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Preface 
Rapid development of computer systems and networks emphasized importance of 
application of cryptographic technologies. Confidentiality and reliability can be 
naturally attained using the cryptographic technology of secret-sharing, which has 
been more and more widely applied for secure storage. However, data must not only 
be securely stored but also securely processed, and therefore search and computation 
over secured data becomes an increasingly important problem that finds applications 
in digital payment systems, medical data processing, and other important areas � these functionalities are 
achieved using secure multi-party computation technologies. Acceptance of these concepts for practical 
deployment requires a thorough security evaluation, involving mathematical modeling of the implemented 
systems as well as their rigorous security proofs. The purpose of this workshop was to discuss the above 
aspects. The program included 3 keynote lectures, 6 invited lectures and a panel discussion, gathering over  
40 attendees in total. The goal of these lecture notes is to raise awareness about the topics and results discussed 
at the workshop, especially among researchers in mathematics and developers in cloud computing and 
cybersecurity.   

Kirill Morozov, Representative of the Organizers 
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Program 

June 12 (Monday) 

10:00-10:10 (Opening) 

[1] 10:10-10:50 [keynote] Amos Beimel, Ben-Gurion University, Israel 
�Graph Secret Sharing� 

[2] 11:10-11:50 [keynote] Yvo Desmedt, The University of Texas at Dallas, USA 
�Human Recomputable Secret Shares and their Applications in E-Voting� 

[3] 14:00-14:40         Mitsugu Iwamoto, The University of Electro-Communications, Japan 
�Secret Sharing Schemes under Guessing Secrecy� 

[4] 15:00-15:40         Naruhiro Kurokawa, Bank of Japan, Japan 
�Function Secret Sharing Using Fourier Basis� 

16:00-16:30 (Panel Discussion)   Panelists: Bernardo David, Yvo Desmedt, Mitsugu Iwamoto, 
Ryo Kikuchi, Naruhiro Kurokawa, Eyal Kushilevitz and Kazuma Ohara. 
Moderator: Kirill Morozov 

June 13 (Tuesday) 

[5] 10:10-10:50 [keynote] Eyal Kushilevitz, Technion, Israel 
�Ad-hoc MPC� 

[6] 11:10-11:50         Takeshi Koshiba, Waseda University, Japan 
�Secure Message Transmission against Rational Adversaries� 

[7] 14:00-14:40         Kazuma Ohara, NEC Corporation, Japan 
�Optimized Honest-Majority MPC for Malicious Adversaries  

    - Breaking the 1 Billion-Gate Per Second Barrier� 

[8] 14:50-15:30        Ryo Kikuchi, NTT CORPORATION, Japan 
�Key components in MEVAL� 

[9] 15:40-16:20        Bernardo David, Tokyo Institute of Technology, Japan 
�A Provably Secure Proof-of-Stake Blockchain Protocol� 

16:20-16:30 (Closing)
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IMI Workshop: Cryptographic Technologies for Securing Network Storage

and Their Mathematical Modeling

June 12–13, 2017, Kyushu University

Linear Secret-Sharing Schemes for Forbidden
Graph Access Structures

Amos Beimel (Joint work with Oriol Farràs, Yuval Mintz, and
Naty Peter)

Ben Gurion University of the Negev
amos.beimel@gmail.com

A secret-sharing scheme realizes the forbidden graph access structure determined by
a graph G = (V,E) if a pair of vertices can reconstruct the secret if and only if it is
and edge of G. An important property of these schemes is that they can be used to
construct schemes for the conditional disclosure of secrets.

We study the complexity of realizing a forbidden graph access structure by linear
secret-sharing schemes. A secret-sharing is linear if the reconstruction of the secret from
the shares is a linear mapping. In many applications of secret sharing, it is required
that the scheme is linear. We provide efficient constructions and lower bounds on the
share size of linear secret-sharing schemes for sparse and dense graphs, closing the gap
between upper and lower bounds: Given a sparse graph with n vertices and at most
n1+β edges, for some 0 ≤ β < 1, we construct a linear secret-sharing scheme realizing
the forbidden graph access structure in which the total size of the shares is Õ(n1+β/2).
We provide an additional construction showing that every dense graph with n vertices
and at least

(
n
2

)
− n1+β edges can be realized by a linear secret-sharing scheme with

the same share size.
We prove lower bounds on the share size of linear secret-sharing schemes realizing

forbidden graph access structures. We prove that for most forbidden graphs access
structures, the total share size of every linear secret-sharing scheme realizing the graph
is Ω(n3/2), this shows that construction of [Gay, Kerenidis, and Wee, CRYPTO 2015]
is optimal. Furthermore, we show that for every 0 < β ≤ 1 there exist a graph with at
most n1+β edges and a graph with at least

(
n
2

)
−n1+β edges, such that the total share size

of every linear secret-sharing scheme realizing these forbidden graph access structures
is Ω(n1+β/2). This shows that our constructions are optimal (up to poly-logarithmic
factors).
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Secret Sharing [Shamir79,Blakley79,ItoSaitoNishizeki87]  

• Parties:      
• Access Structure   (collection of sets of parties) 
• A scheme realizes  if: 

–Correctness: every authorized set    can recover s 
–Privacy: every unauthorized set   cannot learn anything 

about  
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Shamir’s t-out-of-n Secret Sharing

• Access structure:  = {  ⊆  ∶ || ≥  }
• Scheme:

• Dealer chooses a random polynomial
   − −

– Share of :

s

5

•Input: secret s∈  where  >  is a prime

 = () mod 

Linear Secret Sharing
• Input: secret  ∈ 

• Dealer chooses random elements , … ,  ∈
• Share :

• A vector over 
• Each coordinate: a linear combination of  and ,… , 

• Example 1: Shamir’s scheme:
•    = () = +               ⋅ +                2⋅ 2 + ⋯ + − ⋅ − 

• Example 2:  ∈ 2

• Dealer chooses  , 2 ∈ 2
•  = (,  ⊕ )
•  = ( ⊕ )
•  = (,  ⊕  ⊕ )6

Shamir’s t-out-of-n Secret Sharing 

5 

• Access structure:            
• Scheme: 

• Input: secret s 
• Dealer chooses a random polynomial  

           
– Share of :     

 

s 

  where    is a prime 

 

Linear Secret Sharing 

6 
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A Scheme Realizing a Forbidden Graph 

9 

•    
• For every edge      ,  

– Give a random bit  to  and   to   
•  can reconstruct the secret by performing xor on their shares. 

• In addition, share  using a 3-out-of- secret-sharing scheme 

• Total share size:          





  
  

  

Upper Bounds for Forbidden Graphs 

10 

• Every graph can be realized by a secret-sharing scheme with share 
size        LiuVaikuntanathanWee17]

• Every graph can be realized by a linear secret-sharing scheme with 
share size GayKerenidisWee15]
 

• We consider linear secret sharing schemes 
• Questions: 

• Ifcontains few edges, can we realize it more efficiently? 
• Few = . Goal: better than  

• If  contains many edges, can we realize it more efficiently? 
• Many =   Goal: better than 

• If  has an efficient scheme and we add and remove few 
edges, can we realize it efficiently? 
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• Storing sensitive information – Robust key management  
 
• Used in many secure protocols: 

• multiparty computation 
• threshold cryptography 
• attribute-based encryption (ABE) 
• access control 
• oblivious transfer 

 
• Most applications require linear secret-sharing schemes 
• Most known schemes are linear 

 
 

Schemes for Forbidden Graphs [SunShieh97] 

A scheme realizes a forbidden graph    if: 
• The parties are the set of vertices 
• The authorized sets are: 

• The edges in 
• Every set of size at least 

• The unauthorized sets are: 
• The non-edges 
• A single party (vertex) 
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Motivation 

11 

• Secret sharing for forbidden bipartite graphs are equivalent to 
conditional disclosure of secrets 
• Used to construct symmetric private information retrieval and 

attribute based encryption 
 

• Our goal: construct efficient linear secret-sharing schemes for 
specific families of forbidden graphs 
 

• We want to understand if, for  forbidden graphs, linear secret 
sharing requires shares of size 
•  

 
 

Conditional Disclosure of Secrets (CDS) 
[GertnerIshaiKushilevitzMalkin98] 

 

• Each party has a private input 

• Both parties know a secret 
• Shared randomness 
• Referee knows  
• A condition:           
• Each party sends one message 

• Correctness: If     , Ref learns 
• Security: If     , Ref learns nothing 
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Main Result: Upper Bounds 
Thm 1:  
If a graph withvertices contains for some       

– either at most  edges or  
– at least  

   edges,  
Then there is a linear secret-sharing scheme realizing the graph with total 
share size 


Thm 2: 
If  

–   can be realized with a scheme with total share size 
– obtained from by removing and adding at most edges. 

