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Preface

Rapid development of computer systems and networks emphasized importance of
application of cryptographic technologies. Confidentiality and reliability can be
naturally attained using the cryptographic technology of secret-sharing, which has
been more and more widely applied for secure storage. However, data must not only
be securely stored but also securely processed, and therefore search and computation
over secured data becomes an increasingly important problem that finds applications
in digital payment systems, medical data processing, and other important areas — these functionalities are
achieved using secure multi-party computation technologies. Acceptance of these concepts for practical
deployment requires a thorough security evaluation, involving mathematical modeling of the implemented
systems as well as their rigorous security proofs. The purpose of this workshop was to discuss the above
aspects. The program included 3 keynote lectures, 6 invited lectures and a panel discussion, gathering over

40 attendees in total. The goal of these lecture notes is to raise awareness about the topics and results discussed
at the workshop, especially among researchers in mathematics and developers in cloud computing and
cybersecurity.

Kirill Morozov, Representative of the Organizers
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—— |

FREBRA/R=2 53 TSY

Photograph 1. Group photo in front of the venue.
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Program

June 12 (Monday)

10:00-10:10 (Opening)

[1] 10:10-10:50 [keynote] Amos Beimel, Ben-Gurion University, Israel
“Graph Secret Sharing”

[2] 11:10-11:50 [keynote] Yvo Desmedt, The University of Texas at Dallas, USA

“Human Recomputable Secret Shares and their Applications in E-Voting”

[3] 14:00-14:40 Mitsugu Iwamoto, The University of Electro-Communications, Japan

“Secret Sharing Schemes under Guessing Secrecy”

[4] 15:00-15:40

Naruhiro Kurokawa, Bank of Japan, Japan

“Function Secret Sharing Using Fourier Basis”

16:00-16:30 (Panel Discussion) Panelists: Bernardo David, Yvo Desmedt, Mitsugu Iwamoto,
Ryo Kikuchi, Naruhiro Kurokawa, Eyal Kushilevitz and Kazuma Ohara.
Moderator: Kirill Morozov

June 13 (Tuesday)

[5] 10:10-10:50 [keynote] Eyal Kushilevitz, Technion, Israel

“Ad-hoc MPC”

[6] 11:10-11:50

Takeshi Koshiba, Waseda University, Japan

“Secure Message Transmission against Rational Adversaries”

[7] 14:00-14:40

Kazuma Ohara, NEC Corporation, Japan

“Optimized Honest-Majority MPC for Malicious Adversaries
- Breaking the 1 Billion-Gate Per Second Barrier”

[8] 14:50-15:30

Ryo Kikuchi, NTT CORPORATION, Japan

“Key components in MEVAL”

[9] 15:40-16:20

Bernardo David, Tokyo Institute of Technology, Japan

“A Provably Secure Proof-of-Stake Blockchain Protocol”

16:20-16:30 (Closing)
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IMI WORKSHOP: CRYPTOGRAPHIC TECHNOLOGIES FOR SECURING NETWORK STORAGE
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June 12-13, 2017, Kyushu University

Linear Secret-Sharing Schemes for Forbidden
Graph Access Structures

Amos Beimel (Joint work with Oriol Farras, Yuval Mintz, and
Naty Peter)

Ben Gurion University of the Negev
amos.beimel@gmail.com

A secret-sharing scheme realizes the forbidden graph access structure determined by
a graph G = (V, E) if a pair of vertices can reconstruct the secret if and only if it is
and edge of G. An important property of these schemes is that they can be used to
construct schemes for the conditional disclosure of secrets.

We study the complexity of realizing a forbidden graph access structure by linear
secret-sharing schemes. A secret-sharing is linear if the reconstruction of the secret from
the shares is a linear mapping. In many applications of secret sharing, it is required
that the scheme is linear. We provide efficient constructions and lower bounds on the
share size of linear secret-sharing schemes for sparse and dense graphs, closing the gap
between upper and lower bounds: Given a sparse graph with n vertices and at most
n'*? edges, for some 0 < B < 1, we construct a linear secret-sharing scheme realizing
the forbidden graph access structure in which the total size of the shares is O(nHﬁ/ 2.
We provide an additional construction showing that every dense graph with n vertices
and at least (g) — n'*# edges can be realized by a linear secret-sharing scheme with
the same share size.

We prove lower bounds on the share size of linear secret-sharing schemes realizing
forbidden graph access structures. We prove that for most forbidden graphs access
structures, the total share size of every linear secret-sharing scheme realizing the graph
is Q(n?/?), this shows that construction of [Gay, Kerenidis, and Wee, CRYPTO 2015]
is optimal. Furthermore, we show that for every 0 < § < 1 there exist a graph with at
most n'*# edges and a graph with at least (g) —n'*# edges, such that the total share size
of every linear secret-sharing scheme realizing these forbidden graph access structures
is Q(n'™#/2). This shows that our constructions are optimal (up to poly-logarithmic
factors).



Secret Sharing
for Forbidden Graphs

Amos Beimel, Ben-Gurion University

Based on works with
Oriol Farras, Universitat Rovira i Virgili
Yuval Mintz, Naty Peter, Ben-Gurion University

Cryptographic Technologies for Securing Network Storage
June 12,2017
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Secret Sharing [shamir79,Blakley79,ItoSaitoNishizekig7]

* Parties: P ={P,,..,P}
* Access Structure T < 27 (collection of sets of parties)

* A scheme realizes T' if:

—Correctness: every authorized set B € T can recover s

—Privacy: every unauthorized set B ¢ I cannot learn anything
about s

Shamir’s t-out-of-n Secret Sharing

* Access structure:T' = {ACP: |A| >t}
* Scheme:
* Input: secret s € IF,, where p > nis a prime
* Dealer chooses a random polynomial
QX)) =s+rx+1rx2 4+ +r_qxt-1
—Shareof Pj: s;= Q(j) modp

Linear Secret Sharing

* Input: secret s € Fy
* Dealer chooses random elements 7'y, ..., 7, EFq
*Share :

* A vector over [Fy

* Each coordinate: a linear combination of s and rq,..., 7y,

* Example 1: Shamir’s scheme:

*5j = Q@) =s+jl-r1+j2 ra+ - +jt1-rymodp
*Example 2: s € [Fy

* Dealer chooses 14,13 € Fy

*s51=(1,11O12)

cs2=(s@Dr1)

*s53=(r,s ®r1Or2)




Why Secret Sharing?

 Storing sensitive information — Robust key management

* Used in many secure protocols:
* multiparty computation
* threshold cryptography
* attribute-based encryption (ABE)
* access control
* oblivious transfer

* Most applications require linear secret-sharing schemes
* Most known schemes are linear

Schemes for Forbidden Graphs [SunShieh97]

A scheme realizes a forbidden graph G = (V, E) if:
* The parties are the set of vertices V
* The authorized sets are:
* The edgesin E
* Every set of size at least 3
* The unauthorized sets are:
* The non-edges
* Asingle party (vertex)

A Scheme Realizing a Forbidden Graph

« se{0,1}
» Foreveryedgee; = (u,v) € E,
— Give arandom bit r;touand r; @ stov
u, v can reconstruct the secret by performing xor on their shares.

r r,®Ds
i ®s T3
T r3®s

* In addition, share s using a 3-out-of-n secret-sharing scheme

* Total share size: O(|V| + |E|) = 0(n?)

9




Upper Bounds for Forbidden Graphs

* Every graph can be realized by a secret-sharing scheme with share
size nltvloglogn/logn — ,1+o() [|jyvaikuntanathanWee17]

* Every graph can be realized by a linear secret-sharing scheme with
share size 0(n°/%) [GayKerenidisWee15]

* We consider linear secret sharing schemes
* Questions:
* If G contains few edges, can we realize it more efficiently?
+ Few =n'*# _ Goal: better than min{n'*#,n3/2}
* If G contains many edges, can we realize it more efficiently?

s Many = (121) —n'*# , Goal: better than n3/2

* If G has an efficient scheme and we add and remove few
edges, can we realize it efficiently?

Motivation

Secret sharing for forbidden bipartite graphs are equivalent to
conditional disclosure of secrets
¢ Used to construct symmetric private information retrieval and
attribute based encryption

Our goal: construct efficient linear secret-sharing schemes for
specific families of forbidden graphs

We want to understand if, for forbidden graphs, linear secret
sharing requires shares of size Q(n/?)
* Which graphs require large shares?

Conditional Disclosure of Secrets (CDS)
[GertnerlshaiKushilevitzMalkin98]

X, s, T y, 8T
Each party has a private input
Both parties know a secret s
Shared randomness r
my m,

Referee knows x, y

A condition: P: {0, 1}V x {0,1}" - {0,1} Xy
Each party sends one message

Learns s iff P(x,y) = 1
Correctness: If P(x,y) = 1, Ref learns s

Security: If P(x,y) = 0, Ref learns nothing




CDS and Forbidden Bipartite Secret Sharing

* Bipartite Graph: 6 = (4, B,E)
* Vertices: AUB
* Edges: Only betweensets E € A X B

* Secret sharing for forbidden bipartite graph
* Every (a, b) € E can reconstruct s
e Everya€ A,beBst. (a,b) ¢ E

should not learn information about s

CDS and Forbidden Bipartite Secret Sharing

xe{0,1}%s,r Yy€{0,1}"s1
* Given a CDS define:
- AB={0,1}" m, m,
* E={(xy):Pxy =1}

* Toshare a secret s:

xy
Learns s iff P(x,y) =1
* sy =my(x,s,1),s, =my(y,s,1)

+ x,y can reconstruct s iff P(x,y) =1 .
iff (x,y) € E

x,y can reconstruct s iff (x,y) € E

Main Result: Upper Bounds

Thm 1:

If a graph with n vertices contains for some 0 < f < 1
— either at most n'*# edges or
— atleast (1) —n'*# edges,

Then there is a linear secret-sharing scheme realizing the graph with total
share size O(n'*F/?),

Thm 2:
If
— G can be realized with a scheme with total share size m.
— G’ obtained from G by removing and adding at most n'*# edges.

Then there is a linear secret-sharing scheme realizing G’ with share size
O(m +n'+h/2),




Main Result: Lower Bounds

e Thm 3: There exists a graph with n vertices such that in any linear
secret-sharing scheme realizing it with a one-bit secret the size of the
shares is (n3/2)

¢ Conclusion 1: The construction of Gay et al. is optimal

e Conclusion 2: Gap between linear and non-linear schemes for forbidden
graphs

+ Thm 4: There exists a graph with n vertices and at most n'*# edges

such that in any linear secret-sharing scheme realizing it with a one-bit
secret the size of the shares is ((n'*£/2)

— Same result for a graph with at least (;‘) —nl*h

edges

¢ Conclusion 3: Our constructions are optimal up to a poly-log factor.

A Scheme for a Graph with n1*#Edges

* Basic Construction: for a bipartite graph G = (4, B, E)
such that 4 is small and every vertex in B has degree at
most d

* Sharesize O(|B| + |A| - d)

« Second construction: for a bipartite G = (4, B, E) such that every
vertex in B has degree at most d

— Sharesize 0(n - Vd)

* Third construction: for a bipartite graph G = (4, B, E) that has at

most n'*F edges
— Share size 0(n'*#/%)

*  Final construction: for a graph G = (V, E) that has at most n'*#

edges
— Share size 0(n'*£/2)

Basic Construction

* If G = (A, B, E) is bipartite graph s.t.
every vertex in B has degree at most d

* Then G has a linear secret-sharing with
total share sizeis O(|B| + |A| - d)

Example: |A| =+/n, |B| =n
= Every b € B has degree at most d = \n
= The total share size is 0(n)




A Scheme with share size 0(n3/?)

* If G = (A, B, E) is bipartite graph
¢ Then G has a linear secret-sharing with
total share size is 0(n%/%)

Scheme:

* Partition A into sets Ay, ..., A, of size \/1t

* Define G; = (4;, B,E N (4;x B))

* Realize each G; with a scheme with total
share size 0(n)

* The total share sizeis O(n-n)

21

A Scheme with share size 0(nd1/2)

e If G = (A, B, E) is bipartite graph s.t.
— The degree of every b € B is at most d
¢ Then G has a linear secret-sharing with \\\
total share size is 0(ndl/2)

With different parameters :
* Randomly partition 4 into:
Ay, ..., Az of size n/Vd “
» Define G; = (4;, B,E N (A;XB)) m
—  With high prob. the degree of every b € B in G;
is at most Vd

¢ Realize each G; with a scheme with total A
share size O (n + (n/Vd) - Vd) = 0(n)
+  The total share sizeis O(n - Vd)

Bipartite with Few Edges

If G = (A, B, E) is bipartite with at most O(n'*#) edges

Then G has a linear secret-sharing with total share size is 0(n'*#/%)

In this talk: O (n5/4+£/%)

Scheme:

Let B, = {b € B : deg(b) > nl/?*#/2}
nl+h

1Bul < 175w

Realize Gpign = (4, By, E N (A X Bp)) A

= nl/2+8/2

— Sharesize O(\/|A| - [By| -n) = 0( - nl/2+B/2. n)
Realize Gyo, = (4, B\By, E N (A x B\B}))
— Share size 0( 14| - |B| -n1/2+13/2) = 0( n-n-nl/2+B/2 )

In the paper: Reduce degree in log n steps

23




Conclusions

Forbidden graph secret sharing is equivalent to CDS = SPIR, Atribute
based encryption

Every forbidden graph can be realized by a linear secret-sharing
scheme with share size 0(n'®).
We show that every forbidden graph with n'*Fedges can be realized
by a linear secret-sharing scheme with share size 0(n*£/2),

— Same result for with () — n'*#edges
There exists a forbidden graph such that in any linear secret-sharing
scheme realizing it the share size is Q(n"%)
There exists a forbidden graph with n'*# edges such that in any linear
secret-sharing scheme realizing it the share size is Q. (n*£/2)
Open: graph access structures

Schemes for Graphs

A scheme realizes a graph G = (V, E) if:
* The parties are the set of vertices V
e The authorized sets are:
e Theedgesin E
e Every set that contains an edge
* The unauthorized sets are:
* The non-edges
e Every set that doesn’t contain an edge r T —@
e Every graph can be realized by a linear
scheme with share size 0(n?/logn) ‘
e Sparse graph: E
+ Dense graph: 0(n5/4+38/4)

Thanks!
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Human Recomputable Secret Shares
and their Applications in E-Voting

Yvo Desmedt

The University of Texas at Dallas
Yvo.Desmedt@utdallas.edu

The classical approach of secret sharing is to consider the secret to be in a finite
field. Computers are used by the dealer to make shares, and computers are used to
reconstruct the secret. Since the invention of Visual Cryptography by Kafri and Keren
in 1987, many researchers have stepped away from these restrictions.

In 2007, Desmedt-Pieprzyk-Steinfeld-Wang considered secrets that belong to a non-
Abelian group, such as the symmetric group (i.e., permutations), to obtain secure
multiparty computation.

In this talk, we consider secret and shares that are permutations, wonder how good
humans can do computations with these and consider them in the context of e-voting,
but then e-voting secure against hacking of the voter’s computer.

10



Human Recomputable Secret Shares and
their Applications in E-Voting

Yvo Desmedt

Univ. of Texas at Dallas, US

June 12, 2017

DALLAS
©Yvo Desmedt Jm

Yvo Desmedt’s work on anonymity was partially supported by: the US
NSF ANI-0087641. The work on voting was partially sponsored by the
UK EPSRC EP/C538285/1, by BT as BT Chair of Information Security
and partly done while being Invited Senior Research Scientist at RCIS
(AIST, Japan).

A part of this research was done while Yvo Desmedt visited AT&T
Shannon Research, Tsinghua University (while funded by the National
Natural Science Foundation of China Grant 60553001, and the
National Basic Research Program of China Grant 2007CB807900 and
2007CB807901).

Part of this presentation is based on:

e unpublished research with Rebecca Wright (with her permission),

e a joint paper with Josef Pieprzyk, Ron Steinfeld and Huaxiong
Wang (Crypto 2007)
©Yvo Desmedt @“\Ii.\‘- )

e a joint paper with Stelios Erotokritou at SCN 2012.
e a joint paper with Stelios Erotokritou at Vote ID 2015.
Special thanks to Rene Peralta whose November 9, 2011 suggestion

to consider Z,o(+) as an Abelian subgroup of S}, allowed us to make
a more user-friendly scheme.

