some of the tools currently available.

1 Introduction

In major nuclear power plant accidents, such as Chernobyl or Fukushima, a huge amount
of radionuclides have been released into the atmosphere. In such accidents, long-lived
radionuclides, ceasium-137 and strontium-90, for example, pose a serious problem. Ra-
dionuclides carried in the initial plume were deposited on the ground, and they keep
imposing a risk to the public health for a long period of time. Therefore, it is very im-
portant to understand and predict the long-term behavior of radionuclides both in the
atmosphere and underground. The problem is that, tools that we can use to cope with
the long-term problem are limited. Indeed, we do have a major model for assessment,
called as the box model or the compartment model; they are consisted with connected
modules indicating the pathways of radionuclides in the environment. The transport
from one module to another is described by a rate constant and we have to measure all
the values of these constants which consume us a lot of time and trouble. Any mathe-
matical approach, if available, would be very helpful for this problem. In this paper, we
describe the problems of radionuclides (a) in the atmosphere and (b) in the soil, then
explain our approach.

2 Atmospheric Radionuclides

Radionuclides in the air pose a risk of inner exposure of radiation', because inhalation of
radionuclides leads to deposition on the lungs and they may cause lung cancer. The seri-
ousness of health damage of inner exposure is usually much higher than that of external
exposure? under the same amount of exposure, thereby the aerosol concentration of ra-
dionuclides is an important issue of the society. The "resuspension®” process is believed

*1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, hatano@risk.tsukuba.ac.jp
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the most significant source of the long-term aerosol risk. Resuspension is re-floating of
particles from the ground surface due to the wind. Once an dust particle (with ceasium
attached) is uplifted by wind from the ground, it stays in the air for a while, and is
deposited on the ground again due to rainfall or the gravity or downward winds. Such a
cycle of resuspension-deposition keeps the air concentration high. Indeed, in the Cher-
nobyl case, it is shown that the resuspension-deposition cycle contributes significantly
to the airborne concentration of radionuclides (Klug et al.,1992; Ishikawa, 1995; Nichol-
son, 1998; Ould-Dada and Baghini, 1992) and health effects on the humans, such as
leukemia and genetic abnormalities have been confirmed (IAEA, 2006; Arkhipov et al.,
1994; Lazjukd et al., 1997; Romanenko et al., 2008).

In our studies (Hatano and Hatano, 1997; Hatano et al., 1998; Hatano and Hatano,
2003; Ichige et al., 2015), we used a stochastic differential equation for the atmospheric
concentration of nuclides as follows. For the atmospheric part,

) 1000[m] o 1000[m)]
— Ch(t 2)dz = — — Ch(t 2)dz
(925 ,/ov[m] 1( axayaz) z v<x7y)8XA[m] 1( 7$7Z/72) <
1000[m] 0.5[cm]
_)‘down/ Cl(tamaya é)dé—i_/\up(t)/ 02(t7x7yvz)dz' (1)
0[m] 0[cm)

Here C is the atmospheric concentration of a specific nuclide [Bq/m?]. The horizontal
direction is denoted as x, y and the vertical direction as Z. The north-south is y-direction,
and east-west is = direction. Since the concentration in the stratosphere is little enough
that we assume the 1000 meters of the height to consider. Explanation of other variables
are in the following.

For the ground-surface exchange part,

) 0.5[cm)] 1000[m)]
875/ Cz(t,ﬂf,y,z)dz - )\doum/ Cl(tvxvyv é)dé
0[em] 0[m]

0.5[cm]
—Aup(t) / Co(t, x,y, z)dz. (2)
0

[em]
The soil part is as follows.

802(taxayaz) _ kaQCQ(taxaya Z) w3C2(t71’7y72’)

ot 022 B 0z (3)
z

02<Oamvyvz) :exp<_ﬁ) (4)

p2C 200 e 0) = 0. (5)

0z

Equation (2) is a model of the surface migration of nuclide and Cj is the surface con-
centration [Bq/kg-soil], Agown is the deposition rate from the air to the ground, A, is
the resuspension rate. In this model, we assume that the resuspended particles should
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Figure 1: Dose rate at Kouriyama High School.

be within the depth of 0.5cm from the surface. The wind velocity v governs the ad-
vection of nuclides. Equation (3) is a model for the migration in the soil. When the
nuclides migrates into deep in the soil, the covering soil decrease the radiation, hence
the process needs consideration. The constant w is the velocity of infiltration into the
soil depending on the conditions of each site, and k is the diffusion coefficient, and h
is also a site-specific constant. Equations (4) and (5) are the initial condition and the
boundary condition, respectively.

Estimating parameters k, h, v and Ayp,q0wn i these equations from available data,
we obtain the numerical solution of the above equations. We compare the results with
the Fukushima data. Only the constant w is determined through the fitting of the actual
dose rate. In Fukushima, many sites measure only the dose rate (uSv/hour). Very small
number of site has the data in the unit of Becquerel. Therefore, we had to convert the
data in Becquerel into the air dose rate, following the method of TAEA-TECDOC-1162.
Figures 1~18 show the results. The significant dropped parts in the dose rate are the
days of snowfall or rainfall. Due to the shielding effect of snow coverage (or water
coverage), the air dose rate becomes lower. At the sites of low dose areas (the initial
dose is less than 1 pSv/hr), the fitting might not so good, but overall results are, we
think so far, satisfactory. However, these are "point data”’. Measured sites are treated
as "points” in this research. It is a future problem how we can extrapolate the results

to "area’s.
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Figure 3: Dose rate at Takano Elementary School.
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Figure 4: Dose rate at Kouriyama City Health Center.
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Figure 5: Dose rate at Kawauchi Village Hall.
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Figure 6: Dose rate at Oodaira Elementary School, Nihonmatsu City.
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Figure 7: Dose rate at Tomioka 2nd Elementary School.
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Figure 8: Dose rate at Namie High School, Tsushima part.
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Figure 9: Dose rate at Fukushima University.
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Figure 10: Dose rate at Tsushima Elementary School, Namie Town.
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Figure 11: Dose rate at Seseragi House, Katsurao Village.
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Figure 12: Dose rate at Kashiwabara, Katsurao Village.
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Figure 13: Dose rate at Children’s House, Koori Town.
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Figure 14: Dose rate at Joho Junior High School, Koori Town.
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Figure 15: Dose rate at Kura Dum, Minami-Soma.
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Figure 16: Dose rate at Teramatsu Community Center.
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Figure 17: Komaru Community Center, NamieTown.
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Figure 18: Dose rate at Children’s House, Shinchi Town.
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3 Radionulides in the soil and their model in porous
media

In the previous section, we explained how the atmospheric concentration of radionuclides
lingers for a long time, even a decade. In the case of soil contamination, it is worse.
Even after 50 years of nuclear tests in the US and the former Soviet Union, we can
measure the evidence, traces of radionuclides of fission products, in rivers and streams
in Japan. As such, migration in underground is a very long-term problem.

In the problem of transport in porous media, a model called as the Continuous-Time
Random Walk (CTRW) has been developed. The original motivation to introduce this
model is that the real experimental data does not fit the classical Advection-Dispersion
Equation (ADE; the heat equation with the convection term) and searched for a new
model to find CTRW. It was developed in order to describe electron transport in a
semi-conductor and is a kind of random-walk model with the distribution of waiting
time between jumps. Many experiments, both in laboratory scale and field scale, have
been shown to follow the CTRW model (Berkowitz and Scher, 1995; Hatano and Hatano,
1998; Bijeljic et al., 2011). When an asymptotically power law is chosen as the waiting-
time distribution, the significance of CTRW emerges, and the experimental results (that
have not been reproduced by ADE) agree very well with CTRW. We expect that the
model may be useful in long-term predictions, because of the power-law characteristics
of CTRW. When a power law function, for example, K (t) = t~*3 is plotted against ¢
with the unit of day, the graph is exactly the same shape as when plotted with the ¢
unit of month or year. That is the reason for our interest in the CTRW model.

Up until today, CTRW seems successful. However, there is a big issue in the model:
values of parameters in the model cannot be determined a priori. Namely, the values of
model parameters cannot be determined until actual measurement data are available.
This means that a “pure” prediction is not possible yet. Of course, ADE has the same
problem, but we find it interesting (and useful) to connect the values of those model
parameters with the characteristics of flows in porous media.

In the present paper, we explain our trial seeking the value of «. It is the index of
the waiting time distribution ¢(t) ~ ¢t~ of the CTRW model. It defines the distribution
of the waiting time before a random walker takes each jump. We actually measure the
velocity in the pores of porous media and thereby obtain the waiting-time distribution.
We developed a new technique LAT-PTV method. We use a new method LAT-PTV,
the Particle Tracking Velocimetry (PTV) combined with the Laser-Aided Tomography
(LAT), originally developed by Matsushima Group (Konagai et al., 1992; Saomoto et
al., 2007).

3.1 Experimental Method

We show in Fig. 19 the experimental setup of LAT-PTV. The acrylic container is 135
mm x 135 mm x 450 mm and the illumination beam is created by the laser (Melles
Griot 58-GS-305, Nd:UVO 4). The images are taken by CCD camera (Canon EOS-
40D) with the frame rate 1 per second. The microparticles for tracking is shown in
Fig. 20 (Thermo Scientific, Fluoro-Max green fluorescent polymer microspheres). The
PTV computer program is of the ICCRM method (Brevis et al., 2011). Two types of
silicon oils (Shin-Estu Kagaku, HIVAC F-4 and KF-56) is mixed in order to match the
reflection index of the glass 1.514. The peristatic pump (EYELA, MP-1000) is used
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for the circulation of the fluids. The acrylic container is filled with spheres (Fig. 21) or
irregular-shaped particles (Fig. 22). The image of sphere particles immersed in silicon
oil is shown in Fig. 23. Other experimental condition is given in Table 1.

Table 1: Experimental conditions of LAT-PTV.

Run A | Run B | Run C Run D Run E Run F
Shape Sphere | Sphere | Sphere | Irregular | Irregular | Irregular
Size Tmm¢ | Tmm¢ | Tmme | 5 ~7mm | 5~ 7 mm | 5~ 7 mm
Porosity 0.53 0.58 0.53 0.62 0.62 0.62
Flow rate(ml/h) 445 1358 1920 373 918 2571
mean v, (mm/s, PTV) | 0.011 | 0.014 | 0.014 0.011 0.014 0.030
mean v, (mm/s, Pump) | 0.013 | 0.035 | 0.055 0.009 0.023 0.063

3.2 Experimental Results

We measured the velocity of the silicon oil by tracking the polymer particles and found
that the velocity in the pore distributed as Fig. 24. The velocity in sphere-particles media
(Run A, B, C) has rather compact distribution compared with irregular-particles media
(Run D, E, F). In Run A, B, and C, when we increase the flow rate, the distribution, on
the whole, rather shifts to the right. In contrast, in Run D, E, and F, the shape of the
distribution seems to change; in high flow-rate case, high-speed components are append
to the profile of the low flow-rate case. This may be due to the variations of pore size.
In Run D, E, and F, the pore shapes likely have more variation than Run A, B, and C.
Silicon oil may have made itself through in wider pores of the media.