Then there is a linear secret-sharing  scheme realizing with share size 
  . 
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Main Result: Lower Bounds 
• Thm 3: There exists a graph with   vertices such that in any linear 

secret-sharing scheme realizing it with a one-bit secret the size of the 
shares is   

• Conclusion 1: The construction of Gay et al. is optimal  
• Conclusion 2: Gap between linear and non-linear schemes for forbidden 

graphs 
 

• Thm 4: There exists a graph with  vertices and at most   edges 
such that in any linear secret-sharing scheme realizing it with a one-bit 
secret the size of the shares is   
– Same result for a graph with at least 

   edges 
 

• Conclusion 3: Our constructions are optimal up to a poly-log factor. 
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CDS and Forbidden Bipartite Secret Sharing 

• Bipartite Graph:    

• Vertices:    

• Edges: Only between sets      

 

• Secret sharing for forbidden bipartite graph 

• Every     can reconstruct  

• Every       s.t.     

should not learn information about  
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A Scheme for a Graph with Edges 
• Basic Construction: for a bipartite graph      

such that  is small and every vertex in  has degree at 
most 

• Share size      
• Second construction: for a bipartite      such that every 

vertex in  has degree at most 
– Share size   

• Third construction: for a bipartite graph      that has at 
most  edges 
– Share size 

• Final construction: for a graph     that has at most  
edges 
– Share size 
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Basic Construction 
• If      is bipartite graph s.t. 

every vertex in  has degree at most 
• Then  has a linear secret-sharing  with 

total share size is       
 
Example:    ,       

 Every    has degree at most   
 The total share size is  
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Bipartite with Few Edges 
If      is bipartite with at most edges 

Then  has a linear secret-sharing with total share size is  


• In this talk: 
 
Scheme: 
• Let            

•  


   

• Realize          

– Share size              

• Realize          

– Share size              

• In the paper: Reduce degree in  steps 

23 







Conclusions 
• Forbidden graph secret sharing is equivalent to CDS  ⇨ SPIR, Atribute 

based encryption 
• Every forbidden graph can be realized by a linear secret-sharing 

scheme with share size 
• We show that every forbidden graph with edges can be realized 

by a linear secret-sharing scheme with share size 
– Same result for with 

  edges  
• There exists a forbidden graph such that in any linear secret-sharing 

scheme realizing it the share size is  
• There exists a forbidden graph with edges such that in any linear 

secret-sharing scheme realizing it the share size is  
• Open: graph access structures 
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A Scheme with share size
• If  = , ,  is bipartite graph
• Then  has a linear secret-sharing with

total share size is (/)

Scheme:
• Partition  into sets , … ,   of size 
• Define  = , ,  ∩ (×)
• Realize each  with a scheme with total

share size  
• The total share size is ( ⋅  )
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A Scheme with share size







• If  = , ,  is bipartite graph s.t.
– The degree of every  ∈  is at most 

• Then  has a linear secret-sharing with
total share size is (/2)

With different parameters :
• Randomly partition  into:

, … ,   of size / 

• Define  = , ,  ∩ (×)
– With high prob. the degree of every  ∈  in 

is at most 
• Realize each  with a scheme with total  

share size   + (/ ) ⋅  = ()
• The total share size is ( ⋅ )
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Schemes for Graphs 

A scheme realizes a graph    if: 
• The parties are the set of vertices 
• The authorized sets are: 

• The edges in 
• Every set that contains an edge

• The unauthorized sets are: 
• The non-edges 
• Every set that doesn’t contain an edge 

• Every graph can be realized by a linear 
scheme with share size 
• Sparse graph:  
• 

 
 

 

25 

Thanks! 

26 

Schemes for Graphs 

A scheme realizes a graph    if: 
• The parties are the set of vertices 
• The authorized sets are: 

• The edges in 
• Every set that contains an edge

• The unauthorized sets are: 
• The non-edges 
• Every set that doesn’t contain an edge 

• Every graph can be realized by a linear 
scheme with share size 
• Sparse graph:  
• 

 
 

 

25 

Thanks! 

26 

Bipartite with Few Edges 
If      is bipartite with at most edges 

Then  has a linear secret-sharing with total share size is  


• In this talk: 
 
Scheme: 
• Let            

•  


   

• Realize          

– Share size              

• Realize          

– Share size              

• In the paper: Reduce degree in  steps 
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Conclusions 
• Forbidden graph secret sharing is equivalent to CDS  ⇨ SPIR, Atribute 

based encryption 
• Every forbidden graph can be realized by a linear secret-sharing 

scheme with share size 
• We show that every forbidden graph with edges can be realized 

by a linear secret-sharing scheme with share size 
– Same result for with 

  edges  
• There exists a forbidden graph such that in any linear secret-sharing 

scheme realizing it the share size is  
• There exists a forbidden graph with edges such that in any linear 

secret-sharing scheme realizing it the share size is  
• Open: graph access structures 
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The classical approach of secret sharing is to consider the secret to be in a finite
field. Computers are used by the dealer to make shares, and computers are used to
reconstruct the secret. Since the invention of Visual Cryptography by Kafri and Keren
in 1987, many researchers have stepped away from these restrictions.

In 2007, Desmedt-Pieprzyk-Steinfeld-Wang considered secrets that belong to a non-
Abelian group, such as the symmetric group (i.e., permutations), to obtain secure
multiparty computation.

In this talk, we consider secret and shares that are permutations, wonder how good
humans can do computations with these and consider them in the context of e-voting,
but then e-voting secure against hacking of the voter’s computer.
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1. SPECIAL SECRET SHARING SCHEMES

The most known secret sharing scheme is Shamir’s secret sharing

scheme (over 11,000 citations). His approach was to consider:

1. the secret and shares to be in a finite field,

2. to have the dealer use a computer to generate shares, and

3. to use computers to reconstruct the secret.

Since the invention of Visual Cryptography by Kafri and Keren in

1987, many researchers have stepped away from these restrictions

(note that this was reinvented by Naor and Shamir in 1994 and that

Kafri-Keren have 225 citations and Naor-Shamir have 2741).

Generalizing from finite field to Abelian Groups was initiated by
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3. A PIONEERING APPROACH: CHAUM’S CODE VOTING
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Desmedt-Frankel, published in 1994 (see also: Cramer-Fehr,

Cramer-Fehr-Stam and the Cramer-Fehr-Ishai-Kushilevitz

application to MPC).

After many years of research, in 2007 Desmedt-Pieprzyk-Steinfeld-

Wang succeeded in making black-box “MPC” computations over

non-Abelian groups. The motivation was purely theoretical. Today

we will see an application of the situation in which:

the secret and shares belongs to a non-Abelian group,

i.e., Sn (or a subgroup of Sn, such as Zn).
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2. OUR SETTING: POST SNOWDEN ELECTIONS

Post Snowden: today most people understand that computers,

laptops can be hacked and may have trapdoors, malware, etc.

Potential solutions:

• Halderman (2015) recommended to stop using Internet Voting.

• We believe we need to restart/encourage a line of research in which

we wonder how to vote assuming that the device you use for voting

has been hacked.

Our model (high level): we assume we can not trust:

• any single party,

• any single device, etc.
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4. ADVANTAGES/DISADVANTAGES OF CODE VOTING

Advantages of Code Voting: secure even if voter’s machine hacked.

Disadvantages:

• requires IACR to send random numbers by postal mail, and

• no collusion between postal system (or sender of envelopes) and

the party receiving the vote.

• authorities do not like the system because it differs too much from

what is used today!

c�Yvo Desmedt 10

Ballot stuffing with Code Voting
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6. THE VOTING: PASSIVE ADVERSARY ONLY
A user friendly approach: (multi-seat, not “code-voting”, t = 1)
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5. OUR SETTING, ASSUMPTIONS AND THEIR IMPACTS

Our setting:

1. Voter votes using an untrusted device

2. The voter has access to many communication devices/media (e.g.,

home PC, mobile, at work, in the library, postal)

3. Voter uses “human computations,” which we checked on reliability

(see further).

4. Authorities use untrusted computers, potentially with state

sponsored malware.

c�Yvo Desmedt 12

Our first model:

1. at most t devices/parties are infected.

2. our adversary is passive, curious, but not interested in: modifying

the vote, in a DoS, etc. (see further)

Impact:

• Many cryptographic tools become useless, such as: AES, ElGamal,

ZKIP, NIZK.

• So, we need to make a new MIX
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Details:

We asked 100 participants to do several tests (their ages did not

surpass 65).

Asking to add 5 shares of 4 digits mod10, 95% of the people

computed the correct result, using the above visual tool to avoid

confusion.

However, when using the permutation based addition, 99% of the

people computed the correct result.

A common comment from the participants was that the permutation

based mod10 addition was extremely easy - whereas the other

experiment was rather challenging for some people.

c�Yvo Desmedt 17

8. HIGH LEVEL DESCRIPTION

Background: secret shares

Example: 2-out-of-2:

Goal: Give binary secret s to 2 parties, Alice and Bob.

How: Flip a coin. Give the result, s1, to Alice.

Give Bob: s⊕ s1.

Can be generalized to:

• work over any finite group,

• the case we do not trust t insiders.

Just let s = s1 ◦ s2 ◦ · · · ◦ st+1.

c�Yvo Desmedt 18

In the single-seat election (mix friendly), we use code-voting (t = 1)

We regard the Abelian group Z10(+) as a subgroup of S10 and

replace the above “shares” by e.g.,

Put this edge 
against Arrow 

Sheet 2 

Put this edge 
against "Trace 
the Line" edge 

Sheet 1 Sheet 2 

Put against 
"Secret Bullets" 

Put against 
Sheet 1 

These corresponding to an addition plus 4 mod10 and plus 3

mod10 respectively. We assume there are 10 candidates.
15

7. SOME USABILITY TESTS (SCN 2012)

How good are users able to add strings of numbers, each mod10?

Our test show only 95% get this correct, even when helping users,

as following:

2597 

Your Secret is: 

Please re-write your secret:  

2 5 9 7 
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3 2 

Share 1 Share 2 Share 3 Share 4 Share 5 
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High level protocol description:

1. We use a Code Generation Entity (CGE), which will in the

pre-voting stage choose initial one-time pad (informally, πi) for each

voter.

2. Our MIX network uses layers, each layer having at least t+ 1

shares.

3. The CGE sends shares (t+ 1) of these πi to the MIX servers in the

first layer.

4. The MIX network anonymizes and modifies the shares of πi. The

permutations used are the same for all the shares of the same

value. For this, each layer had a leader that remembers the

permutation used and the modifications done at that layer.

c�Yvo Desmedt 19

5. Each server in the last layer of the MIX sends a share to each voter

(communication paths used by different servers are vertex disjoint).

6. The voter combines the shares (see above) and votes.

7. The voter sends the “encrypted” vote back to the leader of the last

layer of the MIX network.

8. Starting with the leader of the last layer, all permutations and

modifications done at that layer are undone.

9. The leader of the first layer of the MIX sends the

almost-unencrypted vote to the CGI.

10. The CGI uses the inverse of its one-time pad.
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10. THE MIXING FOR THE SINGLE-SEAT

MIX-FRIENDLY CASE

We have several protocols, of which we describe the simplest.

In the simplest, we require that each server in layer i is physically

different from each server in layer j (i �= j).

