IMI Workshop of the Joint Research Projects
Cyppographic Technologies for Secuing Nework Storage and Their Manhemadical Nodeding
Editors：Kirill Morozov，Hiroaki Anada，Yuji Suga

九州大学マス・フォア・インダストリ研究所

IMI Workshop of the Joint Research Projects

Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling

Editors: Kirill Morozov, Hiroaki Anada, Yuji Suga

About MI Lecture Note Series

The Math-for-Industry (MI) Lecture Note Series is the successor to the COE Lecture Notes, which were published for the 21st COE Program "Development of Dynamic Mathematics with High Functionality," sponsored by Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) from 2003 to 2007. The MI Lecture Note Series has published the notes of lectures organized under the following two programs: "Training Program for Ph.D. and New Master’s Degree in Mathematics as Required by Industry," adopted as a Support Program for Improving Graduate School Education by MEXT from 2007 to 2009; and "Education-and-Research Hub for Mathematics-for-Industry," adopted as a Global COE Program by MEXT from 2008 to 2012.

In accordance with the establishment of the Institute of Mathematics for Industry (IMI) in April 2011 and the authorization of IMI's Joint Research Center for Advanced and Fundamental Mathematics-for-Industry as a MEXT Joint Usage / Research Center in April 2013, hereafter the MI Lecture Notes Series will publish lecture notes and proceedings by worldwide researchers of MI to contribute to the development of MI.

October 2014
Yasuhide Fukumoto
Director
Institute of Mathematics for Industry

IMI Workshop of the Joint Research Projects
 Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling

MI Lecture Note Vol.80, Institute of Mathematics for Industry, Kyushu University ISSN 2188-1200
Date of issue: March 30, 2018
Editors: Kirill Morozov, Hiroaki Anada, Yuji Suga
Publisher:
Institute of Mathematics for Industry, Kyushu University
Graduate School of Mathematics, Kyushu University
Motooka 744, Nishi-ku, Fukuoka, 819-0395, JAPAN
Tel +81-(0)92-802-4402, Fax +81-(0)92-802-4405
URL http://www.imi.kyushu-u.ac.jp/

Printed by
Kijima Printing, Inc.
Shirogane 2-9-6, Chuo-ku, Fukuoka, 810-0012, Japan
TEL +81-(0)92-531-7102 FAX +81-(0)92-524-4411

Workshop on Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling

June $12^{\text {th }}-13^{\text {th }}, 2017$
Industry-University-Government Collaboration Innovation Plaza 3-8-34 Momochihama Sawara-ku Fukuoka 814-0001, Japan

Sponsored by

Institute of Mathematics for Industry (IMI),
 Kyushu University

Organized by
Kirill Morozov, Hiroaki Anada, and Yuji Suga

Acknowledgements

One of the organizers, Kirill Morozov, was partially supported by a kakenhi Grant-in-Aid for Scientific Research (C) 15K00186 from Japan Society for the Promotion of Science concerning his invitation of Prof. Beimel and Prof. Desmedt, as well as his own participation to this workshop.

One of the organizers, Hiroaki Anada, was partially supported by a kakenhi Grant-in-Aid for Scientific Research (C) 15K00029 from Japan Society for the Promotion of Science concerning his invitation of Prof. Kushilevitz to this workshop.

Preface

Rapid development of computer systems and networks emphasized importance of application of cryptographic technologies. Confidentiality and reliability can be naturally attained using the cryptographic technology of secret-sharing, which has been more and more widely applied for secure storage. However, data must not only be securely stored but also securely processed, and therefore search and computation
 over secured data becomes an increasingly important problem that finds applications in digital payment systems, medical data processing, and other important areas - these functionalities are achieved using secure multi-party computation technologies. Acceptance of these concepts for practical deployment requires a thorough security evaluation, involving mathematical modeling of the implemented systems as well as their rigorous security proofs. The purpose of this workshop was to discuss the above aspects. The program included 3 keynote lectures, 6 invited lectures and a panel discussion, gathering over 40 attendees in total. The goal of these lecture notes is to raise awareness about the topics and results discussed at the workshop, especially among researchers in mathematics and developers in cloud computing and cybersecurity.

Kirill Morozov, Representative of the Organizers
Table 1. List of attendees.

Hiroaki Anada	Tushar Kanti Saha	Shinichi Matsumoto	Nobuyuki Sugio
Amos Beimel	Ryo Kikuchi	Tomoko Matsushima	Yasushi Takahashi
Bernardo David	Dong-In Kim	Toshiyasu Matsushima	Tadanori Teruya
Yvo Desmedt	Eitaro Kohno	Shota Nakasato	Junting Xiao
Tsumbuukhuu Dulguun	Takeshi Koshiba	Naohisa Nishida	Masato Yamanouchi
Goichiro Hanaoka	Noboru Kunihiro	Koji Nuida	Masaya Yasuda
Keisuke Hara	Naruhiro Kurokawa	Kazuma Ohara	Kenji Yasunaga
Masahiro Ishii	Eyal Kushilevitz	Kazuo Ohta	Maki Yoshida
Makoto Ishikawa	Hyungu Lee	Miyo Okada	Yusuke Yoshida
Mitsugu Iwamoto	Shincheol Lee	Eriko Osakabe	Ye Yuan
Hyungrok Jo	Niklas Lemcke	Yuji Suga	Kirill Morozov

Photograph 1. Group photo in front of the venue.

IMI Joint Research Project in 2017

KYUSHU

Crypłographic Technologies for Securing Network Storage and Their Mathematical Modeling

Date:

$$
\text { June 12(Mon)-13(Tue), } 2017
$$

http://www.imi.kyushu-u.ac.jp/eng/events/view/1240

Keynote speakers:

Amos Beimel, Ben-Gurion University
"Graph Secret Sharing"
Yvo Desmedt, The University of Texas at Dallas
"Human Recomputable Secret Shares and their Applications in E-Voting"
Eyal Kushilevitz, Technion
"Ad-hoc MPC"
Invited speakers:
Bernardo David, Tokyo Institute of Technology
Mitsugu Iwamoto, The University of Electro-Communications
Ryo Kikuchi, nippon telegraph and telephone corporation
Takeshi Koshiba, Waseda University
Naruhiro Kurokawa, Bank of Japan
Kazuma Ohara, NEC Corporation

Venue: AirlMaQ (Momochi), Seminar Room, 2F
Industry-University-Government Collaboration Innovation Plaza
3-8-34 Momochihama Sawara-ku Fukuoka 814-0001, JAPAN
hitps://airimaq.kyushu-u.ac.jp/en/airimaq/access.php
Organizing Committee
Hiroaki Anada (University of Nagasaki)
Kirill Morozov (Tokyo Institute of Technology)
Yuii Suga (Internet Initiative Japan Inc.)
Sponsored by $~$ Institute of Mathematics for Industry, Kyushu University
Registration fee $~$ Free

Program

June 12 (Monday)

10:00-10:10 (Opening)
[1] 10:10-10:50 [keynote] Amos Beimel, Ben-Gurion University, Israel
"Graph Secret Sharing"
[2] 11:10-11:50 [keynote] Yvo Desmedt, The University of Texas at Dallas, USA
"Human Recomputable Secret Shares and their Applications in E-Voting"
[3] 14:00-14:40 Mitsugu Iwamoto, The University of Electro-Communications, Japan "Secret Sharing Schemes under Guessing Secrecy"
[4] 15:00-15:40 Naruhiro Kurokawa, Bank of Japan, Japan "Function Secret Sharing Using Fourier Basis"

16:00-16:30 (Panel Discussion) Panelists: Bernardo David, Yvo Desmedt, Mitsugu Iwamoto, Ryo Kikuchi, Naruhiro Kurokawa, Eyal Kushilevitz and Kazuma Ohara.
Moderator: Kirill Morozov

June 13 (Tuesday)

[5] 10:10-10:50 [keynote] Eyal Kushilevitz, Technion, Israel
"Ad-hoc MPC"
[6] 11:10-11:50 Takeshi Koshiba, Waseda University, Japan
"Secure Message Transmission against Rational Adversaries"
[7] 14:00-14:40 Kazuma Ohara, NEC Corporation, Japan
"Optimized Honest-Majority MPC for Malicious Adversaries

- Breaking the 1 Billion-Gate Per Second Barrier"
[8] 14:50-15:30 Ryo Kikuchi, NTT CORPORATION, Japan
"Key components in MEVAL"
[9] 15:40-16:20 Bernardo David, Tokyo Institute of Technology, Japan
"A Provably Secure Proof-of-Stake Blockchain Protocol"
16:20-16:30 (Closing)

Table of Contents

Linear Secret-Sharing Schemes for Forbidden Graph Access Structures 1
Amos Beimel (Ben-Gurion University, Israel) Joint work with Oriol Farràs, Yuval Mintz, and Naty Peter
Human Recomputable Secret Shares and their Applications in E-Voting 10
Yvo Desmedt (The University of Texas at Dallas, USA)
Secret Sharing Schemes Under Guessing Secrecy 25
Mitsugu Iwamoto (The University of Electro-Communications, Japan)
Joint work with Junji Shikata
Function Secret Sharing Using Fourier Basis 38
Naruhiro Kurokawa (Bank of Japan, Japan)
Joint work with Takuya Ohsawa and Takeshi Koshiba
Ad Hoc PSM Protocols: Secure Computation Without Coordination 48
Eyal Kushilevitz (Technion, Israel)
Joint work with Amos Beimel and Yuval Ishai
Secure Message Transmission against Rational Adversaries 56
Takeshi Koshiba (Waseda University, Japan)
Joint work with Maiki Fujita
Optimized Honest-Majority MPC for Malicious Adversaries

- Breaking the 1 Billion-Gate Per Second Barrier 72
Kazuma Ohara (NEC Corporation, Japan)
Joint work with Toshinori Araki, Assi Barak, Jun Furukawa, Yehuda Lindell, Ariel Nof, Adi Watzman, Or Weinstein
Key components in MEVAL 86
Ryo Kikuchi (NTT Corporation, Japan)
Joint work with Dai Ikarashi, Koki Hamada, Koji Chida, Naoto Kiribuchi, Gembu Morohashi
Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol 100
Bernardo David (Tokyo Institute of Technology, Japan)
Joint work with Aggelos Kiayias, Alexander Russell and Roman Oliynykov
Panel Discussion: Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling 116

Linear Secret-Sharing Schemes for Forbidden Graph Access Structures

Amos Beimel (Joint work with Oriol Farràs, Yuval Mintz, and Naty Peter)

Ben Gurion University of the Negev
amos.beimel@gmail.com

A secret-sharing scheme realizes the forbidden graph access structure determined by a graph $G=(V, E)$ if a pair of vertices can reconstruct the secret if and only if it is and edge of G. An important property of these schemes is that they can be used to construct schemes for the conditional disclosure of secrets.

We study the complexity of realizing a forbidden graph access structure by linear secret-sharing schemes. A secret-sharing is linear if the reconstruction of the secret from the shares is a linear mapping. In many applications of secret sharing, it is required that the scheme is linear. We provide efficient constructions and lower bounds on the share size of linear secret-sharing schemes for sparse and dense graphs, closing the gap between upper and lower bounds: Given a sparse graph with n vertices and at most $n^{1+\beta}$ edges, for some $0 \leq \beta<1$, we construct a linear secret-sharing scheme realizing the forbidden graph access structure in which the total size of the shares is $\tilde{O}\left(n^{1+\beta / 2}\right)$. We provide an additional construction showing that every dense graph with n vertices and at least $\binom{n}{2}-n^{1+\beta}$ edges can be realized by a linear secret-sharing scheme with the same share size.

We prove lower bounds on the share size of linear secret-sharing schemes realizing forbidden graph access structures. We prove that for most forbidden graphs access structures, the total share size of every linear secret-sharing scheme realizing the graph is $\Omega\left(n^{3 / 2}\right)$, this shows that construction of [Gay, Kerenidis, and Wee, CRYPTO 2015] is optimal. Furthermore, we show that for every $0<\beta \leq 1$ there exist a graph with at most $n^{1+\beta}$ edges and a graph with at least $\binom{n}{2}-n^{1+\beta}$ edges, such that the total share size of every linear secret-sharing scheme realizing these forbidden graph access structures is $\Omega\left(n^{1+\beta / 2}\right)$. This shows that our constructions are optimal (up to poly-logarithmic factors).

Secret Sharing for Forbidden Graphs

Amos Beimel, Ben-Gurion University

Based on works with
Oriol Farras, Universitat Rovira i Virgili
Yuval Mintz, Naty Peter, Ben-Gurion University

Cryptographic Technologies for Securing Network Storage
June 12, 2017

Secret Sharing [Shamir79,Blakley79,ItoSaitoNishizeki87]

- Parties: $\boldsymbol{P}=\left\{\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}\right\}$
- Access Structure $\Gamma \subseteq 2^{P}$ (collection of sets of parties)
- A scheme realizes Γ if:
-Correctness: every authorized set $B \in \Gamma$ can recover s
-Privacy: every unauthorized set $B \notin \Gamma$ cannot learn anything about s

4

Shamir's t-out-of-n Secret Sharing

- Access structure: $\Gamma=\{A \subseteq P:|A| \geq t\}$
- Scheme:
- Input: secret $\mathbf{S} \in \mathbb{F}_{p}$ where $p>n$ is a prime
- Dealer chooses a random polynomial

$$
Q(x)=s+r_{1} x+r_{2} x^{2}+\cdots+r_{t-1} x^{t-1}
$$

- Share of $\boldsymbol{P}_{\boldsymbol{j}}: \quad s_{j}=\boldsymbol{Q}(\boldsymbol{j}) \bmod p$

Linear Secret Sharing

- Input: secret $s \in \mathbb{F}_{q}$
- Dealer chooses random elements $r_{1}, \ldots, r_{m} \in \mathbb{F}_{q}$
- Share :
- A vector over \mathbb{F}_{q}
- Each coordinate: a linear combination of s and r_{1}, \ldots, r_{m}
- Example 1: Shamir's scheme:

$$
\cdot s_{j}=Q(j)=s+j^{1} \cdot r_{1}+j^{2} \cdot r_{2}+\cdots+j^{t-1} \cdot r_{t-1} \bmod p
$$

- Example 2: $s \in \mathbb{F}_{2}$
- Dealer chooses $r_{1}, r_{2} \in \mathbb{F}_{2}$
- $s_{1}=\left(r_{1}, r_{1} \oplus r_{2}\right)$
- $s_{2}=\left(s \oplus r_{1}\right)$
- $s_{3}=\left(r_{1}, s \oplus r_{1} \oplus r_{2}\right)$

Why Secret Sharing?

- Storing sensitive information - Robust key management
- Used in many secure protocols:
- multiparty computation
- threshold cryptography
- attribute-based encryption (ABE)
- access control
- oblivious transfer
- Most applications require linear secret-sharing schemes
- Most known schemes are linear

Schemes for Forbidden Graphs [SunShieh97]

A scheme realizes a forbidden graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ if:

- The parties are the set of vertices V
- The authorized sets are:
- The edges in E
- Every set of size at least 3
- The unauthorized sets are:
- The non-edges
- A single party (vertex)

A Scheme Realizing a Forbidden Graph

- $s \in\{\mathbf{0}, \mathbf{1}\}$
- For every edge $\boldsymbol{e}_{i}=(\boldsymbol{u}, \boldsymbol{v}) \in E$,
- Give a random bit r_{i} to u and $r_{i} \oplus s$ to v
- u, v can reconstruct the secret by performing xor on their shares.

- In addition, share s using a 3-out-of- n secret-sharing scheme
- Total share size: $\mathbf{O}(|\mathrm{V}|+|\mathrm{E}|)=\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$

9

Upper Bounds for Forbidden Graphs

- Every graph can be realized by a secret-sharing scheme with share size $n^{1+\sqrt{\log \log n / \log n}}=n^{1+o(1)}$ [LiuVaikuntanathanWee17]
- Every graph can be realized by a linear secret-sharing scheme with share size $O\left(n^{3 / 2}\right)$ [GayKerenidisWee15]
- We consider linear secret sharing schemes
- Questions:
- If G contains few edges, can we realize it more efficiently?
- Few $=n^{1+\beta}$. Goal: better than $\min \left\{n^{1+\beta}, n^{3 / 2}\right\}$
- If G contains many edges, can we realize it more efficiently?
- Many $=\binom{n}{2}-n^{1+\beta}$. Goal: better than $n^{3 / 2}$
- If G has an efficient scheme and we add and remove few edges, can we realize it efficiently?

Motivation

- Secret sharing for forbidden bipartite graphs are equivalent to conditional disclosure of secrets
- Used to construct symmetric private information retrieval and attribute based encryption
- Our goal: construct efficient linear secret-sharing schemes for specific families of forbidden graphs
- We want to understand if, for forbidden graphs, linear secret sharing requires shares of size $\Omega\left(n^{3 / 2}\right)$
- Which graphs require large shares?

Conditional Disclosure of Secrets (CDS)

 [GertnerIshaiKushilevitzMalkin98]- Each party has a private input
- Both parties know a secret S
- Shared randomness r
- Referee knows $\boldsymbol{x}, \boldsymbol{y}$
- A condition: $\mathbf{P}:\{\mathbf{0}, \mathbf{1}\}^{N} \times\{\mathbf{0}, \mathbf{1}\}^{N} \rightarrow\{\mathbf{0}, \mathbf{1}\}$
- Each party sends one message
- Correctness: If $\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{1}$, Ref learns s
- Security: If $\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0}$, Ref learns nothing

CDS and Forbidden Bipartite Secret Sharing

- Bipartite Graph: $G=(A, B, E)$
- Vertices: $\boldsymbol{A} \cup \boldsymbol{B}$
- Edges: Only between sets $E \subseteq A \times B$
- Secret sharing for forbidden bipartite graph
- Every $(\boldsymbol{a}, \boldsymbol{b}) \in E$ can reconstruct s
- Every $\boldsymbol{a} \in \boldsymbol{A}, \boldsymbol{b} \in \boldsymbol{B}$ s.t. $(\boldsymbol{a}, \boldsymbol{b}) \notin \boldsymbol{E}$ should not learn information about s

CDS and Forbidden Bipartite Secret Sharing

- Given a CDS define:
- $A, B=\{0,1\}^{n}$
- $E=\{(x, y): P(x, y)=1\}$
- To share a secret s :

- $s_{x}=m_{1}(x, s, r), s_{y}=m_{2}(y, s, r)$
- x, y can reconstruct s iff $P(x, y)=1$
iff $(x, y) \in E$

Main Result: Upper Bounds

Thm 1:
If a graph with n vertices contains for some $0 \leq \beta \leq \mathbb{1}$

- either at most $n^{1+\beta}$ edges or
- at least $\binom{n}{2}-n^{1+\beta}$ edges,

Then there is a linear secret-sharing scheme realizing the graph with total share size $\tilde{O}\left(n^{1+\beta / 2}\right)$.

Thm 2:
If

- G can be realized with a scheme with total share size m.
- G^{\prime} obtained from G by removing and adding at most $n^{1+\beta}$ edges.

Then there is a linear secret-sharing scheme realizing G^{\prime} with share size $\widetilde{O}\left(m+n^{1+\beta / 2}\right)$.

Main Result: Lower Bounds

- Thm 3: There exists a graph with n vertices such that in any linear secret-sharing scheme realizing it with a one-bit secret the size of the shares is $\Omega\left(n^{3 / 2}\right)$
- Conclusion 1: The construction of Gay et al. is optimal
- Conclusion 2: Gap between linear and non-linear schemes for forbidden graphs
- Thm 4: There exists a graph with n vertices and at most $n^{1+\beta}$ edges such that in any linear secret-sharing scheme realizing it with a one-bit secret the size of the shares is $\Omega\left(n^{1+\beta / 2}\right)$
- Same result for a graph with at least $\binom{n}{2}-n^{1+\beta}$ edges
- Conclusion 3: Our constructions are optimal up to a poly-log factor.

