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About MI Lecture Note Series

The Math-for-Industry (MI) Lecture Note Series is the successor to the COE Lecture 
Notes, which were published for the 21st COE Program “Development of Dynamic 
Mathematics with High Functionality,” sponsored by Japan’s Ministry of Education, 
Culture, Sports, Science and Technology (MEXT) from 2003 to 2007. The MI Lec-
ture Note Series has published the notes of lectures organized under the following two 
programs: “Training Program for Ph.D. and New Master’s Degree in Mathematics as 
Required by Industry,” adopted as a Support Program for Improving Graduate School 
Education by MEXT from 2007 to 2009; and “Education-and-Research Hub for 
Mathematics-for-Industry,” adopted as a Global COE Program by MEXT from 2008 to 
2012.

In accordance with the establishment of the Institute of Mathematics for Industry (IMI) 
in April 2011 and the authorization of IMI’s Joint Research Center for Advanced and 
Fundamental Mathematics-for-Industry as a MEXT Joint Usage / Research Center in 
April 2013, hereafter the MI Lecture Notes Series will publish lecture notes and pro-
ceedings by worldwide researchers of MI to contribute to the development of MI.

October 2014
Yasuhide Fukumoto
Director
Institute of Mathematics for Industry
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はじめに 

本研究集会は IMIの研究集会 I「結晶の界面、転位、構造の数理」として 2017年 8月 28

日-30日に九州大学西新プラザにおいて催したものである．SGW2015，SGW2016にて新日鐵

住金（株）から問題提起された，「結晶構造の秩序乱れの数学的表現」と「金属の結晶粒界

エネルギーの異方性の数学的表現」を発展させることとし，2016年 9月に実施した研究集

会 II「結晶のらせん転位の数理」を拡大し，発展させるものとして 2016 年末より計画さ

れ実施された． 

結果的には，SGW2014 で取り上げられた「結晶グラフの階層性を利用した結合エネルギ

ーの計算方法」や，本年の SGW2017に取り上げられた「結晶の構造変位後の観測データか

ら変位前の状態を予測する解析方法」に関するものも課題として含めて，本研究集会のテ

ーマとした． 

同種の問題は，東京大学大学院数理科学研究科博士課程での社会数理実践研究において

も学生が検討を行っており，それらとの交流も図るものとなった． 

 結晶は特殊ユークリッド変換群 SE(3)の離散部分群の作用で不変な集合として特徴づけ

られる．2016年 9月の研究集会では，らせん転位をこの離散群による対称性の破れとして

捉え，代数的な考察による離散幾何の表示とζ関数との関係や，Γ収束によるモデル化に

関する話題にフォーカスして議論を行った． 

 他方，2016年の SGWでの話題である粒界の研究においても，境界条件の下でエネルギー

最小を与える状態として，この SE(3)の離散群の，半群を含めた代数的な考察が求められ

ている．特に，近年，界面の形状を直接，電子顕微鏡等で観察することが可能となってき

ており，離散的，代数的取り扱いとメゾスケールとの関係の解明が求められている． 

 これらの状況より，本研究集会では 

１）結晶の界面に関わる数値解析，非線形時間発展方程式，整数論を援用した離散幾何学

などの数学手法に関する知見の共有 

２）代数的考察に基づく離散群による対称性の破れを伴う幾何構造の数学的記述に関する

知見の共有 

３）対称性の破れに対する特異的な摂動を考慮したΓ収束などによるエネルギー論的な数

学モデルの構築 

４）ナノとミクロの中間を橋渡しするマルチスケール的な数学モデルの構築 

５）近年の計測技術の発展による実際の結晶構造に関する知見の共有 

を目指し，様々な分野の専門家が集い，議論を行うこととなった． 

このような多岐にわたる高度な数学モデルの議論は従来なされてこなかった．しかし，

今後，実験技術の急速な発展と，産業界における要求仕様の高度化とにより，そうした数

学モデルの必要性が増すものと予想される．我々は，本研究集会をそのモデルケースとし

て位置づけ，議論を行った． 
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講演内容の概略を述べると以下のようなものがなされた． 

１．界面に関して，数値計算，非線形な時間発展方程式，整数論を援用した離散幾何学な

ど，多岐に亘る視点からの講演があった． 

２．Γ収束を利用した転位の解析においては，３つの講演があり，全く異なるアプローチ

による様々な階層での解析が可能であることが明らかにされた． 

３．幾何学，代数学からのアプローチに関しては，講演も多数あり，３次元空間内の新た

な離散幾何や転位の表現，結晶の構造に関する解析が可能となることも示された． 

４．数学者が生の実験データに触れることは通常ほとんどないため，実験データに関する

講演も設け，現実とモデルとの相違が認識された． 

このように本研究集会の趣旨に沿った講演がなされ，異なる分野の研究者同士で素朴な議

論を行うことができた． 

本研究集会では，１日目にウェルカム・パーティーとしてワン・コイン・パーティーを

開催し，2日目，3日目には自由に各自の興味あるテーマを議論するためのディスカッショ

ン・タイムを設けた．ワン・コイン・パーティーでは一人当たり 500円でビールなどを飲

みながらの議論であったが，それぞれで，異なる分野の研究者がフランクかつ有意義に交

流することができた．これにより，2日目，3日目のディスカッション・タイムを円滑に推

進できた． 

 

これらにより，各研究者の中で，それぞれの研究分野へのフィードバックがかかったも

のと確信する．今回のテーマではないが，実際，キンク現象に関しては，実験データを再

現する新たな解析手法が提案でき，現在，論文化に向けた検討を行っている．  

 本研究集会の開催により，各分野の専門家が現状とその課題を提示し合い，議論するこ

とによって，これらの高度な数学モデルの構築の進展に寄与できたものと考えている． 

 

 

 

組織委員： 

松谷 茂樹  佐世保高専 

佐伯 修  九州大学 IMI 

中川 淳一  新日鐵住金 

田上 大助  九州大学 IMI 

上坂 正晃  北海道大学 

Pierluigi Cesana 九州大学 IMI 

濵田 裕康  佐世保高専 

 

2017年 12月 

ii



　

　

　　　

iii



（ ）

iv



Fukuoka City
Museum

Seinan Gakuin

Hilton Fukuoka
Sea Hawk

Fukuoka Yafuoku!
Dome

South Korean
Embassy

China Embassy
Fukuoka

Momochihama
Bridge

Nishijin Palace
Shin

Imagawa
Bridge

Imagawa Bridge
(Bus Stop)

Nishijin Palace
(Bus Stop)

Cafe Restaurant
“Gasto”

Hii River

Fukuoka Tower

Public Library
Fire Prevention

Center

Fukuokashi Sawara
Fire Department

Kyushu University Nishijin Plaza

Momochi
Central Park

Urban Exp.

Yokat
opia S

tree
t

Meiji 
Stree

t

Nishijin Sta.(Subway Kuko Line)

KYUSHU UNIVERSITY
NISHIJIN PLAZA

IMI Joint Research Project in 2017   Workshop（I）

Mathematics in Interface, 
Dislocation and 
Structure of Crystals

Philip Broadbridge (La Trobe Univ. / IMI, Kyushu Univ.)
Pierluigi Cesana (IMI, Kyushu Univ.)
Kenji Higashida (Nat. Inst. of Tech., Sasebo College)
Kazutoshi Inoue (AIMR, Tohoku Univ.)
Shizuo Kaji (Yamaguchi Univ.)
Xiao-Wen Lei (Fukui Univ.)
Junichi Nakagawa (Nippon Steel & Sumitomo Metal Co.)
Akihiro Nakatani (Osaka Univ.) 
Karel Svadlenka (Kyoto Univ.)
Tomohiro Takaki (Kyoto Inst. of Tech.)
Masaaki Uesaka (Hokkaido Univ.)
Patrick van Meurs (Kanazawa Univ.)

Date : August 28(Mon) -30(Wed), 2017
Venue : Nishijin Plaza, Kyushu University 

Speakers :

Pierluigi Cesana (IMI, Kyushu Univ.)
Hiroyasu Hamada (Nat. Inst. of Tech., Sasebo College）
Shigeki Matsutani (Nat. Inst. of Tech., Sasebo College）
Junichi Nakagawa (Nippon Steel & Sumitomo Metal Co.)
Osamu Saeki (IMI, Kyushu Univ.)
Daisuke Tagami (IMI, Kyushu Univ.)
Masaaki Uesaka (Hokkaido Univ.）

Organizers :
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Mathematics in Interface, Dislocation and Structure of Crystals

August 28-30, 2017, Fukuoka, JAPAN

Algebraic analysis of orientation relationship
created by phase transition in crystals

Junichi Nakagawa

Nippon Steel & Sumitomo Metal Co.

Polycrystalline materials such as iron acquire their properties from various thermo-
mechanical treatments. In many cases, the low temperature behaviors of these materi-
als are sought from high temperature processes, such as re-heating, rolling and cooling,
that are followed by phase transitions. The microstructure of polycrystalline materials
at low temperatures is an important parameter, and it is greatly involved in plastic
deformation. Therefore, the improvement of products designed for a given application
requires the formation of an adapted low temperature microstructure, obtained from
the high temperature state, which can also be characterized by its microstructure. A
grain (for example ), which is defined by a set of crystals with the same orientation,
is transformed into many grains of the same phase (for example ) with an orien-
tation relationship. We refer to them as daughter crystals. These daughter crystals
( ), which have an orientation relationship with the parent crystal ( ), are called
variants, and they are algebraically identified with left co-sets. C. Cayron [1] who is a
physicist in crystallography dealt with variants using algebraic analysis and proposed
a method for reconstructing parent crystals from the observed daughter crystals. Our
intention is to redefine the way of describing the method using mathematics and obtain
a comprehensible representation mathematically in order to understand Cayron s way
of thinking.

References

[1] C. Cayron, Acta Cryst. A62 (2006) 21-40
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Mathematics in Interface, Dislocation and Structure of Crystals 
 Algebraic Analysis of Orientation Relationship  

Created by Phase Transition in Crystals 

Nippon Steel & Sumitomo Metal Corporation 
Advanced Technology Research Laboratories 

Mathematical Science & Technical Research Lab. 
 

Junichi Nakagawa 

2017.8.28-8.30 
Institute of Mathematics for Industry 

Kyusyu University 
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What’s Crystal 

2 

      A crystal is a solid material whose constituents, such as 
atoms, molecules are arranged in a highly ordered microscopic 
structure, i.e. semi-product of translation and rotation symmetry, 
forming a crystal lattice that extends in all directions.  
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      In addition, macroscopic single crystals are usually 
identifiable by their geometrical shape, consisting of  faces 
with specific, characteristic orientations. 
       

KT
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The 7 Lattice System and The 14 Bravais Lattice 
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Symmetry of Iron Crystal 
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Measurement of Crystal Orientation                                                  
EBSD Electron Back Scattered Diffraction Pattern) 

9 

As these electrons leave the sample, they may exit at the 
Bragg condition related to the spacing of the periodic 
atomic lattice planes of the crystalline structure and diffract.  

Escaping electrons may exit near to the Bragg angle and 
diffract to form Kikuchi bands. If the system geometry is 
well described, it is possible to relate the bands present in 
the diffraction pattern to the underlying crystal orientation of 
the material within the electron interaction volume.  

electron 
beam 

wave length 
 λ 

lattice 
length diffraction 

angle 

Bragg condition 5  nd sin2
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Measurement Data regarding Crystal Orientation 
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Objective: Parent Grain Reconstruction for Martensitic Steel 
 

α 

γ 

C. Cayron, B. Artaud, L. Briottet,  
Reconstruction of parent grains from EBSD data, 
Mater. Charact 57 (2006) 386-401. 

Observed daughter grains 
( α: martensitic grains)  

Reconstructed parent grains 
( γ: austenitic grains)  

BCC 

Phase 
transition 
with water 
cooling 

Stable in  
high  temperature 

Stable in 
Low  temperature 

(x, y, z)γ → (X,Y,Z)α 
Lattice  correspondence 

FCC 
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Determination of Prior Austenitic Grains Orientation  
from Martensitic Grains 

  Z,3, Ogg ji 

  RgRg ikj 

 R,3SOR 

 R,3SOR  an austenitic grains orientation 

a martensitic grains orientation 

an element of group for cubic lattices, BCC and FCC 

 Vk 
an element of variant between  
austenitic grain (FCC) and martensitic grains (BCC) 

i, j =1, ,48 

k =1, ,12 NW Nishiyama-Wasserman  relationship  
k= 1, ,24 KS Kurdjumov-Sachs  relationship  

    RggR jik
1

measured data  reconstructed 
orientation  
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Variants 
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Simple Example for Understanding Variants 
 

9 

Y.Gao,, Y. Wang, et al., Group theory description of transformation pathway degeneracy in structual phase transformations, Acta Materialia 109 (2016) 353-363 

4
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Calculation of left coset 

Variants 

10 

Y.Gao,, Y. Wang, et al., Group theory description of transformation pathway degeneracy in structual phase transformations, Acta Materialia 109 (2016) 353-363 
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2017.07.26-07.28 2017.07.31-08.01 

Study Group Workshop 2017 
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α 
parent crystal 

γ 
(high temperature) 

daughter crystal 

(low temperature) 

Low 
temperature

High 
temperature

Phase 
transition
with water 
cooling

α

γ

[1]

Background & Problem 

5
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Notations in Cayron’s paper 
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Variants (Cayron’s notation) 
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Example: two-dimensional case (1) 

6
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Example: two-dimensional case (2) 
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Redefinition of crystals 
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Redefinition of variants 

w.r.t. the same 
parent β 

7
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Summary 

 2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. 

Martenstic Transformation γ→α  
, , 2013 5  

KS orientation variants 

Deformation variants  
(Bain’s lattice correspondence  

    ,0010112/1       ,0100112/1        100100

20 

Giving  it a Try in Practice: the Outcome of SGW2017 

γ 

α 
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 110//111

   
 111//101 

KS orientation variants  

    0,,111  zyxzyx

    0,,110  ZXZYX

from eq. (5) 
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from Eq.(2) 

 A condition of the closed packed plane parallel 

 The  corresponding above condition of the closed packed direction parallel 
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from eq.(4), eq. (6) and  eq.(7) 
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The translation matrix is derived as follows. 
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The relationship between (x y z)t, and (X Y Z)t is as follows.

Variant is defined as follows.

  Z,3: 1
/ OGgBTHgV ii  

 

 where  Hα/γ = Gy ∩Gα.  
 
Since                         and the rotational symmetry regarding  γ and α  around [0 0 1] in the previous slide’s figure,    
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The γ lattice is described as  

 Z,,eee 321  nmlnml 

The basis  is written by  
1B

   Z,3,, 3211 OeeeB  

B1
γ
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The 24 Variants (1/3) 
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A Conversion for Making Rotation Matrix 

Since 24 variants in the previous slides are not the rotation matrices, 
we try to make a simple conversion for making rotation matrix as follows. 
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Rotation matrix ( Rotation Axis, Angle ) and the Determinant 
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Variant No.           Rotation axis Rotation angle 
01 :       { (0 0 1), (0 0 1)}, 11: { (0 0 1), (0 0 1)} { 45 , 135 } 
04:         { (0.924 0.383 0), (0.383, -0.924, 0) } 
10 :         { (0.383 0.924 0), (0.924 -0.383 0)} { 180 , 180 } 

06 :        { (0.863 0.357 0.357), (-0.281 0.679 0.679)}     
07 :       { (-0.863 -0.357 0.357), (0.281 -0.679 0.679)}  
13 :       { (0.357 0.823 0.357), (0.679 -0.281 0.679)}   
16 :       { (-0.357 -0.863 0.357), (-0.679 0.281 0.679)}  
17:        { (0.281 0.679 0.679), (-0.863 0.357 0.357)}  
20:        { (-0.281 -0.679 0.679), (0.863 -0.357 0.357)}  
22:        { (0.357 -0.863 0.357), (0.679 0.281 0.679)} 
23         { (-0.357 0.863 0.357), (-0.679 -0.281 0.679)} 

{ 98.4 , 148.6 } 

   
 110//111

   
 111//101 

01 

Picking up Variants Making Rotation Matrix  
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12/62712/62512/64
12/62512/62712/64

12/6412/646/162

24 Variants in Morito’s Paper and  the Rotation Matricises 
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24 Variants in Morito’s Paper and  the Rotation Matricises 
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 110//111

   
 111//101 

KS orientation variants 
 

    0,,111  zyxzyx

    0,,110  ZXZYX

from eq. (5) 
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from eq.(3) 






































































1
1

0

1
2/1
2/1


Z
Y
X

z
y
x

Since eq. (1) and eq. (2) are a rotation along the common a axis, 




































































1
0
0

1
0
0


Z
Y
X

z
y
x

from Eq.(1) 

    0,,101  yzxzyx

    ZYXZYX  ,,111 

from Eq.(2) 

 A condition of the closed packed plane parallel 

 The  corresponding above condition of the closed packed direction parallel 

 The (x y z)γ
t and (X Y Z)α

t   in these correspondences are not  determined uniquely. 