Figures 25, 26 and 27 are our preliminary results of estimating the waiting time
¥(t) and its comparison with probability distributions. For simplicity, we assume that
the waiting time is proportional to the inverse of the velocity at a specific time. We
made the histogram of Fig. 24 divided into much smaller bins (every 0.0001 mm/s) and
disregard the velocities less than 0.0001 mm/s. They are considered to be staying still
on the glass surfaces. We tried the normal distribution, the exponential distribution,
and the gamma distribution as the candidate for our fit (Figs. 26, 27). The gamma
function, as follows, seems most successful.

1

a,—t/0
Tlat gt ©

ft) = (6)
for « > —1,t > 0. The values of « are approximately from 5 to 7. The sphere cases,
Run A, B, and C have a = 5.3, 5.2 and 4.8, respectively. On the other hand, the
irregular cases, Run D, E, and F, it was 7.2, 7.2, and 5.2. The irregular cases apparently
have larger value of a. The values of # are around 300 for all the cases. An interesting
fact is that some researchers (Berkowitz-Scher group) have been proposing the waiting
time function of CTRW to be of the form of the gamma function (but the range of
« is different in our case from theirs). We think that it needs more considerations in
converting the velocity into the waiting time.
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3.3 Summary

In the present paper, we explained the problems of radionuclides due to the Fukushima
accident and explain the methods we are currently developing. It seems that our model
is satisfactory in reproducing the air dose rate in Fukushima. However, further research
should be done for more confident predictions. In the research of soil pollution, we are
still struggling in fixing the values of the model parameter. Further research is needed
until the CTRW model becomes applicable to real problems.

Aids from the field of inverse problems

For the pollution due to the Fukushima accident, what we want to do is as follows:

(1) Estimating the values of parameter from existing data

(2) Making predictions, or evaluation of the degree of decontamination?, using (1).
Therefore, precise estimation of those parameters is very important. Also, discussions
on the scientific soundness of our model would be appreciated from the point of view of
mathematicians.
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Figure 19: Experimental setup of LAT-PTV method.

Figure 20: PTV particles. 80 pum diameter fluorescent polymer microspheres.

-178—



Figure 21: Filling material, sphere particles made of BK-7 glass.

Figure 22: Filling material, irregular-shaped glass.
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Figure 23: A sample image from LAT-PTV. Sphere particles are immersed in silicon oil,

showing their outlines by the green laser light.
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Figure 24: Histograms of the z-direction velocities.
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Nevada, U.S. Nuclear Test Site
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Porous Media Experiments
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* A field tracer experiment in a fractured till (Siddle 1998)
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Mathematical theory on perturbation of singular
points in continuum mechanics
and its application to fracture
and to shape optimization

Kohji Ohtsuka *

1 Introduction

The singularity affects the strength of materials greatly. The ideas of this study
came from specific studies based on fracture mechanics[54], the continuum the-
ory of lattice defects by Eshelby[13] and conservation laws[6, 33] by Neother’s
principle[40]. Here, we regard the boundary of material as the set of singu-
lar points, that is, the material is described as a system of partial differential
equations for the boundary value problems defined in the reference configura-
tion Qg (3-dimensional domain). We consider the boundary 9 as the set
of singular points. We think the matrials to be hyperelastic first of all, that
is, the strain energy density function W (x,¢) is written with the strain tensor
e = (g45),4,7 = 1,2,3, and the stress tensor ¢ = (035),4,j = 1,2,3 is given by
[10, Chapter 4]

0y = o(x,e) = OW (2,6)/de;; =€

Linear stress-strain relations take the form

0ij(x,€) = Cijr(@)er (1.1)
where Cijiy = Cjiit = Cijir = Cjui in view of symmetry o;; = o0j;, and
Cijii = Crii; from the existence of W. The equations of motion are

32’&1' . .
14 6t2 - (9]‘0'1‘]‘ = fz m Qo,Z = 1,2,3, (6] = 6/6@) (12)

where f = (f1, f2, f3) is the body force per unit volume, u = (uy,us,usz) the
displacement, p the mass density. Let I' 5 be the part of 9, on which the force
g = (91, g2, g3) per unit area act with the outward unit normal n = (ny, ng, n3)

oij(x,e)nj(x) = gi(x) z€ln,i,j=1,2,3 (1.3)
On another part I'p = 9 \ T'y, the diplacement up is given

u=up onI'p (1.4)

*Hiroshima Kokusai Gakuin University, e-mail:ohtsuka@hkg.ac.jp
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Surface force
Fixpd

Body Force f

Figure 1: Hyperelastic material with sets S, T of singular points

1.1 Weak formula

The singular points that we consider are the following

Boundary: Seeing from all space R?, the boundary ) is the set of singular
points. The boundary conditions are; u = up onIp, o(u),n; =
g; on I'y. For simplicity, we study the case that up = 0.

Fracture: The crack surface X is the surface of the discontinuity of displace-
ment when stress is free on ¥. In the crack extension, and strong sin-
uglarity is on the edge 9%, in which case the reference configulation is
2 =Qp \ . The boundary condition on ¥ is

oij(w)Tv;=0;(u)"v;=0 onXx (1.5)
where o;;(u(z))* = lim.00;;(u(z + ev*(2))) with the unit normal v
oriented from the plus side to the minus side of ¥ and v~ (z) = —v ™ (z)

Void(Cavity): The reference configuration is Q2 = Qg \ D.. where D,. stands for
the void, and the set of singular points is dD,.. The boundary condition
is

oij(u)n; =0 on 0D, (1.6)
where n is the inward unit normal of dD..

Inclusion: The reference configuration ) satisfies that :EUE, D;,ND, =0
Strain energy density has the discontinuity on 0D; N D,, that is,

Wnew) = { Wilwe)) i D (1.7)
We(z,e(u®)) in D,
where u?, u° are the displacement on D; and D, respcetively. The condi-
tions are
u’ = u' onl;,=D,ND, (1.8)
oz u v = of(z,u’)v onl; 1.9
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where o}; = oW’ [0eij, 07 = owe /Oe;; and v the unit normarl oriented
from D, to D;.

Joint parts: The joint part I'p NI of different boudary conditions is the set
of singular points.

The materials with the various singularity stated just above are discribed by
the following variational problem over the space V(,T'p) in which Q stands
for the reference configuration, that is,

V(Q,Tp) = {'U Q- R>v=up on FD}
In fracture problem, Q = Qg \ ¥; © = Qg \ D, when the void is contained and

0D, C T'y; if there is inclusion, we adopt (1.7).
The displacement u is given as the minimizer of the functional

E(v;Q, f,9) :/QW(:E,s(v))dx—/Qf-vdx—/FNg~vds (1.10)

over v € V(Q,I'p)[10, Theorem 4.1.-2]. In linear elasticity, we can write
V(Q,T'p) more precisely as follows

V(Q,Tp)={ve W QLR*);v=up onlp} (1.11)

Here for a domain @ in d-dimensional space R? and the vector valued function
v = (U17"' avm)ymz 0

WLP(O;Rm) — {'U = (1}17 e ”Um) : Z ||U’LHLP(O) + valllLP ) < +OO}
i=1
d 1/p
Wulo = { [u@prac . o=0/om.i=1.
j=1 ~70
3
Whe(O;R™) = {'u = (v1,v2,v3) Z lvill Lo (o) + IVvill L (0)) < +oo}
=1
3
V|| oo = ess sup |v;(x
lvill L= (o) ; $€O| )|

where esssup,co |vi(2)| means the greatest lower bound of v;(x) almost every-
where (a.e.) on O (see e.g. [2]). In the case m = 1, v stands for the function.

1.2 Perturbation of singular points, and vector field u
Let v € Q be a singular point, and [t — ¢;(y) € R3],0 < t < €y the perturbation
of v, which makes the vector field d¢;(vy)/dt. We assume the existence of parallel
extension py(x), z € R* of dpy(y)/dt, and the path ¢y (z), z € R? of ¢y(v).
1.2.1 Field of view w

In this paper, we consider the various singular points, so we introduce the con-
cept “field of view” to separate in singular points, that is the open set w. For
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v X
¢t(y’)//‘> o (x)

Movement of singular point ~ Vector field obtained by movement

Figure 2: Path by perturbation and vector field of singular points

— P4(x

Parallel extension of dp(y)/dt  Parallel extension of $¢(¥)

Figure 3: Parallel extension p,(z) of do:(x)/dt

examples, if there are sets S, T of singular points as shown in Fig.4, and assume
that S € Q. Let wg be an open set such that

S C wg, TCD\@

Let us call wg the field of view focusing on S.

Figure 4: Material containing the sets .S, T of singular points

2 Generalized J-integral
The original J-integral is difined by
J = /C [W(l’,E)dIg —T(u) - du/0x; ds (2.1)
where C' is the closed curve surrounding the crack tip and n the outward
unit normal of C (see Fig.5). Since C avoid the crack tip, J take finite value

and independent on C. Moreover, J expresses the rate of released energy with
respeet to crack extension as shown in (2.2).
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crack tip

Figure 5: Curve C surrounding the crack tip

Consider the straight crack extension as shown in Fig.6 inside homogineous
elastic plate when f = 0 near the crack tip. Here ¢ stands for the crack incre-
ment. Denoting Q5 = Q\ X(¢) with crack surface ¥(¢), we write the energy

X2

Figure 6: Straight crack extension in 2D fracture

at the crack increment ¢ by

E(u(l): £, 50) = | W(e(u(®)ds - / fu(l) de

Qs (o) Qs (o)

G.P.Cherepanov[9] and J. Rice[53] showed that

_%E(u(@; . Qs) = /C <W(Vu)dx2—f(u)§;ds> (2.2)

The left-hand side of (2.2) expresses the released energy per unit crack length.
If ¥ is parametrized by arc length s, that is, ¥ = {(z1(s), z2(s)); a <z < b},
then the outward unit norma n = (nq,n9) at (z1(so),x2(so)) is equivalent to

n= (05 o))

which means that dze = nids = (n - e1) with the unit vector e; in the x;-
direction. Then we can rewite (2.1) as

J = P,(u,e) (2.3)
P,(u,e1) = /C {W(x,e)(el -n) — f(u) -Vu - el} ds
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where w is the open set containing the crack tip (see Fig.6).
In 3D fracture, the vector field p obtained crack extension is not constant,
so that P, (u, pe) dependend on w. Therefore Generalized J-integral is intro-
duced in [43].
Definition 2.1 (GJ-integral) Let us denote W(x, e(u)) by W(x, Vu) = W(x, Q)le=vu
and write it as /W(u) if there is no ambiguity. For p € W1°°(R3; R3)

Jo(u, i) = Py(u,p) + Ry(u, p) (2.4)
Pwp) = [ {W@em) - Tw)-(u-Volds (25

where
T(uw)=n (VCW(JL‘, Vu))

R, (u, p) = _/wﬂQ {VIW(LE,VU) . u—i—f-/(Vu : u)} dx

i /wﬂQ { (VCW(I’ vu)>T (V") Vu = W (2, Vu)(div H)} dr (2.6)

Generalized J-integral (GJ-integral) is defined on wide variety of (nonlinear)
materials. But, to push forward a mathematical argument, we introduce next.