16

A Scheme for a Graph with $n^{1+\beta}$ Edges

- Basic Construction: for a bipartite graph $G=(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{E})$ such that A is small and every vertex in B has degree at most d
- Share size $\boldsymbol{O}(|\boldsymbol{B}|+|\boldsymbol{A}| \cdot \boldsymbol{d})$
- Second construction: for a bipartite $G=(A, B, E)$ such that every vertex in B has degree at most d
- Share size $O(n \cdot \sqrt{d})$
- Third construction: for a bipartite graph $G=(A, B, E)$ that has at most $n^{1+\beta}$ edges
- Share size $\boldsymbol{O}\left(\boldsymbol{n}^{1+\beta / 2}\right)$
- Final construction: for a graph $G=(V, E)$ that has at most $\boldsymbol{n}^{1+\beta}$ edges
- Share size $\boldsymbol{O}\left(\boldsymbol{n}^{1+\beta / 2}\right)$

Basic Construction

- If $G=(A, B, E)$ is bipartite graph s.t. every vertex in B has degree at most \boldsymbol{d}
- Then G has a linear secret-sharing with total share size is $\boldsymbol{O}(|\boldsymbol{B}|+|\boldsymbol{A}| \cdot \boldsymbol{d})$

Example: $|\boldsymbol{A}|=\sqrt{\boldsymbol{n}},|\boldsymbol{B}|=\boldsymbol{n}$
\Rightarrow Every $\boldsymbol{b} \in \boldsymbol{B}$ has degree at most $\boldsymbol{d}=\sqrt{n}$
\Rightarrow The total share size is $\boldsymbol{O}(\boldsymbol{n})$

A Scheme with share size $O\left(n^{3 / 2}\right)$

- If $\boldsymbol{G}=(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{E})$ is bipartite graph
- Then G has a linear secret-sharing with total share size is $O\left(\boldsymbol{n}^{3 / 2}\right)$

Scheme:

- Partition A into sets $A_{1}, \ldots, A_{\sqrt{n}}$ of size \sqrt{n}
- Define $G_{i}=\left(A_{i}, B, E \cap\left(A_{i} \times B\right)\right)$
- Realize each G_{i} with a scheme with total share size $\boldsymbol{O}(n)$
- The total share size is $O(n \cdot \sqrt{n})$

A

A Scheme with share size $O\left(n d^{1 / 2}\right)$

- If $G=(A, B, E)$ is bipartite graph st. - The degree of every $b \in B$ is at most d

Then G has a linear secret-sharing with total share size is $O\left(n d^{1 / 2}\right)$

With different parameters :

- Randomly partition A into: $A_{1}, \ldots, A_{\sqrt{d}}$ of size n / \sqrt{d}
- Define $G_{i}=\left(A_{i}, B, E \cap\left(A_{i} \times B\right)\right)$
- With high prob. the degree of every $b \in B$ in G is at most \sqrt{d}

Realize each G_{i} with a scheme with total share size $\boldsymbol{O}(n+(n / \sqrt{d}) \cdot \sqrt{d})=\boldsymbol{O}(n)$

A

- The total share size is $O(n \cdot \sqrt{d})$

22

Bipartite with Few Edges

If $G=(A, B, E)$ is bipartite with at most $O\left(n^{1+\beta}\right)$ edges
Then G has a linear secret-sharing with total share size is $O\left(n^{1+\beta / 2}\right)$

- In this talk: $O\left(\boldsymbol{n}^{5 / 4+\beta / 4}\right)$

Scheme

- Let $B_{h}=\left\{b \in B: \operatorname{deg}(b)>n^{1 / 2+\beta / 2}\right\}$
$\left|B_{h}\right| \leq \frac{n^{1+\beta}}{n^{1 / 2+\beta / 2}}=n^{1 / 2+\beta / 2}$
- Realize $G_{\text {high }}=\left(A, B_{h}, E \cap\left(A \times B_{h}\right)\right)$

A
$-\quad$ Share size $O\left(\sqrt{|A| \cdot\left|B_{h}\right| \cdot n}\right)=O\left(\sqrt{n \cdot n^{1 / 2+\beta / 2 \cdot n}}\right)$

- Realize $G_{\text {low }}=\left(A, B \backslash B_{h}, E \cap\left(A \times B \backslash B_{h}\right)\right)$
- Share size $O\left(\sqrt{|A| \cdot|B| \cdot n^{1 / 2+\beta / 2}}\right)=O\left(\sqrt{n \cdot n \cdot n^{1 / 2+\beta / 2}}\right)$
- In the paper: Reduce degree in $\log n$ steps

Conclusions

- Forbidden graph secret sharing is equivalent to CDS \Rightarrow SPIR, Atribute based encryption
- Every forbidden graph can be realized by a linear secret-sharing scheme with share size $\boldsymbol{O}\left(n^{1.5}\right)$.
- We show that every forbidden graph with $n^{1+\beta}$ edges can be realized by a linear secret-sharing scheme with share size $\boldsymbol{O}\left(n^{1+\beta / 2}\right)$.
- Same result for with $\binom{n}{2}-n^{1+\beta}$ edges
- There exists a forbidden graph such that in any linear secret-sharing scheme realizing it the share size is $\Omega\left(n^{1.5}\right)$
- There exists a forbidden graph with $n^{1+\beta}$ edges such that in any linear secret-sharing scheme realizing it the share size is $\Omega\left(n^{1+\beta / 2}\right)$
- Open: graph access structures

Schemes for Graphs

A scheme realizes a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ if:

- The parties are the set of vertices V
- The authorized sets are:
- The edges in E
- Every set that contains an edge
- The unauthorized sets are:
- The non-edges
- Every set that doesn't contain an edge
- Every graph can be realized by a linear scheme with share size $\boldsymbol{O}\left(n^{2} / \log n\right)$
- Sparse graph: E
- Dense graph: $\boldsymbol{O}\left(\boldsymbol{n}^{5 / 4+3 \beta / 4}\right)$

Thanks!

Human Recomputable Secret Shares and their Applications in E-Voting

Yvo Desmedt

The University of Texas at Dallas
Yvo.Desmedt@utdallas.edu

The classical approach of secret sharing is to consider the secret to be in a finite field. Computers are used by the dealer to make shares, and computers are used to reconstruct the secret. Since the invention of Visual Cryptography by Kafri and Keren in 1987, many researchers have stepped away from these restrictions.

In 2007, Desmedt-Pieprzyk-Steinfeld-Wang considered secrets that belong to a nonAbelian group, such as the symmetric group (i.e., permutations), to obtain secure multiparty computation.

In this talk, we consider secret and shares that are permutations, wonder how good humans can do computations with these and consider them in the context of e-voting, but then e-voting secure against hacking of the voter's computer.

Human Recomputable Secret Shares and their Applications in E-Voting

Yvo Desmedt
Univ. of Texas at Dallas, US

June 12, 2017
© Yvo Desmedt

Yvo Desmedt's work on anonymity was partially supported by: the US NSF ANI-0087641. The work on voting was partially sponsored by the UK EPSRC EP/C538285/1, by BT as BT Chair of Information Security and partly done while being Invited Senior Research Scientist at RCIS (AIST, Japan).

A part of this research was done while Yvo Desmedt visited AT\&T Shannon Research, Tsinghua University (while funded by the National Natural Science Foundation of China Grant 60553001, and the National Basic Research Program of China Grant 2007CB807900 and 2007CB807901).

Part of this presentation is based on:

- unpublished research with Rebecca Wright (with her permission),
- a joint paper with Josef Pieprzyk, Ron Steinfeld and Huaxiong Wang (Crypto 2007)
- a joint paper with Stelios Erotokritou at SCN 2012.
- a joint paper with Stelios Erotokritou at Vote ID 2015.

Special thanks to Rene Peralta whose November 9, 2011 suggestion to consider $Z_{10}(+)$ as an Abelian subgroup of S_{10}, allowed us to make a more user-friendly scheme.

Overview

1. Special Secret Sharing Schemes
2. Our setting: Post Snowden elections
3. A pioneering approach: Chaum's Code Voting
4. Advantages/disadvantages of Code Voting
5. Our setting, assumptions and their impacts
6. The voting: passive adversary only
7. Some usability tests (SCN 2012)
8. High level description
9. Details: technical background
10. The mixing for the single-seat: Efficiency improvement
11. The mixing for the single-seat MIX-friendly case
12. The mixing for the multi-seat election
13. The active case: An announcement
14. Variants
15. Conclusions

1. Special Secret Sharing Schemes

The most known secret sharing scheme is Shamir's secret sharing scheme (over 11,000 citations). His approach was to consider:

1. the secret and shares to be in a finite field,
2. to have the dealer use a computer to generate shares, and
3. to use computers to reconstruct the secret.

Since the invention of Visual Cryptography by Kafri and Keren in 1987, many researchers have stepped away from these restrictions (note that this was reinvented by Naor and Shamir in 1994 and that Kafri-Keren have 225 citations and Naor-Shamir have 2741).

Generalizing from finite field to Abelian Groups was initiated by

Desmedt-Frankel, published in 1994 (see also: Cramer-Fehr, Cramer-Fehr-Stam and the Cramer-Fehr-Ishai-Kushilevitz application to MPC).

After many years of research, in 2007 Desmedt-Pieprzyk-SteinfeldWang succeeded in making black-box "MPC" computations over non-Abelian groups. The motivation was purely theoretical. Today we will see an application of the situation in which:
the secret and shares belongs to a non-Abelian group,
i.e., S_{n} (or a subgroup of S_{n}, such as Z_{n}).

2. Our setting: Post Snowden elections

Post Snowden: today most people understand that computers, laptops can be hacked and may have trapdoors, malware, etc.

Potential solutions:

- Halderman (2015) recommended to stop using Internet Voting.
- We believe we need to restart/encourage a line of research in which we wonder how to vote assuming that the device you use for voting has been hacked.

Our model (high level): we assume we can not trust:

- any single party,
- any single device, etc.

3. A pioneering approach: Chaum's Code Voting

4. AdVantages/disadvantages of code voting

Advantages of Code Voting: secure even if voter's machine hacked.
Disadvantages:

- requires IACR to send random numbers by postal mail, and
- no collusion between postal system (or sender of envelopes) and the party receiving the vote.
- authorities do not like the system because it differs too much from what is used today!

Ballot stuffing with Code Voting

5. OUR SETTING, ASSUMPTIONS AND THEIR IMPACTS

Our setting:

1. Voter votes using an untrusted device
2. The voter has access to many communication devices/media (e.g., home PC, mobile, at work, in the library, postal)
3. Voter uses "human computations," which we checked on reliability (see further).
4. Authorities use untrusted computers, potentially with state sponsored malware.

Our first model:

1. at most t devices/parties are infected.
2. our adversary is passive, curious, but not interested in: modifying the vote, in a DoS, etc. (see further)
Impact:

- Many cryptographic tools become useless, such as: AES, ElGamal, ZKIP, NIZK.
- So, we need to make a new MIX

13

6. THE VOTING: PASSIVE ADVERSARY ONLY

A user friendly approach: (multi-seat, not "code-voting", $t=1$)

14
6. THE VOTING: PASSIVE ADVERSARY ONLY A user friendly approach: (multi-seat, not "code-voting", $t=1$)
Put this edge against "Candidate list edge" Put this edge against Arrow Sheet 2

- Antoine
- Bart
- Christian
- Helena
- Tsutomu

Do not vote without Sheet 2 covering this area

6. The Voting: PASSIVE ADVERSARY ONLY

A user friendly approach: (multi-seat, not "code-voting", $t=1$)
Put against "Voting Bullets"
List of Candidates

- Antoine
- Bart
- Christian
- Helena
- Tsutomu

Sheet 1
6. The voting: Passive adversary only

A user friendly approach: (multi-seat, not "code-voting", $t=1$)

List of Candidates

- Antoine
- Bart
- Christian
- Helena
- Tsutomu

In the single-seat election (mix friendly), we use code-voting ($t=1$) We regard the Abelian group $Z_{10}(+)$ as a subgroup of S_{10} and replace the above "shares" by e.g.,

These corresponding to an addition plus $4 \bmod 10$ and plus 3 $\bmod 10$ respectively. We assume there are 10 candidates.

7. Some usability tests (SCN 2012)

How good are users able to add strings of numbers, each mod10? Our test show only 95% get this correct, even when helping users, as following:

Details:

We asked 100 participants to do several tests (their ages did not surpass 65).

Asking to add 5 shares of 4 digits mod10, 95% of the people computed the correct result, using the above visual tool to avoid confusion.

However, when using the permutation based addition, 99% of the people computed the correct result.

A common comment from the participants was that the permutation based mod10 addition was extremely easy - whereas the other experiment was rather challenging for some people.

8. HIGH LEVEL DESCRIPTION

Background: secret shares

Example: 2-out-of-2:
Goal: Give binary secret s to 2 parties, Alice and Bob.
How: Flip a coin. Give the result, s_{1}, to Alice.
Give Bob: $s \oplus s_{1}$.
Can be generalized to:

- work over any finite group,
- the case we do not trust t insiders.

Just let $s=s_{1} \circ s_{2} \circ \cdots \circ s_{t+1}$.

High level protocol description:

1. We use a Code Generation Entity (CGE), which will in the pre-voting stage choose initial one-time pad (informally, π_{i}) for each voter.
2. Our MIX network uses layers, each layer having at least $t+1$ shares.
3. The CGE sends shares $(t+1)$ of these π_{i} to the MIX servers in the first layer.
4. The MIX network anonymizes and modifies the shares of π_{i}. The permutations used are the same for all the shares of the same value. For this, each layer had a leader that remembers the permutation used and the modifications done at that layer
5. Each server in the last layer of the MIX sends a share to each voter (communication paths used by different servers are vertex disjoint).
6. The voter combines the shares (see above) and votes.
7. The voter sends the "encrypted" vote back to the leader of the last layer of the MIX network.
8. Starting with the leader of the last layer, all permutations and modifications done at that layer are undone
9. The leader of the first layer of the MIX sends the almost-unencrypted vote to the CGI.
10. The CGI uses the inverse of its one-time pad.

9. DETAILS: TECHNICAL BACKGROUND

We primarily use (besides MIX and shares):

- Concepts from secure multiparty computation

Simplified goal: given shares of s and shares of u how to make shares of $s * u$, without computing s and u.

- Desmedt-Kurosawa 2000 introduced:

Definition 1. We say that (X, \mathcal{B}) is an (n, b, t)-verifiers set system if:

1. $|X|=n$,
2. $\left|B_{i}\right|=t+1$ for $i=1,2, \ldots, b$, and
3. for any subset $F \subset X$ with $|F| \leq t$, there exists a $B_{i} \in \mathcal{B}$ such that $F \cap B_{i}=\emptyset$. 21

Vertex disjoint paths: paths p_{1} and p_{2} from S to R are vertex disjoint if the nodes on path p_{1}, and on p_{2}, except for S and R are disjoint.

10. The mixing for the single-seat MIX-FRIENDLY CASE

We have several protocols, of which we describe the simplest. In the simplest, we require that each server in layer i is physically different from each server in layer $j(i \neq j)$.
Note: Our MIX-friendly protocols can also be used in situations in which we have a single receiver (can be generalized) and multiple senders. The receiver should not learn who the sender is. For simplicity we focus on voting.
In below protocol we assume that $b=t+1$. We denote the servers in layer i by a "block" B_{i}.

Protocol 1. Prevoting protocol
Step 1 Let π_{i}^{1} be the $i^{t h}$ one-time pad (where $1 \leq i \leq v$). The receiver
(CGI) shares each π_{i}^{1} into $t+1$ shares $\pi_{i, j}^{1} \in F_{2^{l}}$ (where $1 \leq j \leq t+1$) and privately sends $\pi_{i, j}^{1}$ to the corresponding MIX $M I X_{1, j}$ in block B_{1}.

Step 2 The leader of B_{1} (we call $M I X_{1,1}$) informs all others MIX servers in B_{1} how they have to permute the i-index of all above $\pi_{i, j}^{1}$. This permutation is defined by $\rho_{1} \in_{R} S_{v}$.

Step 3 On the i indices all MIX servers in B_{1} apply the permutation ρ_{1}. So, $\pi_{i, j}^{1}:=\pi_{\rho_{1}(i), j}^{1}$.

Step 4 The leader of B_{1} chooses $t+1$ random bit string modifiers $\omega_{i, j}^{1} \in_{R} F_{2^{l}}$ and privately sends $\omega_{i, j}^{1}$ to parties in B_{1}.

Step 5 For each (i, j) the $t+1$ values $\pi_{i, j}^{1}$ are regarded as shares of π_{i}^{1}. Similarly, the $t+1$ values $\omega_{i, j}^{1}$ are regarded as shares of ω_{i}^{1}.

The MIX server in B_{1} computes $\pi_{i j}^{2}=\omega_{i j}^{1}+\pi_{i j}^{1}$.
$\pi_{i, j}^{2}$ are regarded as shares of π^{2}, the $\rho_{1}(i)$ permuted and modified one time pad.

Step 6 Steps 2-5 are repeated, incrementing by one the indices of B_{1} and B_{2} until the last block B_{b} is reached.

Step 7 Shares held by MIX-servers of block B_{t+1} are denoted as $\phi_{i, j}$. $M I X_{t+1, j} \in B_{t+1}$ then sends $\phi_{i, j}$ to the $i^{t h}$ sender. The communication paths used by different servers in block B_{t+1} are vertex disjoint.

Voting

1. The vote recombines the shares (see above) to make its one-time-pad and then this is used to encrypt the number of the candidate chosen.
2. The voter sends the encrypted vote to the leader of the last layer of the MIX network.

MIXING the votes

1. The leader of block $j=t+1$ having received v votes, "decrypts" the votes using $-\omega_{i}^{k}$.
2. The leader of block j permutations using ρ_{j}^{-1} to undo the earlier permutations on the order of the votes.
3. The leader of block j sends all so obtained v "votes" to the leader of block $j-1$.
4. Above steps are repeated.
5. The leader of block 1 sends the final "decrypted" votes to the CGI.

Theorem 1. The above protocol is a reliable, private and anonymous message transmission protocol.

For the proof, see the paper for details.

11. The mixing for the single-seat: Efficiency IMPROVEMENT

We can improve on the number of servers and the number of layers we need, by using concepts of verifiers set system, and modeling the communication system between the different servers in the layers as a graph (as in PSMT). We modify the communication between two layers to maintain the security.
Concept: (see Burmester-Desmedt 2004, formalized by Desmedt-Wang-Burmester 2005)

Color-based adversary structure: computers running the same platform are given the same color. We assume at most t color are corrupted, i.e., nodes corrupted have at most t different colors. In our context, we want to reuse as many times as the same MIX 28
servers
When a MIX server appears twice in the Directed Acyclic Graph between the CGI and the voters, we color it with the same color. We then consider PSMT in which we have a general adversary structure defined by the color based one.

Solution proposed: see Erotokritou-Desmedt 2012 (SCN) and also Vote ID 2015.

29
12. THE MIXING FOR THE MULTI-SEAT ELECTION

Sketch:

Above works well because we work over an Abelian group. In the case of multi-seat elections, the one-time-pad is a permutation, and so no longer an Abelian group.

That means that Step 5 (in which we used +) in the last protocol does not work. We need to use a more complex protocol to modify the shares in the blocks. For this we use the work of

Desmedt-Pieprzyk-Steinfeld-Wang of Crypto 2007.
Let us look at some nice graphs from this paper.

When $t=1$:

31
and when $t=2$:

32

13. An ANNOUNCEMENT

We have a theoretical solution against active adversaries.
In this case, we consider:

- The mixing process: in which we can have active adversaries.
- The communication part: since different routes are used and since we do not use authentication, active adversaries could be in the communication protocol. Note that solving this using PSMT technology seems easy, however:
- The voter needs to deal with incorrect shares! The voter cannot even run Shamir's secret sharing!! So, certainly not a normal error-correction!
We use a variant of a repeat code to solve the last problem. (We
© Yvo Desmedt UDDALLAS 33
base this on the protocols for PSMT in SCN 2012 with an active
adversary). While our test show that humans can combine permutations with roughly 99% being correct, we do not test whether humans can decode repeat codes correctly.
Therefore we call our solution (upcoming paper) theoretical.

14. Variants

- Verification: Chaum allowed for voters to receive a confirmation that the vote was received, by giving the voters a second code for each candidate.
We too can obtain this, i.e., our solution is a distributed secure version of Chaum confirmation which works among the lines of above.
- Better trust models: Our slides and text focuses on the case we do not trust t parties, devices, etc. We can generalize this to general access structure. That allows us to consider state sponsored hacking and state infected hardware/software.
We can then assume at most t platforms have been hacked.

15. CONCLUSIONS

Achieving a good solution will not be easy. Indeed:

- Paranoid cryptographers assumed for 20 years that the servers used by authorities must be the bad guys!
- Cryptographers ignored for too long the fact politicians and the public want internet voting.
- Many cryptographers have no understanding of the weaknesses of modern PCs and what techniques hackers can deploy against voters.
- Theoreticians are not interested in secure Internet Voting.
- These promoting practical research do not understand it may take

10 years research with lots of interaction before a good solution might be presented. They want a solution now!

We showed that the disadvantages of Chaum's code voting can be addressed. We are aware that our solution is "Towards Secure Internet Voting."

It took 15 years to design reasonable voting schemes when using secure booths. So, we can expect that others will improve on our solutions. ${ }^{37}$

Secret Sharing Schemes Under Guessing Secrecy

Mitsugu Iwamoto (Joint work with Junji Shikata)

The University of Electro-Communications
mitsugu@uec.ac.jp

Information theoretic security is a class of security notion to guarantee the security against adversaries with unbounded computing power. In particular, after seminal work by Shannon [5], perfect secrecy has been well investigated because of its importance. Recently, Alimomeni and Safavi-Naini introduced an information theoretic security notion called guessing secrecy for symmetric key encryption (SKE) [1].

In defining guessing secrecy, we assume that an adversary guesses a plaintext only once by using the corresponding ciphertext without a key. If the adversary tries to maximize the success probability of the guess and it is equivalent to the success probability in guessing the plaintext without the key, we can say that no advantage is given to the adversary from the ciphertext.

In the original guessing secrecy [1], the maximum success probability of guessing is averaged with respect to the ciphertexts, and hence, we call it average guessing secrecy. On the other hand, Iwamoto and Shikata later discussed the maximum probability of guessing in the worst case with respect to the ciphertext in defining guessing secrecy, which is called worst-case guessing secrecy. Intuitively, worst-case guessing secrecy offers intermediate level of security between average guessing secrecy and perfect secrecy. Iwamoto and Shikata also discussed average and worst case guessing secrecy for secret sharing schemes (SSS) as well as $\operatorname{SKE}[3,4]$.