Jtiill\l LAS
©Yvo Desmedt 2

11




OVERVIEW

. Special Secret Sharing Schemes

. Our setting: Post Snowden elections

. A pioneering approach: Chaum’s Code Voting
. Advantages/disadvantages of Code Voting

. Our setting, assumptions and their impacts

. The voting: passive adversary only

. Some usability tests (SCN 2012)

. High level description

0 N o ok~ W NN =

9. Details: technical background
10. The mixing for the single-seat: Efficiency improvement

11. The mixing for the single-seat MIX-friendly case

1‘? DALLAS
©Yvo Desmedt 3

12. The mixing for the multi-seat election
13. The active case: An announcement
14. Variants

15. Conclusions

1‘? DALLAS
©Yvo Desmedt 4

1. SPECIAL SECRET SHARING SCHEMES

The most known secret sharing scheme is Shamir’s secret sharing
scheme (over 11,000 citations). His approach was to consider:

1. the secret and shares to be in a finite field,
2. to have the dealer use a computer to generate shares, and

3. to use computers to reconstruct the secret.

Since the invention of Visual Cryptography by Kafri and Keren in
1987, many researchers have stepped away from these restrictions
(note that this was reinvented by Naor and Shamir in 1994 and that
Kafri-Keren have 225 citations and Naor-Shamir have 2741).

Generalizing from finite field to Abelian Groups was initiated by

1‘3 DALLAS
©Yvo Desmedt 5
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Desmedt-Frankel, published in 1994 (see also: Cramer-Fehr,
Cramer-Fehr-Stam and the Cramer-Fehr-Ishai-Kushilevitz
application to MPC).

After many years of research, in 2007 Desmedt-Pieprzyk-Steinfeld-
Wang succeeded in making black-box “MPC” computations over
non-Abelian groups. The motivation was purely theoretical. Today
we will see an application of the situation in which:

the secret and shares belongs to a non-Abelian group,

i.e., S, (or asubgroup of S, such as Z,).

DALLAS
©Yvo Desmedt ‘b 6

2. OUR SETTING: POST SNOWDEN ELECTIONS

Post Snowden: today most people understand that computers,
laptops can be hacked and may have trapdoors, malware, etc.

Potential solutions:

e Halderman (2015) recommended to stop using Internet Voting.

e We believe we need to restart/encourage a line of research in which

we wonder how to vote assuming that the device you use for voting
has been hacked.

Our model (high level): we assume we can not trust:
e any single party,

e any single device, etc.

J!i PDALLAS
©Yvo Desmedt 7

3. A PIONEERING APPROACH: CHAUM’S CODE VOTING

IACR Election
Antoine - 7556144853
Bart - 6599795021
Christian - 6077258430
Helena - 2450694286
Josh - 9093806830

Thomas - 4448934855
Tsutomu - 2536721542

IACR Election
Voting Codes

Antoine - (826184569
Bart - 7122634148
Christian - 4470763011
Helena - 49841 80847
Josh - 0614639500
Thomas - 6372008011
Tsutomu - 361 1648895

bll\l LAS
(©Yvo Desmedt and Stelios Erotokritou 8
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IACR Election
Please enter your
string below:

IACR Election

Voting Codes
=z Antoine - 8173472492
Bart - 9287374672

Christian - 0198291639
Helena -2373919017
Josh - 2638939283

T Thomas - 1923872622
Tsutomu - §294729027

@ DALLAS
(©Yvo Desmedt and Stelios Erotokritou 9

4. ADVANTAGES/DISADVANTAGES OF CODE VOTING

Advantages of Code Voting: secure even if voter's machine hacked.
Disadvantages:
e requires IACR to send random numbers by postal mail, and

e no collusion between postal system (or sender of envelopes) and
the party receiving the vote.

e authorities do not like the system because it differs too much from
what is used today!

J!i i DALLAS
©Yvo Desmedt 10

Ballot stuffing with Code Voting

IACR Election
Voting Codes
Ardome - T556144053
Bart - 6899798021
Christian ~ ~ 6077258430
Helens - 2450694286
Josh - SERFR0EEI0
Thames - 4448034855
- 2SBGT2IS4T

(©Yvo Desmedt and Stelios Erotokritou
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5. OUR SETTING, ASSUMPTIONS AND THEIR IMPACTS

Our setting:

1. Voter votes using an untrusted device

2. The voter has access to many communication devices/media (e.g.,
home PC, mobile, at work, in the library, postal)

3. Voter uses “human computations,” which we checked on reliability
(see further).

4. Authorities use untrusted computers, potentially with state
sponsored malware.

DALLAS
©Yvo Desmedt @ 12

Our first model:
1. at most ¢ devices/parties are infected.

2. our adversary is passive, curious, but not interested in: modifying
the vote, in a DoS, etc. (see further)

Impact:

e Many cryptographic tools become useless, such as: AES, ElGamal,
ZKIP, NIZK.

e So, we need to make a new MIX

@Im LAS
©Yvo Desmedt 13

6. THE VOTING: PASSIVE ADVERSARY ONLY
A user friendly approach: (multi-seat, not “code-voting”, t = 1)

List of Candidates
Do not Do not

vote vote

« Antoine  *—]

o

- | without | without O

. Christian +— Sheet 1 Sheet 2 O

. Helema +| cCOvering | covering |
this area | this area

« Tsutomu & O

©Yvo Desmedt and Stelios Erotokritou 14
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6. THE VOTING: PASSIVE ADVERSARY ONLY
A user friendly approach: (multi-seat, not “code-voting”, t = 1)

Put this edge against "Candidate list edge” ’Pul this edge against Arrow Sheet 2
List of Candidates | _Pu_tlhisEe
t.?::md.lens ml?:syeaz Do not
. Antoine {3 O
vote
- B = without | ©
« Christian *— Sheet 2 O
« ‘Helsii " co.verlng o
/ this area |
o Tsutomu *—] — O

(©Yvo Desmedt and Stelios Erotokritou

6. THE VOTING: PASSIVE ADVERSARY ONLY
A user friendly approach: (multi-seat, not “code-voting”, t = 1)

Put against "Voting Bullets"

=

List of Candidates |pewmisete  pathisedee | pyg against Pt

against against Amow

“Candidate lis Sheer 2 | Sheet 1 e/
. Antoine +—{* =@
. Bal't — — C
» Christian *— —*0
o Helena « / —>8
Tsutomu +— =58
- Sheet 1 Sheet 2 -

¢‘ 14
6. THE VOTING: PASSIVE ADVERSARY ONLY

A user friendly approach: (multi-seat, not “code-voting”, t = 1)

List of Candidates |pumiscage  Purthis cdge | pyg against  Puagains

against against Armow *Voting

“Condidate lis sheer2 | Sheet 1 Bullets®
o Antoine ¥ = — 0

=
. Bart — —» .
¢ Christian *— —> 0
« Helena / — 0
Tsutom — — 0O
TR Sheet 1 Sheet 2 =
¢, 14
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In the single-seat election (mix friendly), we use code-voting (¢t = 1)
We regard the Abelian group Z,o(+) as a subgroup of 1 and
replace the above “shares” by e.g.,

Put this edge Put this edge Put against Put agamls[
against "Trace against Arrow Sheet 1 "Secret Bullets”
the Line" edge Sheet 2

Sheet 1 Sheet 2

These corresponding to an addition plus 4 mod10 and plus 3
mod 10 respectively. We assume there are 10 candidates.

7. SOME USABILITY TESTS (SCN 2012)

How good are users able to add strings of numbers, each mod10?

Our test show only 95% get this correct, even when helping users,
as following:

Share I~ Share2  Share 3  Share4  Share 5
7209 2 7484 8172

s o
| |
5
3
+ 2
7
9 et
0
5
+ 7
2] ——l
jpum
65—
4— L
+ 1
[ils
7
1
9
7
+ 8
32
Your Secretis: 2|5]9]7 16

Please re-write your secret: 2597

Details:

We asked 100 participants to do several tests (their ages did not
surpass 65).

Asking to add 5 shares of 4 digits mod 10, 95% of the people
computed the correct result, using the above visual tool to avoid
confusion.

However, when using the permutation based addition, 99% of the
people computed the correct result.

A common comment from the participants was that the permutation
based mod10 addition was extremely easy - whereas the other

experiment was rather challenging for some people.

@Il\li.\‘-
17
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8. HIGH LEVEL DESCRIPTION
Background: secret shares
Example: 2-out-of-2:
Goal: Give binary secret s to 2 parties, Alice and Bob.
How: Flip a coin. Give the result, s, to Alice.
Give Bob: s @ s;.
Can be generalized to:

e work over any finite group,

e the case we do not trust ¢ insiders.

Justlet s =s1 0500+ 0847.

1‘? DALLAS
©Yvo Desmedt 1

High level protocol description:

1. We use a Code Generation Entity (CGE), which will in the
pre-voting stage choose initial one-time pad (informally, ;) for each
voter.

2. Our MIX network uses layers, each layer having at least ¢ + 1
shares.

3. The CGE sends shares (¢ + 1) of these =; to the MIX servers in the
first layer.

4. The MIX network anonymizes and modifies the shares of r;. The
permutations used are the same for all the shares of the same
value. For this, each layer had a leader that remembers the
permutation used and the modifications done at that layer.

1‘? DALLAS
©Yvo Desmedt 19

5. Each server in the last layer of the MIX sends a share to each voter
(communication paths used by different servers are vertex disjoint).

6. The voter combines the shares (see above) and votes.

7. The voter sends the “encrypted” vote back to the leader of the last
layer of the MIX network.

8. Starting with the leader of the last layer, all permutations and
modifications done at that layer are undone.

9. The leader of the first layer of the MIX sends the
almost-unencrypted vote to the CGl.

10. The CGl uses the inverse of its one-time pad.

1‘3 DALLAS
(©Yvo Desmedt 20
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9. DETAILS: TECHNICAL BACKGROUND

We primarily use (besides MIX and shares):

e Concepts from secure multiparty computation
Simplified goal: given shares of s and shares of « how to make
shares of s * u, without computing s and w.

e Desmedt-Kurosawa 2000 introduced:
Definition 1. We say that (X, B) is an (n, b, t)-verifiers set system if:
1. |X|=n,

2.|Bj|=t+1fori=1,2,...,b, and

3. for any subset F' C X with |F| < ¢, there exists a B; € B
such that £ N B; = (.

DALLAS
©Yvo Desmedt @ 2

Vertex disjoint paths: paths p; and p» from S to R are vertex disjoint
if the nodes on path p;, and on p,, except for S and R are disjoint.

@ DALLAS
©Yvo Desmedt 22

10. THE MIXING FOR THE SINGLE-SEAT
MIX-FRIENDLY CASE

We have several protocols, of which we describe the simplest.
In the simplest, we require that each server in layer i is physically
different from each server in layer j (i # j).
Note: Our MIX-friendly protocols can also be used in situations in
which we have a single receiver (can be generalized) and multiple
senders. The receiver should not learn who the sender is. For
simplicity we focus on voting.
In below protocol we assume that b = ¢ + 1. We denote the servers
in layer ¢ by a “block” B;.

Protocol 1. Prevoting protocol
Step 1 Let 71} be the i*" one-time pad (where 1 < i < v). The receiver

DALLAS
©Yvo Desmedt 23
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(CGI) shares each 7} into ¢ + 1 shares w}yj € Fy (where
1 <j <t+1)and privately sends 7&'1, ; to the corresponding MIX
M1IX, ;inblock By.

Step 2 The leader of By (we call M1X; ;) informs all others MIX servers
in By how they have to permute the i-index of all above 7ri17_7-. This
permutation is defined by p1 €g S,.

Step 3 On the 7 indices all MIX servers in By apply the permutation p;. So,
1.1
Tig = Tpu(@).g°
Step 4 The leader of By chooses t + 1 random bit string modifiers
w} ; €Er Fy and privately sends wj ; to parties in By.

Step 5 For cach (i, j) the ¢ + 1 values 7} ; are regarded as shares of 7}.
Similarly, the ¢ + 1 values w},j are regarded as shares of w}.

1'@ DALLAS
©Yvo Desmedt 24

The MIX server in B; computes 7r,2] = w,;lj + 7r,;1]~.
2

0]
one time pad.

w2 . are regarded as shares of 72, the p; (i) permuted and modified

Step 6 Steps 2-5 are repeated, incrementing by one the indices of By and
By until the last block By, is reached.

Step 7 Shares held by MIX-servers of block B, are denoted as ¢; ;.
MIX; 41, € By then sends ¢; ; to the it" sender.
The communication paths used by different servers in block By 1

are vertex disjoint.
Voting

1. The vote recombines the shares (see above) to make its
one-time-pad and then this is used to encrypt the number of the
candidate chosen.

1'@ DALLAS
©Yvo Desmedt 25

2. The voter sends the encrypted vote to the leader of the last layer of
the MIX network.

MIXING the votes

1. The leader of block j = ¢ + 1 having received v votes, “decrypts” the
votes using —w?.

2. The leader of block j permutations using pj’1 to undo the earlier
permutations on the order of the votes.

3. The leader of block j sends all so obtained v “votes” to the leader of
block j — 1.

4. Above steps are repeated.

5. The leader of block 1 sends the final “decrypted” votes to the CGl.

1'@ DALLAS
(©Yvo Desmedt 2

20




Theorem 1. The above protocol is a reliable, private and
anonymous message transmission protocol.

For the proof, see the paper for details.

1‘3 DALLAS
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11. THE MIXING FOR THE SINGLE-SEAT: EFFICIENCY
IMPROVEMENT

We can improve on the number of servers and the number of layers
we need, by using concepts of verifiers set system, and modeling
the communication system between the different servers in the
layers as a graph (as in PSMT). We modify the communication
between two layers to maintain the security.

Concept: (see Burmester-Desmedt 2004, formalized by
Desmedt-Wang-Burmester 2005)

Color-based adversary structure: computers running the same
platform are given the same color. We assume at most ¢ color are
corrupted, i.e., nodes corrupted have at most ¢ different colors.

In our context, we want to reuse as many times as the same MIX

1b DALLAS
©Yvo Desmedt 2

servers.

When a MIX server appears twice in the Directed Acyclic Graph
between the CGlI and the voters, we color it with the same color. We
then consider PSMT in which we have a general adversary
structure defined by the color based one.

Solution proposed: see Erotokritou-Desmedt 2012 (SCN) and also
Vote ID 2015.

1b DALLAS
©Yvo Desmedt 29
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12. THE MIXING FOR THE MULTI-SEAT ELECTION
Sketch:

Above works well because we work over an Abelian group. In the
case of multi-seat elections, the one-time-pad is a permutation, and
so no longer an Abelian group.

That means that Step 5 (in which we used +) in the last protocol
does not work. We need to use a more complex protocol to modify
the shares in the blocks. For this we use the work of
Desmedt-Pieprzyk-Steinfeld-Wang of Crypto 2007.

Let us look at some nice graphs from this paper.

J!iill\l LAS
©Yvo Desmedt 30

When t = 1:

‘b DALLAS
©Yvo Desmedt 31

and when t = 2:

1 4

1
1 1
5 ; 3

‘b DALLAS
©Yvo Desmedt 32

22




13. AN ANNOUNCEMENT
We have a theoretical solution against active adversaries.
In this case, we consider:

e The mixing process: in which we can have active adversaries.

e The communication part: since different routes are used and since
we do not use authentication, active adversaries could be in the
communication protocol. Note that solving this using PSMT
technology seems easy, however:

e The voter needs to deal with incorrect shares! The voter cannot
even run Shamir’s secret sharing!! So, certainly not a normal
error-correction!

We use a variant of a repeat code to solve the last problem. (We

Jtiill\l LAS
(©Yvo Desmedt 33

base this on the protocols for PSMT in SCN 2012 with an active
adversary). While our test show that humans can combine
permutations with roughly 99% being correct, we do not test
whether humans can decode repeat codes correctly.

Therefore we call our solution (upcoming paper) theoretical.

@Im LAS
©Yvo Desmedt 3

14. VARIANTS

e Verification: Chaum allowed for voters to receive a confirmation that
the vote was received, by giving the voters a second code for each
candidate.

We too can obtain this, i.e., our solution is a distributed secure
version of Chaum confirmation which works among the lines of
above.

Better trust models: Our slides and text focuses on the case we do
not trust ¢ parties, devices, etc. We can generalize this to general
access structure. That allows us to consider state sponsored
hacking and state infected hardware/software.

We can then assume at most ¢ platforms have been hacked.

@ DALLAS
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15. CONCLUSIONS

Achieving a good solution will not be easy. Indeed:

e Paranoid cryptographers assumed for 20 years that the servers
used by authorities must be the bad guys!

e Cryptographers ignored for too long the fact politicians and the
public want internet voting.

e Many cryptographers have no understanding of the weaknesses of
modern PCs and what techniques hackers can deploy against
voters.

e Theoreticians are not interested in secure Internet Voting.

e These promoting practical research do not understand it may take

1'@ DALLAS
©Yvo Desmedt 3

10 years research with lots of interaction before a good solution
might be presented. They want a solution now!
We showed that the disadvantages of Chaum'’s code voting can be
addressed. We are aware that our solution is “Towards Secure
Internet Voting.”
It took 15 years to design reasonable voting schemes when using
secure booths. So, we can expect that others will improve on our
solutions.