2.1 Quasilinear elliptic systems of p-structure

For a mathematical example, we try to take up quasilinear elliptic systems of
p-structure (see e.g. [30]). Here, we make them general setting.

Assume that @ C R?(2 < d) is decomposed a finite number of pairwise
disjoint subdomains ; C Q,7 = 1,--- , M with local Lipschitz property, such
that Q = sz\ilm Form >1and 1 <i< M, let W;(x,¢) : © € Q,¢ € Rm™¥4
be scalar functions. We consider the mathematical model of composite material
(transmission problem): For given functions up, f, g, find u,u; = ulq, such
that

—divy(VWi(z, Vui(z)) = f(z) ze1<i<M (2.7)
u; = u; only; =00Q;N0N; (2.8)

VCW(% Vui)n;; = —VCW(x, Vuj)n;; onTy; (2.9)

u = up onlp (2.10)

VCW(LL', Vuj)n; = g onTly (2.11)

where n;(z) denote the outword unit vector of Q at « € 99Q; and n,; the outward
unit normal to I';;.

The (k,1)-element of VC/V[Z is

(VCWZ-(%())M - ‘Wgé:l’o (1<k<m1<l<d)
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For C,E,ZE R™*4 and x €

qui(xao:é = 3Wx(:ckl (1<k<m,1<1<d)
k=1 1=1
/\ 79
(dlvx(VgWi(m,Vui(m))>j = l <3xl VCW (x, Vu(x )))j’l

=1
- A m d a
ngz(xaC)[<7 ] = Z Z a<k:saé-gr Ckstr

o 1/2
’ngz’(x,@’ = (k; Z ( 5Ck53CJr ) )

1s,r=1

For 1 <p; <oo,i=1,--- , M, let p=(p1, - ,pnm) and ppin = min{p;, 1 <i <
M} and define

LP(Q) = {velPm(Q;R™); v, € LP ()}
WhP(Q) = {veW"Pn(Q;R™); v]g, € WP (Q;)}
V(Q,Tp) = {veW"PQ)v=up onTp}

Problem 2.2 (P(f A V(Q,Tp))) Forgiven f € LY(UR™), q = (q1, -+ qm),p; '+
¢ =1, upE€ w'pP (T'p) and g € LY(Ty), find w € V(Q,Tp) such that

Eluif.0.9) = min E(v;f.9.9)

E(v; £,9,90) = /(W\(x,Vv)—fm)da:—/ g-vds
Q I'n

/W(m, Vu(z)) = /V[Z»(a:,Vui(x)) ifxeQ;, 1<i<M

Conditions for W(:c, ¢) are necessary to show the existence of the solution w
mathematically. For example,

Theorem 2.3 If /W(x, ) satisfy the following properties and the surface mea-
sure of I'p is positive, then there is a solution w.

(a) There is a B € R such that

ﬁgW(:c,C) for all z € Q,¢ € R™*4

(b) Convexity: [¢ — /V(7(:v, Q)] is convex for all x € Q, i.e.

Wz, A+ (1= N0 < AW(2,0) + (1 = NW(,0)  for all A € [0,1]

(c) Continuity and measurability: For all z € Q, [( — Wiz, )] is continuous,
and [z — W (x,()] is measurable for all { € R™*4.
(d) Coerciveness: There is constants a > 0 such that

/W(I,C) >all|Pi 4+ B for all z € Q; and for ¢ € R™*4
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For the coerciveness (d), we have from 1 < ppin < p;, 1 <@ < M,

W (z,¢) > a|¢[P= + 5

Then we obtain u € WPmin(Q; R™) by [10, Therem 7.3-2]. Using (d) again, we

have
o / [Vu,
Q

This means u € V(Q,T'p). O

Pide 4+ 8 < / W(I,Vui(x))dx < o0
Q;

Definition 2.4 We say that [v — E(v; f, g, )] is weakly lower semicontinuous
on V(Q,Tp) if
E(vo; f,9,Q) < lim inf E(wn; f,9,0)

for any vo € V(Q,T'p) and for any sequence {v,,}°2, of elements of V(Q,T'p)
such that v, — vy weakly as n — co.

In [10, Theorem 7.3-1], it is proven that the condition (a)—(c) derive the weakly
lower semicontinuity of £(-; f, g, ).

The inequality
(VW (@, Q) = Vel (@,0)) 1 (=) >0 forall ({eR™ I (£E (212)
leads that
/Q (V<W(x, Vo) — VW (z, Vw)) L (Vau — Vw) > 0

for all v,w € V(,T'p),v # w, which is called strictly monotone.

Theorem 2.5 If /V[7(ac7 C) satisfy the following properties and the surface mea-
sure of I'p is positive, then there is unique solution u.

(a) There is a 5 € R such that
B<W(z,¢) fordlzeQ,¢eRm™>d

(b) W(x,¢) satisfy (2.12).

See e.g. [16, 26.10] for the proof.

Theorem 2.6 If /V[7(:z:, ) satisfy the following properties and the surface mea-

sure of I'p is positive, then there is unique solution w. For each 1 <i < M, W;
and their derivatives satisfy the following growth properties for 1 < p; < oo,

HO [ — /V[Z(J?,C)] € CHR™*) N C2(R™*1\ {0}) for every x € Q;. For fized
¢ € R™*4  there is a constant L; > 0 such that

Wi(2,¢) = Wiz, Q)| < Lile = yl(L+ ") for every v,y € 2
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H1 There is ¢ € R, ¢, ch > 0 such that for every ¢ € R™*4 x € Q,
€+ ilCIP < Wi, O) < (1 +1¢”)
H4 There is ¢; > 0 and k; € {0,1} such that for every C,f eR™¥d ¢ £0,x €
Q.
“ VT Q] > e+ I 2P

See the proof of [30], it is proven that (2.12) holds from the conditions HO and
H4.

Theorem 2.7 The domain integral (2.6) take finite value for the solution u of
Problem 2.2, if W (x, () satisfy the following,

H2 There is ¢ > 0 such that for every ¢ € R™¥4 x € Q;,

Vi@, O] < 1+

pi=l) (2.13)

Proof. R, (u,p) is decomposed as follows

M —
Rw(u,u):—Z/ {VxWi(x,Vui)-u+f-(Vui~u)}dx
i=1 wnN;

+§:/Um { VCW z Vuz))T(VN )WV, — Wiz, Vul)(divu)}dx

=1

The first term in the right hand side is finite by HO, the second term by f €
L1 R™), Vu € LP(Q;R™) and the last term by H1. We can show that the
third term is finite by H2 using Holder’s inequality(see e.g. [2, 2.4]) as follows,

.y T
(VCWi(x, Vuz)) (Vul)Vu,| do

< / (1+ [Vauf?' )|Vl da

i

< co(1+ [IVulP M pas (o) [Vl Lo o))
< o1+ (u %1;19 DIVl e,

It is important Ry, (u, @) is finite for the (weak) solution of Problem 2.2, but we
need smoothness of uw on d(w N Q) to show that P, (u, ) is finite.
2.2 Properties of GJ-integral

Proposition 2.8 (Green’s formula) If O C R? is the domain with local Lip-
schitz property, then the outward unit normal n exists allmost every on 00 and
the Green’s formula

/O 9(dh)dz = /8 glmnads /O (9,9)hde (2.14)

hold for g € W15(0), h € WH4(O) with s 1 4+q71 < (d+1)/d if 1 <s < d,1 <
q<d, withq>1ifs>d and with s > 1 if ¢ > d.
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See [38, Theorem 1.1,Chapter 3] for the proof.

Theorem 2.9 Now we take the field of view w such that w C §; for some
0 <i< M. Assume that the solution u of Problem 2.2 has the regularity such
as ul,, € W?Pi(w). Then the following holds.

Jo(u,p) =0 Ve WHe(R3R?) (2.15)

Proof. By the chain rule,

0 = 0 —
i—W(z,Vu) = i—W(,Vu ‘
Hj oz, ( ) K 3 ( ) .
m m 6
+> 3 ujBCW(f,o' 0,0

k=1 i=1 kl ¢=vu

it follows that p(x) - VEW(:U, Vu) is integrable.

We can apply Green’s formula
[ oW = [ W nds
w ow
—//W(u)divudm (2.16)

We can use the chain rule

(- V)W (u)

(1 Vo)W (2, Vat) + VW (w) : [V(p - V)]
—V W (2, V) (V i) g .

Here we used that 0,0;v = 0;0,v. Now, we get by Green’s formula
/(u VW (w) = / {1 V)W (. V) = VW (2, V) Vi i
+ / VW (z, Vau) : [V(p - Vu)lds (2.17)

The formula (2.7) holds in distribution sense, we obtain the following by Green’s
formula

~

/ VCW(x, Vu): [V(p-Vu)dx = / T(u) - (p-Vu)ds +/ f-(n-Vu)de
Q w

ow
(2.18)
From (2.16)—(2.18), we get that J,,(u, pu) = 0. O

Remark 2.10 If we take the field of view w to become Q C w, then dwNQ = ()
which means

Jw (u7 H) = Rq (u7 I"")

Remark 2.11 Even though ul, ¢ W*Pi(w), the identity (2.15) hold if uw sat-
isfies (2.16)-(2.18).

Corollary 2.12 Let wa C wy be two open sets such that there (2.16)—(2.18)
hold in wy \ wz. Then

le (’U,,IL) = sz (uvy') (219)
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Proof. Since (2.16)—(2.18) hold in wq \ws
(2.16)-(2.18) N2 R (1) — R (1) = Repyy (6 12)

= —Pwl\@(u, IJ")
= 7PW1 (’U,, l‘l’) + PW2 (’U,, /‘l’)

2.3 Examples of variational problems P(f,g;V(Q,I'p))
2.3.1 Elliptic boundary value problem

There is Poisson equation W (z, Q) =1¢?/2, ¢e€R? (m=1)for the simplest
example, whose GJ-integral is the form

_ 1o _Ou
Polup) = /am{gw (wom)— 2u vw}ds,
Row = = [ {00 - (V- Viadhu+ g 9ulaivi de
wnNN

The simplest non-linear problem is p-Poisson, that is, /W(a:, ¢) = |C|P/p for some
1 < p < oo, which leads the boundary value problem

—div ([VufP?Vu) = f in Q
u = 0 on I'p

ou r (2.20)

o, = Y on I'y. .
whose GJ-integral is

1 ou
P, (u, = / {Vup ‘n) — |VulP72— -Vu}ds,
(u, p) o pl (i m) = [Vl o (- V)
1
Ry(u,p) = —/ {f(u-VU) - |VU|p_2(Vu-Vuk)8ku+pIVUV’divu} dz.
wN

We now consider the case

o~

W(z,2z,¢) ze€QzeR™ ¢eR™
such as, in the linear equation (m = 1)
—0ja;j(x)0u(z) + b(z)u(z) = f(z) in Q

it become W(x, z,¢) = (aijGi¢j + bz?) /2. GJ-integral is the same form, even if
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Poug) = [ G DuDit b n) = (a0 a- T | ds,
R,(u,p) = — /QQ {;((u -Vai;)0;udiu + (p - Vb)u?) + f(p - Vu)

1
—(a;;0;u0; pix, ) Opu + §(aijaju8iu + bu2)divu} dx.