The aim of this talk is to shed light on the relations among perfect secrecy, average and worst case guessing secrecy by investigating several constructions of SKE and SSS. As a result, it turns out that the relations of the above-mentioned information theoretic security notions depend on the primitives, and the difference between SKE and (2,2)-threshold SSSs becomes clearer.

The content of this talk is based on our previous work [2-4] and recent results.
Acknowledgement. This work was supported by JSPS KAKENHI Grant Numbers JP15H02710, and JP17H01752.

References

[1] M. Alimomeni and R. Safavi-Naini. Guessing Secrecy. In International Conference on Information Theoretic Security (ICITS), volume LNCS 7412, pages 1-13. Springer-Verlag, 2012.
[2] M. Iwamoto and J. Shikata. Information theoretic security for encryption based on conditional Rényi entropies. In C. Padró, editor, International Conference on Information Theoretic Security (ICITS), volume LNCS8317, pages 103-121, 2013.
[3] M. Iwamoto and J. Shikata. Secret Sharing Schemes Based on Min-Entropies. IEEE International Symposium on Information Theory - Proceedings, pages 401-405, 2014.
[4] M. Iwamoto and J. Shikata. Constructions of Svmmetric-kev Encrvotion with Guessing Secrecy. In International Symposi 729, 2015.
[5] C. E. Shannon. Commun
\therefore., 28:656-715, Oct. 1949.

Secret Sharing Schemes under Guessing Secrecy

Mitsugu Iwamoto

The University of Electro-Communications, Japan.
12th June, 2017

IMI Workshop:
Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling

Based on joint work with Junji Shikata, YNU
Appeared at ICITS2013, ISIT2014, 2015 \& recent result.

Outline

(1) Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS)

- PS in Secret Key Encryption (SKE)
- GS in Secret Key Encryption (SKE)
- Two Types of Guessing Secrecy: A-GS and W-GS for SKE
- GS in Secret Sharing Schemes (SSS)
(2) Part I: Average Guessing Secrecy in Secret Sharing Schemes
- OTP-like Construction of (2,2)-SSS under A-GS
- Ideal Secret Sharing
- Ideal A-GS SSS can beat ideal PS SSS

3 Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes

- Weak independence between secret and shares under W-GS
- Difference between SKE and SSS under W-GS

Introduction
Perfect Secrecy and Guessing Secrecy

Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS)

Symmetric Key Encryption (SKE)

SKE: $\Sigma:=\left(P_{K}\right.$, Enc, Dec $)$

- Real values: key $k \in \mathcal{K}$, message $m \in \mathcal{M}$, ciphertext $c \in \mathcal{C}$
- Random variables: key K, message M, ciphertext C
$P_{K M C}(\cdot, \cdot, \cdot)$: joint probability distribution of K, M, C
$K \perp M: K$ and M are independent
- No decryption error is assumed

Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) PS in Secret Key Encryption (SKE)

Perfect Secrecy

Encryption: $\Sigma:=\left(P_{K}\right.$, Enc, Dec $)$

Definition (Perfect Secrecy: PS)
Σ satisfies perfect secrecy (PS) if

$$
\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, \quad P_{M \mid C}(m \mid c)=P_{M}(m)
$$

- i.e., M and C are statistically independent
- Σ is secure against adversaries with unbounded computing power

Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) GS in Secret Key Encryption (SKE)

Guessing Secrecy for SKE
[Alimomeni, Safavi-Naini, ICITS2012]

SKE: $\Sigma:=\left(P_{K}\right.$, Enc, Dec $)$

- Suppose that an adversary guesses m from c only once
- Best strategy: maximize success probabilities in guessing m
$\arg \max _{m} P_{M \mid C}(m \mid c)$: Most probable m when c is given
$\arg \max _{m} P_{M}(m)$: Most probable m when no information is given
- Two ways in treating the ciphertext c

Average / Worst-case Guessing Secrecy

Definition (Guessing Secrecy for SKE)

- Average GS, A-GS:

$$
\mathbb{E}_{C}\left[\max _{m} P_{M \mid C}(m \mid C)\right]=\max _{m} P_{M}(m)
$$

- Worst-case GS, W-GS:

$$
\max _{c} \max _{m} P_{M \mid C}(m \mid c)=\max _{m} P_{M}(m)
$$

- Clearly,

$$
\text { [weaker] A-GS } \preceq \mathrm{W} \text {-GS } \preceq \mathrm{PS} \text { [stronger] }
$$

Our Interest

- Gaps among the security notions

Average / Worst-case Guessing Secrecy in Min-Entropies

Definition (Guessing Secrecy for SKE in Min-entropies)

- Average GS, A-GS:

$$
R_{\infty}^{\operatorname{avg}}(M \mid C)=R_{\infty}(M)
$$

- Worst-case GS, W-GS:

$$
R_{\infty}^{\text {wst }}(M \mid C)=R_{\infty}(M)
$$

where

- $R_{\infty}(X):=-\log \max _{x} P_{X}(x)$
- $R_{\infty}^{\text {avg }}(X \mid Y):=-\mathbb{E}_{Y}\left[\log \max _{x} P_{X}(x \mid Y)\right]$
- $R_{\infty}^{\text {wst }}(X \mid Y):=-\log \max _{x, y} P_{X \mid Y}(x \mid y)$

Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) GS in Secret Sharing Schemes (SSS)

Guessing Secrecy for Secret Sharing

Definition (PS for Secret Sharing)

$$
\text { - } \forall s \in \mathcal{S}, \forall v_{\boldsymbol{A}} \in \mathcal{V}^{|\boldsymbol{A}|}, P_{S \mid V_{\boldsymbol{A}}}\left(s \mid v_{\boldsymbol{A}}\right)=P_{S}(s) \quad \text { if }|\boldsymbol{A}| \leq k-1
$$

Definition (GS for Secret Sharing)

- A-GS: $\mathbb{E}_{V_{\boldsymbol{A}}}\left[\max _{s \in \mathcal{S}} P_{S \mid V_{\boldsymbol{A}}}\left(s \mid V_{\boldsymbol{A}}\right)\right]=\max _{s \in \mathcal{S}} P_{S}(s) \quad$ if $|\boldsymbol{A}| \leq k-1$
- W-GS: $\max _{v_{\boldsymbol{A}}}\left[\max _{s \in \mathcal{S}} P_{S \mid V_{\boldsymbol{A}}}\left(s \mid v_{\boldsymbol{A}}\right)\right]=\max _{s \in \mathcal{S}} P_{S}(s) \quad$ if $|\boldsymbol{A}| \leq k-1$
- Clearly, [weaker] A-GS \preceq W-GS \preceq PS [stronger]

Our Interest

- Gaps among the security notions

Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) GS in Secret Sharing Schemes (SSS)

Guessing Secrecy for Secret Sharing in Min-Entropies

Definition (GS for Secret Sharing Schemes in Probabilities)

- A-GS: $\mathbb{E}_{V_{\boldsymbol{A}}}\left[\max _{s \in \mathcal{S}} P_{S \mid V_{\boldsymbol{A}}}\left(s \mid V_{\boldsymbol{A}}\right)\right]=\max _{s \in \mathcal{S}} P_{S}(s) \quad$ if $|\boldsymbol{A}| \leq k-1$
- W-GS: $\max _{v_{\boldsymbol{A}}}\left[\max _{s \in \mathcal{S}} P_{S \mid V_{\boldsymbol{A}}}\left(s \mid v_{\boldsymbol{A}}\right)\right]=\max _{s \in \mathcal{S}} P_{S}(s) \quad$ if $|\boldsymbol{A}| \leq k-1$

Definition (GS for Secret Sharing Schemes in Min-Entropies)

- A-GS: $R_{\infty}^{\text {avg }}\left(S \mid V_{A}\right)=R_{\infty}(S)$
if $|\boldsymbol{A}| \leq k-1$
- W-GS: $R_{\infty}^{\text {wst }}\left(S \mid V_{A}\right)=R_{\infty}(S)$
if $|\boldsymbol{A}| \leq k-1$

Note

- This talk: we mainly focus on constructions of $(2,2)$-SSS under GS

Overview of This Talk
Obvious Relation
[weaker] A-GS $\preceq \mathrm{W}$-GS $\preceq \mathrm{PS}$ [stronger]
Part I: A-GS vs. PS

- SKE \& SSS: A-GS \prec PS (" \prec " means that explicit gap exists)
- A-GS attains shorter share size than PS for ideal SSS

Part II: Security level of W-GS

- SKE: (A-GS $\prec) W-G S=P S$
- SSS: A-GS \prec W-GS \prec PS

Key Point

- GS does not require statistical independence
- Non-uniformity of the secret: M and S

Average Guessing Secrecy
in Secret Sharing Schemes

Naïve Idea: (2, 2)-SSS as SKE

- We show how to construct SSS under A-GS

We concentrate on construction of $(2,2)-$ SSS under A-GS
Easy to extend to (k, n)-threshold and general access structures
Naïve Idea:

- SKE $\approx(2,2)-$ SSS under PS

OTP-like SKE under A-GS

SKE: $\Sigma:=\left(P_{K}\right.$, Enc, Dec $)$

OTP-like SKE
[I-Shikata, ICITS2013]

- $\mathcal{M}=\mathcal{C}=\mathcal{K}=\{0,1\}$
- $P_{M}(0)=P_{K}(0)=p, 1 / 2 \leq p \leq 1 \Leftarrow \mathrm{PS}$ iff $p=1 / 2$
- One-time pad for 1-bit encryption:

Encryption: $\pi_{e n c}(k, m)=k \oplus m$
Decryption: $\pi_{\text {dec }}(k, c)=k \oplus c$

Part I: Average Guessing Secrecy in Secret Sharing Schemes OTP-like Construction of (2,2)-SSS under A-GS
Analysis on OTP-like Construction
$q:=1-p<1 / 2$

M	K	C	$P_{M K C}$	$P_{M \mid C}$
0	0	0	p^{2}	$\frac{p^{2}}{p^{2}+q^{2}}$
1	1	0	q^{2}	$\frac{q^{2}}{p^{2}+q^{2}}$
0	1	1	$p q$	$1 / 2$
1	0	1	$p q$	$1 / 2$

For $c \in\{0,1\}, \max _{m} P_{M \mid C}(m \mid c)$ is attained by $m=0$, hence,

$$
\mathbb{E}_{C}\left[\max _{m} P_{M \mid C}(m \mid C)\right]=P_{M}(0)\left(=\max _{m} P_{M}(m)\right)
$$

Theorem

- Security: $R_{\infty}(M)=R_{\infty}(M \mid C)=-\log p$, but $M \not \perp C$!
- Efficiency (in key-size): $R_{\infty}(K)=R_{\infty}(M)=-\log p$ (optimal)

Part I: Average Guessing Secrecy in Secret Sharing Schemes OTP-like Construction of $(2,2)$-SSS under A-GS

Regarding SKE as $(2,2)-$ SSS

One Time Pad (OTP)				
M	K	C	$P_{M K C}$	$P_{M \mid C}$
0	0	0	p^{2}	$\frac{p^{2}}{p^{2}+q^{2}}$
1	1	0	q^{2}	$\frac{q^{2}}{p^{2}+q^{2}}$
0	1	1	$p q$	$1 / 2$
1	0	1	$p q$	$1 / 2$

\Rightarrow| | OTP-like SSS | | | |
| :---: | :---: | :---: | :---: | :---: |
| S | V_{1} | V_{2} | $P_{S V_{1} V_{2}}$ | $P_{S \mid V_{2}}$ |
| 0 | 0 | 0 | p^{2} | $\frac{p^{2}}{p^{2}+q^{2}}$ |
| 1 | 1 | 0 | q^{2} | $\frac{q^{2}}{p^{2}+q^{2}}$ |
| 0 | 1 | 1 | $p q$ | $1 / 2$ |
| 1 | 0 | 1 | $p q$ | $1 / 2$ |

* Can be extended to (n, n)-threshold and general access structures

Question

- How about the share size ?
- Can it be ideal secret sharing?
Efficiency in Share Size: Ideal GS under PS

Proposition (Lower Bound)	[Karnin-Greene-Hellman, 1983]
$\forall P_{S} \in \mathscr{P}(\mathcal{S}), \quad$ PS-SSS $\Rightarrow H\left(V_{i}\right) \geq H(S), i \in[n]$	

Definition (Ideal SSS with perfect secrecy)

$$
\text { Ideal (i.e., efficient) PS-SSS } \stackrel{\text { def }}{\Longleftrightarrow} H\left(V_{i}\right)=H(S), i \in[n]
$$

Proposition

$$
\forall P_{S} \in \mathscr{P}(\mathcal{S}), \quad \text { PS-SSS } \Rightarrow H\left(V_{i}\right) \geq \log |\mathcal{S}|, i \in[n]
$$

where the equalities hold only when S is uniform
Corollary

$$
\text { PS-SSS can be ideal iff } S \text { is uniform }
$$

Part I: Average Guessing Secrecy in Secret Sharing Schemes Ideal Secret Sharing

Ideal SSS under A-GS

Theorem
[Dodis ICITS2012, I-Shikata ICITS2013]

$$
\text { A-GS/W-GS } \Rightarrow R_{\infty}\left(V_{i}\right) \geq R_{\infty}(S)
$$

Pf) Lower bounding via Rényi entropies of order α and $\alpha \rightarrow \infty$ (omitted)
Question
Does ideal (k, n)-threshold GS-SSS exist for non-uniform S ?

$$
R_{\infty}\left(V_{i}\right)=R_{\infty}(S), \quad i \in[n]
$$

c.f.) (k, n)-threshold PS-SSS can be ideal iff S is uniform

Theorem
[I-Shikata, ISIT2014]
$\exists S$ (non-uniform), \exists ideal (k, n)-SSS under A-GS

Part I: Average Guessing Secrecy in Secret Sharing Schemes Ideal Secret Sharing

OTP-like SSS Cannot Be "Non-trivial" SSS under A-GS

One Time Pad (OTP)						OTP-like SSS				
M	K	C	$P_{M K C}$	$P_{M \mid C}$		S	V_{1}	V_{2}	$P_{S V_{1} V_{2}}$	$P_{S \mid V_{2}}$
0	0	0	p^{2}	$\frac{p^{2}}{p^{2}+q^{2}}$		0	0	0	p^{2}	$\frac{p^{2}}{p^{2}+q^{2}}$
1	1	0	q^{2}	$\frac{p^{2}-q^{2}}{p^{2}+q^{2}}$	\Rightarrow	1	1	0	q^{2}	$\frac{q^{2}}{p^{2}+q^{2}}$
0	1	1	$p q$	1/2		0	1	1	$p q$	1/2
1	0	1	$p q$	1/2		1	0	1	$p q$	1/2

- If OTP-like GS-SSS is ideal: $R_{\infty}(S)=R_{\infty}\left(V_{1}\right)=R_{\infty}\left(V_{2}\right)$
$R_{\infty}(S)=R_{\infty}\left(V_{1}\right)=-\log p$ but $R_{\infty}\left(V_{2}\right)=-\log \left(p^{2}+q^{2}\right)$,
OTP-like Ideal GS-SSS $\Rightarrow p=0,1 / 2$
© In this case GS-SSS $=\mathrm{PS}-\mathrm{SSS} \Rightarrow$ trivial and not interesting

Towards "Non-trivial" Ideal (2, 2)-SSS under A-GS

- OTP-like (2,2)-SSS cannot be "non-trivial" SSS under A-GS!
- More efficient ideal SSS is possible under A-GS !

"Non-trivial" Ideal (2, 2)-SSS under A-GS

Example
OTP-like SSS under A-GS

$(q:=1-p<1 / 2)$				
S	V_{1}	V_{2}	$P_{S V_{1} V_{2}}$	$P_{S \mid V_{2}}$
0	0	0	p^{2}	$\frac{p^{2}}{p^{2}+q^{2}}$
1	1	0	q^{2}	$\frac{q^{2}}{p^{2}+q^{2}}$
0	1	1	$p q$	$1 / 2$
1	0	1	$p q$	$1 / 2$

© Ideal $\Rightarrow p=0,1 / 2$
[I-Shikata, ISIT2014]
Ideal SSS under A-GS

$(p \geq 1 / 4)$							
S	V_{1}	V_{2}	$P_{S V_{1} V_{2}}$	$P_{S \mid V_{2}}$			
0	0	0	p	$\frac{3 p}{1+2 p}$			
1	1	0	$\frac{1-p}{3}$	$\frac{1-p}{1+2 p}$			
0	1	1	$\frac{1-p}{3}$	$1 / 2$			
1	0	1	$\frac{1-p}{3}$	$1 / 2$			
$P_{S}(0)=P_{V_{i}}(0)=p+\frac{1-p}{3}$							

- For each $v_{i} \in\{0,1\}, \max _{s} P_{S \mid V_{i}}\left(s \mid v_{i}\right)$ is attained by $s=0$, hence,

$$
\mathbb{E}_{V_{i}}\left[\max _{s} P_{S \mid V_{i}}\left(s \mid V_{i}\right)\right]=P_{S}(0) \Leftrightarrow R_{\infty}\left(S \mid V_{i}\right)=R_{\infty}(S)
$$

Part I: Average Guessing Secrecy in Secret Sharing Schemes Ideal A-GS SSS can beat ideal PS SSS

Efficiency of Ideal SSS Under A-GS

Analysis
[I-Shikata, ISIT2014]
The proposed construction satisfies

$$
R_{\infty}\left(V_{1}\right)=R_{\infty}\left(V_{2}\right)=R_{\infty}(S)=-\log \frac{1+2 p}{3}
$$

Since S is binary,

$$
H\left(V_{1}\right)=H\left(V_{2}\right)=H(S)=h\left(\frac{1+2 p}{3}\right)<1 \text { if } p>1 / 4
$$

PS-SSS cannot attain $H\left(V_{i}\right)<1$ due to the following result:
Proposition

$$
\forall P_{S} \in \mathscr{P}(\{0,1\}), \quad \text { PS-SSS } \Rightarrow H\left(V_{i}\right) \geq 1(=\log |\mathcal{S}|)
$$

where the equalities hold only when S is uniform

Summary of Part I

- SKE \& SSS: A-GS \prec PS
- A-GS attains shorter share size than PS for ideal SSS

Non-trivial Ideal SSS cannot be obtained from SKE under A-GS

- Observation

GS-Encryption

GS-Secret Sharing

Guessing Secrecy in Secret Sharing Schemes

Definition (GS for Secret Sharing)

- A-GS: $\max _{s \in \mathcal{S}} P_{S}(s)=\mathbb{E}_{V_{\boldsymbol{A}}}\left[\max _{s \in \mathcal{S}} P_{S \mid V_{\boldsymbol{A}}}\left(s \mid V_{\boldsymbol{A}}\right)\right] \quad$ if $|\boldsymbol{A}| \leq k-1$
- W-GS: $\max _{s \in \mathcal{S}} P_{S}(s)=\max _{v_{\boldsymbol{A}}}\left[\max _{s \in \mathcal{S}} P_{S \mid V_{\boldsymbol{A}}}\left(s \mid v_{\boldsymbol{A}}\right)\right] \quad$ if $|\boldsymbol{A}| \leq k-1$
- Clearly, [weaker] A-GS $\preceq \mathrm{W}-\mathrm{GS} \preceq \mathrm{PS}$ [stronger]

Claim of Part II

- SKE: (A-GS $\prec) W-G S=P S$
[I-Shikata, ISIT2015]
- SSS: A-GS \prec W-GS \prec PS
"Weak" Independence between S and V_{i} under W-GS

Theorem (Necessary Condition for W-GS-SSS)

- $s^{*}:=\arg \max _{m} P_{S}(s), i \in\{1,2\}$

$$
\forall v_{i}, \quad P_{S V_{i}}\left(s^{*}, v_{i}\right)-P_{S}\left(s^{*}\right) P_{V_{i}}\left(v_{i}\right)=0 \quad \text { (w-ind) }
$$

Pf) Easy to derive from the definition (omitted)
Remark

- If $S \perp V_{i}$ (i.e., PS),

$$
\forall s, \forall v_{i}, \quad P_{S V_{i}}\left(s, v_{i}\right)-P_{S}(s) P_{V_{i}}\left(v_{i}\right)=0
$$

then (w-ind) is obviously satisfied

Encryption by Latin Square

- We require $|\mathcal{S}|=|\mathcal{V}|$
\therefore A-GS, W-GS $\Rightarrow|\mathcal{S}| \leq|\mathcal{V}|$ (proof: omitted)
Definition (SSS based on Latin square)
For a fixed $s \in \mathcal{S}$, the map $f_{s}: v_{1} \mapsto v_{2}$ is bijective
Example (Value of s when v_{1} and v_{2} are given)

$v_{1} \backslash v_{2}$	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

- Regarding $\left(s, v_{1}, v_{2}\right)$ as $(m, k, c),(2,2)-$ SSS becomes SKE
- In the following, assume SKE \& SSS are based on Latin square

Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Weak independence between secret and shares under W-GS

Distributions of Shares Are Equivalent via Permutation
Weak Independence

$$
i \in\{1,2\}, \quad \forall v_{i}, \quad P_{S V_{i}}\left(s^{*}, v_{i}\right)-P_{S}\left(s^{*}\right) P_{V_{i}}\left(v_{i}\right)=0 \quad \text { (w-ind) }
$$