γ 

α 
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How do we determine the rotation matrix  
of the variant? 

Thank you for your attention! 
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Mathematics in Interface, Dislocation and Structure of Crystals

August 28-30, 2017, Fukuoka, JAPAN

Phase-field simulations of dendrite solidification
and grain growth

Tomohiro Takaki

Kyoto Institute of Technology

Phase-field studies of dendrite growth and grain growth are introduces. In the
dendrite growth, the competitive growth among multiple dendrites is investigated. In
the grain growth, the true behaviors of ideal grain growth are investigated by the
very-large simulation.
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Mathematics in Interface, Dislocation and Structure of Crystals

August 28-30, 2017, Fukuoka, JAPAN

Numerical analysis of moving interfaces:
the level-set and phase-field approaches

Karel Svadlenka

Kyoto University

There are several well-established efficient numerical methods for simple interfaces
evolving according to various rules, such as the curve-shortening flow or surface dif-
fusion. Recently, the focus of researchers in this field has shifted towards numerical
solution of interfacial networks with junctions, especially in the anisotropic or non-
symmetric setting (for example, different surfaces tensions for each interface in the
mean curvature flow).
In this talk, I will briefly review the two basic approaches to evolving interfaces that

can be extended to the multiphase anisotropic/non-symmetric case including topolog-
ical changes: the phase-field method and the level-set method (in particular, its sim-
plified version proposed by Merriman, Bence and Osher). I will present an overview
of the state of the art methodologies and their range of applicability, mentioning also
some results of my own.

References

[1] K. Svadlenka, E. Ginder, S. Omata: A variational method for multiphase volume-preserving inter-
face motions, Journal of Computational and Applied Mathematics, Vol. 257, pp. 157-179, 2014.

[2] Nur Shofianah, R.Z. Mohammad, K. Svadlenka: Simulation of triple junction motion with arbitrary
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[3] R.Z. Mohammad, K. Svadlenka, Multiphase volume-preserving interface motions via localized
signed distance vector scheme, Discrete and Continuous Dynamical Systems - Series S, Vol. 8, No.
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[4] E. Ginder, K. Svadlenka, Wave-type threshold dynamics and the hyperbolic mean curvature flow,
Japan J. Indust. Appl. Math. 33(2), pp. 501-523, 2016.
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Numerical analysis of  moving interfaces: 
the level-set and phase-field approaches  

Karel Svadlenka, Kyoto University

Mathematics in Interface, Dislocation  
 and Structure of Crystals 
August 28-30, 2017 
Kyushu University, Nishijin Plaza   

Outline

1)  Interface evolution (in physical models) 
2)  Generalizations of  interface evolution 

  anisotropy 
  multiphase 

3)  Overview of  numerical approaches 

4)  Remarks on their extensions  
  anisotropy 
  multiphase

Types of interface motion

1)  Mean curvature flow 
2)  Volume-preserving mean curvature flow 

3)  Surface diffusion 
4)  Mullins-Sekerka model 

5)  Stefan problem 

6)  Hyperbolic mean curvature flow

interface

bulk A

bulk B 
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Gradient flows

Finite dimension (    )
•  Gradient of  a function 

    is defined by 
 
 

•  Gradient flow: 

•  Properties: 
–     

–  among all possible 
directions,                 
decreases     most efficiently

Manifold and Hilbert space
•  Gradient of  a function      

from a n-dim Riemannian 
manifold M defined by 

•  Gradient flow: 
 
•  Properties: the same 
•  Hilbert space: replace metric 

by inner product

directional derivative gradient Gateaux  
derivative

gradient tangent space 
at

… metric on 

Example of gradient flow

•  Area functional 

•  Directional derivative 

•  Inner product 
•  Gradient has to satisfy 

•  so                  and the gradient flow is 

 … smooth, compact hypersurface in      without boundary

… smooth vector field 

… mean curvature 
           … normal velocity

tangent space  
of  normal velocities
tangent 

1) Mean curvature flow

•  Gradient flow of  the surface energy with respect to 
the L2-inner product

S.Angenent
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1) Mean curvature flow: properties

•  Embedded curve in the plane evolving under mean curv. 
flow will become convex in finite time [Grayson, 1987]. 

•  A convex hypersurface in      will shrink to a point in finite 
time, asymptotically converging to a sphere [Gage & 
Hamilton, 1986] [Huisken, 1984]. 

•  Self-intersections during the flow are not possible. 
Moreover, if  initially one surface is contained in another, 
this property will be true for all later times (by maximum 
and comparison principles, [Ecker, 2008]). 

•  Nonconvex surfaces in general can develop singularities 
[Huisken, 1990, 1993]. 

R. Nürnberg

1) Mean curvature flow: applications

Archimedes palimpsest

Sethian & Saye

Image processing

Soap  
films

Grain boundaries    

2) Volume-preserving curvature flow

•          … hypersurfaces enclosing volume m  
•  Tangent space             corresponds to normal 

velocities with zero mean because 

•  Gradient for L2-inner product: 

     so because gradient has zero mean,  
  

•  Gradient flow:

… average curvature on 
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3) Surface diffusion

•  Again consider          but now with H-1-inner product 
on            defined by 

•  Gradient of  area 

•  Gradient flow

… surface 
    Laplacian

In physics this equation is derived from mass conservation laws using 
appropriate constitutive assumptions [Mullins, 1957].  
It models phase transformation due to diffusion along the interface. 

3) Surface diffusion: properties

•  Volume preserving, area decreasing: 

•  Stability near spheres [Escher et al., 1998] 

•  If  flow exists for all times, it converges to a sphere 
[Elliott & Garcke, 1997]. 

•  Self-intersections are possible [Giga & Ito,1998]. 

•  Does not preserve convexity [Giga & Ito, 1999]. 
•  Singularities may appear. 

R. Nürnberg

3) Surface diffusion: applications

Electromigration of  voids  
in (micro)electrical circuits

Epitaxial growth  
(nanotechnology, semiconductor fabrication) 

Quantum dotsV.Kaganer & R.Shayduk

Nix, 1992

S.Kelley

Bauer, 1999
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4) Mullins-Sekerka problem

•  Decrease of  area limited by diffusion – expressed by 
the inner product 

•  Leads to

interface

bulk A

bulk B 

normal

where 

In physics, these equations are derived 
 from conservation laws based  
on the principles of  thermodynamics.

4) Mullins-Sekerka problem: properties

•  Volume preserving, area decreasing: 

•  Oswald ripening: mean particle size grows as       , 
evolution laws for particle size distribution derived. 

•  Existence of  solution difficult (results in weak 
setting). 

U. Weikard

5) Stefan problem

•  Describes undercooled solidification. 

•  Can be written as gradient flow too.

interface

bulk A

bulk B 

normal

(Gibbs-Thomson law)
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6) Hyperbolic mean curvature flow

Notation 
•  Family of  closed curves 

Velocity of  curve 
 
 
Acceleration of  curve 
 
 
Energy density

Velocity of  curve 

Acceleration of  curve 

Energy density

6) Hyperbolic mean curvature flow

•  Action of  internal and kinetic energy 

 
•  Stationary points satisfy 

•  Assuming normal flow ( w=0 ) 

Remark (normal flow) 
•  For tangential velocity  

 
                  flow is normal for all times if  the initial velocity is normal          

6) Hyperbolic MCF: properties

•  Normal flow property is preserved in time. 
•  Energy is preserved (globally and for normal flow 

also locally). 
•  Shocks may develop or the flow may blow up. 
•  Existence results for graphs or locally in time. 
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6) Hyperbolic MCF: applications

Institute for Crystal Growth, Germany

cronodon.com

Oscillating closed spring Melting-freezing waves  
in crystals of  helium [M. Gurtin et al.] 

Relativistic strings  
in Minkowski space [D. Kong et al.]

6) Hyperbolic mean curvature flow

References 

Next topic:  
Generalizations of  interface evolution
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Two generalizations

•  Anisotropy of  surface energy 
–  the surface energy depends on 

the orientation of  the surface 
normal

•  Multiphase setting 
–  there are more than two phases 

and thus several interfaces meet 
at junctions 

 
 

where

Anisotropy

•  Surface energy 

   where                      is one-homogeneous, i.e., 

–  if                 , we get the isotropic case 
–  if     non-constant on unit vectors, some directions are 

energetically more favorable 

•  Wulff  shape solves the isoperimetric problem: 

      “minimize              under given enclosed volume” 

(1) (2)

Frank diagram 
and Wulff  shape

cubic hexagonal

Anisotropic gradient

•  Variation 

    so the L2-gradient is 

 
 

 

 
    Here the surface divergence 
 
     where                      is an orthonormal basis of  tangent space 

Here,
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Anisotropic interface evolution

•  Mean curvature flow 

•  Surface diffusion 

•  Stefan problem

or more generally

(preserves volume)

decrease 
anisotropic 
surface energy 
and converge 
to the Wulff  
shape

Anisotropy: applications

Crystal growth

G.Demange, 2017

Multiphase problem

•  Surface energy 

•  Variation (gradient) away 
from junctions gives the same 
motion laws as before. 

•  From perturbation of  
junctions arises a boundary 
condition to hold at the 
junction (balance of  forces). 

.

.
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Multiphase problem

Mean curvature flow 
•  Each interface moves by 

•  At junctions forces are 
balanced: 

    Example: at triple junction 

 
    or  
 

    If   

… surface tension of  
interface separating 
phases I and j

(Herring condition)

Multiphase problem

Anisotropic case 
•  Condition at junctions becomes 

      Here, 
 

surface tension 
(tangential direction)

Herring torque 
(normal direction)

Multiphase problem: applications

(a) Soap bubble foam made with common washing detergent 
(b) Metallic foam made out of  aluminium  
(c) Grains in a polycrystalline metal  
(d) Cells in a zebrafish (stained) 
(e) Minimal surfaces formed by steady-state soap films

taken from I.Saye, 2013
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Next topic:  
Overview of  basic numerical approaches

Main numerical approaches

I will explain the methods using the example of      
mean curvature flow of  a closed curve in a plane.

t

Main numerical approaches

  Parametric method 
  Level-set method 

  Phase-field method 
  MBO algorithm 

  Voronoi implicit interface method  

     …
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Aspects to focus on

•  Topological changes and 
other singularities

•  Accurate tracking of  
junctions 

•  Anisotropy 

•  Coupling to physics 

Parametric method

Simple algorithm: 
1.  Discretize curve into points. 

2.  Compute curvature  and  
normal     at each point. 

3.  Advance each point by               .  

4.  Repeat the above until desired 
time. 

 

Parametric method

•  Assumption: surface is given by parametrization over 
a fixed manifold. 

•  Surface is triangulated and triangles moved in time. 

•  Mesh often degenerates but tangential degrees of  
freedom can be used to keep good mesh properties. 

•  Anisotropy handled by suitable discretization of  the 
anisotropic mean curvature.

•  Surface evolver (non-
physical, stationary) 

•  Immersed boundary 
method (fluid-
structure interaction) 

•  Work by [Garcke – 
Barrett – Nürnberg], 
[Dziuk] (FEM).R. Nürnberg

42



Parametric method

Advantages 
•  Simple, efficient and straightforward. 

Disadvantages 
•  How to deal with topological changes and 

singularities? 

•  Requires computing curvature. 

•  Does not “see” outside and inside of  the interface.

Level-set method

1.  Express the curve t as level set of  a function u(t,x): 

 
2.  Find an evolution equation for u(t,x) such that the 

level sets move according to the given law (            ). 
3.  Solve the equation for u(t,x) and detect level sets of  

the solution. 
 

Can be done for any type of  evolution (hyperbolic too). 

View from above:

t

Level-set method

Advantages 
•  Handles naturally topological changes. 

Disadvantages 
•  The governing equation is nonlinear and degenerate. 

For example, for the mean curvature flow 

•  Dimension of  the problem increases by 1.

Wikipedia
Deckelnick et al.
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Level-set method

•  Work by Osher, Sethian, Fedkiw, etc.: based on 
methods for Hamilton-Jacobi PDEs 
–  stationary approach (arrival time)  fast marching method 
–  evolution approach (level sets)   narrow band method 

    Developed efficient upwind schemes. 
 

•  Regularization approach 

Then
(Deckelnick et al.)

Phase-field method: idea

•  Ginzburg-Landau energy 

 
    
 

    as 0  -converges to area functional 

    (which means that minima of  E   are close to minima of  E) 
 

      Gradient flow of  E   should   
      approximate gradient flow of  E 
       (which is mean curvature flow).

penalizes rapid 
changes of  ϕ in space

penalizes values of  ϕ 
differing from ±1

zes rapid penalizes

Double-well potential W

For moderate values of  E , 
ϕ looks like

Profile of  ϕ

      

area of  interface

-convergence
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Phase-field method: example 1

•  Gradient flow of  Ginzburg-Landau energy w.r.t.       
L2-inner product yields Allen-Cahn equation 

•  Sharp-interface limit: in the limit as 0, the sharp 
interface separating the sets             and             
evolves by mean curvature flow. 

•  Similarly, for gradient flow preserving the volume one obtains in the 
limit the volume-preserving mean curvature flow.

0

Phase-field method: example 2

•  Gradient flow of  Ginzburg-Landau energy preserving 
volume w.r.t. H-1-inner product yields Cahn-Hilliard 
equation 

•  Sharp-interface limit: in the limit as 0, the sharp 
interface separating the sets             and             
evolves by Mullins-Sekerka model: 

Rewrite as system:

Phase-field method: example 3

•  Gradient flow of  Ginzburg-Landau energy with 
degenerate mobility w.r.t. H-1-inner product yields 
equation of  Cahn-Hilliard type 

•  Sharp-interface limit: in the limit as 0, the sharp 
interface evolves by surface diffusion: 
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Phase-field method: example 4

•  Gradient flow of   

   w.r.t. inner product                         with            

     and                yields the phase-field system 

 

 
 

•  Sharp-interface limit: in the limit as 0, the sharp 
interface evolves by Stefan problem: 

Thermodynamically consistent PF

Isothermal case: Helmholtz free energy 

•  Requirement of  fastest decrease leads to phase-field 
equation (Allen-Cahn). 

Non-isothermal case: Entropy functional 

•  Requirement of  positive entropy production (for  
non-conserved ) and conservation law for e lead to 
phase-field system.

free-energy densitynergy 

entropy density internal energy densityity int

Phase field method

Advantages 
•  Handles naturally topological changes. 

•  Can be linked to physics via thermodynamically 
consistent derivation. 

•  Equations are relatively simple (semilinear 
parabolic). 

 
Disadvantages 
•  Requires fine meshes to resolve the interfacial layer 

(= computational stiffness). 

46



Phase-field method

•  In numerical solution, either one discretizes the 
Allen-Cahn equation etc. as it is, or 

•  Uses a different form of  W (double obstacle): 

     leads to variational inequality but in practice, it can 
be solved by a simple explicit scheme or implicit 
quadratic minimization problem with constraint. 
 

Advantage: the phase field differs from ±1 only in a 
band of  width c(t) , which saves computational costs. 

    

MBO algorithm: idea (MCF)

•  From level sets: 

If  we start from signed distance function to interface 
(            ) then for a short time 
 
      Solve heat equation and re-distance every now and then.  

 

          

      

Construct signed distance 
function SDF to the 

interface.

Solve heat 
equation starting 
from SDF for a 

short time

Detect the new 
interface as the zero 

level set of  the 
solution.

B. Merriman, J.K. Bence, S.J. Osher,  

Motion of multiple junctions: a level set 

approach, J. Comp. Phys. 112 (1994).

= MBO algorithm 
(works for piecewise constant  
initial conditions too: u=±1)

MBO algorithm: idea (MCF)

P(t)

∂P(t)

P(t+∆t)

construct 
characteristic 

(or signed-distance) 
function

solve heat 
equation for ∆t 

cut at  
height 0

iterate

χP(t)

Ω

1 χP(t)χχχP(t)

-1

0
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MBO algorithm: idea (MCF)

•  From phase field: 
    splitting scheme

Heat equation!

Splits domain into two: 
 with value -1 and value 1 
= thresholding.

Allen-Cahn equation

MBO algorithm: idea (MCF)

P(t)

∂P(t)

P(t+∆t)

construct 
characteristic 

(or signed-distance) 
function

solve heat 
equation for ∆t 

cut at  
height 0

iterate

χP(t)

Ω

1 χP(t)χχχP(t)

-1

0

MBO algorithm: convergence

Proofs of  convergence 
–   semigroup theory 
 
  
–   viscosity solutions  

–   distance function 

L.C. Evans, Convergence of an Algorithm for Mean Curvature Motion,  
Indiana U. Math. J., 1993

 G. Barles, C. Georgelin, A Simple Proof of Convergence for an Approximation  
 Scheme for Computing Motions by Mean Curvature, SIAM J. Num. Anal., 1995

Y. Goto, K. Ishii, T. Ogawa, Method of the Distance Function to the BMO 
 Algorithm for Motion by Mean Curvature, Comm. Pure Appl. Anal., 2005 
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MBO algorithm

Advantages 
•  Handles naturally topological changes. 