Note: Our MIX-friendly protocols can also be used in situations in

which we have a single receiver (can be generalized) and multiple

senders. The receiver should not learn who the sender is. For

simplicity we focus on voting.

In below protocol we assume that b = t+ 1. We denote the servers

in layer i by a “block” Bi.

Protocol 1. Prevoting protocol

Step 1 Let π1
i be the i

th one-time pad (where 1 ≤ i ≤ v). The receiver

c�Yvo Desmedt 23

(CGI) shares each π1
i into t+ 1 shares π1

i,j ∈ F2l (where

1 ≤ j ≤ t+ 1) and privately sends π1
i,j to the corresponding MIX

MIX1,j in block B1.

Step 2 The leader of B1 (we callMIX1,1) informs all others MIX servers

in B1 how they have to permute the i-index of all above π1
i,j. This

permutation is defined by ρ1 ∈R Sv.

Step 3 On the i indices all MIX servers in B1 apply the permutation ρ1. So,

π1
i,j := π1

ρ1(i),j
.

Step 4 The leader of B1 chooses t+ 1 random bit string modifiers

ω1
i,j ∈R F2l and privately sends ω

1
i,j to parties in B1.

Step 5 For each (i, j) the t+ 1 values π1
i,j are regarded as shares of π

1
i .

Similarly, the t+ 1 values ω1
i,j are regarded as shares of ω

1
i .

c�Yvo Desmedt 24

9. DETAILS: TECHNICAL BACKGROUND

We primarily use (besides MIX and shares):

• Concepts from secure multiparty computation

Simplified goal: given shares of s and shares of u how to make

shares of s ∗ u, without computing s and u.

• Desmedt-Kurosawa 2000 introduced:

Definition 1. We say that (X,B) is an (n, b, t)-verifiers set system if:

1. |X| = n,

2. |Bi| = t+ 1 for i = 1, 2, . . . , b, and

3. for any subset F ⊂ X with |F | ≤ t, there exists a Bi ∈ B

such that F ∩Bi = ∅.

c�Yvo Desmedt 21

Vertex disjoint paths: paths p1 and p2 from S to R are vertex disjoint

if the nodes on path p1, and on p2, except for S and R are disjoint.
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The MIX server in B1 computes π2
ij = ω1

ij + π1
ij.

π2
i,j are regarded as shares of π

2, the ρ1(i) permuted and modified

one time pad.

Step 6 Steps 2-5 are repeated, incrementing by one the indices of B1 and

B2 until the last block Bb is reached.

Step 7 Shares held by MIX-servers of block Bt+1 are denoted as φi,j.

MIXt+1,j ∈ Bt+1 then sends φi,j to the i
th sender.

The communication paths used by different servers in block Bt+1

are vertex disjoint.

Voting

1. The vote recombines the shares (see above) to make its

one-time-pad and then this is used to encrypt the number of the

candidate chosen.

c�Yvo Desmedt 25

2. The voter sends the encrypted vote to the leader of the last layer of

the MIX network.

MIXING the votes

1. The leader of block j = t+ 1 having received v votes, “decrypts” the

votes using −ωk
i .

2. The leader of block j permutations using ρ−1
j to undo the earlier

permutations on the order of the votes.

3. The leader of block j sends all so obtained v “votes” to the leader of

block j − 1.

4. Above steps are repeated.

5. The leader of block 1 sends the final “decrypted” votes to the CGI.
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2. The voter sends the encrypted vote to the leader of the last layer of

the MIX network.

MIXING the votes

1. The leader of block j = t+ 1 having received v votes, “decrypts” the

votes using −ωk
i .

2. The leader of block j permutations using ρ−1
j to undo the earlier

permutations on the order of the votes.

3. The leader of block j sends all so obtained v “votes” to the leader of

block j − 1.

4. Above steps are repeated.

5. The leader of block 1 sends the final “decrypted” votes to the CGI.
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10. THE MIXING FOR THE SINGLE-SEAT

MIX-FRIENDLY CASE

We have several protocols, of which we describe the simplest.

In the simplest, we require that each server in layer i is physically

different from each server in layer j (i �= j).

Note: Our MIX-friendly protocols can also be used in situations in

which we have a single receiver (can be generalized) and multiple

senders. The receiver should not learn who the sender is. For

simplicity we focus on voting.

In below protocol we assume that b = t+ 1. We denote the servers

in layer i by a “block” Bi.

Protocol 1. Prevoting protocol

Step 1 Let π1
i be the i

th one-time pad (where 1 ≤ i ≤ v). The receiver
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(CGI) shares each π1
i into t+ 1 shares π1

i,j ∈ F2l (where

1 ≤ j ≤ t+ 1) and privately sends π1
i,j to the corresponding MIX

MIX1,j in block B1.

Step 2 The leader of B1 (we callMIX1,1) informs all others MIX servers

in B1 how they have to permute the i-index of all above π1
i,j. This

permutation is defined by ρ1 ∈R Sv.

Step 3 On the i indices all MIX servers in B1 apply the permutation ρ1. So,

π1
i,j := π1

ρ1(i),j
.

Step 4 The leader of B1 chooses t+ 1 random bit string modifiers

ω1
i,j ∈R F2l and privately sends ω

1
i,j to parties in B1.

Step 5 For each (i, j) the t+ 1 values π1
i,j are regarded as shares of π

1
i .

Similarly, the t+ 1 values ω1
i,j are regarded as shares of ω

1
i .
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servers.

When a MIX server appears twice in the Directed Acyclic Graph

between the CGI and the voters, we color it with the same color. We

then consider PSMT in which we have a general adversary

structure defined by the color based one.

Solution proposed: see Erotokritou-Desmedt 2012 (SCN) and also

Vote ID 2015.
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12. THE MIXING FOR THE MULTI-SEAT ELECTION

Sketch:

Above works well because we work over an Abelian group. In the

case of multi-seat elections, the one-time-pad is a permutation, and

so no longer an Abelian group.

That means that Step 5 (in which we used +) in the last protocol

does not work. We need to use a more complex protocol to modify

the shares in the blocks. For this we use the work of

Desmedt-Pieprzyk-Steinfeld-Wang of Crypto 2007.

Let us look at some nice graphs from this paper.
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Theorem 1. The above protocol is a reliable, private and

anonymous message transmission protocol.

For the proof, see the paper for details.
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11. THE MIXING FOR THE SINGLE-SEAT: EFFICIENCY

IMPROVEMENT

We can improve on the number of servers and the number of layers

we need, by using concepts of verifiers set system, and modeling

the communication system between the different servers in the

layers as a graph (as in PSMT). We modify the communication

between two layers to maintain the security.

Concept: (see Burmester-Desmedt 2004, formalized by

Desmedt-Wang-Burmester 2005)

Color-based adversary structure: computers running the same

platform are given the same color. We assume at most t color are

corrupted, i.e., nodes corrupted have at most t different colors.

In our context, we want to reuse as many times as the same MIX
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When t = 1:
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and when t = 2:
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14. VARIANTS

• Verification: Chaum allowed for voters to receive a confirmation that

the vote was received, by giving the voters a second code for each

candidate.

We too can obtain this, i.e., our solution is a distributed secure

version of Chaum confirmation which works among the lines of

above.

• Better trust models: Our slides and text focuses on the case we do

not trust t parties, devices, etc. We can generalize this to general

access structure. That allows us to consider state sponsored

hacking and state infected hardware/software.

We can then assume at most t platforms have been hacked.
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15. CONCLUSIONS

Achieving a good solution will not be easy. Indeed:

• Paranoid cryptographers assumed for 20 years that the servers

used by authorities must be the bad guys!

• Cryptographers ignored for too long the fact politicians and the

public want internet voting.

• Many cryptographers have no understanding of the weaknesses of

modern PCs and what techniques hackers can deploy against

voters.

• Theoreticians are not interested in secure Internet Voting.

• These promoting practical research do not understand it may take
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13. AN ANNOUNCEMENT

We have a theoretical solution against active adversaries.

In this case, we consider:

• The mixing process: in which we can have active adversaries.

• The communication part: since different routes are used and since

we do not use authentication, active adversaries could be in the

communication protocol. Note that solving this using PSMT

technology seems easy, however:

• The voter needs to deal with incorrect shares! The voter cannot

even run Shamir’s secret sharing!! So, certainly not a normal

error-correction!

We use a variant of a repeat code to solve the last problem. (We
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base this on the protocols for PSMT in SCN 2012 with an active

adversary). While our test show that humans can combine

permutations with roughly 99% being correct, we do not test

whether humans can decode repeat codes correctly.

Therefore we call our solution (upcoming paper) theoretical.
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10 years research with lots of interaction before a good solution

might be presented. They want a solution now!

We showed that the disadvantages of Chaum’s code voting can be

addressed. We are aware that our solution is “Towards Secure

Internet Voting.”

It took 15 years to design reasonable voting schemes when using

secure booths. So, we can expect that others will improve on our

solutions.
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Information theoretic security is a class of security notion to guarantee the security
against adversaries with unbounded computing power. In particular, after seminal work
by Shannon [5], perfect secrecy has been well investigated because of its importance.
Recently, Alimomeni and Safavi-Naini introduced an information theoretic security
notion called guessing secrecy for symmetric key encryption (SKE) [1].

In defining guessing secrecy, we assume that an adversary guesses a plaintext only
once by using the corresponding ciphertext without a key. If the adversary tries to
maximize the success probability of the guess and it is equivalent to the success proba-
bility in guessing the plaintext without the key, we can say that no advantage is given
to the adversary from the ciphertext.

In the original guessing secrecy [1], the maximum success probability of guessing is
averaged with respect to the ciphertexts, and hence, we call it average guessing secrecy.
On the other hand, Iwamoto and Shikata later discussed the maximum probability of
guessing in the worst case with respect to the ciphertext in defining guessing secrecy,
which is called worst-case guessing secrecy. Intuitively, worst-case guessing secrecy of-
fers intermediate level of security between average guessing secrecy and perfect secrecy.
Iwamoto and Shikata also discussed average and worst case guessing secrecy for secret
sharing schemes (SSS) as well as SKE [3, 4].