Theorem (Equivalence via permutation)
Probability vector $\left[P_{V_{1}}\left(v_{1}\right)\right]_{v_{1} \in \mathcal{V}}$ is obtained by permuting $\left[P_{V_{2}}\left(v_{2}\right)\right]_{v_{2} \in \mathcal{V}}$
Pf) Immediately follows from def. of Latin square (L) and (w-ind):

$$
\begin{aligned}
& 0 \stackrel{(\text { (w-ind) }}{=} P_{S V_{1}}\left(s^{*}, v_{1}\right)-P_{S}\left(s^{*}\right) P_{V_{1}}\left(v_{1}\right) \\
& \quad \stackrel{(L)}{=} P_{S V_{2}}\left(s^{*}, f_{s^{*}}\left(v_{1}\right)\right)-P_{S}\left(s^{*}\right) P_{V_{i}}\left(v_{i}\right) \\
& \quad \stackrel{(\text { w-ind })}{=} P_{S}\left(s^{*}\right) P_{V_{2}}\left(f_{s^{*}}\left(v_{1}\right)\right)-P_{S}\left(s^{*}\right) P_{V_{i}}\left(v_{i}\right)
\end{aligned}
$$

- This result does not hold in A-GS if S is not uniform

SKE: W-GS = PS

- Regarding $\left(s, v_{1}, v_{2}\right)$ as $(m, k, c),(2,2)$-SSS becomes SKE

Theorem
If W-GS SSS is based on Latin square

$$
V_{1} \perp S \Longrightarrow V_{1} \text { is uniform over } \mathcal{V}
$$

Corollary
If W-GS SKE is based on Latin square

$$
\begin{aligned}
K \perp M & \Longrightarrow K \text { is uniform over } \mathcal{K} \\
& \Longrightarrow \text { SKE satisfies } \mathrm{PS}
\end{aligned}
$$

Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Weak independence between secret and shares under W-GS

Proof of W-GS $=$ PS on SKE

Theorem
If W-GS SSS is based on Latin square

$$
V_{1} \perp S \Longrightarrow V_{1} \text { is uniform over } \mathcal{V}
$$

Pf) $v_{i}^{*}:=\arg \max _{v_{i}} P_{V_{i}}\left(v_{i}\right) \Longrightarrow P_{V_{1}}\left(v_{1}^{*}\right)=P_{V_{2}}\left(v_{2}^{*}\right)$

$$
\begin{array}{rlr}
0 & =\sum_{s \in \mathcal{S}}\left(P_{S V_{2}}\left(s, v_{2}^{*}\right)-P_{S}(s) P_{V_{2}}\left(v_{2}^{*}\right)\right) & \ddots)(L) \&(\sharp) \\
= & \sum_{s \in \mathcal{S}}\left(P_{S V_{1}}\left(s, f_{s}^{-1}\left(v_{2}^{*}\right)\right)-P_{S}(s) P_{V_{1}}\left(v_{1}^{*}\right)\right) & \because) S \perp V_{1} \\
= & \sum_{s \in \mathcal{S}} P_{S}(s)\left(P_{V_{1}}\left(f_{s}^{-1}\left(v_{2}^{*}\right)\right)-P_{V_{1}}\left(v_{1}^{*}\right)\right) &
\end{array}
$$

Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes \quad Difference between SKE and SSS under W-GS

SSS: W-GS \prec PS ?

Theorem (Necessary Condition for W-GS-SSS)

- $s^{*}:=\arg \max _{m} P_{M}(m), i \in\{1,2\}$

$$
\forall v_{i}, \quad P_{S V_{i}}\left(s^{*}, v_{i}\right)-P_{S}\left(s^{*}\right) P_{V_{i}}\left(v_{i}\right)=0 \quad \text { (w-ind) }
$$

Question

- Can S and V_{i} be correlated while satisfying (w-ind)? \Longrightarrow Yes!

Part Il: Worst-case Guessing Secricy in Secret Sharing Schemes D					Difference between SKE and SSS under W-GS	
Example of (2, 2)-SSS: W-GS \prec PS						
$\checkmark \max _{s} P_{S}(s)=\max _{s, v_{1}} P_{S \mid V_{1}}\left(s \mid v_{1}\right)=\max _{s, v_{2}} P_{S \mid V_{2}}\left(s \mid v_{2}\right)=1 / 2$						
s	v_{1}	v_{2}	$P_{S}(s)$	$P_{S V_{1} V_{2}}\left(s, v_{1}, v_{2}\right)$	$P_{S}(s) P_{V_{1}}\left(v_{1}\right)$	$P_{S}(s) P_{V_{2}}\left(v_{2}\right)$
0	0	0		7/40	7/40	7/40
	1	2	1/2	7/40	7/40	7/40
	2	1		6/40	6/40	6/40
1	0	2		5/40	91/800	91/800
	1	1	13/40	4/40	91/800	78/800
	2	0		4/40	78/800	91/800
2	0	1		2/40	49/800	42/800
	1	0	7/40	3/40	49/800	49/800
	2	2		2/40	42/800	49/800

Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Difference between SKE and SSS under W-GS
A-GS and W-GS Can Depend on Shares
$-\max _{s} P_{S}(s)=\max _{s, v_{1}} P_{S \mid V_{1}}\left(s \mid v_{1}\right)=\mathbb{E}_{V_{2}}\left[\max _{s} P_{S \mid V_{2}}\left(s \mid V_{2}\right)\right]=4 / 7$

s	v_{1}	v_{2}	$P_{S}(s)$	$P_{S V_{1} V_{2}}\left(s, v_{1}, v_{2}\right)$	$P_{S}(s) P_{V_{1}}\left(v_{1}\right)$	$P_{S}(s) P_{V_{2}}\left(v_{2}\right)$
	0	0		$16 / 49$	$16 / 49$	$80 / 343$
0	1	2	$4 / 7$	$8 / 49$	$8 / 49$	$44 / 343$
	2	1		$4 / 49$	$4 / 49$	$72 / 343$
	0	2		$8 / 49$	$48 / 343$	$240 / 2401$
1	1	1	$12 / 49$	$3 / 49$	$24 / 343$	$132 / 2401$
	2	0		$1 / 49$	$12 / 343$	$216 / 2401$
	0	1		$4 / 49$	$36 / 343$	$180 / 2401$
2	1	0	$9 / 49$	$3 / 49$	$18 / 343$	$99 / 2401$
	2	2		$2 / 49$	$9 / 343$	$162 / 2401$

Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Difference between SKE and SSS under W-GS

Summary of Part II

- Relation among security notions depends on primitive:

SKE: $(A-G S \prec) W-G S=P S$
SSS: A-GS \prec W-GS \prec PS
"Weak" independence is important

* Future work: General construction of SSS under W-GS
- Observation:

Function Secret Sharing Using Fourier Basis

Naruhiro KUROKAWA
(Joint work with Takuya OHSAWA and Takeshi KOSHIBA)

Bank of Japan
naruhiro.kurokawa@boj.or.jp

Function secret sharing (FSS) scheme, formally introduced by Boyle et al.[1] at EUROCRYPT2015, is a mechanism that calculates a function $f(x)$ for $x \in\{0,1\}^{n}$ which is shared among p parties, by using distributed function $f_{i}:\{0,1\}^{n} \rightarrow \mathbb{G}(1 \leq i \leq p)$, where \mathbb{G} is an Abelian group, while the function $f:\{0,1\}^{n} \rightarrow \mathbb{G}$ is kept secret to the parties. We observe that any function f can be described as a linear combination of the basis functions by regarding the function space as a vector space of dimension 2^{n} and give a new framework for FSS schemes based on this observation. Based on the new framework, we introduce a new FSS scheme using the Fourier basis. This method provides efficient computation for a different class of functions (e.g., hard-core predicates of one-way functions), which may be inefficient to compute if we use the standard basis such as point functions. Our FSS scheme based on Fourier basis is quite simple due to the fact that the Fourier basis is closed under the multiplication, while the previous constructions $[1,3]$ have to incorporate some complex mechanisms to overcome the difficulty.

References

[1] E. Boyle, N. Gilboa and Y. Ishai: Function secret sharing, in: EUROCRYPT 2015, Part II, LNCS 9057, pp.337-367, 2015.
[2] N. Gilboa and Y. Ishai: Distributed point functions and their applications, in: EUROCRYPT 2014, LNCS 8441, pp.640-658, 2014.
[3] T. Ohsawa, N. Kurokawa and T. Koshiba: Function Secret Sharing Using Fourier Basis, in: Proc. the 8th International workshop on Trustworthy Computing and Security, Lecture Notes on Data Engineering and Communications Technologies, to appear, Springer.

Function Secret Sharing Using Fourier Basis

Naruhiro KUROKAWA (Bank of Japan)
Joint work with Takuya OHSAWA ${ }^{1 .}$ and Takeshi KOSHIBA ${ }^{2 .}$
(1. Saitama Univ. 2.Waseda Univ.)

Topics

- Threshold Secret Sharing
- Definition Function Secret Sharing(FSS)
- Related work (Distributed Point Function)
- Linear Combination of FSS
- Basis function
- General FSS by using Basis FSS
- Distributed Fourier Basis
- Conclusion

Threshold Secret Sharing

In Secret Sharing (SS) scheme, share information $S_{i}(1 \leq i \leq p)$, generated from the secret information S, are distributed to p parties.
In (n, p)-threshold SS scheme, the secret information S can be recovered from n shares, but no information on S is leaked from $n-1$ shares or less.

(4, 3)-Threshold SS

(n, n)-Threshold Secret Sharing

simple (n, n)-threshold scheme

$$
S=\sum_{i=1}^{p} S_{i}(\bmod q)
$$

(4, 4)-Threshold SS
4

p-party Function Secret Sharing

Correctness :

$$
f(x)=\sum_{i=1}^{p} f_{k_{i}}(x)
$$

Security :
f is not leaked out from at most $p-1$ distributed functions

Definition of FSS

A p-party FSS scheme with respect to a function class \mathcal{F} is a pair of PPT algorithms (Gen, Eval).
The functional value $f(x)$ is obtained from all shares $\left(y_{1}, y_{2}, \cdots, y_{p}\right)$ of the parties by using a decode function Dec.

$$
\begin{aligned}
& \operatorname{Gen}\left(1^{\lambda}, f\right) \rightarrow\left(k_{1}, \cdots, k_{p}\right) \\
& \quad f \in \mathcal{F}: \text { Secret Target function } \lambda: \text { Security parameter }
\end{aligned}
$$

$$
\operatorname{Eval}\left(i, k_{i}, x\right) \rightarrow y_{i}
$$

y_{i} : i-th party's evaluated share

$$
\operatorname{Dec}\left(y_{1}, \cdots, y_{p}\right) \rightarrow f(x)
$$

Related work

Initial 2-party DPF

[Gilboa et al, 2014]

FSS for Fourier Basis

[Ohsawa, K \& Koshiba, 2017]

Point function

For $a \in\{0,1\}^{n}, b \in\{0,1\}^{m}$,
the point function $P_{a, b}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$

$$
\left\{\begin{array}{l}
P_{a, b}(a)=b \\
P_{a, b}\left(a^{\prime}\right)=0^{m} \text { for all } a^{\prime} \neq a
\end{array}\right.
$$

Distributed Point function(DPF)

[Gilboa et al, 2014]

$$
\begin{aligned}
G e n(a, b) & \rightarrow k_{0}, k_{1} \in\left(\mathbb{F}_{2^{m}}\right)^{2^{n}} \\
k_{0} & =r_{1}, r_{2}, \cdots, r_{a}^{0}, \cdots, r_{2^{n}} \\
k_{1} & =r_{1}, r_{2}, \cdots, r_{a}^{1}, \cdots, r_{2^{n}} \\
\hline k_{0} \oplus k_{1} & =0
\end{aligned} 0 \quad b \quad 0 \quad l \begin{array}{ll}
& 0
\end{array}
$$

$\operatorname{Eval}\left(i, k_{i}, x\right) \rightarrow k_{i}\left[x^{\prime}\right]$ which is the x^{\prime}-th element of k_{i}

$$
\begin{array}{|l|}
\hline \text { Dec } \\
\operatorname{Eval}\left(0, k_{0}, x\right) \oplus \operatorname{Eval}\left(1, k_{1}, x\right)=P_{a, b}(x)
\end{array}{ }^{\text {Key size }} O\left(2^{n}\right)
$$

Distributed Point function(DPF)

[Gilboa et al, 2014]
X is viewed as a pair $(i, j) \in\{0,1\}^{u} \times\{0,1\}^{\mu} \quad a=(\nu, \gamma)$
$u=\left\lceil\log \left(\left(\frac{m \cdot 2^{n}}{\kappa+1}\right)^{1 / 2}\right)\right\rceil \quad \mu=\left\lceil\log \left(\left(\frac{2^{n} \cdot(\kappa+1)}{m}\right)^{1 / 2}\right)\right\rceil \quad G:\{0,1\}^{\kappa} \rightarrow\{0,1\}^{\kappa \cdot 2 n / 2}$

Improved DPF

[Boyle et al, 2015]
$P_{a, b}(x) \quad x=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right) \in\{0,1\}^{n}$

$\operatorname{Eval}\left(k_{i}, x\right) \rightarrow$ 〇.w
$D e c:-w \oplus \cdot w \rightarrow b$

$$
12
$$

Key size
$O(n)$

p-party DPF

[Boyle et al, 2015]
In case of $p=3 \quad a=(\nu, \gamma)$
x is viewed as a pair $(i, j) \in\{0,1\}^{u} \times\{0,1\}^{\mu}$

$\oplus_{i=1}^{3} k_{i} 0 \quad 0$
$C W_{\star}, C W_{\star}, C W_{\star}, C W_{\star} \quad \bigoplus G(\mathrm{O}) \oplus C W_{\text {人 }}=\left(\begin{array}{l}0 \\ \vdots \\ \vdots \\ 0\end{array}\right) \gamma$-th

p-party DPF

[Boyle et al, 2015]
$\operatorname{Eval}\left(i, k_{i}, x\right)$

$$
=0
$$

$A_{\nu} \quad x=a \quad \operatorname{Eval}\left(i, k_{i}, x\right)$
k_{1}
k_{2}
$k_{3}$$\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right) \quad \begin{gathered}\gamma \text {-th } \\ \text { element }\end{gathered}$ of $\frac{G(\bigcirc) \oplus C W_{\star} \oplus}{(\bigcirc) \oplus C W_{\star}} \underset{G(\bigcirc) \oplus C W_{\star} \oplus}{G(O) \oplus C W_{\star}}$

$$
14=b
$$

Linear Combination of FSS

[Boyle et al, 2015]

Given FSS schemes for function families \mathcal{F}, \mathcal{G} taking
$\mathbb{G}_{1} \rightarrow \mathbb{G}$, there exists an FSS scheme for class
$\mathcal{F}+\mathcal{G}:=\{f \oplus g \mid f \in \mathcal{F}, g \in \mathcal{G}\}$, with key size equal to $\operatorname{size}(\mathcal{F}+\mathcal{G})=\operatorname{size}(\mathcal{F})+\operatorname{size}(\mathcal{G})$,
and evaluation time $\operatorname{time}(\mathcal{F}+\mathcal{G})=\operatorname{time}(\mathcal{F})+\operatorname{time}(\mathcal{G})$.

Interval function

[Boyle et al, 2015]
$f_{(a, b)}= \begin{cases}g & a<x<b \\ 0 & \text { else }\end{cases}$

16

Basis function

Function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ can be regarded as a vector space of 2^{n}

$x \in\{0,1\}^{3}$	$f(x)$	$f:\{0,1\}^{3} \rightarrow\{0,1\}$
000	1	$f:(1,0,1,0,0,1,0,1) \in\left(\mathbb{F}_{2}\right)^{2^{3}}$
001	0	Vector space has basis vectors.
010	1	So function space also has be basis.
011	0	$f(x)=\sum_{i \in\{0,1\}^{n}} \beta_{i} h_{i}$
100	0	
101	1	$B_{i}:$ Coefficients
110	0	$h_{i}:$ Basis functions
111	1	17

General FSS by using Basis FSS

[Ohsawa et al, 2017]
If there exists an FSS scheme for Basis function $h_{i}(x)$

Merit of using other Basis

Point Function as a Basis

$$
f(x)=P_{a, b}(x)+P_{a^{\prime}, b^{\prime}}(x)+P_{a^{\prime \prime}, b^{\prime \prime}}(x)
$$

Fourier Translation

$$
\begin{aligned}
& X=\{0, \cdots, T-1\}^{n} \quad f: X \rightarrow C \\
& f(x)=\sum \hat{f}(a) \chi_{a}(x)
\end{aligned}
$$

Fourier Coefficient

$$
\hat{f}(a)=\frac{1}{T^{n}} \sum_{x \in X} f(x) e^{-2 \pi i\langle a \cdot x\rangle / T}
$$

Fourier Basis

$$
\chi_{a}(x)=e^{2 \pi i\langle a \cdot x\rangle / T}
$$

Fourier Translation on Boolean domain

$$
\begin{array}{r}
X=\{0,1\}^{n} \quad f: X \rightarrow C \\
f(x)=\sum_{a \in\{0,1\}^{n}} \hat{f}(a) \chi_{a}(x)
\end{array}
$$

Fourier Coefficient

$$
\begin{aligned}
& \hat{f}(a)=\frac{1}{2^{n}} \sum_{x \in X} f(x) e^{-\pi i\langle a \cdot x\rangle} \\
& \text { er Basis } \\
& \left.\chi_{a}(x)=e^{\pi i\langle a \cdot x\rangle}=\frac{\text { Euler's formula }}{e^{\pi i}=-1}=-1\right)^{\langle a \cdot x\rangle}
\end{aligned}
$$

Fourier Basis

$$
\begin{aligned}
& \chi_{a}(x)=(-1)\langle a \cdot x\rangle \quad a \in\{0,1\}^{2} \\
& (-1)^{\left\langle\left(a_{0} \oplus a_{1}\right) \cdot x\right\rangle}=(-1)^{\left\langle a_{0} \cdot x\right\rangle} \cdot(-1)^{\left\langle a_{1} \cdot x\right\rangle} \\
& k_{0}=a_{0}=(0,1) \xrightarrow[(0,0)]{{ }_{(0,1)}^{1}} \frac{-1}{\mid} \\
& \bigoplus \\
& \xrightarrow[(0,0)]{\boldsymbol{L}_{(0,1)}^{\mid}} \\
& \| \\
& a=a_{0} \oplus a_{1}=(1,0)
\end{aligned}
$$

2-party FSS for the Fourier Basis

$$
\chi_{a}(x)=(-1)^{\langle a \cdot x\rangle}
$$

$\operatorname{Gen}_{2}^{F}\left(1^{\lambda}, a\right)$

$\operatorname{Dec}_{2}^{F}$ ans $=$ Eval $_{2}^{F}\left(0, k_{0}, x\right) \oplus \operatorname{Eval}_{2}^{F}\left(1, k_{1}, x\right)$ $(-1)^{\text {ans }}=\chi_{a}(x)$
$\left\langle k_{0} \cdot x\right\rangle \oplus\left\langle k_{1} \cdot x\right\rangle=\left\langle\left(k_{0} \oplus k_{1}\right) \cdot x\right\rangle$

p-party FSS for the Fourier Basis

Conclusion

- Introduction of Function Secret Sharing(FSS)
- Distributed Point Function

- Linear Combination of Basis FSS

$$
\text { Secret } \rightarrow f(x)=\sum_{i \in\{0,1\}^{n}} \beta_{i} h_{i} \uparrow \text { Secret }
$$

- Distributed Fourier Basis

$$
\begin{aligned}
& \chi_{a}(x)=(-1)^{\langle a \cdot x\rangle} \\
& k_{0}=a_{0} \stackrel{k_{1}=a_{1} \cdots k_{p}=}{=} a_{p} \bigoplus_{i=0}^{p, n) \text {-threshold }} a_{i}=a
\end{aligned}
$$

Ad Hoc PSM Protocols: Secure Computation Without Coordination

Eyal Kushilevitz, Technion
(Joint work with Amos Beimel and Yuval Ishai)

eyalk@cs.technion.ac.il

We study the notion of ad hoc secure computation, recently introduced by Beimel et al. (ITCS 2016), in the context of the Private Simultaneous Messages (PSM) model of Feige et al. (STOC 2004). In ad hoc secure computation we have n parties that may potentially participate in a protocol but, at the actual time of execution, only k of them, whose identity is not known in advance, actually participate. This situation is particularly challenging in the PSM setting, where protocols are non-interactive (a single message from each participating party to a special output party) and where the parties rely on pre-distributed, correlated randomness (that in the ad-hoc setting will have to take into account all possible sets of participants).

We present several different constructions of ad hoc PSM protocols from standard PSM protocols. These constructions imply, in particular, that efficient informationtheoretic ad hoc PSM protocols exist for NC^{1} and different classes of log-space computation, and efficient computationally-secure ad hoc PSM protocols for polynomial-time computable functions can be based on a one-way function. As an application, we obtain an information-theoretic implementation of order-revealing encryption whose security holds for two messages.