•  Only heat equation has to be solved. 
•  Scheme can be made unconditionally stable  

suitable for long time simulations (foams, etc.). 
 
Disadvantages 
•  No direct relation to physics. 

Remark. It was said that MBO is limited to mean curvature flow but it 
was recently extended to other evolutions (Esedoglu, Elsey, …), even to 
hyperbolic MCF (Ginder & Svadlenka).

MBO algorithm

Multiphase hyperbolic mean curvature flow computed by the MBO algorithm

Voronoi implicit interface method

Idea based on level-set method: the motion of  -level 
sets regularizes motion of  the interface (0-level set), 
even when there are junctions

by J.Sethian & R.Saye

(Taken from the dissertation of  R.Saye)
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Voronoi implicit interface method

Advantages 
•  Handles naturally 

topological changes. 
•  Accurate, efficient and 

robust. 
•  Ability to couple to 

physics. 
 

Disadvantages 
•  Not yet fully analyzed. 
•  How to deal with 

anisotropy?
J.Sethian & R.Saye

Next topic:  
Handling of  anisotropy and multiphase

Anisotropy

•  Consider only smooth anisotropies (for non-smooth 
anisotropies we either use smoothing or the 
crystalline approach). 

•  Parametric method: discretize in the same way 
•  Level set method: regularize 

 

 

Frank diagram and Wulff  shape  
for the smoothed cubic anisotropy

Barrett et al.  2013
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Anisotropy

•  Phase field method 

    Corresponding Allen-Cahn equation 

 
 Sharp interface limit 

 

•  MBO algorithm: we solve anisotropic heat equation 

    

where

Multiphase

•  Parametric method: not suitable (“surgery” needed). 
•  Level set method: use multiple level set functions.  

To avoid creation of  voids and overlaps a “repair” 
procedure (usually projection or penalty) is required 
at the end of  each time step but it is not clear how 
this affects the motion ( used in image processing). 

•  Voronoi IIM: works nicely. 

Multiphase

•  Phase field: junction behavior sensitive to the choice 
of  potential functions. 

•  Work of  Garcke, Nestler et al.: 
–  Phase field function for each phase 

–  Ginzburg-Landau energy 

–  Yields correct sharp interface motion laws but it is hard to 
relate the potential to given physical parameters, e.g., 

with

(includes anisotropy) 
and suitable multi-well function W 

surface tension

where p ranges over Lipschitz paths connecting two minima of  W
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Multiphase MBO algorithm (equal surface tensions)

1.  Assign reference vector to each phase 

2.  Solve vector-valued heat equation 

 
3.  Detect interface (closest ref. vector)

p1

p2
p3

reference 
vectors

p2

p1

p3

1.  Assign value 1 
inside,  -1 outside. 

2.  Solve heat eq. 

3.  Detect interface 
  
      
 

1-1

0-level set:  
   check if  closer 
   to 1 or to -1

Multiphase case                                             Two-phase case

Multiphase MBO (example)

initial interface

Multiphase MBO (example)

reference vectors
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Multiphase MBO (example)

initial condition for the heat equation (u0)

Multiphase MBO (example)

after diffusing for short time ()

Multiphase MBO (example)

interface detection: interface between Pi and Pj is at points x which satisfy
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Multiphase MBO (example)

new interface

MBO: troubles on uniform mesh

•   Piecewise constant identification of  the interface 
has too little degrees of  freedom: 

 
•  Can be improved by using signed distance function: 

1

-1-1

-1

11

1

11

so that interface does not stagnate 
not to pollute evolution 

1

1
-1

d1

d2

d3

Can we 
construct 
a vector-
valued 
analogy?

MBO: Vector-valued signed distance

Consider a suitable combination of  reference 
vectors with coefficients depending on distances 
to phases:

di(x) … distance of  x from phase Pi 
   … band width

i 

Pj 

Pi 



R.Z. Mohammad, K. Svadlenka: Multiphase 
volume-preserving interface motions via 
localized signed distance vector scheme, 
Discrete and Continuous Dynamical Systems - 
Series S, 2014.

•  Does it give correct interface velocity? 
 

•  Is the condition at junction satisfied?
Angles      at n-th step of  the scheme with time step       
satisfy

• Does it give correct interface velocity? 

• Is the condition at junction satisfied?
Angles      at n-th step of  the scheme with time step       
satisfy

Analysis
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MBO algorithm

 

Thank you for your attention!

55



Mathematics in Interface, Dislocation and Structure of Crystals

August 28-30, 2017, Fukuoka, JAPAN

Exact solution of nonlinear boundary value
problems for surface diffusion

Philip Broadbridge

La Trobe University / IMI, Kyushu University

Curvature-driven surface diffusion on crystalline surfaces is modelled by a fourth
order nonlinear diffusion equation. There is a class of nonlinear weakly anisotropic
models that is fully integrable. Exact solutions are constructed for development of a
grain boundary groove and for smoothing of an initial ramp dislocation.

Even for linear fourth order “diffusion”, there are strange overshoot phenomena
that are no longer proscribed by maximum principles of second order diffusion.

There are additional phenomena due entirely to the nonlinearity. For example, in
a solvable quasilinear model, the depth of a grain boundary groove remains bounded
as the dihedral angle approaches vertical.

At a dislocation point of infinite curvature, the quasilinear Mullins model should
be extended to a fully nonlinear degenerate model to account for Gibbs-Thompson
evaporation-condensation. An exactly solvable fully nonlinear degenerate diffusion
model shows that unlike in the quasilinear model, deposition rate at the dislocation
point is bounded, and the slope remains discontinuous for a finite delay time.

My group is currently working on classical and non-classical symmetry reductions of
the fourth-order evolution of crystal surfaces near cores with cylindrical phase bound-
aries.
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   Introduction

Partial differential equations for the evolution of curves and surfaces, under isotropic 
and homogeneous processes, should be invariant under the Euclidean group. A 
comparatively simple example is evolution by mean curvature. Consider a 
hypersurface of dimension n-1 embedded in Rn:

θ �→ ℜ
n

n̂ = ‘inward’ unit normal vector.

n̂ ·

∂r(θ, t)

∂t
= Bκ̄

, proportional to mean curvature. This models the surface of volatile metals such as 
Mg. Surfaces of stable metals such as Au, evolve by 4th order surface diffusion 
[ Mullins 1957, Cahn & Taylor 1994].  In 2D,

∂N

∂t
= −

B

2

∂2κ

∂s2

The 2D surface diffusion equation in Cartesian coordinates is

yt = − B ∂x

�

�

1 + y2

x

�

−1/2

∂x
yxx

(1 + y2
x)

3/2

�

This equation  is invariant under rotations in the XY plane. The 3D surface diffusion 
equation, to be revisited later, is invariant under SO(3). This compares with the linear 
diffusion equation,    zt=zxx+zyy ,
which does not have SO(3) invariance. 

We will be considering the evolution of grain boundary grooves at the surface of a 
polycrystalline surface. These can be clearly discerned on a surface at the nanoscale, 
by high-resolution transverse electron microscopy [e.g. Zhang et al, 2007] or by atomic 
force microscopy  [e.g. Sachenko et al., 2002]. 

57



−3 −2 −1 0 1 2 3
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

γb

γs

φ

γs

m = tan(φ) ; γb(T ) = 2γs(T )sin(φ)

Schematic diagram of a symmetric surface groove where two crystals meet.

Balance of surface tension and grain boundary tension gives

The nonlinear boundary value problem for the shape of a symmetric grain boundary 
groove, was solved by Tritscher & Broadbridge, 1995.
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ν = particle density 

Ω = mean volume per particle 

v = mean drift velocity 

v =

−Ds

kT

∂Φ

∂s
Nernst-Einstein Relation 

Φ = chemical potential per particle;  

T = absolute temperature; k = Boltzmann constant; Ds = surface diffusion constant.

J = νΩvVolume flux on surface 

The physically based model of Mullins, 1957.

For isotropic material with spherical surface, surface energy is  

E = γA = 4πγR2;

V =
4

3
πR3;

dE

dV
=

dE

dR
/
dV

dR
=

2γ

R
= 2γκ̄

so specific energy (per particle) is                               .Φ = 2Ωγκ̄

This Laplace formula applies to a general surface (e.g. Defay and Prigogine, 1966).

Φ = Ω [γs(φ) + γ′′

s
(φ)]κ.

Laplace-Herring Equation 1814 - 1950

γs = surface tension

φ = arctan yx

In Cartesian coordinates, the two-dimensional curvature is

Substituting  the Mullins flux model into the equation of continuity for local 
conservation  of mass,

∂N

∂t
+

∂J

∂s
= 0

κ =
−yxx

(1 + y2
x
)3/2

∂N

∂t
= B

∂
2
κ

∂s2
(B constant)
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cos(φ)
∂y

∂t
= B

∂2κ

∂s2

δy
δN

That is, 

Now use κ =

�

�

�

�

d
2
r

ds2

�

�

�

�

=

�

�

�

�

�

dx

ds

d

dx

1
�

1 + y2
x

�2

+

�

dx

ds

d

dx

�

1
�

1 + y2
x

yx

��2

= f (θ) θx

�

[f ′(θ)]
2

+ [θf ′(θ) + f(θ)]
2

where θ = yx , f(θ) =
1

√

1 + θ2
= cos φ

yt = − B ∂x

�

�

1 + y2

x

�

−1/2

∂x
yxx

(1 + y2
x)

3/2

�

. Hence,

θt = − B ∂
2

x

�

f(θ) ∂x

�

θxf(θ)

�

[f ′(θ)]
2

+ [θf ′(θ) + f(θ)]
2

��

and after differentiating each side with respect to x, we arrive at the boundary value 
problem

yx = θ = m ,x = 0, t > 0

θ → 0 , θx → 0, x → ∞.

θ = 0 , t = 0 x ≥ 0 ;

∂x

�

θxf(θ)

�

[f ′(θ)]
2

+ [θf ′(θ) + f(θ)]
2

�

= 0 , x = 0

For surface diffusion on an anisotropic material, both mobility and energy depend on 
orientation. In terms of rescaled dimensionless variables, 
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yτ = −∂x [D(yx)∂x [E(yx)yxx]]

τ = 0; y = 0

x → ∞; y → 0 , yx → 0

x = 0; J = 0 ⇐⇒ ∂x [E(yx)yxx] = 0

x = 0 ; yx = m(τ).

m = tan(φ) ; γb(T ) = 2γs(T )sin(φ)

In the above, surface tension and grain boundary tension may depend on temperature 
T which may vary in time. Therefore the equilibrium groove slope m may depend on 
a time coordinate tau. 

    The Integrable Model

Progress has been made on this problem because of an integrable nonlinear 
anisotropic model

D(θ) =
β

β + θ
, E(θ) =

1

(1 + θ2)3/2

This is closest to the isotropic model in   L∞
when β = 2.026
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Polar plot of surface tension vs angle for integrable model 

With a single reciprocal linear function for f(yx), the anisotropic surface tension is 
close to constant for approximately quarter of the circle. With four segments of a 
reciprocal linear spline, the surface tension is approximately constant over all 
orientations.

The linear model has groove depth proportional to groove slope m. However, the 
nonlinear model predicts a bounded groove depth, and has an explicit solution with 
vertical groove root.  This occurs just before the surface tension is not strong enough 
to support the groove, which will be swallowed by an overarching crystal, as has 
been observed.
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When mobility and surface tension depend explicitly on time, due to temperature 
change,

, which prompts us define a new separable new time coordinate

D = D1(t)D2(yx); E = E1(t)E2(yx)

τ =

�
t

0

D1(t̄)E1(t̄)dt̄

A change of variables µ =
β

β + θ
z =

�
x

0

β + θ

β
dx

results in the governing equation transforming to a linear PDE

µτ = −µzzzz −

1

β

R(τ)µz , where R(τ) = −yτ (0, τ).

=⇒ z = 0, µzzz =
−R(τ)

β + m(τ)
.

;

After a change of accelerating reference frame, this results in an equation with 
constant coefficients:

Z = z +
1

β

y(0, τ) , µτ = −µZZZZ

which has scaling symmetry Z̄ = eεZ, τ̄ = e4ε

τ, µ̄ = µ.

In terms of canonical coords,  

Ȳ = Y, S̄ = S + ε, µ̄ = µ.

 For any linear equation with a one-parameter Lie group of symmetries, separation of 
variables is possible (Miller 1976). Separation of variables  allows more general 
solutions than the similarity solutions in which S-dependence is neglected:

µ = F (S)G(Y ).

Y = Zτ
−1/4, S = log(τ1/4),

In fact, F(S) may be any power Sk . By linear superposition we can construct a power 
series in time, for which the similarity solution is the leading term at zero degree.

the scaling transformation is simply a translation in S,

In the following, the similarity solution (j=0) has been separated from the terms of 
higher degree, which begin at j=1.

µ0(Y ) +
∞
�

j=0

τ
j/4 K1j 1F3

��

−j

4

�

,

�

1

4
,
1

2
,
3

4

�

,
Y 4

256

�

+K2jY 1F3

��

1

4
−

j

4

�

,

�

1

2
,
3

4
,
5

4

�

,
Y 4

256

�

X 1

+K3jY
2
1F3

��

1

2
−

j

4

�

,

�

3

4
,
5

4
,
3

2

�

,
Y 4

256

�

+K4jY
3
1F3

��

3

4
−

j

4

�

,

�

5

4
,
3

2
,
7

4

�

,
Y 4

256

�

.
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][ 1F3([a], [b1, b2, b3], z) =
∞�

k=0

(a)k

(b1)k(b2)k(b3)k

zk

k!

The Y-dependence is expressed exactly in terms of generalized hypergeometric 
functions that are evaluated easily:

(a)k = a(a + 1)(a + 2) . . . (a + k − 1)

It must be stressed that when the above series is truncated, it still gives an exact 
solution to the nonlinear surface diffusion equation with some time dependent slope 
at the groove root. For constant groove slope m,  we have a similarity solution of form 

yτ
−1/4 = H(xτ

−1/4)

For m varying with time, assume the simplest possible power-series extension

y(0, τ) = βτ
1/4

∞�

i=0

biτ
i/4

The boundary conditions then imply a system of recurrence relations for the unknown 
coefficients (Broadbridge and Goard, 2010).  An example of the solution is given 
below. Fourth-order diffusion typically generates numerous extrema. Unlike second-
order diffusion, there is no maximum principle. The solution has an infinite number 
of  extrema but these have rapidly diminishing displacement. In practice, only the 
secondary minimum has been observed at the nano-scale (e.g. Sachenko et al, 2002).

_________ t=0.0002 
                                                                                               ……………t=0.1 
                                                                                               ---------------t=1 
 
 

m(τ) = 1/2 + 1/2 τ
1/4

Exact solution of  surface diffusion around a groove with time-dependent slope at the 
root.

Grooving by evaporation-condensation.

In the Mullins 1957 theory of evaporation-condensation, lateral mixing of vapour 
keeps pressure p close to the equilibrium value above a flat surface, which is below the 
equilibrium value peq above a bulging surface and above  peq for an indented surface. 
The Nernst-Einstein theory of non-equilibrium evaporation  gives

−

∂N

∂t
=

Ωχ(peq − p)
√

2πm0kT
,
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where m0 is the particle mass and        is the evaporation coefficient. χ

which is commonly referred to as the Gibbs-Thompson formula. It follows that in 2D Cartesian 
coordinates, the evolution equation on the surface of a volatile crystal takes the general form of the 
curve-shortening equation

peq − p = p(eE/kT
− 1) ≈ 2pΩγκ̄/kT

Equilibrium vapour pressure will be proportional to the probability of a particle 
escaping the potential well at the solid surface. From the Gibbs canonical 
distribution,

The exact solution for grain boundary grooving by this nonlinear model of 
evaporation-condensation on an isotropic material, was given  by Broadbridge, 1989.

yt = ν

yxx

1 + y2
x

.

Note that the usual Gibbs-Thompson formula embodies an approximation E/kT<<1.  
This need not be true over typically short periods of time and small regions wherein 
the curvature is very large. For situations in which slopes are small but curvatures 
may be large, it is instructive to consider a fully nonlinear model

yt = −ν [exp(−γyxx/kT )− 1]

After choosing length and time scales ℓs = γ/kT, ts = ℓs/ν,

yt = 1− exp(−yxx) (yxx >> 1).

A degenerate model of this type was solved by Broadbridge and Goard, 2004.

yt = 1 + e
−2yxx

− 2e
−yxx = 1− 2 exp(−yxx) (yxx >> 1).

The solution shows that a sharp surface dislocation does indeed retain infinite curvature 
until a finite time delay before the surface is smooth.