Jiiih\l LAS
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IMI WORKSHOP: CRYPTOGRAPHIC TECHNOLOGIES FOR SECURING NETWORK STORAGE
AND THEIR MATHEMATICAL MODELING

June 12-13, 2016, Kyushu University

Secret Sharing Schemes Under Guessing Secrecy

Mitsugu Iwamoto (Joint work with Junji Shikata)

The University of Electro-Communications
mitsugu@uec.ac. jp

Information theoretic security is a class of security notion to guarantee the security
against adversaries with unbounded computing power. In particular, after seminal work
by Shannon [5], perfect secrecy has been well investigated because of its importance.
Recently, Alimomeni and Safavi-Naini introduced an information theoretic security
notion called guessing secrecy for symmetric key encryption (SKE) [1].

In defining guessing secrecy, we assume that an adversary guesses a plaintext only
once by using the corresponding ciphertext without a key. If the adversary tries to
maximize the success probability of the guess and it is equivalent to the success proba-
bility in guessing the plaintext without the key, we can say that no advantage is given
to the adversary from the ciphertext.

In the original guessing secrecy [1], the maximum success probability of guessing is
averaged with respect to the ciphertexts, and hence, we call it average guessing secrecy.
On the other hand, ITwamoto and Shikata later discussed the maximum probability of
guessing in the worst case with respect to the ciphertext in defining guessing secrecy,
which is called worst-case guessing secrecy. Intuitively, worst-case guessing secrecy of-
fers intermediate level of security between average guessing secrecy and perfect secrecy.
Iwamoto and Shikata also discussed average and worst case guessing secrecy for secret
sharing schemes (SSS) as well as SKE [3,4].

The aim of this talk is to shed light on the relations among perfect secrecy, average
and worst case guessing secrecy by investigating several constructions of SKE and
SSS. As a result, it turns out that the relations of the above-mentioned information
theoretic security notions depend on the primitives, and the difference between SKE
and (2, 2)-threshold SSSs becomes clearer.

The content of this talk is based on our previous work [2-4] and recent results.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Numbers JP15H02710,
and JP17H01752.
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QOutline

o Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS)
@ PS in Secret Key Encryption (SKE)
@ GS in Secret Key Encryption (SKE)
@ Two Types of Guessing Secrecy: A-GS and W-GS for SKE
@ GS in Secret Sharing Schemes (SSS)

e Part I: Average Guessing Secrecy in Secret Sharing Schemes
@ OTP-like Construction of (2,2)-SSS under A-GS
@ |deal Secret Sharing
@ Ideal A-GS SSS can beat ideal PS SSS

Q Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes
@ Weak independence between secret and shares under W-GS
@ Difference between SKE and SSS under W-GS

2/36
Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS)
Introduction
Perfect Secrecy and Guessing Secrecy
3/36
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Symmetric Key Encryption (SKE)

SKE: X := (Px, Enc, Dec)

Message

M ——> Enec ————> Dec —>)\/[

> Real values: key k € K, message m € M, ciphertext ¢ € C

» Random variables: key K, message M, ciphertext C'
s Prre(s -, -): joint probability distribution of K, M, C
= K | M: K and M are independent

» No decryption error is assumed

I e A CO R RS e ITES M PS in Secret Key Encryption (SKE)

Perfect Secrecy [Shannon, 1950 (1945)]

Encryption: ¥ := (Pxk, Enc, Dec)

Message
M ——> Ep¢c ————> Dec —>\[
- s
Definition (Perfect Secrecy: PS)
¥ satisfies perfect secrecy (PS) if

Vm e M,Ve e C, Pyc(mlc) = Py(m)

> i.e., M and C are statistically independent
= P

» 3 is secure against adversaries with unbounded computing power

5/36

B GO F TSI ITES M GS in Secret Key Encryption (SKE)

Guessing Secrecy for SKE [Alimomeni, Safavi-Naini, ICITS2012]

SKE: X := (Pk, Enc, Dec)

Message

M——> Ene ———> Dec —>)\/[

» Suppose that an adversary guesses m from ¢ only once
> Best strategy: maximize success probabilities in guessing m
¥ argmax,, Py c(mlc): Most probable m when ¢ is given

5 arg max,, Pyr(m): Most probable m when no information is given

» Two ways in treating the ciphertext ¢

27




Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS)

Average / Worst-case Guessing Secrecy

Definition (Guessing Secrecy for SKE) )
» Average GS, A-GS: [Alimomeni, Safavi-Naini, ICITS2012]

Ec [mmax PM‘C(m|C)] = m"aleM(m)

» Worst-case GS, W-GS: [I-Shikata, ICITS2013]
max max Pyyic(m|c) = max Ppr(m)
(& m m

- P

> Clearly,

[weaker] A-GS < W-GS =< PS [stronger]

Our Interest

» Gaps among the security notions

7/36

Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS)

Average / Worst-case Guessing Secrecy in Min-Entropies

Definition (Guessing Secrecy for SKE in Min-entropies) E
» Average GS, A-GS: [Alimomeni, Safavi-Naini, ICITS2012]

REE(M|C) = Roo(M)
» Worst-case GS, W-GS: [I-Shikata, ICITS2013]
REN(M|C) = Roo(M)
where
> Roo(X) := —log max, Px(z)
> RYE(X|Y) := —Ey [log max, Py (z]Y)]
> RYN(X|Y) := —logmaxyy Pxjy (z|y)

=

Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS)

Guessing Secrecy

for Secret Sharing Schemes
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I e A O R RS IS GS in Secret Sharing Schemes (SSS)

(k,n)-threshold Secret Sharing Schemes  [shamir, Biakiey, 1979]

Example ((3,4)-SSS)

Shares

Definition (SSS under PS)
> S is decrypted from A without error if |A| > k

> Vs €8, Vua € VA Py, (slua) = Ps(s) if |[A| <k —1

- P
10/36
GS in Secret Sharing Schemes (SSS)
Guessing Secrecy for Secret Sharing
Definition (PS for Secret Sharing)

> Vs €S, Yua € VAl Py, (sJva) = Ps(s) if JA| <k—1
-» P
Definition (GS for Secret Sharing)

-GS: — i <k

» A-GS: Ey, [Iileag(Ps‘vA(S‘VA)] I?e&g{PS(S) if |[A|<k—-1

_GS: — H <k_

» W-GS max {TG%;(PSWA(SMA)} rgleag(Pg(s) if |[A|<k—-1
- P

» Clearly, [weaker] A-GS < W-GS < PS [stronger]

Our Interest
» Gaps among the security notions J
= 11/36
GS in Secret Sharing Schemes (SSS)
Guessing Secrecy for Secret Sharing in Min-Entropies
Definition (GS for Secret Sharing Schemes in Probabilities)
» A-GS: Ey, [machSWA(s\VA)] = machs(s) iflA| <Ek-1
LS 5€
W-GS: = i <k —

» W-GS max {YEE?PS\VA(SWA)} rgleachg(s) if |[A] <k—1
- P
Definition (GS for Secret Sharing Schemes in Min-Entropies)

> A-GS: R38(S|Va) = Roo(S) if Al <k—1

> W-GS: R¥Y(S|Va) = Roo(S) if|A| <k—1
- P
Note

> This talk: we mainly focus on constructions of (2,2)-SSS under GS
- o

12 /36
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T O RS ESY  GS in Secret Sharing Schemes (55S)
Overview of This Talk

Obvious Relation
[weaker] A-GS < W-GS < PS [stronger]

Part I: A-GS vs. PS
» SKE & SSS: A-GS < PS (“<" means that explicit gap exists)
» A-GS attains shorter share size than PS for ideal SSS

Part Il: Security level of W-GS
» SKE: (A-GS <) W-GS = PS
» SSS: A-GS < W-GS < PS

g
Key Point
» GS does not require statistical independence

» Non-uniformity of the secret: M and S

-

Part I: Average Guessing Secrecy in Secret Sharing Schemes

Part |

Average Guessing Secrecy

in Secret Sharing Schemes

14 /36

LEL A VAEE ORI ST SRR E R BRI ELEl - OTP-like Construction of (2, 2)-SSS under A-GS

Naive Idea: (2,2)-SSS as SKE

> We show how to construct SSS under A-GS
= We concentrate on construction of (2,2)-SSS under A-GS

w= Easy to extend to (k,n)-threshold and general access structures

Naive Idea:

» SKE ~ (2,2)-SSS under PS
SKE (2,2)-558
B independent i

.‘I
kY

% independent

gl

\
...34.
{
5
(VAR

!
ok - ...

} independent

\C‘F‘ """

C independent

-~

15/36
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OTP-like Construction f (2, 2)-555 under AGS
OTP-like SKE under A-GS

SKE: ¥ := (Pk, Enc, Dec)

Message C v
M———> Ene ———> Dec —>)\[

- P
OTP-like SKE [I-Shikata, ICITS2013] |
» M=C=K={0,1}
» Py(0)=Px(0)=p, 1/2<p<1<«PSiffp=1/2
> One-time pad for 1-bit encryption:
Encryption: menc(k,m) =k @& m
Decryption: 7gec(k,c) =k @ ¢
= 16,56
OTP-lke Construction o (2, 2)-555 under A-GS
Analysis on OTP-like Construction
wgi=1-p<1/2
M K ‘ c ‘ Pyrxe ‘ Pyo
o oo p [ 2.
! 1]0 7 p’+q?
0 1|1 pq 1/2
1 01 pq 1/2
For ¢ € {0, 1}, max,, Pysjc(m|c) is attained by m = 0, hence,
Ec [maxm PM‘C(m\C)] = Py(0) (= maxy, Py(m))
Theorem [I-Shikata, ICITS2013]
> Security: Roo(M) = Roo(M|C) = —logp, but M [ C'!
» Efficiency (in key-size): Roo(K) = Roo(M) = —logp (optimal)
= 17/36
OTP-like Construction of (2, 2)-5SS under A-GS
Regarding SKE as (2,2)-SSS
One Time Pad (OTP) OTP-like 5SS
M K] C ] Pukc | Puc S Vi[Va]Psvv | Pows
o ofo| » |Em 0 010 p |
1 110 ¢ % = 1 1 0 7 p;ITq?
0 1|1 Pq 1/2 0 1|1 Pq 1/2
1 01| pq 1/2 1 01 Pq 1/2
£ Can be extended to (n,n)-threshold and general access structures
Question
» How about the share size ?
» Can it be ideal secret sharing?
18 /36
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Efficiency in Share Size: Ideal GS under PS

Proposition (LOWGI’ Bound) [Karnin—Greene—Hellman, 1983]

VPs € P(S), PS-SSS = H(V;) > H(S),i € [n]

- -
Definition (Ideal SSS with perfect secrecy)
Ideal (i.e., efficient) PS-SSS PN H(V;) = H(S),i € [n]

- P,

Proposition [Blundo et al., 1998] |
VPs € 2(S), PS-SSS = H(V;) >log|S|,i € [n]

where the equalities hold only when S is uniform
- P

Corollary
PS-SSS can be ideal iff S is uniform J

g =

19/36
Ideal Secret Sharing
Ideal SSS under A-GS
Theorem [Dodis ICITS2012, I-Shikata ICITS2013]
A-GS/W-GS = Roo(V;) > Roo(S)
- P

Pf) Lower bounding via Rényi entropies of order a and av — oo (omitted)
Question
Does ideal (k, n)-threshold GS-SSS exist for non-uniform S?

- P

c.f.) (k,n)-threshold PS-SSS can be ideal iff S is uniform

Theorem [I-Shikata, 1SIT2014]
35 (non-uniform), 3 ideal (k,n)-SSS under A-GS

- P

20 /36

Ideal Secret Sharing
OTP-like SSS Cannot Be “Non-trivial” SSS under A-GS

One Time Pad (OTP) OTP-like SSS
M K ‘ C ‘ Pyke ‘ Pyio 5 W ‘ Va ‘ Psvive | Psjv,
0o ofo| ¥ | & 0 00| p |
1 110 e % = 1 1 0 s pquqa
0 1|1 pg 1/2 0 1|1 pq 1/2
1 0|1 pq 1/2 1 0|1 Pq 1/2

> If OTP-like GS-SSS is ideal: Roo(S) = Roo(Vi) = Reo(V2)
5 Roo(S) = Roo(V1) = —logp but Reo(V2) = —log(p* + ¢%),
= OTP-like Ideal GS-SSS = p = 0,1/2

@ In this case GS-SSS = PS-SSS = trivial and not interesting

21/36
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Towards “Non-trivial” Ideal (2,2)-SSS under A-GS

» OTP-like (2,2)-SSS cannot be “non-trivial” SSS under A-GS!
» More efficient ideal SSS is possible under A-GS !

SKE (2,2)-555
F A ™
14  independent t ‘' guessing
S 7 X I Vit
,‘ k \ 2 ,* v 1 .
1 L I \/
I s
| m # | 3
| A 1 A
\ [ ' \ ! .
N oo ) "Voe ---- - 5
‘\C,’ guessing \ %ﬂguessing

22/36
Part I: Average Guessing Secrecy in Secret Sharing Schemes I Lo PR LR W S TR
“Non-trivial” Ideal (2,2)-SSS under A-GS
Example [I-Shikata, 1SIT2014] |
OTP-like SSS under A-GS Ideal SSS under A-GS
(g=1-p<1/2) (p=>1/4)
S W ‘ Va ‘ Psviv, | Psjv, S W ‘ Va ‘ Psv,v, | Psv,
0 00| p ppﬁ 0 010 lp llj‘gp
1 10| ¢ |#s 1 1|0 2 | 2
0 11 Pq 1/2 0 1| 1] %2 1/2
1 01 g 1/2 1 0|1 Loe 1/2
@ ldeal = p=0,1/2 & Ps(0) = Py, (0) =p+ 152
- -
> For each v; € {0,1}, max; Pgyy; (s|v;) is attained by s = 0, hence,
Ey, [max, Psm(s|1/,-)} = Ps(0) < R (S|Vi) = R (S)
23/36
Ideal A-GS SSS can beat ideal PS SSS
Efficiency of Ideal SSS Under A-GS
Analysis [I-Shikata, 1SIT2014] |
The proposed construction satisfies
Roo(V1) = Roo(V2) = Reo(S) = —log £
Since S is binary,
H(Vi) = H(Va) = H(S) = h(222) < 1ifp>1/4
- P
= PS-SSS cannot attain H(V;) < 1 due to the following result:
Proposition [Blundo et al., IPL1998] |
VPs € 2({0,1}), PS-SSS= H(V;) > 1 (=log|S|)
where the equalities hold only when S is uniform
- B
24 /36
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Part |: Average Guessing Secrecy in Secret Sharing Schemes

Summary of Part |

» SKE & SSS: A-GS < PS
> A-GS attains shorter share size than PS for ideal SSS

#= Non-trivial Ideal SSS cannot be obtained from SKE under A-GS
> Observation

GS-Encryption GS-Secret Sharing
oy - ™
t 4 ' independent + \ guessing
Vet I 7 Vs
e JUR
: VL] s
I m | m
1 a A 1 A
1 ) L i ,l '
‘ ----- . ‘ ----- .
"\C,F guessing X %’guessing
25/36
Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes
Part 1l
Worst-case Guessing Secrecy
in Secret Sharing Schemes
26 /36

Part I1: Worst-case Guessing Secrecy in Secret Sharing Schemes

Guessing Secrecy in Secret Sharing Schemes

Definition (GS for Secret Sharing)

> A-GS: I;leag(PS(S) =Ey, |:I;1€a§(P5|VA (5|VA)} if|[A|<k—-1
_GS: — i <k—

» W-GS I;lefg(Ps(s) max {I&ag{PSWA(swA)] if |[A|<k—-1

- L.

