平成29年度 九州大学マス・フォア・イン发ストリ研究所共同利用研究集会（l）結晶の界面，転位，構造の数理 Pierluigi Cesana－椖田裕康

平成29年度 九州大学マス・フォア・インダストリ研究所共同利用研究集会（I）結晶の界面，転位，構造の数理

編集：松谷茂樹，佐伯修，中川淳一，田上大助，上坂正晃，Pierluigi Cesana，演田裕康

About MI Lecture Note Series

The Math-for-Industry (MI) Lecture Note Series is the successor to the COE Lecture Notes, which were published for the 21st COE Program "Development of Dynamic Mathematics with High Functionality," sponsored by Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) from 2003 to 2007. The MI Lecture Note Series has published the notes of lectures organized under the following two programs: "Training Program for Ph.D. and New Master's Degree in Mathematics as Required by Industry," adopted as a Support Program for Improving Graduate School Education by MEXT from 2007 to 2009; and "Education-and-Research Hub for Mathematics-for-Industry," adopted as a Global COE Program by MEXT from 2008 to 2012.

In accordance with the establishment of the Institute of Mathematics for Industry (IMI) in April 2011 and the authorization of IMI's Joint Research Center for Advanced and Fundamental Mathematics-for-Industry as a MEXT Joint Usage / Research Center in April 2013, hereafter the MI Lecture Notes Series will publish lecture notes and proceedings by worldwide researchers of MI to contribute to the development of MI.

October 2014
Yasuhide Fukumoto
Director
Institute of Mathematics for Industry

はじめに

本研究集会はIMIの研究集会I「結晶の界面，転位，構造の数理」として2017年8月28日－30日に九州大学西新プラザにおいて催したものである。SGW2015，SGW2016にて新日鐵住金（株）から問題提起された，「結晶構造の秩序乱れの数学的表現」と「金属の結晶粒界 エネルギーの異方性の数学的表現」を発展させることとし，2016年9月に実施した研究集会 II「結晶のらせん転位の数理」を拡大し，発展させるものとして 2016 年末より計画さ れ実施された。
結果的には，SGW2014 で取り上げられた「結晶グラフの階層性を利用した結合エネルギ一の計算方法」や，本年の SGW2017 に取り上げられた「結晶の構造変位後の観測データか ら変位前の状態を予測する解析方法」に関するものも課題として含めて，本研究集会のテ ーマとした。
同種の問題は，東京大学大学院数理科学研究科博士課程での社会数理実践研究において も学生が検討を行っており，それらとの交流も図るものとなった。
結晶は特殊ユークリッド変換群 SE（3）の離散部分群の作用で不変な集合として特徴づけ られる。2016年9月の研究集会では，らせん転位をこの離散群による対称性の破れとして捉え，代数的な考察による離散幾何の表示と 「関数との関係や，「収束によるモデル化に関する話題にフォーカスして議論を行った。

他方，2016年のSGWでの話題である粒界の研究においても，境界条件の下でエネルギー最小を与える状態として，このSE（3）の離散群の，半群を含めた代数的な考察が求められ ている．特に，近年，界面の形状を直接，電子顕微鏡等で観察することが可能となってき ておう，離散的，代数的取り扱いとメゾスケールとの関係の解明が求められている。

これらの状況より，本研究集会では
1）結晶の界面に関わる数値解析，非線形時間発展方程式，整数論を援用した離散幾何学 などの数学手法に関する知見の共有
2）代数的考察に基づく離散群による対称性の破れを伴う幾何構造の数学的記述に関する知見の共有
3）対称性の破れに対する特異的な摂動を考慮した「収束などによるエネルギー論的な数学モデルの構築
4）ナノとミクロの中間を橋渡しするマルチスケール的な数学モデルの構築
5）近年の計測技術の発展による実際の結晶構造に関する知見の共有
を目指し，様々な分野の専門家が集い，議論を行うこととなった。
このような多岐にわたる高度な数学モデルの議論は従来なされてこなかった。しかし，今後，実験技術の急速な発展と，産業界における要求仕様の高度化とにより，そうした数学モデルの必要性が増すものと予想される。我々は，本研究集会をそのモデルケースとし て位置づけ，議論を行った。

講演内容の概略を述べると以下のようなものがなされた。
1．界面に関して，数値計算，非線形な時間発展方程式，整数論を援用した離散幾何学な ど，多岐に亘る視点からの講演があった。
2．「収束を利用した転位の解析においては， 3 つの講演があり，全く異なるアプローチ による様々な階層での解析が可能であることが明らかにされた。
3．幾何学，代数学からのアプローチに関しては，講演も多数あり， 3 次元空間内の新た な離散幾何や転位の表現，結晶の構造に関する解析が可能となることも示された。
4．数学者が生の実験データに触れることは通常ほとんどないため，実験データに関する講演も設け，現実とモデルとの相違が認識された。
このように本研究集会の趣旨に沿った講演がなされ，異なる分野の研究者同士で素朴な議論を行うことができた。
本研究集会では，1日目にウェルカム・パーティーとしてワン・コイン・パーティーを開催し，2日目， 3 日目には自由に各自の興味あるテーマを議論するためのディスカッショ ン・タイムを設けた。ワン・コイン・パーティーでは一人当たり500円でビールなどを飲 みながらの議論であったが，それぞれで，異なる分野の研究者がフランクかつ有意義に交流することができた。これにより，2日目，3日目のディスカッション・タイムを円滑に推進できた。

これらにより，各研究者の中で，それぞれの研究分野へのフィードバックがかかったも のと確信する。今回のテーマではないが，実際，キンク現象に関しては，実験データを再現する新たな解析手法が提案でき，現在，論文化に向けた検討を行っている。
本研究集会の開催により，各分野の専門家が現状とその課題を提示し合い，議論するこ とによって，これらの高度な数学モデルの構築の進展に寄与できたものと考えている。

組織委員：

松谷 茂樹	佐世保高専
佐伯 修	九州大学 IMI
中川 淳一	新日鐵住金
田上 大助	九九州大学 IMI
上坂 正晃	北海道大学
Pierluigi Cesana	九州大学 IMI
演田 裕康	佐世保高専

IMI Workshop I:
 Mathematics in Interface, Dislocation and Structure of Crystals

at Nishijin Plaza, Kyushu University
(Aug 28-30, 2017)

Program

Aug. 28		
13:00-13:05	Opening	
13:05-13:50	Junichi Nakagawa (Nippon Steel \& Sumitomo Metal Co.)	Algebraic analysis of orientation relationship created by phase transition in crystals
14:10-14:55	Tomohiro Takaki (Kyoto Inst. of Tech.)	Phase-field simulations of dendrite solidification and grain growth
15:15-16:00	Karel Svadlenka (Kyoto Univ.)	Numerical analysis of moving interfaces: the level-set and phase-field approaches
16:00-16:30	Group photo \& Tea Time	
16:30-17:15	Philip Broadbridge (La Trobe Univ./IMI, Kyushu Univ.)	Exact solution of nonlinear boundary value problems for surface diffusion
17:30-19:30	One-coin party (1F)*) (Discussion, with two beer cans and sna	of one-coin $=500$ yen/person)
Aug. 29		
9:45-10:30	Kenji Higashida (Nat. Inst. of Tech., Sasebo College)	On observation of dislocations in crystals
10:50-11:35	Akihiro Nakatani (Osaka Univ.) / Xiao-Wen Lei (Fukui Univ.)	Analysis of stress field of kink boundary based on lattice defect theory
11:55-12:40	Kazutoshi Inoue (AIMR, Tohoku Univ.)	Structure of tilt grain boundaries from mathematical perspective
12:40-14:10	Lunch	
14:10-14:40	FMSP Mathematical Research on Real World Problems, Group G, The University of Tokyo Hokuto Konno (The Univ. of Tokyo), Ts Sho Ejiri (The Univ. of Tokyo), Junichi Sumitomo Metal Co.), Yasuhiro Wakaba	Lattice defects from monodromy akasa Ishibashi (The Univ. of Tokyo), Nakagawa (Nippon Steel \& ashi (The Univ. of Tokyo)
15:00-15:45	Shizuo Kaji (Yamaguchi Univ.)	Geometry of closed kinematic chain
15:45-16:10	Tea Time	
16:10-17:30	Discussion slot	
18:20-21:00	Banquet 5,000yen *)	Souen**)
${ }^{*)}$ Please let the organizers know if you would like to attend the one-coin party and/or the banquet but have not registered.		
${ }^{* *)}$ https://	gurunavi.com/en/f429500/rst/	

Aug. 30

9:45-10:30	Patrick van Meurs (Kanazawa Univ)	Discrete-to-continuum limits of moving straight edge dislocations in 2D
10:50-11:35	Masaaki Uesaka (Hokkaido Univ.)	Anti-plane deformation model of screw dislocation and its related variational problem
11:55-12:40	Pierluigi Cesana (IMI, Kyushu Univ)	Variational models of lattice defects $12: 40-14: 10$
Lunch		
14:10-14:30 Junichi Nakagawa	Sequence representation of graph structure of crystal (Growth)	
	(Nippon Steel \& Sumitomo Metal Co.)	
$14: 30-14: 50$	Tea Time	
$14: 50-16: 55$	Discussion slot	
$16: 55-17: 00$	Closing	

On discussion slots:

Purpose of discussion slots: Crucial problems in industry, basically, cannot be solved in the framework of a single mathematical field or a single field in science. They are related to a variety of mathematical fields and wider scientific knowledge. As mentioned above, this conference is arranged so that experts in various fields gather together and discuss problems related to crystals whose origin is in industry. Its prototype is in the style of mathematical studies in industry.

It is expected that participants discuss mathematical problems with those from various fields. It is also expected that the discussions stimulate their own works and generate a new intermediate field of study.

Consequently, there is no rule for discussing problems. Every one will be able to participate in any group to discuss problems with her/his own interest. The one-coin party is also set for similar discussions accompanied with some drinks and snacks.

Utilities: We have three rooms including the main room for the discussions. In each room, there are a projector and a white board. You can also use the lobby.
Report: There is no duty to report the results of the discussions: however, if you think that your discussions should be shared with others, then we can arrange such occasions in the discussion slots.

Furthermore, we will need to report the discussion slots in the proceedings of this conference later. Therefore, the organizers would appreciate it if you could record briefly the contents of the discussions made during the discussion slots. Thank you.

IMI Joint Research Project in 2017 Workshop (I)

Mathematios in Interface, Dislocation and Structure of Crystals

 Date : August 28[Mon] -30[Wed], 2017 Venue : Nishijin Plaza, Kyushu University 2-16-23 Nishijin, Sawara-ku, Fukuoka-shi, Fukuoka, JAPAN http://nishijinplaza.kyushu-u.ac.jp/enslish/Speakers : Philip Broadbridge (La Trobe Univ. / IMI, Kyushu Univ.) Pierluigi Cesana (IMI, Kyushu Univ.) Kenji Higashida (Nat. Inst. of Tech., Sasebo College) Kazutoshi Inoue (AIMR, Tohoku Univ.) Shizuo Kaji (Yamaguchi Univ.) Xiao-Wen Lei (Fukui Univ.) Junichi Nakagawa (Nippon Steel \& Sumitomo Metal Co.)
Akihiro Nakatani (Osaka Univ.)
Karel Svadlenka (Kyoto Univ.)
Tomohiro Takaki (Kyoto Inst. of Tech.)
Masaaki Uesaka (Hokkaido Univ.)
Patrick van Meurs (Kanazawa Univ.)
■URL > http://www.imi.kyushu-u.ac.jp/eng/events/view/1269
Organizers : Pierluigi Cesana (IMI, Kyushu Univ.)
Hiroyasu Hamada (Nat. Inst. of Tech., Sasebo College)
Shigeki Matsutani (Nat. Inst. of Tech., Sasebo College)
Junichi Nakagawa (Nippon Steel \& Sumitomo Metal Co.)
Osamu Saeki (IMI, Kyushu Univ.)
Daisuke Tagami (IMI, Kyushu Univ.)
Masaaki Uesaka (Hokkaido Univ.)
■Contact : Institute of Mathematics for Industry, Kyushu University
TEL:+81-(0)92-802-4402 E-mail: kyodo_riyou@imi.kyushu-u.ac.jp

Contents

Algebraic analysis of orientation relationship created by phase transition in crystals
Junichi Nakagawa (Nippon Steel \& Sumitomo Metal Co.)
Phase-field simulations of dendrite solidification and grain growth
Tomohiro Takaki (Kyoto Inst. of Tech.)

Numerical analysis of moving interfaces: the level-set and phase-field approaches
Karel Svadlenka (Kyoto Univ.)

Exact solution of nonlinear boundary value problems for surface diffusion
Philip Broadbridge (La Trobe Univ./IMI, Kyushu Univ.) 56
On observation of dislocations in crystals Kenji Higashida (Nat. Inst. of Tech., Sasebo College) 70

Analysis of stress field of kink boundary based on lattice defect theory
Akihiro Nakatani (Osaka Univ.)
Xiao-Wen Lei (Fukui Univ.)

Structure of tilt grain boundaries from mathematical perspective
Kazutoshi Inoue(AIMR, Tohoku Univ.)
Lattice defects from monodromy
FMSP Mathematical Research on Real World Problems, Group G, The University of Tokyo
Hokuto Konno (The Univ. of Tokyo)
Tsukasa Ishibashi (The Univ. of Tokyo)
Sho Ejiri (The Univ. of Tokyo)
Junichi Nakagawa (Nippon Steel \& Sumitomo Metal Co.)
Yasuhiro Wakabayashi (The Univ. of Tokyo) 101

Geometry of closed kinematic chain
Shizuo Kaji (Yamaguchi Univ.) 111

Discrete-to-continuum limits of moving straight edge dislocations in 2D
Patrick van Meurs (Kanazawa Univ) 112

Anti-plane deformation model of screw dislocation and its related variational problem

> Masaaki Uesaka (Hokkaido Univ.)

Variational models of lattice defects

$$
\text { Pierluigi Cesana (IMI, Kyushu Univ) } 134
$$

Sequence representation of graph structure of crystal (Growth)
Junichi Nakagawa (Nippon Steel \& Sumitomo Metal Co.)

Algebraic analysis of orientation relationship created by phase transition in crystals
 Junichi Nakagawa

Nippon Steel \& Sumitomo Metal Co.

Polycrystalline materials such as iron acquire their properties from various thermomechanical treatments. In many cases, the low temperature behaviors of these materials are sought from high temperature processes, such as re-heating, rolling and cooling, that are followed by phase transitions. The microstructure of polycrystalline materials at low temperatures is an important parameter, and it is greatly involved in plastic deformation. Therefore, the improvement of products designed for a given application requires the formation of an adapted low temperature microstructure, obtained from the high temperature state, which can also be characterized by its microstructure. A grain (for example β), which is defined by a set of crystals with the same orientation, is transformed into many grains of the same phase (for example α) with an orientation relationship. We refer to them as daughter crystals. These daughter crystals (α), which have an orientation relationship with the parent crystal (β), are called variants, and they are algebraically identified with left co-sets. C. Cayron [1] who is a physicist in crystallography dealt with variants using algebraic analysis and proposed a method for reconstructing parent crystals from the observed daughter crystals. Our intention is to redefine the way of describing the method using mathematics and obtain a comprehensible representation mathematically in order to understand Cayron's way of thinking.

References

[1] C. Cayron, Acta Cryst. A62 (2006) 21-40

Mathematics in Interface，Dislocation and Structure of Crystals Algebraic Analysis of Orientation Relationship Created by Phase Transition in Crystals

2017．8．28－8．30
Institute of Mathematics for Industry
Kyusyu University

Nippon Steel \＆Sumitomo Metal Corporation Advanced Technology Research Laboratories Mathematical Science \＆Technical Research Lab．

Junichi Nakagawa

－ 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．
新日気倠金 NIPPON STEEL SUMTOMO METAL

What＇s Crystal

A crystal is a solid material whose constituents，such as atoms，molecules are arranged in a highly ordered microscopic structure，i．e．semi－product of translation and rotation symmetry， forming a crystal lattice that extends in all directions．

$$
\Gamma \cong T \rtimes K
$$

In addition，macroscopic single crystals are usually identifiable by their geometrical shape，consisting of faces with specific，characteristic orientations．
©2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved

The 7 Lattice System and The 14 Bravais Lattice

Symmetry of Iron Crystal

e ：identity matrix
r ：reflection matrix
$a_{1}^{4}=e, a_{2}^{4}=e, a_{3}^{4}=e, \quad 90^{\circ}$ rotation matrix＜100＞
$d_{1}^{3}=e, d_{2}^{3}=e, d_{3}^{3}=e, d_{4}^{3}=e, 120^{\circ}$ rotation＜111＞
$u_{1}^{2}=e, u_{2}^{2}=e, u_{3}^{2}=e, u_{4}^{2}=e, u_{5}^{2}=e, u_{6}^{2}=e$
180° rotation＜110＞
© 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．
新日鐵住金
NIPPON STEEL SNMTOMOMETAL

Measurement of Crystal Orientation
 EBSD（Electron Back Scattered Diffraction Pattern）

As these electrons leave the sample，they may exit at the Bragg condition related to the spacing of the periodic atomic lattice planes of the crystalline structure and diffract．

Escaping electrons may exit near to the Bragg angle and diffract to form Kikuchi bands．If the system geometry is well described，it is possible to relate the bands present in the diffraction pattern to the underlying crystal orientation of the material within the electron interaction volume．

Objective：Parent Grain Reconstruction for Martensitic Steel

Reconstructed parent grains （ γ ：austenitic grains）

Determination of Prior Austenitic Grains Orientation from Martensitic Grains

Y．Gao，，Y．Wang，et al．，Group theory descripition of transformation pathway degeneracy in structual phase transformations，Acta Materialia 109（2016）353－363
Simple Example for Understanding Variants

$$
G_{\alpha}^{\alpha}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\right\} \in O(2, \mathrm{Z})
$$

Lattice correspondence $[10]_{\alpha} \rightarrow[10]_{\beta},[01]_{\alpha} \rightarrow 1 / 2[11]_{\beta}$
$G_{\alpha}^{\beta}=\left[\begin{array}{cc}1 & 0.5 \\ 0 & 1\end{array}\right]^{-1} G_{\alpha}^{\alpha}\left[\begin{array}{cc}1 & 0.5 \\ 0 & 1\end{array}\right]$

$$
=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right]\right\} \in G L(2, \mathrm{Z})
$$

$$
H^{\alpha / \beta}=G_{\alpha}^{\alpha} \cap G_{\alpha}^{\beta}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right\}
$$

Variants

新日截住金 NIPPON STEEL \＆SUMITOMO METAL
Y．Gao，， Y ．Wang，et all．，Group theory description of transtormation pathway degenera
$\left\{\begin{array}{l}G_{\alpha}^{\beta}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right]\right\} \\ H^{\alpha / \beta}=G_{\alpha}^{\alpha} \cap G_{\alpha}^{\beta}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right\}\end{array}\right.$
Calculation of left coset

Variants

2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved
朝㘳住金 ATPPONSTETA

Study Group Workshop 2017

Algebraic Analysis of Orientation Relationship Created by Phase Transition in Crystals

Background \＆Problem

－In crystallography，phase transition of crystals occurs：
\(\underset{\substack{pery

（high temperature）}}{parent crystal}\)| daughter crystal |
| :---: |
| （low temperature） |

－The orientation of γ cannot be measured，so we would like to estimate it from the orientation of α which can be measured．
－Cayron proposes a method to estimate the orientation of the parent crystal based on the group theory：
－C．Cayron，Acta Cryst．A62（2006）21－40．
－C．Cayron，B．Artaud，L．Briottet，Mater．Charact． 57 （2006）386－401
－We are interested in his method since it is related to a kind of inverse problem．
－Our problem in this study group is：
－To understand mathematically Cayron＇s way of thinking
－To describe his method in mathematically more understandable manner．