2.3.2 Linear elasticity

We consider the linear elastic field (the case m = d) which is given by the
following formulae

W(r,2,0) = 5o, Qe (0) (221)

eij(C) = (Cij + i) /2 for 1 <4, j <d,
cijki(x) denotes Hooke’s tensor components, ¢;jx = Cjiki = Ciiij-

The variational problem P(f,g; V(2,T'p)) corresponding to the space
V(QI'p)={ve W' QRY); v=00onTp}, (2.22)
implies the boundary value problem

—Ojcijrer(u) = f; in Q, 1=1,---,d, (2.23)
u = 0 onlp, oij(u)ynj=g; onIln. (2.24)

For uniqueness of the solution to the problem P(f, g, V(2,T'p)), we assume that
the elements c;;i; satisfy the following inequality

Cijklfijgjk > Oéfijfij for all fij S ]Rl; a > 0. (225)

GJ-integral is the following

P = [ St n) - g Vu pds
1
Roww) = = [ AL Vepentue + £ T

— 045 (u)0j g Opu; + %Uij (u)e;; (u)divX} dz.

2.3.3 Elasto-plasticity

Consider the case corresponding to elasto-plasticity (see [39, Chapter8]) with
Lamé constants A and p

—

r'(,v)
W(x, Vo) = k(z)6%(v) /2 +/0 p(z)(x,0)do, (2.26)

where 0(v) = dive,I'(v,w) = —260(v)0(w)/3 + 2e;;(v)e;;(w). For coercivity,
we require W to satisfy the following conditions. Assume that k € C?(R%),
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p € C?(R? x [0, 00)), and suppose the existence of constants ko > 0,%; > 0 and
po > 0, p1 > 0 such that

0<ko<k(r)<k <oo, |Vk(z)]<k <oo forallzeR?  (2.27)

0 < po < p(x,s) < 3k(z)/2, (2.28)
|Vep(z,s)| < p1 < oo, forallzeR? and s> 0.

We also assume that the inequalities
0 < &< p(x,s)+2(0p(x,s)/0s)s < & (2.29)

hold with some constants &7, €.
The problem P(f,g;V(Q,T'p)) implies the equation (2.23) with nonlinear
Hooke’s tensor

cint = (= JuT%) ) By + T Gady + dude). (230

Here I'?(u) = I'(u, u), §;; are the elements of Kronecker’s symbol, and (2.30) is
derived from the consideration of generalized Hooke’s law (see [39, Chapter 3]).
GJ-integral is the following

o~

Potw) = [ T Fu) ) = (e (wers () - V)| s
r(u,u)
R,(u,X) = - /mQ {(M - Vk)(divu)?/2 + /o - Vep(z,o)do
+ fill - V) — cijr(w)en (w)d; uydpu; + Wz, u)divX} dx

2.3.4 Micropolar elasticity

Considering the case d # m, we introduce micropolar continuum mechanics (see
[14]). For this material, d = 3, m = 6. Let @ = (u, %) be six-component vectors,
and let w = (uy,ug,u3), ¥ = (1, 12,13) be defined in the domain 1) C R3. The
linearized approximation is called the couple-stress theory, see [34, p. 147], in
which (Lamé constants are A and p)

oW (Vi) = {(3\+2p)/3}divul® + (p/2) Y 10ju; + Oy — (2/3)5;divul?
+(@/2) > |05u; — diuj + 2skj:7:/1k|2 +{(3¢ + 2v)/3}[divep|®
)
+(v/2) > 105 + 055 — (2/3)di;divep|”
]
+(8/2) ) |05 — Oy (2.31)
,J

where A, p, o, €, v, 8 are constants satisfying the conditions

p>0,3A+20>0,aa>0,v>0,3+2v>0,06>0,
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and ey;; is the permutation tensor. If displacements and rotations are zero on
I'p and the couple stresses are zero on I, then

V(Q,Tp)={b=(v,9) e W*QR®)|5=00nTp}. (2.32)

From [44] the following estimate for 4 € V(€;T'p) is obtained,
/ W(Vﬂ)dl’ Z Cg”fb”%yLz(Q;Rs) (233)
Q

with a constant C5 > 0 independent of @. Under the conditions (2.31)—(2.32),
the variational problem P(f,g,V(Q,T'p)) implies the following boundary value

problem with f = (flvf?afS)v .fm = (f4;f57f6); for i = 1,2737

(p+a)Au+ (A + p — a)graddivu + 2arotp = —f  in Q,
(v+ B)AY + (e+v — B)graddive) + rotu — dap = —f,,  in Q,
u=0,%=0 onTp,(2.34)
Anidivu + (p + a)n;0u; + (p — a)nioju; — 2ae;65mjP, =0 on 'y,
enidivep + (p + B)n;0ih; + (p — B)n;05¢; = g on I'y.

GJ-integral is the following

o) = [ AW 0 m) = (p ) (- T
~(onas () (- V) s,

Ro(u,p) = — /Mm {f(H Vi) — ogij(uw, ¥)0; 1p0pu;
—0R,ij (V)0 1p0pibi + W(va)divu} dr,
where
opj(u, ) = Agdive + (p+ a)diu; + (1 — a)dju; — 2aeij, Pk,

orj(Y) = €ebyzdivep + (v + B)0ip; + (v — )01

3 Fundamental theorem

3.1 Historical background
3.1.1 2D Fracture

Let w’ be an open set such that ¥ C ' (Fig.7) and ' C Q. Using the cut-off
function 7, such that n,/(x) = 1 near ¥ and suppn,,» C w’, then for the vector
field pe

Rq (uv H’C) = RQ\U(ua H'C) + Rw/(uv iu’C)
= —Pog(u,pe) + R (u, pe)
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Figure 7: open sets containing the crack tips v1, 72

Let w1, wy be open sets containing the crack tips 1,72 (Fig.7), then
2

Ry(u,pe) = Rw/\m(uauc)+23wl(u»ﬂc)
=1

2
= 7Pw’\m(ua /"'C) + Z sz (uv MC)

=1

= Z sz (u? “C)

=1

Here we used the following: On the crack surface, T(u)® = 0 (stress free) and
te v =0 on X where v stands for the normal vector directed from '+’ to ‘-’

/ (W, V) g v) — Tar) (1, - V) ) s = 0
nt

From (2.2), we can derive

1) ) = Rofu ) (3.1

3.1.2 Shape Optimization

Consider the Poisson problem
—Au=f inQ, u=0 ondd
with C2-boundary and Hadamard’s per-

turbation
— +th(¥)n(y)
o(t) = {v + h(M)tn(y) : v € 00} \Yé
the problem 8Q@Q(’c)

—Au(t)y=f in Q(t),
u(t) =0 on J0(t)

2
:/ (gZ) hds  (see e.g. [24, (3.3.58)])
o0

d

— |Vu(t)|>dx
dt Jor

t=0
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CZ/Q(t) <;|Vu(t)2 - fu) dx = —/89 (g;ﬁ)zhds (3.2)
because [ fu(t)dz = [Vu(t) - Vu(t) dz.

Since Vu =n-Vu+V,u (V, =V = (n-V)n) and V,u = 0 on 99, the
right-hand side of (3.2) become as follows

3u>2 / <1 ) )
— — | hds = —|Vul* —n-Vu(n-V)u | hds
/852 <8n 0 2| | ( )

Therefore we arrive at the following

t=0

d

aé‘(u(t); ) . = Po(u, hn) (3.3)
L 2_ u X

et £om) = [ (GI9u0F - u)) o

let w be an open set such that 92 C w and n(x),x € w the extension of
n(z),z € 0Q. Consider the cut-off function n,,. In this case, u € W22(Q),
which leads from Theorem 2.9 that

0 = Ja(u, hn) = Po(u, hn) + R (u, hn,n)

We arrive at the following identity

D e(u(ty 1,00)| = —Ra(u, hn.n) (3.4)
t=0

3.1.3 Hadamard’s variational formula[23]

Let 2 be a domain in R? with C?-boundary and G(z,y,t),z,y € Q, 0 <t <t
Green function, i.e. for y € Q(t)

—A,G(z,y,t) =6(x —y), G(z,y,t) =0 Ve INt)
() = {z +th(y)n(y) : v € 99}

Hadamard’s variational formula is

dG(w,y,t) B 0 0
— I G(z,y) 8an(x,w)h(x) dsy (3.5)
For a function f € C§°(Q),
u(z,t) = Gz, y,t)f(y) dy

Q(t)
satisties the boundary value problem
—Agu(z,t) = f(xr) = e u(z,t) =0 z €9

For a function 0 € C§°(2), we have
(w(t),0) = /Q w(z, )0(x) da
= || i@
Q. JQy
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Now we obtain

— / /QUGZ‘% :Of( y)dyf(z)dx
/ / /mg L.0) 50, )(f)dssf(y)dW(x)dx

'I’L n

aUQ

where wuyg is the solution of the problem
—Aug =0 in Q; ug =0 on 9N

For ¢ > 0, we have

Pq(u+ eug, hn) — Po(u, hn)

/ {Vu vu9—28“a“"}hds+0(62)
o

on 0
Ou Oug
_eész%%hd +O( )

Here we used that v = 0,ug = 0 on 9.
We now arrive at the following

d

%w(t), 0) = —0Pq(u,up; hn) (3.6)
0Pq(u,ug; hm) = lir% e 1 {Pqo(u + eug, hn) — Po(u,hn)}
€e—
From Theorem 2.9, it follows that
%(u(t),9> — SRa(u, u: hn) (3.7)
SR (u,up;hn) = lim e ' {Rq(u + eug, hn) — Ro(u, hn)}
e—0

We call the formula (3.7) the generalization of Hadamard formula (GJ-Hadamard
formula).
Let w(t) be minimizers of functionals

E(v:Qt), f.g) = W(z, Vv)dr — f-vde (3.8)
Q(t) Q(t)
over the spaces

Vo(Q(t).T(t) p(ny) = {v € WHP(Q):R%) : v =0 on T(t) s}

3.1.4 3D Fracture

In 3-dimensional brittle fracture problem (linear case), the relation

is proven[43], where Qs ) = @\ X(t) with the crack surfaces ¥(t) and p, the
vector field obtained from crack extension.
We now introduce the set SC(X(t)|II) of smooth crack extensions.
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SC1 There is a smooth 2-dimensional manifold II embedded in R3 such that
Yt)cI,0<t<T.

SC2 ©=3(0) C 2(t) C () if 0 <t <t'.

SC3 For each t € [0,T], there is a C°°-diffeomorphism ¢; : 90X — 93(t) such
that the map [t — ¢;] € C([0,T]; C*°(0%;1I)).

SC4 The limit lim,_,o ¢ ~!|3(¢) — 3| exists and non zero, where |%(t) —X| denote
the surface area of %(t) — X.

The vector field p is constructed as follows.