We also consider the case where the actual number of participating parties t may be larger than the minimal k for which the protocol is designed to work. In this case, it is unavoidable that the output party learns the output corresponding to each subset of k out of the t participants. Therefore, a "best possible security" notion, requiring that this will be the only information that the output party learns, is needed. We present connections between this notion and the previously studied notion of t-robust PSM (also known as "non-interactive MPC"). We show that constructions in this setting for even simple functions (like AND or threshold) can be translated into non-trivial instances of program obfuscation (such as point function obfuscation and fuzzy point function obfuscation, respectively). We view these results as a negative indication that protocols with "best possible security" are impossible to realize efficiently in the informationtheoretic setting or require strong assumptions in the computational setting.

Ad Hoc PSM Protocols: Secure Computation without Coordination
 Amos Beimel (BGU)
 Yuval Ishai (Technion, UCLA)
 Eyal Kushilevitz (Technion)

(Appeared in EuroCrypt 2017)

Ad-Hoc MPC [BGIK16]

The (basic) problem:

- Universe of n (honest but curious) parties
- Set of k parties S, not known in advance, participate in the actual computation of some f (say, symmetric).

Examples:

- Voting ${ }_{k}$: output majority vote of k participants.
- Dating: 2 out of n players want to know if they match.

Easy in "standard" MPC model where parties can interact

Private Simultaneous Messages (PSM) model [FKN94,IK97]

- Simple communication pattern
- Shared/Correlated Randomness

Example: SUM
Input: Each P_{i} is given $x_{\mathrm{i}} \in G$.
Output: P_{0} gets Σx_{i}.

Protocol:

1. Each P_{i} computes $m_{\mathrm{i}}=x_{\mathrm{i}}+r_{\mathrm{i}}$ and sends to P_{0}.

Nothing else
2. P_{0} computes $\Sigma m_{\mathrm{i}}=\Sigma x_{\mathrm{i}}+\Sigma r_{\mathrm{i}}=\Sigma x_{\mathrm{i}}$.

Security: by choice of r_{i} 's.

Why PSM?

- Minimal model - potentially easier to analyze
- Building-block for low-round MPC in the plain model
- A special type of randomized encoding [IK00,IK02]
- Implies Conditional Disclosure of Secrets (CDS)
- ...

Ad-Hoc PSM model

- n parties
- Correlated Randomness
- Exactly k parties show up
- Participants not known in advance

Security: Nothing else

Ad-Hoc PSM: assumptions + variants

- Exactly k parties show up.

If allow $|S|>k$ "best possible security" definition gives $\operatorname{Ref} f$'s value on all size- k subsets.

- f symmetric; else can sort by id's or specific f_{S}, for any S.
- S not known to the parties but will be known to Ref.

If require anonymity, need anonymous channels.

- Information-Theoretic or Computational security

Rest of the talk

- IT Constructions
- Warm-up: Ad-hoc PSM protocols for specific functions f
- Ad-hoc PSM for f from standard PSM for f
- Ad-hoc PSM for f from standard PSM for a related g
- Connections of other primitives to (variants of) ad-hoc PSM:
- Order revealing encryption from (IT) ad-hoc PSM
- NIMPC (t-robust PSM) iff ad-hoc PSM w/best possible security
- iO exists iff computational ad-hoc PSM w/best possible security
- (fuzzy) point function obfuscation from ad-hoc PSM for simple f 's w/best possible security

Basic Example \#1: difference ($k=2$)

For $S=\left\{\mathrm{P}_{i}, \mathrm{P}_{j}\right\}, i<j$, output $x_{i}-x_{j}$.
(common) Randomness: $r \in_{\mathrm{R}} G$

Protocol:

1. $\mathrm{P}_{i:} \quad m_{\mathrm{i}}=x_{i}+r$
2. P_{0} : given m_{i}, m_{j}, where $i<j$, outputs $m_{i}-m_{j}=x_{i}-x_{j}$.

Correctness: $\sqrt{ }$
Security: $\sqrt{ }$

Basic Example \#2: SUM_{k}
Recall PSM protocol for SUM $_{n}$:
Randomness: $r_{1}, \ldots, r_{n} \in_{\mathrm{R}} G$ s.t. $\Sigma r_{i}=0$.
Messages: $m_{i}=x_{i}+r_{i}$.
Ad-hoc PSM for SUM $_{k}$:
Randomness: $r_{1}, \ldots, r_{n} \in \in_{\mathrm{R}} G$ s.t. $\Sigma r_{\mathrm{i}}=0$, as above.
k-of- n secret sharing of each r_{j} into $\left\{r_{j, i}\right\}_{i \in[n]}$
P_{i} receives r_{i} and $\left\{r_{j, i}\right\}_{j \neq i}$
Messages: P_{i} sends $m_{i}=x_{i}+r_{i}$ and all its shares $\left\{r_{j, i}\right\}_{j \neq i}$
Output of P_{0} (on S of size k): for $i \in \mathrm{~S}$ knows $x_{i}+r_{i}$, for $i \notin \mathrm{~S}$ can
reconstruct r_{i} (knows k shares) \Rightarrow output $\Sigma_{i \in \mathrm{~S}} x_{i}+r_{i}+\Sigma_{i \notin S} r_{i}=\Sigma_{i \in \mathrm{~S}} x_{i}$.
Security: for $i \in S$, value of r_{i} hidden; view of P_{0} can be generated from its view in SUM_{n} protocol where each $\mathrm{P}_{j} \notin S$ has $x_{j}=0$.

Generic Protocols - $1^{\text {st }}$ attempt

For all T of size k, distribute randomness for PSM_{T} for f.
Each P_{i} sends its messages for all T s.t. $i \in T$.

Correctness: for actual set S, referee has all messages of PSM_{S}.

Problems:

- Complexity overhead of $\binom{n}{k}$ compared to standard PSM for f.
- What if for $T \neq S$ the messages of PSM_{T} (sent by parties $\mathrm{P}_{i} \in S \cap T$) reveal information?
- Can be fixed...

Generic Protocols - The case $k=2$

Assume Π_{f} (standard) PSM for f with players $\mathrm{Q}_{0}, \mathrm{Q}_{1}$.
Goal: Turn Π_{f} into ad-hoc PSM Π^{\prime} that works for any $S=\left\{\mathrm{P}_{i}, \mathrm{P}_{j}\right\}$.
Idea: Let one of $\mathrm{P}_{i}, \mathrm{P}_{j}$ simulate Q_{0}, and the other Q_{1}.
Problem: Which of $\mathrm{Q}_{0}, \mathrm{Q}_{1}$ to simulate? (Parties do not know S.)
Solution: Use binary representation $i=\left(i_{1}, \ldots, i_{\log n}\right) . \mathrm{P}_{i}$ applies Π_{f} $\log n$ times. In $t^{\text {th }}$ iteration simulates $\mathrm{Q}_{i t}$. For $i \neq j$ exists t s.t. $i_{t} \neq j_{t}$

Problem: When $i_{t}=j_{t}$ both simulate same $\mathrm{Q}_{i t} \Rightarrow$ correlated msgs.
Solution: Each P_{i} sends message of Π_{f} masked using "key" k_{t} and discloses $k_{1-i_{t}} \Rightarrow$ messages can be un-masked iff $i_{t} \neq j_{t}$.

The case $k=2$ (cont.)

Randomness:

For $t=1, \ldots, \log n$: generate randomness $r_{t, 0}, r_{t, 1}$, for PSM Π_{f} for 2 parties $\mathrm{Q}_{0}, \mathrm{Q}_{1},+\operatorname{random} a_{t, 0}, b_{t, 0}, a_{t, 1}, b_{t, 1} \in \mathbb{F}_{p}$. Give $a_{t, 0}, b_{t, 0}, a_{t, 1}, b_{t, 1}$ and $r_{t, i_{t}}$ to P_{i}.

Messages of P_{i} :
For $t=1, \ldots, \log n$: P_{i} simulates $\mathrm{Q}_{i_{t}}$ message $m_{t, i}$ in Π_{f} on $\left(x_{i} r_{t, i t}\right)$.
It sends masked message $m_{t, i}+a_{t, i_{t}} * i+b_{t, i_{t}}$ and also $a_{t, 1-i_{t}}, b_{t, 1-i_{t}}$.

Correctness: For t s.t. $i_{t} \neq j_{t} \quad \mathrm{P}_{0}$ has $a_{t, 0}, b_{t, 0}, a_{t, 1}, b_{t, 1}$ and can un-mask $m_{t, 0}, m_{t, 1}$ to compute $f\left(x_{i}, x_{j}\right)$.
Security: Since $i \neq j$ then messages hidden (2-wise ind.).
Complexity: $\mathrm{O}(\log n)$ overhead in randomness and communication.

Generic Protocols - General k

Idea: Use perfect hash family to select which P_{i} simulates each Q_{j}. (A family $H=\{h:[n] \rightarrow[k]\}$ s.t $\forall S$ of size $k, \exists 1-1$ func. $h \in H$.)

Perfect Hash facts:

- For $k=2$, the $\log n$ bit functions form such H.
- Explicit and probabilistic constructions.
E.g., probabilistically $|H| \approx \mathrm{e}^{k} k \cdot \log n$ suffices.

Idea (cont.): Run original PSM Π_{f} for each $h \in H$. Mask messages with k-wise independent keys $\left(A_{h, j}, j \in[k]\right)+$ shares of $(k$-1)-of- n sharing of other keys. P_{0} can remove mask iff h is 1-1 on S.

Complexity: overhead of $\approx|H|$ (good for "small" k)

Generic Protocols from a PSM for a related func.

Given $f: X^{k} \rightarrow Y$, define $g:(X \cup\{\perp\})^{n} \rightarrow Y \cup\{\perp\}:$
if \#non- \perp inputs is k, then output f on those inputs; otherwise \perp.

Assume Π_{g} (standard) PSM for g. Construct ad-hoc PSM Π_{f} for f.
Randomness: r_{1}, \ldots, r_{n} for Π_{g}.
Let $m_{\perp, j}=$ message of P_{j} in Π_{g} on $\left(\perp, r_{j}\right)$.
Let $\left\{\mathrm{m}_{\perp, j i}\right\}_{i}=$ shares in a k-out-of- n sharing of $m_{\perp, j}$.
Give P_{i} randomness r_{i} and shares $\left\{m_{\perp, j, i}\right\}_{j}$.
Message of P_{i} : its Π_{g} message $m_{x_{i, i}}$ on $\left(x_{i} r_{i}\right)+$ its shares $\left\{m_{\perp, j i}\right\}_{j \neq i}$.

Correctness: For S of size $k, \quad \mathrm{P}_{0}$ has $m_{x_{i, i}}$ for $i \in \mathrm{~S}+$ can reconstruct all $\mathrm{m}_{\perp, j}$ for $j \notin S \Rightarrow$ Output of Π_{g} is the correct answer.
Security: cannot reconstruct $m_{\perp, \mathrm{j}}$ for $j \in S$.
Complexity: $\mathrm{O}(n)$ overhead due to secret-sharing.

Corollaries

- Every function g has a PSM (with complexity $|X|^{n}$)

Cor: Every function f has an ad-hoc PSM

- If g has a poly. size (modular) branching program, then it has an efficient PSM
- If f has poly. size (modular) branching program, then so does the corresponding g

Cor: If f has a poly. size (modular) branching program, then f has an efficient ad-hoc PSM

Order Revealing Encryption (ORE)

ORE [AKSX04, BCLO09, BCO11]:

- A private-key encryption equipped with a comparison
- A public procedure Comp
- $c_{1}=\operatorname{Enc}\left(x_{1}, k\right), c_{2}=\operatorname{Enc}\left(x_{2}, k\right)$
- $\operatorname{Comp}\left(c_{1}, c_{2}\right)=1$ iff $x_{1} \leq x_{2}$
- Encryption does not leak additional information

Ad-Hoc PSM \Rightarrow ORE

- Use ad-hoc PSM for the Greater-Than (GT) function with $n=2^{\lambda}$ parties and $k=2$
- λ - security parameter
- GT has a small branching program \Rightarrow (IT) PSM
- Key generation: pick randomness for the ad-hoc PSM
- Encryption of $x \in\{0,1\}^{\ell}$:
- Choose a random party P_{i}, generate r_{i}
- Encryption $c=\left(i\right.$, message of P_{i} on $\left.\left(x, r_{i}\right)\right)$
- Comparing c_{1}, c_{2} : use ($2, n$) ad-hoc computation of GT
- IT-Security for two messages: if c_{1}, c_{2} use different parties
- Complexity: $\log n \cdot \operatorname{poly}(\ell)=\lambda \cdot \operatorname{poly}(\ell)$

Best-possible secure ad-hoc PSM vs. NIMPC

NIMPC [BGIKMP14] $=t$-robust-PSM $=$ A PSM that can tolerate a coalition of P_{0} with $\leq t$ parties.
NIMPC also uses best possible security notion.

Def: (k, t, n)-ad hoc PSM $=$ best possible security $\forall T$ s.t. $k \leq|T| \leq t$.

We prove:

- $(n / 2, n / 2+t, n)$ ad-hoc PSM for $f \Rightarrow t$-robust PSM for f with same complexity.
- t-robust PSM for some related $3 n$-argument $g^{\prime} \Rightarrow(k, t, n)$ ad-hoc PSM for f with $\mathrm{O}(n)$ overhead.

Computational Ad-Hoc PSM: Remarks

- [BGIK16]: Multi-Input Functional Encryption (MIFE) \Rightarrow Distribution Design \Rightarrow Computational best-possible-security adhoc PSM (w/indistinguishability def.)
- Best-possible-security ad-hoc PSM \Rightarrow NIMPC $\Rightarrow \mathrm{iO}$ [BGIKMP14]
- Best-possible-security ad-hoc $(n, 2 n, 2 n)$ PSM for AND

$$
\Rightarrow \text { point function obfuscation }
$$

- Best-possible-security ad-hoc $(n, 2 n, 2 n)$ PSM for Threshold func. \Rightarrow fuzzy point function obfuscation

Ad-hoc PSM for AND \Rightarrow Point Function Obfuscation

- For a point $x=\left(x_{1}, \ldots, x_{n}\right)$, define $I_{x}(y)=1$ iff $y=x$.
- Π - $(n, 2 n, 2 n)$ ad-hoc PSM for AND
- Obfuscating point function I_{x} :
- Generate randomness r_{1}, \ldots, r_{n} for Π
- Let $m_{i, b}=$ message of P_{i} on $\left(b, r_{i}\right)$
- \forall_{i} let $a_{i, x_{i}}=m_{i, 1}$ and $a_{i, \bar{x}_{i}}=m_{i, 0}$
- Obfuscation: $a_{1,0}, a_{1,1}, \ldots, a_{n, 0}, a_{n, 1}$
- Computing $I_{x}(y):$ ad-hoc decoding from $a_{1, y_{1}}, \ldots, a_{n, y_{n}}$

Summary

We present concrete and generic constructions of Ad-Hoc PSM protocols.

- Every function has an ad-hoc PSM
- All functions that are known to have an efficient PSM have an efficient adhoc PSM
- Connections to ORE, NIMPC, iO, point function obfuscation

Obvious open problems: more protocols, improved complexity and parameters, more connections with other primitives.

- Best possible security

Thank you!

Secure Message Transmission against Rational Adversaries

Takeshi KOSHIBA (Joint work with Maiki Fujita)

Waseda University
tkoshiba@waseda.jp

Secure Message Transmission (SMT) is a two-party cryptographic scheme by which a sender securely and reliably sends messages to a receiver using n channels. Suppose that an adversary corrupts at most t out of n channels and makes eavesdropping or tampering over the corrupted channels. It is known that if $t<n / 2$ then the perfect SMT (PSMT) in the information-theoretic sense is achievable and if $t \geq n / 2$ then no PSMT scheme is possible to construct. If we are allowed to use a public channel in addition to the normal channels, we can achieve the almost reliable SMT (ARSMT), which admits transmission failures of small probability, against $t<n$ corruptions. In the standard setting in cryptography, the participants are classified into honest ones and corrupted ones: every honest participant follows the protocol but corrupted ones are controlled by the adversary and behave maliciously. As a real setting, the notion of rationality in the game theory is often incorporated into cryptography. In this paper, we first consider "rational adversary" who behaves according to his own preference in SMT. We show that it is possible to achieve PSMT even against any $t<n$ corruptions under some reasonable settings for rational adversaries.

In the above, we consider settings where the rational entity is a single adversary. It means that the adversary's behavior is determined by his own preference (utility). We also consider the case where there are two independent rational adversaries. We show some cases where the Nash equlibria plays an important role to design SMT protocols secure against two independent ratinal adversaries.

References

[1] D. Dolev, C. Dwork, O. Waarts, and M. Yung, Perfectly secure message transmission, J. ACM 40(1):17-47, 1993.
[2] M. Franklin and R. N. Wright, Secure communication in minimal connectivity models, J. Cryptology 13(1):9-30, 2000.
[3] H. Shi, S. Jiang, R. Safavi-Naini, and M. A. Tuhin, On optimal secure message transmission by public discussion, IEEE Transactions on Information Theory 57(1):572-585, 2011.
[4] J. Halpern and V. Teague, Rational secret sharing and multiparty computation, in Proc. 36th Annual ACM Symposium on Theory of Computing, pp.623-632, ACM, 2004.
[5] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas, Byzantine agreement with a rational adversary, in Proc. ICALP 2012, Vol.2, LNCS 7392, pp.561-572, Springer, 2012.

Secure Message Transmission against Rational Adversaries

Takeshi Koshiba (Waseda Univ., Japan)
Joint work with Maiki Fujita

WASEDA University

Secure Message Transmission
Dolev, Dwork, Waarts \& Yung (FOCS 1990 \& JACM 1993)

Secure Message Transmission

Setting

- Several channels are available between Alice and Bob
- Some of them are corrupted by (adversarial) Eve
- Eve can alter messages over the corrupted channels

Goal

- Alice sends her messages to Bob
- Correctness: Messages Bob receives are the same as ones Alice sends
- Privacy: Eve cannot get any information on the messages

Secure Message Transmission

Why SMT ?

- In the standard setting of multi-party secure computation,
- Each player is a node of a complete graph
- Between any two players, there is a secure channel represented as an edge
- In an incomplete graph (i.e., network),
- Alice (on a node) and Bob (on another node) want to exchange messages
- If Alice and Bob execute SMT, a virtual secure channel can be assumed

Possibilities and Limitations of SMT

Eve corrupts t out of n channels

- Perfect Case (Perfect SMT (PSMT))
$n>2 t$: efficient PSMT protocol
e.g., Kurosawa \& Suzuki (EuroCrypt 2008 \& IEEEIT 2009)
$n \leq 2 t$: impossible (Dolev, Dwork, Waarts \& Yung 1993)
- Almost Reliable Case (Bob receives a wrong message with small prob.)
$n \leq 2 t$: still impossible (Franklin \& Wright, EuroCrypt 1998 \& JoC 2000)

Public Channel

Public channel is an authenticated one

- No secrecy
- Cannot be tampered
- Almost Reliable SMT (ARSMT) with public channel
$n>t$: 3-round protocol
(Shi, Jiang, Safavi-Naini \& Tuhin, ISIT 2009 \& IEEEIT 2011)

Rational Adversaries

Cryptographic adversaries attack on protocols
without considering any risk

Rational adversaries attack on protocols
if the attack is economically reasonable

Rational Adversaries

If I succeed in the attack, I will get $\$ 1,000,000$
But if I fail, I must pay a fine of $\$ 500,000$
Hmm...

Game Theory in Cryptography

Halpern \& Teague (STOC 2004)

- In Shamir's (n, n)-threshold secret sharing,
- After $n-1$ participants submit their shares, the $n^{\text {th }}$ participant might stop to submit his share to monopolize the secret
- To prevent this kind of malicious behavior, which may be a consequence of his preference, the notion of Nash equilibrium was introduced to design secure protocols
- Design a protocol so that choosing "obeying the protocol" for all the participants is Nash equilibrium

Game Theory

- Mathematical models of conflict and cooperation among rational decision-makers

Nash Equilibrium

- The Prisoner's Dilemma

	Prisoner 2 Silent	Prisoner 2 Betray	If each prisoner betray the other, each of them will serve 5 years in prison
Prisoner 1 Silent	-1, -1	$-10,0$	If both prisoners remain silent, both of them will only serve 1 year in prison
Prisoner 1 Betray	- $0,-10$	$\xrightarrow{\downarrow-5,-5}$	If P 1 betrays P 2 but P 2 remains silent, P 1 will be set free and B will serve 10 years in prison

Byzantine Agreement

Byzantine Agreement

n Generals want to agree "attack" or "withdraw"
even if there exist t of n faulty Generals
$n>3 t$: protocols for solving the Byzantine Agreement (BA)
$n \leq 3 t$: impossible
$n \leq 2 t$: impossible in any setting (e.g., a PKI setting)

Rationality in Byzantine Agreement

$n>t$: a perfectly secure protocol against rational adversaries (Groce, Katz, Thiruvengadam \& Zikas, ICALP 2012)

Eve can corrupts t out of n Generals

- Whether Eve corrupts or not depends on expected payoff value
- The simplest setting in Game Theory

Rationality in Secure Message Transmission

- Case 1
- Eve can corrupt t ouf of n channels
- Whether Eve corrupts or not depends on the expected payoff (as in Rational Byzantine Agreement)
- Case 2
- Two independent rational adversaries: Eve \& Eva

Rationality Models (for Case 1)

- Timid Model

Eve is afraid of loss of the reliability or being exposed her dishonesty
For example, she owns a channel and gains the usage fee from users. If she loses the reliability of the channel, then her gain may be decreased or she may be accused of her behavior.