``

….”
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Concomitant surface diffusion and evaporation-condensation at a 
ramp.
The flux from a grain boundary due to surface diffusion alone, is proportional to t-3/4.   
Up to some time scale, this will dominate a flux due to evaporation-condensation, 
which is proportional to t-1/4.  For a stable metal such as Au, surface diffusion will 
dominate for more than 10,000 years. For an unstable metal such as Mg, evaporation-
condensation will dominate less than an hour after formation of the grain boundary. 
When both mechanisms are combined additively in the transport equation, there is no 
longer a similarity solution. However if we add an extra second-order diffusion term 
to model transport by evaporation-condensation, the following equation remains 
integrable by the same sequence of transformations that was used above:

yt = νf(yx)
2yxx − ∂x

�

f(yx)∂x
�

f(yx)
3yxx

��

,

f(θ) =
α

(α+ θ)2
.

For illustrative purposes, the solutions of Tritscher 1996 for smoothing of a ramp 
dislocation, assumed 

ν =
(αm)2

(α+m)2
(1 + α

2)1/2

α

.

P. Tritscher 1996

−−−D = E1/3
=

α

α+ yx

α = cot
π

8
=

√

2 + 1.

___ isotropic material
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θ = zr; ρ = rt−1/2; θ = f(ρ)

zr = m, r = at
1/2 ; z = 0, t = 0 ; z → 0, r → ∞



   






 

phase boundary

zt = 2(1 + z
2

r )
1/2

Bκ̄ = B

�

zrr

1 + z2r

+
1

r
zr

�

= BD(θ)[θr +
1

r
θ(1 + θ2)](in anisotropic case)

Evaporation-condensation at an axi-symmetric surface, leads to flow by mean curvature:

Axi-symmetric surface evolution.

For the axi-symmetric flow, Gallage, Broadbridge, Triadis and Cesana are using the 
inverse method previously applied to 1D nonlinear diffusion by J. R. Philip, 1960.

D(θ) =
−0.5B−1 dρ

dθ

� θ

0
ρdθ

1 + θ(1 + θ2)d ln(ρ)/dθ

Isotropic model

D

y_x= θ

For axisymmetric surface diffusion on surface z=f(r,t),

zt = −

∂J

∂r
−

1

r
J ; J = −D(zr)

∂

∂r
(E(zr)κ̄).

κ̄ =
1

2

−zrr

[1 + z
2
r ]

3/2
−

1

2

1

r

zr

[1 + z
2
r ]

1/2
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, scaling invariance allows reduction to a nonlinear ODE for g, with

Inverse method:  choose solution form G,  deduce explicit relationship between 
functions D and E.  We are progressing on the problem of posing a physically 
reasonable solution g, from which we can construct physically reasonable functions D 
and E.

D(zr)[1 + z
2

r ]
1/2

E(zr)[1 + z
2

r ]
3/2

> 0 bounded,

> 0 bounded.

D(g) =

�
ρ

∞
ρ
2g(ρ̄)dρ̄− ρ

2
�
ρ

∞
g(ρ̄)dρ̄

4ρ[E(g){g′ + g

ρ
(1 + g2)}]′

zr = g(ρ); zt−1/4 = G(ρ);

G′ = g; ρ = rt−1/4

The assumption D=E=1 and the small-slope approximation                          gives the 
linear radial model, 

1 + g
2
≈ 1

for which we have constructed  the solution g as sum of 
generalized hypergeometric functions 1F3 and Meijer G functions.

The radial solution has either zero slope or infinite slope at r=0. We can substitute the 
solution of the linear problem, plus an assumed energy function into the nonlinear 
inverse problem for D(g), wherein the small-slope approximation is no longer assumed. 
Several speakers at this workshop have shown that mobility within a crystal may be 
strongly anisotropic.

Axisymmetric surface slope profile.

Dependence of mobility on radial surface slope.

For example, the solution depicted below, has an axisymmetric indentation with very 
small maximum slope, an isotropic surface energy E=1 and a weakly anisotropic 
mobility function D (notation M below).
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In this talk, several observation results of dislocations in crystals are reported.
Some experimental results exhibit that the properties of dislocations should play more
important roles in materials for the next generations.
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Lattice image of a silicon crystal irradiated by electron beam

lattice defects
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Why were  dislocations recognized  
in crystalline materials?
Crystal growth

X-ray diffraction spot

Mechanical properties

Mechanism of plastic deformation



Mechanical properties
Mechanism of plastic deformation
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Mechanism of plastic deformation in a crystal

Slip bands

    Step by 
slip deformation

 

Slip deformation in crystals
Slip system slip direction

slip plane

Face-centered cubic crystal 
{111}plane, <110>direction

Body-centered cubic crystal
{110}plane, <111>direction

Closed-packed hexagonal lattice
(0001)plane, <1120> direction
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Differences from real materials:
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Ideal strength for slip deformation

τideal 





Nb crystals
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High voltage Transmission Electron Microscope 
                                                  at Kyushu University

Ω energy filter
JEM-1300NEF with Ω energy filter
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0.3µm 

deformed at 700ºC


Characters of dislocations in crystals
defined by two vectors

1. Burgers vector   b
2. Dislocation line vector  t

Edge dislocation:    b    t
  
Screw dislocation:   b    t

1.Burgers vector   b
2. Dislocation line vector  t

b              
            

Mixed dislocation: combination of two 
components of edge and screw dislocs.
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Signs of edge dislocations

determined by the direction of extra-half plane

positive negative







Direction of 
motion
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Signs of screw dislocations
determined by the direction of 
          spiral configuration of atoms

Right-handed (R-H) 
Screw dislocation

Left-handed (L-H) 
Screw dislocation












Burgers vector is conservative on one dislocation line 
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Dislocation loop
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Role of dislocations on mechanical properties

Not only the mechanism of plastic deformation 
but also 

strengthening

Work-hardening:  To increase flow stress with       
                               increasing dislocation density 

Toughening: To suppress crack extension 
                             by dislocation emission 
                                                from the crack-tip 
                            

stttrengttthhheniiing

Work-hardening:  To increase flow stress with       
                               increasing dislocation density                                increasing dislocation density 

Toughening: To suppress crack extension 
                             by dislocation emission 
                                                from the crack-tip 

                  

Brittle-to-Ductile Transition (BDT)

P.B. Hirsch and S.G.Roberts (1997)

E.T.Wessel (1969)





















Temperature dependence of fracture toughness
 and yield strength in Steel
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Crack tip shielding by dislocations









Questions 

Stress Relaxation Mechanism ?

well known, but  not enough 
to understand what toughness is

Stress field  around a crack tip

 ij =
KI

r
f ij ()

 

KI =σ0 πaF
Stress intensity factor σ0   :   Applied external stress

 a    :   Crack length
 F   :   Specimen shape factor




θ 





σ0

(I) Stress from 
    the external applied load
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rcrack θ x

y

O

Applied 
   External 
      Stress

σij
T

σij σij
D

= kIr fij(θ)

= +

(I)+(II) Total stress from 
     the external stress and internal stress

Local stress intensity factor

kI KI kD= +

(I) Stress from the applied external stress

σ ij =
KI
r fij(θ)

Internal
Stress

(II) Stress from the internal source

σ ij =
kD
r fij(θ)

D

Local Stress around a Crack Tip

Applied stress 
intensity factor

Local k by 
dislocations

FIcrack
crack extension force

 
µ

FI =
ν kI



k K kI = I + D
Local stress 

intensity factor
Applied stress 
intensity factor

Local k due to 
dislocations

surface tension

Critical condition for crack extension

2γ

= γ
where

µν

Critical condition for crack extension

 ν
2µ

KIC+ kD
2
=2γ

Fracture 
    Toughness

Dislocation
shielding

Interatomic 
bonding

1 ν
KIC =

4µγ
kD

kD < 0 : Shielding    KIC
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crack

ζ j

x

iy

Local stress intensity factor k due to dislocations

Bj : Burgers vector
µ : Shear modulus
ν : Poisson’s ratio

kD = µ
2i(1−ν )

bj
2πζ j

+
bj
2πζ j

+
πbj (ζ j −ζ j )
(2πζ j )

3/2











j
∑

Critical condition for crack extension

 ν
2µ

KIC+ kD
2

=2γ

Fracture 
    Toughness

Dislocation
shielding

Interatomic 
bonding

1 ν
KIC =

4µγ
kD

kD < 0 : Shielding    KIC

Crack-tip shielding by dislocations

x 

y 

Crack 

No external stress
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High voltage Transmission Electron Microscope 
                                                  at Kyushu University

Ω energy filter
JEM-1300NEF with Ω energy filter



 

100
010

001

(0
10

) 
cr

ac
k

(011) slip plane

b=a/2[011]
(011) slip plane

L-H Screw Disloc.
b=a/2[011]

R-H Screw Disloc.

 

Dislocation configuration in front of a crack-tip in a MgO crystal
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ub u b

Right-handed 
screw disloc.

Left-handed 
screw disloc.




dislocation loopy

xz z'

crack C

kID(z') = - 2µ     [{byGz - y(byGyz - bzGyy)}dx

                         + {(1 - 2υ)(bxGz - bzGx) + y(bxGyz - bzGyx)}dy

                          - {byGx + y(bxGyy - byGyx)}dz]

C

Bueckner potential

ζ =    x + i(z - z')        1                
4(1-υ)π     ζ          logG = - 3/2

q + ζ
q - ζ q = Re[   2(x + iy)], ,

3-Dimensional Problem

Local Stress Intensity Factor 
due to a Disloc. kD



Mode I

Mode II Mode III
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-2 -1 0 1 2
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m

Local Stress Intensity Factor kD  
   due to a Screw Dislocation 

h = 1.0 µm

y

xz z' h

b

(010) crack

[100]

[010]

[001]

R-H screw disloc. 
on (011) plane

Mode I

Mode II
Mode III
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L-H screw disloc. 
on (011) plane

h = 1.0 µm

y

xz z' h

b

45(010)crack

[100]

[010]

[001]
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5μm

[110]

[110]

[001]

g=[220]

TEM image

Thickness : 9.89μm

80eV slit 
centered on 1300eV 
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Analysis of stress field of kink boundary based on
lattice defect theory

Akihiro Nakatani

Osaka University

(joint work with Xiao-Wen Lei (Fukui University))

An expression of the displacement field of the continuum limit of uniformly dis-
tributed dislocations on afinite straight segment in an infinite elastic body is formulated
as a closed-form. The exact solution based on the linear elasticity is applied to describe
the elastic field near a kink boundary in magnesium alloy with long-period stacking or-
dered structure. Stress singularity of line of intersection between two kink boundaries
will be discussed in detail by an asymptotic analysis as well as computational analysis.
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Structure of tilt grain boundaries from
mathematical perspective

Kazutoshi Inoue
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(joint work with Motoko Kotani1 and Yuichi Ikuhara1,2)

Functional materials are often used by a polycrystalline form, and their electrical
and physical properties are strongly affected by crystalline defects such as dislocations
and grain boundaries (GBs). Structures and properties of GBs have been intensively
studied both experimentally and numerically for decades. Simplified system of bicrys-
tals has been often investigated in order to determine individual contributions from
various components to the macroscopic properties. Many studies have mainly focused
on special commensurate GBs with a short periodicity. However, any GB deviated
from a typical commensurate orientations can have a rather long periodicity which are
well described by the structural-unit model. It has been shown that the structures of
symmetrical tilt GBs can be described by a part of quasi-periodical arrangements of
structural units as a realization of the lowest energy structure under an assumption
that the structure may change as continuously as possible as a function of misorien-
tations. Consequently, two types of structural units are arranged in a way that GB
dislocations are maximally separated. Because of this property, the periodicity and the
arrangement of structural units in symmetrical tilt GBs can be closely related to the
distribution of rational numbers that is well represented by the Farey sequence. We
have systematically predicted the arrangement of structural units in various types of
GBs in ceramic materials by utilizing the Farey sequence. The atomic configurations
in GBs were characterized by the aberration-corrected scanning transmission electron
microscopy, showing a nice agreement with the prediction [1-3].
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1. Introduction

Materials are often used by a polycrystalline form, and their macroscopic properties
are strongly affected by crystalline defects such as dislocations and grain boundaries
(GBs). Grain boundary (GB) is an interface formed by two adjacent crystal grains.
Atomic structures and functional properties of GB have been intensively studied ex-
perimentally and numerically. Most of the studies have mainly focused on special
commensurate GBs such as coincidence-site lattice (CSL) GBs with short periodic-
ity [1–4]. Commensurate GBs have been classified by the coincidence index Σ, and the
CSL theory of high dimensional lattices has been developed after the discovery of qua-
sicrystals [5, 6]. Especially, simplified system of symmetrical tilt GBs have been often
investigated in order to determine individual contributions of various components to
their properties. A GB deviated from a commensurate orientation with short period-
icity may show a long periodicity which can be well described by the structural-unit
model [7–9]. High index CSL GBs can be described by a relatively long periodicity of
structural units which form a part of a quasi-periodicity instead of random structures.
It has been found that the arrangement of structural units in a GB can strongly affect
the GB energy which should be important in mechanical behavior, ductility, segrega-
tion and so forth [10–20]. Since there exist only a few CSL orientations with short
periodicity, the O-lattice theory has been proposed in 1960’s in order to interpolate
short-periodicity structures [21–23]. A general theoretical framework in regard to the
symmetry of crystallographic groups on the dichromatic complex of two adjacent lat-
tices was developed [24, 25]. Then, a general principle to obtain the arrangement of
structural units has been proposed, assuming that the GB structure can be described
by a combination of two reference structures, and change as continuously as possible
according to the misorientation [26–28]. Relatively recently, irrational interfaces result-
ing in quasi-periodic structures have been studied and a method to approximate the
structure has been demonstrated [29, 30]. According to the rapid development of ex-
perimental techniques, direct observation of GB structures due to aberration-corrected
scanning transmission electron microscopy (STEM) combined with the first-principles
calculations has been making important progress in materials science [31, 32].

However, a general mathematical principle is also necessary to be developed for pre-
dicting the stable structure of GBs and their relation to properties in various materials.
We found that the periodicity and the arrangement of structural units in symmetrical
tilt GBs can be closely related to the distribution of rational numbers that was well rep-
resented by the Farey sequence. The arrangement of structural units in various types
of GBs in ceramic materials were systematically predicted by utilizing the Farey se-
quence which nicely agreed with STEM observations in atomic-resolution. This article
is mainly based on [33,34].

2. Preliminaries

2.1. The CSL theory. Let L be an n-dimensional lattice in Rn, which is isomorphic
to a finitely generated Abelian subgroup of full rank with the co-compact property, and
O(n) be the group of orthogonal transformations in Rn. One of the lattice points in
L is chosen to be the origin, and RL stands for the transformation of L by R ∈ O(n).
Then, the sublattice L ∩ RL is called the coincident-site lattice (CSL) and R ∈ O(n)
is a coincidence isometry if the intersection L∩RL forms a sublattice of full rank with
a finite index. The index is defined as the group index Σ := ΣR(L) = [L : L ∩ RL],
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which is equivalent to the ratio |L∩RL|/|L| where |L∩RL| and |L| denote the volume
of the fundamental domains of L ∩ RL and L as well as to the reciprocal density of
CSL points. Let IsomC(n) denote the group of coincidence isometries in Rn. Then,
R ∈ SO(n) ∩ IsomC(n) is called a coincidence rotation. The CSL is considered as the
maximal sublattice that is contained in both of L and RL. The union L∪RL may form
so-called a dichromatic pattern [24]. The CSL dichromatic patterns of Σ17 and Σ5 are
shown in Fig.1. For R ∈ IsomC(n), the group

(1) L +RL = {v1 + v2; v1 ∈ L, v2 ∈ RL}

may form a super-lattice of L (and RL) which is called the displacement-shift complete
(DSC) lattice [35]. The DSC lattice is the minimal super-lattice that contains both L
and RL, generated by the minimal translations which preserve the CSL dichromatic
pattern. Later, we may see that a GB dislocation can be introduced according to the
DSC lattice in order to minimize the GB energy by the minimal displacement of lattices.
Therefore, a GB dislocation especially in a high-angle GB is called a DSC dislocation.

2.2. The O-lattice theory. The O-lattice theory was introduced to generalize the
CSL theory [21–23]. For a lattice L in Rn and R ∈ O(n), the O-lattice is defined by

(2) OR(L) := {a ∈ Rn ; (I −R−1)a ∈ L},

where I is the identity transformation. The lattice structure of OR(L) is induced from
L unless I −R−1 degenerates. An element in OR(L) is called an O-lattice point. From
Eq.(2), a ∈ OR(L) is recognized as the origin of R ∈ O(n) in the dichromatic pattern of
L and RL. When det(I −R−1) = 0, a family of hyperplanes may appear. It should be
noted that a smooth variation of R ∈ O(n) induces the smooth variation of O-lattice
while CSL configurations with low Σ only exist discretely.