The aim of this talk is to shed light on the relations among perfect secrecy, average
and worst case guessing secrecy by investigating several constructions of SKE and
SSS. As a result, it turns out that the relations of the above-mentioned information
theoretic security notions depend on the primitives, and the difference between SKE
and (2, 2)–threshold SSSs becomes clearer.

The content of this talk is based on our previous work [2–4] and recent results.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Numbers JP15H02710,
and JP17H01752.

References

[1] M. Alimomeni and R. Safavi-Naini. Guessing Secrecy. In International Conference on Information
Theoretic Security (ICITS), volume LNCS 7412, pages 1–13. Springer-Verlag, 2012.

[2] M. Iwamoto and J. Shikata. Information theoretic security for encryption based on conditional
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Symmetric Key Encryption (SKE)

SKE: Σ := (PK ,Enc,Dec)

 






◮ Real values: key k ∈ K, message m ∈ M, ciphertext c ∈ C

◮ Random variables: key K, message M , ciphertext C

PKMC(·, ·, ·): joint probability distribution of K,M,C

K ⊥ M : K and M are independent

◮ No decryption error is assumed
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Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) PS in Secret Key Encryption (SKE)

Perfect Secrecy [Shannon, 1950 (1945)]

Encryption: Σ := (PK ,Enc,Dec)

 






Definition (Perfect Secrecy: PS)

Σ satisfies perfect secrecy (PS) if

∀m ∈ M, ∀c ∈ C, PM |C(m|c) = PM (m)

◮ i.e., M and C are statistically independent

◮ Σ is secure against adversaries with unbounded computing power
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Guessing Secrecy for SKE [Alimomeni, Safavi-Naini, ICITS2012]

SKE: Σ := (PK ,Enc,Dec)

 






◮ Suppose that an adversary guesses m from c only once

◮ Best strategy: maximize success probabilities in guessing m

argmaxm PM |C(m|c): Most probable m when c is given

argmaxm PM (m): Most probable m when no information is given

◮ Two ways in treating the ciphertext c
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Guessing Secrecy
for Secret Sharing Schemes
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Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) GS in Secret Sharing Schemes (SSS)

(k, n)-threshold Secret Sharing Schemes [Shamir, Blakley, 1979]

Example ((3, 4)–SSS)

Definition (SSS under PS)

◮ S is decrypted from A without error if |A| ≥ k

◮ ∀s ∈ S, ∀vA ∈ V |A|, PS|VA
(s|vA) = PS(s) if |A| ≤ k − 1
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Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) GS in Secret Key Encryption (SKE)

Average / Worst-case Guessing Secrecy

Definition (Guessing Secrecy for SKE)

◮ Average GS, A-GS: [Alimomeni, Safavi-Naini, ICITS2012]

EC

�

max
m

PM |C(m|C)
�

= max
m

PM (m)

◮ Worst-case GS, W-GS: [I–Shikata, ICITS2013]

max
c

max
m

PM |C(m|c) = max
m

PM (m)

◮ Clearly,

[weaker] A-GS � W-GS � PS [stronger]

Our Interest

◮ Gaps among the security notions
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Average / Worst-case Guessing Secrecy in Min-Entropies

Definition (Guessing Secrecy for SKE in Min-entropies)

◮ Average GS, A-GS: [Alimomeni, Safavi-Naini, ICITS2012]

Ravg
∞ (M |C) = R∞(M)

◮ Worst-case GS, W-GS: [I–Shikata, ICITS2013]

Rwst
∞ (M |C) = R∞(M)

where

◮ R∞(X) := − logmaxx PX(x)

◮ Ravg
∞ (X|Y ) := −EY [logmaxx PX(x|Y )]

◮ Rwst
∞ (X|Y ) := − logmaxx,y PX|Y (x|y)
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Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) GS in Secret Sharing Schemes (SSS)

Guessing Secrecy for Secret Sharing

Definition (PS for Secret Sharing)

◮ ∀s ∈ S, ∀vA ∈ V |A|, PS|VA
(s|vA) = PS(s) if |A| ≤ k − 1

Definition (GS for Secret Sharing)

◮ A-GS: EVA

�

max
s∈S

PS|VA
(s|VA)

�

= max
s∈S

PS(s) if |A| ≤ k − 1

◮ W-GS: max
vA

�

max
s∈S

PS|VA
(s|vA)

�

= max
s∈S

PS(s) if |A| ≤ k − 1

◮ Clearly, [weaker] A-GS � W-GS � PS [stronger]

Our Interest

◮ Gaps among the security notions

11 / 36

Introduction: Perfect Secrecy (PS) and Guessing Secrecy (GS) GS in Secret Sharing Schemes (SSS)

Guessing Secrecy for Secret Sharing in Min-Entropies

Definition (GS for Secret Sharing Schemes in Probabilities)

◮ A-GS: EVA

�

max
s∈S

PS|VA
(s|VA)

�

= max
s∈S

PS(s) if |A| ≤ k − 1
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vA

�
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Definition (GS for Secret Sharing Schemes in Min-Entropies)

◮ A-GS: Ravg
∞ (S|VA) = R∞(S) if |A| ≤ k − 1

◮ W-GS: Rwst
∞ (S|VA) = R∞(S) if |A| ≤ k − 1

Note

◮ This talk: we mainly focus on constructions of (2, 2)–SSS under GS
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Part I: Average Guessing Secrecy in Secret Sharing Schemes OTP-like Construction of (2, 2)–SSS under A-GS

Näıve Idea: (2, 2)-SSS as SKE

◮ We show how to construct SSS under A-GS

We concentrate on construction of (2, 2)–SSS under A-GS

Easy to extend to (k, n)–threshold and general access structures

Näıve Idea:

◮ SKE ≈ (2, 2)–SSS under PS
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OTP-like SKE under A-GS

SKE: Σ := (PK ,Enc,Dec)

 






OTP-like SKE [I–Shikata, ICITS2013]

◮ M = C = K = {0, 1}

◮ PM (0) = PK(0) = p, 1/2 ≤ p ≤ 1 ⇐ PS iff p = 1/2

◮ One-time pad for 1-bit encryption:

Encryption: πenc(k,m) = k ⊕m

Decryption: πdec(k, c) = k ⊕ c
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◮ A-GS attains shorter share size than PS for ideal SSS

Part II: Security level of W-GS

◮ SKE: (A-GS ≺) W-GS = PS

◮ SSS: A-GS ≺ W-GS ≺ PS

Key Point

◮ GS does not require statistical independence
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Part I: Average Guessing Secrecy in Secret Sharing Schemes OTP-like Construction of (2, 2)–SSS under A-GS

Analysis on OTP-like Construction

q := 1− p < 1/2

M K C PMKC PM |C

0 0 0 p2 p2

p2+q2

1 1 0 q2 q2

p2+q2

0 1 1 pq 1/2

1 0 1 pq 1/2

For c ∈ {0, 1}, maxm PM |C(m|c) is attained by m = 0, hence,

EC

�

maxm PM |C(m|C)
�

= PM (0) (= maxm PM (m))

Theorem [I–Shikata, ICITS2013]

◮ Security: R∞(M) = R∞(M |C) = − log p, but M �⊥ C!

◮ Efficiency (in key-size): R∞(K) = R∞(M) = − log p (optimal)
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Regarding SKE as (2, 2)–SSS

One Time Pad (OTP)

M K C PMKC PM |C

0 0 0 p2 p2

p2+q2

1 1 0 q2 q2

p2+q2

0 1 1 pq 1/2

1 0 1 pq 1/2

⇒

OTP-like SSS

S V1 V2 PSV1V2
PS|V2

0 0 0 p2 p2

p2+q2

1 1 0 q2 q2

p2+q2

0 1 1 pq 1/2

1 0 1 pq 1/2

Can be extended to (n, n)–threshold and general access structures

Question

◮ How about the share size ?

◮ Can it be ideal secret sharing?
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Part I: Average Guessing Secrecy in Secret Sharing Schemes Ideal Secret Sharing

OTP-like SSS Cannot Be “Non-trivial” SSS under A-GS

One Time Pad (OTP)

M K C PMKC PM |C

0 0 0 p2 p2

p2+q2

1 1 0 q2 q2

p2+q2

0 1 1 pq 1/2

1 0 1 pq 1/2

⇒

OTP-like SSS

S V1 V2 PSV1V2
PS|V2

0 0 0 p2 p2

p2+q2

1 1 0 q2 q2

p2+q2

0 1 1 pq 1/2

1 0 1 pq 1/2

◮ If OTP-like GS-SSS is ideal: R∞(S) = R∞(V1) = R∞(V2)

R
∞
(S) = R

∞
(V1) = − log p but R

∞
(V2) = − log(p2 + q2),

OTP-like Ideal GS-SSS ⇒ p = 0, 1/2

In this case GS-SSS = PS-SSS ⇒ trivial and not interesting
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Towards “Non-trivial” Ideal (2, 2)–SSS under A-GS

◮ OTP-like (2, 2)-SSS cannot be “non-trivial” SSS under A-GS!

◮ More efficient ideal SSS is possible under A-GS !
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Part I: Average Guessing Secrecy in Secret Sharing Schemes Ideal Secret Sharing

Efficiency in Share Size: Ideal GS under PS

Proposition (Lower Bound) [Karnin–Greene–Hellman, 1983]

∀PS ∈ P(S), PS-SSS⇒ H(Vi) ≥ H(S), i ∈ [n]

Definition (Ideal SSS with perfect secrecy)

Ideal (i.e., efficient) PS-SSS
def
⇐⇒ H(Vi) = H(S), i ∈ [n]

Proposition [Blundo et al., 1998]

∀PS ∈ P(S), PS-SSS⇒ H(Vi) ≥ log |S|, i ∈ [n]

where the equalities hold only when S is uniform

Corollary

PS-SSS can be ideal iff S is uniform
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Ideal SSS under A-GS

Theorem [Dodis ICITS2012, I–Shikata ICITS2013]

A-GS/W-GS ⇒ R∞(Vi) ≥ R∞(S)

Pf) Lower bounding via Rényi entropies of order α and α → ∞ (omitted)

Question

Does ideal (k, n)-threshold GS-SSS exist for non-uniform S?