> Clearly, [weaker] A-GS < W-GS < PS [stronger]

Claim of Part Il

» SKE: (A-GS <) W-GS = PS [I-Shikata, ISIT2015]
» SSS: A-GS < W-GS < PS J
27/36
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“Weak” Independence between S and V; under W-GS

Theorem (Necessary Condition for W-GS-SSS)
> §*:=argmax,, Ps(s), i € {1,2}
Yy, Psy, (s*,v;) — Ps(s™)Py,(v;) =0 (w-ind)

Pf) Easy to derive from the definition (omitted)

Remark
> If S LV (ie., PS),
Vs, Voi,  Psv;(s,v;) — Ps(s)Py;(v;) = 0

then (w-ind) is obviously satisfied

28/36

. TR 303 2 S i €
Encryption by Latin Square

> We require [S| = |V|
) A-GS, W-GS = |S| < |V (proof: omitted)
Definition (SSS based on Latin square)

For a fixed s € S, the map fs : vy — w2 is bijective
- P
Example (Value of s when v; and vg are given)
U1\U2 0 1 2
0 01 2
1 1 2 0
2 2 01
- P
> Regarding (s,v1,v2) as (m, k,c), (2,2)-SSS becomes SKE
> In the following, assume SKE & SSS are based on Latin square
29/36
Weak independence between secret and shares under W-GS
Distributions of Shares Are Equivalent via Permutation
Weak Independence
i€ {1,2}, Vv, Psy(s*,v;)— Ps(s)Py,(vi) =0 (w-ind)
Theorem (Equivalence via permutation)
Probability vector [Py, (v1)]y, ey is obtained by permuting [Py, (v2)]u,ey
Pf) Immediately follows from def. of Latin square (L) and (w-ind):
w-ind " x
0 "2 Py (%, 01) = Po(s") P (v1)
L
© Poin (5", fir(00) = Ps(s") Py ()
w-ind .
WD Po(s")Prafir(v1)) = Po(s") Py (v)
> This result does not hold in A-GS if S is not uniform
30/36
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CELA VTSR E NS PRSI RT R SRS ERN R Weak independence between secret and shares under W-GS

SKE: W-GS = PS

> Regarding (s,v1,v2) as (m, k,c¢), (2,2)-SSS becomes SKE

Theorem
If W-GS SSS is based on Latin square

Vi L S = Vj is uniform over V
- o
Corollary

If W-GS SKE is based on Latin square

[I-Shikata, 1SIT2015]

K 1 M = K is uniform over K

— SKE satisfies PS

31/36

EL N RIS HEE NSNS CAT R SRS EL ST I Weak independence between secret and shares under W-GS

Proof of W-GS = PS on SKE

Theorem
If W-GS SSS is based on Latin square

Vi L S = Vi is uniform over V

Pf) v i= argmax Py, (v;) = Py; (v1) = Py (v3) (%)

0=">"(Psiy(s,v3) — Ps(s) P, (v3))

seS

=Y (Psvi(s, £ (v3)) = Ps(s)Pi; (v7)) ) (L) & (8)

sES

=" Ps(s) (P, (£ (v3)) = Py (v])) ) S L
seS
= Y1, Py, (v1) = Py, (v]) i.e., V4 is uniform

Part Il: Worst-case Guessing Secrecy in Secret Sharing Schemes [P EIEREEEIRS SR T ERSESRTL L AN

SSS: W-GS < PS ?

Theorem (Necessary Condition for W-GS-SSS)
> s* :=argmax,, Py(m), i € {1,2}

Vi, Psy, (s*,v;) — Ps(s™)Py,(v;) =0 (w-ind)

Question

> Can S and V; be correlated while satisfying (w-ind)? = Yes! J

=

33/36
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Diffrence between SKE and S55 under W-GS
Example of (2,2)-SSS: W-GS < PS

> max, Pg(s) = maxg,, Pgv, (s]v1) = maxg 4, PSWQ(S\vg) =1/2

s wv1 vy Pg(s) Psyv,(s,v1,v2) Ps(s)Py(v1) Ps(s)Py,(vs)

0 0 7/40 7/40 7/40
01 2 12 7/40 7/40 7/40
2 1 6,/40 6/40 6/40
0 2 5/40 91/800 91/800
1 1 1 13/40 4/40 91/800 78/800
20 4/40 78/800 91/800
0 1 2/40 49/800 42/800
2 1 0 7/40 3/40 49/800 49/800
2 2 2/40 42/800 49/800

34/36

Diference between SKE and 555 under W-GS
A-GS and W-GS Can Depend on Shares

> max, Pg(s) = max,, Pgv, (s|v1) = Ey, [maxs PSWQ(S\VQ)] =4/7

s wv1 vy Pg(s) Psyv,(s,v1,v2) Ps(s)Py,(v1) Ps(s)Py,(vs)

0 0 16/49 16/49 80/343
0o 1 2 4/7 8/49 8/49 44/343
2 1 4/49 4/49 72/343
0 2 8/49 48/343 240,/2401
1 1 1 12/49 3/49 24/343 132/2401
2 0 1/49 12/343 216/2401
0 1 4/49 36/343 180/2401
2 1 0 9/49 3/49 18/343 99/2401
2 2 2/49 9/343 162/2401
35/36
Difference between SKE and SSS under W-GS
Summary of Part Il
» Relation among security notions depends on primitive:
= SKE: (A-GS <) W-GS = PS
= SSS: A-GS < W-GS < PS
= “Weak” independence is important
) Future work: General construction of SSS under W-GS
» Observation: SKE (2,2)-55S
;e i
+ 5 ¥ independent 4 % guessing
i k‘? ----- 7 { v :
: .,LI\ Y 1 b \
» Epm ;ﬁ ) @ S
1\ ! b I'. ' &
\ ¥ e 0 L .
\ ¢ guessing ‘\?“?‘guessing
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Function Secret Sharing Using Fourier Basis

Naruhiro KUROKAWA
(Joint work with Takuya OHSAWA and Takeshi KOSHIBA)

Bank of Japan
naruhiro.kurokawa@boj.or. jp

Function secret sharing (FSS) scheme, formally introduced by Boyle et al.[1] at EU-
ROCRYPT2015, is a mechanism that calculates a function f(z) for x € {0,1}" which
is shared among p parties, by using distributed function f; : {0,1}" — G(1 < i < p),
where G is an Abelian group, while the function f : {0,1}" — G is kept secret to
the parties. We observe that any function f can be described as a linear combination
of the basis functions by regarding the function space as a vector space of dimension
2" and give a new framework for FSS schemes based on this observation. Based on
the new framework, we introduce a new FSS scheme using the Fourier basis. This
method provides efficient computation for a different class of functions (e.g., hard-core
predicates of one-way functions), which may be inefficient to compute if we use the
standard basis such as point functions. Our FSS scheme based on Fourier basis is
quite simple due to the fact that the Fourier basis is closed under the multiplication,
while the previous constructions|[l, 3] have to incorporate some complex mechanisms
to overcome the difficulty.

REFERENCES

[1] E. Boyle, N. Gilboa and Y. Ishai: Function secret sharing, in: EUROCRYPT 2015, Part II,
LNCS 9057, pp.337-367, 2015.

[2] N. Gilboa and Y. Ishai: Distributed point functions and their applications, in: EUROCRYPT
2014, LNCS 8441, pp.640-658, 2014.

[3] T. Ohsawa, N. Kurokawa and T. Koshiba: Function Secret Sharing Using Fourier Basis, in: Proc.
the 8th International workshop on Trustworthy Computing and Security, Lecture Notes on Data
Engineering and Communications Technologies, to appear, Springer.
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Function Secret Sharing
Using Fourier Basis

Naruhiro KUROKAWA (Bank of Japan)

Joint work with Takuya OHSAWA'" and Takeshi KOSHIBA *
(1. Saitama Univ. 2.Waseda Univ.)

Topics

* Threshold Secret Sharing

* Definition Function Secret Sharing(FSS)

* Related work (Distributed Point Function)
+ Linear Combination of FSS

* Basis function

* General FSS by using Basis FSS

+ Distributed Fourier Basis

+ Conclusion

Threshold Secret Sharing

In Secret Sharing (SS) scheme, share information Si(1 <i <p),
generated from the secret information S, are distributed to

P parties.

In (n,p) -threshold SS scheme, the secret information S can be
recovered from 72 shares, but no information on S is leaked
from 1, — 1 shares or less.

— 53

(4, 3) Threshold SS
3

/ Sz ’x 53/ ?
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(n,n)-Threshold Secret Sharing

simple (7, n)-threshold scheme

S = ZSZ' (mod q)

i=1
51 -
/r
/ S S \\_‘/,
— S 3

(4,4)-Threshold SS
4

P-party Function Secret Sharing

f k1 \ T
zf plg \
: : f(z)
Correctness * ) /
flz) = Z frl@ _ﬁ' k: f’fp
Security : -

f is not leaked out from
at most P — 1 distributed functions

5

Application of FSS
(Distributed Database)

w ?
—
fkl(Data)

l Result of

Keyword
U search

Searching

‘ =f(Data)

Jr, (Data)
)

|U}?




Definition of FSS

A p-party FSS scheme with respect to a function class F

is a pair of PPT algorithms (Gen , Eval ).

The functional value f(z) is obtained from all shares (y1, 42, - ,y,)
of the parties by using a decode function Dec.

Gen(1*, f) — (ki , k)

f € F: Secret Target function )\ : Security parameter
Eval(i, ki, x) — y;

Yi : q-th party’s evaluated share
Dec(yy, -+ yp) — f()

Related work

Point function

For a € {0,1}", b e {0,1}™,
the point function P, : {0,1}" — {0,1}™

P,Lb(a) = b,
P,y(a@)=0" forall d #a

Pa,b(x)

41




Distributed Point function(DPF)
[Gilboa et al, 2014]
Gen(a,b) — ko, ky € (Fgm)*"

_ 0
kO—T17T27"' y Tyt 3 Ton

1
k1:7“1,7’2,“' ’/ra’... , T'on

ko@ki=10 0 b 0

Fval (i, ki, x) — k; [27/] which is the Zlth element of k;

Dec Key size
Eval(0, ko, x) & Eval(1, ki, x) = Pyy(x) O (2”)

10

Distributed Point function(DPF)
[Gilboa et al, 2014]
T is viewed as a pair(i, j) € {0, 1}" x {0, 1} a = (v,7)

w = Nog("- 2y = Mow( Dy g qo,1)e (0,132 ™
0

ko = s1llty Sy

|0 SzthQu kl = 31||t1 5},”1 SQthQu
G(s)l1] Gl Glsa)1] G(s1)[1] G Gls2)[l]
G(s1)[2] G(s%)[2] G(s2u)[2) G(s1)[2] G(shH[2) G(521)[2]

G(si) G(si)
G2 o) Glsa)[2] Gl oy CGlsz)l2]
2’)1 G G(s)[1] 0
G(s9)[2 G(sh)2 )
M leeme| M lecw= | b [yn
G(s0)[24) G(sh)24] o) Key size

; O(nlogS)

Improved DPF

[Boyle et al, 2015]
P‘lab(x) r = (‘T17'I2>x37"' ;In> S {071}n

Gfg OB GlAOCW,C @ afgeciD

08 00
" r\mD

‘@ @ @ @ @ @

DCPWrA  BCWB BCW,d OCWeD  BCWod B OB @ Cwod STWLC

GAOCW, A

w— (@O -b
Eval(lﬁ,x) _’O'w Key size
Dec: @ wed @-w—b

TP e 2 O(n)
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P -party DPF

In case of p=3 a=(v,7)
X is viewed as a pair (¢,7) € {0, 1}" x {0, 1}

é‘lih' B ailzb' B ’Aflh

oMo 0 0 AA
P |mmo o ..00 AAAo k2
0

[Boyle et al, 2015]

N 1 K @00
@ k0000 T 000® 000

0
OV, OV Oy WG EDG(O) & CTie- (b) Yth
0

13

P -party DPF
[Boyle et al, 2015]
a X
A, oz 7a Eval(i, k;, x)
k, (Mo mo G- G- CTk
k(mmo o eler;hem f GIB-eTTa® G(I-&CT
ks\o HB o G+t G(B-e TtV
=0
A, r=a FEval(i, k;, x)
k@0 @0 G(@) & CT® G(@®) & CVik
l@®o o] [ of ci@ecTie (@ eChk
ks\@ 0 0@ G(®) & CVWp® G(®) & CWar
14 =)

Linear Combination of FSS
[Boyle et al, 2015]
Given FSS schemes for function families £, G taking
G, — G, there exists an FSS scheme for class
F+G:={f®g|lf€F, ge g}, with key size
equal to size(F + G) = size(F) + size(G),

and evaluation time time(F + G) = time(F) + time(G).
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Interval function
[Boyle et al, 2015]

DPF,

f(a,b):{g oot ]jé<>\ Ij/l<‘>\

0 else , DPF,
kO k//
Poy(z) | /<>\ -}Q\-
g
, DPF, + DPF,

16

a

Basis function

Function [ :{0,1}" — {0,1}" can be regarded as a
vector space of 2"

ze{0,1}® f(x) f:{0,1}* = {0,1}

000 £:(1,0,1,0,0,1,0,1) € (Fy)*’
001 Vector space has basis vectors.
010 So function space also has be basis.
011 f(z) = Z Bih;

101 B; : Coefficients
110

h; : Basis functions

111

General FSS by using Basis FSS

[Ohsawa et al, 2017]
If there exists an FSS scheme for Basis function h;(x)

f(z) = ho(x) + hi(z) + -+ + hy(x)

ko= (kg kos - kg) kg = (KD, k- KT kp = (KO, k), k)
y():(yg?yév7y61) ylz(y(l)ayiﬂu?) yp:(yp’yp’”'7y;)

Got+ g1+ +gn = fx)

18
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Merit of using other Basis

FSS for Fourier Basis

on Boolean domain

Fourier Translation
X={0.T-1}" f:X—C

[f(x) - Y f<a>xa<x>J

ae{0,-- , T—1}"

Fourier Coefficient

fla) = i 3 fla)e et
Fourier Basis -~
Xa(x) _ 627rz'(a-ac)/T

20

Fourier Translation on Boolean domain

X ={0,1}" f:X—C
[f(sc) - Y f’(a)xa(x)J
ac{0,1}"

Fourier Coefficient

fla) = 5 O Fla)e e

zeX Euler's formula
Fourier Basis e
Xa(l') — 67”((1-:17) £ (_1)((1«32)

21
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Fourier Basis

1
o — I I
’ko =ao = (0,1) 0,00 (0,1) (1,0) (1,1)

X

A BT
! 00 00 (L0 (1L

_ _ I T
a=a®a =(1,0) (0,0) (0,1) (1,0) (1,1)

22

2-party FSS for the Fourier Basis

[Ohsawa et al, 2017]
Xa(z) = (=1)**

Geng ( 1/\7 CZ) a (n, n)-threshold scheme

<\ o
ko=0o Kk =aq @izoai -

Eodll (0, ko, z) = (ko-z)  Bualf (1,ky,2) = (k; - @)

Deck
ans = FEval} (0, ko, z) © Evals (1,ky, x)
(—1)" = xa(2) Rkyx) © (k- 2) = (b © ) - )

23

p-party FSS for the Fourier Basis

[Ohsawa et al, 2017]
Xa(®) = (=1)*

Gen;]: ( 1/\7 CL) a (n, n)-threshold scheme

ko :ao‘%/ pa, @ a-a

1 =Q1 - kp D i=0

Efual-E‘(O, ko, z) = (ko- ) E::ng(L ki, z) = (k- x) Evalf(p7 kyp,x) = (ky )
Decg )
_ Fr.oq.
ans ;S@i:OEvalz (1, ki, )
(1" = Xa(2)

24
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Conclusion

* Introduction of Function Secret Sharing(FSS)

+ Distributed Point Function

POON i

+ Linear Combination of Basis FSS
Secret— f(x) = Z Bih;
ie{o)n T Secret

+ Distributed Fourier Basis

Xa(7) = (_1)<a.z> a (n,n) -threshold
»
ko :CLO%' : kPap @z‘:oai -
25
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Ad Hoc PSM Protocols:
Secure Computation Without Coordination

Eyal Kushilevitz, Technion
(Joint work with Amos Beimel and Yuval Ishai)

eyalk@cs.technion.ac.il

We study the notion of ad hoc secure computation, recently introduced by Beimel et
al. (ITCS 2016), in the context of the Private Simultaneous Messages (PSM) model
of Feige et al. (STOC 2004). In ad hoc secure computation we have n parties that
may potentially participate in a protocol but, at the actual time of execution, only k
of them, whose identity is not known in advance, actually participate. This situation
is particularly challenging in the PSM setting, where protocols are non-interactive (a
single message from each participating party to a special output party) and where the
parties rely on pre-distributed, correlated randomness (that in the ad-hoc setting will
have to take into account all possible sets of participants).

We present several different constructions of ad hoc PSM protocols from standard
PSM protocols. These constructions imply, in particular, that efficient information-
theoretic ad hoc PSM protocols exist for NC!' and different classes of log-space compu-
tation, and efficient computationally-secure ad hoc PSM protocols for polynomial-time
computable functions can be based on a one-way function. As an application, we obtain
an information-theoretic implementation of order-revealing encryption whose security
holds for two messages.