Notations in Cayron＇s paper

－Transform matrix from a basis $B_{1} \in G L(3, \mathbb{R})$ to $B_{2} \in G L(3, \mathbb{R}): B_{2}\left(B_{1}\right)^{-1}$
－A crystal is $\beta:=\left\{a_{1} e_{1}^{\beta}+a_{2} e_{2}^{\beta}+a_{3} e_{3}^{\beta} \mid a_{1}, a_{2}, a_{3} \in \mathbb{Z}\right\}$ ，where
－$\left\{e_{1}^{\beta}, e_{2}^{\beta}, e_{3}^{\beta}\right\}$ ：（not necessarily orthogonal）basis of \mathbb{R}^{3} ，
－$B_{1}^{\beta}:=\left\langle e_{1}^{\beta}, e_{2}^{\beta}, e_{3}^{\beta}\right\rangle \in G L(3, \mathbb{R}), \mathbf{G}^{\beta}:=\left\{g_{i}^{\beta} \in O(3, \mathbb{Z}) \mid g_{i}^{\beta} \beta=\beta\right\}$,
－ $\mathbf{B}^{\beta}:=\left\{B_{i}^{\beta}:=g_{i}^{\beta} B_{1}^{\beta} \mid g_{i}^{\beta} \in \mathbf{G}^{\beta}\right\}, g_{i k}^{\beta}:=g_{k}^{\beta}\left(g_{i}^{\beta}\right)^{-1}=B_{k}^{\beta}\left(B_{i}^{\beta}\right)^{-1} \in \mathbf{G}^{\beta}$ ．
－Orientation relationships（OR）：
－For the parent crystal β and the daughter crystals α_{i} ，
1．fix a basis $\mathrm{B}_{1}^{\alpha_{1}} \in G L(3, \mathbb{R})$ of α_{1} and the set $T_{>}:=B_{1}^{\alpha_{1}}$ ．
2．for each $i \in\left\{1, \ldots,\left|\mathbf{G}^{\beta}\right|\right\}$ ，define a basis $B_{1}^{\alpha_{i}} \in G L(3, \mathbb{R})$ of the crystal α_{i} by $B_{1}^{\alpha_{i}}:=T_{>} g_{i}^{\beta}$ ．

Variants（Cayron＇s notation）

－Let β and α_{i} be the parent and daughter crystals．
－Set $T^{\beta \rightarrow \alpha_{i}}:=B_{1}^{\alpha_{i}}\left(B_{1}^{\beta}\right)^{-1}$（transformation matrix from B_{1}^{β} to $B_{1}^{\alpha_{i}}$ ）．
－Define an equivalent relationship for α_{i} by

$$
T^{\beta \rightarrow \alpha_{i}} \equiv_{I} T^{\beta \rightarrow \alpha_{j}} \stackrel{\text { def }}{\Leftrightarrow} T^{\beta-\alpha_{j}}\left(T^{\beta-\alpha_{i}}\right)^{-1} \in \mathbf{G}^{\alpha},
$$

which is equivalent to

$$
T^{\beta \rightarrow \alpha_{i}} \equiv_{I} T^{\beta \rightarrow \alpha_{j}} \stackrel{\text { def }}{\Leftrightarrow} g_{i j}^{\beta} \in \mathbf{G}^{\beta} \cap T_{>} \mathbf{G}^{\alpha} T_{>}^{-1}=: \mathbf{H}^{\beta}
$$

－Then we call each equivalence class of α_{i} an orientation variant．
－We can identify the variants with elements of $\mathbf{G}^{\beta} / \mathbf{H}^{\beta}$ and write

$$
\alpha_{i}=g_{i}^{\beta} \mathbf{H}^{\beta}\left(g_{i}^{\beta} \in \mathbf{G}^{\beta}\right)
$$

Example：two－dimensional case（1）

$$
\begin{aligned}
\mathbf{G}^{\beta} & =\left\{E, I, m_{x}^{\beta}, m_{y}^{\beta}, m_{x y}^{\beta}, m_{x y}^{\beta}, r_{+\pi / 2}^{\beta}, r_{-\pi / 2}^{\beta}\right\} \\
\mathbf{G}^{\alpha} & =\left\{E, m_{1}^{\alpha}, m_{2}^{\alpha}, m_{3}^{\alpha}, r_{+\pi / 3}^{\alpha}, r_{-\pi / 3}^{\alpha}\right\} \\
& I=m_{x}^{\beta} m_{y}^{\beta}=m_{y}^{\beta} m_{x}^{\beta} \\
& r_{+\theta}: \text { rotation in counter clockwise } \\
& r_{-\theta}: \text { rotation in clockwise }
\end{aligned}
$$

$$
\text { Since } m_{i}^{\alpha} \neq m_{x}^{\beta}, m_{y}^{\beta}, m_{x y}^{\beta}, m_{x y}^{\beta} \text { for } i=1,2,3, \text { we have } \mathbf{H}^{\beta}=\{E\} \text {. }
$$

$$
\alpha_{1}=\{E\}, \alpha_{2}=\left\{m_{x}^{\beta}\right\}, \alpha_{3}=\left\{r_{+\pi / 2}^{\beta}\right\}, \alpha_{4}=\left\{m_{x y}^{\beta}\right\},
$$

$$
\alpha_{5}=\{l\}, \alpha_{6}=\left\{m_{y}^{\beta}\right\}, \alpha_{7}=\left\{r_{-\pi / 2}^{\beta}\right\}, \alpha_{8}=\left\{\alpha_{x \bar{y}}^{\beta}\right\} .
$$

［2］C Cayron，＂Groupoid of orientutionalvarians．＂Acta Cryst．A62（2006）21－40

Example：two－dimensional case（2）

$$
\begin{array}{ll}
\mathbf{G}^{\beta}=\left\{E, I, m_{x}^{\beta}, m_{y}^{\beta}, m_{x y}^{\beta}, m_{x \bar{y}}^{\beta}, r_{+\pi / 2}^{\beta}, r_{-\pi / 2}^{\beta}\right\} & I=m_{x}^{\beta} m_{y}^{\beta}=m_{y}^{\beta} m_{x}^{\beta} \\
\mathbf{G}^{\alpha}=\left\{E, m_{1}^{\alpha}, m_{2}^{\alpha}, m_{3}^{\alpha}, r_{+\pi / 3}^{\alpha}, r_{-\pi / 3}^{\alpha}\right\} & r_{\theta}: \text { rotation }
\end{array}
$$

$$
\text { Since } m_{1}^{\alpha}=m_{x}^{\beta} \text { and } m_{i}^{\alpha} \neq m_{x}^{\beta}, m_{y}^{\beta}, m_{x y}^{\beta}, m_{x y}^{\beta} \text { for } i=2,3
$$

$$
\mathbf{H}^{\beta}=\left\{E, m_{x}^{\beta}\right\} .
$$

Variants are calculated as left co－sets $\alpha_{i}=g_{i} \mathbf{H}^{\beta}\left(g_{i} \in \mathbf{G}^{\beta}\right)$ ：

$$
\begin{aligned}
& \alpha_{1}=\left\{E, m_{x}^{\beta}\right\}, \alpha_{2}=\left\{m_{x y}^{\beta}, r_{+\pi / 2}^{\beta}\right\}, \\
& \alpha_{3}=\left\{1, m_{y}^{\beta}\right\}, \alpha_{4}=\left\{m_{x y}^{\beta}, r_{-\pi / 2}^{\beta}\right\} .
\end{aligned}
$$

［2］C．Cayron．＂Groupoid of orientationalvariants．＂Acta Cryst．A62（2006）21－40．
－ 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．
新日雒住金 AIPPON STEEL SUMTOMOMET

Redefinition of crystals

－Fix an ambient space \mathbb{R}^{3} and its standard basis e_{1}, e_{2}, e_{3} ．
－$G L(3, \mathbb{R})=\left\{A \in \mathbb{R}^{3 \times 3} \mid \operatorname{det} A \neq 0\right\}, E$ ：identity matrix of size 3 ．
－ $\operatorname{Aff}(3, \mathbb{R})=\left\{A: v \in \mathbb{R}^{3} \mapsto \bar{A} v+l \in \mathbb{R}^{3} \mid \bar{A} \in G L(3, \mathbb{R}), l \in \mathbb{R}^{3}\right\}$ ．
We consider $A \in \operatorname{Aff}(3, \mathbb{R})$ as a 4×4 matrix $A=\left(\begin{array}{ll}\bar{A} & l \\ 0 & 1\end{array}\right)$ ．
－$E(3, \mathbb{R})=\left\{A \in \operatorname{Aff}(3, \mathbb{R}) \mid \bar{A} \bar{A}^{T}=E\right\}$ ．
－A crystal β is a triple $\left(B_{1}^{\beta}, L^{\beta}, \mathbf{G}^{\beta}\right)$ consisting of

$$
\begin{gathered}
B_{1}^{\beta}=\left(\begin{array}{cc}
\bar{B}_{1}^{\beta} & o^{\beta} \\
0 & 1
\end{array}\right) \in \operatorname{Aff}(3, \mathbb{R})\left(\bar{B}_{1}^{\beta}=\left\langle e_{1}^{\beta}, e_{2}^{\beta}, e_{3}^{\beta}\right\rangle \in G L(3, \mathbb{R}), o^{\beta} \in \mathbb{R}^{3}\right), \\
L^{\beta}=\left\{a_{1} e_{1}^{\beta_{1}}+a_{2} e_{2}^{\beta_{2}}+a_{3} e_{3}^{\beta_{3}}+o^{\beta} \mid a_{1}, a_{2}, a_{3} \in \mathbb{Z}\right\}, \\
\mathbf{G}^{\beta}=\left\{g \in E(3, \mathbb{R}) \mid g L^{\beta}=L^{\beta}, g e_{1}^{\beta}=e_{1}^{\beta}\right\} .
\end{gathered}
$$

（We regard the matrix B_{1}^{β} as a crystal．）
Q 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．

Redefinition of variants

－Let β and α be given crystals（a parent and a daughter）．
－Define the set of externally equivalent crystals（siblings）of α w．r．t β by

$$
\mathbf{A}^{\beta \rightarrow \alpha}:=\left\{\alpha_{i}:=g_{i} T_{>} B_{1}^{\beta} \mid g_{i} \in \mathbf{G}^{\beta}\right\}, \text { where } T_{>}:=B_{1}^{\alpha}\left(B_{1}^{\beta}\right)^{-1}
$$

（Each α_{i} is seen as a daughter crystal in Cayron＇s paper．）
－Introduce an equivalence relationship for $\alpha_{i} \in A^{\beta \rightarrow \alpha}$ by w．r．t．the same

$$
\alpha_{i} \sim \alpha_{j} \stackrel{\text { def }}{\Leftrightarrow} \alpha_{i} \alpha_{j}^{-1}=g_{i} g_{j}^{-1} \in G^{\alpha_{j}}\left(\Leftrightarrow g_{j}^{-1} g_{i} \in G^{\alpha_{1}}\right) .
$$

－Call the equivalence classes of α_{i} variants：the set of variants is given by

$$
\mathbf{V}^{\beta \rightarrow \alpha}:=\left\{g_{i} \mathbf{H}^{\alpha \beta} T_{>} B_{1}^{\beta} \mid g_{i} \in \mathbf{G}^{\beta}\right\} \text {, where } \mathbf{H}^{\alpha \beta}=\mathbf{G}^{\alpha_{1}} \cap \mathbf{G}^{\beta} .
$$

We write the variants $\tilde{\alpha}_{i} \in \mathbf{V}^{\beta \rightarrow \alpha} \simeq \mathbf{G}^{\beta} / \mathbf{H}^{\alpha \beta}$ ．

Summary

－We redefined the method of Cayron by using mathematics：
－E．g．Definition of variants $\left(g_{i} \in \mathbf{G}^{\beta}\right)$
Cayron＇s definition：$\alpha_{i}:=g_{i} \mathbf{H}^{\beta}\left(\mathbf{H}^{\beta}:=\mathbf{G}^{\beta} \cap T_{>}^{-1} \mathbf{G}^{\alpha_{1}} T_{>}\right)$
Our definition：$\tilde{\alpha}_{i}:=g_{i} \mathbf{H}^{\alpha \beta} T_{>} B_{1}^{\beta}\left(\mathbf{H}^{\alpha \beta}:=\mathbf{G}^{\alpha_{1}} \cap \mathbf{G}^{\beta}\right)$
－We obtained a mathematically comprehensible representation of the method of Cayron and this lead to mathematical understanding variants that have been studied for a century in materials．
© 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．

新日倳住金

 NIPPON STEEL SUMTOMO METAL
from eq．（4），eq．（6）and eq．（7）

$$
\left(\begin{array}{ccc}
-1 & 0 & -1 / 2 \tag{8}\\
0 & 0 & -1 / 2 \\
1 & 1 & 1
\end{array}\right)=T_{>}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & 0 & -1 \\
1 & 1 & -1
\end{array}\right), \quad T_{>}:=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right.
$$

The translation matrix is derived as follows．

$$
T_{>}=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \tag{9}\\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The relationship between $(x y z)^{t}$ ，and $\left(X^{\prime} Y Z\right)^{t}$ is as follows．

$$
\left(\begin{array}{l}
x \tag{10}\\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

Variant is defined as follows．

$$
\begin{equation*}
V^{\gamma \rightarrow a}:=\left\{g_{i} H^{\alpha / \gamma} T_{>} B_{1}^{\gamma} \mid g_{i} \in G^{\gamma} \cong O(3, \mathrm{Z})\right\} \tag{11}
\end{equation*}
$$

where $H^{a \gamma}=G^{v} \cap G^{a}$ ．
Since $G^{\alpha} \cong O(3, \mathrm{Z})$ and

$$
H^{r(\pi a}=\left\{\left(\begin{array}{lll}
1 & 0 & 0 \tag{12}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
$$

2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved

The γ lattice is described a

$$
\gamma=\left\{l \mathrm{e}_{1}^{\gamma}+m \mathrm{e}_{2}^{\gamma}+n \mathrm{e}_{3}^{\gamma} \mid l, m, n \in \mathrm{Z}\right\}
$$

The basis B_{1}^{γ} is written by
$B_{1}^{\gamma}=\left(e_{1}^{\lambda}, e_{2}^{\gamma}, e_{3}^{\gamma}\right) \in O(3, \mathrm{Z})$
$B_{1}{ }^{\gamma}$ can be taken as

$$
B_{1}^{\gamma}=\left(\begin{array}{lll}
1 & 0 & 0 \tag{15}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Q 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．

The 24 Variants（1／3）
$\left\{\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & -1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ -1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & -1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0 \\ 0 & 0 & -1\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ -1 / 2 & -1 / 2 & 0 \\ 0 & 0 & -1\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & -1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 0 \\ -1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & -1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & -1\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 0 \\ -1 / 2 & -1 / 2 & 0 \\ 0 & 0 & -1\end{array}\right]\right\}$

新日鐵住金
NIPPON STEEL S SUMTOMO METAL

The 24 Variants（2／3）		
	$\left\{\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 \\ -1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$	$\left\{\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
	$\left\{\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & -1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1 \\ -1 / 2 & 1 / 2 & 0\end{array}\right]\right\}$	$\left\{\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
	$\left\{\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 0 & -1 \\ -1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & -1 / 2 & 0 \\ 0 & 0 & -1 \\ 1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$	$\left\{\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 0 \\ 0 & 0 & -1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ 0 & 0 & -1 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
	$\left\{\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 0 & -1 \\ 1 / 2 & -1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & -1 / 2 & 0 \\ 0 & 0 & -1 \\ -1 / 2 & 1 / 2 & 0\end{array}\right]\right\}$	$\left\{\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ 0 & 0 & -1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}-1 / 2 & 1 / 2 & 0 \\ 0 & 0 & -1 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
Q 2017	NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．	新日鐵住金 NIPPON STEEL \＆SUMITOMO METAL

The 24 Variants $(3 / 3)$
$\left\{\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 1 \\ -1 / 2 & -1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}0 & 0 & 1 \\ -1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 / 2 & -1 / 2 & 0 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 1 \\ -1 / 2 & -1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0\end{array}\right]\right\} \quad\left\{\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 / 2 & -1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 1 \\ -1 / 2 & 1 / 2 & 0 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 / 2 & 1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ -1 / 2 & -1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}0 & 0 & -1 \\ -1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 / 2 & -1 / 2 & 0 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 / 2 & 1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ -1 / 2 & -1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0\end{array}\right]\right\}$
$\left\{\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 / 2 & -1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ -1 / 2 & 1 / 2 & 0 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\right\}$
© 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．

A Conversion for Making Rotation Matrix

Since 24 variants in the previous slides are not the rotation matrices， we try to make a simple conversion for making rotation matrix as follows．

$$
T_{>}=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \square T_{>}=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

－ 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．
LICOL NIPPON STEEL \& SUMITOMO METAL
© 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved

Q 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．
新日截住金 NIPPON STEEL \＆SUMITOMO METAL

Picking up Variants Making Rotation Matrix

Variant	No．Rotation axis	Rotation angle
01 ：	$\left\{\left(\begin{array}{lll}0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)\right\}, 11:\left\{\left(\begin{array}{lll}0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 1\end{array}\right)\right\}$	$\left\{45^{\circ}, 135^{\circ}\right\}$
$\begin{aligned} & 04: \\ & 10: \end{aligned}$	$\begin{gathered} \{(0.9240 .3830),(0.383,-0.924,0)\} \\ \{(0.3830 .9240),(0.924-0.3830)\} \end{gathered}$	$\left\{180^{\circ}, 180^{\circ}\right\}$
06 ：	\｛（0．863 0.3570 .357$),(-0.2810 .6790 .679)\}$	
07 ：	$\{(-0.863-0.357$ 0．357），（0．281－0．679 0．679）\}	
13 ：	\｛（0．357 0.8230 .357$),(0.679-0.2810 .679)\}$	
16 ：	$\{(-0.357-0.8630 .357),(-0.6790 .2810 .679)\}$	$\left\{98.4^{\circ}, 148.6^{\circ}\right\}$
17：	$\{(0.2810 .6790 .679),(-0.8630 .3570 .357)\}$	\｛ 98.4 ，148．6 \}
20：	$\{(-0.281-0.6790 .679),(0.863-0.357$ 0．357）\}	
22：	\｛（0．357－0．863 0．357），（0．679 0．281 0．679）\}	
23	$\{(-0.3570 .8630 .357),(-0.679-0.2810 .679)\}$	

$$
01\left\{\begin{array}{l}
{\left[\begin{array}{ccc}
-1 & 0 & 1
\end{array}\right]_{y} / /\left[\begin{array}{lll}
-1 & -1 & 1
\end{array}\right]_{a}} \\
(1
\end{array} 1 \quad 1\right)_{y} / /\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right)_{a} .
$$