Figure 8: Smooth crack extension of %

1. Let e1(7),e2(y) be tangential vector fields at v € 9% on II such that
le1(y)] = |lea(v)] = 1, ea(y) tangent along the curve 9%, let us take ey in
the crack extension direction and e (v) L ea(y)

2. There is a neiborhood U(9X) of 93 such that there is only one nearest
point P(x) € II for all x € U(OX). Let us denote the distance from x to
P(z) € II by As3(x), that is,

= P(x) + A3(x)es(P(x)) e3(p) = —v(p),pell

where v(p) is the unit normal vector at p € II in the direction from plus
side to minus side of II.

3. There is a unique geodesic curve through P(x) on II crossing at v(P(z)) €
0% perpendicularly [35, Lemma 10.2]; for each v € 9% the geodesic curve
[A = g(v, )] satisfy the second order differential equation (the geodesic
equation [35, §10]) with the initial conditions

dg

90 =7, —=(a,0)=e(y)

We now write the length of the geodesic curve from v(P(z)) € 9% to
P(z) € II by A1(z).

—-220—



4. There is a number § > 0 so that the mapping

Fas 1 (7, A1, A3) = (7, A1) + Azes(c(y, A1) (3.10)

become 1-1 mapping from 9% x (—4,6)? into R3. Now we replace U(93)
with Fyx(0% x (—6,6)?). Then Fyx become the diffeomorphism from
0% x (—6,6)? onto U(9%).

5. Take w so that w C U(0Y).

6. Lrlemo — Ju(u, ) depend only on [43, Theorem 5.4]

woer(): va) = Foilo)

t_0,61(7)> (3.11)

where (,) stands for the inner product in R3. We call vy the velocity of
crack extension.

7. (@) = ve(7(P(x)))er(v(P(x))).

Figure 9: Tubular neighborhood of 9%

The identity (3.9) is rewritten as follows

d

where @ C wy and 7, = 1 on w. Indeed, there is no singularity inside Q \ @
except X NN\ w, however

/Zﬁ(ﬂ\w) {W(iﬂ, Vu)i(lhb V) — f(u)i(vu . “d)} _0

because p, tanget to X leads that p, - v = 0 and f(u)i = 0 on X. Hence by
Theorem 2.9

RQ (’U,, ’r]wol"’qﬁ) = RQ\w (’U,, Wwol%) + Rw (U’v 77wol%)
= _PBQ('U'; nwoud)) + Ju (u, 77w0/~l'¢)
= Jw(ua 77woﬂ¢>) (nwo = 0 o1 aQ)
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3.1.5 Shape sensitivity analysis

For [t = @i(z)] € C(]0,¢],C*(R%,RY)) and linear elliptic boundary value
problem

E(v: £,0() = /mt) [W(a, Vo)~ f v} de
Yo € Vo(Q1t),T(t)pwy) = {veW'*Q1),R™);v=0 onl(t)p(t)}

where Q(t) = ©4(2), I'(t) py = ¢¢(I'p), it is proven in [44] that

d
e (ult); £,9()

= —RQ(UJ,H@)
t=0
d
H, = £<Pt|t:0

in the case that f = 0 near 9. In the proof, the coercivity with a > 0
/ VCW(:C, Vo) : Vude > allv|ia Vv e Vp(QTp)
Q

is essential, and key estimation is that

lu—p;u(t)|i,0 < Ct|fllogs with C >0
where @fu(t) is the pullback pfu(z,t) = u(pi(y),t),y € Q (slightly changed
form [44]).

3.2 Fundamental theorem of GJ-integral

From 3.1 Historical background, we have the following conjecture:

Conjecture 3.1 (Fundamental theorem) Assume that the extension p; of
perturbation of singularities is 1-1 mapping from R% onto R for each t and
[t = @] € CH([0,€); WEo(R% R?)). Let u(t) be the minimizer of the potential
energy functional

(i f.00) = [

o {W(m, Vo) —f- 'u} dx

over Vo(QUt),T'(t) py). Then the following will hold

Tey:f.00)| = —Rawp)~ [ Foulp, mds (313)
t=0 oN
d
By (z) = %npt(az) i (3.14)

In [48], (3.13) is proven when [t — ;] € C2([0,T], W2 (R3; R3)).
In [28, 29], (3.13) is proven for linear problem when [t — ¢;] € C1([0, T], W1 (R3; R3))
using the following theorem.
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Theorem 3.2 Let X and M be real Banach spaces. For Uy C X and an open
subset Oy C M, we consider a real valued functional J : Uy x Op — R and a
map u: Oy = Uy. We define T(n) = T (u(p), p) for uw € Oy. We suppose the

following conditions.

1. J € CO(U(] X O()), [,u — J(w,u)] (S CI(O()) fOT' w € Uy, and ouJ €
CO(Uy x O, M").

2. u € C°0y,X) and u(p) is a global minimizer of J (-, ) in Uy for each
1% € 00.

Then we have J, € C1(Oy) and

Ti(p) = 0u T (u(p), ) (1€ Oo). (3.15)

3.3 Fundamental theorem in nonlinear case

In fracture mechanics, it was shown that (2.2) will hold in nonlinear problems.
There are some mathematical results[30, 31, 32] and the results in [44, 28, 29|
are applicable to nonlinear case (nearly linear). Before proof, we prepare for an
abstract result.

Under the same assumption in Theorem 3.2, for u € Uy and w € X, the
Gateaux derivative dx J (v, p)[w] € R is defined as

d
t=0

where dx, 0y are partial Fréchet derivative operators for J (u, u) with respect
tou € X and p € M. Assume the following.

(F1) [ — J(w,p)] € CHOp) for all w € Uy, and I T : Uy x Og — M’ is
continuous at (u(g), to)-

(F2) The Banach space X is reflexive and Uy is closed and convex in X.
(F3) For the functional [v — J (v, po)], uo is a unique minimizer over Up.

(F4) The functional [v — J (v, )] is sequentially lower semicontinuous with
respect to the weak topology of X.

(F5) There is a monotone nondecreasing function By defined on [0,00) with
limg_, o Bo(s) = oo such that

Bo(lvllx) < T (v,n) (v €Uy, p€ Oo).
(F6) For any ¢ > 0 and R > 0, there exists 6 > 0 such that

|T (v, 1) = T (v, po)| < €
(U €u07 ||U||X < Rv M e 005 ||N7:u“0||M < 5)

(F7) For v € Up, the function [t — T (ug + t(v — ug), 0)] belongs to C1((0,1]).
Moreover, for a sequence {u,}, C Uy which weakly converges to ug as
n — oo, the condition lim,, oodxJ (tUn, to)[tn — up] < O implies that
U, — ug strongly in X as n — oo.
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In particular, under the condition (FT7),
d
Ox T (v, po)[v — o] = =T (uo + t(v — o), o)
t=1

exists for all v € Uy. The condition (F7) is often called the (S )-property.

Theorem 3.3 Under the conditions (F1)—(F7), [u— Ji(u)] is Fréchet differ-
entiable at = po and the following holds.

D [T (u(po), p0)] = O T (u(po), po) (3.16)

where the D,, denotes the Fréchet differential operator with respect to p € M.

Now, we apply Theorem 3.3 with X = WLP(Q),M = WL>(R%R?) to
prove Conjecture 3.1 for the solution u(t) € WhH(Q,R™) of Problem 2.2 over
Vo(Qt), T(t) pgey) with g = 0 when [t — @ + tu] € C=([0, T); W= (Re; RY)).
Here we notice that

2L

+§: /wﬁQ' {(VCWi(J?, VW))T (VuT)Vu — Wi(z, Vui)(divu)} de  (3.17)

(q; Vu) -p+ f- (Vu; - u)}daz
nQ;

Assume the additional condition for Wz in Theorem 2.7.
HO’ W, satisfy HO and [z — /VIZ-(I,C)] € CY() for all ¢ € R™*4,

Now, we consider the case that ¢;(x) = z+tu(z) for any p € W (R4 R?),
For a function v € WH(Q; R™), we define the pushforward

puv(z) = v(pr ' (z) z€Q)

which satisfy the following

[V(gwmv)] o, = A(p)Vo aein Q for v e WHH(Q)
—1 50
Alp) = (V') € LR, R
Ve'(z) = (3% (x)) e R for x € RY
O 1<i<d,1<j<d

/Qv(:c)/i(cpt)(:c)dx for v € L*(Q)

k(p) = detVp! € L®R%R)

S~
=
—~
s

*

e
S~—
—~
=
N

I

The mapping @y« : v = 1.0 become 1-1 mapping from V5(€2,I'p) onto Vo (2(t), I'(t) p(r) )-
Then u(t) = @,

.0 = i .0
E(u(t); £,Q(1)) vevoaz?ﬁil%(t),)(o)g(”’f’ ()
5(“’07 f7 Qv QOt) = ’Ue\I/Iggan )g(’l}, f7 @t)
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where

E(vi fpr) = / {A(w V(pesv)) — f-wt*v}dw

= Z/ A(pt) Vi) — @ffmi}n(cpt)dz(&ls)

The differentiability of [t — o (v; f, ¢¢)] is given by the following [29, Theo-
rem 3.3].

Proposition 3.4

1. [p = k(p)] € C®(WL(RY, RY), L>°(RY)). More precisely, the (d + 1)-th
Fréchet derivative of k vanishes, i.e., K%TY = 0. In particular, we have

d
gn(x +tu) =dive for p € WH* (R4, RY)
t=0

2. We define an open subset of W (R4, R?),

Oo(R?) = {p € WH=(R? RY); ess- iﬂgdf k(@) > 0}
Then we have [p +— A(p)] € C®(Op(R?), L= (R4, R¥*%)). In particular,

~vul for p € WHe (R RY)

d
) ¢ -
A +tu) .
Here we notice that

Az +tp)(I +tVuT) =T (I: identity matrix of degree d)

we have J
%A(JC +tp)|i=o = —A(x)Vp' = -V

We now arrive at the following for f € Whamn (Q:;R™), ¢+ +p ! =1
fo ot tn) = [ (Wit tw A+ t0)0) - o1 v (o + tu)da
Q;

d
—1
pralet (v,z +tu)

0 /Q [V, W2, V) -~ (Ve (2, Vo)) (V") T}
- ;

+ /Q | Wi(z, Vo)divpde

—/Q (VF - 1) v+ f - odivg) da (3.19)
By Green’s formula, it follows that, if f € W54 (R4; R™)

/f-vajujdcc = /f v ds — /8 v)p; de
Q;

/F I opini ds—/Q {0;f v+ f-05v}pyda
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where n; = (n;1,---,niq) stands for the outward unit normal to 9€;. This
means that

/Q{f~vdivu—|—(Vf-u)~'v}dx = Z/Qv{f~vdivu+(Vf-u)~'u}dx

= f:/Af~v(u-ni)ds—/f-(VU'N)dl‘

fro(p- nds—/f (Vu - p)dz (3.20)

o0

Here we used that v; = v; on I';; because v € Wl,pmin(Q), and ni; = —nj; on
sz = Fi N FJ,Z 7&] and f c WLqmin(Q).
By combining (3.18)-(3.20), we have the folloing

M - M -
= Z/Q {VmWZ-(m,Vv) - Z(VCWi(w,Vv))T(VuT)VU} da
=1 i

i=1

%5(’0; .fa Qot)

t=0
+/ {Wl(x, Vo)divpdz + f - (Vo - u)} dx
Q

— f-o(p-n)ds
o0

= —Rg(v,u)—/ fo(p-n)ds (3.21)

(v, 18,) /fv n)ds — Ro(u, 1) /f o(sg - m)ds

as j — oo for p;,j=1,---,00 such that p; — pg in Whoe) (R4 RY).
We now check (F1)—(F7) in Theorem 3.3.