We also consider the case where the actual number of participating parties ¢ may
be larger than the minimal & for which the protocol is designed to work. In this case, it
is unavoidable that the output party learns the output corresponding to each subset of
k out of the ¢ participants. Therefore, a “best possible security” notion, requiring that
this will be the only information that the output party learns, is needed. We present
connections between this notion and the previously studied notion of ¢t-robust PSM (also
known as “non-interactive MPC”). We show that constructions in this setting for even
simple functions (like AND or threshold) can be translated into non-trivial instances
of program obfuscation (such as point function obfuscation and fuzzy point function
obfuscation, respectively). We view these results as a negative indication that protocols
with “best possible security” are impossible to realize efficiently in the information-
theoretic setting or require strong assumptions in the computational setting.
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Ad Hoc PSM Protocols:
Secure Computation without
Coordination

Amos Beimel (BGU)
Yuval Ishai (Technion, UCLA)
Eyal Kushilevitz (Technion)

(Appeared in EuroCrypt 2017)

Ad-Hoc MPC [BGIK16]

The (basic) problem:
» Universe of n (honest but curious) parties

e Set of k parties S, not known in advance, participate in the actual
computation of some f (say, symmetric).

Examples:
» Voting,;: output majority vote of & participants.

« Dating: 2 out of n players want to know if they match.

Easy in “standard” MPC model where parties can interact

Private Simultaneous Messages (PSM) model
[FKN94,IK97]
Xl Xolh X3,03 Xnoln

* Simple communication pattern
¢ Shared/Correlated Randomness

Example: SUM
Input: Each P, is given x; € G.
Output: P, gets Xx;.

Referee’s

Randomness: ry,...,7, 7, €gG s.t. Zr;=0. Goal: f(xy, ..., %)

Protocol: -
Security:

1. Each P; computes m;=x;+r,and sends to P, Nothing else

2. P, computes Xm; = Xx; + Zr; = Xx;.

Security: by choice of 7;’s.
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Why PSM?

* Minimal model — potentially easier to analyze

* Building-block for low-round MPC in the plain model
* A special type of randomized encoding [IK00,IK02]

« Implies Conditional Disclosure of Secrets (CDS)

Ad-Hoc PSM model

r Xy ry X373 X, Ty

oo

Correlated Randomness
Exactly k parties show up
Participants not known in advance

Referee’s
Goal: f(xz,x3)

Security:
Nothing else

Ad-Hoc PSM: assumptions + variants

» Exactly k parties show up.

If allow |S] >k “best possible security” definition gives Ref /’s
value on all size-k subsets.

» f symmetric; else can sort by id’s or specific fg, for any S.

* S not known to the parties but will be known to Ref.
If require anonymity, need anonymous channels.

 Information-Theoretic or Computational security
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Rest of the talk

» IT Constructions
— Warm-up: Ad-hoc PSM protocols for specific functions f°
— Ad-hoc PSM for /' from standard PSM for f
— Ad-hoc PSM for f* from standard PSM for a related g

« Connections of other primitives to (variants of) ad-hoc PSM:
Order revealing encryption from (IT) ad-hoc PSM
— NIMPC (z-robust PSM) iff ad-hoc PSM w/best possible security
— 10 exists iff computational ad-hoc PSM w/best possible security

(fuzzy) point function obfuscation from ad-hoc PSM for simple /s w/best
possible security

Basic Example #1: difference (k=2)

For $={P,,P;}, i<j, output x; - x;.
(common) Randomness: r € G

Protocol:
1.P. mz=x+r
2. Py: given m,m;, where i<j, outputs m-m; = x-x;.

Correctness: Y
Security: V

Basic Example #2: SUM,

Recall PSM protocol for SUM, :
Randomness: ry,...,r, € G s.t. Zr;= 0.

Messages: m;=x;+r;.

Ad-hoc PSM for SUM,:

Randomness: r,...,r, € G s.t. Xr; =0, as above.
k-of-n secret sharing of each r; into {7, } e,
P, receives r;and {r;;}

Messages: P; sends m=x;+r; and all its shares {r; } .,

Output of P, (on S of size k): for ie S knows x;+r,, for i¢ S can
reconstruct r; (knows k shares) = output Z,_qx 7+ X, o7 = Z; g Xy

Security: for i€ S, value of 7, hidden; view of P, can be generated
from its view in SUM,, protocol where each P;¢ S has x=0.
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Generic Protocols — 15t attempt

For all T of size k, distribute randomness for PSM. for f.
Each P, sends its messages for all 7's.t. ie T.

Correctness: for actual set S, referee has all messages of PSMg.

Problems:
» Complexity overhead of (}) compared to standard PSM for f.

* What if for TS the messages of PSM (sent by parties P,e SNT)
reveal information?
— Can be fixed...

Generic Protocols — The case k=2

Assume I1, (standard) PSM for f'with players Q,,Q;.
Goal: Turn IT into ad-hoc PSM IT" that works for any S={P,P}.

Idea: Let one of P,,P; simulate Q, and the other Q.

Problem: Which of Q,,Q; to simulate? (Parties do not know S.)
Solution: Use binary representation i=(iy,...,ij,, ). P; applies IT,
log n times. In /% iteration simulates Q;,. For i#j exists ¢ s.t. i, %/,

Problem: When i=/, both simulate same Q;, = correlated msgs.

Solution: Each P; sends message of I, masked using “key” &, and
discloses ki, = messages can be un-masked iff i, # j,.

The case k=2 (cont.)

Randomness:

For /=1.....log n: generate randomness r,, r,;, for PSM I1,. for 2
parties Q,Q,, + randoma,.b, o, a,.b,, € I,
Give a,o,b,¢, a,1,b,, and rui to P,.

Messages of P;:
For=1.....log n: P;simulates Q; message m,; in I, on (x, ;).
It sends masked message m,; + aui,#*i+ b, andalso a.vi;, bui,.

Correctness: For ts.t. ij, Pyhasa,g, b, a,,,b,, and can un-mask
myq, m,; to compute f{x;,x;).

Security: Since i#/ then messages hidden (2-wise ind.).
Complexity: O(log n) overhead in randomness and communication.
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Generic Protocols — General &

Idea: Use perfect hash family to select which P; simulates each Q.
(A family H={h: [n]—>[k]} s.t VS of size k, 3 1-1 func. he H.)

Perfect Hash facts:

* For k=2, the log n bit functions form such H.

» Explicit and probabilistic constructions.
E.g., probabilistically |H| = e“k-log n suffices.

Idea (cont.): Run original PSM I, for each he H. Mask messages
with k-wise independent keys (4, , je [k]) + shares of (k-1)-0f-n
sharing of other keys. P, can remove mask iff /2 is 1-1 on S.

Complexity: overhead of = |H| (good for “small” k)

Generic Protocols from a PSM for a related func.

Given f: X¥ — 7, define g: (XU{Ll})" = YU{L}:
if #non-_L inputs is &, then output f'on those inputs; otherwise L.

Assume I1, (standard) PSM for g. Construct ad-hoc PSM II for /.
Randomness: r,...,r, for I,

Let m, ;= message of P; in I, on (L,r)).

Let {m, ;,}, = shares in a k-out-of-n sharing of m, ;.

Give P, randomness r; and shares {m ; } .

Message of P its I, message mx;; on (x;r;) + its shares {m, ; } ..

Correctness: For S of size k, P has my,; for ie S + can reconstruct
allm, ; forjg¢S = Output of I, is the correct answer.

Security: cannot reconstruct m ; for je S.
Complexity: O(n) overhead due to secret-sharing.

Corollaries
» Every function g has a PSM (with complexity |X|™)
Cor: Every function f has an ad-hoc PSM
e If g has a poly. size (modular) branching program, then it has
an efficient PSM
» If f has poly. size (modular) branching program, then so does

the corresponding g

Cor: If f has a poly. size (modular) branching program, then
f has an efficient ad-hoc PSM
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Order Revealing Encryption (ORE)

ORE [AKSX04, BCLO09, BCO11]:
* A private-key encryption equipped with a comparison
— A public procedure Comp
e ¢; = Enc(xy, k), c; = Enc(xy, k)
e Comp(cy,cy) = 1iffx; < xp
— Encryption does not leak additional information

I How to Order

oo,

Ad-Hoc PSM = ORE

» Use ad-hoc PSM for the Greater-Than (GT) function with
n = 27 parties and k = 2
- A - security parameter
— GT has a small branching program = (IT) PSM
* Key generation: pick randomness for the ad-hoc PSM
« Encryption of x € {0,1}%:
— Choose a random party P;, generate ;
— Encryption ¢ = (i, message of P; on (x,17))
e Comparing ¢4, ¢;: use (2,n) ad-hoc computation of GT
» IT-Security for two messages: if ¢y, ¢, use different parties
» Complexity: logn - poly(¥) = A - poly(¥)

Best-possible secure ad-hoc PSM vs. NIMPC

NIMPC [BGIKMP14] = t-robust-PSM = A PSM that can tolerate
a coalition of P, with <7 parties.

NIMPC also uses best possible security notion.
Def: (k,t,n)-ad hoc PSM = best possible security VT s.t. k<|T|<t.

We prove:

e (n/2,n/2+t,n) ad-hoc PSM for f = ¢-robust PSM for f* with
same complexity.

* t-robust PSM for some related 3n-argument g’ = (k,t,n) ad-hoc
PSM for f with O(n) overhead.
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Computational Ad-Hoc PSM: Remarks

¢ [BGIK16]: Multi-Input Functional Encryption (MIFE) =
Distribution Design = Computational best-possible-security ad-
hoc PSM (w/indistinguishability def.)

* Best-possible-security ad-hoc PSM = NIMPC = iO [BGIKMP14]

* Best-possible-security ad-hoc (1,2n,2n) PSM for AND
= point function obfuscation

* Best-possible-security ad-hoc (7,2n,2n) PSM for Threshold func.
= fuzzy point function obfuscation

Ad-hoc PSM for AND = Point Function Obfuscation

* Forapoint x = (xq, ..., X), define I,(y) = 1iff y = x.
e I - (n,2n,2n) ad-hoc PSM for AND

» Obfuscating point function /,:
— Generate randomness 7y, ..., 1, for I1
— Let m;;, = message of P; on (b,7;)
- Vileta;,, =m;; and a5 =m;g

— Obfuscation: aq,9,a1,1 , -, An 0, An1

Computing I, (y): ad-hoc decoding from ay y,, , ..., @py,

Summary

We present concrete and generic constructions of Ad-Hoc PSM
protocols.
— Every function has an ad-hoc PSM

— All functions that are known to have an efficient PSM have an efficient ad-
hoc PSM

e Connections to ORE, NIMPC, i0, point function obfuscation

Obvious open problems: more protocols, improved complexity and
parameters, more connections with other primitives.

= Best possible security

Thank you!
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Secure Message Transmission (SMT) is a two-party cryptographic scheme by which
a sender securely and reliably sends messages to a receiver using n channels. Suppose
that an adversary corrupts at most ¢ out of n channels and makes eavesdropping or
tampering over the corrupted channels. It is known that if ¢ < n/2 then the perfect
SMT (PSMT) in the information-theoretic sense is achievable and if ¢ > n/2 then no
PSMT scheme is possible to construct. If we are allowed to use a public channel in
addition to the normal channels, we can achieve the almost reliable SMT (ARSMT),
which admits transmission failures of small probability, against ¢ < n corruptions. In
the standard setting in cryptography, the participants are classified into honest ones
and corrupted ones: every honest participant follows the protocol but corrupted ones
are controlled by the adversary and behave maliciously. As a real setting, the notion of
rationality in the game theory is often incorporated into cryptography. In this paper,
we first consider “rational adversary” who behaves according to his own preference in
SMT. We show that it is possible to achieve PSMT even against any ¢t < n corruptions
under some reasonable settings for rational adversaries.

In the above, we consider settings where the rational entity is a single adversary. It
means that the adversary’s behavior is determined by his own preference (utility). We
also consider the case where there are two independent rational adversaries. We show
some cases where the Nash equlibria plays an important role to design SMT protocols
secure against two independent ratinal adversaries.
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Secure Message Transmission
Dolev, Dwork, Waarts & Yung (FOCS 1990 & JACM 1993)

Secure Message Transmission

Setting
« Several channelsare available between Alice and Bob

* Some of them are corrupted by (adversarial) Eve
* Eve can alter messages over the corrupted channels

Goal

* Alice sends her messages to Bob
« Correctness: Messages Bob receives are the same as ones Alice sends
* Privacy: Eve cannot get anyinformation on the messages
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Secure Message Transmission

Why SMT ?
* In the standard setting of multi-party secure computation,

* Each playeris a node of a complete graph
* Between any two players, there is a secure channel represented as an edge

* In an incomplete graph (i.e., network),
« Alice (on a node) and Bob (on another node) want to exchange messages
« If Alice and Bob execute SMT, a virtual secure channel can be assumed

Possibilities and Limitations of SMT

Eve corrupts t out of n channels

* Perfect Case (Perfect SMT (PSMT))
n > 2t : efficient PSMT protocol

e.g., Kurosawa & Suzuki (EuroCrypt 2008 & IEEEIT 2009)
n < 2t : impossible (Dolev, Dwork, Waarts & Yung 1993)

* Almost Reliable Case (Bob receives a wrong message with small prob.)
n < 2t : stillimpossible (Franklin & Wright, EuroCrypt 1998 & JoC 2000)

Public Channel

Public channelis an authenticated one
* No secrecy
* Cannotbe tampered

* Almost Reliable SMT (ARSMT) with publicchannel

n>t:3-round protocol
(Shi, Jiang, Safavi-Naini & Tuhin, ISIT 2009 & IEEEIT 2011)
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Rational Adversaries

Cryptographicadversaries attack on protocols
without consideringany risk

Rational adversaries attack on protocols
if the attack is economically reasonable

Rational Adversaries

To attack, or not to attack.
That is a problem !

If I succeed in the attack, | will get $1,000,000
But if | fail, | must pay a fine of $500,000
Hmm...

Game Theory in Cryptography

Halpern & Teague (STOC 2004)

* In Shamir’s (n, n)-threshold secret sharing,

« After n-1 participants submit their shares, the n" participant might stop to
submit his share to monopolize the secret

* To prevent this kind of malicious behavior, which may be a
consequence of his preference, the notion of Nash equilibrium was
introduced to design secure protocols

* Design a protocol so that choosing “obeying the protocol” for all the
participantsis Nash equilibrium
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Game Theory

* Mathematical models of conflictand cooperation amongrational
decision-makers

Player 2 Player 2
ChoosesC ChoosesD
Player 1 ,
ChoosesA 5 -1
Player 1
ChoosesB 0,0 25

Payoff matrix of a (2-player, 2-strategy) game

Nash Equilibrium

* The Prisoner’s Dilemma

If each prisoner betray the
other, each of them will

Prisoner 2 Prisoner 2 serve 5 years in prison
Silent Betray
If both prisoners remain
Prisoner 1 > silent, both of them will
Silent | -1,-1 | -10,0 only serve 1 year in prison
Prisoner 1 l If P1 betrays P2 but P2
Betray 0,-10 -5,-5 remains silent, P1 will be
— set free and B will serve
10 years in prison
Byzantine Agreement

i o
t,:\ YIRS Y,
71 Tt '

Coordinated Attack Leading to Victory Uncoordinated Attack Leading to Defeat

By Debraj Ghosh : How the Byzantine General Sacked the Castle : A Lok Into Blockchain
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Byzantine Agreement

n Generals want to agree “attack” or “withdraw”
even if there exist t of n faulty Generals

n >3t : protocolsfor solving the Byzantine Agreement (BA)
n < 3t :impossible
n < 2t :impossiblein any setting (e.g., a PKl setting)

Rationality in Byzantine Agreement

n>t:a perfectly secure protocol against rational adversaries
(Groce, Katz, Thiruvengadam & Zikas, ICALP 2012)

Eve can corrupts t out of n Generals
* Whether Eve corrupts or not dependson expected payoff value
* The simplest setting in Game Theory

Rationality in Secure Message Transmission

*Casel
« Eve can corrupt t ouf of n channels
* Whether Eve corrupts or not depends on the expected payoff
(as in Rational Byzantine Agreement)

* Case 2
* Two independent rational adversaries : Eve & Eva
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Rationality Models (for Case 1)

* Timid Model
Eve is afraid of loss of the reliability or being exposed her dishonesty

For example, she owns a channel and gains the usage fee from users. If she
loses the reliability of the channel, then her gain may be decreased or she
may be accused of her behavior.

* Conservative Model
Eve is afraid of the environmental degradation

The environmental degradation means that the trafficenvironmentcould be
difficult to maintain because of the detection of some dishonesty. Thus, Eve
is afraid of being specified corrupted channels or the protocolabortion.