© 2017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Rights Reserved．

24 Variants in Morito＇s Paper and the Rotation Matricises							$\longrightarrow\left(\begin{array}{ccc}2 / 3 & 2 / 3 & 1 / 3 \\ -1 / 3 & 2 / 3 & -2 / 3 \\ -2 / 3 & 1 / 3 & 2 / 3\end{array}\right)$
Variant No．	Close－packed plane parallel	$\begin{array}{\|l} \hline \begin{array}{l} \text { Close-packed } \\ \text { direction parallel } \end{array} \\ \hline \end{array}$	Rotation from Variant 1 ［Axis］／Angle（deg．）	Rotation Ma			
1		［－101］y／／［－1－1 1］ a^{\prime}	$[$［－，－，－］／－				
2	$\underset{C P 1}{\left(\begin{array}{lll} (1) & 1 \end{array}\right) \mathrm{Y} / /(011) a^{\prime}}$	［－10 1］$] / /[-11-1] \mathrm{a}^{\prime}$	［0．577，0．577，－0．577］／60．0	0.6667 -0.3333	0.66667	0.3333 -0.6667	
			1／／3 $31,1,-1] / 60$	－0．6667	0.3333	0.6667	
3		［01－1］$\left.{ }^{\text {c／} /[-1-1} 1\right] \mathrm{a}^{\prime}$	［0．000，0．707，0．707］／60．0	0.5	-0.6124	0.6124	
			\downarrow d 120,17600	0.6124	0.75	0.25	$\left(\begin{array}{ccc}(2 \sqrt{6}+1) / 6 & (-4+\sqrt{6}) / 12 & 4 \sqrt{6} / 12 \\ 4 \sqrt{6} / 12 & (7+2 \sqrt{6} / 12 & (5-2 \sqrt{6}) / 12 \\ (-4+\sqrt{6}) / 12 & (5-2 \sqrt{6}) / 12 & (7+2 \sqrt{6}) / 12\end{array}\right.$
			$\frac{1 / \sqrt{2}[0,1,1] / 60.0}{[0.000, ~-0.707,-0.707] / 10.5}$	－0．6124	0.25 0.1289	－0．75	
4			［0．000，－0．707，－0．707］／10．5	0．9833	0.1289	－0．1289	
			\downarrow 1／／2［0，－1，－1］／10．5	-0.1289 0.1289	0.9916	0.0084 0.9916	
5		［1－1 0］ $\mathrm{l} /\left[\begin{array}{ll}-1-1 & 1] \mathrm{a}^{\prime} \\ \\ \end{array}\right.$	［0．000，－0．707，－0．707］／60．0	0.5	0.6124	－0．6124	
			\downarrow－	－0．6124	0.75	0.25	
			1／／ $2[0,-1,-1] / 60.0$	0.6124	0.25	0.75	
6		［1－10］ $\mathrm{l} /[\mathrm{l}-11-1] \mathrm{a}^{\prime}$	［0．000，0．707，0．707］／49．5	0.6494	－0．5377	0.5377	
			\downarrow－	0.5377	0.8247	0.1753	
			1／／ $2[0,1,1] / 49.5$	－0．5377	0.1753	0.8247	
7	$\left.\int_{C P 2}^{(1-1} 1\right) \mathrm{y} /\left(\begin{array}{ll} 1 & 1 \end{array}\right) \mathrm{a}^{\prime}$	［－101］ 1 ／／［［－1－1 1］α^{\prime}	［－0．577，－0．577，0．577］／49．5	0.7663	－0．3222	-0.5559	
			1	0.5359	0.7663	0.3222	
			1／／3［ $[-1,-1,1] / 49.5$	0.3222	－0．5559	0.7663	
8		［－101］ $\mathbf{l}^{\prime} / /[-11-1] \mathrm{a}^{\prime}$	［0．577，0．577，－0．577］／10．5	0.9888	0.1108	0.0996	
			\downarrow－	－0．0996	0.9888	－0．1108	
			1／／3［1，1，－1］／10．5	－0．1108	0.0996	0.9888	
9		［01－1］ $\mathrm{l} / /\left[\begin{array}{lll}-1 & -1 & 1] \mathrm{a}^{\prime}\end{array}\right.$	$[-0.615,0.186,-0.767] / 50.5$	0.7736	0.5499	0.3149	
				－0．6331	0.6487	0.4224	
				0.028	－0．5261	0．8499	
10		［01－1］y／／［－11－1］${ }^{\prime}$	［－0．739，－0．463，0．490］／50．5	0.8347 0.5024	－0．2535	$\begin{array}{r}-0.4889 \\ 0.4875 \\ \hline\end{array}$	
				0.2255	－0．6526	0.7234	
11		［1－1 0］y／／［－1－1 1 ］${ }^{\prime}$	［0．933，0．354，0．065］／14．9	0.9956	－0．0056	0.0931	
				0.0278	0.9706	-0.2391	
				－0．089	0.2407	0.9665	
12		［1－1 0］ $\mathrm{V} / /[-11-1] \mathrm{a}^{\prime}$	［－0．357，0．603，0．714］／57．2	0.6501	－0．6985	0.3899	
				0.5013 -0.6234		0.4971 0.7751	

Phase-field simulations of dendrite solidification and grain growth

Tomohiro Takaki

Kyoto Institute of Technology

Phase-field studies of dendrite growth and grain growth are introduces. In the dendrite growth, the competitive growth among multiple dendrites is investigated. In the grain growth, the true behaviors of ideal grain growth are investigated by the very-large simulation.

Overview

1．Phase－field method
2．Necessity of large－scale simulation for solidification and grain growth
3．Parallel computation by a GPU supercomputer
4．Simulation examples
＊Dendrite competitive growth in directional solidification
＊Ideal grain growth
5．Conclusions

Overview

1．Phase－field method
2．Necessity of large－scale simulation for
solidification and grain growth
3．Parallel computation by a GPU supercomputer
4．Simulation examples
＊Dendrite competitive growth in directional solidification
＊Ideal grain growth
5．Conclusions

Free energy functional

$$
F=\int f d V
$$

$$
\text { Free energy density } f=f_{\text {chem }}+f_{\text {doub }}+f_{\text {grad }}
$$

| Chemical free
 energy density | $f_{\text {chem }}=p(\phi) f_{a}+(1-p(\phi)) f_{b}$
 $p(\phi)$: energy distribution function |
| :---: | :---: | | Bulk energy density |
| :---: |
| $p(\phi)=\phi^{2}(3-2 \phi)$ or |
| $p(\phi)=\phi^{3}\left(10-15 \phi+6 \phi^{2}\right)$ |

Time evolution equation

Second law of thermodynamics

Simplest AC type phase-field equation

Interface migration (contour line of $\phi=0.5$)

KIT Computational Materials Design Lab

Advantages of phase-field method

- Smooth interface morphology can be expressed, because the phase-field method is a diffuse interface model.
- There is no need to track the interface position, because the interface migration is expressed by solving a reactiondiffusion equation numerically.
- Therefore, the complicated morphological changes can be expressed relatively easily.
- The time evolution equation can be derived based on the second low of thermodynamics. This means that the phase-field method is a thermodynamically sound method.
- The time evolution equation is reduced to the simple reaction-diffusion equation. Therefore, we can use a simple discretization method.
- The curvature effect is naturally included in the time evolution equation.

Overview

1. Phase-field method
2. Necessity of large-scale simulation for
solidification and grain growth
3. Parallel computation by a GPU supercomputer
4. Simulation examples

* Dendrite competitive growth in directional solidification
* Ideal grain growth

5. Conclusions

Overview

1. Phase-field method
2. Necessity of large-scale simulation for
solidification and grain growth
3. Parallel computation by a GPU supercomputer
4. Simulation examples

* Dendrite competitive growth in directional
solidification
* Ideal grain growth

5. Conclusions

GPU supercomputer TSUBAME2.5

Tokyo Institute of Technology

KIT Computational Materials Design Lab.

GPU : Graphics Processing Unit

GPGPU : General-purpose computing on graphics processing units

KEY FEATURES

Number of processor cores: 2,688
Processor core clock: 732 MHz
Package size: $45 \mathrm{~mm} \times 45 \mathrm{~mm} 2397$-pin
ball grid array (S-FCBGA)
Board
PCI Express Gen 2×16 system interface
Physical dimensions: 4.376 inches \times
10.5 inches, dual-slot

Display Connectors
None

Schematic illustration of parallelization

> Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study

Quantitative phase-field model
M. Ohno, K. Matsuura

Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid.

Phys. Rev. E, 79031603 (2009)

Time evolution equations for directional solidification of binary alloy

Temperature $T(z)=T_{0}+G\left(z-V_{p} t\right) \quad$ Frozen temperature approximation

Phase-field [$\phi=+1$ in solid $\& \phi=-1$ in liquid]

$$
\begin{aligned}
& \tau(\nabla \phi)\left[1-(1-k) u^{\prime}\right] \frac{\partial \phi}{\partial t}=\nabla \cdot\left[W(\nabla \phi)^{2} \nabla \phi\right]-\frac{d f(\phi)}{d \phi}-\lambda^{*} \frac{d g(\phi)}{d \phi}\left(u+u^{\prime}\right) \quad u^{\prime}=\frac{y-V_{p} t}{l_{T}} \\
& +\frac{\partial}{\partial x}\left[W(\nabla \phi) \frac{\partial W(\nabla \phi)}{\partial \phi_{x}}|\nabla \phi|^{2}\right]+\frac{\partial}{\partial y}\left[W(\nabla \phi) \frac{\partial W(\nabla \phi)}{\partial \phi_{y}}|\nabla \phi|^{2}\right]+\frac{\partial}{\partial z}\left[W(\nabla \phi) \frac{\partial W(\nabla \phi)}{\partial \phi_{x}}|\nabla \phi|^{2}\right]
\end{aligned}
$$

Solute concentration $\left[u=\left(c_{l}-c_{l}^{e}\right) /\left(c_{l}^{e}-c_{s}^{e}\right)\right]$
$\frac{1}{2}[1+k-(1-k) \phi] \frac{\partial u}{\partial t}=\nabla \cdot\left[D_{L} q(\phi) \nabla u-\mathbf{J}_{A T}\right]+\frac{1}{2}[1+(1-k) u] \frac{\partial \phi}{\partial t}-\nabla \cdot \mathbf{J}$

KIT Computational Materials Design Lab.

Overview

1. Phase-field method
2. Necessity of large-scale simulation for solidification and grain growth
3. Parallel computation by a GPU supercomputer
4. Simulation examples

* Dendrite competitive growth in directional solidification
* Ideal grain growth

5. Conclusions

Very-large-scale multi-phase-field simulation for elucidating the authentic statistical behaviors of the ideal grain growth

npj Computational Materials

ARTICLE OPEN
Ultra-large-scale phase-field simulation study of ideal grain growth

FIT Computational Materials Design Lab.

Multi-phase-field (MPF) model

I. Steinbach, F. Pezzolla, Physica D, 134 (1999) 385-393

$\phi_{\alpha}= \begin{cases}1 & : \text { in } \alpha \text { th grain } \\ 0 & : \text { in other grains }\end{cases}$

KIT Computational Materials Design Lab.

MPF model (cont.)

I. Steinbach, F. Pezzolla, Physica D, 134 (1999) 385-393

Free energy functional

$$
F=\int_{V} \sum_{\alpha=1}^{N} \sum_{\beta=\alpha+1}^{N}\left[-\frac{a_{\alpha \beta}^{2}}{2} \nabla \phi_{\alpha} \cdot \nabla \phi_{\beta}+W_{\alpha} \phi_{\alpha} \phi_{\beta}\right] \mathrm{d} V
$$

Time evolution equation

$$
\begin{aligned}
\frac{\partial \phi_{i}}{\partial t} & =-\frac{2}{n} \sum_{j=1}^{n} M_{i j}^{\phi}\left(\frac{\delta F}{\delta \phi_{i}}-\frac{\delta F}{\delta \phi_{j}}\right) \longleftarrow \sum_{\alpha=1}^{N} \phi_{\alpha}=1 \text { (constraint condition) } \\
& =\frac{2}{n} \sum_{j=1}^{n} M_{i j}^{\phi} \sum_{k=1}^{n}\left[\frac{1}{2}\left(a_{j k}^{2}-a_{i k}^{2}\right) \nabla^{2} \phi_{k}+\left(W_{j k}-W_{i k}\right) \phi_{k}\right]
\end{aligned}
$$

Phase-field parameters

$$
a_{i j}=\frac{2}{\pi} \sqrt{2 \delta \gamma}, \quad W_{i j}=\frac{4 \gamma}{\delta}, \quad M_{i j}^{\phi}=\frac{\pi^{2}}{8 \delta} M \quad \begin{aligned}
& \delta: \text { GB thickness } \\
& \gamma: \mathrm{GB} \text { energy } \\
& M: \mathrm{GB} \text { mobility }
\end{aligned}
$$

Temporal evolution of grain size distribution

2560^{3}

Grain size distribution is same in $t \geqq 35000 \Delta t$.

Steady state regime of ideal grain growth

2560^{3} grid points (3125000 initial grains)

$$
35,000 \Delta t \leqq t \leqq 75,000 \Delta t
$$

(57,114 grains) $\quad(18,842$ grains $)$
1.8%
0.6 \%

Steady state condition is thought to be a regime from the end of initial relaxation to the point where the remaining grains is about 20,000.

Overview

1. Phase-field method
2. Necessity of large-scale simulation for solidification and grain growth
3. Parallel computation by a GPU supercomputer
4. Simulation examples

* Dendrite competitive growth in directional
solidification
* Ideal grain growth

5. Conclusions

Conclusions

- For a highly accurate prediction of solidification microstructure, it is essential to investigate a system with the multiple multiple dendrites and multiple grains.
- Phase-field method is the most accurate prediction method of dendrite structures. However, its high computational cost is a drawback.
- Large-scale phase-field simulation by parallel GPU computation is a powerful tool for the highly accurate prediction of solidification microstructure.

Numerical analysis of moving interfaces: the level-set and phase-field approaches

Karel Svadlenka
Kyoto University

There are several well-established efficient numerical methods for simple interfaces evolving according to various rules, such as the curve-shortening flow or surface diffusion. Recently, the focus of researchers in this field has shifted towards numerical solution of interfacial networks with junctions, especially in the anisotropic or nonsymmetric setting (for example, different surfaces tensions for each interface in the mean curvature flow).

In this talk, I will briefly review the two basic approaches to evolving interfaces that can be extended to the multiphase anisotropic/non-symmetric case including topological changes: the phase-field method and the level-set method (in particular, its simplified version proposed by Merriman, Bence and Osher). I will present an overview of the state of the art methodologies and their range of applicability, mentioning also some results of my own.

References

[1] K. Svadlenka, E. Ginder, S. Omata: A variational method for multiphase volume-preserving interface motions, Journal of Computational and Applied Mathematics, Vol. 257, pp. 157-179, 2014.
[2] Nur Shofianah, R.Z. Mohammad, K. Svadlenka: Simulation of triple junction motion with arbitrary surface tensions, IAENG International Journal of Applied Mathematics, Vol. 45, No. 3, pp. 235244, 2015.
[3] R.Z. Mohammad, K. Svadlenka, Multiphase volume-preserving interface motions via localized signed distance vector scheme, Discrete and Continuous Dynamical Systems - Series S, Vol. 8, No. 1, pp. 969-988, 2015.
[4] E. Ginder, K. Svadlenka, Wave-type threshold dynamics and the hyperbolic mean curvature flow, Japan J. Indust. Appl. Math. 33(2), pp. 501-523, 2016.
[5] H. Garcke: Curvature driven interface evolution, preprint.

Numerical analysis of moving interfaces: the level-set and phase-field approaches

Karel Svadlenka, Kyoto University

Mathematics in Interface, Dislocation

Outline

1) Interface evolution (in physical models)
2) Generalizations of interface evolution

- anisotropy
- multiphase

3) Overview of numerical approaches
4) Remarks on their extensions

- anisotropy
- multiphase

Types of interface motion

1) Mean curvature flow
2) Volume-preserving mean curvature flow
3) Surface diffusion
4) Mullins-Sekerka model
5) Stefan problem
6) Hyperbolic mean curvature flow

Gradient flows

Finite dimension $\left(\mathbb{R}^{n}\right)$

- Gradient of a function $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by
$D \Phi_{x_{0}}(v)=\left(\nabla \Phi\left(x_{0}\right)\right) \cdot v \quad \forall v \in \mathbb{R}^{n}$
- Gradient flow:

$$
x^{\prime}(t)=-\nabla \Phi(x(t))
$$

- Properties:
$-\frac{d}{d t} \Phi(x(t))=-\|\nabla \Phi(x(t))\|^{2} \leq 0$
- among all possible directions, $-\nabla \Phi(x(0))$ decreases Φ most efficiently

Manifold and Hilbert space

- Gradient of a function $\Phi: M \rightarrow \mathbb{R}$ from a n-dim Riemannian manifold M defined by

$$
\langle\cdot, \cdot\rangle \ldots \text { metric on } T_{x} M
$$

- Gradient flow:

$$
x^{\prime}(t)=-\nabla_{M} \Phi(x(t))
$$

- Properties: the same
- Hilbert space: replace metric by inner product

Example of gradient flow

- Area functional $E(\Gamma)=\int_{\Gamma} 1 d \mathcal{H}^{d-1}=\mathcal{H}^{d-1}(\Gamma)$
Γ... smooth, compact hypersurface in \mathbb{R}^{d} without boundary
- Directional derivative $\Gamma_{t}:=\{x+t \zeta(x) ; x \in \Gamma\}, t \in \mathbb{R}$
$\zeta: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$... smooth vector field

$$
\left.\frac{d}{d t} E\left(\Gamma_{t}\right)\right|_{t=0}=-\int_{\Gamma} \kappa V d \mathcal{H}^{d-1}
$$

κ... mean curvature $V=\zeta \cdot \nu \ldots$ normal velocity

- Inner product $\langle u, v\rangle_{L^{2}}:=\int_{\Gamma} u v d \mathcal{H}^{d-1} \quad \forall u, v \in T_{\Gamma} \mathcal{M}$
- Gradient has to satisfy

$$
\left\langle\nabla_{\mathcal{M}} E, V\right\rangle_{L^{2}}=\left.\frac{d}{d t} E\left(\Gamma_{t}\right)\right|_{t=0}=-\int_{\Gamma} \kappa V d \mathcal{H}^{d-1}
$$

- so $\nabla_{\mathcal{M}} E=-\kappa$ and the gradient flow is $V=\kappa$

1) Mean curvature flow

- Gradient flow of the surface energy with respect to the L^{2}-inner product

$$
V=\kappa
$$

1) Mean curvature flow: properties

- Embedded curve in the plane evolving under mean curv. flow will become convex in finite time [Grayson, 1987].
- A convex hypersurface in \mathbb{R}^{d} will shrink to a point in finite time, asymptotically converging to a sphere [Gage \& Hamilton, 1986] [Huisken, 1984].
- Self-intersections during the flow are not possible. Moreover, if initially one surface is contained in another, this property will be true for all later times (by maximum and comparison principles, [Ecker, 2008]).
- Nonconvex surfaces in general can develop singularities [Huisken, 1990, 1993].

1) Mean curvature flow: applications

2) Volume-preserving curvature flow

- \mathcal{M}_{m}... hypersurfaces enclosing volume m
- Tangent space $T_{\Gamma} \mathcal{M}_{m}$ corresponds to normal velocities with zero mean because

$$
\frac{d}{d t} \operatorname{vol}\left(\Gamma_{t}\right)=\int_{\Gamma_{t}} V d \mathcal{H}^{d-1}
$$

- Gradient for L2-inner product:

$$
\left\langle\nabla_{\mathcal{M}_{m}} E, v\right\rangle=-\int_{\Gamma} \kappa v d \mathcal{H}^{d-1} \quad \forall v \in T_{\Gamma} \mathcal{M}_{m}
$$

so because gradient has zero mean,

$$
\nabla_{\mathcal{M}_{m}} E=-\kappa+\bar{\kappa} \quad \bar{\kappa} \ldots \text { average curvature on } \Gamma
$$

- Gradient flow:

$$
V=\kappa-\bar{\kappa}
$$

3) Surface diffusion

- Again consider \mathcal{M}_{m} but now with H^{-1}-inner product on $T_{\Gamma} \mathcal{M}_{m}$ defined by

$$
\langle u, v\rangle_{H^{-1}}:=\int_{\Gamma} u\left(-\Delta_{\Gamma}\right)^{-1} v d \mathcal{H}^{d-1}
$$

- Gradient of area

$$
\begin{gathered}
\left\langle v, \nabla_{H^{-1}} E\right\rangle_{H^{-1}}=\int_{\Gamma} v\left(-\Delta_{\Gamma}\right)^{-1} \nabla_{H^{-1}} E d \mathcal{H}^{d-1}=-\int_{\Gamma} v \kappa d \mathcal{H}^{d-1} \\
\nabla_{H^{-1}} E=\Delta_{\Gamma} \kappa
\end{gathered}
$$

- Gradient flow

$$
V=-\Delta_{\Gamma} \kappa
$$

In physics this equation is derived from mass conservation laws using appropriate constitutive assumptions [Mullins, 1957].
It models phase transformation due to diffusion along the interface.

3) Surface diffusion: properties

- Volume preserving, area decreasing:

$$
\frac{d}{d t} \operatorname{Volume}\left(\Gamma_{t}\right)=0, \quad \frac{d}{d t} \operatorname{Area}\left(\Gamma_{t}\right) \leq 0
$$

- Stability near spheres [Escher et al., 1998]
- If flow exists for all times, it converges to a sphere [Elliott \& Garcke, 1997].
- Self-intersections are possible [Giga \& Ito,1998].
- Does not preserve convexity [Giga \& Ito, 1999].
- Singularities may appear.