(F1) (“)wg(v; £, ) exists and continuous at o (z) = .

(F2) WHP(Q),1 < p; < 00,1 < i < M is rerlexive and Vy(Q, T'p) is closed and
convex in WHP(Q).

(F3) The unique minimizer is shown in Thoerem 2.5.

(F4) (2.12) leads that [v — E(v; £, ¢0)] is sequentially lower semiconinuous in
WLP(Q).

(F5) By H1, there is a constant ¢

M
Bollolhip) = co Y ol g

1=1
Ewif.) = Bolllvl)

for ¢ near ¢y.

(F6) From H1 and H2, we have the estimation

M
[E (s £19) = E(; £,90)| < ealle = Pol1,00pe (Z [ol551.0: o, )>

=1
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(F7) If p; > 2, then from H4 we can derive the following with constants ¢; >
0,1 <1i < M such that

(VW (@,Q) = VW (@,0) - (( =) > e (3.22)
so we can derive
/Q (VCW(% Vo) — V{W(x, Vw)) : (Vo — Vw)dx
l > [ Vo — Vwl[§i, o,
with ¢} > 0, which implies (S, )-property.
Detail in (F7): For a sequence v,,n =1,--- converging to vy such that

5Xg(vn7 fa SDO)[UH - UO]
M .
= Z/ {VCWi(x,an) : (Vv, — Vo) — f - (v, — vo)} dz
E(ng(vm Fp0)[vn —v0] <0

we can derive v,, — vg as n — oo strongly in LP(£;; RY) by Rellich-Kondrachov
theorem|[2], this means

/ f (v, —vg)dx — 0
/ VCW (z,Vvg) : (Vv, — Vvg)de — 0
Q2

as n — o0.

mnﬁm/g {VC i(x,Vuy,) : (Vu, —Vug) — - (v, — ’U())} dx

i

= MTHOO/ Ve ( i(z, Vu,) — Wi(x,VUO)> : (Vv,, — Vvg)dz
Q

> c; llmn—)oovan - V'Uo| 0,pi 82

Assumption lim,, o0 6x & (Vn, £, 00) [V — vo] < 0 implies

hmn—)oouvvn - v'UOHO i < 0

This means Vv,, — Vvg as n — oo strongly in LP(£; R?). Therefore v,, — vg
as n — oo in WHP(Q) strongly.

Theorem 3.5 For the perturbation x+tp, u € WH(R? R?), f € WH4(RY; R™)
and g =0, let u(t) be the solution of Problem 2.2 with the conditions HO’, H1,
H2, Hj} and puin > 2 over Vo(SU(t),I'(t)p)). Then the following hold

Lo f,00) = ~Ralwm) - [ Foupomds  (3.23)
t=0 o0

For the energy E(u(t) : f,g,(t)), Theorem 3.5 is valid if g = 0 on the closure
of {x; g(x) # 0}.
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Remark 3.6 In the case 1 < p; < 2 for some i,1 < ¢ < M, then we cannot
derive (3.22) in general. Notice that (F7) will hold even if 1 < p; < 2 in some
case, for example, p-Poisson equation as shown in [52].

In 3D-fracure problem, it is difficult that
Y(t) = {x+tu(z): 2 € X} for some p € WH>(R? R?)
In 3D-fracture problem, we consider the mapping for h € C1(9%)

oute) = { FEOENED LahOEDNle) orz e V0D,

Then £(v; f, 1) = E(v; f,h) and

d ~
ZE@ f,th)| = —=Ro(v; f,m0m)
t=0

where 1, () = h(3(x)).

Theorem 3.7 Let ¥ be a 2-dimensional surface such that ¥ C Q for some
1<k <M. Withh € CL(OX), consider the crack extension given in (5.24).
For f € WH9(Q;RY),g = 0, let u(t) be the solution of Problem 2.2 with the
conditions HO’, H1, H2, H/ and pmin > 2, which is minimizer of energy
functinal over Vo(Qs4),I'p).

d

St f Onp) = —Ray(um) (3.25)

=0
with gy, = dpin /dt]i=o-

For a smooth crack extension {X(¢) }o<t<r, 2(t) C II, h is the velocity (3.11).

3.4 GJ-Hadamard formula

Under the same assumption in Theorem 3.5 in the case of Problem 2.2 is linear,
M =1 and g =0, let 9 € WH2(R% R™) and the solution uy(t) such that

19,Q(t)) = i 19,0
g(uﬁ(t)vﬁa (t)) ’UEVO(Qr(Itl)l,IIl‘(t)D(t))g(U7197 (t))

Writing p = p,, for simplicity, we then have

2w 0):9,9(0)

= —Ro(uy, p,) — / - uy(p-n)ds (3.26)

t=0 o0

We assumed that Problem 2.2 is linear, so that u + euy is the solution, we then
have we have

E(u(t) + euy(t); f + €9, Q(1))

min E(v; f+ed,Q(t
VeVo(Q(1),T(t) p(ey) (v f ( ))

%5(u(t) +euy(t); f + ed, Q1)) = —Ro(u+ euy, )

t=0

—/ (f+e€d) - (u+euy)(p-n)ds
09
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By linearity it follows that
W (2, Vu(t)+eVuy (b)) = W (z, Va(t))+eV W (2, Vu(t) : Vay (£)+EW (2, Vuy(t)
This implies the following

E(ult) + eup(t); f + €8, Q1))

= /Q(t) {W(%U(t) +euy(t) = (f-ult) +ef -ug(t) +ed - u(t) + 9 - uy) } dx

=E(u(t); f,Q0)) + e/ﬂ(t) {VCW(m7Vu(t)) :Vuy(t) — f- u§(t)} dx

—e/ 19~u(t)dx+62/ {W\(x,ulg)—ﬁ.ug}dz
Q(t) Q)

Hence we can derive

+E (uy(t); 9,Q(1))

- %5@(7:) +eug(t); f + €9, (1)
t=0

- ie 9 - u(t)de
dt Q(t)

t=0

1@ Letuy(n;9.00))

d
- GEE W)+ g

t=0

= —Rao(u+euy,p)— /(m(f +e9) - (u+euy)(p-n)ds
+Ra(u, 1) + /aszf ~u(p-n)ds

—eQ{RQw,uH ﬂ-w(u-n)ds}
o

Therefore we have the following

d
L[ 9 uyds| = e {Ro(uteuy, ) — Rolu, )}
dt Q(t) —0
+/ 9 -u(p-n)ds+ fruy(p-n)ds
o0 a0
+o(€) (3.27)
= O0Rq(u,uy; p)
+/ {9-u+f-uy}(p-n)ds (3.28)
00
SRo(u,ug; p) = lim e ' {Ro(u + euy, ) — Ro(u, p)}

Theorem 3.8 (GJ-Hadamard) Consider the case that M = 1. For any ¥ €
C>® (BZR™), f € WH(REGR™) and g = 0, let u(t) be the solution of the

problem 2.2 in the case of linear.

E(u(t); f, 1)) = mi E(v; f, 1))

= n
VEVL(Q),D () pt))
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Then the following generalization of (3.7) holds

d
— 9 u(t)dx :6Rg(u,u19;p,¢)+/ {9 -u+f-up}(p, n)ds
dt Jo —0 P
(3.29)
Theorem is proven in [48].
We now find the form R, (u,uy). Writing
(5W(m Vu)[uyg] = lim ! {/W(x Vu + eVuy) — W(m Vu)}
) 50 € ) )
we have
OR,(u,Vuyg; p) = 7/ {VrcSW(x, Vu)[Vug] - pp+ f - (Vuy - u)} dx
w2

+/wﬂQ (VCCSW(x,Vu)[Vuﬁ])T(VNT)vudx
" /m (Vﬁ(x’ V“))T (Ve Vuy do
_ / W (2, V) [V ) (div ) dee (3.30)
wn

If u(t) = u(x,t), z € Q(t) is smooth, we define the material derivative and shape

derivative as follows.

Definition 3.9 The material derivative @ of u(t) in the direction of a vector
field p is defined by

u(z) = }E}(l) % {u(pi(z),t) —u(z)} forxzef (3.31)

The shape derivative u' of u(t) in the direction p is defined by

v (z) = w(x) — Vu(z) - p(x) (3.32)

Lemma 3.10 If u(t) is smooth, we have

4 Y- u(t)de

= / 9 - u'dr + / 9 - u(p, -n)ds (3.33)
— /2 o0

Proof. Putting u(t) o p¢(x) = u(pe(z),t), w(t) = detVy

4 9 - u(t)dx = i/ do - u(t) o prw(t)de
dt Jow . dt o,
= /Q{I9~11+(V19-u¢)-Vu+19~udivuw}da:
/(Vﬂ -p,) - Vudr = 9 - u(p, -n)ds — / {9-(Vu-p,)+9 udivp,, | dz
Q 89 Q
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Therefore, we can derive (3.33). |

If w(t) is smooth, it follows that

/ﬁ-u'dx+/ 9 - u(p, -n)ds
Q o9

+/ {9 u+tf up}(p, n)ds
o9

which implies the following theorem.

Theorem 3.11 Under the same condition in Theorem 3.8, the shape derivative
u' € L?(;R™) exist, and

/ 19~u'dx:RQ(u,u19;u¢)+/ f-us(p, -n)ds (3.35)
Q a0
Proof For any v € C§°(Q; R™), we have by Theorem 3.8,

d
— - u(t)de

= 0Ro(u,up; p,,) +/ fug(p,-n)ds
=0 o0

Since [ — uy] is continuous linear mapping from L?(Q;R™) to W12(Q;R™),
we have the estimation with a constant C > 0

’5RQ(U7U19,H¢)+/ f'uﬂ(/""gp n) ds
N

< Cllpgllioore (Il + 1 fllo2.0) lusllie.0

Then tere is a function K € L?(€; R™) such that

/ﬁ'Kdl‘:(sRQ(u,Uﬂ;Hw)‘i‘/ frus(p,-n)ds
Q a0

for any 9 € C§°(Q;R™). From Lemma 3.10, K is the natural extension of u’.
From (3.34), we can prove (3.35). O

From Theorem 2.9, the following holds.
Corollary 3.12 If u € W22(Q;R™), then

d
— Y- u(t)de = —6Pg(u,u19;uw)+/ {9 -u+t f up}(p, n)ds
dt Jogw —o 20
1
with 6 Po(u,ug; p) = lgl% - {Pa(u + euy, u) — Po(u, )} (3.36)
SPotwwrin) = [ {oWiewluole, n)
o0

—T(z,uw)(Vug - K,) — T(z,uy)(Vu - “w)} ds

—-231—-



In the case that boundary condition is mixed, non-smooth boundary, we
use Green kernel by Schwartz’s theorem of kernels therem (see e.g.[12, Ap-
pendix,§3,12]), there is a G; € D, such that

u(§7t) = <Gt(§7x)7f(x>>ﬂ(t),x for f € C(?O(QaRm)
wy(§ 1) (Gi(&9),9W))aw,y  for ¥ € C5°(4R™)
and the following hold for D = C§°(Q; R™),
SRo(u,ugip,) = ORQ((G(E,), F())aa (G(E, ), 9())ay; k)
= <5RQ(G<'7 z),G(y); l’l'cp)f(x)7 ﬂ(y)>Dmey

Theorem 3.13 Under the same condition in Theorem 3.8, the material deriva-
tive of Green’s kernel Gy is

G/('Ty y) = 6RQ(G(a .13), G(7 y)a /'l’ga)
Moreover, if all solutions are in W*2%(Q), then

G'(a:,y) = _6PQ(G('733)’ G('vy); ""Lp)

3.5 Finite Element Analysis

In this paper, we assume the existence of singular points. Because solutions
may not be smooth, attention is necessary about finite element method.