Results

* Case 1 (Single Adversary)
PSMT with publicchannelin Timid Model, if n > t
PSMT in Conservative Model, ifn >t

* Case 2 (Independent Two Adversaries)
PSMT if n >t and some condition holds

c.f.
In the standard setting, PSMT only if n > 2t even with publicchannel

Strategies of Rational Eve

* Eve can tamper (T) a channel or eavesdrop (E) on the channel
* Her possible actions are T&E, T only, E only, and nothing

* Assume that passive attack (i.e. eavesdropping)is not exposed
* No reason why Eve stops eavesdropping!

* Thus, she chooses “T&E” (o, : active) or “E only” (o, : passive) for her
action
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Utilities of Rational Eve

* Several viewpoints

* The result of message transmission
* The same message is delivered (u;)
« A different message is delivered (uy)
* Aborted (u,)

* Eve’s points
* Acquisition of the secret message (u,)
* Detection of corrupted channels (uy)

Rationality Models and Utilities

* Timid Model
Eve is afraid of loss of the reliability or being exposed her dishonesty

min{u, us}>u, u;>0, ug<0

* Conservative Model
Eve is afraid of the environmental degradation

Up >Ug>U,, U;>0, uyg=0

Protocol 1 (against Timid Eve)

* Shi et al’s 3-round ARSMT protocol with publicchannel works as
PSMT protocol against Timid rational adversaries

* |t uses 2%-?t-almost strongly universal hash functions
 L:length of hash values
* Prih(x;) =y; & h(x;) =y, ] < 222
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Protocol 1 : 15t Round

r, Ry
2 Ry
/w\ Bob receives r7 &R/
over ith channel
W '
h; : random universal hash

rs, R
Bob computes T/=R/@h(r/)
if he can and sets bi=0 ;
Otherwise set bi=1

Protocol 1 : 2" Round

Alice ignores ith channel

ifbj=1 ! Public channel

If b;= 0, Alice computes (hy, Ty by), (hy, T2, by), .., (hs, Ts, bs)
Ti=R; @hi(r)

If T;=T/ then set vi=1

else set vi=0

Alice computes C=m(D,-1 R))

Protocol 1 : 3" Round

Public channel

(v4, vy, ..., Vs), €

Bob computes m=C@®(Py-1 R)
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Protocol 1 : Properties

* Secrecy
* Protocol 1is perfect

* Correctness
* Protocol 1 delivers a different message with prob. (n-1)21t

Expected Payoff of Timid Eve
* If Eve takes o, as her action

u(o,) = (n-1)2%ug + (1-(n-1)2) (ug + ug)
* If Eve takes o,

u(op) = us

Thm 1

Supposen >t
If

L>1+log((n—1)(us-us—ug)/(-uq))
then

Protocol 1 is PSMT (with publicchannel) against Timid rational adversary
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Protocol 2 (against Conservative Eve)

* It does not use publicchannel
* The basic part consists of 2 roundsand Protocol 2 repeats it

* Protocol 2 is a probabilistic mixture of 2 sub-procedures
* With probability p, it executes message transmission
* With probability 1-p, it checks whether some channels are tampered

* The expected number of repetitionsis 1/p

Protocol 2 : Round 1

Bob chooses a random polynomial
fin Fy[X] of degree n-1
f(1)

f(2)

f(4)

f(5)

Alice receives g(i) over it channel

If possible, Alice recovers g by interpolation and computes s = g(0) + m

Protocol 2 : Round 2

With probability p
Bob checks if all the received data

If interpolation fails, Alice chooses the later S are identical. If “no”, abort.

Z/\
\—/

If they are all singleton s’,
Bob computes m’ = f(0) — s’ and halt

Otherwise, check if the received data
coincide with (1), f(2), ..., f(5)

Restart if “yes” ; Abort if “no”
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Expected Payoff of Conservative Eve
« If Eve takes o, as her action
u(o,) = pus+(1-p)u,

* If Eve takes o,

u(oy) = ug
Thm 2
Supposen >t
If
P> (U, - ug)/(u,— uy)
then

Protocol 2 is PSMT against Conservative rational adversary

Rational Eve & Eva

* In case of two independentadversaries, there are many possible

models

* We take a case where Eve and Eva are hostile to each other
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Utilities of Eve and Eva

* The result of message transmission
* The same message is delivered (u;)
* Adifferent message is delivered (uj)
* Aborted (u;,)
e Advi’s points
* Detection of channels corrupted by Adv i (u; )
* Advi’s acquisition of the secret message (u;)
* Detection of channels corrupted by the opponent (u; o4)
* The opponent’sacquisition of the secret message (uj o)

Hostile Model

U . <u

i,s if

* Transmission of a different message is better than that of the same message
S U+ Uga>0

* By Eveor Eva, the acquisition of the message is nice

a<0
* They hate the detection of channels corrupted by them
ui,oq
* They hate the acquisition of the message by the opponent
* U >0
* The acquisition of the message is good
* Uiog>0
* The detection of channels corrupted by the opponentis a kind of windfall profit

Protocol 3 in Hostile Model

* Use a slightly modified version of Protocol 1 iteratively
* Alice and Bob have their own CLs (corruption lists) and update them if
necessary
* Initial CLs are empty
« If a channel is added to CL, the channel is not used any more. Thus the
number of available channels decreases

« If CLs are updated, Protocol 3 continuesthe iteration

* There exists an iterated dominant strategy which leads to an
equilibrium
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Protocol 3: Initial Round (or aticeBob in Phase 4)

Case : CL, is updated
ry, Ry, Cly

Bob checks if all the received data
are of equal length and received CLs

12 Ry, Cla are identical with CLg

r3, R3, Cla If “yes”, go to Phase B

—

Classify channels based on the
T4, Ra) Cla length. Add all the channels not in

the major group into CL,
rs, Rs, Cla °

Bob searches the received CLs for
channels not in Clg. If he finds them,
add them into CLg

Protocol 3: Alice€Bob in Phase A

Case : CLg is updated
r, Ry, Clg

Alice checks if all the received data
are of equal length and received CLs

are identical with CL, 12 Ry, Clg

If “no”, execute below r3, R, Clg

Classify channels based on the
length. Add all the channels not in ry, Ry, Clg

the major group into CL,
r's, Rs, Clg

Alice searches the received CLs for
channels not in CL,. If he finds them,
add them into CL,

Go to Alice>Bob in Phase A

Protocol 3: Alice€Bob in Phase B

Bob receives r’ & R/
over alive it channel

h; : random universal hash

Bob computes T/=R/@h;(r)
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Protocol 3: Alice=>Bob in Phase B

Alice computes T;=R; @h(r;)

If T, T/ then add i into CL,

If CL,is updated, go to Phase A

Otherwise,
Alice computes C=m (D not in c1, R
Consistency check as in Initial Round

If inconsistent go to Phase A else
Bob computes m’=C’®(Dinotinciy R

Protocol 3 : Properties

* Secrecy
« Protocol 3 has perfect secrecy (in the standard crypto setting)
« if n>2tand Adv can tamper and eavesdrop, or
« if n>tand Adv can eavesdrop only
* Reliability
* Protocol 3 fails in the message transmission w.p. (n-1)2t
« if n> 2t and Adv can tamper and eavesdrop
* Protocol 3 always succeeds in the message transmission
« if n> tand Adv can eavesdrop only

Protocol 3 is PSMT if n > t and Adv can eavesdrop only

[terated Dominance

* 0, : astrategy
* 0., : other strategies other than o,

o, is iterated dominantif
* U0y, Op) < up(oy, Oy),
* ug(op, 0) < ug(oy, o), and
* up(0p, 0) < Up(Oy, O.) Or ug(0sy, 0.) < Ug(OLp, O)
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Thm 3

There exists a setting in Hostile Model where “eavesdroppingonly”is
the iterated dominant strategies for Eve and Eva in Protocol 3

That is, Protocol 3 is PSMT in Hostile Model

Conclusion

* We have introduced “rationality” in Secure Message Transmission

* Since rational adversaries are weaker than cryptographicadversaries,
the bound on the number of corrupted channels can be better than

the standard cryptographicsetting

See ia.cr/2017/309 for the first half; the second half in preparation
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Secure multiparty computation enables a set of parties to securely carry out a joint
computation of their private inputs without revealing anything but the output. In the
past few years, the efficiency of secure computation protocols has increased in leaps and
bounds. However, when considering the case of security in the presence of malicious
adversaries (who may arbitrarily deviate from the protocol specification), we are still
very far from achieving high efficiency.

In this talk, we consider the specific case of three parties and an honest majority.
We provide general techniques for improving efficiency of cut-and-choose protocols on
multiplication triples and utilize them to significantly improve the recently published
protocol of Furukawa et al. (at Eurocrypt’l7). We reduce the bandwidth of their
protocol down from 10 bits per AND gate to 7 bits per AND gate, and show how
to improve some computationally expensive parts of their protocol. Most notably,
we design cache-efficient shuffling techniques for implementing cut-and-choose without
randomly permuting large arrays (which is very slow due to continual cache misses). We
provide a combinatorial analysis of our techniques, bounding the cheating probability
of the adversary.

Our implementation achieves a rate of approximately 1.15 billion AND gates per
second on a cluster of three 20-core machines with a 10Gbps network. Thus, we can se-
curely compute 212,000 AES encryptions per second (which is hundreds of times faster
than previous work for this setting). Our results demonstrate that high-throughput
secure computation for malicious adversaries is possible.
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Secure Multiparty Computation (MPC)

| Compute on private inputs without revealing anything but the
output
| Applications
® Protect credentials and biometrics
® Run learning algorithm on distributed databases (e.g., health)
®Secure SQL
® Compare DNA samples without revealing them
| Two models
#Semi-honest; protection against inadvertent leakage and more
® Malicious: protection against arbitrary attacks (required in many cases)

Secure Multiparty Computation

| Powerful in theory:
Any functionality can be computed

| Secure multiparty computation holds great promise, but can we
fulfill that promise?

| Can we achieve speeds of MPC that is fast enough for applications
in practice?

. |
» We can solve some problems of interest @

today, but medium to large scale secure
computation seems beyond reach
+ This is especially true for malicious adversaries "\\?"DY Am (

® ParTisia

73




This Work

| Large scale secure three-party computation is
practical, even in the presence of a malicious
adversary.

eCarried out highly optimized implementation of MPC and
obtained over 1-billion AND-gate/sec
- it's close to limit of physical network bandwidth
on the framework we deployed.

Secure 3-Party Computation with an Honest Majority

X1
:aim — “3@'
\f(xl.xz.x

L ";‘-.

Secure 3-Party Computation with an Honest Majority

X %
ﬁfﬁ mm— @*

\ Flxs xy
b *‘“ﬂ + Functionality is

represented by a
Boolean circuit
+ Security with abort
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Low Latency VS. High-Throughput

Low ( High- \

Latency Throughput
» Constant rounds of + Low bandwidth
communication + Simple )
Computations

L

] XY % i
A
\ ."III X .l'|l \ ."l
P P _H_YJ/_)
“the garbled-circuit “the secret-sharing

approach” approach”

Semi-honest 3-party MPC [Araki et al., CCS'16]

| “High-Throughput Semi-Honest Secure Three-Party Computation
with an Honest Majority”
Toshinori Araki, Jun Furukawa (NEC), Yehuda Lindell, Ariel Nof (Bar-llan
University) and Kazuma Ohara (NEC)

| Evaluates Boolean circuit
®can extend for arithmetic circuit
| Based on (a kind of) additive secret sharing
#® No cryptographic protocol without PRG
# No Communication for XOR-gate/NOT-gate
#0nly 1-bit Communication for AND-gate

| From next page:
® Secret sharing
o MPC for XOR-gate
® MPC for AND-gate

Secret Sharing

| Share generation : secret v € {0,1}
® g,.a;a;suchthat e, Ga, @az=v

e
Share for P, i Share for Py

a®a | a; @ a; @
o - &'3__'___.'-'3" @
Each party has two
elements of (a,,a;, a;)

Share for Py
as @ a;
A )

| Reconstruction
®From any combination of two share, (ay,a;, a;) can get.
| Properties
®The sum of former part is equal to 0.
X @xBx; = a; Dy Bay Ba, Da; Das
eThe sum of latter part is equal to v (secret).

*a;Ba;Baz =v
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Semi-honest XOR gate

Locally compute element-wise XOR

v=a, Ba; B a;
w=b @b, Dby
N U | WAL . UNEN TCNPIRY | | AU
az By a; Bay i a; D ay
Shares of v i
a ay i ay

bs & b, b, @b by @ by
Shares of w [ : J [ g J : [ i J
Sharesof | @@ a @b @b a, Pa, B b, Db, a; Bay @b, Db,
v@Bw a, @b ;P b, as @ by

« (sum of former}=a; Pa, Da, Pa; Po, PayPh, @b, Db, Db, Pb, Db,
=0@0=0
+ (sum of latter)=(a, B o, Ba)B (L B Bb)=vBw

® Can be done without communication

> = ay B a, @ a3
A b, 9 terms in total

(ay Ba: Bay) (b &
a b, @ ayh, @ a by B ash,

to next party
(randomness for masking can be
computed locally)

n=(a;Ba): (b B n=(a, ®ay)-(b; b))} 3=(a:Dag):(b; B by)
& (a:b1) o) B(a i Base ;)
@azh, | =azb; Dagh; @ash>

T =aghy Dazh, Dahs | =ah, @ah,

vy By By =v-w (3-out-of-3 SS forv-w )

Semi-honest AND-gate

v=a; B a; B a
W= Il.‘__ @ -":- @ j,{\_ 9 terms in total
vew = (o £ o Dy
= a;b, @ ah, Baby @ axb, @ah, @ axbs B agh, Bazh, Baghs | (*)
: Py

i
el

ry = (a0 a3) - (b @ by)
—@(ag- b3)
= azb, @ azbs @ azb; >

by @ by
Share of w [ J
by

n=(a:@a) (b @b )i m=(a, Day) (b, D
@ (a; - by)- : @ (az 1)
< =azh; Pah, Ba by =a;b @ ayb, B axh,

ry @r, Br; =v-w(3-out-of-3 SS for v-w)
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Efficiency of Semi-Honest MPC

] [CCS16]: about 7 billion AND gate/sec
®1.3 million AES/sec

®10 Gbps network
. 7,000,000,000
Number of gates

Sharemind
462,400,000
framewo
10,880,000
First Impl.
P ’.’
620
Years
2004 > 2016

12 years(!?)

The malicious protocol of [Furukawa et al., Eurocrypt'17]

| An extension of [Araki et al., CCS'16]

XOR gate: NO communication
= NO information leaked

On-line protocol
1.Share the inputs

2.Run a “cheap”
Semi-honest protocol

Pre-processing
protocol 3.Verify all ANDs gates
Generate N random

multiplication triples 4,Reconstruct Output

next page
7 bits per AND gate 3 bits per AND gate

| [a], [b] are generated without any interaction!

| [c] is computed using a semi-honest 1 bit of
communication!

multiplication protocol
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Generation of Random Multiplication Triples

| [a]. [b] are generated without any interaction! 'I

Ilc]iscom Input/output tuple gf AND gate TS
can be seen as “triple” communication!

multiplication protocol

Verifying Gate(/Triple) by Triple ~ ~ !
(al, (5], [c] ﬁ [x], ). 21
triples AND-gate A
T

accept iff both triples are correct or
both are incorrect

NOAG)
]

such that: [a] and [b] are random sharings anc

| [a], [b] are generated without any interaction!

| [¢] is computed using a semi-honest 1 bit of
communication!

multiplication protocol

How can we verify that the triples
generated are valid?

AR )
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Generation of Random Multiplication Triples

Open C
permutation s

If one of the
opened triples
is incorrect,
the honest
parties will
detect it and
abort

Generation of Random Multiplication Triples

Split into N
‘:ﬂp;&f buckets of
equal size

8| periptes

5| Beriptes
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pass Iff both triples are correct or
both are incorrect

|

If one of the
buckets is
“mixed”, the
honest parties
will detect it
and abort

Generation of Random Multiplication Triples

The adversary should
mix cheated triple The adversary should
in the first step fulfill a bucket
+ Gon triples ; ....b“' incorrect triple
g !\ l i uy b\.ld(‘eE
Al [ foubue]
=y e
O\ feabucil
R\
&
/ b -
= [aw. by cn]
Bwbood

The adversary doesn’t know
the permutation before
generating triples

Generation of Random Multiplication Triples

The adversary should
mix cheated triple The adversary should
in the first step fulfill a bucket
3 —on triples e_'m“b\_.r incorrect triple
[ewar] bucket
bl | 5
vl | &k ——
& | el
A [62.z,c2]
L = f‘-‘\ 262
. -,,jh__‘} b :-,
- | periptes —"

The adversary doesn’t know
the permutation before
generating triples
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B: the bucket size
C: the number of opened triples

Increase p Reduce f
and C \?.PD"' P
I!‘-OV\;‘_EF O‘ 7 i Better
cheating et
probability  voveaxtmaver efficiency

Achieving 1-Billion AND Gat

503,766,615 gate/sec
The

baseline 1-billion
protocol AND

- 10 bits per ates per
AND gate gsew:;

- f=13

- =3

* Statistical error = 274
**Cluster of three mid-level servers (2.3GHz CPUs with 20 cores), with a
10Gbps network

the array is expensive due to cache misses
led for th mbinat 5, but
]

NEC
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Optimization 1: cache-efficient shuffling

Break Into Shuffle inside Shuffie

_— subarrys each subarmay

data!