4) Mullins-Sekerka problem

- Decrease of area limited by diffusion - expressed by the inner product

$$
\left\langle v_{1}, v_{2}\right\rangle_{M S}:=\int_{\Omega_{A} \cup \Omega_{B}} \nabla u_{1} \cdot \nabla u_{2} d x=\int_{\Gamma} v_{1} u_{2} d \mathcal{H}^{d-1}
$$

- Leads to

$$
\text { where }-\Delta u_{i}=v_{i} \delta_{\Gamma}
$$

$-\Delta u=0 \quad$ in $\Omega_{A}(t) \cup \Omega_{B}(t)$
$V=-[\nabla u]_{A}^{B} \cdot \nu$ on Γ_{t}
$u=\kappa \quad$ on Γ_{t}

In physics, these equations are derived from conservation laws based on the principles of thermodynamics.

4) Mullins-Sekerka problem: properties

- Volume preserving, area decreasing:

$$
\frac{d}{d t} \operatorname{Volume}\left(\Omega_{B}(t)\right)=0, \quad \frac{d}{d t} \operatorname{Area}\left(\Gamma_{t}\right) \leq 0
$$

- Oswald ripening: mean particle size grows as $t^{1 / 3}$, evolution laws for particle size distribution derived.

- Existence of solution difficult (results in weak setting).

5) Stefan problem

- Describes undercooled solidification.

$$
\begin{aligned}
u_{t} & =d_{i} \Delta u & & \text { in } \Omega_{i}(t) \text { for } i=A, B \\
\lambda V & =-[d \nabla u]_{A}^{B} \cdot \nu & & \text { on } \Gamma_{t} \\
\alpha u+\beta V & =\kappa & & \text { on } \Gamma_{t} \quad \text { (Gibbs-Thomson law) }
\end{aligned}
$$

- Can be written as gradient flow too.

6) Hyperbolic mean curvature flow

Notation

- Family of closed curves

$$
\gamma(t, \vartheta):[0, T] \times[0, \ell] \rightarrow \mathbb{R}^{2}
$$

Velocity of curve

$$
v n+w t
$$

Acceleration of curve

$$
a n+b t
$$

Energy density

$$
e=\frac{\rho}{2}\left|\gamma_{t}\right|^{2}+\tau
$$

6) Hyperbolic mean curvature flow

- Action of internal and kinetic energy
- Stationary points satisfy

$$
\int_{0}^{T} \int_{\gamma(t)}\left(\frac{\rho}{2}\left|\gamma_{t}\right|^{2}-1\right) d \mathcal{H}^{d-1} d t
$$

$$
\rho \gamma_{t t}+\left(\rho \frac{w^{\prime} v}{\left|\gamma^{\prime}\right|}+\left(\frac{\rho}{2}\left(v^{2}-w^{2}\right)+1\right) \kappa\right) \boldsymbol{n}+\frac{1}{\left|\gamma^{\prime}\right|}\left(e^{\prime}+\rho\left(w^{\prime}+\kappa v\left|\gamma^{\prime}\right|\right) w\right) \boldsymbol{t}=\mathbf{0}
$$

- Assuming normal flow ($w=0$)

$$
\left(\rho \gamma_{t t}-e \kappa \boldsymbol{n}+\frac{e^{\prime}}{\left|\gamma^{\prime}\right|} \boldsymbol{t}=\mathbf{0}\right)
$$

Remark (normal flow)

- For tangential velocity $\tilde{w}=\gamma_{t} \cdot \gamma^{\prime}$
$(\widetilde{w} d s)_{t}=0$
flow is normal for all times if the initial velocity is normal

6) Hyperbolic MCF: properties

- Normal flow property is preserved in time.
- Energy is preserved (globally and for normal flow also locally).
- Shocks may develop or the flow may blow up.
- Existence results for graphs or locally in time.

6) Hyperbolic MCF: applications

Oscillating closed spring

ic strings in Minkowski space [D. Kong et al.]

Melting-freezing waves in crystals of helium [m. Gurtin et al.]

Institute for Crystal Growth, Germany

6) Hyperbolic mean curvature flow

References

M. Bonafini, A BMO-type scheme for the relativistic hyperbolic mean curvature flow. Master thesis, Verona University, 2015.
M. E. Gurtin, P. Podio-Guidugli, A hyperbolic theory for the evolution of plane curves, SLAM J. Math. Anal. 22, pp. 575-586, 1991.
C. He, D. Kong, K. Liu, Hyperbolic mean curvature flow, J. Differ. Equs. 246, pp. 473-390, 2009.
M. Kang, A level set approach for the motion of soap bubbles with curvature dependent velocity or acceleration. Dissertation, University of California Los Angeles, 1996.
D. Kong. Z. Wang, Formation of singularities in the motion of plane curves under huperholic mean curvature flow, J. Differential Equations 247, pp. 1694-1719, 2009 P. G. LeFLoch, K. Smoczyk, The hyperbolic mean curvature flow, J. Math. Pures Appl. 90, pp, 591-614, 2008.
H. G. Rotstein, S. Brandon, A. Novick-Cohen, Hyperbolic flow by mean curvature. Journal of Crystal Growth 198/199, pp. 1256-1261, 1999.

Next topic:

Generalizations of interface evolution

Two generalizations

- Anisotropy of surface energy
- the surface energy depends on
the orientation of the surface
normal

$$
E_{\gamma}(\Gamma)=\int_{\Gamma} \gamma(\nu) d \mathcal{H}^{d-1} \quad \text { where } \gamma: \mathbb{R}^{d} \rightarrow[0, \infty)
$$

- Multiphase setting
- there are more than two phases and thus several interfaces meet at junctions

Anisotropy

- Surface energy $\quad E_{\gamma}(\Gamma)=\int_{\Gamma} \gamma(\nu) d \mathcal{H}^{d-1}$
where $\gamma: \mathbb{R}^{d} \rightarrow[0, \infty)$ is one-homogeneous, i.e.,

$$
\gamma(\lambda x)=\lambda \gamma(x) \quad \forall \lambda>0, x \in \mathbb{R}^{d}
$$

- if $\gamma(x)=|x|$, we get the isotropic case
- if γ non-constant on unit vectors, some directions are energetically more favorable
- Wulff shape solves the isoperimetric problem:
"minimize $E_{\gamma}(\Gamma)$ under given enclosed volume"
(1)
cubic

Frank diagram
$\mathcal{F}_{\gamma}:=\left\{x \in \mathbb{R}^{d} ; \gamma(x) \leq 1\right\}$ and Wulff shape $\mathcal{W}_{\gamma}:=\left\{x \in \mathbb{R}^{a} ; x \cdot y \leq \gamma(y) \forall y \in \mathbb{R}^{d},|y|=1\right\}$

Anisotropic gradient

- Variation

$$
\frac{d}{d t} \int_{\Gamma_{t}} \gamma(\nu) d \mathcal{H}^{d-1}=\int_{\Gamma_{t}} \nabla_{\Gamma} \cdot(D \gamma(\nu)) V d \mathcal{H}^{d-1}
$$

so the L^{2}-gradient is

$$
\begin{aligned}
-\nabla_{L^{2}} E_{\gamma} & =-\nabla_{\Gamma} \cdot(D \gamma(\nu))=: \kappa_{\gamma} \\
& =-\left(\hat{\gamma}(\theta)+\hat{\gamma}^{\prime \prime}(\theta)\right) \kappa \begin{array}{l}
\text { Here, } \\
\nu(\theta)=(\cos \theta, \sin \theta) \\
\hat{\gamma}(\theta)=\gamma(\nu(\theta))
\end{array}
\end{aligned}
$$

Here the surface divergence $\nabla_{\Gamma} \cdot F=\sum_{i=1}^{d-1}\left(\partial_{\tau_{i}} F\right) \cdot \tau_{i}$
where $\left\{\tau_{1}, \ldots, \tau_{d-1}\right\}$ is an orthonormal basis of tangent space

Anisotropic interface evolution

$$
\begin{aligned}
& \text { - Mean curvature flow } \\
& \qquad V=\kappa_{\gamma} \text { or more generally } \beta(\nu) V=\kappa_{\gamma}
\end{aligned}
$$

- Surface diffusion

$$
V=-\Delta_{\Gamma} \kappa_{\gamma} \quad \text { (preserves volume) }
$$

decrease anisotropic surface energy and converge to the Wulff shape

- Stefan problem

$$
\begin{array}{rlrl}
\vartheta u_{t} & =d_{i} \Delta u \quad \text { in } \Omega_{i}(t) \text { for } i=A, B \\
\lambda V & =-[d \nabla u]_{A}^{B} \cdot \nu & \text { on } \Gamma_{t} \\
\beta(\nu) V & =\kappa_{\gamma}-\alpha u \quad \text { on } \Gamma_{t}
\end{array}
$$

Anisotropy: applications

Crystal growth

Multiphase problem

- Surface energy
$E(\Gamma)=E\left(\Gamma_{12}\right)+E\left(\Gamma_{13}\right)+E\left(\Gamma_{23}\right)$
- Variation (gradient) away
 from junctions gives the same motion laws as before.
- From perturbation of junctions arises a boundary condition to hold at the junction (balance of forces).

Multiphase problem

Mean curvature flow

- Each interface moves by

$$
V=\gamma_{i j} \kappa \quad \gamma_{i j} \quad \begin{aligned}
& \text { interface separationg of tension of } \\
& \text { inhases / and } j
\end{aligned}
$$

- At junctions forces are

balanced:

$$
\sum_{i, j} \gamma_{i j} \boldsymbol{\tau}_{i j}=\mathbf{0}
$$

Example: at triple junction

$$
\gamma_{1} \boldsymbol{\tau}_{1}+\gamma_{2} \boldsymbol{\tau}_{2}+\gamma_{3} \boldsymbol{\tau}_{3}=\mathbf{0}
$$

or $\frac{\sin \theta_{1}}{\gamma_{1}}=\frac{\sin \theta_{2}}{\gamma_{2}}=\frac{\sin \theta_{3}}{\gamma_{3}}$
If $\gamma_{1}=\gamma_{2}=\gamma_{3} \Rightarrow \theta_{1}=\theta_{2}=\theta_{3}=120^{c}$

Multiphase problem

Anisotropic case

- Condition at junctions becomes

$$
\sum_{i, j} D \gamma_{i j}\left(\nu_{i j}\right)^{\perp}=\mathbf{0}
$$

Here,

Multiphase problem: applications

(a) Soap bubble foam made with common washing detergent
(b) Metallic foam made out of aluminium
(c) Grains in a polycrystalline metal
(d) Cells in a zebrafish (stained)
(e) Minimal surfaces formed by steady-state soap films

Next topic:

Overview of basic numerical approaches

Main numerical approaches

I will explain the methods using the example of mean curvature flow of a closed curve in a plane.

$$
\boldsymbol{v}=-\kappa \boldsymbol{\nu}
$$

Main numerical approaches

(1) Parametric method
(2) Level-set method
(3) Phase-field method
(4) MBO algorithm
(5) Voronoi implicit interface method

Aspects to focus on

- Topological changes and other singularities
- Accurate tracking of junctions
- Anisotropy
- Coupling to physics

Parametric method

Simple algorithm:

1. Discretize curve into points.
2. Compute curvature k and normal $\boldsymbol{\nu}$ at each point.
3. Advance each point by $-(\Delta t) \kappa \nu$.
4. Repeat the above until desired
 time.

Parametric method

- Assumption: surface is given by parametrization over a fixed manifold.
- Surface is triangulated and triangles moved in time.
- Mesh often degenerates but tangential degrees of freedom can be used to keep good mesh properties.
- Anisotropy handled by suitable discretization of the anisotropic mean curvature.

- Surface evolver (nonphysical, stationary)
- Immersed boundary method (fluidstructure interaction)
- Work by [Garcke Barrett - Nürnberg], [Dziuk] (FEM).

Parametric method

Advantages

- Simple, efficient and straightforward.

Disadvantages

- How to deal with topological changes and singularities?

- Requires computing curvature.
- Does not "see" outside and inside of the interface.

Level-set method

1. Express the curve Γ_{t} as level set of a function $u(t, x)$:

2. Find an evolution equation for $u(t, x)$ such that the level sets move according to the given law ($\boldsymbol{v}=-\kappa \nu$).
3. Solve the equation for $u(t, x)$ and detect level sets of the solution.

Can be done for any type of evolution (hyperbolic too)

Level-set method

Advantages

- Handles naturally topological changes.

Disadvantages

- The governing equation is nonlinear and degenerate. For example, for the mean curvature flow

$$
\frac{\partial u}{\partial t}-|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=0
$$

- Dimension of the problem increases by 1.

Level-set method

- Work by Osher, Sethian, Fedkiw, etc.: based on methods for Hamilton-Jacobi PDEs
- stationary approach (arrival time) \rightarrow fast marching method
- evolution approach (level sets) \rightarrow narrow band method Developed efficient upwind schemes.
- Regularization approach

$$
\begin{aligned}
& \left.u_{t}-\sum_{i, j}\left(\delta_{i j}-\frac{u_{x i} u_{x j}}{|\nabla u|^{2}}\right) u_{x_{i} x_{j}}=0 \Rightarrow u_{i}^{f}-\sum_{i, j}\left(\delta_{i, j}-\frac{u_{x,}^{f} u_{x, j}^{f}}{\left(\varepsilon^{2}+\left|\nabla u^{v}\right|^{[2}\right.}\right)\right) u_{x_{i, i j}^{E}}=0 \\
& \text { Then } \sup _{t}\left\|u-u^{\varepsilon}\right\|_{L^{\infty}} \leq C \varepsilon^{\alpha}, \quad \alpha<\frac{1}{2}
\end{aligned}
$$

Phase-field method: idea

- Ginzburg-Landau energy

$$
E_{\varepsilon}(\varphi):=\int_{\Omega}\left(\frac{\varepsilon}{2}|\nabla \varphi|^{2}+\frac{1}{\varepsilon} W(\varphi)\right) d x
$$

as $\varepsilon \rightarrow 0 \Gamma$-converges to area functional

$$
\begin{gathered}
E(\varphi)=c_{W} \int_{\Omega}\left|\nabla x_{\{\varphi=1\}}\right| d x=c_{W} \times \\
\text { aveat interface } \\
\text { av } \int_{-1}^{1} \sqrt{2 W(z)} d z
\end{gathered}
$$

(which means that minima of E_{ε} are close to minima of E)
\Rightarrow Gradient flow of E_{ε} should approximate gradient flow of E (which is mean curvature flow).

For moderate values of E_{ε}, ϕ looks like

Г-convergence

Definition. Let (X, d) be a metric space and $\left(F_{\varepsilon}\right)_{\varepsilon>0}$ a family of functionals $F_{\varepsilon}: X \rightarrow[-\infty, \infty]$.
We say that $\left(F_{\varepsilon}\right) \Gamma$-converges to a functional $F: X \rightarrow[-\infty, \infty]$ if the following properties hold:
(i) For every $u \in X$ and $u_{\varepsilon} \in X, \varepsilon>0$, such that $u_{\varepsilon} \rightarrow u$ as $\varepsilon \rightarrow 0$ it holds

$$
F(u) \leq \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) .
$$

(ii) For every $u \in X$ there exist $u_{\varepsilon} \in X, \varepsilon>0$, such that $u_{\varepsilon} \rightarrow u$ as $\varepsilon \rightarrow 0$ and

$$
\limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) \leq F(u) .
$$

Phase-field method: example 1

- Gradient flow of Ginzburg-Landau energy w.r.t. L^{2}-inner product yields Allen-Cahn equation

$$
\begin{array}{ll}
\frac{\partial \varphi_{e}}{\partial t}=\varepsilon \Delta \varphi_{e}-\frac{1}{\varepsilon} W^{\prime}\left(\varphi_{e}\right) & \text { in } \Omega \\
\frac{\partial \varphi_{e}}{\partial t}=0 & \text { on } \partial \Omega
\end{array}
$$

- Sharp-interface limit: in the limit as $\varepsilon \rightarrow 0$, the sharp interface separating the sets $\left\{\varphi_{0}=1\right\}$ and $\left\{\varphi_{0}=-1\right\}$ evolves by mean curvature flow.
- Similarly, for gradient flow preserving the volume one obtains in the limit the volume-preserving mean curvature flow.

Phase-field method: example 2

- Gradient flow of Ginzburg-Landau energy preserving volume w.r.t. H^{-1}-inner product yields $\mathbf{C a h n}$-Hilliard equation

$$
\begin{array}{rlr|l}
\frac{\partial \varphi_{e}}{\partial t} & =\Delta\left(-\varepsilon \Delta \varphi_{\varepsilon}+\frac{1}{\varepsilon} W^{\prime}\left(\varphi_{\varepsilon}\right)\right) & & \text { in } \Omega
\end{array} \begin{aligned}
& \text { Rewrite as system: } \\
& \frac{\partial \varphi_{\varepsilon}}{\partial t}=\Delta u_{\varepsilon} \\
& \frac{\partial \varphi_{e}}{\partial n}=0, \quad \frac{\partial \Delta \varphi_{e}}{\partial n}=0
\end{aligned}
$$

- Sharp-interface limit: in the limit as $\varepsilon \rightarrow 0$, the sharp interface separating the sets $\left\{\varphi_{0}=1\right\}$ and $\left\{\varphi_{0}=-1\right\}$ evolves by Mullins-Sekerka model:

$$
\begin{aligned}
0 & =\Delta u \quad \text { in } \Omega_{i}(t) \text { for } i=A, B \\
2 V & =-[\nabla u]_{A}^{B} \cdot \nu \text { on } \Gamma_{t} \\
2 u & =c_{W} \kappa \quad \text { on } \Gamma_{t}
\end{aligned}
$$

Phase-field method: example 3

- Gradient flow of Ginzburg-Landau energy with degenerate mobility w.r.t. H^{-1}-inner product yields equation of Cahn-Hilliard type

$$
\begin{aligned}
\frac{\partial \varphi_{\varepsilon}}{\partial t} & =\nabla \cdot\left(\underline{\left(1-\varphi_{\varepsilon}^{2}\right)_{+}} \nabla u_{\varepsilon}\right) \\
u_{\varepsilon} & =-\varepsilon \Delta \varphi_{\varepsilon}+\frac{1}{\varepsilon} W^{\prime}\left(\varphi_{\varepsilon}\right)
\end{aligned}
$$

- Sharp-interface limit: in the limit as $\varepsilon \rightarrow 0$, the sharp interface evolves by surface diffusion:

$$
V=-\Delta_{\Gamma} \kappa
$$

Phase-field method: example 4

- Gradient flow of $\quad E_{\varepsilon}(e, \varphi):=\int_{\Omega}\left(s(e, \varphi)+\frac{\varepsilon}{2}|\nabla \varphi|^{2}+\frac{1}{\varepsilon} W(\varphi)\right) d x$ w.r.t. inner product $\left\langle\epsilon_{1}, \epsilon_{2}\right\rangle_{H-1}+\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{L_{2}}$ with $s(e, \varphi):=\frac{1}{2}(e-\varphi)^{2}$ and $u:=e-\varphi$ yields the phase-field system

$$
\begin{aligned}
\frac{\partial\left(u_{\varepsilon}+\varphi_{\varepsilon}\right)}{\partial t} & =\Delta u_{\varepsilon} \\
\frac{\partial \varphi_{\varepsilon}}{\partial t} & =\varepsilon \Delta \varphi_{\varepsilon}-\frac{1}{\varepsilon} W^{\prime}\left(\varphi_{\varepsilon}\right)+u_{\varepsilon}
\end{aligned}
$$

- Sharp-interface limit: in the limit as $\varepsilon \rightarrow 0$, the sharp interface evolves by Stefan problem:

$$
\begin{array}{rlr}
u_{t} & =\Delta u \quad \text { in } \Omega_{i}(t) \text { for } i=A, B \\
2 V & =-[\nabla u]_{A}^{B} \cdot \nu \text { on } \Gamma_{t} \\
\frac{2}{c_{W}} u+V & =\kappa \quad \text { on } \Gamma_{t}
\end{array}
$$

Thermodynamically consistent PF

Isothermal case: Helmholtz free energy

$$
\mathcal{F}(\varphi)=\int_{\Omega}\left(\underset{\text { free.energy density }}{ }\left(f(T, \varphi)+\frac{\xi_{0}^{2}}{2}|\nabla \varphi|^{2}\right) d x\right.
$$

- Requirement of fastest decrease leads to phase-field equation (Allen-Cahn).
Non-isothermal case: Entropy functional

$$
\mathcal{S}(e, \varphi)=\int_{\Omega}\left(\tilde{s}(e, \varphi)-\frac{\xi^{2}}{2}|\nabla \varphi|^{2}\right) d x
$$

- Requirement of positive entropy production (for non-conserved φ) and conservation law for e lead to phase-field system.