R∞(Vi) = R∞(S), i ∈ [n]

c.f.) (k, n)-threshold PS-SSS can be ideal iff S is uniform

Theorem [I–Shikata, ISIT2014]

∃S (non-uniform), ∃ ideal (k, n)–SSS under A-GS
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Part I: Average Guessing Secrecy in Secret Sharing Schemes Ideal A-GS SSS can beat ideal PS SSS

“Non-trivial” Ideal (2, 2)–SSS under A-GS

Example [I–Shikata, ISIT2014]

OTP-like SSS under A-GS

(q := 1− p < 1/2)

S V1 V2 PSV1V2
PS|V2

0 0 0 p2 p2

p2+q2

1 1 0 q2 q2

p2+q2

0 1 1 pq 1/2

1 0 1 pq 1/2

Ideal ⇒ p = 0, 1/2

Ideal SSS under A-GS

(p ≥ 1/4)

S V1 V2 PSV1V2
PS|V2

0 0 0 p 3p

1+2p

1 1 0 1−p

3

1−p

1+2p

0 1 1 1−p

3
1/2

1 0 1 1−p

3
1/2

PS(0) = PVi
(0) = p+ 1−p

3

◮ For each vi ∈ {0, 1}, maxs PS|Vi
(s|vi) is attained by s = 0, hence,

EVi

�

maxs PS|Vi
(s|Vi)

�

= PS(0) ⇔ R∞(S|Vi) = R∞(S)
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Part I: Average Guessing Secrecy in Secret Sharing Schemes Ideal A-GS SSS can beat ideal PS SSS

Efficiency of Ideal SSS Under A-GS

Analysis [I–Shikata, ISIT2014]

The proposed construction satisfies

R∞(V1) = R∞(V2) = R∞(S) = − log 1+2p
3

Since S is binary,

H(V1) = H(V2) = H(S) = h(1+2p
3 ) < 1 if p > 1/4

PS-SSS cannot attain H(Vi) < 1 due to the following result:

Proposition [Blundo et al., IPL1998]

∀PS ∈ P({0, 1}), PS-SSS⇒ H(Vi) ≥ 1 (= log |S|)

where the equalities hold only when S is uniform
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Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes

Guessing Secrecy in Secret Sharing Schemes

Definition (GS for Secret Sharing)

◮ A-GS: max
s∈S

PS(s) = EVA

�

max
s∈S

PS|VA
(s|VA)

�

if |A| ≤ k − 1

◮ W-GS: max
s∈S

PS(s) = max
vA

�

max
s∈S

PS|VA
(s|vA)

�

if |A| ≤ k − 1

◮ Clearly, [weaker] A-GS � W-GS � PS [stronger]

Claim of Part II

◮ SKE: (A-GS ≺) W-GS = PS [I–Shikata, ISIT2015]

◮ SSS: A-GS ≺ W-GS ≺ PS
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Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Weak independence between secret and shares under W-GS

“Weak” Independence between S and Vi under W-GS

Theorem (Necessary Condition for W-GS-SSS)

◮ s∗ := argmaxm PS(s), i ∈ {1, 2}

∀vi, PSVi
(s∗, vi)− PS(s

∗)PVi
(vi) = 0 (w-ind)

Pf) Easy to derive from the definition (omitted)

Remark

◮ If S ⊥ Vi (i.e., PS),

∀s, ∀vi, PSVi
(s, vi)− PS(s)PVi

(vi) = 0

then (w-ind) is obviously satisfied
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Part I: Average Guessing Secrecy in Secret Sharing Schemes Ideal A-GS SSS can beat ideal PS SSS

Summary of Part I

◮ SKE & SSS: A-GS ≺ PS

◮ A-GS attains shorter share size than PS for ideal SSS

Non-trivial Ideal SSS cannot be obtained from SKE under A-GS

◮ Observation
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Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Weak independence between secret and shares under W-GS

Encryption by Latin Square

◮ We require |S| = |V|

∵) A-GS, W-GS ⇒ |S| ≤ |V| (proof: omitted)

Definition (SSS based on Latin square)

For a fixed s ∈ S, the map fs : v1 �→ v2 is bijective

Example (Value of s when v1 and v2 are given)

v1\v2 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

◮ Regarding (s, v1, v2) as (m, k, c), (2, 2)–SSS becomes SKE

◮ In the following, assume SKE & SSS are based on Latin square
29 / 36

Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Weak independence between secret and shares under W-GS

Distributions of Shares Are Equivalent via Permutation

Weak Independence

i ∈ {1, 2}, ∀vi, PSVi
(s∗, vi)− PS(s

∗)PVi
(vi) = 0 (w-ind)

Theorem (Equivalence via permutation)

Probability vector [PV1(v1)]v1∈V is obtained by permuting [PV2(v2)]v2∈V

Pf) Immediately follows from def. of Latin square (L) and (w-ind):

0
(w-ind)

= PSV1(s
∗, v1)− PS(s

∗)PV1(v1)

(L)
= PSV2(s

∗, fs∗(v1))− PS(s
∗)PVi

(vi)

(w-ind)
= PS(s

∗)PV2(fs∗(v1))− PS(s
∗)PVi

(vi)

◮ This result does not hold in A-GS if S is not uniform
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Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Difference between SKE and SSS under W-GS

SSS: W-GS ≺ PS ?

Theorem (Necessary Condition for W-GS-SSS)

◮ s∗ := argmaxm PM (m), i ∈ {1, 2}

∀vi, PSVi
(s∗, vi)− PS(s

∗)PVi
(vi) = 0 (w-ind)

Question

◮ Can S and Vi be correlated while satisfying (w-ind)? =⇒ Yes!
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Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Difference between SKE and SSS under W-GS

Example of (2, 2)–SSS: W-GS ≺ PS

◮ maxs PS(s) = maxs,v1 PS|V1
(s|v1) = maxs,v2 PS|V2

(s|v2) = 1/2

s v1 v2 PS(s) PSV1V2
(s, v1, v2) PS(s)PV1

(v1) PS(s)PV2
(v2)

0 0 7/40 7/40 7/40

0 1 2 1/2 7/40 7/40 7/40

2 1 6/40 6/40 6/40

0 2 5/40 91/800 91/800

1 1 1 13/40 4/40 91/800 78/800

2 0 4/40 78/800 91/800

0 1 2/40 49/800 42/800

2 1 0 7/40 3/40 49/800 49/800

2 2 2/40 42/800 49/800
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SKE: W-GS = PS

◮ Regarding (s, v1, v2) as (m, k, c), (2, 2)–SSS becomes SKE

Theorem

If W-GS SSS is based on Latin square

V1 ⊥ S =⇒ V1 is uniform over V

Corollary [I–Shikata, ISIT2015]

If W-GS SKE is based on Latin square

K ⊥ M =⇒ K is uniform over K

=⇒ SKE satisfies PS
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Proof of W-GS = PS on SKE

Theorem

If W-GS SSS is based on Latin square

V1 ⊥ S =⇒ V1 is uniform over V
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SKE: W-GS = PS

◮ Regarding (s, v1, v2) as (m, k, c), (2, 2)–SSS becomes SKE

Theorem

If W-GS SSS is based on Latin square

V1 ⊥ S =⇒ V1 is uniform over V

Corollary [I–Shikata, ISIT2015]

If W-GS SKE is based on Latin square

K ⊥ M =⇒ K is uniform over K

=⇒ SKE satisfies PS
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Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Difference between SKE and SSS under W-GS

A-GS and W-GS Can Depend on Shares

◮ maxs PS(s) = maxs,v1 PS|V1
(s|v1) = EV2

�

maxs PS|V2
(s|V2)

�

= 4/7

s v1 v2 PS(s) PSV1V2
(s, v1, v2) PS(s)PV1

(v1) PS(s)PV2
(v2)

0 0 16/49 16/49 80/343

0 1 2 4/7 8/49 8/49 44/343

2 1 4/49 4/49 72/343

0 2 8/49 48/343 240/2401

1 1 1 12/49 3/49 24/343 132/2401

2 0 1/49 12/343 216/2401

0 1 4/49 36/343 180/2401

2 1 0 9/49 3/49 18/343 99/2401

2 2 2/49 9/343 162/2401
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Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Difference between SKE and SSS under W-GS

Summary of Part II

◮ Relation among security notions depends on primitive:

SKE: (A-GS ≺) W-GS = PS

SSS: A-GS ≺ W-GS ≺ PS

“Weak” independence is important

Future work: General construction of SSS under W-GS

◮ Observation:
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Part II: Worst-case Guessing Secrecy in Secret Sharing Schemes Difference between SKE and SSS under W-GS

SSS: W-GS ≺ PS ?

Theorem (Necessary Condition for W-GS-SSS)

◮ s∗ := argmaxm PM (m), i ∈ {1, 2}

∀vi, PSVi
(s∗, vi)− PS(s

∗)PVi
(vi) = 0 (w-ind)

Question

◮ Can S and Vi be correlated while satisfying (w-ind)? =⇒ Yes!
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Example of (2, 2)–SSS: W-GS ≺ PS

◮ maxs PS(s) = maxs,v1 PS|V1
(s|v1) = maxs,v2 PS|V2

(s|v2) = 1/2

s v1 v2 PS(s) PSV1V2
(s, v1, v2) PS(s)PV1

(v1) PS(s)PV2
(v2)

0 0 7/40 7/40 7/40

0 1 2 1/2 7/40 7/40 7/40

2 1 6/40 6/40 6/40

0 2 5/40 91/800 91/800

1 1 1 13/40 4/40 91/800 78/800

2 0 4/40 78/800 91/800

0 1 2/40 49/800 42/800

2 1 0 7/40 3/40 49/800 49/800

2 2 2/40 42/800 49/800
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Function Secret Sharing Using Fourier Basis

Naruhiro KUROKAWA
(Joint work with Takuya OHSAWA and Takeshi KOSHIBA)
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Function secret sharing (FSS) scheme, formally introduced by Boyle et al.[1] at EU-
ROCRYPT2015, is a mechanism that calculates a function f(x) for x ∈ {0, 1}n which
is shared among p parties, by using distributed function fi : {0, 1}n → G(1 ≤ i ≤ p),
where G is an Abelian group, while the function f : {0, 1}n → G is kept secret to
the parties. We observe that any function f can be described as a linear combination
of the basis functions by regarding the function space as a vector space of dimension
2n and give a new framework for FSS schemes based on this observation. Based on
the new framework, we introduce a new FSS scheme using the Fourier basis. This
method provides efficient computation for a different class of functions (e.g., hard-core
predicates of one-way functions), which may be inefficient to compute if we use the
standard basis such as point functions. Our FSS scheme based on Fourier basis is
quite simple due to the fact that the Fourier basis is closed under the multiplication,
while the previous constructions[1, 3] have to incorporate some complex mechanisms
to overcome the difficulty.