3.5.1 FEM solution

In this section, we consider the linear elasticity, that is, Hooke’s tensor C;(z)
exist such as 0;;(u) = Cyjrier(u) Consider the bilinear form

alu, v) = / o1 (w)ei; (v) do
Q
The displacement w satisfy
a(u,v):/f~vdx+/ g -vds Yo e V(Q,T'p)
Q I'n

and is approximated by the piesewize linear function wp, that is PI-element
Vi(2,Tp). Here we assume that Q is the polygonal/polyhedral domain for
simplicity. By Céa’s lemma [15, Lemma 2.28] we have estimation with a constant
Co >0,

— < (Cy inf — Vi, =V, (Q, T
| —unll1,0 < ovithHu vall1.0 n="Vn(Q,I'p)

Let P, be the orthogonal projection from Vj, into V(Q,T'p). If v € H?(;R?),
then (see e.g.[15, Corollary 1.141]

lv = Pavll10 < Crhllvf20
with a constant C independent h, and for v € H*(2; R3) we have

[v = Prollie < lvflia
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They means that the operator norm of I — Py is C1h when I — P, is linear
operator H2(2,Tp)NV(Q,T'p) to V(Q,Tp), and is 1 on H*(Q,Tp)NV(Q,Tp)
to V(Q,T'p). Then using the interpolation of operator|[2, 7.23], we have

v — Pavllia < Coh® H|vl|s0

for any v € H*(;R?) NV (Q,Tp) for 1 < s < 2. Using the Céa’s lemma, we
arrive at the estimation

[ = unllio < C200h" ™ lulls0 (3.37)

if the solution w is in W*2(2, R™) with s > 1.

3.5.2 Numerical calculation of GJ-integral

Jw(uhvu’) = Pw(uhvp') + Rw(uh7/'l’)

By singularity, in usual FEM, we can only prove that ||u — us||1,0 — 0, so it is
difficult that P, (up, ) = P,(u,p) as h — 0.

Let 7, be the cut-off function such that

Nw=1 onw W Cuw

supp”n. C w

Jw(uvll') = Ju (u, N) = Jw/(uvnwu)
= Ju (Uﬂ?culi) = Rw(ua nwu)

The functional R, (u,n.mp) is bounded in WP(2)-norm, so we can prove that
Ry, (up, nwpr) = Ry, (u,nep) ash — 0.

4 Fracture Problem

4.1 Energy release rate
The elastic body with a crack X is described as the boundary value problem:
—0j0ii(u) = f in Qs(=Q\X)
VjO'l‘j(’U,>+ = Vj(fij(’u,)_ =0 on X

u=0 onlp mnjo,(u)=9g only

Fixed

Body Force f
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Let us denote by C(3(t)|1I) the crack extension, that is,
(C1) Tl is a part of the boundary of domain Dy with local Lipschitz property.
(C2) () cMMand X =%(t) CX(¥) ifo<t<t.

Dviding Qs into Q4 = Q\ Dr, Q_ = QN Dy and using Green’s formula (2.14),
we can prove the existence of the displacement wu(t) as the minimizer of energy
functional

E(v; sy, f,9) = /Q {W(m,V'u)—f-'u}dx—/ g-vds
()

I'n
over the space
VO(QZ(t)aFD) = {’U S Wl’Q(QZ(t);Rg) :v=0 on FD}

Because Vo(Q2st,),'p) € Vo(Qs@,),I'p) if t1 < tz, the following inequality
holds
E(u(t1); Vs, £,9) = E(ultz); L@y, £,9) (4.1)

Then the released energy will serve as the drivinig force for the crack extension
if the released energy exceeds the fracture resistance, that is, the crack ¥ will
grow if ‘F(QE(t)a f7g) > 0

FEO L) = Eut): 0. f.9) - il fog)~ [ qnds (42)
SO\
where g is the resistance force per unit surface.

Remark 4.1 Griffith[20, 21] considered a through thickness crack of lenghth £,
subjected to a uniform tensile stress 0, at infinity. Griffith get the released
strain energy W1 by the crack

W, — 2o, { 1—v?  plain strain

4F 1 plain stress (generalized)

where E is Young’s modulus and v Poisson ratio (see also [55]). Using the
energy balance

0 Iro?,
@W1—7R e g =2
where he used yr = 27s (surface energy). He get the length of crack
4
(=25 (4.3)
UOO

He substituted vs = 5.6 x 10~ *kg/cm, E= T x 105kg/cm2 and oo = 700kg/cm2
to ed the surface energy vs on the crack surface X(t) \ ¥ and set ygr = 2vs to
(4.3) and get the rough size of £ ~ 1 x 10~ 3cm.

We now introduce the concept of energy release reate

(L) = fim L) — £l O, £)

=510 S0\ 3]  £=lhe) (Y
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Now we call
Ve(t+0) = (lslt% |S(t+6t) \ 2(1)|

the speed of crack extension {3(t)}o<i<r and using (4.4) we can rewrite (4.2)
with
F(2(), £) = HG(L£;2(-)) = vr)Ve(+0) (4.5)

Definition 4.2 (Crack initiation) Assume that the crack is at a stop int <
0. If Va(0+) > 0, then the crack ¥ grow at t = 0.

Griffith’s criterion is the following.
If G(L£;%()) > g, then Vs (4+0) > 0.

Remark 4.3 The inequality (4.1) is valid only if L(t) = L for t > 0, where
L(t) = (f(t),g(t)). Because we can construct examples in which (4.1) holds and
the stress intensity Ki(t) decrease when L(t) # L. By this reason, Griffith’s
criterion s true in crack initiation, but

Theorem 4.4

6(£:2(0)) = Jutunssy) [ o)) (46)
where
e
wi) = ()| _em)
and p the parallel extension
1o () = Fos(v(2), M(z) + vy (7()), ((2))

where < -, >11 denote the inner product on tangent space of 11.

Refer [43] in linear case, and use Theorem 3.3 in non-linear case when h:(y) =

h(7)t.
Since the mappings for h € C1(9%)

h = () = Fos(v(2), A(x) + h(v(2)), As(z))
Ky = Jw(uvuh)
are linear, we can write
[h= Ju(w, py)] = (K(7), h(7))ox

We assume that K € C(0%). The dual space of C(0Y) is Radon measure on
0%, since 0% is compact[5, Chap.I11-2.2]. containig

1 A= B
5Ao—{:o HA#£N  Jpy L

We put Ra(0%) = {A: X is radon measure on 9%, Jos Ady = 1}. The criterion
become; Find Apax € Ra(9%) such that

<IC(’7)7 Amax('y))aﬁ = AEII?(?(}éZ)UC(W)’ )‘(’V»QZ > RC

We can easily show by taking A = ypax the following

A;gﬁgz)m(v), AM)ow = K(max)s K(max) = max K(7)

This means that the crack extends if (vmax) > Vr-
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i

dge
of the crack

Figure 10: field of view w and vector field g

4.2 Griffith-Irwin theory

In fracture mechanics, they consider the stress near the edge 9% will behave like
the plate which is perpendicular to 0%.. By 2-dimensional analysis, they derive
3 modes near 0%, as follows.

Stress tensor at P

Crack front
—e;

At the point (A, &), ' = (21, z2) on the plate, the following exapansion will
hold

3

u(y, ') = Z 5%, (r,0)) + higher order of r, (4.7)
Sic(’y, (r,0)) = K;E]) \/;‘In(ﬂ) fori=1,2; (4.8)
s§onno) = 220 [ a0, (1.9)
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where the constant K;(y) for v € 9% are called the stress intensity factors and

[ 0 . 90
_ o11(6) . cosi </<;1+281n 2)
®,(0) = ] = 0 0 4.10
1(6) _801?)( ) | sin2(m+1—2cosz2> (4.10)
0 L0
—¢21(0)— San(K—l—l—‘rQCOS 2)
Py(0) = = 4.11
2(0) @2%(9) — COSQ (n — 1 — 2sin? 9) ( )
i - 0
.0
O3(0) = sin 5 (4.12)

where k = (3 —v)/(1 + v) with the Poisson radio v.
The constants K;(y), i = 1,2, 3 for each v € 9% exress the modes of following

| 992
T @ 993
l =0 993

T9 | Sliding Tearing
Opening

Using the asymptotic expansions in (4.7), we can derive under rough con-
sideration )
7 ﬁKg (v) v€ox
where FE,G denotes Young’s modulus and shear modulus, respectively. Here
~ become = in the case of the homogeneous isotropic elastic plane stress (see
e.g.[54] and [19, 46] for mathematical result).

K(7) ~ = (K2(y) + K2(3)) +

Remark 4.5 The calculations in (4.7)-(4.12) are made in 2D case (homoge-
neous isotropic elastic plane), so asymptotic expansion in 3-dimensional case
will be open in mathematical view point.

4.3 Crack path

In fracture mechanics, crack paths are calculated by means of broken line paths,
that is, we need the direction and length (See [56, Chapter 7] for detail). We
discuss them with the following simple example: For the straight initial crack
Y. and the virtual kinked crack extension

Ya(t) =2 UdX(t), 0X%(t) ={(z,y); z=lcosa, y=Isina, 0 <1<t}
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Ya(t) U)O((t)

t 755%(t)
% 2% 2 R

Figure 11: Kinked crack extension

There are famous criterions for the direction of crack extension:

Maximum energy release rate criterion: Find o* which take the maxi-
mum value of [a — G(L;X4(:))] on —7 < o < 7.