Phase field method

Advantages

- Handles naturally topological changes.
- Can be linked to physics via thermodynamically consistent derivation.
- Equations are relatively simple (semilinear parabolic).

Disadvantages

- Requires fine meshes to resolve the interfacial layer (= computational stiffness).

Phase-field method

- In numerical solution, either one discretizes the Allen-Cahn equation etc. as it is, or
- Uses a different form of W (double obstacle):

$$
W(r)=\left(1-r^{2}\right)^{2} \quad \square \quad W(r)= \begin{cases}1-r^{2}, & r \in[-1,1] \\ \infty, & |r|>1\end{cases}
$$

\longrightarrow leads to variational inequality but in practice, it can be solved by a simple explicit scheme or implicit quadratic minimization problem with constraint.

Advantage: the phase field differs from ± 1 only in a band of width $c(t) \varepsilon$, which saves computational costs.

MBO algorithm: idea (MCF)

- From level sets: $\quad \frac{\partial u}{\partial t}-|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=0$

If we start from signed distance function to interface
$(|\nabla u|=1)$ then for a short time $\quad|\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) \approx \operatorname{div}(\nabla u)=\Delta u$
\Longrightarrow Solve heat equation and re-distance every now and then.

MBO algorithm: idea (MCF)

MBO algorithm: idea (MCF)

- From phase field:
splitting scheme

$$
\begin{aligned}
& \text { Allen-Cahn equation } \\
& \qquad \begin{array}{ll}
\frac{\partial u}{\partial t}=\varepsilon \Delta u-\frac{1}{\varepsilon} W^{\prime}(u) & \frac{\partial u}{\partial t}=\Delta u
\end{array} \begin{array}{l}
\text { Heat equation! } \\
\frac{\partial u}{\partial t}=-\frac{1}{\varepsilon^{2}} W^{\prime}(u) \begin{array}{l}
\text { Splits domain into two: } \\
\text { with value }-1 \text { and value } 1 \\
\text { = thresholding. }
\end{array}
\end{array}
\end{aligned}
$$

MBO algorithm: convergence

Proofs of convergence

- semigroup theory
L.C. Evans, Convergence of an Algorithm for Mean Curvature Motion, Indiana U. Math. J., 1993
- viscosity solutions
G. Barles, C. Georgelin, A Simple Proof of Convergence for an Approximation

Scheme for Computing Motions by Mean Curvature, SIAM J. Num. Anal., 1995

- distance function
Y. Goto, K. Ishii, T. Ogawa, Method of the Distance Function to the BMO

Algorithm for Motion by Mean Curvature, Comm. Pure Appl. Anal., 2005

MBO algorithm

Advantages

- Handles naturally topological changes.
- Only heat equation has to be solved.
- Scheme can be made unconditionally stable \rightarrow suitable for long time simulations (foams, etc.).

Disadvantages

- No direct relation to physics.

Remark. It was said that MBO is limited to mean curvature flow but it was recently extended to other evolutions (Esedoglu, Elsey, ...), even to hyperbolic MCF (Ginder \& Svadlenka).

MBO algorithm

Multiphase hyperbolic mean curvature flow computed by the MBO algorithm

Voronoi implicit interface method

> by J.Sethian \& R.Saye

Idea based on level-set method: the motion of ε-level sets regularizes motion of the interface (0 -level set), even when there are junctions

(Taken from the dissertation of R.Saye)

Voronoi implicit interface method

Advantages

- Handles naturally topological changes.
- Accurate, efficient and robust.
- Ability to couple to physics.

Disadvantages

- Not yet fully analyzed.
- How to deal with anisotropy?

J.Sethian \& R.Saye

Next topic:

Handling of anisotropy and multiphase

Anisotropy

- Consider only smooth anisotropies (for non-smooth anisotropies we either use smoothing or the crystalline approach).

Frank diagram and Wulff shape for the smoothed cubic anisotropy $\gamma(p)=\left|p_{1}\right|+\left|p_{2}\right|+\left|p_{3}\right| \Rightarrow \gamma_{c}(p)=\sum_{i=1} \sqrt{s^{2}|p|^{2}+p_{1}^{2}}$

- Parametric method: discretize in the same way
- Level set method: regularize

$$
\begin{aligned}
\beta\left(\frac{\nabla u}{|\nabla u|}\right) u_{t}-|\nabla u| & \sum_{j, k=1}^{n} \gamma_{p_{j} p_{k}}(\nabla u) u_{x_{j} x_{k}}=0 \\
& \Rightarrow \beta\left(\frac{\nabla u_{\epsilon}}{\sqrt{\epsilon^{2}+\left|\nabla u_{c}\right|^{2}}}\right) u_{\epsilon t}-\sqrt{\epsilon^{2}+\left|\nabla u_{c}\right|^{2}} \sum_{i, k=1}^{n+1} \gamma_{p, p_{k}}\left(\nabla u_{\epsilon},-\epsilon\right) u_{c x j x_{k}}=0
\end{aligned}
$$

Anisotropy

- Phase field method

$$
E_{\varepsilon}^{\gamma}(\varphi)=\int_{\Omega}\left(\frac{\varepsilon}{2}|\gamma(\nabla \varphi)|^{2}+\frac{1}{\varepsilon} W(\varphi)\right) d x
$$

Corresponding Allen-Cahn equation

$$
\epsilon \varphi_{t}-\epsilon \nabla \cdot D A(\nabla \varphi)+\frac{1}{\epsilon} W^{\prime}(\varphi)=0 \quad \text { where } A(p)=\frac{1}{2} \gamma(p)^{2}
$$

Sharp interface limit $\frac{1}{\gamma(\nu)} V=\kappa_{\gamma}$

- MBO algorithm: we solve anisotropic heat equation

$$
u_{t}=\nabla \cdot(\gamma(\nabla u) D \gamma(\nabla u))
$$

Multiphase

- Parametric method: not suitable ("surgery" needed).
- Level set method: use multiple level set functions. To avoid creation of voids and overlaps a "repair" procedure (usually projection or penalty) is required at the end of each time step but it is not clear how this affects the motion (\rightarrow used in image processing).
- Voronoi IIM: works nicely.

Multiphase

- Phase field: junction behavior sensitive to the choice of potential functions.
- Work of Garcke, Nestler et al.:
- Phase field function for each phase

$$
u=\left(u_{1}, \ldots, u_{n}\right) \text { such that } \sum_{i=1}^{N} u_{i}=1
$$

- Ginzburg-Landau energy

$$
E(u)=\int_{\Omega}\left(\varepsilon f(u, \nabla u)+\frac{1}{\varepsilon} W(u)\right) d x \begin{aligned}
& \text { with } f(u, \nabla u)=\sum_{i j} A_{i j}\left(u_{i} \nabla u_{j}-u_{j} \nabla u_{i}\right) \\
& \\
& \text { (includes anisotropy) } \\
& \text { and suitable multi-well function W }
\end{aligned}
$$

- Yields correct sharp interface motion laws but it is hard to relate the potential to given physical parameters, e.g.,

$$
\text { surface tension } \sigma_{i j}(\nu)=2 \inf _{\boldsymbol{p}} \int_{-1}^{1} \sqrt{W(\boldsymbol{p}) f\left(\boldsymbol{p}, \boldsymbol{p}^{\prime} \times \nu\right)} d y
$$

Multiphase MBO algorithm (equal surface tensions)

Multiphase case

1. Assign reference vector to each phase
 vectors

2. Solve vector-valued heat equation

$$
\begin{aligned}
& \boldsymbol{u}_{t}=\Delta \boldsymbol{u} \\
& \boldsymbol{u}(t=0, x)=\boldsymbol{u}_{0}(x)
\end{aligned}
$$

3. Detect interface (closest ref. vector)

Two-phase case

1. Assign value 1 inside, - 1 outside.

2. Solve heat eq.
$u_{t}=\Delta u$
$u(t=0, x)=u_{0}(x)$
3. Detect interface

O-level set: check if closer to 1 or to - 1

Multiphase MBO (example)

initial interface

Multiphase MBO (example)

reference vectors

Multiphase MBO (example)

after diffusing for short time ($\boldsymbol{u}(\Delta t, x)$)

Multiphase MBO (example)

interface detection: interface between P_{i} and P_{j} is at points x which satisfy $\boldsymbol{p}_{i} \cdot \boldsymbol{u}(\Delta t, x)=\boldsymbol{p}_{j} \cdot \boldsymbol{u}(\Delta t, x) \Leftrightarrow \boldsymbol{u}(\Delta t, x) \cdot\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right)=0$

Multiphase MBO (example)

new interface

MBO: troubles on uniform mesh

- Piecewise constant identification of the interface has too little degrees of freedom:

$v \times \Delta t>\Delta x \quad$ so that interface does not stagnate $\Delta t \ll 1$ not to pollute evolution
- Can be improved by using signed distance function:

Can we construct a vector.
valued analogy?

MBO: Vector-valued signed distance

Consider a suitable combination of reference vectors with coefficients depending on distances to phases:

$$
d_{i}(x) \text {... distance of } x \text { from phase } P
$$

$$
\varepsilon \ldots \text { band width }
$$

Analysis

- Does it give correct interface velocity?

$$
v=\tau \kappa+O(\Delta t)
$$

- Is the condition at junction satisfied?

Angles θ_{i}^{n} at n-th step of the scheme with time step Δt satisfy

$$
\left|\theta_{i}^{n}-\frac{2 \pi}{3}\right| \leq C\left((\Delta t)^{1 / 2}+\sigma^{n}\right), \quad \sigma \approx 0.25
$$

Thank you for your attention!

Exact solution of nonlinear boundary value problems for surface diffusion

Philip Broadbridge

La Trobe University / IMI, Kyushu University

Curvature-driven surface diffusion on crystalline surfaces is modelled by a fourth order nonlinear diffusion equation. There is a class of nonlinear weakly anisotropic models that is fully integrable. Exact solutions are constructed for development of a grain boundary groove and for smoothing of an initial ramp dislocation.

Even for linear fourth order "diffusion", there are strange overshoot phenomena that are no longer proscribed by maximum principles of second order diffusion.

There are additional phenomena due entirely to the nonlinearity. For example, in a solvable quasilinear model, the depth of a grain boundary groove remains bounded as the dihedral angle approaches vertical.

At a dislocation point of infinite curvature, the quasilinear Mullins model should be extended to a fully nonlinear degenerate model to account for Gibbs-Thompson evaporation-condensation. An exactly solvable fully nonlinear degenerate diffusion model shows that unlike in the quasilinear model, deposition rate at the dislocation point is bounded, and the slope remains discontinuous for a finite delay time.

My group is currently working on classical and non-classical symmetry reductions of the fourth-order evolution of crystal surfaces near cores with cylindrical phase boundaries.

Exact Solution of Nonlinear Boundary Value Problems with Surface Diffusion.
P. Broadbridge ${ }^{1,2}$, D. Gallage ${ }^{1}$, D. Triadis ${ }^{2}$, P. Cesana ${ }^{2}$, J. Goard ${ }^{3}$ and P. Tritscher ${ }^{3 .}$

1. Dept. of Mathematics and Statistics, La Trobe University, Bundoora VIC 3086 Australia.
2. Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku,

Fukuoka, Japan
3. School of Mathematics and Applied Statistics, University of Wollongong NSW 2522, Australia.

Acknowledgements to M. Lee, D. Arrigo, W. Miller Jr., P. Vassiliou for useful discussions. D. Gallage is grateful for the support of a La Trobe University Postgraduate Scholarship.

Introduction

Partial differential equations for the evolution of curves and surfaces, under isotropic and homogeneous processes, should be invariant under the Euclidean group. A comparatively simple example is evolution by mean curvature. Consider a hypersurface of dimension $\mathrm{n}-1$ embedded in R^{n}

$$
\underline{\theta} \mapsto \Re^{n}
$$

$\widehat{\mathbf{n}}=$ 'inward' unit normal vector.

$$
\hat{\mathbf{n}} \cdot \frac{\partial \mathbf{r}(\underline{\theta}, t)}{\partial t}=B \bar{\kappa}
$$

, proportional to mean curvature. This models the surface of volatile metals such as Mg. Surfaces of stable metals such as Au , evolve by 4th order surface diffusion [Mullins 1957, Cahn \& Taylor 1994]. In 2D,

$$
\frac{\partial N}{\partial t}=-\frac{B}{2} \frac{\partial^{2} \kappa}{\partial s^{2}}
$$

The 2D surface diffusion equation in Cartesian coordinates is

$$
y_{t}=-B \partial_{x}\left\{\left(1+y_{x}^{2}\right)^{-1 / 2} \partial_{x} \frac{y_{x x}}{\left(1+y_{x}^{2}\right)^{3 / 2}}\right\}
$$

This equation is invariant under rotations in the XY plane. The 3D surface diffusion equation, to be revisited later, is invariant under $\mathrm{SO}(3)$. This compares with the linear diffusion equation, $\mathrm{Z}_{\mathrm{t}}=\mathrm{Z}_{\mathrm{xx}}+\mathrm{Z}_{\mathrm{yy}}$,
which does not have $\mathrm{SO}(3)$ invariance.

We will be considering the evolution of grain boundary grooves at the surface of a polycrystalline surface. These can be clearly discerned on a surface at the nanoscale, by high-resolution transverse electron microscopy [e.g. Zhang et al, 2007] or by atomic force microscopy [e.g. Sachenko et al., 2002].

Schematic diagram of a symmetric surface groove where two crystals meet.

Balance of surface tension and grain boundary tension gives

$$
m=\tan (\phi) ; \gamma_{b}(T)=2 \gamma_{s}(T) \sin (\phi)
$$

The nonlinear boundary value problem for the shape of a symmetric grain boundary groove, was solved by Tritscher \& Broadbridge, 1995.

$$
\text { analytic. solution with } \begin{gathered}
\text { groove slope } y_{x}=1 \text { at } x=0
\end{gathered}
$$

The physically based model of Mullins, 1957.
Volume flux on surface $J=\nu \Omega v$
$\nu=$ particle density
$\Omega=$ mean volume per particle
$v=$ mean drift velocity
Nernst-Einstein Relation $\quad v=\frac{-D_{s}}{k T} \frac{\partial \Phi}{\partial s}$
$\Phi=$ chemical potential per particle;
$\mathrm{T}=$ absolute temperature; $\mathrm{k}=$ Boltzmann constant; $\mathrm{D}_{\mathrm{s}}=$ surface diffusion constant.

For isotropic material with spherical surface, surface energy is

$$
\begin{array}{r}
\mathcal{E}=\gamma A=4 \pi \gamma R^{2} ; \\
V=\frac{4}{3} \pi R^{3} ; \\
\frac{d \mathcal{E}}{d V}=\frac{d \mathcal{E}}{d R} / \frac{d V}{d R}=\frac{2 \gamma}{R}=2 \gamma \bar{\kappa}
\end{array}
$$

so specific energy (per particle) is $\Phi=2 \Omega \gamma \bar{\kappa}$.

This Laplace formula applies to a general surface (e.g. Defay and Prigogine, 1966).

Laplace-Herring Equation 1814-1950

$$
\begin{aligned}
& \Phi=\Omega\left[\gamma_{s}(\phi)+\gamma_{s}^{\prime \prime}(\phi)\right] \kappa \\
& \gamma_{s}=\text { surface tension } \\
& \phi=\arctan y_{x}
\end{aligned}
$$

In Cartesian coordinates, the two-dimensional curvature is

$$
\kappa=\frac{-y_{x x}}{\left(1+y_{x}^{2}\right)^{3 / 2}}
$$

Substituting the Mullins flux model into the equation of continuity for local conservation of mass,

$$
\begin{aligned}
& \frac{\partial N}{\partial t}+\frac{\partial J}{\partial s}=0 \\
& \frac{\partial N}{\partial t}=B \frac{\partial^{2} \kappa}{\partial s^{2}} \quad \text { (B constant) }
\end{aligned}
$$

That is,

$$
\cos (\phi) \frac{\partial y}{\partial t}=B \frac{\partial^{2} \kappa}{\partial s^{2}}
$$

Now use $\kappa=\left|\frac{d^{2} \mathbf{r}}{d s^{2}}\right|$

$$
\begin{aligned}
& =\sqrt{\left[\frac{d x}{d s} \frac{d}{d x} \frac{1}{\sqrt{1+y_{x}^{2}}}\right]^{2}+\left[\frac{d x}{d s} \frac{d}{d x}\left(\frac{1}{\sqrt{1+y_{x}^{2}}} y_{x}\right)\right]^{2}} \\
& =f(\theta) \theta_{x} \sqrt{\left[f^{\prime}(\theta)\right]^{2}+\left[\theta f^{\prime}(\theta)+f(\theta)\right]^{2}}
\end{aligned}
$$

where $\theta=y_{x}, \quad f(\theta)=\frac{1}{\sqrt{1+\theta^{2}}}=\cos \phi$

$$
\begin{aligned}
& \text { Hence, } \\
& \qquad y_{t}=-B \partial_{x}\left\{\left(1+y_{x}^{2}\right)^{-1 / 2} \partial_{x} \frac{y_{x x}}{\left(1+y_{x}^{2}\right)^{3 / 2}}\right\}
\end{aligned}
$$

and after differentiating each side with respect to x, we arrive at the boundary value problem
$\theta_{t}=-B \partial_{x}^{2}\left\{f(\theta) \partial_{x}\left[\theta_{x} f(\theta) \sqrt{\left[f^{\prime}(\theta)\right]^{2}+\left[\theta f^{\prime}(\theta)+f(\theta)\right]^{2}}\right]\right\}$

$$
\mathrm{y}_{\mathrm{x}}=\theta=m \quad, x=0, \quad t>0
$$

$$
\theta=0 \quad, t=0 \quad x \geq 0
$$

$$
\partial_{x}\left[\theta_{x} f(\theta) \sqrt{\left[f^{\prime}(\theta)\right]^{2}+\left[\theta f^{\prime}(\theta)+f(\theta)\right]^{2}}\right]=0 \quad, \quad x=0
$$

$$
\theta \rightarrow 0 \quad, \theta_{x} \rightarrow 0, \quad x \rightarrow \infty
$$

For surface diffusion on an anisotropic material, both mobility and energy depend on orientation. In terms of rescaled dimensionless variables,

$$
\begin{aligned}
& y_{\tau}=-\partial_{x}\left[D\left(y_{x}\right) \partial_{x}\left[E\left(y_{x}\right) y_{x x}\right]\right] \\
& \tau=0 ; y=0 \\
& x \rightarrow \infty ; y \rightarrow 0, y_{x} \rightarrow 0 \\
& x=0 ; J=0 \Longleftrightarrow \partial_{x}\left[E\left(y_{x}\right) y_{x x}\right]=0 \\
& x=0 ; y_{x}=m(\tau) \\
& m=\tan (\phi) ; \quad \gamma_{b}(T)=2 \gamma_{s}(T) \sin (\phi)
\end{aligned}
$$

In the above, surface tension and grain boundary tension may depend on temperature
T which may vary in time. Therefore the equilibrium groove slope m may depend on a time coordinate tau.