"l'_kl
. N

This is not a random permutation!
But: We prove that the cheating probability is
almost the same

Achieving 1-Billion AND Gates per Second

503,766,615 765,448,459 gate /sec
Using a
The

baseline e‘;ﬁafhe;__ 1-billion
protocol cien AND

- 10 bits per sapta gates per
AND gate AND gate second

- p=3 S

- €=3 : g = :Il‘l

* Statistical error = 274
**Cluster of three mid-level servers (2.3GHz CPUs with 20 cores), with a
10Gbps network

Optimization 2: Reduce the size of the bucket

| Intuition
e"Verifying triple by triple” and “Verifying the gate by triple” is
essentially same procedure.
eCan we use the online multiplication triple generated in each AND
gate computation, as one of the triples in the bucket?

By Btriples | = [agba)) ——> [loubial

R R L |

n,-‘,l Ftripies | e (BN et (e o]

Verified triples AND-gate tuple
wants to verify
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Generation of Random Multiplication Triples

| Intuition

e“Verifying triple by triple” and “Verifying the circuit by triple” is
essentially same procedure.

®Can we use the online multiplication triple generated in each AND
gate computation, as one of the triples in the bucket? — Yes

| Modification: On-demand shuffling

B
B

Bariples

Berples

sgl peiples

i [as,by.e1]
. -/ -

laybuel | [zubyei)
(o2.byca] | [aabaca]
o, B ). @b
Verified triple Consumed Triple
Pool Pool

Randomly choose
a triple to use
verification

Generation of Random Multiplication Triples

| Intuition

®"Verifying triple by triple” and “Verifying the circuit by triple” is
essentially same procedure.

eCan we use the online multiplication triple generated in each AND
gate computation, as one of the triples in the bucket? — Yes

| Modification: On-demand shuffling

Btriptes

[onbuel |
fabucl \

[aw. B ]

Toabaal

faubyal

Verified triple
Pool

Consumed Triple
Pool

CALYA
AND-gate tuple

Refill the buffer
for used triple

Achieving 1-Billion AND Gates per Second

503,766,615

The
baseline
protocol

- 10 bits per
AND gate

- f=3

- c=3

765,448,459

Using a
“cache-
efficient”
shuffle
= 10 bits per
AND gate
- =3

- Cm2le

* Statistical error = 274
**Cluster of three mid-level servers (2.3GHz CPUs with 20 cores), with a
10Gbps network

988,216,830

The “on-
demand”
protocol
- 7 bits per
AND gate

- f=2
- Cm2¥-3

gate /sec

1-billion
AND
gates per
second
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[izs fizs,

+ SHA-256 is used to compare the views of the parties in the
verification stage (instead of sending openings)
+ Can replace it with GMAC - implemented using PCLMULQDQ

Achieving 1-Billion AND Gates per Second

gate/sec
503,766,615 765,448,459 988,216,830 1,152,751,967
T el g The “on-
baseline “cache- d " -bill
effic] emand 1-billion
v Shuffie protocol AND
= 10,y per - 10 bits per - 7 bits per gates per
- f= agate AND gate AND gate second
. =3 - p=3 -p=2
- Cm3t? ~ic=2"-3

* Statistical error = 274
**Cluster of three mid-level servers (2.3GHz CPUs with 20 cores), with a
10Gbps network

Summary

| 1t is possible to achieve very fast rates even for malicious
adversaries
#This holds for 3-party with honest majority (e.g., service model,
auxiliary server, internal protection)

| We achieve rates of

eSemi-honest:
- 1 bit comm/AND gates
- over 7 billion AND gates/second (over 1.3 million AES
operations per second)

eMalicious:
- 7 bit comm./AND gates (Statistical error = 27%%)
- over 1 billion AND gates/second (about 215,000 AES
operations per second)

| Can significantly extend the applications that MPC can utilize

| For more detail, please see our paper at IEEE S&P2017.
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\Orchestrating a brighter world

NEC

85




IMI WORKSHOP: CRYPTOGRAPHIC TECHNOLOGIES FOR SECURING NETWORK STORAGE
AND THEIR MATHEMATICAL MODELING

June 12-13, 2017, Kyushu University

Key Components in MEVAL

Ryo KIKUCHI
(Joint work with Dai IKARASHI, Koki HAMADA, Koji
CHIDA, Naoto KIRIBUCHI, Gembu MOROHASHTI)

NTT Corporation
kikuchi.ryo@lab.ntt.co. jp

We have developed a novel system MEVAL: Multiparty EVALuator, which performs
secret-sharing-based secure computation with an honest majority. In the system, a user
can choose either two security levels: passive (a.k.a. semi-honest) or active (a.k.a. ma-
licious) security with abort. One of features of MEVAL is efficiency. As an example, we
experimented with secure AES computation and MEVAL achieved 517 Mbps (involv-
ing 4 million AES per second) in passive security, and 131 Mbps (involving 1 million
AES per second) in active security with abort. These are faster than 169 Mbps [2] in
passive security and 27 Mbps [1] in active security with abort.

For practical use of secure computation, not only basic functions, such as multi-
plication, are not enough and high-level functions, such as comparison and sort, are
required [4]. We have developed MEVAL for practical use and it therefore supports
many high-level functions.

In this talk, we introduce three key components of high-level functions in MEVAL:
bit decomposition, sort, and join. These components use novel techniques and improve
efficiency drastically. Table 1 shows an experimental result of the components in three-
party setting with a gigabit network.

function passive security | active security with abort
ME[Zg AL bit decomposition (107 elements) (?(g))% SSG:; 14, 8_1 sec
MEVAL | %or (10" clementy 054 e 13 0
MFE?;AL join (10% records) O?SQSSEC 0.06_ sec

TABLE 1. Efficiency comparison in a gigabit network

REFERENCES

[1] T. Araki, A. Barak, J. Furukawa, Y. Lindell, A. Nof, K. Ohara, A. Watzman, and O. Weinstein.
Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second
barrier. S&P 2017.

[2] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest secure
three-party computation with an honest majority. ACM CCS 2016.

[3] D. Bogdanov, S. Laur, and R. Talviste. A practical analysis of oblivious sorting algorithms for
secure multi-party computation. NordSec 2014.

[4] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure multi-party com-
putation for data mining applications. Int. J. Inf. Sec., 2012.

[5] S. Laur, R. Talviste, and J. Willemson. From oblivious AES to efficient and secure database join
in the multiparty setting. ACNS 2013.
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Key components in MEVAL

Ryo Kikuchi @ NTT Corporation

Protocols by Dai lkarashi, Koki Hamada, and Ryo Kikuchi

Icons are designed by Freepik from Flaticon

Today’'s talk
o MEVAL: Multiparty EVALuator

- Web page coming soon

o Key components
« Bit-decomposition
« Oblivious sort
- Oblivious join

Multiparty computation

‘B

s-
—

£

il
=
=
]
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Two security models

passive security

An adversary follows the protocol

active security with abort

An adversary can do arbitrary behavior
Honest parties output L if an adversary cheats

MEVAL: Multiparty EVALuator

MEVAL is an MPC system we have developed
[ secret sharing ]+[ three-party ]+[ honest majority ]

[aly

s
[a]o / \ [a],
f
— —

User can choose either passive or | active w/ abort

Feature of MEVAL

o Fulfilling functions
« logical/arithmetic circuit
« high-level operations: join, sort, map, comparison, etc.
- various SS conversion and field conversion
o Efficiency
« original (optimized) protocols
« implemented by expert programmer Dai Ikarashi

openstack®

http://www.ntt.co.jp/news2015/1505e/150518a.html -
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Efficiency of MEVAL (basic function)

Benchmark by AES computation
(consists of local comp. and mult. prot.)

Active with abort

[AFL+16] 1,324,117 -
[ABF+17] AES/sec - 212,000
MEVAL 4,041,655 1,025,303
[AFL+16] 7,150,231,800 -
[ABF+17] bit/sec - 1,152,751,967
MEVAL 16,554,617,600  4,199,641,600
A L AT N L AR S ANV U M

Efficiency of MEVAL (high-level function)

o Basic function is not enough for practical use

o Many applications require high-level operations

o MEVAL have developed high-level functions

Key components

o Bit-decomposition
Convert ainto (@@, ...,a®D), where a = a®~Da¢=2) ... (©
o Oblivious sort
Sort (2,4,1,3) into (1,2,3,4) and output the permutation =,
where 7(1) = 3,7(2) = 1,n(3) = 4,n(4) =2
o Oblivious join

« Input:
3 200 99 3 water

\ 9\ 160 8| [ 7] e ]

+ Output: Key height[ weight[ purchase ]

200] 99| water | -

w
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Bit-decomposition

Bit decomposition: [F,, to F,

Motivation: computation in better suited field

Sum © Local computation & Communication required
(computing addition) (computing adding circuit)
Comparison ® Difficult to compute © Easy to compute
(except [NOOT7]) (If a < 2, [@ > b] is ¢-th bit of 2¢ + [a] — [b])

Known protocols cost 0(|p|?) bit communication [DFK+06, NOO7]
regarding # of parties as constant

MEVAL uses an original bit-decomposition protocol
0(#) bit communication

[DFK+06] . Damgard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft.: Unconditionally secure constant-rounds multi-party computation for

[NOO7] T. Nishide and K. Ohta: Multiparty Computation for Interval, Equality, and Comparison without Bit-Decomposition Protocol, PKC 2007] =
equality, comparison, bits and exponentiation, TCC 2006

Setting and notation

o Consider F, and F,
« p=2M-—1,ie,aMerrsenne prime

+ Ipl = llogl [ | a=aeiac o

oais0<a<?2t¢<|p| M

a € Fy is represented as (a©@, ...,a® D) e F§ |
o (2,3)-linear secret sharing

+ [a]: sharing of a in F,, [a]: share of

« a = lal;, + Ay [al;, forany iy, iy
o Passive security

Active security can be obtained by using known techniques [IKHC14,ikhc13]

o =

[IKHC14] D. Ikarashi, R. Kikuchi, K. Hamada, K. Chida: Actively Private and Correct MPC Scheme in t < n/2 from Passively Secure Schemes

with Small Overhead, ePrint 2014.

[ikhc13] D. karashi, R. Kikuchi, K. Hamada, K. Chida: An Efficient SIMD Protocol against Malicious Adversaries for Secure Computation 12
Schemes Based on (k,n) Secret Sharing Schemes with Small Party Sets, CSS 2013 (in Japanese)
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Basic technique of bit-decomposition

o Input: [a] € F,
o Output{a) = ([a@], ..., [adPI=D]), where a® € F,

1. Generate randomnessi(r) = ([r©@], ..., [r0PI=]) , where
r(l) € ]FZ

] = Xicip| 2‘[[7‘(0]]

Reveal[a] — [r] and obtainc =a —r

(a') = c + (r) (adding circuit)

{(q) = Compare(a’ =, p) (comparison circuit)

{(a) = (a') — p{q) (subtracting circuit)

S oA WoN

Where is the bottleneck?

. 1. The output size is |p|? bits
o Input: [a] € F,

o Output{a) = ([a®@] ..., [a0PI-D]), where a® € F,

-

Generate randomnessi(r) = ([r©@], ..., [rP=D]) , where
r® eF,

[r] = Ziqip 2'[r @]

Reveal[a] — [r] and obtainc =a —r
{(a') := ¢ + (r) (adding circuit)

(q) = Compare(a’ =, p) (comparison circuit)
(a) = {a') — p{q) (subtracting circuit)

2. Randomness is |p|? bits

N N N

3. Circuit size is 0(|pl)

Optimization 1: modifying output

. 1. The output size is |p|? bits
o Input: [a] € F,

o Output(a) = ([a®@] ..., [a0PI-D]), where a® € F,

-

Generatquat N, are sutticient el VRIGEE
r® eF,
[[T‘]] = Z 2. Randomness is |p|? bits
Reveal[a] — [r] and obtainc =a —r
(a'y = c + (r) (adding circuit)

{(q) == Compare(a’ =, p) (comparison circuit)

(a) = (a') — p{q) (subtracting circuit) w

N N N
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Optimization 1: modifying output

o Input: [a] € F 0(#) bits

o Output(a) =|([a@], ..., [a*~D] )lvvhere a® e,

1. Generate randomnessi(r) = ([r©@], ..., [rUPI=D]) , where
T(l) (S ]FZ

7] = Xicip| ZLIIr(L)]]

Reveal[a] — [r] and obtainc =a —r
{(a'y = c + (r) (adding circuit)

{(q) == Compare(a’ =, p) (comparison circuit)
(a) = (a’) — p{q) (subtracting circuit)

S oA WoN

2. Randomness is |p|? bits

3. Circuit size is 0(lpl)

Optimization 2: Generate (2, 2)-sharing

Input: [a] € F, ‘/[ 0(#) bits

o

o Output(a) = ([a®], ..., [a¥~D]), where a® € F,

1. Generate randomnessir) = ([r@], ..., [rUPI=D]) , where
r® eF, -
- ] = Sy 2 @]

Revealla] — [r] and obtainc =a —r

2. Randomness is |p|? lits

2
3.
2 (a') = c + (@adding circuit)
5
6

: (a) Generating (2, 2) sharing of a

ie,a=c+r 3. Circuit size is 0(|pl)

Optimization 2: Generate (2, 2)-sharing

o Input: [a] € F, 0(f) bits
o Output{a) = ([a®], ..., [a¥V]), where a® € F,
1. 2 parties

1. compute A;[al;,

2. secret-share each bit of 4;[a]; in F, 0(8) bits

2. Let the above shares be (a,) and (a,)

3 {a') = (ap) + (a,) (adding circuit)
4 {q) = Compare(a’ =, p) (comparison circuit)
5 {a) = (a') —p{q) (subtracting circuit)
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Optimization 3: Excluding comparison circuit

o Input: [a] € F, 0(#) bits
o Output(a) = ([a®],..., [a®"D]), where a® € F,
1. 2 parties

1. compute A;[al;,

2. secret-share each bit of 4;[a]; in F, 0(8) bits

2. Let the above shares be (a,) and (a,)
5 {a') = (ao) + (a;) (adding circuit)

4 {q) =[Compare(a” =, p) (comparison circuit)
5 (a) = {a’) —p(q) (subtracting circuit)

Quotient appears at LSB
Assume a -_-- a=ap_1a;ag

2a [T = 1] ] D .
Il

a, [ 0]
+

a [ ]

If 2a is shared as 2a = aq + a4, Compare(a >, p) = a(()o) &) a§°)

Proof is appeared in [ihke13]

[ihkc13] D. Ikarashi, K. Hamada, R. Kikuchi, and K. Chida: 0(£) Bits Communication Bit Decomposition and 0(|p’]) Bits
Communication Modulus Conversion for Small k Secret-sharing-based Secure Computation, CSS 2013 (in Japanese)

Optimization 3: Excluding comparison circuit

o Input: [a] € F, 0(#) bits
o Output({a) = ([a(o)]’ ., [a®D]), where a® € F,
1. 2 parties

1. compute 4;[al;,

2. secret-share each bit of A;[a]; in F, 0(#) bits

2. Let the above shares be (ay) and {(a;)
3 {a') = (ay) + (a;) (adding circuit)

4 (q) :=[Compare(a’ =, p) (comparison circuit)
5 {a) = (a’) — p{q) (subtracting circuit)
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Optimization 3: Excluding comparison circuit

o Input: [a] € F, Z 0(#) bits ]
o Output{a) = ([a@],...,[a®¥D]), where a® € F,

1. 2 parties
1. computel 24;[a];
2. secret-share each bit of 24;[a]; lin F,
2. Let the above shares be {(a,) and (a;) l 08 bits ]

2 (a'y = (ay) + (a;) (adding circuit)
4 [q] = [a(()o)] D [ago)]

5 {a) = {a’y — p[q] (Subtracting circuit)
6. Shift (a) a single bit: [a(i—l)] = [a®] 1 Circuit size is 0(¢)

Result (bit-decomposition)

o Bit-decomposition protocol with 0(£) bit communication
Existing protocols cost 0(|p|?)