- Conservative Model

Eve is afraid of the environmental degradation
The environmental degradation means that the traffic environment could be difficult to maintain because of the detection of some dishonesty. Thus, Eve is afraid of being specified corrupted channels or the protocol abortion.

Results

- Case 1 (Single Adversary)

PSMT with public channel in Timid Model, if $n>t$
PSMT in Conservative Model, if $n>t$

- Case 2 (Independent Two Adversaries)

PSMT if $n>t$ and some condition holds
c.f.

In the standard setting, PSMT only if $n>2 t$ even with public channel

Strategies of Rational Eve

- Eve can tamper (T) a channel or eavesdrop (E) on the channel
- Her possible actions are T\&E, T only, E only, and nothing
- Assume that passive attack (i.e. eavesdropping) is not exposed
- No reason why Eve stops eavesdropping!
- Thus, she chooses "T\&E" (σ_{a} : active) or "E only" (σ_{p} : passive) for her action

Utilities of Rational Eve

- Several viewpoints
- The result of message transmission
- The same message is delivered (u_{s})
- A different message is delivered $\left(u_{f}\right)$
- Aborted (u_{a})
- Eve's points
- Acquisition of the secret message $\left(u_{q}\right)$
- Detection of corrupted channels (u_{d})

Rationality Models and Utilities

- Timid Model

Eve is afraid of loss of the reliability or being exposed her dishonesty

$$
\min \left\{u_{a}, u_{f}\right\}>u_{s}, \quad u_{q}>0, \quad u_{d}<0
$$

- Conservative Model

Eve is afraid of the environmental degradation

$$
u_{f},>u_{s}>u_{a}, \quad u_{q}>0, \quad u_{d}=0
$$

Protocol 1 (against Timid Eve)

- Shi et al's 3-round ARSMT protocol with public channel works as PSMT protocol against Timid rational adversaries
- It uses $2^{1-2 L}$-almost strongly universal hash functions
- L : length of hash values
- $\operatorname{Pr}\left[h\left(x_{1}\right)=y_{1} \& h\left(x_{2}\right)=y_{2}\right] \leq 2^{1-2 L}$

Protocol 1: $1^{\text {st }}$ Round

Protocol 1: 2nd Round

Alice ignores $\mathrm{it}^{\text {th }}$ channel if $b_{i}=1$

If $b_{i}=0$, Alice computes $\mathrm{T}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}} \oplus \mathrm{h}_{\mathrm{i}}\left(\mathrm{r}_{\mathrm{i}}\right)$

If $\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}}$ ' then set $\mathrm{v}_{\mathrm{i}}=1$
else set $\mathrm{v}_{\mathrm{i}}=0$
Alice computes $\mathrm{C}=\mathrm{m} \oplus\left(\oplus_{\mathrm{v}_{\mathrm{i}}=1} \mathrm{R}_{\mathrm{i}}\right)$

Protocol 1 : 3 ${ }^{\text {rd }}$ Round

Bob computes $m=C \oplus\left(\oplus_{\mathrm{v}_{\mathrm{i}}=1} \mathrm{R}_{\mathrm{i}}\right)$

Protocol 1 : Properties

- Secrecy
- Protocol 1 is perfect
- Correctness
- Protocol 1 delivers a different message with prob. ($\mathrm{n}-1$) $2^{1-\mathrm{L}}$

Expected Payoff of Timid Eve

- If Eve takes σ_{a} as her action

$$
u\left(\sigma_{a}\right)=(n-1) 2^{1-L} u_{f}+\left(1-(n-1) 2^{1-L}\right)\left(u_{s}+u_{d}\right)
$$

- If Eve takes σ_{p}

$$
u\left(\sigma_{p}\right)=u_{s}
$$

Thm 1

```
Supposen>t
If
    L> 1+ log ((n-1)(uf
then
Protocol 1 is PSMT (with public channel) against Timid rational adversary
```


Protocol 2 (against Conservative Eve)

- It does not use public channel
- The basic part consists of 2 rounds and Protocol 2 repeats it
- Protocol 2 is a probabilistic mixture of 2 sub-procedures
- With probability p, it executes message transmission
- With probability 1-p, it checks whether some channels are tampered
- The expected number of repetitions is $1 / \mathrm{p}$

Protocol 2 : Round 1

Protocol 2 : Round 2

Expected Payoff of Conservative Eve

- If Eve takes σ_{a} as her action

$$
u\left(\sigma_{a}\right)=p u_{f}+(1-p) u_{a}
$$

- If Eve takes σ_{p}

$$
u\left(\sigma_{p}\right)=u_{s}
$$

Thm 2

```
Suppose \(n>t\)
If
    \(p>\left(u_{a}-u_{s}\right) /\left(u_{a}-u_{f}\right)\)
then
Protocol 2 is PSMT against Conservative rational adversary
```


Rational Eve \& Eva

- In case of two independent adversaries, there are many possible models
- We take a case where Eve and Eva are hostile to each other

Utilities of Eve and Eva

- The result of message transmission
- The same message is delivered ($u_{i, s}$)
- A different message is delivered ($\mathrm{u}_{\mathrm{i}, \mathrm{f}}$)
- Aborted ($\mathrm{u}_{\mathrm{i}, \mathrm{a}}$)
- Advi's points
- Detection of channels corrupted by Adv i $\left(u_{i, d}\right)$
- Adv i's acquisition of the secret message ($u_{i, q}$)
- Detection of channels corrupted by the opponent ($u_{i, o d}$)
- The opponent's acquisition of the secret message ($u_{i, o q}$)

Hostile Model

- $\mathrm{u}_{\mathrm{i}, \mathrm{s}}<\mathrm{u}_{\mathrm{i}, \mathrm{f}}$
- Transmission of a different message is better than that of the same message
- $u_{i, q}+u_{i, o q}>0$
${ }^{-}$By Eve or Eva, the acquisition of the message is nice
- $\mathrm{u}_{\mathrm{i}, \mathrm{d}}<0$
- They hate the detection of channels corrupted by them
- $u_{i, o q}<0$
- They hate the acquisition of the message by the opponent
- $\mathrm{u}_{\mathrm{i}, \mathrm{q}}>0$
,- The acquisition of the message is good
- $u_{i, \text { od }}>0$
- The detection of channels corrupted by the opponent is a kind of windfall profit

Protocol 3 in Hostile Model

- Use a slightly modified version of Protocol 1 iteratively
- Alice and Bob have their own CLs (corruption lists) and update them if necessary
- Initial CLs are empty
- If a channel is added to CL , the channel is not used any more. Thus the number of available channels decreases
- If CLs are updated, Protocol 3 continues the iteration
- There exists an iterated dominant strategy which leads to an equilibrium

Protocol 3: Initial Round (or Alice \rightarrow Bob in Phase A)
Case : CL_{A} is updated

Bob checks if all the received data are of equal length and received CLs are identical with CL_{B}

If "yes", go to Phase B

Classify channels based on the length. Add all the channels not in the major group into CL_{B}

Bob searches the received CLs for channels not in CL_{B}. If he finds them, add them into CL_{B}

Protocol 3: Alice \leftarrow Bob in Phase A

Protocol 3: Alice \leftarrow Bob in Phase B

Bob receives r_{i}^{\prime} \& R_{i}^{\prime} over alive i^{th} channel
h_{i} : random universal hash Bob computes $T_{i}{ }^{\prime}=R_{i}{ }^{\prime} \oplus h_{i}\left(r_{i}{ }^{\prime}\right)$

Protocol 3: Alice \rightarrow Bob in Phase B

Consistency check as in Initial Round
If inconsistent go to Phase A else Bob computes $m^{\prime}=C^{\prime} \oplus\left(\oplus_{\mathrm{i} \text { not in } \mathrm{CL}_{B}} \mathrm{R}_{\mathrm{i}}{ }^{\prime}\right)$

Protocol 3 : Properties

- Secrecy
- Protocol 3 has perfect secrecy (in the standard crypto setting) - if $n>2 t$ and Adv can tamper and eavesdrop, or - if $n>t$ and Adv can eavesdrop only
- Reliability
- Protocol 3 fails in the message transmission w.p. ($\mathrm{n}-1$) 2^{-L} - if $n>2 t$ and Adv can tamper and eavesdrop
- Protocol 3 always succeeds in the message transmission - if $n>t$ and Adv can eavesdrop only

Protocol 3 is PSMT if $n>t$ and Adv can eavesdrop only

Iterated Dominance

- σ_{p} : a strategy
- σ_{-p} : other strategies other than σ_{p}
σ_{p} is iterated dominant if
- $u_{A}\left(\sigma_{-p}, \sigma_{p}\right)<u_{A}\left(\sigma_{p}, \sigma_{p}\right)$,
- $u_{B}\left(\sigma_{p}, \sigma_{-p}\right)<u_{B}\left(\sigma_{p}, \sigma_{p}\right)$, and
- $u_{A}\left(\sigma_{-p}, \sigma_{-p}\right)<u_{A}\left(\sigma_{p}, \sigma_{-p}\right)$ or $u_{B}\left(\sigma_{-p}, \sigma_{-p}\right)<u_{B}\left(\sigma_{-p}, \sigma_{p}\right)$

Thm 3

There exists a setting in Hostile Model where "eavesdropping only" is the iterated dominant strategies for Eve and Eva in Protocol 3

That is, Protocol 3 is PSMT in Hostile Model

Conclusion

- We have introduced "rationality" in Secure Message Transmission
- Since rational adversaries are weaker than cryptographic adversaries, the bound on the number of corrupted channels can be better than the standard cryptographic setting

See ia.cr/2017/309 for the first half; the second half in preparation

Optimized Honest-Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per Second Barrier

Kazuma OHARA (Joint work with Toshinori ARAKI, Assi BARAK, Jun FURUKAWA, Yehuda LINDELL, Ariel NOF, Adi WATZMAN, Or WEINSTEIN.)

NEC Corporation

k-ohara@ax.jp.nec.com

Secure multiparty computation enables a set of parties to securely carry out a joint computation of their private inputs without revealing anything but the output. In the past few years, the efficiency of secure computation protocols has increased in leaps and bounds. However, when considering the case of security in the presence of malicious adversaries (who may arbitrarily deviate from the protocol specification), we are still very far from achieving high efficiency.

In this talk, we consider the specific case of three parties and an honest majority. We provide general techniques for improving efficiency of cut-and-choose protocols on multiplication triples and utilize them to significantly improve the recently published protocol of Furukawa et al. (at Eurocrypt'17). We reduce the bandwidth of their protocol down from 10 bits per AND gate to 7 bits per AND gate, and show how to improve some computationally expensive parts of their protocol. Most notably, we design cache-efficient shuffling techniques for implementing cut-and-choose without randomly permuting large arrays (which is very slow due to continual cache misses). We provide a combinatorial analysis of our techniques, bounding the cheating probability of the adversary.

Our implementation achieves a rate of approximately 1.15 billion AND gates per second on a cluster of three 20 -core machines with a 10 Gbps network. Thus, we can securely compute 212,000 AES encryptions per second (which is hundreds of times faster than previous work for this setting). Our results demonstrate that high-throughput secure computation for malicious adversaries is possible.

Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling

Optimized Honest Majority MPC for Malicious Adversaries

- Breaking the Billion-Gate Per-Second Barrier

2017/06/13

Kazuma Ohara (NEC)

Joint work with
Toshinori Araki, Jun Furukawa (NEC)
Assi Barak, Yehuda Lindell, Ariel Nof ,
Adi Watzman, Or Weinstan (Bar-Ilan University)
onec coproston 2017 nec Grap interv une own

Secure Multiparty Computation (MPC)

| Compute on private inputs without revealing anything but the output
| Applications

- Protect credentials and biometrics
- Run learning algorithm on distributed databases (e.g., health)
- Secure SQL
- Compare DNA samples without revealing them
| Two models
- Semi-honest: protection against inadvertent leakage and more
- Malicious: protection against arbitrary attacks (required in many cases)

Secure Multiparty Computation

| Powerful in theory:
Any functionality can be computed
| Secure multiparty computation holds great promise, but can we fulfill that promise?
| Can we achieve speeds of MPC that is fast enough for applications in practice?

- We can solve some problems of interest today, but medium to large scale secure computation seems beyond reach
(-) PARTISIA
- This is especially true for malicious adversaries

Secure 3-Party Computation with an Honest Majority

Secure 3-Party Computation with an Honest Majority

Semi-honest 3-party MPC [Araki et al., CCS'16]

I "High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority"
Toshinori Araki, Jun Furukawa (NEC), Yehuda Lindell, Ariel Nof (Bar-llan University) and Kazuma Ohara (NEC)
| Evaluates Boolean circuit

- can extend for arithmetic circuit
| Based on (a kind of) additive secret sharing
- No cryptographic protocol without PRG
- No Communication for XOR-gate/NOT-gate
- Only 1 -bit Communication for AND-gate
| From next page:
- Secret sharing
- MPC for XOR-gate
- MPC for AND-gate

Secret Sharing

| Share generation : secret $v \in\{0,1\}$

- a_{1}, a_{2}, a_{3} such that $a_{1} \oplus a_{2} \oplus a_{3}=v$
-

Each party has two
| Reconstruction

$$
\text { elements of }\left(a_{1}, a_{2}, a_{3}\right)
$$

\bullet From any combination of two share, $\left(a_{1}, a_{2}, a_{3}\right)$ can get.
| Properties
-The sum of former part is equal to 0 .
$\cdot x_{1} \oplus x_{2} \oplus x_{3}=\overline{a_{3}} \oplus a_{1} \oplus a_{1} \oplus a_{2} \oplus a_{2} \oplus \overline{a_{3}}$

- The sum of latter part is equal to v (secret).

$$
\cdot a_{1} \oplus a_{2} \oplus a_{3}=v
$$

Semi-honest AND-gate

$$
\begin{aligned}
& \begin{array}{ll}
v=a_{1} \oplus a_{2} \oplus a_{3} \\
w & =b_{1} \oplus b_{2} \oplus b_{3}
\end{array} \quad 9 \text { terms in total } \\
& \boldsymbol{v} \cdot \boldsymbol{w}=\left(a_{1} \oplus a_{2} \oplus a_{3}\right) \cdot\left(b_{1} \oplus b_{2} \oplus b_{3}\right) \\
& =a_{1} b_{1} \oplus a_{1} b_{2} \oplus a_{1} b_{3} \oplus a_{2} b_{1} \oplus a_{2} b_{2} \oplus a_{2} b_{3} \oplus a_{3} b_{1} \oplus a_{3} b_{2} \oplus a_{3} b_{3} \\
& P_{1} \ldots\left(P_{2} \ldots \ldots \ldots \ldots P_{3}\right. \\
& \text { (*) } \\
& \text { to next party } \\
& \text { sha (randomness for masking can be } \\
& \text { computed locally) } \\
& \begin{array}{c:c:c}
r_{1}=\left(a_{3} \oplus a_{1}\right) \cdot\left(b_{3} \oplus b_{1}\right) & r_{2}=\left(a_{1} \oplus a_{2}\right) \cdot\left(b_{1} \oplus b_{2}\right) & r_{3}=\left(a_{2} \oplus a_{3}\right) \cdot\left(b_{2} \oplus b_{3}\right) \\
\oplus\left(a_{1} \cdot b_{1}\right) & \oplus\left(a_{2} \cdot b_{2}\right) & \oplus\left(a_{3} \cdot b_{3}\right) \\
\hline=a_{3} b_{3} \oplus a_{3} b_{1} \oplus a_{1} b_{3} & =a_{1} b_{1} \oplus a_{1} b_{2} \oplus a_{2} b_{1} & =a_{2} b_{2} \oplus a_{2} b_{3} \oplus a_{3} b_{2} \\
\hline
\end{array} \\
& r_{1} \oplus r_{2} \oplus r_{3}=v \cdot \boldsymbol{w} \text { (3-out-of-3 SS for } \boldsymbol{v} \cdot \boldsymbol{w} \text {) }
\end{aligned}
$$

The malicious protocol of [Furukawa et al., Eurocrypt'17]
|An extension of [Araki et al., CCS'16]

Generation of Random Multiplication Triples

\| $[a],[b]$ are generated without any interaction!
\| [c] is computed using a semi-honest
multiplication protocol
communication!

Generation of Random Multiplication Triples

\| $[a],[b]$ are generated without any interaction!
\| [c] is computed using a semi-honest

multiplication protocol

How can we verify that the triples generated are valid?

Generation of Random Multiplication Triples

Generation of Random Multiplication Triples

Generation of Random Multiplication Triples

Generation of Random Multiplication Triples

Generation of Random Multiplication Triples

Achieving 1-Billion AND Gates per Second

$\beta=3$
$C=3$

* Statistical error $=2^{-40}$
**Cluster of three mid-level servers (2.3 GHz CPUs with 20 cores), with a 10Gbps network

```
Benchmarking
```


Shuffling of the array is expensive due to cache misses
The dilemma: a large array is needed for the combinatorics, but results in slowdown

Achieving 1-Billion AND Gates per Second

503,766,615	765,448,459	gate/sec
The baseline protocol - 10 bits per AND gate - $\beta=3$ - $C=3$	Using a "cacheefficient" shuffle - 10 bits per AND gate - $\beta=3$ - $C=2^{10}$	$\begin{aligned} & \text { 1-billion } \\ & \text { AND } \\ & \text { gates per } \\ & \text { second } \end{aligned}$
* Statistical error $=2^{-40}$ **Cluster of three mid-level servers (2.3 GHz CPUs with 20 cores), with a 10Gbps network		

Optimization 2: Reduce the size of the bucket

Intuition
-"Verifying triple by triple" and "Verifying the gate by triple" is essentially same procedure.
-Can we use the online multiplication triple generated in each AND gate computation, as one of the triples in the bucket?

[^0]

Generation of Random Multiplication Triples
Intuition
-"Verifying triple by triple" and "Verifying the circuit by triple" is essentially same procedure.
-Can we use the online multiplication triple generated in each AND gate computation, as one of the triples in the bucket? \rightarrow Yes
Modification: On-demand shuffling

Achieving 1-Billion AND Gates per Second

503,766,615	765,448,459	988,216,830	gate/sec
The baseline protocol	Using a "cacheefficient"	The "ondemand" protocol	$\begin{aligned} & \text { 1-billion } \\ & \text { AND } \end{aligned}$
- 10 bits per AND gate - $\beta=3$ - $C=3$	- 10 bits per AND gate - $\beta=3$ - $C=2^{10}$	- 7 bits per AND gate - $\beta=2$ - $C=2^{9} \cdot 3$	gates per second
* Statistical error $=2^{-40}$ **Cluster of three mid-level servers (2.3 GHz CPUs with 20 cores), with a 10Gbps network			

Securely Comparing Views

- SHA-256 is used to compare the views of the parties in the verification stage (instead of sending openings)
- Can replace it with GMAC - implemented using PCLMULQDQ

Achieving 1-Billion AND Gates per Second

* Statistical error $=2^{-40}$
**Cluster of three mid-level servers (2.3 GHz CPUs with 20 cores), with a 10Gbps network

Summary

| It is possible to achieve very fast rates even for malicious adversaries
-This holds for 3-party with honest majority (e.g., service model, auxiliary server, internal protection)
I We achieve rates of -Semi-honest:

- 1 bit comm/AND gates
- over 7 billion AND gates/second (over 1.3 million AES operations per second)
-Malicious:
- 7 bit comm./AND gates (Statistical error $=2^{-40}$)
- over 1 billion AND gates/second (about 215,000 AES operations per second)
| Can significantly extend the applications that MPC can utilize
For more detail, please see our paper at IEEE S\&P2017.

\Orchestrating a brighter world
NEC

Key Components in MEVAL

Ryo KIKUCHI
 (Joint work with Dai IKARASHI, Koki HAMADA, Koji CHIDA, Naoto KIRIBUCHI, Gembu MOROHASHI)

NTT Corporation
kikuchi.ryo@lab.ntt.co.jp

We have developed a novel system MEVAL: Multiparty EVALuator, which performs secret-sharing-based secure computation with an honest majority. In the system, a user can choose either two security levels: passive (a.k.a. semi-honest) or active (a.k.a. malicious) security with abort. One of features of MEVAL is efficiency. As an example, we experimented with secure AES computation and MEVAL achieved 517 Mbps (involving 4 million AES per second) in passive security, and 131 Mbps (involving 1 million AES per second) in active security with abort. These are faster than 169 Mbps [2] in passive security and 27 Mbps [1] in active security with abort.

For practical use of secure computation, not only basic functions, such as multiplication, are not enough and high-level functions, such as comparison and sort, are required [4]. We have developed MEVAL for practical use and it therefore supports many high-level functions.