The Integrable Model
Progress has been made on this problem because of an integrable nonlinear anisotropic model

$$
D(\theta)=\frac{\beta}{\beta+\theta}, \quad E(\theta)=\frac{1}{\left(1+\theta^{2}\right)^{3 / 2}}
$$

This is closest to the isotropic model in $L_{\infty} \quad$ when $\beta=2.026$

We cen construct an explicit solution
to Prob. II when f is piecewise inverse linear
spline $f_{s}: f_{s}(\theta)=\frac{\alpha_{j}}{\beta_{j}+\theta} \quad m_{j-1} \leq \theta \leq m_{j}$
cont. at $\theta=m_{j}$, symmetric $f_{s}(-\theta)=f_{s}(\theta)$
constraints $f_{s}(0)=1, f_{s}(\theta) \sim \theta^{-1}(\theta \rightarrow \infty)$
minimising Chebyschev norm $\| f_{s}-f /$

Polar plot of surface tension vs angle for integrable model

With a single reciprocal linear function for $\mathrm{f}\left(\mathrm{y}_{\mathrm{x}}\right)$, the anisotropic surface tension is close to constant for approximately quarter of the circle. With four segments of a reciprocal linear spline, the surface tension is approximately constant over all orientations.

The linear model has groove depth proportional to groove slope m. However, the nonlinear model predicts a bounded groove depth, and has an explicit solution with vertical groove root. This occurs just before the surface tension is not strong enough to support the groove, which will be swallowed by an overarching crystal, as has been observed.

Thermal groove with infinite slope at $x=0$

When mobility and surface tension depend explicitly on time, due to temperature change,

$$
D=D_{1}(t) D_{2}\left(y_{x}\right) ; \quad E=E_{1}(t) E_{2}\left(y_{x}\right)
$$

, which prompts us define a new separable new time coordinate

$$
\tau=\int_{0}^{t} D_{1}(\bar{t}) E_{1}(\bar{t}) d \bar{t}
$$

A change of variables $\quad \mu=\frac{\beta}{\beta+\theta} ; z=\int_{0}^{x} \frac{\beta+\theta}{\beta} d x$
results in the governing equation transforming to a linear PDE

$$
\begin{aligned}
\mu_{\tau} & =-\mu_{z z z z}-\frac{1}{\beta} R(\tau) \mu_{z}, \quad \text { where } R(\tau)=-y_{\tau}(0, \tau) \\
& \Longrightarrow z=0, \quad \mu_{z z z}=\frac{-R(\tau)}{\beta+m(\tau)}
\end{aligned}
$$

After a change of accelerating reference frame, this results in an equation with constant coefficients:

$$
Z=z+\frac{1}{\beta} y(0, \tau) \quad, \mu_{\tau}=-\mu_{Z Z Z Z}
$$

which has scaling symmetry $\quad \bar{Z}=e^{\varepsilon} Z, \quad \bar{\tau}=e^{4 \varepsilon} \tau, \quad \bar{\mu}=\mu$.

In terms of canonical coords, $\quad Y=Z \tau^{-1 / 4}, \quad S=\log \left(\tau^{1 / 4}\right)$,
the scaling transformation is simply a translation in S,

$$
\bar{Y}=Y, \quad \bar{S}=S+\varepsilon, \quad \bar{\mu}=\mu
$$

For any linear equation with a one-parameter Lie group of symmetries, separation of variables is possible (Miller 1976). Separation of variables allows more general solutions than the similarity solutions in which S-dependence is neglected:

$$
\mu=F(S) G(Y)
$$

In fact, $F(S)$ may be any power S^{k}. By linear superposition we can construct a power series in time, for which the similarity solution is the leading term at zero degree.

In the following, the similarity solution $(\mathrm{j}=0)$ has been separated from the terms of higher degree, which begin at $\mathrm{j}=1$.

$$
\begin{aligned}
\mu_{0}(Y) & +\sum_{j=\mathbb{K} 1}^{\infty} \tau^{j / 4} K_{1 j}{ }_{1} F_{3}\left(\left[\frac{-j}{4}\right],\left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right], \frac{Y^{4}}{256}\right) \\
& +K_{2 j} Y_{1} F_{3}\left(\left[\frac{1}{4}-\frac{j}{4}\right],\left[\frac{1}{2}, \frac{3}{4}, \frac{5}{4}\right], \frac{Y^{4}}{256}\right) \\
& +K_{3 j} Y^{2}{ }_{1} F_{3}\left(\left[\frac{1}{2}-\frac{j}{4}\right],\left[\frac{3}{4}, \frac{5}{4}, \frac{3}{2}\right], \frac{Y^{4}}{256}\right) \\
& +K_{4 j} Y_{1}^{3} F_{3}\left(\left[\frac{3}{4}-\frac{j}{4}\right],\left[\frac{5}{4}, \frac{3}{2}, \frac{7}{4}\right], \frac{Y^{4}}{256}\right) .
\end{aligned}
$$

The Y-dependence is expressed exactly in terms of generalized hypergeometric functions that are evaluated easily:

$$
\begin{gathered}
{\left[{ }_{1} F_{3}([a],[b 1, b 2, b 3], z)=\sum_{k=0}^{\infty} \frac{(a)_{k}}{(b 1)_{k}(b 2)_{k}(b 3)_{k}} \frac{z^{k}}{k!}\right]} \\
(a)_{k}=a(a+1)(a+2) \ldots(a+k-1)
\end{gathered}
$$

It must be stressed that when the above series is truncated, it still gives an exact solution to the nonlinear surface diffusion equation with some time dependent slope at the groove root. For constant groove slope m, we have a similarity solution of form

$$
y \tau^{-1 / 4}=H\left(x \tau^{-1 / 4}\right)
$$

For m varying with time, assume the simplest possible power-series extension

$$
y(0, \tau)=\beta \tau^{1 / 4} \sum_{i=0}^{\infty} b_{i} \tau^{i / 4}
$$

The boundary conditions then imply a system of recurrence relations for the unknown coefficients (Broadbridge and Goard, 2010). An example of the solution is given below. Fourth-order diffusion typically generates numerous extrema. Unlike secondorder diffusion, there is no maximum principle. The solution has an infinite number of extrema but these have rapidly diminishing displacement. In practice, only the secondary minimum has been observed at the nano-scale (e.g. Sachenko et al, 2002).

-t=1
Exact solution of surface diffusion around a groove with time-dependent slope at the root. $\quad m(\tau)=1 / 2+1 / 2 \tau^{1 / 4}$

Grooving by evaporation-condensation.

In the Mullins 1957 theory of evaporation-condensation, lateral mixing of vapour keeps pressure p close to the equilibrium value above a flat surface, which is below the equilibrium value $p_{e q}$ above a bulging surface and above $p_{e q}$ for an indented surface. The Nernst-Einstein theory of non-equilibrium evaporation gives

$$
-\frac{\partial N}{\partial t}=\frac{\Omega \chi\left(p_{e q}-p\right)}{\sqrt{2 \pi m_{0} k T}},
$$

where m_{0} is the particle mass and χ is the evaporation coefficient.

Equilibrium vapour pressure will be proportional to the probability of a particle escaping the potential well at the solid surface. From the Gibbs canonical distribution,

$$
p_{e q}-p=p\left(e^{E / k T}-1\right) \approx 2 p \Omega \gamma \bar{\kappa} / k T
$$

which is commonly referred to as the Gibbs-Thompson formula. It follows that in 2D Cartesian coordinates, the evolution equation on the surface of a volatile crystal takes the general form of th curve-shortening equation

$$
y_{t}=\nu \frac{y_{x x}}{1+y_{x}^{2}}
$$

The exact solution for grain boundary grooving by this nonlinear model of evaporation-condensation on an isotropic material, was given by Broadbridge, 1989.

Note that the usual Gibbs-Thompson formula embodies an approximation $\mathrm{E} / \mathrm{kT} \ll 1$. This need not be true over typically short periods of time and small regions wherein the curvature is very large. For situations in which slopes are small but curvatures may be large, it is instructive to consider a fully nonlinear model

$$
y_{t}=-\nu\left[\exp \left(-\gamma y_{x x} / k T\right)-1\right]
$$

After choosing length and time scales $\quad \ell_{s}=\gamma / k T, \quad t_{s}=\ell_{s} / \nu$,

$$
y_{t}=1-\exp \left(-y_{x x}\right) \quad\left(y_{x x} \gg 1\right)
$$

A degenerate model of this type was solved by Broadbridge and Goard, 2004.
$y_{t}=1+e^{-2 y_{x x}}-2 e^{-y_{x x}}=1-2 \exp \left(-y_{x x}\right) \quad\left(y_{x x} \gg 1\right)$.

Figure 1. Profiles $Y(X, T)$ progressing upward at times $T=0, \frac{1}{3}, \frac{2}{3}, 1$ (smoothing time), with $\mathrm{m}=1$. Crosses show finite extent of the disturbance.
"The solution is depicted in Figure 1. Note that y_{t} is bounded at all times, since $y_{t}=F\left(y_{x x}\right)$ with F bounded. In particular, $y_{t}(0,0)=F_{\infty}=\frac{\alpha^{2}}{4 \beta}$. This contrasts with the linear model $y_{t}=\beta y_{x x}$, which has $y_{t}(0,0)$ infinite. Similarly, for these intial conditions, the quasilinear Mullins equation (1.2) has an unbounded

The solution shows that a sharp surface dislocation does indeed retain infinite curvature until a finite time delay before the surface is smooth.

Concomitant surface diffusion and evaporation-condensation at a ramp.
The flux from a grain boundary due to surface diffusion alone, is proportional to $t^{-3 / 4}$ Up to some time scale, this will dominate a flux due to evaporation-condensation, which is proportional to $t^{-1 / 4}$. For a stable metal such as Au , surface diffusion will dominate for more than 10,000 years. For an unstable metal such as Mg , evaporationcondensation will dominate less than an hour after formation of the grain boundary. When both mechanisms are combined additively in the transport equation, there is no longer a similarity solution. However if we add an extra second-order diffusion term to model transport by evaporation-condensation, the following equation remains integrable by the same sequence of transformations that was used above:

$$
\begin{aligned}
y_{t} & =\nu f\left(y_{x}\right)^{2} y_{x x}-\partial_{x}\left(f\left(y_{x}\right) \partial_{x}\left[f\left(y_{x}\right)^{3} y_{x x}\right]\right) \\
f(\theta) & =\frac{\alpha}{(\alpha+\theta)^{2}}
\end{aligned}
$$

For illustrative purposes, the solutions of Tritscher 1996 for smoothing of a ramp dislocation, assumed
$\nu=\frac{(\alpha m)^{2}}{(\alpha+m)^{2}} \frac{\left(1+\alpha^{2}\right)^{1 / 2}}{\alpha}$.

P. Tritscher 1996

Figure 3.5: Surface profiles for: (a) evaporation-condensation only, (b) surface diffusion only and (c) concomitant evaporation-condensation and surface diffusi with $\nu=1$. The ramp is initially inclined at $\pi / 4 \mathrm{rad}:$
isotropic material; $--\cdots-$ theoretical anisotropic materi Dimensionless times from left to right: $t^{\dagger}=0,0.005,0.061,0.242,0.970,3.88$. $t^{\dagger}=h^{-2} A t$ for evaporation-condensation, or $t^{\dagger}=h^{-4} B t$ for surface diffusion concomitant evaporation-condensation and surface diffusion.

Axi-symmetric surface evolution.

Evaporation-condensation at an axi-symmetric surface, leads to flow by mean curvature:

$$
\begin{gathered}
z_{t}=2\left(1+z_{r}^{2}\right)^{1 / 2} B \bar{\kappa}=B\left[\frac{z_{r r}}{1+z_{r}^{2}}+\frac{1}{r} z_{r}\right] \\
\left(\text { in anisotropic case) } \quad=B D(\theta)\left[\theta_{r}+\frac{1}{r} \theta\left(1+\theta^{2}\right)\right]\right.
\end{gathered}
$$

$$
z_{r}=m, \quad r=a t^{1 / 2} ; \quad z=0, t=0 ; \quad z \rightarrow 0, r \rightarrow \infty
$$

$$
\theta=z_{r} ; \quad \rho=r t^{-1 / 2} ; \quad \theta=f(\rho)
$$

r=0

For the axi-symmetric flow, Gallage, Broadbridge, Triadis and Cesana are using the inverse method previously applied to 1D nonlinear diffusion by J. R. Philip, 1960.

$$
D(\theta)=\frac{-0.5 B^{-1} \frac{d \rho}{d \theta} \int_{0}^{\theta} \rho d \theta}{1+\theta\left(1+\theta^{2}\right) d \ln (\rho) / d \theta}
$$

D

For axisymmetric surface diffusion on surface $\mathrm{z}=\mathrm{f}(\mathrm{r}, \mathrm{t})$,

$$
\begin{aligned}
z_{t} & =-\frac{\partial J}{\partial r}-\frac{1}{r} J ; \quad J=-D\left(z_{r}\right) \frac{\partial}{\partial r}\left(E\left(z_{r}\right) \bar{\kappa}\right) \\
\bar{\kappa} & =\frac{1}{2} \frac{-z_{r r}}{\left[1+z_{r}^{2}\right]^{3 / 2}}-\frac{1}{2} \frac{1}{r} \frac{z_{r}}{\left[1+z_{r}^{2}\right]^{1 / 2}}
\end{aligned}
$$

, scaling invariance allows reduction to a nonlinear ODE for g , with

$$
\begin{array}{r}
z_{r}=g(\rho) ; z t^{-1 / 4}=G(\rho) \\
G^{\prime}=g ; \rho=r t^{-1 / 4}
\end{array}
$$

Inverse method: choose solution form G , deduce explicit relationship between functions D and E. We are progressing on the problem of posing a physically reasonable solution g , from which we can construct physically reasonable functions D and E .

$$
\begin{aligned}
& D\left(z_{r}\right)\left[1+z_{r}^{2}\right]^{1 / 2}>0 \text { bounded, } \\
& \quad E\left(z_{r}\right)\left[1+z_{r}^{2}\right]^{3 / 2}>0 \text { bounded. } \\
& D(g)=\frac{\int_{\infty}^{\rho} \rho^{2} g(\bar{\rho}) d \bar{\rho}-\rho^{2} \int_{\infty}^{\rho} g(\bar{\rho}) d \bar{\rho}}{4 \rho\left[E(g)\left\{g^{\prime}+\frac{g}{\rho}\left(1+g^{2}\right)\right\}\right]^{\prime}}
\end{aligned}
$$

The assumption $\mathrm{D}=\mathrm{E}=1$ and the small-slope approximation $1+g^{2} \approx 1$ gives the linear radial model, for which we have constructed the solution g as sum of generalized hypergeometric functions ${ }_{1} F_{3}$ and Meijer G functions.

The radial solution has either zero slope or infinite slope at $\mathrm{r}=0$. We can substitute the solution of the linear problem, plus an assumed energy function into the nonlinear inverse problem for $\mathrm{D}(\mathrm{g})$, wherein the small-slope approximation is no longer assumed Several speakers at this workshop have shown that mobility within a crystal may be strongly anisotropic.

For example, the solution depicted below, has an axisymmetric indentation with very small maximum slope, an isotropic surface energy $\mathrm{E}=1$ and a weakly anisotropic mobility function D (notation M below).

Dependence of mobility on radial surface slope.

References

D. J. Arrigo, P. Broadbridge, P. Tritscher \& Y. Karciga, "The Depth of a Steep Evaporating Grain Boundary Groove: Application of Comparison Theorems", Math. Comp. Modelling, 25 (10), 1-8 (1997).
P. Broadbridge, "Exact Solvability of the Mullins Nonlinear Diffusion Model of Groove Development", J. Math. Phys. 30, 1648-51 (1989).
P. Broadbridge \& J. M. Goard, "Temperature-dependent surface diffusion near a grain boundary", J. Eng. Math., 66(1-3), 87-102 (2010)
P. Broadbridge \& J. M. Goard, "When central finite differencing gives complex values for a real solution !", Complex Variables and Elliptic Equations, 57 (2-4), 455-467 (2012).
P. Broadbridge \& P. Tritscher, " An integrable fourth order nonlinear evolution equation applied to thermal grooving of metal surfaces", I.M.A. J. App Math., 53,249-265(1994).
P. Broadbridge \& P. J. Vassiliou, "The Role of Symmetry and Separation in Surface Evolution and Curve Shortening",
Symmetry, Integrability \& Geom: Methods \& Applics (SIGMA), 7, 052, 19 pages (2011).
J. W. Cahn \& J. E. Taylor, "Surface Motion by Surface Diffusion", Acta Metall. Mater. 42, 1045-1063 (1994).
R. Defay and I. Prigogine, Surface tension and adsorption, Wiley, New York, 1966.
J. M. Goard \& P. Broadbridge, "Exact solution of a degenerate fully nonlinear diffusion equation", Journal of Appl. Math. and Physics (Z.A.M.P.) 55(3), 534-538 (2004).
W. W. Mullins, "Theory of Thermal Grooving", J. Appl. Phys. 28, 333-339 (1957).
J. R. Philip, "General method of exact solution of the concentration dependent diffusion equation", Austral. J. Phys., 13, 1-12.
P. Sachenko, J. H. Schneibel and W. Zhang, "Effect of faceting on the thermal grainboundary grooving of tungsten", Phil. Mag. A 82(4), 815-829 (2002).
P. Tritscher, Integrable nonlinear evolution equations applied to solidification and surface redistribution, PhD thesis, University of Wollongong, 1996.
P. Tritscher \& P. Broadbridge, "Grain Boundary Grooving by Surface Diffusion : an Analytic Nonlinear Model for a Symmetric Groove", Proc. Roy. Soc. A, 450, 569-587 (1995).

On observation of dislocations in crystals

Kenji Higashida

National Institute of Technology, Sasebo College

In this talk, several observation results of dislocations in crystals are reported. Some experimental results exhibit that the properties of dislocations should play more important roles in materials for the next generations.

結晶転位の観察から：現状と課題

On observation of dislocations in crystals

K．Higashida
National Institute of technology，Sasebo College，
Sasebo，Japan
［Department of Materials Science \＆Engineering，Kyushu University］
Coworkers：M．Tanaka，S．Sadamats，S．Matsumura，Y．Tomokiyo（Kyushu Univ．） N．Narita（Kyoto Univ．）

IMI Workshop on＂Mathematics in Interface，Dislocation and Structure of Crystals＂
at Nishijin Plaza，Fukuoka，Japan，August 29， 2017

Lattice image of a silicon crystal irradiated by electron beam

lattice defects
http：／／www．ion－eng．co．jp

Crystal lattice defects（結晶格子欠陥）

Point defect：vacancy，interstitial atom点欠陥：原子空孔，格子間原子

Line defect：Dislocation線欠陥：

転位
Plane defect：Stacking fault，free surface面欠陥：積層欠陥自由表面

Volterra distortions in an elastic cylinder
Linear defects in structure－less continuum．There are no low bound restrictions on the strength of disclinations and dislocations in the continuym． $\begin{array}{r}\text { Dislocation Volterra（1907）}\end{array}$

Disclination

Volterra dislocations．（a）Initial hollow cylinder with a cut Γ ，e is the unit vector along cylinder axis．（b，c）Edge dislocations of Burgers vector b．（d）A screw dislocation．（e，f）Twist disclinations of Frank vector ω ．（g）A wedge disclination．

Proceedings of the Royal Society of London Series A(1934)
302
G.I. Taylor (1934)

1886-1975
British physicist and mathematician and a major figure in fluid dynamics and wave theory

(a)

(C)

The mechanism of slipping may be like the simple shift from fig.(a) to (c), in which the whole of the material on one side of a definite plane shifts through the length of one lattice cell.

The mechanism of this simple shift differs from what is observed in real materials.

Differences from real materials:

(1) This ideal slipping would leave the material in the form of a perfect crystal and the strength would be unaltered by the distortion.
(2) To shift the whole of the upper row of atoms simultaneously over the lower row would necessitate the application of a stress comparable with the elastic moduli of the material (1000 times larger than the real strength)
(3) No room for explanation of the large observed effect of temperature on plastic distortion.

Slip by dislocatios

(a)

(b)

(c)

The slipping is considered to occur not simultaneously over all atoms in the slip plane but over a limited region which is propagated from side to side of the crystal.
(a) The atoms in the lattice of a crystal block,
(b) A slip of one atomic spacing has been propagated from left to right into the middle.
(c) The block after the unit slip (dislocation) has passed through from left to right.