o Experimental result on 107 records, 1G LAN, p = 261 —1,

£ =20
[ | Passve | Activew/abort |
[BNTW12] 200 sec -
MEVAL 0.90 sec 14.81 sec

[BNTW12] D. Bogdanov, M. Niitsoo, T. Toft, J. Willemson.: High-performance secure multi-party computation for data mining applications.
Int. J. Inf. Sec. 2012 23

Oblivious sort
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What is oblivious sort?

o Input: [2], 141, [1], [3]

o Output: [1], [21, [31, [41, [=],
where (1) = 3,m(2) = 1,m(3) = 4,7(4) = 2

An important component for
« computing median and percentile,
« other high-level functions, such as join

But, difficult to explain ® so we skip the detail

Experimental result (oblivious sort)

Experiment on 10° records, 1G LAN, p =261 — 1, £ =20

T e Actve w abort

[BLT14] 150 sec -
MEVAL 0.54 sec 1.43 sec

[BLT14] D. Bogdanov, S. Laur, and R. Talviste.: A Practical Analysis of Oblivious Sorting Algorithms for Secure Multi-party Computation.
NordSec 2014

Oblivious join
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Oblivious join

Joining secret-shared two tables

ey purchase

3| 200 99 7 egg
5 110 19 9| medicine
9| 160 85 9 water

Key | height | weight| purchase
3 200 99 water
9 160 85| medicine

9 160 85 water

Application

Cross analysis of different companies

Ky,
Attribute data
of company A

History data
of company B

Key[ height[ weight[ purchase
Cross table

of company A and B

Setting

Key of history data may duplicate

water

3
200 99 7 egg
110 19 9| medicine
160 85 9

Key | height| weight| purchase
200 99 water

0 0 0
160 85| medicine
160 85 water

This talk omits how to eliminate 0
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Computing “weight”

column 1/4

Use oblivious sort and store [
h_

1 1 1
BIGEIEIENE]

3] 200 99 3 water
51 110] 19 7| ese
9] 160 85 9| medicine
* i 9 water
3)17J9
[ ‘I
PermL‘rtatidn HI!{ H x Jis caught
i |
1

i between and

Computing “weight” column 2/4

Apply  with “weight” and a

0

0
1 1

L
|

-t | O

1 1
0

1
Fedlzs] (o) fes] (@) (o) Sl

tuple of 0
[ Key[ purchase |
3| 200 99 3 water
5| 110 19 7 egg
S 85 9| medicine
9 water
inversion

0 Jis caught

betweenandB]

Computing “weight” column 3/4

Compute prefix-sum

[ [ reigit [ weieht | | RS
3| 200 99 3 water
51 110 19 7 egg
9| 160 85 9] medicine
9 water
0 0 0)l0 I Key[ height[we'\ght[ purchase
[ I I B | — ‘
iscopied to |0
BEEERERE A
99 @@ 0 | 85)(s5 El] 9] 160 _B5] water
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Computing “weight” column 4/4

1

Compute -

3| 200 99 3 water
5| 110 19 7 egg
9| 160 85 9| medicine
9 water
Key | height | weight| purchase
3| 200 99 water
0 0 0 0
9] 160 85| medicine
9| 160 85 water

Computing “height” column

Apply the same thing

30 200 99 3 water

50 110 19 7 egg

9 160 85 9| medicine
\ 9 water

Key | height | weight| purchase

3 200 99 water
0 0 0 0
91 160 85] medicine
9l 160 85 water

Computing “purchase” column

Apply the same thing with a tuple of 1
b_

1
1
1

medicine

water

9| 160 85 water

3| 200 99 3 water

5| 110 19 7 egg

9] 160 85 9| medicine

9 water

\E’ Key | height | weight | purchase

T 3 200 99 water
) 0 0 0 0
1) [ 9] 160 85| medicine

1

4
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Experimental result (oblivious join)

Experiment on 103 records, 1G LAN, p =26t — 1, £ = 20

T e e |

[LTW13] 30s -
MEVAL 0.02's 035s

Experiment on 109 records,

C T e T e |

MEVAL 15.13 s 44.04 s

[LTW13] S. Laur, R. Talviste, J. Willemson.: From oblivious AES to efficient and secure database join in the multiparty setting. ACNS 2013, -

Summary

o We have developed MEVAL
[ secret sharing ] + [ three-party ]+[ honest majority ]

User can choose either security level: passive or active w/ abort

o Support high-level functions
Three key components: bit-decomposition, oblivious sort, oblivious join

htve ) zbon

[BNTW12] Bit-decomposition 200 i
MEVAL (107 records) 0.90 s 14.81 s
(BLT14] Oblivious sort 10g 1
MEVAL (10° records) 0.54 s 143 s
[LTW13] Oblivious join 25s |

MEVAL (10° records) 0.02's 0.06s n
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IMI WORKSHOP: CRYPTOGRAPHIC TECHNOLOGIES FOR SECURING NETWORK STORAGE
AND THEIR MATHEMATICAL MODELING

June 12-13, 2017, Kyushu University

Ouroboros: A Provably Secure Proof-of-Stake
Blockchain Protocol

Bernardo DAVID (Joint work with Aggelos Kiayias,
Alexander Russell and Roman Oliynykov)

Tokyo Insitute of Technology
bernardo@bmdavid.com

We present Ouroboros, the first blockchain protocol based on proof of stake with
rigorous security guarantees. We establish security properties for the protocol compa-
rable to those achieved by the bitcoin blockchain protocol. As the protocol provides
a proof of stake blockchain discipline, it offers qualitative efficiency advantages over
blockchains based on proof of physical resources (e.g., proof of work). We showcase the
practicality of our protocol in real world settings by providing experimental results on
transaction processing time obtained with a prototype implementation in the Amazon
cloud. We also present a novel reward mechanism for incentivizing the protocol and we
prove that given this mechanism, honest behavior is an approximate Nash equilibrium,
thus neutralizing attacks such as selfish mining and block withholding.
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Ouroboros: A Provably Secure Proof-
of-Stake Blockchain Protocol

Bernardo David
Tokyo Institute of Technology

Joint work with Aggelos Kiayias,
Alexander Russel, Roman

Oliynykov

Outline

1. History: e-cash ~ @WEICOT I

2. Bitcoin and Blockchains

3. Ouroboros

4. Ouroboros Praos

AT Toinfeiy
é and by

The 1980s
David Chaum and anonymous e-cash

“The difference between

a bad electvonic cash system

and well-developed digital cas
will determine whether

we will have a dictatorship

or a real democracy”

(atftributed to Chaum)
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Anonymous payments

Chaum’s anonymous e-cash

+ Just like fiat currency:
— Anonymous
— Secure (no double spending or faking)
— Only banks issue money

* But...
— Centralized and bankrupted in 1999

Outline

2. Bitcoin and Blockchains & "
3. Ouroboros

4. Ouroboros Praos
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A New Era: Bitcoin and Blockchains

-ECENTR’ALIZE

A New Era: Bitcoin and Blockchains

» 2009: Bitcoin announced by Satoshi Nakamoto
— Pseudonym for person or group of people

* 2009-2011: slow start...
* 2011-2013: Silk Road and Dread Pirate Roberts

« End 2013: Bitcoin price skyrockets
— and the world notices!

* Mid-2015: Ethereum and complex Smart Contracts

All Gurrencles 1 BTC = US$1465

- : (-]
0 Mame Fymbel Mariot Cap Price Shoulstiog Supply  Vokma (4N %th  %3n wn
T 8 EM §.M8TeamE 8775
3 o Pipps e S2.007,198.310
e $902.730,748
OASH 628,000,574
5 . c EC 5612.48 008
T W NEM HEM $4TR.515,500
@ Mons E S 621 302
] % GNT §188,218,700
10 Auges R $162,014,800
1n 4 MAID $114.970.000
7 e e 113200429
1 ! STRAT $100,998,408
" e o SET.RM 95
15 = G aND 84084408
DOGE 7210418

coinmarketcap.com
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* ot Minsstie

Blockchain:
A Public Ledger
* Decentralized!

* You can write but never modify or re-
order (if most users are honest)

1 2 3
- - cee

DATA DATA DATA

Bitcoin’s Blockchain:
Creating Blocks (and coins)

Bitcoin Mining:

4 53

1. Everyone ERN S
fries to solve a puzzle  |ssslis |s s
2 3 74

96 5 3 2

2. The first one fo solve
the puzzle gets R BTC and
generates next block

3. The solution of puzzle i
defines puzzle i+1
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Bitcoin’s Blockchain:
Creating Blocks (and coins)

Prev. BLK
HASH
DATA
HASH

NONCE

DATA

EamReiC A 10
forsolving |
puzzle!

Prev. BLK
HASH
DATA
HASH

AL NONCE

DATA

2

Bitcoin’s Blockchain:
Proof-of-Work (PoW)

(Hash Function)

SHA2

How to solve a PoW?

1. Compute HEADER

2. Set Nonce=0

3. Compute
T=H(HEADER | NONCE)

4. If first d bits of Tare 0
output NONCE, if not
NONCE++ and go to 3

The PoW puzzle:
given Header, find Nonce
such that d first bits of T are 0

Bitcoin’s Blockchain:
Creating Blocks (and coins)

Prev. BLK
HASH
DATA
HASH

NONCE

DATA

1

Check that first d bits of T are 0

EamRBIC A
for solving
puzzle!

Prev. BLK
HASH

DATA
HASH

NONCE

2
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Bitcoin’s Blockchain:
Proof-of-Work Difficulty
* Only 1 block generated every 10 minutes
on average (1 PoW should take 10 min.)

+ Adjust “difficulty” of POW every 2016 blocks

0y

W,
L] 4

]

10 min.

-

DZNVN

HEADER

2
[~HEADER

7 g L

10 min.

-

3

10 min.

Bitcoin’s Blockchain:
Proof-of-Work Difficulty

HEADER NONCE

The puzzle:
given Header/find Nonce

such that d first bits of T are 0

When d is small:

- Many possible values of T

that solve the puzzle

- Easier puzzle! Less work!

When d is larger:

- Fewer values of T that solve

the puzzle

- Harder puzzle! More work!

Example:

s=10,d=3 gives 0009999999 possible Ts

s=10,d=5 gives 0000099999 possible Ts

Bitcoins Blockchain:
Inflation and Halving

« Control Inflation

» Rewards halved every 210000 blocks

© 210001

Y
210000

HEADER - HEADER
R BTC

) a0001

R/2 BTC

-

T
210000

Blocks

Blocks

R/4 BTC
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Bitcoin’s Blockchain

* One block added every 10 minutes by solving puzzle
» Reward given per block, halved every 210000 blocks
» Total of 21 million BTC to be created in total

420001 )
.

210001

HEADER

Bitcoin’s Blockchain: Forks

- .
DATA

- .
DATA DATA

EE [EE 3

4 5 ‘
yi

DATA

3!

Longest chain rule:
YNV | Longest chain wins!

4, Honest users fry to
extend the longest chain

< Bitcoin’s Blockchain: @&
Immutability ST

\ /

A} V4

= -

7¢ v 77V

7 5 A
HEADER HEADER HEADER HEADER
. DATA - DATA - DATA - DATA
5' 6’ 7' 8’

Malicious users have to solve more puzzles,
so they hahave to control more computer
power than honest users.
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Bitcoin’s Blockchain: Recap

* New block every 10 minutes
» Rewards for users who generate blocks

» Forks don't last long: consensus after 6
blocks

» Malicious users have to invest a lot of
computer power to change blocks

Bitcoin: How to transfer money

o e —y

1025

......

poLtars @ ==

Bernardo

12000000000 w0D000D0DDOY woes

(Digital) Signatures
—Only you can sign
— Everyone can verify
—You cannot deny

Bitcoin: How to transfer money

“Your pin code” “Your username”

secret key public key

message

message, signature accept/reject
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Bitcoin: How to store money

TR —
2 - P3 gets coin
BEEON R 1

3 - Pl gets coin
R+l to 2R ...

4 - P2 gets coin
'2R+1 to 3R ...

Digital Signature Public Keys
1

Public Ledger:

Blockchain
1 2 3 4
L] . .
Bitcoin: How to transfer money
If
) . Ver (pk3,m,s) = accept
m="P3 gives coin 3 to Pl1” and
s=Sig(sk3,m) P3 owns coin 3

N then
return accept

—/

Bitcoin: How to transfer money
Double Spending

ml="P3 gives coin 3 to P1”

s1=Sig(sk3,ml)

accept

_—

accept
_—
m2="P3 gives coin 3 to P2”
s2=8Sig(sk3,m2)

* aka double spending
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ml
sl

m2
s2

Bitcoin: How to transfer money

write
(ml,sl1)

—_—

write
(m2, s2)

RIECHR ..
jPl gets coin
RELEO/2R ...

P2 gets coin

P3 gets coin
w

2R+l to 3R .. <

| (m1,s1)
(m2,52)§
(m4,s4) <

“P3 gives coin 3 to P1”

Sig(sk3,ml)

“P3 gives coin 3 to P2”

Sig(sk3,m2)

——— e

accept

—_—
reject
o~ accept
_— Y —_—
m4 = “P1 gives coin 3 to P4”
s4 = Sig(skl,m4)

Transaction Fees

Example: P1 wants to give 60 to P2

... gives 50 to P1 >

... gives 25 to P1 >

Bitcoin: How to transfer money

P1 gives 60 to P2

N

P1 gives 14 to P1

Transaction fee 1

Outline

3. Ouroboros

4. Ouroboros Praos
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PoW:

ssues and Alternatives

« Distinction between coin holders and mining
+ Diminishing rewards for mining
+ Control of the network is very centralized

1's a g elob, andl you st in 0.

+ Alternatives: Proof-of-Space, Proof-of-Stake

An Alternative: Proof-of-Stake

Prev. BLK Prev. BLK
HASH HASH
DYV
HASH

NONCE

DATA
HASH

— T
Block No. =i

i A t of .
lock -1 Block |

o

* More resources = * More to lose =

more confrol more confrol O
- Resource waste @+ Less waste @)
- Cenfralized () - Democratic @
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Our Contributions
[KRDO17] in Crypto 2017

« Formalize PoS

— Formal model for PoS based consensus
protocols

* New PoS Based Consensus Protocol
— Address attacks to current protocols
— Get better parameters
— Get stronger security guarantees

Follow-the-Satoshi

H outputs index 0<i < total number of satoshis

nH(seed)—> i

The Protocol: One Epoch

U],51 TW TW TW TW Tl
Block : : : : :
Lo Tn To Ty Th T
Content: Uno o sty sty ot ot
SIG by E,SIG by E; SIG by ESIG by E SIG by E
Blocks:
Slots: | 1 1 ] oeee
Elected E, E, E; E, Es E¢ =%
Leaders: /'/‘
Follow the
Satoshi
FtS(R)
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The Protocol: Multiple Epochs

U5,
UpSn :
R

G.O.D. Coin G.O.D. Coin
Tossing Tossing

G.0O.D. Coin Tossing

» For every stakeholder when each epoch starts:

Commit Reveal Recovery (if party jis Final

corrupted) Randomnes
Commit(r)
Deal(r) Open(r) Sharel; r
8]
+
L J o oeee L ] eee | ] eee | M
\ I )
T T
2k Blocks 2k Blocks 2k Blocks
(for common prefix  (for common prefix  (for common prefix
and chain quality) and chain quality) and chain quality)

Building Blocks

» Verifiable secret sharing:
— Publicly Verifiable Secret Sharing, e.g.
[CD17]
« Commitments, many possibilities:
—ROM: H(m |r) where ris random

—DDH (Pedersen) Commitments: gmh’
where h=g' and both r and t are random
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Outline

4. Ouroboros Praos

2 infini

5 and l;l‘gwd—
—

f a

Coming Soon: Ouroboros Praos

» Adaptive Security

» Semi-synchronous network: Bounded
delay with upper bound unknown to
honest parties

* Novel “oblivious leader selection”

» Novel Verifiable Random Functions
with *malicious key generation
resiliency”

Open Problems

» Prove stronger security guarantees
— Asynchronous Networks
— Composition

» Analyze security in a game theoretic
framework

» Determine concrete parameters for
Ouroboros Praos (e.g. epoch length)

» Develop a prototype of Ouroboros
Praos
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Panel Discussion

Cryptographic Technologies for Securing Network
Storage and Their Mathematical Modeling

Panelists: Kazuma Ohara, Ryo Kikuchi, Mitsugu lwamoto, Bernardo David,
Yvo Desmedt, Eyal Kushilevitz and Naruhiro Kurokawa
Moderator: Kirill Morozov

The video of our panel discussion is
available at “YouTube”:

* https://youtu.be/nPR2f-LHqQYM
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