The idea of O-lattice was introduced in order to analyze the best matching points
of two lattices where misfit is maximized on the boundary of Voronoi cells of O-lattice
points. We expect that dislocations can be introduced if a GB plane intersects the
boundary of the Voronoi cells of O-lattice points. Therefore, the low density of O-
lattice points results in the low dislocation density. The O-lattice is a way to generalize
the CSL since any CSL points can be the origin of a coincidence rotation. Conversely,
given an O-lattice point and the transformation R, the lattice configuration around it
can be recovered. From Eq.(2), one may see that |L|/| det(I − R−1)| gives the volume
of the fundamental domain of the O-lattice, and therefore that | det(I − R−1)| is the
density of O-lattice points as with Σ in the CSL theory. Generally, OR(L) is a super-
lattice of the CSL if R is a coincidence rotation.

O-lattice points can be classified in terms of the internal coordinates which is given
by a projection of OR(L) to the quotient Rn/ ∼ with respect to the translation sym-

metry of L. The set of projected O-lattice points is denoted by ÕR(L) which is con-

ventionally called the reduced O-lattice. Let #ÕR(L) denote the number of elements

in ÕR(L). Then, #ÕR(L) is finite if R is a coincidence isometry. For R ∈ IsomC(n),

we have #ÕR(L)/| det(I − R−1)| = ΣR(L) unless det(I − R−1) = 0. The translations

which preserve the total CSL pattern can be classified by the translations in ÕR(L) [23].
Examples of reduced O-lattice points are shown in table 1 for a 2-dimensional square
lattice L and the coincidence rotation R with the rotation angle 2θ around the [001]-
axis.

1. Introduction

Materials are often used by a polycrystalline form, and their macroscopic properties
are strongly affected by crystalline defects such as dislocations and grain boundaries
(GBs). Grain boundary (GB) is an interface formed by two adjacent crystal grains.
Atomic structures and functional properties of GB have been intensively studied ex-
perimentally and numerically. Most of the studies have mainly focused on special
commensurate GBs such as coincidence-site lattice (CSL) GBs with short periodic-
ity [1–4]. Commensurate GBs have been classified by the coincidence index Σ, and the
CSL theory of high dimensional lattices has been developed after the discovery of qua-
sicrystals [5, 6]. Especially, simplified system of symmetrical tilt GBs have been often
investigated in order to determine individual contributions of various components to
their properties. A GB deviated from a commensurate orientation with short period-
icity may show a long periodicity which can be well described by the structural-unit
model [7–9]. High index CSL GBs can be described by a relatively long periodicity of
structural units which form a part of a quasi-periodicity instead of random structures.
It has been found that the arrangement of structural units in a GB can strongly affect
the GB energy which should be important in mechanical behavior, ductility, segrega-
tion and so forth [10–20]. Since there exist only a few CSL orientations with short
periodicity, the O-lattice theory has been proposed in 1960’s in order to interpolate
short-periodicity structures [21–23]. A general theoretical framework in regard to the
symmetry of crystallographic groups on the dichromatic complex of two adjacent lat-
tices was developed [24, 25]. Then, a general principle to obtain the arrangement of
structural units has been proposed, assuming that the GB structure can be described
by a combination of two reference structures, and change as continuously as possible
according to the misorientation [26–28]. Relatively recently, irrational interfaces result-
ing in quasi-periodic structures have been studied and a method to approximate the
structure has been demonstrated [29, 30]. According to the rapid development of ex-
perimental techniques, direct observation of GB structures due to aberration-corrected
scanning transmission electron microscopy (STEM) combined with the first-principles
calculations has been making important progress in materials science [31, 32].

However, a general mathematical principle is also necessary to be developed for pre-
dicting the stable structure of GBs and their relation to properties in various materials.
We found that the periodicity and the arrangement of structural units in symmetrical
tilt GBs can be closely related to the distribution of rational numbers that was well rep-
resented by the Farey sequence. The arrangement of structural units in various types
of GBs in ceramic materials were systematically predicted by utilizing the Farey se-
quence which nicely agreed with STEM observations in atomic-resolution. This article
is mainly based on [33,34].

2. Preliminaries

2.1. The CSL theory. Let L be an n-dimensional lattice in Rn, which is isomorphic
to a finitely generated Abelian subgroup of full rank with the co-compact property, and
O(n) be the group of orthogonal transformations in Rn. One of the lattice points in
L is chosen to be the origin, and RL stands for the transformation of L by R ∈ O(n).
Then, the sublattice L ∩ RL is called the coincident-site lattice (CSL) and R ∈ O(n)
is a coincidence isometry if the intersection L∩RL forms a sublattice of full rank with
a finite index. The index is defined as the group index Σ := ΣR(L) = [L : L ∩ RL],

91



Table 1. A classification of reduced O-lattice points for the (m 1 0)-
GBs with the rotation angle 2θ around the [001]-axis for a positive
integer k.

cot θ GB plane Σ reduced O-lattice points
2k (2k 1 0) 4k2 + 1 (0, 0), (1/2, 1/2), (0, 1/2), (1/2, 0)

2k + 1 (2k + 11 0) 2k2 + 2k + 1 (0, 0), (1/2, 1/2)

2.3. Structural-unit Model. The periodicity of GBs can be described by the structural-
unit model. A structural unit is a polyhedron of atomic sites which typically appear
around the GB. The cubic crystal viewed along the [001]-direction can form a square
lattice, and the Miller index for the [001]-symmetrical tilt GB with a tilt angle 2θ is
given by (q p 0) satisfying cot θ = q/p where q and p are coprime positive integers with
q > p (except the case q = 1 and p = 0). It might be useful to consider a polygon of
atomic sites if the problem can be deduced to 2-dimension. As highlighted in Fig.1, a
structural unit of the (q p 0)-structure of the [001]-symmetrical tilt CSL GB is defined
to be a kite-shaped tetragon which is made by gluing a pair of right triangles of atomic
sites at their hypotenuses whose sides in the right angles are q and p in the unit of
the lattice constant. It can be useful to utilize the O-lattice as an indicator of the
periodicity of the structural units. In Fig.1, the CSL GBs are defined by the line pass-
ing through the CSL points below which there are points of L and above which there
are points of RL. GBs in Fig.1 can be described by an array of single type structural
units. Let OR(L)|GB and ÕR(L)|GB denote the subset of OR(L) and ÕR(L) restricted

on the GB. We notice (0, 0), (0, 1/2) ∈ ÕR(L)|GB for the Σ17 dichromatic pattern in

Fig.1(a), and (0, 0), (1/2, 1/2) ∈ ÕR(L)|GB for the Σ5 dichromatic pattern in Fig.1(b).

Two types of points in ÕR(L)|GB exist periodically on the GBs and structural units are

superposed passing through the CSL points (0, 0) ∈ ÕR(L)|GB.

2.4. Diophantine problem. For any irrational number x and an integer t > 0, there
are positive coprime integers p and q such that |x− p/q| < 1/tq [36]. One of the efficient
ways to approximate an irrational number by a rational number can be demonstrated
by the continued-fraction expansion. The principal continued-fraction expansion of a
positive real number x is given by

(3) x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

,

with a non-negative integer a0 and positive integers ai’s (i ≧ 1), which can be denoted
by x = [a0; a1, a2, a3, · · · ]. Let {Pn} and {Qn} (n ≧ 0) be sequences defined by P0 =
1, P1 = a0, Q0 = 0, Q1 = 1, Pn+1 = Pn−1 + anPn and Qn+1 = Qn−1 + anQn. Then
Pn and Qn are coprime and satisfy |x− Pn/Qn| < 1/QnQn+1. Thus, an approximating
sequence {Pn/Qn} of x can be obtained, and the {(Qn Pn 0)}-structures may form a
sequence of the Rational Approximant Structure(RAS)s [30] which may converge to the
(x 1 0)-structure, realizing a part of a quasi-periodic arrangement of structural units.
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(a)

(b)

Figure 1. Dichromatic patterns of lattices of (a) Σ17, (410)-structure
with 2θ1 ≃ 28.07◦ (cot θ1 = 4) and (b) Σ5, (310)-structure with
2θ2 ≃ 36.87◦ (cot θ2 = 3). The O-lattice OR(L) corresponding to each
coincidence rotation R, and structural units are superposed [33].

Note that we have

(4) [a0; a1, · · · , an] = [a0; a1, · · · , an−1]⊞ [a0; a1, · · · , an−1, an − 1],

indicating that the rational number [a0; a1, · · · , an] is uniquely produced by the parent
rational numbers [a0; a1, · · · , an−1] and [a0; a1, · · · , an−1, an − 1].

3. Application to the GB structure

3.1. Application of the O-lattice theory. We demonstrate an application of the
O-lattice theory by focusing on the symmetrical tilt CSL GBs. The rotation axis is set
to be the [001]-axis. Since the (q p 0)-plane is spanned by the [001] and the [pq̄0]-axes,
the problem deduces to a 2-dimensional one. By taking the standard coordinates for a
square lattice L, and letting R = R(2θ) be the rotation of 2θ around the [001]-axis, we
have

(5) (I −R(2θ)−1)−1 =
1

2




1 cot θ 0
− cot θ 1 0
0 0 1


 ,

Table 1. A classification of reduced O-lattice points for the (m 1 0)-
GBs with the rotation angle 2θ around the [001]-axis for a positive
integer k.

cot θ GB plane Σ reduced O-lattice points
2k (2k 1 0) 4k2 + 1 (0, 0), (1/2, 1/2), (0, 1/2), (1/2, 0)

2k + 1 (2k + 11 0) 2k2 + 2k + 1 (0, 0), (1/2, 1/2)

2.3. Structural-unit Model. The periodicity of GBs can be described by the structural-
unit model. A structural unit is a polyhedron of atomic sites which typically appear
around the GB. The cubic crystal viewed along the [001]-direction can form a square
lattice, and the Miller index for the [001]-symmetrical tilt GB with a tilt angle 2θ is
given by (q p 0) satisfying cot θ = q/p where q and p are coprime positive integers with
q > p (except the case q = 1 and p = 0). It might be useful to consider a polygon of
atomic sites if the problem can be deduced to 2-dimension. As highlighted in Fig.1, a
structural unit of the (q p 0)-structure of the [001]-symmetrical tilt CSL GB is defined
to be a kite-shaped tetragon which is made by gluing a pair of right triangles of atomic
sites at their hypotenuses whose sides in the right angles are q and p in the unit of
the lattice constant. It can be useful to utilize the O-lattice as an indicator of the
periodicity of the structural units. In Fig.1, the CSL GBs are defined by the line pass-
ing through the CSL points below which there are points of L and above which there
are points of RL. GBs in Fig.1 can be described by an array of single type structural
units. Let OR(L)|GB and ÕR(L)|GB denote the subset of OR(L) and ÕR(L) restricted

on the GB. We notice (0, 0), (0, 1/2) ∈ ÕR(L)|GB for the Σ17 dichromatic pattern in

Fig.1(a), and (0, 0), (1/2, 1/2) ∈ ÕR(L)|GB for the Σ5 dichromatic pattern in Fig.1(b).

Two types of points in ÕR(L)|GB exist periodically on the GBs and structural units are

superposed passing through the CSL points (0, 0) ∈ ÕR(L)|GB.

2.4. Diophantine problem. For any irrational number x and an integer t > 0, there
are positive coprime integers p and q such that |x− p/q| < 1/tq [36]. One of the efficient
ways to approximate an irrational number by a rational number can be demonstrated
by the continued-fraction expansion. The principal continued-fraction expansion of a
positive real number x is given by

(3) x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

,

with a non-negative integer a0 and positive integers ai’s (i ≧ 1), which can be denoted
by x = [a0; a1, a2, a3, · · · ]. Let {Pn} and {Qn} (n ≧ 0) be sequences defined by P0 =
1, P1 = a0, Q0 = 0, Q1 = 1, Pn+1 = Pn−1 + anPn and Qn+1 = Qn−1 + anQn. Then
Pn and Qn are coprime and satisfy |x− Pn/Qn| < 1/QnQn+1. Thus, an approximating
sequence {Pn/Qn} of x can be obtained, and the {(Qn Pn 0)}-structures may form a
sequence of the Rational Approximant Structure(RAS)s [30] which may converge to the
(x 1 0)-structure, realizing a part of a quasi-periodic arrangement of structural units.
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restricted on the plane perpendicular to the [001]-axis. By applying Eq.(5) with cot θ =
q/p to a translational vector t(0, l, 0) ∈ L ≃ Z3 to obtain the O-lattice on the (q p 0)-
plane, one may see

(6) (I −R(2θ)−1)−1



0
l
0


 =

l

2



q/p
1
0


 ,

which is on the (q p 0)-plane. The CSL points are obtained by Eq.(6) if l is divisible
by 2p. If l is odd, the first component of Eq.(6) varies while the second component is

maintained at 1/2 in ÕR(L). Therefore, the periodicity of Eq.(6) in ÕR(L) can be given
by 2p. Recalling the case of CSL GBs with short periodicity in Fig.1, it can be shown
that the periodicity of the structural units is given by p by drawing structural units as
in Fig.3(b) starting with a CSL point and passing through O-lattice points alternately.
Now, we consider the GB with the misorientation angle 2θ ≃ 35.30◦ (cot θ = 22/7)
corresponding to the (22 7 0)-structure which is a near Σ5, (310)-structure with 2θ2 ≃
36.87◦ (cot θ2 = 1/3). In Fig.3(b), the dichromatic pattern of the (22 7 0)-structure
with the fundamental domains of L is presented. As in Fig.1, the CSL GBs are defined
by the line passing through the CSL points at the edge of the figure below which there
are points of L and above which there are points of RL. It can be seen that O-lattice
points in the structural unit shifts periodically in ÕR(L). In the fourth structural unit
from the left, an O-lattice point reaches at the edge of the fundamental domain of L
whose internal coordinates are (0, 1/2, 0) ∈ ÕR(L) with respect to the coordinate system
of L. Since the theoretical GB is on the (22 7 0)-plane, the above argument suggests
that the periodicity of the structural units is 7. The angle 2θ ≃ 35.30◦ (cot θ = 22/7)
corresponds to the CSL configuration of Σ533 which is in between Σ17, (410) (2θ1 ≃
28.07◦, cot θ1 = 4) and the Σ5, (310) (2θ2 ≃ 36.87◦, cot θ2 = 3), and the structure may
be composed of the (410) and the (310)-structural units. Eq.(6) becomes (0, 1/2) for
l ≡ 7(mod 14) which appears typically in the Σ17, (410) structure (Table 1). Namely,
we have (22 7 0) = (4 1 0)+6(3 1 0), which is viewed as a decomposition of a reciprocal
vector. As we see, a GB is called the reference structure if it is described by an array
of a single type structural units which can interpolate intermediate GBs in between
them. Once two reference structures are determined appropriately, one can obtain the
integral coefficients uniquely for each GB.

3.2. Farey sequence and GB structure. The periodicity of the structural units of
the (q p 0)-structure can be p corresponding to the periodicity of the O-lattice points.
A mirror-symmetrical sequence {pl}29l=1:

(7) 1,9, 8, 7, 6, 5,9, 4,7, 3,8, 5, 7,9, 2,9, 7, 5,8, 3,7, 4,9, 5, 6, 7, 8,9, 1

may appear repeatedly for p < 10, corresponding to 0◦ ≦ 2θ ≦ 90◦. The sequence
is recognized as the numerators of irreducible rational numbers in between 1/m and
1/(m − 1). For instance, irreducible rational numbers in between 1/4 and 1/3 whose
numerators are less than 10 can be given by 1/4, 9/35, 8/31, 7/27, 6/23, 5/19, 9/34,
4/15, 7/26, 3/11, 8/29, 5/18, 7/25, 9/32, 2/7, 9/31, 7/24, 5/17, 8/27, 3/10, 7/23, 4/13,
9/29, 5/16, 6/19, 7/22, 8/25, 9/28, 1/3. Therefore, if p1 = 1 and p29 = 1 correspond to
the Σ17, (410)-structure with 2θ1 ≃ 28.07◦(cot θ1 = 4) and the Σ5, (310)-structure with
2θ2 ≃ 36.87◦ (cot θ2 = 3), respectively, p26 = 7 corresponds to the (22 7 0)-structure
with 2θ ≃ 35.30◦ (cot θ = 22/7). It is observed that pl = pl−1+pl+1 holds for underlined
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terms in the sequence (7), corresponding to the decomposition of a periodicity pl to
pl−1 and pl+1.

The hierarchical structure in the distribution of rational numbers can be typically
shown in the Farey sequence [37–39]. The Farey sequence of the order N denoted
by FN is defined to be an increasing sequence of irreducible rational numbers whose
denominator is not bigger than N . It is closely related to physical phenomena [40–45].
As we see, the sequence (7) appears in the numerators in between 1/m and 1/(m− 1)
(m ≧ 2) as well as in the denominators of the Farey sequence of the order 9. By
introducing the operation ⊞ (the Farey summation) defined by

(8)
a

b
⊞ c

d
=

a+ c

b+ d
,

FN+1 can be produced by applying the operation to adjacent rational numbers in FN .
By setting F1 to be {0/1, 1/1}, the Farey diagram can be inductively obtained as
in Fig.2. The diagonal line segments in Fig.2 indicate the Farey summation defined
in Eq.(8). Each rational number p/q in Fig.2 may correspond to cot θ = q/p of a
CSL configuration and thus, it can represent the (q p 0)-structure. Note that rational
numbers in the early order of the Farey sequence correspond to the low index GBs.
Here, we assume the summation in Eq.(8) is assumed to be non-commutative, but
cyclic permutations are allowed in order to describe the unique periodical arrangement
of structural units.