Local symmetry criterion: Find the angle a# that satisfies the condition
K % (7(+0)) = 0.
Maximum stress criterion: Find o** such that
Tar+ = MAX T and oo+ = 0. (4.13)
Consider the open neighborhood w®(t) of the crack tip v*(t) = (¢ cos , t sin )

as shown in Fig.11.
By mean value theorem, there is a number 0 < 7 < t such that

E(u; Qs, L) = E(u(t); Qsa@y, L) = tdya(r)(u(7), 1y,)

Ko e cosa + essina

Hence we have the relation

Ga(L;3(Y)) lim  lim  Jye ) (u(T); py)

70w (r)| =0

= I (K6 () + Ka(r())

- % (K1(v, @)* + Ka(v,@)?)

where K;(v,a) = lim, 0 K;(v*(7)),l = 1,2. By Maximum energy release rate
criterion, we have

0=FKi(v,« )%Kl('}’,a )+ Ka(v, o )%Kﬂ%a )

If o* ~ 0, then K;(vy,a*) ~ I~(l(fy,~a**),l = 1,2, where a** is the angle obtained
by Maximun stess criterion and K;(7y, «) is introduced in [49]

Ri(y.0) = lim(20r) Y 20p(w)pma. Ka(y.) = lim (2mr) 07 (u) pdd.14)
r— r—
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which is expressed as follows,

Ki(v,a) = Fa(a)Ki(9) + Fie(a)Ka(v), 1=1,2, (4.15)
Fu(0) = 2608(9/2)+icos(39/2),
Fio(0) = —gsin(H/Q)—Zsin(%/Z),
Fn(0) = isin(9/2)+isin(39/2),
Poo(0) = 2008(9/2)—1—2005(39/2).

Maximum stress criterion is equivalent to find a** such that

Kl(’}/aa**) = max Rl(’}/?a)a KZ(’Vaa**) =0

—r<la<lT

Moreover

L (Ri,0)? + Kol 0)?)

= 2Ki(y,a™) %Kl(%a)

a=a** a=a**

~ d
+2K2(’Y,Oé**) @KQ(’%O{) =0

The difference between K;(a,v) and K;(7, a) will be
Ki(a,y) = Ki(y,a) = 0(a?), 1 = 1,2

using the result[1].

5 Shape optimization

In this section, we consider the perturbation I'(t) = 9Q(t) of boundary and
Joint F(t)D(t) N F(t)N(t)-

5.1 Mixed boundary value problem

Let us consider Poisson equation with Dirichlet condition on I'p C I" and Neu-
mann condition on 'y = T'\ I'p, and perturbation I'(t) = {¢y(z); z € T'}

—Au(t) = [ inQ(t)

u(t) = 0 onIp(t)
8;5;) = 0 onIy(t)
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u(t) is disintegrated by singular and regular terms

2 I'p
S K (5 (0)m;(75)S 501, 8(1) )
+ur(t), (5.1)
unlt) € H0(0)
S(r,0) = /rsin(0/2). ()

K (~;),i=1,2: constants depending on T, f etc.
(ri(t),0;(t)), i = 1,2: local polar coordinate with origin at 7;(¢) and ; = ~,;(0)

2
Ro(u, p,) = RQ\(Ba(%)UBs(“/z)(u’/‘go)JrZRBa("/j)(u’“so)

j=1

2
= —Po\(Bym)UBs () (W ) + D Ty (w 1)

i=1
7r
Ppyo (o) = g K(3) senpm () (1, () - 7(%))
where T denotes the unit tangential vector along 0.

Theorem 5.1 If the domain Q2 has tha smooth boundary I', then

GE£.00)
=lim s [0,
gy [ @n, s [ gt s
—% gK(%)ngnDT(%)(uv(%) - T(7))-

where T stands for the unit tangent vector on I' corresponds to the natural
orientation on I', Oru = Vu — (Opu)n and sngp7(y;) = 1 if 7(7:) has the
direction from T'y to T'p and otherwise sngr(vy;) = —1.

5.2 Shape optimization

For a given domain Q°, let u(Q°) be the solution of boundary value problem.
For domains €2, consider the cost functional

J() = /Qj(xaU(Q),VU(Q)) je CQ(Rd7R"L,Rde)

Under the constraint J¢(Q2) = constant, find the domain 2°

J(Q°F) < J(Q°)
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The problem is to find better shape Q°P* than Q° using the const function. In
real problem, there would be many constraints, so that we can find unique min-
imizer. However, in mathematical situation, we suppose only few constraints,
for example, the volume(area) || of € is constant.

5.2.1 Procedure

1. Shape sensitivity: For perturbation Q(t) = ;(Q°),0 < t < 1, find the
shape gradient G(QV),

d
7 Q@) = (G(Q), 1)

2. Minimum search: H1 gradient method(Azegami’s method): Find the vec-
tor field pu® such that

d
boo(p,m) = /QO Z {VuiVn; + pini} - Vp,m € H'(RGRY)
i=1
bon(®m) = —(G(),m) € H(QORY) A {fx condi )

3. Constraint: Use Lagrange multiplier A, such as

boo(u,m) = —(G°(N°),n) Vne HY(Q':R?Y) N {fix condi.}
QP = x4 eu(z) € QO} poPt = p® + Apc

5.3 Energy optimization

Problem: Find the solution w*~! such that

/Q(SW(x,ui_l,Vui_l)[v]dx = /va dx YveV(Q,T'p)
Azegami’s method[4]:  Find a vector field pj such that
boi-1 (M) = Rai(u'™'n)+ A fu'"t(n-m)ds Vn
N
boi-1(p,m) = /Q{Vu :Vn+p-ntde
with conditions for p)

Find p! for the constraint with same conditions for pt,

bm—l(u’i,n)=—/ divpdz Vn
Qi—1

Lagrange multiplier: X = —(JY(Q71) — JH(Q°) + £o) /41

by = / divph de, € = / divp dx
Qi—1 Qi—1
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Better shape: V' = wh + Api, put the new shape with a small number 0 < ¢’
Q={x+eVix): zecQ 1} (5.2)
By Tayler’s expansion w.r.t. Q(e) = {x + epl(z) : z € Q71}

E(u's £,Q) = €(u;f,ﬂi‘1>+t%E(u(e);f,Q(e)) i0+o<6)

= E@'TY £, —thgioa (uh, ph) + o(e)
= EWTHLATY = gl +ole)

5.3.1 Example (Energy optimization)
Consider the domain Q°
Qo = {(z1,22) 2 + 23 <1} ,Tp = {(z1,22) : 2] + 25 = 1,25 > 0}

We calculate two cases: Casel: I'p is fixed. Case2: I'p is changed.

/ {1|Vu|2 — u} dx
al2

|2]  (constant)

vector diagram of V °

10 P
contour map of u contour map of u* contour map of u”
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contour map of u™

contour map of u”
Numerical calculation in Case2:

vector diagram of V °

contour map of u™

contour map of u®

contour map of u

5.4 Mean compliance problem

The problem is considered in the variational problem

aq(u(f2),v)

Lo (v) Yo € v(Q)
E(u(2); Q,0)

Lag(u(), u(Q)) — fo(u(€))
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and means a stiffness maximization problem for the shape optimization with
respect to J(2) = £ (u(f2)). The cost function is equal to

J(Q) = =2&(u(); Q, 0)

by which we can use GJ-integral at shape sensitivity

d d
GO0 = 2 e
= 2Ra(u,p,) +2 fu, dx

a0
Here, in the case that f(v) = fFN g - vds, the part I'y is fixed, that is,

p=p=n=0onTy
FElasticity: Find the displacement u'~! in the reference configuration °~!.
Azegami’s method :  Find a vector field pf such that

boi-1 () = —2Rqi (w' "' m) =2 [ fu'"'(n-m)ds Vn
I'n

with conditions for g

Find p! for the constraint with same conditions for pt,

baio1(pt,m) = —/Qv_1 divpdx for all n

Lagrange multiplier: X = —(JH(Q1) — JH(Q°) + £o) /41
by = / divph de, €1 = / divy, dx
Qi—1 Qi—1

Better shape: V' = ph + Apl, put the new shape with a small number 0 < ¢’

Q ={x+eVix): ze Q1) (5.3)

5.4.1 Example (cantilever)

width
Ei] richlet) height
KM S3(Neumann)
A 4
b4 label=Free
b3 label=Free
b5 label=
Dirichlet b2 label=
N Neumman

b1 label=Middle
v
(g1=0,g2=-0.5)
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Iteration 4, Compliance 1.5809, Volume 10.0498

WJ%MTLL[JMIHIL741%1111//14/1#11

!

T
| / ! ! ! ! ! ro " ’/ ,I /I : \‘ \\:/i //,//// ! //([%Z/ﬂg/[%
PRV . Y

Iteration 48, Compliance 1.38367, Volume 10.0687

5.4.2 Example (cantilever by Allier[3])

Initial shape, Compliance 5.49664, Volume 39.8569
IsoValue

m0.0956083

W0.987949
m1.05169
W1.11543

~ W1.27477
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5.4.3 Example (cantilever by Allier[3], no hole)

LT

ST

AT
S~

Iteration 145, Compliance 2.74167, Volume 39.9308

5.5 Other cost functionals

Cost functional is given by the density j(z), z € R™
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For example, to find QoPt 4 (Q°PY) becomes near to ug(m = 1), in this case, we
put j(2) = (2 — a)?
d

ZJ(Q()da

d .
= — 7 (u(t))
t=0 dt Ja

t=0

- /Q (9.5 () - m)dotu + (u)divps,) | d
= /Q {sz(u)(u - Vu- “w} dr + /{)QO J(u)(p - m)ds
= [ @it [ e ms

o

990
For example, j(z) = (z — ugq)?, Vj = j/ = 2z.

5.5.1 Shape optimizer (adjoint variable method)

Let u/ be the solution of ajoint problem
ago(w?,v) = / (Vi) (u) -vdz  YveV(Q)
Qo
then from Theorem 3.11 we have

/(Vj)(u) u'dr = 6Rgo(u,u’;p,) +/ [ (py, -n)ds
Q 900

J(QY = §Rao (u, v’ ) + /890 {f u? Jr}(u)} (py, - n)ds

5.5.2 Example (j(z) = 2?)

Dirichlet condition on upper semicircle, and Neumann condition on lower semi-
circle. All circle change is permitted.

—Au = 2 in Q
u = 0 on upper semicircle
ou/On = 0 on lower semicirclel’
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Shape:Heron 1, Cos 36371, Vokame 313696

Shapesteaton 1, Cost 36371 Volume 313636

T

-0.2 < u(x) < 0.2}

{z

Ql

Vector field p°Pt
Cost= 3.6371

0%
SSRRIRREERS]
SRR
SRERSIRSIRRRRR:
SRR,
SO OGS
va SRR
KOOI
3

AV,

A
I
s

=
S

e

2

o
S
S
—
|
e

—0.2 < u(z) < 0.2}

{z:

QIOOO

Vector field p°Pt
Cost= 0.29897

0.355013 when ¢ = 800.

1 = 1000

J

(2) =2%)

ircle is fixed

5.5.3 Example (

Upper semic

Q
on upper semicirc

2 n

0
0

—Au

le

on lower semicirclel

Ou/on
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K

vay

%
KO

&2

ava

%

Vv,
&
X

v

=
S

1 = 1000

S
S aavas

SERESSSS
==

Vector field p°Pt
Cost= 0.206676
0.250123 when 7 = 800.

1 = 1000

My deepest appreciation goes to Prof. Kimura, because joint work founded
the new prospects to non-linear problems. I also owe a very important debt to
Prof. Azegami who provided the knowledge on shape optimization.
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