In-situ observation in silicon crystals

Characters of dislocations in crystals
defined by two vectors
1.Burgers vector b
2. Dislocation line vector t

Edge dislocation: $b \perp t$
Screw dislocation: b//t
Mixed dislocation: combination of two components of edge and screw dislocs.

Signs of edge dislocations
determined by the direction of extra-half plane

positive

negative

Signs of screw dislocations
determined by the direction of spiral configuration of atoms

Right-handed (R-H) Screw dislocation

Left-handed (L-H)
Screw dislocation

Mixed Dislocation
Burgers vector is conservative on one dislocation line

Local Stress around a Crack Tip

(I) Stress from the applied external stress

$$
\sigma_{i j}=\frac{K_{I}}{\sqrt{r}} f_{i j}(\theta)
$$

(II) Stress from the internal source

$$
\sigma_{i j}^{D}=\frac{k_{D}}{\sqrt{r}} f_{i j}(\theta)
$$

(I) + (II) Total stress from
the external stress and internal stress

Critical condition for crack extension

surface tension crack extension force

$$
F_{I}=\frac{(1-v)}{\frac{2 \mu}{2 \mu} k_{l}^{2}=2 \gamma}
$$

Local stress Applied stress Local k due to intensity factor intensity factor dislocations
μ : shear modulus, v : Poisson's ratio

Critical condition for crack extension

$$
\begin{aligned}
& \frac{(1-v)}{2 \mu}\left(K_{I C}+k_{D}\right)^{2}=2 \gamma \\
& \text { Fracture } \\
& \text { Toughness } \\
& \text { Interatomic Dislocation } \\
& \text { bonding } \\
& \text { shielding } \\
& k_{D}<0 \text { : Shielding } \Rightarrow K_{I C} \\
& 7
\end{aligned}
$$

Local stress intensity factor k due to dislocations

$$
\bar{k}_{D}=\frac{\mu}{2 i(1-v)} \sum_{j}\left\{\frac{b_{j}}{\sqrt{2 \pi \zeta_{j}}}+\frac{b_{j}}{\sqrt{2 \pi \overline{\zeta_{j}}}}+\frac{\pi \overline{b_{j}}\left(\zeta_{j}-\overline{\zeta_{j}}\right)}{\left(2 \pi \overline{\zeta_{j}}\right)^{3 / 2}}\right\}
$$

\boldsymbol{B}_{j} : Burgers vector μ : Shear modulus v : Poisson's ratio

Critical condition for crack extension

Fracture
$K_{I C}=\sqrt{\frac{4 \mu \gamma}{1-v}}-k_{D}$ Interatomic Dislocation bonding shielding

$$
k_{D}<0: \text { Shielding } \Rightarrow K_{I C} \prod_{3}
$$

Dislocation configuration in front of a crack-tip in a MgO crystal

$\{001\}$ incidence, $\mathrm{g}=020$
Simulated image of screw disloc.

Analysis of stress field of kink boundary based on lattice defect theory

Akihiro Nakatani

Osaka University
(joint work with Xiao-Wen Lei (Fukui University))

An expression of the displacement field of the continuum limit of uniformly distributed dislocations on afinite straight segment in an infinite elastic body is formulated as a closed-form. The exact solution based on the linear elasticity is applied to describe the elastic field near a kink boundary in magnesium alloy with long-period stacking ordered structure. Stress singularity of line of intersection between two kink boundaries will be discussed in detail by an asymptotic analysis as well as computational analysis.

Structure of tilt grain boundaries from mathematical perspective

Kazutoshi Inoue
AIMR, Tohoku University
(joint work with Motoko Kotani ${ }^{1}$ and Yuichi Ikuhara ${ }^{1,2}$)

Functional materials are often used by a polycrystalline form, and their electrical and physical properties are strongly affected by crystalline defects such as dislocations and grain boundaries (GBs). Structures and properties of GBs have been intensively studied both experimentally and numerically for decades. Simplified system of bicrystals has been often investigated in order to determine individual contributions from various components to the macroscopic properties. Many studies have mainly focused on special commensurate GBs with a short periodicity. However, any GB deviated from a typical commensurate orientations can have a rather long periodicity which are well described by the structural-unit model. It has been shown that the structures of symmetrical tilt GBs can be described by a part of quasi-periodical arrangements of structural units as a realization of the lowest energy structure under an assumption that the structure may change as continuously as possible as a function of misorientations. Consequently, two types of structural units are arranged in a way that GB dislocations are maximally separated. Because of this property, the periodicity and the arrangement of structural units in symmetrical tilt GBs can be closely related to the distribution of rational numbers that is well represented by the Farey sequence. We have systematically predicted the arrangement of structural units in various types of GBs in ceramic materials by utilizing the Farey sequence. The atomic configurations in GBs were characterized by the aberration-corrected scanning transmission electron microscopy, showing a nice agreement with the prediction [1-3].

References

[1] K. Inoue, M. Saito, Z. Wang, M. Kotani and Y. Ikuhara: On the periodicity of $\langle 001\rangle$ symmetrical tilt grain boundaries, Mater. Trans. (2015) 56(3), 281-287.
[2] K. Inoue, M. Saito, Z. Wang, M. Kotani and Y. Ikuhara: On the decomposition formula of 〈001〉 symmetrical tilt grain boundaries, Mater. Trans. (2015) 56(12), 1945-1952.
[3] K. Inoue, M. Saito, C. Chen, M. Kotani and Y. Ikuhara: Mathematical analysis and STEM observations of arrangement of structural units in $\langle 001\rangle$ symmetrical tilt grain boundaries, Microscopy. (2016) 65(6), 479-487.

[^0]
1. Introduction

Materials are often used by a polycrystalline form, and their macroscopic properties are strongly affected by crystalline defects such as dislocations and grain boundaries (GBs). Grain boundary (GB) is an interface formed by two adjacent crystal grains. Atomic structures and functional properties of GB have been intensively studied experimentally and numerically. Most of the studies have mainly focused on special commensurate GBs such as coincidence-site lattice (CSL) GBs with short periodicity $[1-4]$. Commensurate GBs have been classified by the coincidence index Σ, and the CSL theory of high dimensional lattices has been developed after the discovery of quasicrystals $[5,6]$. Especially, simplified system of symmetrical tilt GBs have been often investigated in order to determine individual contributions of various components to their properties. A GB deviated from a commensurate orientation with short periodicity may show a long periodicity which can be well described by the structural-unit model [7-9]. High index CSL GBs can be described by a relatively long periodicity of structural units which form a part of a quasi-periodicity instead of random structures. It has been found that the arrangement of structural units in a GB can strongly affect the GB energy which should be important in mechanical behavior, ductility, segregation and so forth $[10-20]$. Since there exist only a few CSL orientations with short periodicity, the O-lattice theory has been proposed in 1960's in order to interpolate short-periodicity structures [21-23]. A general theoretical framework in regard to the symmetry of crystallographic groups on the dichromatic complex of two adjacent lattices was developed $[24,25]$. Then, a general principle to obtain the arrangement of structural units has been proposed, assuming that the GB structure can be described by a combination of two reference structures, and change as continuously as possible according to the misorientation [26-28]. Relatively recently, irrational interfaces resulting in quasi-periodic structures have been studied and a method to approximate the structure has been demonstrated $[29,30]$. According to the rapid development of experimental techniques, direct observation of GB structures due to aberration-corrected scanning transmission electron microscopy (STEM) combined with the first-principles calculations has been making important progress in materials science [31,32].

However, a general mathematical principle is also necessary to be developed for predicting the stable structure of GBs and their relation to properties in various materials. We found that the periodicity and the arrangement of structural units in symmetrical tilt GBs can be closely related to the distribution of rational numbers that was well represented by the Farey sequence. The arrangement of structural units in various types of GBs in ceramic materials were systematically predicted by utilizing the Farey sequence which nicely agreed with STEM observations in atomic-resolution. This article is mainly based on $[33,34]$.

2. Preliminaries

2.1. The CSL theory. Let L be an n-dimensional lattice in \mathbb{R}^{n}, which is isomorphic to a finitely generated Abelian subgroup of full rank with the co-compact property, and $O(n)$ be the group of orthogonal transformations in \mathbb{R}^{n}. One of the lattice points in L is chosen to be the origin, and $R \mathrm{~L}$ stands for the transformation of L by $R \in O(n)$. Then, the sublattice $\mathrm{L} \cap R \mathrm{~L}$ is called the coincident-site lattice (CSL) and $R \in O(n)$ is a coincidence isometry if the intersection $\mathrm{L} \cap R \mathrm{~L}$ forms a sublattice of full rank with a finite index. The index is defined as the group index $\Sigma:=\Sigma_{R}(\mathrm{~L})=[\mathrm{L}: \mathrm{L} \cap R \mathrm{~L}]$,
which is equivalent to the ratio $|\mathrm{L} \cap R \mathrm{~L}| /|\mathrm{L}|$ where $|\mathrm{L} \cap R \mathrm{~L}|$ and $|\mathrm{L}|$ denote the volume of the fundamental domains of $\mathrm{L} \cap R \mathrm{~L}$ and L as well as to the reciprocal density of CSL points. Let $\operatorname{Isom}_{\mathrm{C}}(n)$ denote the group of coincidence isometries in \mathbb{R}^{n}. Then, $R \in S O(n) \cap \operatorname{Isom}_{\mathrm{C}}(n)$ is called a coincidence rotation. The CSL is considered as the maximal sublattice that is contained in both of L and $R \mathrm{~L}$. The union $\mathrm{L} \cup R \mathrm{~L}$ may form so-called a dichromatic pattern [24]. The CSL dichromatic patterns of $\Sigma 17$ and $\Sigma 5$ are shown in Fig.1. For $R \in \operatorname{Isom}_{\mathrm{C}}(n)$, the group

$$
\begin{equation*}
\mathrm{L}+R \mathrm{~L}=\left\{v_{1}+v_{2} ; v_{1} \in \mathrm{~L}, v_{2} \in R \mathrm{~L}\right\} \tag{1}
\end{equation*}
$$

may form a super-lattice of L (and $R \mathrm{~L}$) which is called the displacement-shift complete (DSC) lattice [35]. The DSC lattice is the minimal super-lattice that contains both L and $R \mathrm{~L}$, generated by the minimal translations which preserve the CSL dichromatic pattern. Later, we may see that a GB dislocation can be introduced according to the DSC lattice in order to minimize the GB energy by the minimal displacement of lattices. Therefore, a GB dislocation especially in a high-angle GB is called a DSC dislocation.
2.2. The O-lattice theory. The O-lattice theory was introduced to generalize the CSL theory [21-23]. For a lattice L in \mathbb{R}^{n} and $R \in O(n)$, the O-lattice is defined by

$$
\begin{equation*}
\mathcal{O}_{R}(\mathrm{~L}):=\left\{\boldsymbol{a} \in \mathbb{R}^{n} ;\left(I-R^{-1}\right) \boldsymbol{a} \in \mathrm{L}\right\} \tag{2}
\end{equation*}
$$

where I is the identity transformation. The lattice structure of $\mathcal{O}_{R}(\mathrm{~L})$ is induced from L unless $I-R^{-1}$ degenerates. An element in $\mathcal{O}_{R}(\mathrm{~L})$ is called an O-lattice point. From Eq.(2), $\boldsymbol{a} \in \mathcal{O}_{R}(\mathrm{~L})$ is recognized as the origin of $R \in O(n)$ in the dichromatic pattern of L and $R \mathrm{~L}$. When $\operatorname{det}\left(I-R^{-1}\right)=0$, a family of hyperplanes may appear. It should be noted that a smooth variation of $R \in O(n)$ induces the smooth variation of O-lattice while CSL configurations with low Σ only exist discretely.

The idea of O-lattice was introduced in order to analyze the best matching points of two lattices where misfit is maximized on the boundary of Voronoi cells of O-lattice points. We expect that dislocations can be introduced if a GB plane intersects the boundary of the Voronoi cells of O-lattice points. Therefore, the low density of Olattice points results in the low dislocation density. The O-lattice is a way to generalize the CSL since any CSL points can be the origin of a coincidence rotation. Conversely, given an O-lattice point and the transformation R, the lattice configuration around it can be recovered. From Eq.(2), one may see that $|\mathrm{L}| /\left|\operatorname{det}\left(I-R^{-1}\right)\right|$ gives the volume of the fundamental domain of the O-lattice, and therefore that $\left|\operatorname{det}\left(I-R^{-1}\right)\right|$ is the density of O-lattice points as with Σ in the CSL theory. Generally, $\mathcal{O}_{R}(\mathrm{~L})$ is a superlattice of the CSL if R is a coincidence rotation.

O-lattice points can be classified in terms of the internal coordinates which is given by a projection of $\mathcal{O}_{R}(\mathrm{~L})$ to the quotient \mathbb{R}^{n} / \sim with respect to the translation symmetry of L. The set of projected O-lattice points is denoted by $\tilde{\mathcal{O}}_{R}(\mathrm{~L})$ which is conventionally called the reduced O-lattice. Let $\# \tilde{\mathcal{O}}_{R}(\mathrm{~L})$ denote the number of elements in $\tilde{\mathcal{O}}_{R}(\mathrm{~L})$. Then, $\# \tilde{\mathcal{O}}_{R}(\mathrm{~L})$ is finite if R is a coincidence isometry. For $R \in \operatorname{Isom}_{C}(n)$, we have $\# \tilde{\mathcal{O}}_{R}(\mathrm{~L}) /\left|\operatorname{det}\left(I-R^{-1}\right)\right|=\Sigma_{R}(\mathrm{~L})$ unless $\operatorname{det}\left(I-R^{-1}\right)=0$. The translations which preserve the total CSL pattern can be classified by the translations in $\tilde{\mathcal{O}}_{R}(\mathrm{~L})$ [23]. Examples of reduced O-lattice points are shown in table 1 for a 2-dimensional square lattice L and the coincidence rotation R with the rotation angle 2θ around the [001]axis.

Table 1. A classification of reduced O-lattice points for the ($m 10$)GBs with the rotation angle 2θ around the [001]-axis for a positive integer k.

$\cot \theta$	GB plane	Σ	reduced O-lattice points
$2 k$	$(2 k 10)$	$4 k^{2}+1$	$(0,0),(1 / 2,1 / 2),(0,1 / 2),(1 / 2,0)$
$2 k+1$	$(2 k+110)$	$2 k^{2}+2 k+1$	$(0,0),(1 / 2,1 / 2)$

2.3. Structural-unit Model. The periodicity of GBs can be described by the structuralunit model. A structural unit is a polyhedron of atomic sites which typically appear around the GB. The cubic crystal viewed along the [001]-direction can form a square lattice, and the Miller index for the [001]-symmetrical tilt GB with a tilt angle 2θ is given by $(q p 0)$ satisfying $\cot \theta=q / p$ where q and p are coprime positive integers with $q>p$ (except the case $q=1$ and $p=0$). It might be useful to consider a polygon of atomic sites if the problem can be deduced to 2-dimension. As highlighted in Fig.1, a structural unit of the ($q p 0$)-structure of the [001]-symmetrical tilt CSL GB is defined to be a kite-shaped tetragon which is made by gluing a pair of right triangles of atomic sites at their hypotenuses whose sides in the right angles are q and p in the unit of the lattice constant. It can be useful to utilize the O-lattice as an indicator of the periodicity of the structural units. In Fig.1, the CSL GBs are defined by the line passing through the CSL points below which there are points of L and above which there are points of $R \mathrm{~L}$. GBs in Fig. 1 can be described by an array of single type structural units. Let $\left.\mathcal{O}_{R}(\mathrm{~L})\right|_{\mathrm{GB}}$ and $\left.\tilde{\mathcal{O}}_{R}(\mathrm{~L})\right|_{\mathrm{GB}}$ denote the subset of $\mathcal{O}_{R}(\mathrm{~L})$ and $\tilde{\mathcal{O}}_{R}(\mathrm{~L})$ restricted on the GB. We notice $(0,0),\left.(0,1 / 2) \in \tilde{\mathcal{O}}_{R}(\mathrm{~L})\right|_{\mathrm{GB}}$ for the $\Sigma 17$ dichromatic pattern in Fig.1(a), and $(0,0),\left.(1 / 2,1 / 2) \in \tilde{\mathcal{O}}_{R}(\mathrm{~L})\right|_{\mathrm{GB}}$ for the $\Sigma 5$ dichromatic pattern in Fig.1(b). Two types of points in $\left.\tilde{\mathcal{O}}_{R}(\mathrm{~L})\right|_{\mathrm{GB}}$ exist periodically on the GBs and structural units are superposed passing through the CSL points $\left.(0,0) \in \tilde{\mathcal{O}}_{R}(\mathrm{~L})\right|_{\mathrm{GB}}$.
2.4. Diophantine problem. For any irrational number x and an integer $t>0$, there are positive coprime integers p and q such that $|x-p / q|<1 / t q$ [36]. One of the efficient ways to approximate an irrational number by a rational number can be demonstrated by the continued-fraction expansion. The principal continued-fraction expansion of a positive real number x is given by

$$
\begin{equation*}
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}, \tag{3}
\end{equation*}
$$

with a non-negative integer a_{0} and positive integers a_{i} 's $(i \geqq 1)$, which can be denoted by $x=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \cdots\right]$. Let $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}(n \geqq 0)$ be sequences defined by $P_{0}=$ 1, $P_{1}=a_{0}, Q_{0}=0, Q_{1}=1, P_{n+1}=P_{n-1}+a_{n} P_{n}$ and $Q_{n+1}=Q_{n-1}+a_{n} Q_{n}$. Then P_{n} and Q_{n} are coprime and satisfy $\left|x-P_{n} / Q_{n}\right|<1 / Q_{n} Q_{n+1}$. Thus, an approximating sequence $\left\{P_{n} / Q_{n}\right\}$ of x can be obtained, and the $\left\{\left(Q_{n} P_{n} 0\right)\right\}$-structures may form a sequence of the Rational Approximant Structure(RAS)s [30] which may converge to the $\left(\begin{array}{ll}x & 10) \text {-structure, realizing a part of a quasi-periodic arrangement of structural units. }\end{array}\right.$

Figure 1. Dichromatic patterns of lattices of (a) $\Sigma 17$, (410)-structure with $2 \theta_{1} \simeq 28.07^{\circ}\left(\cot \theta_{1}=4\right)$ and (b) $\Sigma 5$, (310)-structure with $2 \theta_{2} \simeq 36.87^{\circ}\left(\cot \theta_{2}=3\right)$. The O-lattice $\mathcal{O}_{R}(\mathrm{~L})$ corresponding to each coincidence rotation R, and structural units are superposed [33].

Note that we have

$$
\begin{equation*}
\left[a_{0} ; a_{1}, \cdots, a_{n}\right]=\left[a_{0} ; a_{1}, \cdots, a_{n-1}\right] \boxplus\left[a_{0} ; a_{1}, \cdots, a_{n-1}, a_{n}-1\right], \tag{4}
\end{equation*}
$$

indicating that the rational number $\left[a_{0} ; a_{1}, \cdots, a_{n}\right]$ is uniquely produced by the parent rational numbers $\left[a_{0} ; a_{1}, \cdots, a_{n-1}\right]$ and $\left[a_{0} ; a_{1}, \cdots, a_{n-1}, a_{n}-1\right]$.