Figure 2. The Farey diagram up to the order 9 [34].

Many of the previous investigations have shown that the (q p 0)-structure of a
symmetrical tilt GB can be composed of an integral linear combination of two types of
reference structures [10–20, 46–49]. Let pi and qi be coprime, positive integers (except
the case qi = 1 and pi = 0), respectively for i = 1, 2. The (q p 0)-structure can be in
between the (q1 p1 0) and the (q2 p2 0)-structures if p1/q1 < p/q < p2/q2 is satisfied.
Moreover, we assume

(9) det

(
p1 p2
q1 q2

)
= −1.

restricted on the plane perpendicular to the [001]-axis. By applying Eq.(5) with cot θ =
q/p to a translational vector t(0, l, 0) ∈ L ≃ Z3 to obtain the O-lattice on the (q p 0)-
plane, one may see

(6) (I −R(2θ)−1)−1



0
l
0


 =

l

2



q/p
1
0


 ,

which is on the (q p 0)-plane. The CSL points are obtained by Eq.(6) if l is divisible
by 2p. If l is odd, the first component of Eq.(6) varies while the second component is

maintained at 1/2 in ÕR(L). Therefore, the periodicity of Eq.(6) in ÕR(L) can be given
by 2p. Recalling the case of CSL GBs with short periodicity in Fig.1, it can be shown
that the periodicity of the structural units is given by p by drawing structural units as
in Fig.3(b) starting with a CSL point and passing through O-lattice points alternately.
Now, we consider the GB with the misorientation angle 2θ ≃ 35.30◦ (cot θ = 22/7)
corresponding to the (22 7 0)-structure which is a near Σ5, (310)-structure with 2θ2 ≃
36.87◦ (cot θ2 = 1/3). In Fig.3(b), the dichromatic pattern of the (22 7 0)-structure
with the fundamental domains of L is presented. As in Fig.1, the CSL GBs are defined
by the line passing through the CSL points at the edge of the figure below which there
are points of L and above which there are points of RL. It can be seen that O-lattice
points in the structural unit shifts periodically in ÕR(L). In the fourth structural unit
from the left, an O-lattice point reaches at the edge of the fundamental domain of L
whose internal coordinates are (0, 1/2, 0) ∈ ÕR(L) with respect to the coordinate system
of L. Since the theoretical GB is on the (22 7 0)-plane, the above argument suggests
that the periodicity of the structural units is 7. The angle 2θ ≃ 35.30◦ (cot θ = 22/7)
corresponds to the CSL configuration of Σ533 which is in between Σ17, (410) (2θ1 ≃
28.07◦, cot θ1 = 4) and the Σ5, (310) (2θ2 ≃ 36.87◦, cot θ2 = 3), and the structure may
be composed of the (410) and the (310)-structural units. Eq.(6) becomes (0, 1/2) for
l ≡ 7(mod 14) which appears typically in the Σ17, (410) structure (Table 1). Namely,
we have (22 7 0) = (4 1 0)+6(3 1 0), which is viewed as a decomposition of a reciprocal
vector. As we see, a GB is called the reference structure if it is described by an array
of a single type structural units which can interpolate intermediate GBs in between
them. Once two reference structures are determined appropriately, one can obtain the
integral coefficients uniquely for each GB.

3.2. Farey sequence and GB structure. The periodicity of the structural units of
the (q p 0)-structure can be p corresponding to the periodicity of the O-lattice points.
A mirror-symmetrical sequence {pl}29l=1:

(7) 1,9, 8, 7, 6, 5,9, 4,7, 3,8, 5, 7,9, 2,9, 7, 5,8, 3,7, 4,9, 5, 6, 7, 8,9, 1

may appear repeatedly for p < 10, corresponding to 0◦ ≦ 2θ ≦ 90◦. The sequence
is recognized as the numerators of irreducible rational numbers in between 1/m and
1/(m − 1). For instance, irreducible rational numbers in between 1/4 and 1/3 whose
numerators are less than 10 can be given by 1/4, 9/35, 8/31, 7/27, 6/23, 5/19, 9/34,
4/15, 7/26, 3/11, 8/29, 5/18, 7/25, 9/32, 2/7, 9/31, 7/24, 5/17, 8/27, 3/10, 7/23, 4/13,
9/29, 5/16, 6/19, 7/22, 8/25, 9/28, 1/3. Therefore, if p1 = 1 and p29 = 1 correspond to
the Σ17, (410)-structure with 2θ1 ≃ 28.07◦(cot θ1 = 4) and the Σ5, (310)-structure with
2θ2 ≃ 36.87◦ (cot θ2 = 3), respectively, p26 = 7 corresponds to the (22 7 0)-structure
with 2θ ≃ 35.30◦ (cot θ = 22/7). It is observed that pl = pl−1+pl+1 holds for underlined
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Then the general decomposition formula for the (q p 0)-structure of a [001] symmetrical
tilt GBs which is in between the (q1 p1 0) and the (q2 p2 0)-structures can be given by

(10) (q p 0) = n1(q1 p1 0) + n2(q2 p2 0),

corresponding to a decomposition of a reciprocal vector. If p1/q1 and p2/q2 are adjacent
rational numbers in the Farey sequence, Eq.(9) can be always satisfied. Therefore, the
value of tan θ corresponding to the reference structures can be chosen from an adjacent
pair of rational numbers in the certain order of the Farey sequence. Once two reference
structures satisfying Eq.(9) are determined, the positive integral coefficients n1 and n2

are uniquely obtained for each GB. While n1 + n2 = p gives the periodicity of the
structural units, the ratio of the number of the structural units can be given by

(11)
n2

n1
= −p1

p2
+

1

p2(p2 cot θ − q2)
,

which is continuous as a function of the misorientation angle. The (q p 0)-structure is
said to be closer to the (q1 p1 0)-structure than the (q2 p2 0)-structure if n1 > n2 is
satisfied which is equivalent to p1/q1 < p/q < (p1 + p2)/(q1 + q2). Eq.(11) is closely
related to the average spacing of DSC dislocations [11, 19, 20, 34]. It is characterized
by the DSC Burgers vector defined by the closure failure of a closed circuit of atomic
sites in the reference structure of the minority structural unit expanded in the reference
structure of the majority structural unit. Its magnitude and orientation is determined
by the DSC lattice. The DSC Burgers vector of the (q2 p2 0)-structure defined in the
(q1 p1 0)-structure by the Left-Handed-First-to-Start manner can be provided by

(12) bDSC =
−2a0
q21 + p21

[q1 p1 0]

for the reference structures satisfying Eq.(9) where a0 is the lattice parameter. If the
(q p 0)-structure satisfies Eq.(10) with n1 > n2, the DSC Burgers vector can be n2

times larger than the one in Eq.(12), resulting in the introduction of n2-dislocations at
each of the minority (q2 p2 0)-structure which may be maximally separated.

It has been assumed that the arrangement of structural units should vary as contin-
uously as possible with respect to the misorientation angle [29]. Thus, for each angle,
the arrangement can be determined uniquely among a number of possibilities. Suppose
that a GB structure may be described by s copies of A units and t copies of B units
(s > r > 1) where s and r are coprime, positive integers (i.e. the CSL configuration
is assumed). Let ⌊x⌋ denote the maximal integer which does not exceed x. The algo-
rithm is to arrange the structural units as evenly as possible by applying the Euclidean
division to r−1 = s and r0 = t. Namely,

r−1A+ r0B (r−1 > r0 > 1)
(13)

= r0A1 + r1A0 (A0 = A,A1 = s0A0 +B, s0 = ⌊r−1/r0⌋, r0 > r1 = r−1 − r0s0 > 1)

= · · · = rkAk+1 + rk+1Ak

(Ak+1 = skAk +Ak−1, sk = ⌊rk−1/rk⌋, rk > rk+1 = rk−1 − skrk > 1)

which can be iterated until rk becomes 1 for some k > 0.
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4. Experimental Verification

A crystal of high purity MgO (99.9%) (Shinkosha,Ltd., Tokyo) was purchased to
obtain bicrystals. Symmetrical tilt GBs were fabricated based on the bicrystallographic
relationships of 2θ = 35.3◦ (a near the Σ5 structure of 2θ2 ≃ 36.87◦ (cot θ2 = 3)) by
high-temperature diffusion bonding of the two single crystals at 1500◦C for 10 hours in
air. The obtained bicrystals were thinned for STEM observations. The STEM images
were taken with the high-angle annular dark field mode (the semi-angle of 60-180 mrad)
which provided the intensity proportional to the atomic number [50].

As we see, the misorientation angle 2θ ≃ 35.3◦ may correspond to the (22 7 0) struc-
ture with cot θ = 22/7. We have 22

7 = [3; 7] = 6 ◦ 3
1 ⊞ 4

1 , supporting the decomposition
(22 7 0) = 6(3 1 0)+1(4 1 0). It is assumed that DSC dislocations are introduced in the
minority Σ17, (410) structural units. In Fig.3(a), a STEM image of the symmetrical
tilt GB in MgO with the misorientation angle of 35.3◦ is presented and a corresponding
schematic structural units are superposed. It shows that the periodicity of the struc-
tural units can be verified as 7. Although it is a simple example, the way to obtain
RAS’s is identical to other GBs [51,52].

2nm [001]

(4/7,1/2)  (5/7,1/2)  (6/7,1/2)       (0,1/2)      (1/7,1/2)  (2/7,1/2)  (3/7,1/2)

(a)

A B

A+6B A+6B

(b)

Figure 3. (a) A STEM image of a symmetrical tilt GB in MgO. The
tilt angle is approximately 35.3◦ which is a near Σ5 GB of 2θ2 ≃
36.87◦ (cot θ2 = 3). The GB is composed of a Σ17 structural unit
A and 6 copies of Σ5 structural unit B in a periodical unit. (b) The
dichromatic pattern of lattices L and RL for the misorientation of 35.3◦.
CSL points exist at the edge of the figure. The O-lattice and structural
units are superposed so that they pass O-lattice points alternately. The
O-lattice point in the middle of the figure reaches at the edge of the
fundamental domain with (0, 1/2) ∈ ÕR(L). The internal coordinate
of O-lattice points inside the structural units shift gradually, indicating
the periodicity of the GB is 7.

5. Summary

Atomic structure of symmetrical tilt GBs are analyzed from mathematical perspec-
tive. Under the assumption that GB structure may change as continuously as possible

Then the general decomposition formula for the (q p 0)-structure of a [001] symmetrical
tilt GBs which is in between the (q1 p1 0) and the (q2 p2 0)-structures can be given by

(10) (q p 0) = n1(q1 p1 0) + n2(q2 p2 0),

corresponding to a decomposition of a reciprocal vector. If p1/q1 and p2/q2 are adjacent
rational numbers in the Farey sequence, Eq.(9) can be always satisfied. Therefore, the
value of tan θ corresponding to the reference structures can be chosen from an adjacent
pair of rational numbers in the certain order of the Farey sequence. Once two reference
structures satisfying Eq.(9) are determined, the positive integral coefficients n1 and n2

are uniquely obtained for each GB. While n1 + n2 = p gives the periodicity of the
structural units, the ratio of the number of the structural units can be given by

(11)
n2

n1
= −p1

p2
+

1

p2(p2 cot θ − q2)
,

which is continuous as a function of the misorientation angle. The (q p 0)-structure is
said to be closer to the (q1 p1 0)-structure than the (q2 p2 0)-structure if n1 > n2 is
satisfied which is equivalent to p1/q1 < p/q < (p1 + p2)/(q1 + q2). Eq.(11) is closely
related to the average spacing of DSC dislocations [11, 19, 20, 34]. It is characterized
by the DSC Burgers vector defined by the closure failure of a closed circuit of atomic
sites in the reference structure of the minority structural unit expanded in the reference
structure of the majority structural unit. Its magnitude and orientation is determined
by the DSC lattice. The DSC Burgers vector of the (q2 p2 0)-structure defined in the
(q1 p1 0)-structure by the Left-Handed-First-to-Start manner can be provided by

(12) bDSC =
−2a0
q21 + p21

[q1 p1 0]

for the reference structures satisfying Eq.(9) where a0 is the lattice parameter. If the
(q p 0)-structure satisfies Eq.(10) with n1 > n2, the DSC Burgers vector can be n2

times larger than the one in Eq.(12), resulting in the introduction of n2-dislocations at
each of the minority (q2 p2 0)-structure which may be maximally separated.

It has been assumed that the arrangement of structural units should vary as contin-
uously as possible with respect to the misorientation angle [29]. Thus, for each angle,
the arrangement can be determined uniquely among a number of possibilities. Suppose
that a GB structure may be described by s copies of A units and t copies of B units
(s > r > 1) where s and r are coprime, positive integers (i.e. the CSL configuration
is assumed). Let ⌊x⌋ denote the maximal integer which does not exceed x. The algo-
rithm is to arrange the structural units as evenly as possible by applying the Euclidean
division to r−1 = s and r0 = t. Namely,

r−1A+ r0B (r−1 > r0 > 1)
(13)

= r0A1 + r1A0 (A0 = A,A1 = s0A0 +B, s0 = ⌊r−1/r0⌋, r0 > r1 = r−1 − r0s0 > 1)

= · · · = rkAk+1 + rk+1Ak

(Ak+1 = skAk +Ak−1, sk = ⌊rk−1/rk⌋, rk > rk+1 = rk−1 − skrk > 1)

which can be iterated until rk becomes 1 for some k > 0.
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as a function of misorientation, two types of structural units are arranged so that mi-
nority units where DSC dislocations are introduced are maximally separated. Because
of this property, the structures of symmetrical tilt GBs can be described by a part of
quasi-periodical arrangements of structural units as a realization of the lowest energy
structure. Then, reference structures can linearly interpolate intermediate GBs. The
major structures were well predicted by a simple decomposition formula of symmetrical
tilt GBs with an algorithm due to the Farey sequence. The arrangement of structural
units can be derived so as to maximize the separation of minority units which can be
applicable to other GBs.

Although direct STEM observations in atomic scale can show the combination of
structural units at GBs, the origin and the mechanism of GB phenomena have not been
fully understood yet. For instance, the general criterion for reference structures of GBs
which cannot be easily determined by their GB energy. The mathematical formulation
for the structures of asymmetrical tilt, twist, and their combination are yet unknown.
It should also be important to discuss configurational entropy in the structural unit
model as well as the dependence on geometrical restrictions.
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as a function of misorientation, two types of structural units are arranged so that mi-
nority units where DSC dislocations are introduced are maximally separated. Because
of this property, the structures of symmetrical tilt GBs can be described by a part of
quasi-periodical arrangements of structural units as a realization of the lowest energy
structure. Then, reference structures can linearly interpolate intermediate GBs. The
major structures were well predicted by a simple decomposition formula of symmetrical
tilt GBs with an algorithm due to the Farey sequence. The arrangement of structural
units can be derived so as to maximize the separation of minority units which can be
applicable to other GBs.

Although direct STEM observations in atomic scale can show the combination of
structural units at GBs, the origin and the mechanism of GB phenomena have not been
fully understood yet. For instance, the general criterion for reference structures of GBs
which cannot be easily determined by their GB energy. The mathematical formulation
for the structures of asymmetrical tilt, twist, and their combination are yet unknown.
It should also be important to discuss configurational entropy in the structural unit
model as well as the dependence on geometrical restrictions.
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Introduction

Aim of this talk

Describe “lattice defect” in terms of monodromy.

“Lattice defect”¨ ¨ ¨Most parts look like usual “lattice”, but the
lattice structure is broken somewhere.

Typical examples of lattice defects ¨ ¨ ¨Dislocations

edge dislocation

1

1Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153.

Lattice defects from monodromy

Introduction

screw dislocation

2

2Adapted from W. D. Callister, Jr., Materials science and engineering : an introduction, John Wiley & Sons,

Inc., 1940, p. 90.

Lattice defects from monodromy

Introduction

Screw dislocation (from another angle):

3

3Adapted from W. T. Read, Jr., Dislocations in Crystals, McGraw- Hill Book Company, New York, 1953
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Introduction

Some screw dislocations are described in terms of monodromy
by Hamada–Matsutani–Nakagawa–Saeki–Uesaka ’16.

We shall consider a kind of generalization of their description
using monodromy in the sense of William Thurston. It can be
applied also to edge dislocations (and also to further general
lattice defects).
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Thurston’s pG , Xq-manifold and monodromy

To describe monodromy in the sense of Thurston, we need the
notion of pG ,X q-manifold. The content of this section is based on
W. Thurston’s book entitled “The geometry and topology of

three-manifolds” (unpublished notes).