In this talk, we introduce three key components of high-level functions in MEVAL: bit decomposition, sort, and join. These components use novel techniques and improve efficiency drastically. Table 1 shows an experimental result of the components in threeparty setting with a gigabit network.

	function	passive security	active security with abort
$[4]$	bit decomposition $\left(10^{7}\right.$ elements $)$	200 sec	
0.90 sec	-		
MEVAL		150 sec	14.81 sec
$[3]$	sort $\left(10^{5}\right.$ elements $)$	0.54 sec	-
MEVAL		25 sec	$-\overline{\mathrm{sec}}$
$[5]$	0.02 sec	0.06 sec	
MEVAL			

TABLE 1. Efficiency comparison in a gigabit network

References

[1] T. Araki, A. Barak, J. Furukawa, Y. Lindell, A. Nof, K. Ohara, A. Watzman, and O. Weinstein. Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. S\&P 2017.
[2] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest secure three-party computation with an honest majority. ACM CCS 2016.
[3] D. Bogdanov, S. Laur, and R. Talviste. A practical analysis of oblivious sorting algorithms for secure multi-party computation. NordSec 2014.
[4] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec., 2012.
[5] S. Laur, R. Talviste, and J. Willemson. From oblivious AES to efficient and secure database join in the multiparty setting. ACNS 2013.

Key components in MEVAL

Ryo Kikuchi @ NTT Corporation

Protocols by Dai Ikarashi, Koki Hamada, and Ryo Kikuchi

Icons are designed by Freepik from Flaticon

Today's talk

- MEVAL: Multiparty EVALuator
- Web page coming soon
- Key components
- Bit-decomposition
- Oblivious sort
- Oblivious join

Two security models

passive security

An adversary follows the protocol
active security with abort
An adversary can do arbitrary behavior
Honest parties output \perp if an adversary cheats

MEVAL: Multiparty EVALuator

MEVAL is an MPC system we have developed

Feature of MEVAL

- Fulfilling functions
- logical/arithmetic circuit
- high-level operations: join, sort, map, comparison, etc.
- various SS conversion and field conversion
- Efficiency
- original (optimized) protocols
- implemented by expert programmer Dai Ikarashi

Efficiency of MEVAL (basic function)

Benchmark by AES computation (consists of local comp. and mult. prot.)

	Measure	Passive	Active with abort
$[\mathrm{AFL}+16]$	AES $/ \mathrm{sec}$	$1,324,117$	
$[\mathrm{ABF}+17]$		-	212,000
MEVAL	Measure	Passive	Active with abort
		$7,041,655$	$1,025,303$
$[\mathrm{AFL}+16]$	bit/sec		
$[\mathrm{ABF}+17]$		$16,554,617,600$	$4,199,641,600$
MEVAL			

Efficiency of MEVAL (high-level function)

- Basic function is not enough for practical use
- Many applications require high-level operations
- MEVAL have developed high-level functions

Key components

- Bit-decomposition

Convert a into $\left(a^{(0)}, \ldots, a^{(\ell-1)}\right)$, where $a=a^{(\ell-1)} a^{(\ell-2)} \ldots a^{(0)}$

- Oblivious sort

Sort $(2,4,1,3)$ into $(1,2,3,4)$ and output the permutation π,
where $\pi(1)=3, \pi(2)=1, \pi(3)=4, \pi(4)=2$

- Oblivious join
- Input:

Key	height	weight
3	200	99
9	160	85

Key	purchase
3	water
7	egg

- Output:

Key	height	weight	purchase
3	200	99	water

Bit-decomposition

Bit decomposition: \mathbb{F}_{p} to \mathbb{F}_{2}

Motivation: computation in better suited field

	Secret-shared in \mathbb{F}_{p}	Secret-shared in \mathbb{F}_{2}
Sum	() Local computation (computing addition)	(communication required (computing adding circuit)
Comparison	C) Difficult to compute (except [NOO7])	(:) Easy to compute (If $a<2^{\ell},[a>b]$ is ℓ-th bit of $\left.2^{\ell}+[a]-[b]\right)$

Known protocols cost $O\left(|p|^{2}\right)$ bit communication [DFK+06, NOO7] regarding \# of parties as constant
MEVAL uses an original bit-decomposition protocol $O(\ell)$ bit communication
[NO07] T. Nishide and K. Ohta: Multiparty Computation for Interval, Equality, and Comparison without Bit-Decomposition Protocol, PKC 2007 [DFK+06] I. Damgard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft: Unconditionally secure constant-rounds multi-party computation fo equality, comparison, bits and exponentiation, TCC 2006

Setting and notation

- Consider \mathbb{F}_{p} and \mathbb{F}_{2}
- $p=2^{m}-1$, i.e., a Merrsenne prime
- $|p|:=\lceil\log p\rceil$

० a is $0<a<2^{\ell}, \ell<|p|$ $a \in \mathbb{F}_{p}$ is represented as $\left(a^{(0)}, \ldots, a^{(\ell-1)}\right) \in \mathbb{F}_{2}^{l}$
o $(2,3)$-linear secret sharing

- $\llbracket a \rrbracket$: sharing of a in $\mathbb{F}_{p}, \llbracket a \rrbracket$: share of
- $a=\lambda_{i_{0}} \llbracket a \rrbracket_{i_{0}}+\lambda_{i_{1}} \llbracket a \rrbracket_{i_{1}}$ for any i_{0}, i_{1}
- Passive security

Active security can be obtained by using known techniques [IKHC14,ikhc13]

Basic technique of bit-decomposition

- Input: $\llbracket a \rrbracket \in \mathbb{F}_{p}$
- Output: $\langle a\rangle=\left(\llbracket a^{(0)} \rrbracket, \ldots, \llbracket a^{(|p|-1)} \rrbracket\right)$, where $a^{(i)} \in \mathbb{F}_{2}$

1. Generate randomness: $\langle r\rangle=\left(\llbracket r^{(0)} \rrbracket, \ldots, \llbracket r^{(|p|-1)} \rrbracket\right)$, where $r^{(i)} \in \mathbb{F}_{2}$
2. $\llbracket r \rrbracket:=\sum_{i<|p|} 2^{i} \llbracket r^{(i)} \rrbracket$
3. Reveal $\llbracket a \rrbracket-\llbracket r \rrbracket$ and obtain $c=a-r$
4. $\left\langle a^{\prime}\right\rangle:=c+\langle r\rangle$ (adding circuit)
5. $\langle q\rangle:=$ Compare $\left(a^{\prime} \geq_{\text {? }} p\right)$ (comparison circuit)
6. $\langle a\rangle:=\left\langle a^{\prime}\right\rangle-p\langle q\rangle$ (subtracting circuit)

Where is the bottleneck?

- Input: $\llbracket a \rrbracket \in \mathbb{F}_{p}$

1. The output size is $|p|^{2}$ bits

- Output: $\langle a\rangle=\left(\llbracket a^{(0)} \rrbracket, \ldots, \llbracket a^{(|p|-1)} \rrbracket\right)$, where $a^{(i)} \in \mathbb{F}_{2}$

1. Generate randomness: $\langle r\rangle=\left(\llbracket r^{(0)} \rrbracket, \ldots, \llbracket r^{(|p|-1)} \rrbracket\right)$, where $r^{(i)} \in \mathbb{F}_{2}$
2. $\llbracket r \rrbracket:=\sum_{i<|p|} 2^{i} \llbracket r^{(i)} \rrbracket$
3. Reveal $\llbracket a \rrbracket-\llbracket r \rrbracket$ and obtain $c=a-r$
4. $\left\langle a^{\prime}\right\rangle:=c+\langle r\rangle$ (adding circuit)
5. $\langle q\rangle:=$ Compare $\left(a^{\prime} \geq_{\text {? }} p\right)$ (comparison circuit)
6. $\langle a\rangle:=\left\langle a^{\prime}\right\rangle-p\langle q\rangle$ (subtracting circuit)

Optimization 1: modifying output

- Output: $\langle a\rangle=\left(\llbracket a^{(0)} \rrbracket, \ldots, \llbracket a^{(|p|-1)} \rrbracket\right)$, where $a^{(i)} \in \mathbb{F}_{2}$

1. Generate ℓ élements in ${\overleftarrow{F_{2}}}_{2}$ are sufficient $\left.{ }^{(|\boldsymbol{p}|-1)} \rrbracket\right)$, where $r^{(i)} \in \mathbb{F}_{2} \quad\left([\cdot]\right.$ denotes share in $\left.\mathbb{F}_{2}\right)$
$\begin{array}{ll}\text { 2. } & \llbracket r \rrbracket:=\sum \\ \text { 3. } & \text { Reveal } \llbracket a \rrbracket-\llbracket r \rrbracket \text { and obtain } c=a-r\end{array}$
2. $\left\langle a^{\prime}\right\rangle:=c+\langle r\rangle$ (adding circuit)
3. $\langle q\rangle:=$ Compare $\left(a^{\prime} \geq\right.$? $\left.p\right)$ (comparison circuit)
4. $\langle a\rangle:=\left\langle a^{\prime}\right\rangle-p\langle q\rangle$ (subtracting circuit)

Optimization 1: modifying output

- Input: $\llbracket a \rrbracket \in \mathbb{F}_{n}$
- Output: $\langle a\rangle=\left(\left[a^{(0)}\right], \ldots,\left[a^{(\ell-1)}\right]\right)$, where $a^{(i)} \in \mathbb{F}_{2}$

1. Generate randomness: $\langle r\rangle=\left(\llbracket r^{(0)} \rrbracket, \ldots, \llbracket r^{(|p|-1)} \rrbracket\right)$, where $r^{(i)} \in \mathbb{F}_{2}$
2. $\llbracket r \rrbracket:=\sum_{i<|p|} 2^{i} \llbracket r^{(i)} \rrbracket$
3. Reveal $\llbracket a \rrbracket-\llbracket r \rrbracket$ and obtain $c=a-r$
4. $\left\langle a^{\prime}\right\rangle:=c+\langle r\rangle$ (adding circuit)
5. $\langle q\rangle:=$ Compare $\left(a^{\prime} \geq_{\text {? }} p\right)$ (comparison circuit)
6. $\langle a\rangle:=\left\langle a^{\prime}\right\rangle-p\langle q\rangle$ (subtracting circuit)

Optimization 2: Generate (2, 2)-sharing

- Input: $\llbracket a \rrbracket \in \mathbb{F}_{p}$
$O(\ell)$ bits
- Output: $\langle a\rangle=\left(\left[a^{(0)}\right], \ldots,\left[a^{(\ell-1)}\right]\right)$, where $a^{(i)} \in \mathbb{F}_{2}$
$r^{(i)} \in \mathbb{F}_{2}$

2. $\llbracket r \rrbracket:=\sum_{i<|p|} 2^{i} \llbracket r^{(i)} \rrbracket$
3. Reveal $\llbracket a \rrbracket-\llbracket r \rrbracket$ and obtain $c=a-r$
$\left\langle a^{\prime}\right\rangle:=c+\left\langle r^{*}\right.$ adding circuit)
5. $\langle q\rangle$ n circuit)
6. $\langle a\rangle$
Generating $(2,2)$ sharing of a
i.e., $a=c+r$
3. Circuit size is $O(|p|)$

Optimization 2: Generate (2, 2)-sharing

- Output: $\langle a\rangle=\left(\left[a^{(0)}\right], \ldots,\left[a^{(\ell-1)}\right]\right)$, where $a^{(i)} \in \mathbb{F}_{2}$

1. 2 parties

1. compute $\lambda_{i}\left[a \rrbracket_{i}\right.$,
2. secret-share each bit of $\lambda_{i} \llbracket a \rrbracket_{i}$ in \mathbb{F}_{2}
3. Let the above shares be $\left\langle a_{0}\right\rangle$ and $\left\langle a_{1}\right\rangle$

4. $\left\langle a^{\prime}\right\rangle:=\left\langle a_{0}\right\rangle+\left\langle a_{1}\right\rangle$ (adding circuit)
5. $\langle q\rangle:=\operatorname{Compare}\left(a^{\prime} \geq\right.$? $\left.p\right)$ (comparison circuit)
6. $\langle a\rangle:=\left\langle a^{\prime}\right\rangle-p\langle q\rangle$ (subtracting circuit)

Optimization 3: Excluding comparison circuit

- Input: $\llbracket a \rrbracket \in \mathbb{F}_{p}$
$O(\ell)$ bits
- Output: $\langle a\rangle=\left(\left[a^{(0)}\right], \ldots,\left[a^{(\ell-1)}\right]\right)$, where $a^{(i)} \in \mathbb{F}_{2}$

1. 2 parties
2. compute $\lambda_{i} \llbracket a \rrbracket_{i}$,
3. secret-share each bit of $\lambda_{i} \llbracket a \rrbracket_{i}$ in \mathbb{F}_{2}

4. Let the above shares be $\left\langle a_{0}\right\rangle$ and $\left\langle a_{1}\right\rangle$
5. $\left\langle a^{\prime}\right\rangle:=\left\langle a_{0}\right\rangle+\left\langle a_{1}\right\rangle$ (adding circuit)
6. $\langle q\rangle:=\operatorname{Compare}\left(a^{\prime} \geq\right.$? $\left.p\right)$ comparison circuit)
7. $\langle a\rangle:=\left\langle a^{\prime}\right\rangle-p\langle q\rangle$ (subtracting circuit)

Quotient appears at LSB

If $2 a$ is shared as $2 a=a_{0}+a_{1}$, Compare $(a \geq$? $p)=a_{0}^{(0)} \oplus a_{1}^{(0)}$
Proof is appeared in [ihkc13]
[ihkc13] D. Ikarashi, K. Hamada, R. Kikuchi, and K. Chida: $O(\ell)$ Bits Communication Bit Decomposition and $O\left(\left|p^{\prime}\right|\right)$ Bits Communication Modulus Conversion for Small k Secret-sharing-based Secure Computation, CSS 2013 (in Japanese)

Optimization 3: Excluding comparison circuit

- Input: $\llbracket a \rrbracket \in \mathbb{F}_{p}$

- Output: $\langle a\rangle=\left(\left[a^{(0)}\right], \ldots,\left[a^{(\ell-1)}\right]\right)$, where $a^{(i)} \in \mathbb{F}_{2}$

1. 2 parties
2. compute $\lambda_{i} \llbracket a \rrbracket_{i}$,
3. secret-share each bit of $\lambda_{i} \llbracket a \rrbracket_{i}$ in \mathbb{F}_{2}
4. Let the above shares be $\left\langle a_{0}\right\rangle$ and $\left\langle a_{1}\right\rangle$
5. $\left\langle a^{\prime}\right\rangle:=\left\langle a_{0}\right\rangle+\left\langle a_{1}\right\rangle$ (adding circuit)
6. $\langle q\rangle:=\operatorname{Compare}\left(a^{\prime} \geq_{\text {? }} p\right)$ comparison circuit)
7. $\langle a\rangle:=\left\langle a^{\prime}\right\rangle-p\langle q\rangle$ (subtracting circuit)

Optimization 3: Excluding comparison circuit

- Input: $\llbracket a \rrbracket \in \mathbb{F}_{p}$
$O(\ell)$ bits
- Output: $\langle a\rangle=\left(\left[a^{(0)}\right], \ldots,\left[a^{(\ell-1)}\right]\right)$, where $a^{(i)} \in \mathbb{F}_{2}$

1. 2 parties
2. compute $2 \lambda_{i} \llbracket a \rrbracket_{i}$
3. Let the above shares $\mathrm{be}\left\langle a_{0}\right\rangle$ and $\left\langle a_{1}\right\rangle$
4. $\left\langle a^{\prime}\right\rangle:=\left\langle a_{n}\right\rangle+\left\langle a_{1}\right\rangle$ (adding circuit)
5. $[q]:=\left[a_{0}^{(0)}\right] \oplus\left[a_{1}^{(0)}\right]$
6. $\langle a\rangle:=\left\langle a^{\prime}\right\rangle-p[q]$ (subtracting circuit)
7. Shift $\langle a\rangle$ a single bit: $\left[a^{(i-1)}\right]:=\left[a^{(i)}\right]$

22

Result (bit-decomposition)		
- Bit-decomposition protocol with $O(\ell)$ bit communication Existing protocols cost $O\left(\|p\|^{2}\right)$		
- Experimental result on 10^{7} records, 1G LAN, $p=2^{61}-1$, $\ell=20$		
	Passive	Active w/ abort
[BNTW12]	200 sec	
MEVAL	0.90 sec	14.81 sec
[BNTW12] D. Bogdanov, M. Niitsoo, T. Toft, J. Willemson.: High-performance secure multi-party computation for data mining applications. Int J. Inf. Sec. 2012.		

\square

What is oblivious sort？

- Input：【2】，【4】，【1】，【3】
- Output：【1】，【2】，【3】，【4】，【 $\pi \rrbracket$ ，
where $\pi(1)=3, \pi(2)=1, \pi(3)=4, \pi(4)=2$

An important component for
－computing median and percentile，
－other high－level functions，such as join

But，difficult to explain ：：so we skip the detail

Experimental result（oblivious sort）
Experiment on 10^{5} records， 1 LAN，$p=2^{61}-1, \ell=20$

	Passive	Active $\mathrm{w} /$ abort
［BLT14］	150 sec	
MEVAL	0.54 sec	1.43 sec

Oblivious join

Oblivious join

Joining secret-shared two tables

Key	height	weight
3	200	99
5	110	19
9	160	85

Key	purchase
3	water
7	egg
9	medicine
9	water

Key	height	weight	purchase
3	200	99	water
9	160	85	medicine
9	160	85	water

Application

Cross analysis of different companies

Setting

Key of history data may duplicate

Computing "weight" column 1/4

Use oblivious sort and store $\llbracket \pi \rrbracket$

Computing "weight" column 2/4

Apply π with "weight" and a tuple of 0

Computing "weight" column 3/4
Compute prefix-sum

Key	height	weight	Key	purchase
3	200	99	3	water
5	110	19		
9	160	85		egg
9			medicine	
9			water	

Computing "weight" column 4/4

Compute π^{-1}

Key	height	weight		Key
3	200	99	purchase	
5	110	19		water
9	160	85	7	egg
9	9	medicine		
9	9	water		

Computing "height" column
Apply the same thing

| Key | height | weight | Key | purchase |
| ---: | ---: | ---: | ---: | ---: | :---: |
| 3 | 200 | 99 | 3 | water |
| 5 | 110 | 19 | | |
| 9 | 160 | 85 | egg | |
| 9 | | | | |

Key	height	weight	purchase
3	200	99	water
0	0	0	0
9	160	85	medicine
9	160	85	water

Computing "purchase" column
Apply the same thing with a tuple of 1

e	Key	height	weight		
1	3	200	99	Key	purchase
1	5	110	19	water	
1	9	160	85		
				egg	
9			medicine		
9			water		

Key	purchase
3	water
7	egg
9	medicine
9	water

\times

Key	height	weight	purchase
3	200	99	water
0	0	0	0
9	160	85	medicine
9	160	85	water

Experimental result (oblivious join)

Experiment on 10^{3} records, 1 G LAN, $p=2^{61}-1, \ell=20$

	Passive	
[LTW13]	30 s	Active
MEVAL	0.02 s	0.35 s

Experiment on 10^{6} records,

	Passive	Active
MEVAL	15.13 s	44.04 s

[LTW13] S. Laur, R. Talviste, J. Willemson.: From oblivious AES to efficient and secure database join in the multiparty setting. ACNS 2013

Summary

- We have developed MEVAL
secret sharing \quad three-party honest majority
User can choose either security level: passive or active w/ abort
- Support high-level functions

Three key components: bit-decomposition, oblivious sort, oblivious join

	Function	Passive	Active w/ abort
[BNTW12]	Bit-decomposition (107 records)	200 s	
MEVAL		0.90 s	14.81 s
[BLT14]	Oblivious sort (10^{5} records)	150 s	
MEVAL		0.54 s	1.43 s
[LTW13]	Oblivious join (103 records)	25 s	
MEVAL		0.02 s	0.06 s

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol

Bernardo DAVID (Joint work with Aggelos Kiayias, Alexander Russell and Roman Oliynykov)

Tokyo Insitute of Technology
bernardo@bmdavid.com

We present Ouroboros, the first blockchain protocol based on proof of stake with rigorous security guarantees. We establish security properties for the protocol comparable to those achieved by the bitcoin blockchain protocol. As the protocol provides a proof of stake blockchain discipline, it offers qualitative efficiency advantages over blockchains based on proof of physical resources (e.g., proof of work). We showcase the practicality of our protocol in real world settings by providing experimental results on transaction processing time obtained with a prototype implementation in the Amazon cloud. We also present a novel reward mechanism for incentivizing the protocol and we prove that given this mechanism, honest behavior is an approximate Nash equilibrium, thus neutralizing attacks such as selfish mining and block withholding.

Outline

1. History: e-cash
2. Bitcoin and Blockchains

3. Ouroboros
4. Ouroboros Praos

The 1980s
David Chaum and anonymous e-cash

or a real democracy"
(attributed to Chaum)

Chaum's anonymous e-cash

- Just like fiat currency:
- Anonymous
- Secure (no double spending or faking)
- Only banks issue money

- But...
- Centralized and bankrupted in 1999

Outline

1. History: e-cash
2. Bitcoin and Blockchains

3. Ouroboros
4. Ouroboros Praos

A New Era: Bitcoin and Blockchains

A New Era: Bitcoin and Blockchains

- 2009: Bitcoin announced by Satoshi Nakamoto
- Pseudonym for person or group of people
- 2009-2011: slow start...
- 2011-2013: Silk Road and Dread Pirate Roberts
- End 2013: Bitcoin price skyrockets
- and the world notices!
- Mid-2015: Ethereum and complex Smart Contracts

coinmarketcap.com

Blockchain:

A Public Ledger

- Decentralized!