References

[1] E. Boyle, N. Gilboa and Y. Ishai: Function secret sharing, in: EUROCRYPT 2015, Part II,
LNCS 9057, pp.337–367, 2015.

[2] N. Gilboa and Y. Ishai: Distributed point functions and their applications, in: EUROCRYPT
2014, LNCS 8441, pp.640–658, 2014.

[3] T. Ohsawa, N. Kurokawa and T. Koshiba: Function Secret Sharing Using Fourier Basis, in: Proc.
the 8th International workshop on Trustworthy Computing and Security, Lecture Notes on Data
Engineering and Communications Technologies, to appear, Springer.
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We study the notion of ad hoc secure computation, recently introduced by Beimel et
al. (ITCS 2016), in the context of the Private Simultaneous Messages (PSM) model
of Feige et al. (STOC 2004). In ad hoc secure computation we have n parties that
may potentially participate in a protocol but, at the actual time of execution, only k
of them, whose identity is not known in advance, actually participate. This situation
is particularly challenging in the PSM setting, where protocols are non-interactive (a
single message from each participating party to a special output party) and where the
parties rely on pre-distributed, correlated randomness (that in the ad-hoc setting will
have to take into account all possible sets of participants).

We present several different constructions of ad hoc PSM protocols from standard
PSM protocols. These constructions imply, in particular, that efficient information-
theoretic ad hoc PSM protocols exist for NC1 and different classes of log-space compu-
tation, and efficient computationally-secure ad hoc PSM protocols for polynomial-time
computable functions can be based on a one-way function. As an application, we obtain
an information-theoretic implementation of order-revealing encryption whose security
holds for two messages.

We also consider the case where the actual number of participating parties t may
be larger than the minimal k for which the protocol is designed to work. In this case, it
is unavoidable that the output party learns the output corresponding to each subset of
k out of the t participants. Therefore, a “best possible security” notion, requiring that
this will be the only information that the output party learns, is needed. We present
connections between this notion and the previously studied notion of t-robust PSM (also
known as “non-interactive MPC”). We show that constructions in this setting for even
simple functions (like AND or threshold) can be translated into non-trivial instances
of program obfuscation (such as point function obfuscation and fuzzy point function
obfuscation, respectively). We view these results as a negative indication that protocols
with “best possible security” are impossible to realize efficiently in the information-
theoretic setting or require strong assumptions in the computational setting.
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Private Simultaneous Messages (PSM) model 
[FKN94,IK97]

1P 2P 3P nP• Simple communication pattern
• Shared/Correlated Randomness

Example: SUM
Input: Each Pi is given xi ∈ G. 
Output: P0 gets Σxi. 

Randomness: r1,…,rn-1,rn ∈RG s.t. Σri = 0.

. . . 

0P

. . . 

Referee’s
Goal:     

Security:
Nothing else

1x 2x 3x nx1r, 2r, 3r, nr,

Protocol: 
1. Each Pi computes mi=xi+ri and sends to P0.
2. P0 computes Σmi = Σxi + Σri = Σxi. 

Security: by choice of ri’s. 

Why PSM?

• Minimal model – potentially easier to analyze
• Building-block for low-round MPC in the plain model
• A special type of randomized encoding [IK00,IK02]
• Implies Conditional Disclosure of Secrets (CDS) 
• …

Ad Hoc PSM Protocols: 
Secure Computation without 

Coordination
Amos Beimel (BGU)

Yuval Ishai (Technion, UCLA)
Eyal Kushilevitz (Technion)

(Appeared in EuroCrypt 2017)

Ad-Hoc MPC   [BGIK16]

The (basic) problem:
• Universe of n (honest but curious) parties
• Set of k parties S, not known in advance, participate in the actual 

computation of some f (say, symmetric).

Examples:
• Votingk: output majority vote of k participants.
• Dating: 2 out of n players want to know if they match. 

Easy in “standard” MPC model where parties can interact
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Ad-Hoc PSM model

1P 2P 3P nP• n parties
• Correlated Randomness
• Exactly k parties show up
• Participants not known in advance

. . . 

0P Referee
Goal:  )

2x 3x nx1r 2r 3r nr

Referee’s
Goal:  )

Security:
Nothing else

Ad-Hoc PSM: assumptions + variants

• Exactly k parties show up. 
If allow |S| > k “best possible security” definition gives Ref f’s 
value on all size-k subsets.

• f symmetric; else can sort by id’s or specific fS, for any S.

• S not known to the parties but will be known to Ref. 
If require anonymity, need anonymous channels.

• Information-Theoretic or Computational security
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Basic Example #2:   SUMk

Recall PSM protocol for SUMn:
Randomness:  r1,…,rn ∈RG s.t. Σri = 0.
Messages: mi=xi+ri.

Ad-hoc PSM for SUMk: 
Randomness: r1,…,rn ∈RG s.t. Σri = 0, as above. 
k-of-n secret sharing of each rj into {rj,i}i∈[n]

Pi receives ri and {rj,i} ji

Messages: Pi sends mi=xi+ri and all its shares {rj,i} ji

Output of P0 (on S of size k): for i∈S knows xi+ri, for i∉S can 
reconstruct ri (knows k shares)  output Σi∈S xi+ri+ Σi∉Sri = Σi∈S xi.

Security: for i∈S, value of ri hidden; view of P0 can be generated 
from its view in SUMn protocol where each Pj∉S has xj=0.

Generic Protocols – 1st attempt 

For all T of size k, distribute randomness for PSMT for f. 
Each Pi sends its messages for all T s.t. i∈T.

Correctness: for actual set S, referee has all messages of PSMS.

Problems:
• Complexity overhead of (kn) compared to standard PSM for f.
• What if for TS the messages of PSMT (sent by parties Pi∈S∩T) 

reveal information?
– Can be fixed…

Rest of the talk

• IT Constructions
– Warm-up: Ad-hoc PSM protocols for specific functions f
– Ad-hoc PSM for f from standard PSM for f
– Ad-hoc PSM for f from standard PSM for a related g

• Connections of other primitives to (variants of) ad-hoc PSM:
– Order revealing encryption from (IT) ad-hoc PSM
– NIMPC (t-robust PSM) iff ad-hoc PSM w/best possible security
– iO exists iff computational ad-hoc PSM w/best possible security
– (fuzzy) point function obfuscation from ad-hoc PSM for simple f’s w/best 

possible security

Basic Example #1:   difference (k=2)

For S={Pi,Pj}, i<j, output xi - xj.
(common) Randomness: r ∈RG

Protocol: 
1. Pi:    mi=xi+r
2. P0:  given mi,mj, where i<j, outputs mi-mj = xi-xj. 

Correctness: √
Security: √

Rest of the talk

• IT Constructions
– Warm-up: Ad-hoc PSM protocols for specific functions f
– Ad-hoc PSM for f from standard PSM for f
– Ad-hoc PSM for f from standard PSM for a related g
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– Order revealing encryption from (IT) ad-hoc PSM
– NIMPC (t-robust PSM) iff ad-hoc PSM w/best possible security
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Correctness: √
Security: √
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Generic Protocols – The case k=2

Assume Πf (standard) PSM for f with players Q0,Q1.
Goal: Turn Πf into ad-hoc PSM Π’ that works for any S={Pi,Pj}. 

Idea: Let one of Pi,Pj simulate Q0, and the other Q1. 

Problem: Which of Q0,Q1 to simulate?   (Parties do not know S.)
Solution: Use binary representation i=(i1,…,ilog n). Pi applies Πf
log n times. In tth iteration simulates Qit. For ij exists t s.t. it jt.

Problem: When it=jt both simulate same Qit correlated msgs. 
Solution: Each Pi sends message of Πf masked using “key” kit and 
discloses k1-it  messages can be un-masked iff it  jt.

The case k=2 (cont.) 
Randomness:  
For t=1,…,log n: generate randomness rt,0, rt,1, for PSM Πf for 2 
parties Q0,Q1,  + random at,0,bt,0, at,1,bt,1 ∈R p. 
Give at,0,bt,0, at,1,bt,1 and rt,it to Pi.

Messages of Pi: 
For t=1,…,log n: Pi simulates Qit message mt,i in Πf on (xi,rt,it).
It sends masked message   mt,i + at,it∗ i + bt,it and also at,1-it , bt,1-it.

Correctness: For t s.t. itjt P0 has at,0, bt,0, at,1,bt,1 and can un-mask 
mt,0, mt,1 to compute f(xi,xj).
Security: Since ij then messages hidden (2-wise ind.).
Complexity: O(log n) overhead in randomness and communication.

Generic Protocols – The case k=2

Assume Πf (standard) PSM for f with players Q0,Q1.
Goal: Turn Πf into ad-hoc PSM Π’ that works for any S={Pi,Pj}. 

Idea: Let one of Pi,Pj simulate Q0, and the other Q1. 

Problem: Which of Q0,Q1 to simulate?   (Parties do not know S.)
Solution: Use binary representation i=(i1,…,ilog n). Pi applies Πf
log n times. In tth iteration simulates Qit. For ij exists t s.t. it jt.