Basic Setting

X : a topological space
G : a group
Assume that G continuously acts on X : we have a group
homomorphism ρ : G Ñ HomeopX q, where
HomeopX q :“ t f : X Ñ X | f is a homeomorphism u.

Actually we will only use the case that

X is a Cω-manifold, and

G Ă Diff
ωpX q :“ t f : X Ñ X | f is a Cω-diffeomorphism u

for our main purpose.
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Thurston’s pG , Xq-manifold and monodromy

Definition ((G, X)-manifold)

M : a topological space
(1) tpUα, φαquα is a pG ,X q-atlas on M if

tUαuα is an open covering of M,

each φα : Uα Ñ X is a homeomorphism onto its image, and

φα ˝ φ´1
β |φβpUαXUβq : φβpUα X Uβq Ñ φαpUα X Uβq is the

restriction of an element of ρpG q.

(2) M equipped with a pG ,X q-atlas is called a pG ,X q-manifold.

Each pUα, φαq is called a pG ,X q-chart.

Lattice defects from monodromy

Thurston’s pG , Xq-manifold and monodromy

Example

1 X “ R
n, G “ HomeopRnq

ñ pG ,X q-manifold = topological manifold

2 X “ R
n, G “ DiffpRnq

ñ pG ,X q-manifold = smooth manifold

3 X “ C
n, G “ HolpCnq

ñ pG ,X q-manifold = complex manifold

4 X “ H
n (hyperbolic space), G “ IsompHnq

ñ pG ,X q-manifold = hyperbolic manifold

Lattice defects from monodromy

Thurston’s pG , Xq-manifold and monodromy

Henceforth assume that

X is a Cω-manifold, and

G Ă Diff
ωpX q :“ t f : X Ñ X | f is a Cω-diffeomorphism u.

For each pG ,X q-manifold M, we can define a group
homomorphism which is called the monodromoy

Mon : π1pM, p0q Ñ G

if we fix a point p0 P M and a pG ,X q-chart pU0, φ0q near p0. (If
we change the initial data p0 and pU0, φ0q, the map is changed by
conjugation. )
We now sketch the construction of the monodromy map.
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Thurston’s pG , Xq-manifold and monodromy

Idea of the construction:

1 Take a loop γ : r0, 1s Ñ M with base point p0.

2 Take pG ,X q-charts pU1, φ1q, . . . , pUn, φnq which cover the
image of γ. (Note that the neighborhood of the base point is
already covered by U0.) Take the covers so that Ui X Ui`1 is
non-empty and connected p0 ď @i ď n ´ 1q.

3 D!gi P G s.t. gi gives the coordinate change of pUi , φi q and
pUi`1, φi`1q. (Here, for the uniqueness, we need to assume
Cω.)

4 One can show that Monprγsq :“ g0 ¨ ¨ ¨ gn´1 P G depends only
on the homotopy class of γ (for the fixed chart pU0, φ0q).

If we take another base point p1
0 and a chart pU 1

0, φ
1
0q near p1

0, the
monodoromy map is changed by conjugation. In particular, if G is
abelian, we have a homomorphism Mon : π1pMq Ñ G which is
independent of the choice of base points and charts near that.

Lattice defects from monodromy

Monodromy of dislocations

Outlines

1 Introduction

2 Thurston’s pG ,X q-manifold and monodromy

3 Monodromy of dislocations
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Monodromy of dislocations

Recall:
“Lattice defect”¨ ¨ ¨Most parts look like usual “lattice”, but the
lattice structure is broken somewhere.

LOCALLY, it looks like the standard Z
3 in R

3.
ù One can hope to give a pZ3,R3q-manifold structure
corresponding to the graph of the given lattice defect.
ù One can obtain the monodromy (like as “invariant” of lattice
defects).
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Monodromy of dislocations

Given a picture of a lattice defect,

assume that we have the notion of “vertices” (Ø lattice
point), and

assume that we have the notion of “edges” (Ø nearest lattice
points).

e.g. edge dislocation

4

4Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153.

Lattice defects from monodromy

Monodromy of dislocations

Define M as the “fat graph”:

M :“
ď

E :edge, pPE

Bppǫq,

where ǫ ą 0 is a sufficiently small number, and Bppǫq is the open
ball centered at p with radius ǫ. M is an open submanifold of R3.

In some good situation, we can give a pZ3
,R

3q-manifold structure
on M. We now explain the pZ3

,R
3q-manifold structure for

edge/screw dislocation.

We first consider a 2-dimensional model of edge dislocation.

Lattice defects from monodromy

Monodromy of dislocations

M

Z
2

Z
2

Figure: pZ2
,R

2q-charts on the edge dislocation
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Monodromy of dislocations

Strictly speaking, to calculate the monodromy following the
definition, we have to decompose these two charts to be “Ui XUi`1

is connected for each i”. The coordinate change between new two
charts arising from the previous one chart is just id.

Z
2

Figure: Example of decomposition

Lattice defects from monodromy

Monodromy of dislocations

Calculation of monodromy:

(coordinate change between (1) and (1)’) = p0, 0q P Z
2.

(coordinate change between (2) and (2)’) = p1, 0q P Z
2.

ù monodromy along this loop = p0, 0q ` p1, 0q “ p1, 0q P Z
2.

(Since G “ Z
2 is abelian, we don’t care about base points.)

(1)

(2)

(1)’

(2)’

Lattice defects from monodromy

Monodromy of dislocations

Except for near this loop, one can trivially give pZ2
,R

2q-charts on
M.
Since M „

Ž

Z
S1 (homotopy equivalent), we have π1pMq – ˚ZZ.

The monodromy map

Mon : π1pMq – ˚ZZ Ñ Z
2

is non-trivial: (the above loop) ÞÑ p1, 0q.

Of course one can consider 3-dimensional model of edge
dislocation, and similarly obtain

Mon : π1pMq – ˚ZZ Ñ Z
3
.

We have similarly have a distinguished loop, and
(the distinguished loop) ÞÑ p1, 0, 0q.
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Monodromy of dislocations

Remark

The non-trivial direction p1, 0, 0q for monodromy is perpendicular
to the dislocation line R ¨ p0, 0, 1q.

5

5Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153.

Lattice defects from monodromy

Monodromy of dislocations

For screw dislocation, we have to get rid of the “zigzag” part to
give a pZ3

,R
3q-manifold structure on M, obtained from the

following graph:

6

One reason why we have to do is, for example, the existence of a
vertex with three edges. This part cannot be a subgraph of Z3.

6Adapted from W. T. Read, Jr., Dislocations in Crystals, McGraw- Hill Book Company, New York, 1953

Lattice defects from monodromy

Monodromy of dislocations

However, if we get rid of this zigzag part, we can give a
pZ3

,R
3q-manifold structure on M, and calculate the monodromy.

This monodromy corresponds to
Hamada–Matsutani–Nakagawa–Saeki–Uesaka ’s description.

Remark

The non-trivial direction for monodromy is parallel to the
dislocation line.

This suggests that the monodromy detects the difference between
edge and screw dislocations.
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Monodromy of dislocations

Question

Give a mathematical definition of “lattice defect” so that one
can give a pZ3

,R
3q-manifold structure on it.

More precisely, construct pZ3
,R

3q-manifold structure on a
given lattice defect canonically. (Then the monodromy turns
out to be an invariant of lattice defects.)

If one need, consider another group G Ă Diff
ωpR3q rather

than Z
3 to describe more complicated lattice defect.
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Consider a system consisting of rigid bodies connected to each other. Such a system can
be modelled by a graph with edges labelled by elements of the Euclidean group SE(3),
where each cycle satisfies a certain closedness condition. We are particularly interested
in a system consisting of hinges. To each vertex is assigned one degree-of-freedom,
namely the rotation angle, and the configuration space of the system is described by
the real solution to a system of polynomial equations. We found an interesting family
of systems on cycle graphs, whose configuration spaces form positive dimensional real
algebraic varieties. They are a type of so called Kaleidocycle (e.g., [1, 2]), but exhibit
intriguing properties such as anti-symmetry and constant bending energy.
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In the celebrated paper by Groma and Balogh [3] the evolution for the edge disloca-
tion density given by (Pn) is based on performing statistical mechanics on the discrete
edge dislocation dynamics given by (P ) for a large number of dislocations. Here, we
present the first rigorous result of — and counterexample to — the evolutionary con-
vergence of (Pn) to (P ).

We consider n edge dislocations with positions (x1, . . . , xn) ∈ (T2)n (T2 is the flat
two-dimensional torus) and Burgers vectors bie1 with bi ∈ {−1,+1}. The evolution
equation is given by

(Pn)
dxi

dt
= −

[
∂1U(xi) +

1

n

n∑
j=1

bj∂1V (xi − xj)

]
bie1, t ∈ (0, T ), i = 1, . . . , n,

where ∂1 := e1 · ∇, U : T 2 → R is an external potential, and V is the interaction
potential for edge dislocation in T2 with the same Burgers vector (in particular, V (x) =
(e1 · x/|x|)2 − log |x|+ o(1) for |x| ≪ 1). The evolution for the dislocation densities ρ+

and ρ− of the positive (bi = 1) and negative (bi = −1) dislocations are given by

(P )

{
∂tρ

+ = ∂1
(
ρ+(∂1V ∗ (ρ+ − ρ−) + ∂1U)

)
in D′(T2 × (0, T )),

∂tρ
− = ∂1

(
ρ−(∂1V ∗ (ρ− − ρ+)− ∂1U)

)
in D′(T2 × (0, T )).

The counterexample is constructed for U ̸≡ 0 and the initial data ρ+◦ = ρ−◦ ≡ 1
2
,

which is not a stationary solution of (P ). However, the discrete approximating sequence
of ρ±◦ given by well-separated dipoles (i.e., |x+

◦,i − x−
◦,i| ≪ 1

n
and |x+

◦,i − x+
◦,j| > c

n
for all

i, j, n) results in an approximately stationary solution to (Pn). Hence, (P ) may not be
a good approximation for (Pn) for any n large enough.

Our second result is a theorem which specifies evolutionary convergence of a regu-
larised version, called (P δn

n ), of (Pn) to (P ). (P δn
n ) is obtained from (Pn) by replacing

V by Vδn , where δn → 0 as n → ∞ is the length scale at which the logarithmic singu-
larity of V is regularized (e.g., by convolution with the usual mollifier). The proof of
evolutionary convergence is divided into two steps. In the first step, the limit passage
n → ∞ is performed for δn = δ > 0 fixed by employing the theory of λ-convex Wasser-
stein gradient flows in [1], which yields an explicit convergence rate of the solutions
to (P δ

n) to those of (P δ), where (P δ) is obtained from (P ) by replacing V by Vδ. The
second step establishes evolutionary convergence of (P δ) to (P ) as δ → 0 by modifying
the well-posedness proof of (P ) developed in [2].
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Setting

The density picture is by courtesy of © Fraunhofer IWS Dresden, Germany
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Dislocation dynamics as a system of ODEs

n: number of dislocations

x = (x1, . . . , xn) ∈ (R2)n:
dislocation positions [unknowns]

bi ∈ {+1,−1}:
sign of the dislocations [given]

V : interaction potential
V (r, θ) = − log r + cos2 θ

−∂1V (r, θ) = 1
r cos(θ) cos(2θ)

∂1V (0) := 0, ∂1 := e1 · ∇

F ∈ R: external horizontal force

Evolution driven by interactions:

(Pn)
d

dt

xi(t) =

�

F +
1

n

n�

j=1

bj [−∂1V ]
�
xi(t)− xj(t)

�
�

bie1, i = 1, . . . , n.

e1

e2
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Main question

n → ∞

?

(Pn) (P )

dxi

dt
=

�

F +
1

n

n
�

j=1

bj [−∂1V ](xi − xj)

�

bie1
∂tρ

+ = ∂1

�

ρ+[∂1V ∗ (ρ+ − ρ−)−F ]
�

∂tρ
− = ∂1

�

ρ−[∂1V ∗ (ρ− − ρ+)+F ]
�

Continuum PDE proposed by [Groma, Balogh; 1999]

No rigorous connection is known

General theme: micro–macro connection
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Lit overview: courtesy of M.A.Peletier

2D continuum
dislocation
dynamics

Continuum-level

derivation
Berdichevsky 06

Groma-

Györgyi-

Kocsis 07

Gurtin-type

derivation

Gurtin 02
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Mora-Peletier-

Scardia 14

Van Meurs-

Muntean 14

Taylor

approximation

Dogge-

Peerlings-

Geers 14TR

Dogge-

Peerlings-

Geers 15

GENERIC

upscaling

Kooiman-

Hütter-

Geers 14

Kooiman-

Hütter-

Geers 15

Kooiman-

Hütter-

Geers 15a

Stastistical

mechanics

Groma 97

Groma-Csikor-

Zaiser 03

Valdenaire-

Le Bouar-

Appolaire-

Fivel 16TR

Groma-

Balogh 99
Groma-

Ispánovity-

Zaiser 16TR

Groma-

Vandrus-

Ispánovity 14TR

Linkummerd-

Van der Giessen 08

Phase-field

models

Koslowski-

Cuitiño-

Ortiz 02

Wang-Jin-

Cuitiño-

Khachaturyan 01
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Simulation with F > 0: initial condition

(Pn) (P )

dxi

dt
=

�

F +
1

n

n
�

j=1

bj [−∂1V ](xi − xj)

�

bie1
∂tρ

+ = ∂1

�

ρ+[∂1V ∗ (ρ+ − ρ−)− F ]
�

∂tρ
− = ∂1

�

ρ−[∂1V ∗ (ρ− − ρ+) + F ]
�

x−◦ x−◦x+◦ x+◦

ρ+◦ ρ−◦

(Pn)

(P )

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017 6 / 27

115



Simulation with F > 0 at t = t1

(Pn) (P )

dxi

dt
=

�

F +
1

n

n
�

j=1

bj [−∂1V ](xi − xj)

�

bie1
∂tρ

+ = ∂1

�

ρ+[∂1V ∗ (ρ+ − ρ−)− F ]
�

∂tρ
− = ∂1

�

ρ−[∂1V ∗ (ρ− − ρ+) + F ]
�

x−(t1) x−(t1)x+(t1) x+(t1)

ρ+(t1) ρ−(t1)

(Pn)

(P )
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Simulation with F > 0 at t = t2

(Pn) (P )

dxi

dt
=

�

F +
1

n

n
�

j=1

bj [−∂1V ](xi − xj)

�

bie1
∂tρ

+ = ∂1

�

ρ+[∂1V ∗ (ρ+ − ρ−)− F ]
�

∂tρ
− = ∂1

�

ρ−[∂1V ∗ (ρ− − ρ+) + F ]
�

x−(t2) x−(t2)x+(t2) x+(t2)

ρ+(t2) ρ−(t2)

(Pn)

(P )
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Simulation with F > 0 at t = t3 (boundaries at ±3
2e1)

(Pn) (P )

dxi

dt
=

�

F +
1

n

n
�

j=1

bj [−∂1V ](xi − xj)

�

bie1
∂tρ

+ = ∂1

�

ρ+[∂1V ∗ (ρ+ − ρ−)− F ]
�

∂tρ
− = ∂1

�

ρ−[∂1V ∗ (ρ− − ρ+) + F ]
�

x−(t3) x−(t3)x+(t3) x+(t3)

ρ+(t3) ρ−(t3)

(Pn)

(P )
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Rigorous result on mismatch

∂tρ
+ = ∂1

�
ρ
+[∂1V ∗ (ρ+ − ρ

−)−F ]
�

∂tρ
− = ∂1

�
ρ
−[∂1V ∗ (ρ− − ρ

+)+F ]
�

With F > 0, (P ) is not stationary at

ρ
+
◦ = ρ

−
◦ =

�
1 on (0, 1)2

0 otherwise

�

.

Picture: ∃x±◦ ≈ ρ
±
◦ for which

the solution x(t) to (Pn) is
‘approximately stationary’

Conclusion: if n3/2
δn → 0,

then x±(t) �≈ ρ
±(t) for all t > 0

≥
c
n

δn

x

−V (x, δn)

δn

∼ 1/δn
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How about our main question?

n → ∞

?

(Pn) (P )

dxi

dt
=

�

F +
1

n

n
�

j=1

bj [−∂1V ](xi − xj)

�

bie1
∂tρ

+ = ∂1

�

ρ+[∂1V ∗ (ρ+ − ρ−)−F ]
�

∂tρ
− = ∂1

�

ρ−[∂1V ∗ (ρ− − ρ+)+F ]
�

Seemingly: no (P ) exists in terms of ρ+, ρ− only!

Statistical model of [Groma, Balogh; 1999] has limited applicability
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On the other hand...