- You can write but never modify or reorder (if most users are honest)

Bitcoin's Blockchain:

Creating Blocks (and coins)
Bitcoin Mining:

1. Everyone
tries to solve a puzzle

2. The first one to solve the puzzle gets R BTC and generates next block
3. The solution of puzzle \boldsymbol{i}
defines puzzle $i+1$

Bitcoin's Blockchain:
 Proof-of-Work (PoW)

The PoW puzzle:

given Header, find Nonce such that d first bits of T are 0

Bitcoin's Blockchain:

 Creating Blocks (and coins)

Bitcoin's Blockchain:

Proof-of-Work Difficulty

- Only 1 block generated every 10 minutes on average (1 PoW should take 10 min .)
- Adjust "difficulty" of PoW every 2016 blocks

Bitcoin's Blockchain:
Proof-of-Work Difficulty

Bitcoins Blockchain:
 Inflation and Halving

- Control Inflation
- Rewards halved every 210000 blocks

Bitcoin's Blockchain

- One block added every 10 minutes by solving puzzle
- Reward given per block, halved every 210000 blocks
- Total of 21 million BTC to be created in total

Bitcoin's Blockchain: Forks

Bitcoin's Blockchain: Recap

- New block every 10 minutes
- Rewards for users who generate blocks
- Forks don'† last long: consensus after 6 blocks
- Malicious users have to invest a lot of computer power to change blocks

Bitcoin: How to transfer money

\qquad Give coin no. 3 to Jakeb
Bernardo

(Digital) Signatures

- Only you can sign
- Everyone can verify
- You cannot deny

Bitcoin: How to transfer money

Bitcoin: How to store money

Bitcoin: How to transfer money

Bitcoin: How to transfer money Double Spending

Bitcoin: How to transfer money Transaction Fees

Example: P1 wants to give 60 to P2

Outline

1. History: e-cash
2. Bitcoin and Blockchains
3. Ouroboros
4. Ouroboros Praos

PoW: Issues and Alternatives

- Distinction between coin holders and mining
- Diminishing rewards for mining
- Control of the network is very centralized

- Alternatives: Proof-of-Space, Proof-of-Stake

An Alternative: Proof-of-Stake

- More resources = more control
- Resource waste 8
- Centralized ©
vs. PoS
- Less waste
- Democratic 3

Our Contributions [KRDO17] in Crypto 2017

- Formalize PoS
- Formal model for PoS based consensus protocols
- New PoS Based Consensus Protocol
- Address attacks to current protocols
- Get better parameters
- Get stronger security guarantees

Follow-the-Satoshi

Houtputs index $0<\mathrm{i}<$ total number of satoshis S_{1}, \ldots, S_{n}

The Protocol: One Epoch

The Protocol: Multiple Epochs

G.O.D. Coin Tossing

- For every stakeholder when each epoch starts:

Commit
Reveal
Recovery (if party j is corrupted) Randomnes

Commit $\left(r_{i}\right)$

Building Blocks

- Verifiable secret sharing:
- Publicly Verifiable Secret Sharing, e.g.
[CD17]
- Commitments, many possibilities:
- ROM: $\mathrm{H}(\mathrm{m} \mid r)$ where r is random
- DDH (Pedersen) Commitments: $g^{m} h^{r}$ where $h=g^{\dagger}$ and both r and t are random

Outline

1. History: e-cash
2. Bitcoin and Blockchains
3. Ouroboros
4. Ouroboros Praos

Coming Soon: Ouroboros Praos

- Adaptive Security
- Semi-synchronous network: Bounded delay with upper bound unknown to honest parties
- Novel "oblivious leader selection"
- Novel Verifiable Random Functions with "malicious key generation resiliency"

Open Problems

- Prove stronger security guarantees
- Asynchronous Networks
- Composition
- Analyze security in a game theoretic framework
- Determine concrete parameters for Ouroboros Praos (e.g. epoch length)
- Develop a prototype of Ouroboros Praos

Panel Discussion

Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling

Panelists: Kazuma Ohara, Ryo Kikuchi, Mitsugu Iwamoto, Bernardo David, Yvo Desmedt, Eyal Kushilevitz and Naruhiro Kurokawa
Moderator: Kirill Morozov

The video of our panel discussion is available at "YouTube":

- https://youtu.be/nPR2f-LHqYM

MI レクチャーノートシリーズ刊行にあたり

本レクチャーノートシリーズは，文部科学省 21 世紀 COE プログラム「機能数理学の構築と展開」（H．15－19 年度）において作成した COE Lecture Notes の続刊であり，文部科学省大学院教育改革支援プログラム「産業界が求める数学博士と新修士養成」（H19－21 年度）および，同グローバルCOE プログラ ム「マス・フォア・インダストリ教育研究拠点」（H．20－24年度）において行 われた講義の講義録として出版されてきた。平成 23 年 4 月のマス・フォア・ インダストリ研究所（IMI）設立と平成 25 年 4 月の IMI の文部科学省共同利用•共同研究拠点として「産業数学の先進的•基礎的共同研究拠点」の認定を受け，今後，レクチャーノートは，マス・フォア・インダストリに関わる国内外の研究者による講義の講義録，会議録等として出版し，マス・フォア・インダ ストリの本格的な展開に資するものとする。

平成 26 年 10 月
マス・フォア・インダストリ研究所
所長 福本康秀

IMI Workshop of the Joint Research Projects

Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling

発 行 2018年3月30日
編 集 Kirill Morozov，Hiroaki Anada，Yuji Suga
発 行 九州大学マス・フォア・インダストリ研究所
九州大学大学院数理学府
〒819－0395福岡市西区元岡744
九州大学数理•IMI 事務室
TEL 092－802－4402 FAX 092－802－4405
URL http：／／www．imi．kyushu－u．ac．jp／
印 刷 城島印刷株式会社
〒810－0012福岡市中央区白金2丁目9番6号
TEL 092－531－7102 FAX 092－524－4411

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note	Mitsuhiro T．NAKAO Kazuhiro YOKOYAMA	Computer Assisted Proofs－Numeric and Symbolic Approaches－ 199pages	August 22， 2006
COE Lecture Note	M．J．Shai HARAN	Arithmetical Investigations－Representation theory，Orthogonal polynomials and Quantum interpolations－174pages	August 22， 2006
COE Lecture Note Vol． 3	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2005 155pages	October 13， 2006
COE Lecture Note Vol． 4	宮田 健治	辺要素有限要素法による磁界解析－機能数理学特別講義 21pages	May 15， 2007
COE Lecture Note Vol． 5	Francois APERY	Univariate Elimination Subresultants－Bezout formula，Laurent series and vanishing conditions－89pages	September 25， 2007
COE Lecture Note Vol． 6	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2006 209pages	October 12， 2007
COE Lecture Note Vol． 7	若山 正人中尾 充宏	九州大学産業技術数理研究センターキックオフミーティング 138pages	October 15， 2007
COE Lecture Note Vol． 8	Alberto PARMEGGIANI	Introduction to the Spectral Theory of Non－Commutative Harmonic Oscillators 233pages	January 31， 2008
COE Lecture Note Vol． 9	Michael I．TRIBELSKY	Introduction to Mathematical modeling 23pages	February 15， 2008
COE Lecture Note Vol． 10	Jacques FARAUT	Infinite Dimensional Spherical Analysis 74pages	March 14， 2008
COE Lecture Note Vol． 11	Gerrit van DIJK	Gelfand Pairs And Beyond 60pages	August 25， 2008
COE Lecture Note Vol． 12	Faculty of Mathematics， Kyushu University	Consortium＂MATH for INDUSTRY＂First Forum 87pages	September 16， 2008
COE Lecture Note Vol． 13	九州大学大学院数理学研究院	プロシーデイング「損保数理に現れる確率モデル」 一日新火災•九州大学共同研究2008年11月研究会—82pages	February 6， 2009

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 14	Michal Beneš， Tohru Tsujikawa Shigetoshi Yazaki	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2008 77pages	February 12， 2009
COE Lecture Note Vol． 15	Faculty of Mathematics， Kyushu University	International Workshop on Verified Computations and Related Topics 129pages	February 23， 2009
COE Lecture Note Vol． 16	Alexander Samokhin	Volume Integral Equation Method in Problems of Mathematical Physics 50pages	February 24， 2009
COE Lecture Note Vol． 17	矢嶋 徽 及川 正行 梶原 健司 辻 英一 福本 康秀	非線形波動の数理と物理 66pages	February 27， 2009
COE Lecture Note Vol． 18	Tim Hoffmann	Discrete Differential Geometry of Curves and Surfaces 75pages	April 21， 2009
COE Lecture Note Vol． 19	Ichiro Suzuki	The Pattern Formation Problem for Autonomous Mobile Robots －Special Lecture in Functional Mathematics－23pages	April 30， 2009
COE Lecture Note Vol． 20	Yasuhide Fukumoto Yasunori Maekawa	Math－for－Industry Tutorial：Spectral theories of non－Hermitian operators and their application 184pages	June 19， 2009
COE Lecture Note Vol． 21	Faculty of Mathematics， Kyushu University	Forum＂Math－for－Industry＂ Casimir Force，Casimir Operators and the Riemann Hypothesis 95pages	November 9， 2009
COE Lecture Note Vol． 22	Masakazu Suzuki Hoon Hong Hirokazu Anai Chee Yap Yousuke Sato Hiroshi Yoshida	The Joint Conference of ASCM 2009 and MACIS 2009： Asian Symposium on Computer Mathematics Mathematical Aspects of Computer and Information Sciences 436pages	December 14， 2009
COE Lecture Note Vol． 23	荒川 恒男 金子 昌信	多重ゼータ値入門 111pages	February 15， 2010
COE Lecture Note Vol． 24	Fulton B．Gonzalez	Notes on Integral Geometry and Harmonic Analysis 125pages	March 12， 2010
COE Lecture Note Vol． 25	Wayne Rossman	Discrete Constant Mean Curvature Surfaces via Conserved Quantities 130pages	May 31， 2010
COE Lecture Note Vol． 26	Mihai Ciucu	Perfect Matchings and Applications 66pages	July 2， 2010

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 27	九州大学大学院数理学研究院	Forum＂Math－for－Industry＂and Study Group Workshop Information security，visualization，and inverse problems，on the basis of optimization techniques 100pages	October 21， 2010
COE Lecture Note Vol． 28	ANDREAS LANGER	MODULAR FORMS，ELLIPTIC AND MODULAR CURVES LECTURES AT KYUSHU UNIVERSITY 2010 62pages	November 26， 2010
COE Lecture Note Vol． 29	木田 雅成原田 昌晃横山 俊一	Magma で広がる数学の世界 157pages	December 27， 2010
COE Lecture Note Vol． 30	$\begin{array}{lr}\text { 原 } & \text { 隆 } \\ \text { 松井 } & \text { 卓 } \\ \text { 廣島 } & \text { 文生 }\end{array}$	Mathematical Quantum Field Theory and Renormalization Theory 201pages	January 31， 2011
COE Lecture Note Vol． 31	若山 正人 福本 康秀 高木 剛 山本 昌宏	Study Group Workshop 2010 Lecture \＆Report 128pages	February 8， 2011
COE Lecture Note Vol． 32	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2011 ＂TSUNAMI－Mathematical Modelling＂ Using Mathematics for Natural Disaster Prediction，Recovery and Provision for the Future 90pages	September 30， 2011
COE Lecture Note Vol． 33	若山 正人 福本 康秀 高木 剛 山本 昌宏	Study Group Workshop 2011 Lecture \＆Report 140pages	October 27， 2011
COE Lecture Note Vol． 34	Adrian Muntean Vladimír Chalupecký	Homogenization Method and Multiscale Modeling 72pages	October 28， 2011
COE Lecture Note Vol． 35	$\begin{array}{ll}\text { 横山 } & \text { 俊一 } \\ \text { 夫 } & \text { 紀恵 } \\ \text { 林 } & \text { 卓也 }\end{array}$	計算機代数システムの進展 210pages	November 30， 2011
COE Lecture Note Vol． 36	Michal Beneš Masato Kimura Shigetoshi Yazaki	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2010 107pages	January 27， 2012
COE Lecture Note Vol． 37	若山 正人高木 剛 Kirill Morozov平岡 裕章木村 正人白井 朋之西井 龍映栄 伸一郎穴井 宏和福本 康秀	平成 23 年度 数学•数理科学と諸科学•産業との連携研究ワーク ショップ 拡がっていく数学～期待される＂見えない力＂～ 154pages	February 20， 2012

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 38	Fumio Hiroshima Itaru Sasaki Herbert Spohn Akito Suzuki	Enhanced Binding in Quantum Field Theory 204pages	March 12， 2012
COE Lecture Note Vol． 39	Institute of Mathematics for Industry， Kyushu University	Multiscale Mathematics：Hierarchy of collective phenomena and interrelations between hierarchical structures 180pages	March 13， 2012
COE Lecture Note Vol． 40	井ノ口順一 太田 泰広 筧 三郎 梶原 健司 松浦 望	離散可積分系•離散微分幾何チュートリアル 2012 152pages	March 15， 2012
COE Lecture Note Vol． 41	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2012 ＂Information Recovery and Discovery＂91pages	October 22， 2012
COE Lecture Note Vol． 42	佐伯 修 若山 正人 山本 昌宏	Study Group Workshop 2012 Abstract，Lecture \＆Report 178pages	November 19， 2012
COE Lecture Note Vol． 43	Institute of Mathematics for Industry， Kyushu University	Combinatorics and Numerical Analysis Joint Workshop 103pages	December 27， 2012
COE Lecture Note Vol． 44	萩原 学	モダン符号理論からポストモダン符号理論への展望 107pages	January 30， 2013
COE Lecture Note Vol． 45	金山 寛	Joint Research Workshop of Institute of Mathematics for Industry （IMI），Kyushu University ＂Propagation of Ultra－large－scale Computation by the Domain－ decomposition－method for Industrial Problems（PUCDIP 2012）＂ 121pages	February 19， 2013
COE Lecture Note Vol． 46	西井 龍映栄 伸一郎 岡田 勘三 落合 啓之 小磯 深幸 斎藤 新悟 白井 朋之	科学•技術の研究課題への数学アプローチ —数学モデリングの基礎と展開— 325pages	February 28， 2013
COE Lecture Note Vol． 47	SOO TECK LEE	BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE COMPLEX CLASSICAL GROUPS 40pages	March 8， 2013
COE Lecture Note Vol． 48	$\begin{array}{lr} \text { 溝口 } & \text { 佳寛 } \\ \text { 脇 } & \text { 隼人 } \\ \text { 平坂 } & \text { 貢 } \\ \text { 谷口 } & \text { 哲至 } \\ \text { 島袋 } & \text { 修 } \end{array}$	博多ワークショップ「組み合わせとその応用」 124pages	March 28， 2013

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 49	照井 章 小原 功任 濱田 龍義 横山 俊一 穴井 宏和 横田 博史	マス・フォア・インダストリ研究所 共同利用研究集会 II数式処理研究と産学連携の新たな発展 137pages	August 9， 2013
MI Lecture Note Vol． 50	Ken Anjyo Hiroyuki Ochiai Yoshinori Dobashi Yoshihiro Mizoguchi Shizuo Kaji	Symposium MEIS2013： Mathematical Progress in Expressive Image Synthesis 154pages	October 21， 2013
MI Lecture Note Vol． 51	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂ 2013 ＂The Impact of Applications on Mathematics＂97pages	October 30， 2013
MI Lecture Note Vol． 52	佐伯 修 岡田 勘三 高木 剛 若山 正人 山本 昌宏	Study Group Workshop 2013 Abstract，Lecture \＆Report 142pages	November 15， 2013
MI Lecture Note Vol． 53	四方 義啓櫻井 幸一安田 貴徳 Xavier Dahan	平成25年度 九州大学マス・フォア・インダストリ研究所共同利用研究集会 安全•安心社会基艦構築のための代数構造 ～サイバー社会の信頼性確保のための数理学～158pages	December 26， 2013
MI Lecture Note Vol． 54	Takashi Takiguchi Hiroshi Fujiwara	Inverse problems for practice，the present and the future 93pages	January 30， 2014
MI Lecture Note Vol． 55	栄 伸一郎溝口 佳寛脇 隼人渋田 敬史	Study Group Workshop 2013 数学協働プログラム Lecture \＆Report 98pages	February 10， 2014
MI Lecture Note Vol． 56	Yoshihiro Mizoguchi Hayato Waki Takafumi Shibuta Tetsuji Taniguchi Osamu Shimabukuro Makoto Tagami Hirotake Kurihara Shuya Chiba	Hakata Workshop 2014 ～Discrete Mathematics and its Applications～141pages	March 28， 2014
MI Lecture Note Vol． 57	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂2014： ＂Applications + Practical Conceptualization + Mathematics $=$ fruitful Innovation＂93pages	October 23， 2014
MI Lecture Note Vol． 58	安生健一落合啓之	Symposium MEIS2014： Mathematical Progress in Expressive Image Synthesis 135pages	November 12， 2014

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol． 59	西井 龍映岡田 勘三梶原 健司高木 剛若山 正人脇 隼人山本 昌宏	Study Group Workshop 2014 数学協働プログラム Abstract，Lecture \＆Report 196pages	November 14， 2014
MI Lecture Note Vol． 60	西浦 博	平成 26 年度九州大学 IMI 共同利用研究•研究集会（I）感染症数理モデルの実用化と産業及び政策での活用のための新 たな展開 120pages	November 28， 2014
MI Lecture Note Vol． 61	溝口 佳寛 Jacques Garrigue萩原 学 Reynald Affeldt	研究集会 高信頼な理論と実装のための定理証明および定理証明器 Theorem proving and provers for reliable theory and implementations （TPP2014）138pages	February 26， 2015
MI Lecture Note Vol． 62	白井 朋之	Workshop on＂β－transformation and related topics＂59pages	March 10， 2015
MI Lecture Note Vol． 63	白井 朋之	Workshop on＂Probabilistic models with determinantal structure＂ 107pages	August 20， 2015
MI Lecture Note Vol． 64	落合 啓之 土橋 宜典	Symposium MEIS2015： Mathematical Progress in Expressive Image Synthesis 124pages	September 18， 2015
MI Lecture Note Vol． 65	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂ 2015 ＂The Role and Importance of Mathematics in Innovation＂74pages	October 23， 2015
MI Lecture Note Vol． 66	岡田 勘三 藤澤 克己 白井 朋之 若山 正人 脇 隼人 Philip Broadbridge 山本 昌宏	Study Group Workshop 2015 Abstract，Lecture \＆Report 156pages	November 5， 2015
MI Lecture Note Vol． 67	Institute of Mathematics for Industry，Kyushu University	IMI－La Trobe Joint Conference ＂Mathematics for Materials Science and Processing＂ 66pages	February 5， 2016
MI Lecture Note Vol． 68	古庄 英和 小谷 久寿 新甫 洋史	結び目と Grothendieck－Teichmüller 群 116pages	February 22， 2016
MI Lecture Note Vol． 69	土橋 宜典鍛治 静雄	Symposium MEIS2016： Mathematical Progress in Expressive Image Synthesis 82pages	October 24， 2016
MI Lecture Note Vol． 70	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2016 ＂Agriculture as a metaphor for creativity in all human endeavors＂ 98pages	November 2， 2016
MI Lecture Note Vol． 71	小磯 深幸 二宮 嘉行 山本 昌宏	Study Group Workshop 2016 Abstract，Lecture \＆Report 143pages	November 21， 2016

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol． 72	新井 朝雄小嶋 泉廣島 文生	Mathematical quantum field theory and related topics 133pages	January 27， 2017
MI Lecture Note Vol． 73	穴田 啓晃 Kirill Morozov 須賀 祐治 奥村 伸也 櫻井 幸一	Secret Sharing for Dependability，Usability and Security of Network Storage and Its Mathematical Modeling 211pages	March 15， 2017
MI Lecture Note Vol． 74	QUISPEL，G．Reinout W． BADER，Philipp MCLAREN，David I． TAGAMI，Daisuke	IMI－La Trobe Joint Conference Geometric Numerical Integration and its Applications 71pages	March 31， 2017
MI Lecture Note Vol． 75	手塚 集田上 大助山本 昌宏	Study Group Workshop 2017 Abstract，Lecture \＆Report 118pages	October 20， 2017
MI Lecture Note Vol． 76	宇田川誠一	Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論 —Tzitzéica 方程式の楕円関数解を出発点として— 68pages	August 4， 2017
MI Lecture Note Vol． 77	松谷 茂樹佐伯 修中川 淳一田上 大助上坂 正晃 Pierluigi Cesana演田 裕康	平成 29 年度 九州大学マス・フォア・インダストリ研究所共同利用研究集会（I） 結晶の界面，転位，構造の数理 148pages	December 20， 2017
MI Lecture Note Vol． 78	瀧澤 重志 小林 和博 佐藤憲一郎 斎藤 努 清水 正明 間瀬 正啓 藤澤 克樹 神山 直之	平成 29 年度 九州大学マス・フォア・インダストリ研究所 プロジェクト研究 研究集会（I）防災•避難計画の数理モデルの高度化と社会実装へ向けて 136pages	February 26， 2018
MI Lecture Note Vol． 79	神山 直之畔上 秀幸	平成 29 年度 AIMaPチュートリアル最適化理論の基礎と応用 96pages	February 28， 2018

Institute of Mathematics for Industry Kyushu University

[^0]: 30
 ONEC Coporation 2017
 NEC Grap interna the only