Problem: When it=jt both simulate same Qit correlated msgs. 
Solution: Each Pi sends message of Πf masked using “key” kit and 
discloses k1-it  messages can be un-masked iff it  jt.

The case k=2 (cont.) 
Randomness:  
For t=1,…,log n: generate randomness rt,0, rt,1, for PSM Πf for 2 
parties Q0,Q1,  + random at,0,bt,0, at,1,bt,1 ∈R p. 
Give at,0,bt,0, at,1,bt,1 and rt,it to Pi.

Messages of Pi: 
For t=1,…,log n: Pi simulates Qit message mt,i in Πf on (xi,rt,it).
It sends masked message   mt,i + at,it∗ i + bt,it and also at,1-it , bt,1-it.

Correctness: For t s.t. itjt P0 has at,0, bt,0, at,1,bt,1 and can un-mask 
mt,0, mt,1 to compute f(xi,xj).
Security: Since ij then messages hidden (2-wise ind.).
Complexity: O(log n) overhead in randomness and communication.

Basic Example #2:   SUMk

Recall PSM protocol for SUMn:
Randomness:  r1,…,rn ∈RG s.t. Σri = 0.
Messages: mi=xi+ri.

Ad-hoc PSM for SUMk: 
Randomness: r1,…,rn ∈RG s.t. Σri = 0, as above. 
k-of-n secret sharing of each rj into {rj,i}i∈[n]

Pi receives ri and {rj,i} ji

Messages: Pi sends mi=xi+ri and all its shares {rj,i} ji

Output of P0 (on S of size k): for i∈S knows xi+ri, for i∉S can 
reconstruct ri (knows k shares)  output Σi∈S xi+ri+ Σi∉Sri = Σi∈S xi.

Security: for i∈S, value of ri hidden; view of P0 can be generated 
from its view in SUMn protocol where each Pj∉S has xj=0.

Generic Protocols – 1st attempt 

For all T of size k, distribute randomness for PSMT for f. 
Each Pi sends its messages for all T s.t. i∈T.

Correctness: for actual set S, referee has all messages of PSMS.

Problems:
• Complexity overhead of (kn) compared to standard PSM for f.
• What if for TS the messages of PSMT (sent by parties Pi∈S∩T) 

reveal information?
– Can be fixed…
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Corollaries

• Every function g has a PSM (with complexity  )

Cor: Every function has an ad-hoc PSM

• If  has a poly. size (modular) branching program, then it has 
an efficient PSM

• If  has poly. size (modular) branching program, then so does 
the 

Cor: If  has a poly. size  (modular) branching program, then 
has an efficient ad-hoc PSM

Order Revealing Encryption (ORE)

ORE  [AKSX04, BCLO09, BCO11]:
• A private-key encryption equipped with a comparison

– A public procedure Comp
           
      iff   

– Encryption does not leak additional information

Generic Protocols – General k

Idea: Use perfect hash family to select which Pi simulates each Qj. 
(A family H={h: [n]→[k]} s.t  ∀S of size k,  ∃ 1-1 func. h∈H.)

Perfect Hash facts:
• For k=2, the log n bit functions form such H.
• Explicit and probabilistic constructions. 

E.g., probabilistically |H| ≈ ekk⋅log n suffices.

Idea (cont.): Run original PSM Πf for each h∈H. Mask messages 
with k-wise independent keys (Ah,j , j∈[k]) + shares of (k-1)-of-n
sharing of other keys.  P0 can remove mask iff h is 1-1 on S.

Complexity: overhead of ≈ |H|   (good for “small” k)

Generic Protocols from a PSM for a related func. 
Given f: Xk → Y, define g: (X∪{⊥})n → Y∪{⊥}: 
if #non-⊥ inputs is k, then output f on those inputs; otherwise ⊥.

Assume Πg (standard) PSM for g. Construct ad-hoc PSM Πf for f.
Randomness:  r1,…,rn for Πg. 
Let m⊥,j = message of Pj in Πg on (⊥,rj). 
Let {m⊥,j,i}i = shares in a k-out-of-n sharing of m⊥,j. 
Give Pi randomness ri and shares {m⊥,j,i}j.
Message of Pi: its Πg message mxi,i on (xi,ri) + its shares {m⊥,j,i}ji.

Correctness: For S of size k,   P0 has mxi,i for i∈S + can reconstruct 
all m⊥,j for j∉S  Output of Πg is the correct answer.
Security: cannot reconstruct m⊥,j for j∈S.
Complexity: O(n) overhead due to secret-sharing.

Generic Protocols – General k

Idea: Use perfect hash family to select which Pi simulates each Qj. 
(A family H={h: [n]→[k]} s.t  ∀S of size k,  ∃ 1-1 func. h∈H.)

Perfect Hash facts:
• For k=2, the log n bit functions form such H.
• Explicit and probabilistic constructions. 

E.g., probabilistically |H| ≈ ekk⋅log n suffices.

Idea (cont.): Run original PSM Πf for each h∈H. Mask messages 
with k-wise independent keys (Ah,j , j∈[k]) + shares of (k-1)-of-n
sharing of other keys.  P0 can remove mask iff h is 1-1 on S.

Complexity: overhead of ≈ |H|   (good for “small” k)

Generic Protocols from a PSM for a related func. 
Given f: Xk → Y, define g: (X∪{⊥})n → Y∪{⊥}: 
if #non-⊥ inputs is k, then output f on those inputs; otherwise ⊥.

Assume Πg (standard) PSM for g. Construct ad-hoc PSM Πf for f.
Randomness:  r1,…,rn for Πg. 
Let m⊥,j = message of Pj in Πg on (⊥,rj). 
Let {m⊥,j,i}i = shares in a k-out-of-n sharing of m⊥,j. 
Give Pi randomness ri and shares {m⊥,j,i}j.
Message of Pi: its Πg message mxi,i on (xi,ri) + its shares {m⊥,j,i}ji.

Correctness: For S of size k,   P0 has mxi,i for i∈S + can reconstruct 
all m⊥,j for j∉S  Output of Πg is the correct answer.
Security: cannot reconstruct m⊥,j for j∈S.
Complexity: O(n) overhead due to secret-sharing.
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Ad-Hoc PSM  ORE

• Use ad-hoc PSM for the Greater-Than (GT) function with       
   parties and   
  – security parameter
– GT has a small branching program  (IT) PSM

• Key generation: pick randomness for the ad-hoc PSM 
• Encryption of    : 

– Choose a random party  
– Encryption  = (i, message of  on  )

• Comparing  :  use (2,n) ad-hoc computation of GT
• IT-Security for two messages: if   use different parties 
• Complexity:        

Best-possible secure ad-hoc PSM vs. NIMPC 

NIMPC [BGIKMP14] = t-robust-PSM = A PSM that can tolerate  
a coalition of P0 with  t parties.
NIMPC also uses best possible security notion. 

Def: (k,t,n)-ad hoc PSM = best possible security ∀T s.t. k|T|t.

We prove:
• (n/2,n/2+t,n) ad-hoc PSM for f  t-robust PSM for f with 

same complexity. 
• t-robust PSM for some related 3n-argument g’  (k,t,n) ad-hoc 

PSM for f with O(n) overhead. 

Ad-Hoc PSM  ORE

• Use ad-hoc PSM for the Greater-Than (GT) function with       
   parties and   
  – security parameter
– GT has a small branching program  (IT) PSM

• Key generation: pick randomness for the ad-hoc PSM 
• Encryption of    : 

– Choose a random party  
– Encryption  = (i, message of  on  )

• Comparing  :  use (2,n) ad-hoc computation of GT
• IT-Security for two messages: if   use different parties 
• Complexity:        

Best-possible secure ad-hoc PSM vs. NIMPC 

NIMPC [BGIKMP14] = t-robust-PSM = A PSM that can tolerate  
a coalition of P0 with  t parties.
NIMPC also uses best possible security notion. 

Def: (k,t,n)-ad hoc PSM = best possible security ∀T s.t. k|T|t.

We prove:
• (n/2,n/2+t,n) ad-hoc PSM for f  t-robust PSM for f with 

same complexity. 
• t-robust PSM for some related 3n-argument g’  (k,t,n) ad-hoc 

PSM for f with O(n) overhead. 

Corollaries

• Every function g has a PSM (with complexity  )

Cor: Every function has an ad-hoc PSM

• If  has a poly. size (modular) branching program, then it has 
an efficient PSM

• If  has poly. size (modular) branching program, then so does 
the 

Cor: If  has a poly. size  (modular) branching program, then 
has an efficient ad-hoc PSM

Order Revealing Encryption (ORE)

ORE  [AKSX04, BCLO09, BCO11]:
• A private-key encryption equipped with a comparison

– A public procedure Comp
           
      iff   

– Encryption does not leak additional information
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Summary

We present concrete and generic constructions of Ad-Hoc PSM
protocols.

– Every function has an ad-hoc PSM
– All functions that are known to have an efficient PSM have an efficient ad-

hoc PSM
• Connections to ORE, NIMPC, iO, point function obfuscation 

Obvious open problems: more protocols, improved complexity and 
parameters, more connections with other primitives.
• Best possible security

Thank you!

Computational Ad-Hoc PSM:  Remarks

• [BGIK16]: Multi-Input Functional Encryption (MIFE)  
Distribution Design   Computational best-possible-security ad-
hoc PSM (w/indistinguishability def.)

• Best-possible-security ad-hoc PSM  NIMPC  iO [BGIKMP14]

• Best-possible-security ad-hoc (n,2n,2n) PSM for AND 
 point function obfuscation

• Best-possible-security ad-hoc (n,2n,2n) PSM for Threshold func. 
 fuzzy point function obfuscation

Ad-hoc PSM for AND  Point Function Obfuscation

• For a point      , define    iff   .

  – (n,2n,2n) ad-hoc PSM for AND

• Obfuscating point function I:
– Generate randomness     for 
– Let  = message of  on (,)
  let      

– Obfuscation:      
– Computing   : ad-hoc decoding from    

Computational Ad-Hoc PSM:  Remarks

• [BGIK16]: Multi-Input Functional Encryption (MIFE)  
Distribution Design   Computational best-possible-security ad-
hoc PSM (w/indistinguishability def.)