(Pn)
n→∞
−−−→ (P ) holds when

∂1V is Lipschitz [no singularity; next few slides], or

all dislocation have the same sign (i.e., µ−
n = 0 = ρ

−), and

V is logarithmic [Schochet; 1996]
V (r, θ) = |r|

−α with 0 < α < 1 [Duerinckx; 2015]
Ω = (a, b) with V convex [vM, Muntean; 2014]
V (r, θ) = |r|

−α with 0 < α < d− 2 and Ω ⊂ Rd [Hauray; 2009]

Open problem: which properties of V are sufficient/necessary for
(Pn) → (P ) in the single-sign case?

It seems: the stronger the singularity of V , the more (P ) regularises ρ±

over time, but the worse the control over (Pn)

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017 12 / 27

117



A different approach: regularising the dislocation core

n → ∞

?

(Pn) (P )

dxi

dt
=

�

F +
1

n

n
�

j=1

bj [−∂1Vδn ](xi − xj)

�

bie1
∂tρ

+ = ∂1

�

ρ+[∂1V ∗ (ρ+ − ρ−)−F ]
�

∂tρ
− = ∂1

�

ρ−[∂1V ∗ (ρ− − ρ+)+F ]
�

For instance, Vδ := V ∗ ηδ

Other choices: cutting away balls, phase field

δn is an atomic length-scale � δn
n→∞
−−−→ 0
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The auxiliary problem (P δ)

(P δ
n)

dxi

dt

=

�

F +
1

n

n�

j=1

bj [−∂1Vδ](xi − xj)

�

bie1

(P δ)

�
∂tρ

+
δ = ∂1

�
ρ
+
δ [∂1Vδ ∗ (ρ

+
δ − ρ

−
δ )−F ]

�

∂tρ
−
δ = ∂1

�
ρ
−
δ [∂1Vδ ∗ (ρ

−
δ − ρ

+
δ )+F ]

�

(P )

�
∂tρ

+ = ∂1

�
ρ
+[∂1V ∗ (ρ+ − ρ

−)−F ]
�

∂tρ
− = ∂1

�
ρ
−[∂1V ∗ (ρ− − ρ

+)+F ]
�

x
n,±

(P δ
n)

n → ∞

ρ
±
δ

(P δ)

δ → 0
ρ
±

(P )

For convenience, we set F = 0
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Standard approach: (P δ

n
) → (P δ) as n → ∞ (part 1)

We assume:

∂1Vδ Lipschitz, and
the solution trajectories xi(t) from (P δ

n)
remain in a bounded domain Ω ⊂ R2

We define the empirical measures

µ
+
n :=

1

n

�

i : bi=+1

δxi
, µ

−
n :=

1

n

�

i : bi=−1

δxi

Note: (µ+
n , µ

−
n ) ∈ P

�
Ω× {+1,−1)}

�
∋ (ρ+, ρ−)

Weak topology: µ±
n ⇀ ρ

± iff

�

Ω
ϕdµ

±
n

n→∞
−−−→

�

Ω
ϕdρ

± ∀ϕ ∈ C(Ω)
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Standard approach: (P δ
n) → (P δ) as n → ∞ (part 2)

Let x(t) satisfy (P δ
n), and let ϕ ∈ C∞

c (Ω× (0, T )). Then

0 =

� T

0

d

dt
ϕ(xi(t), t) dt = . . .

=

� T

0

∂tϕ(xi, t) + ∂1ϕ(xi, t) ·
�

bi
�

− ∂1Vδ ∗ (µ+
n − µ−

n )
�

(xi)
�

dt.

Taking 1
n

�
i:bi=+1 . . ., we obtain

0 =

� T

0

�

Ω

∂tϕdµ+
n dt+

� T

0

�

Ω

∂1ϕ ·
�

− ∂1Vδ ∗ (µ+
n − µ−

n )
�

dµ+
n dt ∀ϕ ∈ C∞

c ,

which is ∂tµ
+
n = ∂1

�
µ+
n [∂1Vδ ∗ (µ

+
n − µ−

n )]
�
in distributional sense.

Conclusion: (µ+
n , µ

−
n ) satisfies (P

δ)
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Standard approach: (P δ
n) → (P δ) as n → ∞ (part 3)

0 =

� T

0

�

Ω

∂tϕdµ+
n dt+

� T

0

�

Ω

∂1ϕ ·
�
− ∂1Vδ ∗ (µ

+
n − µ−

n )
�
dµ+

n dt

P(Ω× {+1,−1}) compact in weak topology
=⇒ for a.e. t ∃nk ∃ ρ±(t) : µ±

nk
(t) ⇀ ρ±(t) as k → ∞

Arzelà-Ascoli: nk is t-independent

With

�

Ω
∂1ϕ ·

�
− ∂1Vδ ∗ (µ

+
n − µ−

n )
�
dµ+

n

=

��

Ω×Ω
∂1ϕ(x) (−∂1Vδ)(x− y) d

�
(µ+

n − µ−
n )⊗ µ+

n

�
(y, x)

we pass to the limit nk → ∞ in weak-(P δ
n)
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Standard approach: (P δ
n) → (P δ) as n → ∞ (part 4)

We have proven “(P δ
n)

n→∞
−−−→ (P δ)” , i.e.,

Let Ω ⊂ R2 be a bounded domain, T, δ > 0

Then for all (ρ+◦ , ρ
−
◦ ) ∈ P(Ω× {+1,−1})

for all∗ µ±
n,◦ ⇀ ρ±◦

there exists nk and (ρ+δ , ρ
−
δ ) ∈ AC(0, T ;P(Ω× {±})) such that

(i) µ±
nk
(t) ⇀ ρ±δ (t) for a.e. 0 < t < T

(ii) ρ±δ (t) satisfies (P
δ) with ρ±δ (0) = ρ±◦

n → ∞

∂tρ
+
δ = ∂1

�
ρ+δ [∂1Vδ ∗ (ρ

+
δ − ρ−δ )]

�
nk → ∞

∂tµ
+
n = ∂1

�
µ+
n [∂1Vδ ∗ (µ

+
n − µ−

n )]
�µ+

n,◦

ρ+◦ ρ+δ (t)

µ+
n (t)

(∗) we assume xi(t) ∈ Ω for all i, n, t
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Standard approach: (P δ

n
) → (P δ) as n → ∞ (part 5)

The following Gronwall estimate holds:

W2

�
µ
±
n (t), ρ

±
n,δ(t)

�
≤ e

T�∂1Vδ�Lip
W2

�
µ
±
n,◦, αnρ

±
◦

�

αn :=
µ
±
n,◦(Ω)

ρ
±
◦ (Ω)

balances the total ±-mass

ρ
±
n,δ(t) satisfies (P

δ) with initial data αnρ
±
◦

W2: Wasserstein distance; metrises narrow topology

Proof of estimate:

either by explicit computation, or
using that (P δ

n) and (P δ) are gradient flows with
−λ-convex energies [λ = �∂1Vδ�Lip]
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Overview

µ
±
n

(P δ
n)

W2

�
µ
±
n (t), ρ

±
n,δ(t)

�
≤

exp(T�∂1Vδ�Lip)W2

�
µ
±
n,◦, αnρ

±
◦

�

αnρ
±
◦

(P δ)

?
ρ
±

(P )
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Main challenge: (P δ) → (P )?

(P δ)
∂tρ

+
δ = ∂1

�
ρ
+
δ [∂1Vδ ∗ (ρ

+
δ − ρ

−
δ )]

�

∂tρ
−
δ = ∂1

�
ρ
−
δ [∂1Vδ ∗ (ρ

−
δ − ρ

+
δ )]

�

Weak-(P δ)

� T

0

�

Ω
∂tϕdρ

+
δ dt =

� T

0

�

Ω
∂1ϕ ·

�
∂1Vδ ∗ (ρ

+
δ − ρ

−
δ )

�
dρ

+
δ dt

Interesting feature:
(P δ): ∂1Vδ ∗ (ρ

+
δ − ρ

−
δ ) smooth, but ρ

±
δ may have delta-peaks

(P ): singularity V regularises ρ±, but ∂1V ∗ (ρ+ − ρ
−) rough

Note: not clear why (P ) makes sense!

[Monneau et al.; 2010]: (P ) is well-posed on T2

Note: on T2, f ∈ L
2(T2) =⇒ �

f ∈ ℓ
2(Z2)

Reason T2: ∃C > 0 ∀ k ∈ Z2 : 0 ≤ (1 + |k|
2)�Vk ≤ C

We take Vδ ∈ W
2,∞(T2) to satisfy the same bound

We define:
�
�
∂1V ∗ f

�
k
:= 2πik1 �Vk �fk
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Improvement of Monneau’s well-posedness of (P )

Key observation: if ρ±δ smooth solution to (P δ), then [κδ := ρ
+
δ − ρ

−
δ ]

�
± ∂t Ent(ρ

±
δ ) :=

�
± ∂t

�
T2 ρ

±
δ log ρ±δ = . . .

=
�
T2 [∂11Vδ] ∗ κδ dκδ ≤ −c�∂1Vδ ∗ κδ�

2
H1(T2) ≤ 0.

Taking
� t
0 . . . ds, we obtain�

±

Ent(ρ±δ (t)) + c�∂1Vδ ∗ κδ�
2
L2(H1) ≤

�

±

Ent(ρ±δ,◦),

where L2(H1) := L
2(0, T ;H1(T2)). Hence, along a subsequence

ρ
±
δ ⇀ ρ

± in L∞(L logL)

∂1Vδ ∗ κδ ⇀ ∂1V ∗ κ in L2(H1)
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Passing to the limit in weak-(P δ)

� T

0

�

Ω
∂tϕρ

+
δ dxdt =

� T

0

�

Ω
∂1ϕ [∂1Vδ ∗ κδ] ρ

+
δ dxdt

ρ
±
δ ⇀ ρ

± in L∞(L logL)

∂1Vδ ∗ κδ ⇀ ∂1V ∗ κ in L2(H1)

To get strong convergence of (∂1Vδ ∗ κδ)δ>0:

Trudinger-Moser: H1(T2) ⊂⊂ Exp(T2) = (L logL)(T2)∗

[f ∈ Exp(T2) ⇒
�
T2 e

|f |
< ∞]

By Aubin-Lions-Simon: ∂1Vδ ∗ κδ → ∂1V ∗ κ in L2(Exp)

Conclusion: the limit ρ± satisfies (P )
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Theorem: (P δn
n
) → (P )

µ
±
n

(P δn
n )

W2

�

µ±
n (t), ρ±

δn
(t)

�

≤

exp(T�∂1Vδn�Lip)W2

�

µ±
n,◦, αnρ

±
◦

�

ρ
±
δn

(P δn)

L
∞(L logL)

ρ
±

(P )

Theorem: for





Vδ ∈ W
2,∞(T2)

Vδ → V in L2(T2)

0 ≤ (1 + |k|
2)[�Vδ]k ≤ C ∀ δ

∀T > 0 ∃ δn → 0 ∀ ρ
±
◦ ∈ L logL(T2)

∀µ
±
n,◦ ⇀ ρ

±
◦ : exp(T�∂1Vδn�Lip)W2

�
µ
±
n,◦, αnρ

±
◦

� n→∞
−−−→ 0

∃nk ∃ ρ
±
∈ L

∞(L logL) solution to (P ):

µ
±
nk
(t) ⇀ ρ

±(t) as nk → ∞ for a.e. t ∈ (0, T )
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(P δn
n
) → (P ): discussion

Also works for ∇ i.o. ∂1; applies to screw dislocations

Also works in Td for all d ≥ 1 with V at most logarithmic

Also works for given F Lipschitz

Extends [Monneau et al.; 2010]’s global existence result of (P ) to
general V , and a larger class of initial data

We do not use the gradient flow structure explicitly!

Conditions on V:
�
Vk ≥ 0: prevents ‘negative-energy’ micro-structures
(1 + |k|2)�Vk ≤ C: at most logarithmic singularities

Weak link: Gronwall estimate on W2

�
µ
±
n (t), ρ

±
δn
(t)

�
requires at least

δn > 2T/ log n

No uniqueness result on (P )

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017 25 / 27

How about counter-example to (P δn
n
) → (P )?

Counter example needs n3/2δn → 0;
incompatible with δn → 0 ‘slowly’

My current interpretation:
δn → 0 slowly enough
prevents dislocation to cluster
in rigid dipole-structures

≥ c
n δ̃n

x

−Vδn (x, δ̃n)
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Current answer to the main question

n → ∞

?

(Pn) (P )

dxi

dt
=

�

F +
1

n

n
�

j=1

bj [−∂1Vδn ](xi − xj)

�

bie1
∂tρ

+ = ∂1

�

ρ+[∂1V ∗ (ρ+ − ρ−)−F ]
�

∂tρ
− = ∂1

�

ρ−[∂1V ∗ (ρ− − ρ+)+F ]
�

If δn → 0 very slowly: yes

If n3/2δn → 0: no

[Groma, Balogh; 1999] uses no regularisation (≈ δn → 0 very fast)
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Mathematics in Interface, Dislocation and Structure of Crystals
August 28-30, 2017, Fukuoka, JAPAN

Anti-plane deformation model of screw dislocation
and its related variational problem

Masaaki Uesaka
Hokkaido University

As a microscopic model of screw dislocation, Hudson and Ortner [1, 2] propose
the lattice model based on anti-plane dislocation. They prove that in this model,
the state corresponding to the screw dislocation is a globally stable equilibrium under
appropriate conditions for the interaction energy. In this talk, we attempt to obtain
the upscale model of the anti-plane deformation model in terms of Γ-convergence. The
main point is that the discrete system which takes value in S1 is naturally derived from
the model. We also point out the mathematical difficulty of this discrete model.

References
[1] Thomas Hudson and Christoph Ortner. Existence and stability of a screw dislocation under anti-

plane deformation. Arch. Ration. Mech. Anal, 213 (2014) no. 3, 887-929.
[2] Thomas Hudson and Christoph Ortner. Analysis of stable screw dislocation configurations in an

anti-plane lattice model. SIAM J. Math. Anal. 47-1 (2015), 291-320.
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1

Γ
1

Z

Z
2

Z

Z
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Z
2

Z

1

Z

⇒ 1

Λ :=

�

1/6√
3/6

�

+

��

1
0

�

,

�

1/2√
3/2

��

Z

Ω ⊂ Λ BΩ Ω

ψ : 4(R) 1/2

, � : Ω → R

Ω( ; �) :=
�

∈BΩ

(ψ( ( ))− ψ( �( ))) ,

, � : BΩ → [−1/2, 1/2] , �
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Mathematics in Interface, Dislocation and Structure of Crystals

August 28-30, 2017, Fukuoka, JAPAN

Variational models of lattice defects

Pierluigi Cesana

IMI, Kyushu University

A martensitic phase-transformation is a first-order diffusionless transition occurring
in elastic crystals and characterized by an abrupt change of shape of the underlying
crystal lattice [1]. It is the basic activation mechanism for the so-called Shape-Memory
effect. The re-organization of the crystalline structure is not only accompanied by the
formation of sharp interfaces delimiting the various martensitic variants but also by
presence of defects and mismatches. In this talk I will present a modeling approach for
topological defects based on variational (energy-minimization) methods [3]. Consid-
ering disclinations (angular defects caused by the mismatch measured around a loop
in a planar lattice) I will present a linearized theory based on a continuum model de-
scribing the formation of a nested hierarchical martensitic microstructure containing
a disclination at the center [2]. The microstructure is described by the solution to
a differential inclusion problem. I will then introduce the Gamma-Convergence ap-
proach to the description of dislocations (linear defects often observed in metal subject
to shear stress). Comparisons are reported for numerical and analytical solutions and
experimental observations.

References

[1] Kaushik Bhattacharya. Microstructure of Martensite. Oxford University Press, Oxford (2003)
[2] Pierluigi Cesana, Marcel Porta, Turab Lookman. J. Mech. Phys. Sol. 72 (2014)
[3] Pierluigi Cesana Relaxation of an Energy Model for the Triangle-to-Centred Rectangle Transfor-

mation. In: Anderssen B. et al. (eds) The Role and Importance of Mathematics in Innovation.
Mathematics for Industry, vol 25. Springer, Singapore (2017)
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Mathematics in Interface, Dislocation and Structure of Crystals

August 28-30, 2017, Fukuoka, JAPAN

Sequence representation of graph structure of
crystal (Growth)

Junichi Nakagawa

Nippon Steel & Sumitomo Metal Co.

Growth is defined as a sequential representation of the graphical structure of crystal.
The first growth corresponds to the coordination number of crystals which is used as
a numerical index to describe the crystalline structure in material science.

We counted the number of growths in the case of eight crystals composed of two
kinds of atoms and derived the numeric sequences. The numerical sequences have a
cyclical property.

The generation functions can be derived from the numerical sequences. We show
that the generating function has symmetrical properties which are derived from the
cyclic property of the numerical sequence of the growth.
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MIレクチャーノートシリーズ刊行にあたり

　本レクチャーノートシリーズは、文部科学省 21世紀 COEプログラム「機
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