• Best-possible-security ad-hoc PSM  NIMPC  iO [BGIKMP14]

• Best-possible-security ad-hoc (n,2n,2n) PSM for AND 
 point function obfuscation

• Best-possible-security ad-hoc (n,2n,2n) PSM for Threshold func. 
 fuzzy point function obfuscation

Ad-hoc PSM for AND  Point Function Obfuscation

• For a point      , define    iff   .

  – (n,2n,2n) ad-hoc PSM for AND

• Obfuscating point function I:
– Generate randomness     for 
– Let  = message of  on (,)
  let      

– Obfuscation:      
– Computing   : ad-hoc decoding from    

55



IMI Workshop: Cryptographic Technologies for Securing Network Storage

and Their Mathematical Modeling

June 12–13, 2017, Kyushu University

Secure Message Transmission against Rational
Adversaries

Takeshi KOSHIBA (Joint work with Maiki Fujita)

Waseda University
tkoshiba@waseda.jp

Secure Message Transmission (SMT) is a two-party cryptographic scheme by which
a sender securely and reliably sends messages to a receiver using n channels. Suppose
that an adversary corrupts at most t out of n channels and makes eavesdropping or
tampering over the corrupted channels. It is known that if t < n/2 then the perfect
SMT (PSMT) in the information-theoretic sense is achievable and if t ≥ n/2 then no
PSMT scheme is possible to construct. If we are allowed to use a public channel in
addition to the normal channels, we can achieve the almost reliable SMT (ARSMT),
which admits transmission failures of small probability, against t < n corruptions. In
the standard setting in cryptography, the participants are classified into honest ones
and corrupted ones: every honest participant follows the protocol but corrupted ones
are controlled by the adversary and behave maliciously. As a real setting, the notion of
rationality in the game theory is often incorporated into cryptography. In this paper,
we first consider “rational adversary” who behaves according to his own preference in
SMT. We show that it is possible to achieve PSMT even against any t < n corruptions
under some reasonable settings for rational adversaries.

In the above, we consider settings where the rational entity is a single adversary. It
means that the adversary’s behavior is determined by his own preference (utility). We
also consider the case where there are two independent rational adversaries. We show
some cases where the Nash equlibria plays an important role to design SMT protocols
secure against two independent ratinal adversaries.
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Optimized Honest-Majority MPC for Malicious
Adversaries - Breaking the 1 Billion-Gate Per

Second Barrier

Kazuma OHARA (Joint work with Toshinori ARAKI, Assi
BARAK, Jun FURUKAWA, Yehuda LINDELL, Ariel NOF,

Adi WATZMAN, Or WEINSTEIN.)

NEC Corporation
k-ohara@ax.jp.nec.com

Secure multiparty computation enables a set of parties to securely carry out a joint
computation of their private inputs without revealing anything but the output. In the
past few years, the efficiency of secure computation protocols has increased in leaps and
bounds. However, when considering the case of security in the presence of malicious
adversaries (who may arbitrarily deviate from the protocol specification), we are still
very far from achieving high efficiency.

In this talk, we consider the specific case of three parties and an honest majority.
We provide general techniques for improving efficiency of cut-and-choose protocols on
multiplication triples and utilize them to significantly improve the recently published
protocol of Furukawa et al. (at Eurocrypt’17). We reduce the bandwidth of their
protocol down from 10 bits per AND gate to 7 bits per AND gate, and show how
to improve some computationally expensive parts of their protocol. Most notably,
we design cache-efficient shuffling techniques for implementing cut-and-choose without
randomly permuting large arrays (which is very slow due to continual cache misses). We
provide a combinatorial analysis of our techniques, bounding the cheating probability
of the adversary.

Our implementation achieves a rate of approximately 1.15 billion AND gates per
second on a cluster of three 20-core machines with a 10Gbps network. Thus, we can se-
curely compute 212,000 AES encryptions per second (which is hundreds of times faster
than previous work for this setting). Our results demonstrate that high-throughput
secure computation for malicious adversaries is possible.
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Ryo KIKUCHI
(Joint work with Dai IKARASHI, Koki HAMADA, Koji
CHIDA, Naoto KIRIBUCHI, Gembu MOROHASHI)

NTT Corporation
kikuchi.ryo@lab.ntt.co.jp

We have developed a novel system MEVAL: Multiparty EVALuator, which performs
secret-sharing-based secure computation with an honest majority. In the system, a user
can choose either two security levels: passive (a.k.a. semi-honest) or active (a.k.a. ma-
licious) security with abort. One of features of MEVAL is efficiency. As an example, we
experimented with secure AES computation and MEVAL achieved 517 Mbps (involv-
ing 4 million AES per second) in passive security, and 131 Mbps (involving 1 million
AES per second) in active security with abort. These are faster than 169 Mbps [2] in
passive security and 27 Mbps [1] in active security with abort.

For practical use of secure computation, not only basic functions, such as multi-
plication, are not enough and high-level functions, such as comparison and sort, are
required [4]. We have developed MEVAL for practical use and it therefore supports
many high-level functions.

In this talk, we introduce three key components of high-level functions in MEVAL:
bit decomposition, sort, and join. These components use novel techniques and improve
efficiency drastically. Table 1 shows an experimental result of the components in three-
party setting with a gigabit network.

function passive security active security with abort

[4]
bit decomposition (107 elements)

200 sec -
MEVAL 0.90 sec 14.81 sec

[3]
sort (105 elements)

150 sec -
MEVAL 0.54 sec 1.43 sec

[5]
join (103 records)

25 sec -
MEVAL 0.02 sec 0.06 sec

Table 1. Efficiency comparison in a gigabit network
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Ouroboros: A Provably Secure Proof-of-Stake
Blockchain Protocol

Bernardo DAVID (Joint work with Aggelos Kiayias,
Alexander Russell and Roman Oliynykov)

Tokyo Insitute of Technology
bernardo@bmdavid.com

We present Ouroboros, the first blockchain protocol based on proof of stake with
rigorous security guarantees. We establish security properties for the protocol compa-
rable to those achieved by the bitcoin blockchain protocol. As the protocol provides
a proof of stake blockchain discipline, it offers qualitative efficiency advantages over
blockchains based on proof of physical resources (e.g., proof of work). We showcase the
practicality of our protocol in real world settings by providing experimental results on
transaction processing time obtained with a prototype implementation in the Amazon
cloud. We also present a novel reward mechanism for incentivizing the protocol and we
prove that given this mechanism, honest behavior is an approximate Nash equilibrium,
thus neutralizing attacks such as selfish mining and block withholding.
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Bitcoin’s Blockchain
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Bitcoin’s Blockchain: Forks
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Longeso chain rule:
Longest chain wins!
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accept

accept

 


m1=“P3 gives coin 3 to P1”

s1=Sig(sk3,m1)

m2=“P3 gives coin 3 to P2”

s2=Sig(sk3,m2) 

P3 gets coin 

1 to R …

P1 gets coin

R+1 to 2R …

P2 gets coin

2R+1 to 3R …

(m1,s1)

...

(m2,s2)

...

(m4,s4)
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m2 = “P3 gives coin 3 to P2”

s2 = Sig(sk3,m2)

write 

(m1,s1)

write

(m2,s2)

read

(m1,s1)



read

(m2,s2)

accept

reject


m4 = “P1 gives coin 3 to P4”

s4 = Sig(sk1,m4)

write 

(m4,s4)

read

(m4,s4) accept





 






















 



2 - P3 gets coin 

1 to R ...

3 - P1 gets coin

R+1 to 2R ...

4 - P2 gets coin

2R+1 to 3R ...

...



 

m=“P3 gives coin 3 to P1”

s=Sig(sk3,m)

If 

Ver(pk3,m,s) = accept

and

P3 owns coin 3

then

return accept







 






















 



2 - P3 gets coin 

1 to R ...

3 - P1 gets coin

R+1 to 2R ...

4 - P2 gets coin

2R+1 to 3R ...

...



 

m=“P3 gives coin 3 to P1”

s=Sig(sk3,m)

If 

Ver(pk3,m,s) = accept

and

P3 owns coin 3

then

return accept
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P3

P1

P2

accept

accept

Bitcoin: How oo transfer money 
Double Spending

m1=“P3 gives coin 3 to P1”

s1=Sig(sk3,m1)

m2=“P3 gives coin 3 to P2”

s2=Sig(sk3,m2) * aka double spending

P3 gets coin 

1 to R …

P1 gets coin

R+1 to 2R …

P2 gets coin

2R+1 to 3R …

(m1,s1)

...

(m2,s2)

...

(m4,s4)

P3

P1

Bitcoin: How oo transfer money

m1 = “P3 gives coin 3 to P1”

s1 = Sig(sk3,m1)

m2 = “P3 gives coin 3 to P2”

s2 = Sig(sk3,m2)

write 

(m1,s1)

write

(m2,s2)

read

(m1,s1)

P2

read

(m2,s2)

accept

reject

P4

m4 = “P1 gives coin 3 to P4”

s4 = Sig(sk1,m4)

write 

(m4,s4)

read

(m4,s4) accept
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Panel Discussion

Cryptographic Technologies for Securing Network 
Storage and Their Mathematical Modeling

Panelists:  Kazuma Ohara, Ryo Kikuchi, Mitsugu Iwamoto, Bernardo David,
Yvo Desmedt, Eyal Kushilevitz and Naruhiro Kurokawa

Moderator: Kirill Morozov

The video of our sanel discussion is  
available ac “YouTube”: 

• https://youtu.be/nPR2f-LHqYM

Panel Discussion

Cryptographic Technologies for Securing Network 
Storage and Their Mathematical Modeling

Panelists:  Kazuma Ohara, Ryo Kikuchi, Mitsugu Iwamoto, Bernardo David,
Yvo Desmedt, Eyal Kushilevitz and Naruhiro Kurokawa

Moderator: Kirill Morozov

The video of our sanel discussion is  
available ac “YouTube”: 

• https://youtu.be/nPR2f-LHqYM
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