3. Application to the GB structure

3.1. Application of the O-lattice theory. We demonstrate an application of the O-lattice theory by focusing on the symmetrical tilt CSL GBs. The rotation axis is set to be the [001]-axis. Since the ($q p 0$)-plane is spanned by the $[001]$ and the $[p \bar{q} 0]$-axes, the problem deduces to a 2-dimensional one. By taking the standard coordinates for a square lattice L , and letting $R=R(2 \theta)$ be the rotation of 2θ around the [001]-axis, we have

$$
\left(I-R(2 \theta)^{-1}\right)^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
1 & \cot \theta & 0 \tag{5}\\
-\cot \theta & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

restricted on the plane perpendicular to the [001]-axis. By applying Eq.(5) with $\cot \theta=$ q / p to a translational vector ${ }^{t}(0, l, 0) \in \mathrm{L} \simeq \mathbb{Z}^{3}$ to obtain the O-lattice on the $(q p 0)$ plane, one may see

$$
\left(I-R(2 \theta)^{-1}\right)^{-1}\left(\begin{array}{l}
0 \tag{6}\\
l \\
0
\end{array}\right)=\frac{l}{2}\left(\begin{array}{c}
q / p \\
1 \\
0
\end{array}\right)
$$

which is on the ($q p 0$)-plane. The CSL points are obtained by Eq.(6) if l is divisible by $2 p$. If l is odd, the first component of Eq.(6) varies while the second component is maintained at $1 / 2$ in $\tilde{\mathcal{O}}_{R}(\mathrm{~L})$. Therefore, the periodicity of Eq. (6) in $\tilde{\mathcal{O}}_{R}(L)$ can be given by $2 p$. Recalling the case of CSL GBs with short periodicity in Fig.1, it can be shown that the periodicity of the structural units is given by p by drawing structural units as in Fig.3(b) starting with a CSL point and passing through O-lattice points alternately. Now, we consider the GB with the misorientation angle $2 \theta \simeq 35.30^{\circ}(\cot \theta=22 / 7)$ corresponding to the (2270)-structure which is a near $\Sigma 5$, (310)-structure with $2 \theta_{2} \simeq$ $36.87^{\circ}\left(\cot \theta_{2}=1 / 3\right)$. In Fig. $3(\mathrm{~b})$, the dichromatic pattern of the (22 70$)$-structure with the fundamental domains of L is presented. As in Fig.1, the CSL GBs are defined by the line passing through the CSL points at the edge of the figure below which there are points of L and above which there are points of $R \mathrm{~L}$. It can be seen that O-lattice points in the structural unit shifts periodically in $\tilde{\mathcal{O}}_{R}(\mathrm{~L})$. In the fourth structural unit from the left, an O-lattice point reaches at the edge of the fundamental domain of L whose internal coordinates are $(0,1 / 2,0) \in \tilde{\mathcal{O}}_{R}(\mathrm{~L})$ with respect to the coordinate system of L. Since the theoretical GB is on the (22 70)-plane, the above argument suggests that the periodicity of the structural units is 7 . The angle $2 \theta \simeq 35.30^{\circ}(\cot \theta=22 / 7)$ corresponds to the CSL configuration of $\Sigma 533$ which is in between $\Sigma 17$, (410) (2 $2 \theta_{1} \simeq$ $\left.28.07^{\circ}, \cot \theta_{1}=4\right)$ and the $\Sigma 5,(310)\left(2 \theta_{2} \simeq 36.87^{\circ}, \cot \theta_{2}=3\right)$, and the structure may be composed of the (410) and the (310)-structural units. Eq.(6) becomes $(0,1 / 2)$ for $l \equiv 7(\bmod 14)$ which appears typically in the $\Sigma 17$, (410) structure (Table 1). Namely, we have $(2270)=\left(\begin{array}{ll}4 & 1\end{array} 0\right)+6\left(\begin{array}{ll}3 & 1\end{array}\right)$, which is viewed as a decomposition of a reciprocal vector. As we see, a GB is called the reference structure if it is described by an array of a single type structural units which can interpolate intermediate GBs in between them. Once two reference structures are determined appropriately, one can obtain the integral coefficients uniquely for each GB.
3.2. Farey sequence and GB structure. The periodicity of the structural units of the ($q p 0$)-structure can be p corresponding to the periodicity of the O-lattice points. A mirror-symmetrical sequence $\left\{p_{l}\right\}_{l=1}^{29}$:

$$
\begin{equation*}
1, \underline{\mathbf{9}}, 8,7,6,5, \underline{\mathbf{9}}, 4, \underline{\mathbf{7}}, 3, \underline{\boldsymbol{8}}, 5,7, \underline{\mathbf{9}}, 2, \underline{\mathbf{9}}, 7,5, \underline{\boldsymbol{8}}, 3, \underline{\boldsymbol{7}}, 4, \underline{\mathbf{9}}, 5,6,7,8, \underline{\mathbf{9}}, 1 \tag{7}
\end{equation*}
$$

may appear repeatedly for $p<10$, corresponding to $0^{\circ} \leqq 2 \theta \leqq 90^{\circ}$. The sequence is recognized as the numerators of irreducible rational numbers in between $1 / m$ and $1 /(m-1)$. For instance, irreducible rational numbers in between $1 / 4$ and $1 / 3$ whose numerators are less than 10 can be given by $1 / 4,9 / 35,8 / 31,7 / 27,6 / 23,5 / 19,9 / 34$, $4 / 15,7 / 26,3 / 11,8 / 29,5 / 18,7 / 25,9 / 32,2 / 7,9 / 31,7 / 24,5 / 17,8 / 27,3 / 10,7 / 23,4 / 13$, $9 / 29,5 / 16,6 / 19,7 / 22,8 / 25,9 / 28,1 / 3$. Therefore, if $p_{1}=1$ and $p_{29}=1$ correspond to the $\Sigma 17$, (410)-structure with $2 \theta_{1} \simeq 28.07^{\circ}\left(\cot \theta_{1}=4\right)$ and the $\Sigma 5,(310)$-structure with $2 \theta_{2} \simeq 36.87^{\circ}\left(\cot \theta_{2}=3\right)$, respectively, $p_{26}=7$ corresponds to the (22 70)-structure with $2 \theta \simeq 35.30^{\circ}(\cot \theta=22 / 7)$. It is observed that $p_{l}=p_{l-1}+p_{l+1}$ holds for underlined
terms in the sequence (7), corresponding to the decomposition of a periodicity p_{l} to p_{l-1} and p_{l+1}.

The hierarchical structure in the distribution of rational numbers can be typically shown in the Farey sequence [37-39]. The Farey sequence of the order N denoted by F_{N} is defined to be an increasing sequence of irreducible rational numbers whose denominator is not bigger than N. It is closely related to physical phenomena [40-45]. As we see, the sequence (7) appears in the numerators in between $1 / m$ and $1 /(m-1)$ $(m \geqq 2)$ as well as in the denominators of the Farey sequence of the order 9 . By introducing the operation \boxplus (the Farey summation) defined by

$$
\begin{equation*}
\frac{a}{b} \boxplus \frac{c}{d}=\frac{a+c}{b+d}, \tag{8}
\end{equation*}
$$

F_{N+1} can be produced by applying the operation to adjacent rational numbers in F_{N}. By setting F_{1} to be $\{0 / 1,1 / 1\}$, the Farey diagram can be inductively obtained as in Fig.2. The diagonal line segments in Fig. 2 indicate the Farey summation defined in Eq.(8). Each rational number p / q in Fig. 2 may correspond to $\cot \theta=q / p$ of a CSL configuration and thus, it can represent the ($q p 0$)-structure. Note that rational numbers in the early order of the Farey sequence correspond to the low index GBs. Here, we assume the summation in Eq.(8) is assumed to be non-commutative, but cyclic permutations are allowed in order to describe the unique periodical arrangement of structural units.

Figure 2. The Farey diagram up to the order 9 [34].

Many of the previous investigations have shown that the ($q p 0$)-structure of a symmetrical tilt GB can be composed of an integral linear combination of two types of reference structures $[10-20,46-49]$. Let p_{i} and q_{i} be coprime, positive integers (except the case $q_{i}=1$ and $p_{i}=0$), respectively for $i=1,2$. The ($q p 0$)-structure can be in between the $\left(q_{1} p_{1} 0\right)$ and the ($\left.q_{2} p_{2} 0\right)$-structures if $p_{1} / q_{1}<p / q<p_{2} / q_{2}$ is satisfied. Moreover, we assume

$$
\operatorname{det}\left(\begin{array}{ll}
p_{1} & p_{2} \tag{9}\\
q_{1} & q_{2}
\end{array}\right)=-1
$$

Then the general decomposition formula for the ($q p 0$)-structure of a [001] symmetrical tilt GBs which is in between the ($\left.q_{1} p_{1} 0\right)$ and the ($q_{2} p_{2} 0$)-structures can be given by

$$
\left(\begin{array}{ll}
q & p \tag{10}
\end{array}\right)=n_{1}\left(q_{1} p_{1} 0\right)+n_{2}\left(q_{2} p_{2} 0\right)
$$

corresponding to a decomposition of a reciprocal vector. If p_{1} / q_{1} and p_{2} / q_{2} are adjacent rational numbers in the Farey sequence, Eq.(9) can be always satisfied. Therefore, the value of $\tan \theta$ corresponding to the reference structures can be chosen from an adjacent pair of rational numbers in the certain order of the Farey sequence. Once two reference structures satisfying Eq.(9) are determined, the positive integral coefficients n_{1} and n_{2} are uniquely obtained for each GB. While $n_{1}+n_{2}=p$ gives the periodicity of the structural units, the ratio of the number of the structural units can be given by

$$
\begin{equation*}
\frac{n_{2}}{n_{1}}=-\frac{p_{1}}{p_{2}}+\frac{1}{p_{2}\left(p_{2} \cot \theta-q_{2}\right)} \tag{11}
\end{equation*}
$$

which is continuous as a function of the misorientation angle. The ($q p 0$)-structure is said to be closer to the ($\left.q_{1} p_{1} 0\right)$-structure than the ($q_{2} p_{2} 0$)-structure if $n_{1}>n_{2}$ is satisfied which is equivalent to $p_{1} / q_{1}<p / q<\left(p_{1}+p_{2}\right) /\left(q_{1}+q_{2}\right)$. Eq.(11) is closely related to the average spacing of DSC dislocations [11, 19, 20, 34]. It is characterized by the DSC Burgers vector defined by the closure failure of a closed circuit of atomic sites in the reference structure of the minority structural unit expanded in the reference structure of the majority structural unit. Its magnitude and orientation is determined by the DSC lattice. The DSC Burgers vector of the ($q_{2} p_{2} 0$)-structure defined in the ($q_{1} p_{1} 0$)-structure by the Left-Handed-First-to-Start manner can be provided by

$$
\boldsymbol{b}_{\mathrm{DSC}}=\frac{-2 a_{0}}{q_{1}^{2}+p_{1}^{2}}\left[\begin{array}{lll}
q_{1} & p_{1} & 0 \tag{12}
\end{array}\right]
$$

for the reference structures satisfying Eq.(9) where a_{0} is the lattice parameter. If the ($q p 0$)-structure satisfies Eq.(10) with $n_{1}>n_{2}$, the DSC Burgers vector can be n_{2} times larger than the one in Eq.(12), resulting in the introduction of n_{2}-dislocations at each of the minority ($q_{2} p_{2} 0$)-structure which may be maximally separated.

It has been assumed that the arrangement of structural units should vary as continuously as possible with respect to the misorientation angle [29]. Thus, for each angle, the arrangement can be determined uniquely among a number of possibilities. Suppose that a GB structure may be described by s copies of A units and t copies of B units $(s>r>1)$ where s and r are coprime, positive integers (i.e. the CSL configuration is assumed). Let $\lfloor x\rfloor$ denote the maximal integer which does not exceed x. The algorithm is to arrange the structural units as evenly as possible by applying the Euclidean division to $r_{-1}=s$ and $r_{0}=t$. Namely,

$$
\begin{align*}
& r_{-1} \mathrm{~A}+r_{0} \mathrm{~B}\left(r_{-1}>r_{0}>1\right) \tag{13}\\
& =r_{0} \mathrm{~A}_{1}+r_{1} \mathrm{~A}_{0} \quad\left(\mathrm{~A}_{0}=\mathrm{A}, \mathrm{~A}_{1}=s_{0} \mathrm{~A}_{0}+\mathrm{B}, s_{0}=\left\lfloor r_{-1} / r_{0}\right\rfloor, r_{0}>r_{1}=r_{-1}-r_{0} s_{0}>1\right) \\
& =\cdots=r_{k} \mathrm{~A}_{k+1}+r_{k+1} \mathrm{~A}_{k} \\
& \quad \quad\left(\mathrm{~A}_{k+1}=s_{k} \mathrm{~A}_{k}+\mathrm{A}_{k-1}, s_{k}=\left\lfloor r_{k-1} / r_{k}\right\rfloor, r_{k}>r_{k+1}=r_{k-1}-s_{k} r_{k}>1\right)
\end{align*}
$$

which can be iterated until r_{k} becomes 1 for some $k>0$.

4. Experimental Verification

A crystal of high purity MgO (99.9\%) (Shinkosha,Ltd., Tokyo) was purchased to obtain bicrystals. Symmetrical tilt GBs were fabricated based on the bicrystallographic relationships of $2 \theta=35.3^{\circ}$ (a near the $\Sigma 5$ structure of $2 \theta_{2} \simeq 36.87^{\circ}\left(\cot \theta_{2}=3\right)$) by high-temperature diffusion bonding of the two single crystals at $1500^{\circ} \mathrm{C}$ for 10 hours in air. The obtained bicrystals were thinned for STEM observations. The STEM images were taken with the high-angle annular dark field mode (the semi-angle of 60-180 mrad) which provided the intensity proportional to the atomic number [50].

As we see, the misorientation angle $2 \theta \simeq 35.3^{\circ}$ may correspond to the (2270) structure with $\cot \theta=22 / 7$. We have $\frac{22}{7}=[3 ; 7]=6 \circ \frac{3}{1} \boxplus \frac{4}{1}$, supporting the decomposition $(2270)=6(310)+1(410)$. It is assumed that DSC dislocations are introduced in the minority $\Sigma 17$, (410) structural units. In Fig.3(a), a STEM image of the symmetrical tilt GB in MgO with the misorientation angle of 35.3° is presented and a corresponding schematic structural units are superposed. It shows that the periodicity of the structural units can be verified as 7. Although it is a simple example, the way to obtain RAS's is identical to other $\operatorname{GBs}[51,52]$.

Figure 3. (a) A STEM image of a symmetrical tilt GB in MgO. The tilt angle is approximately 35.3° which is a near $\Sigma 5 \mathrm{~GB}$ of $2 \theta_{2} \simeq$ $36.87^{\circ}\left(\cot \theta_{2}=3\right)$. The GB is composed of a $\Sigma 17$ structural unit A and 6 copies of $\Sigma 5$ structural unit B in a periodical unit. (b) The dichromatic pattern of lattices L and $R \mathrm{~L}$ for the misorientation of 35.3°. CSL points exist at the edge of the figure. The O-lattice and structural units are superposed so that they pass O-lattice points alternately. The O-lattice point in the middle of the figure reaches at the edge of the fundamental domain with $(0,1 / 2) \in \tilde{\mathcal{O}}_{R}(\mathrm{~L})$. The internal coordinate of O-lattice points inside the structural units shift gradually, indicating the periodicity of the GB is 7 .

5. Summary

Atomic structure of symmetrical tilt GBs are analyzed from mathematical perspective. Under the assumption that GB structure may change as continuously as possible
as a function of misorientation, two types of structural units are arranged so that minority units where DSC dislocations are introduced are maximally separated. Because of this property, the structures of symmetrical tilt GBs can be described by a part of quasi-periodical arrangements of structural units as a realization of the lowest energy structure. Then, reference structures can linearly interpolate intermediate GBs. The major structures were well predicted by a simple decomposition formula of symmetrical tilt GBs with an algorithm due to the Farey sequence. The arrangement of structural units can be derived so as to maximize the separation of minority units which can be applicable to other GBs.

Although direct STEM observations in atomic scale can show the combination of structural units at GBs, the origin and the mechanism of GB phenomena have not been fully understood yet. For instance, the general criterion for reference structures of GBs which cannot be easily determined by their GB energy. The mathematical formulation for the structures of asymmetrical tilt, twist, and their combination are yet unknown. It should also be important to discuss configurational entropy in the structural unit model as well as the dependence on geometrical restrictions.

6. Acknowledgements

This work is supported in part by the Elements Strategy Initiative for Structural Materials by the MEXT of Japan and the JSPS Grant-in-Aid for Scientific Research (grant no.15K06420). The STEM image in Fig.3(a) is provided by Dr. Mitsuhiro Saito (the University of Tokyo).

References

[1] Friedel G (1911) Leçons de cristallographie. (Blanchard, Paris).
[2] Krönberg M L and Wilson F H (1949) Secondary recrystallization in copper. Trans. AIME. 185, 501-514.
[3] Ranganathan S (1966) On the geometry of coincidence-site lattices. Acta Cryst. 21, 197-199.
[4] Brandon D G (1966) The structure of high-angle grain boundaries. Acta Metall. 14, 1479-1484.
[5] Baake M (1997) Solution of the coincidence problem in dimensions $d \leqq 4$. (Kluwer, Dordrecht) In: The Mathematics of Long-Range Aperiodic Order, ed. Moody R V, pp. 9-44.
[6] Baake M and Zeiner P (2007) Multiple coincidences in dimensions $d \leq$ 3. Philos. Mag. 87(18-21), 2869-2876.
[7] Bishop G H and Chalmers B (1968) A coincidence ledge - dislocation description of grain boundaries. Scripta Metall. 2, 133-140.
[8] Pond R C, Smith D A and Vitek V (1979) Computer simulation of $\langle 110\rangle$ tilt boundaries: structure and symmetry. Acta Metall. 27, 235-241.
[9] Sutton A P and Vitek V (1980) On the coincidence site lattice and DSC dislocation network model of high angle grain boundary structure. Scripta Metall. 14, 129-132.
[10] Wang G-J, Sutton A P and Vitek V (1984) A computer simulation study of $\langle 001\rangle$ and $\langle 111\rangle$ tilt boundaries: the multiplicity of structures. Acta Metall. 32(7), 1093-1104.
[11] Wang G-J and Vitek V (1986) Relationships between grain boundary structure and energy. Acta Metall. 34(5), 951-960.
[12] Morita K and Nakashima H (1997) Atomic periodicity of $\langle 001\rangle$ symmetric tilt boundary in molybdenum. Mat. Sci. Eng. A. 234-236, 1053-1056.
[13] Tsurekawa S, Tanaka T and Yoshinaga H (1994) Grain boundary structure, energy and strength in molybdenum. Mat. Sci. Eng. A. 176, 341-348.
[14] Nakashima H and Takeuchi M (2000) Grain boundary energy and structure of α-Fe $\langle 110\rangle$ symmetric tilt boundary. Tetsu-to-Hagane. 86(5), 357-362.
[15] Takata N, Mizuguchi T, Ikeda K and Nakashima H (2004) Atomic and electronic structure of $\langle 110\rangle$ symmetric tilt boundaries in palladium. Mater. Trans. 45(7), 2099-2105.
[16] Tschopp M A and Mcdowell D L (2007) Structures and energies of $\Sigma 3$ asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. 87(22), 3147-3173.
[17] Tschopp M A and Mcdowell D L (2007) Asymmetric tilt grain boundary structure and energy in copper and alminium. Philos. Mag. 87(25), 3871-3892.
[18] Rhodes N R, Tschopp M A and Solanki K N (2013) Quantifying the energetics and length scales of carbon segregation to α-Fe symmetric tilt grain boundaries using atomistic simulations. Modelling Simul. Mater. Sci. Eng. 21, 035009.
[19] Saito M, Wang Z-C, Tsukimoto S and Ikuhara Y (2013) Local atomic structure of a near-sigma 5 tilt grain boundary in MgO. J. Mater. Sci. 48, 5470-5474.
[20] Saito M, Wang Z-C and Ikuhara Y (2014) Selective impurity segregation at a near- $\Sigma 5$ grain boundary in MgO. J. Mater. Sci. 49, 3956-3961.
[21] Bollmann W (1967) On the geometry of grain and phase boundaries: I. General theory. Philos. Mag. 16(140), 363-381.
[22] Bollmann W (1967) On the geometry of grain and phase boundaries: II. Applications of general theory. Philos. Mag.. 16(140), 383-399.
[23] Bollmann W (1970) Crystal Defects and Crystalline Interfaces. Springer-Verlag, Berlin.
[24] Pond R C and Bollmann W (1979) The symmetry and interfacial structure of bicrystals. Phil. Trans. R. Soc. Lond. A. 292(1395), 449-472.
[25] Pond R C and Vlachavas D S (1983) Bicrystallography. Proc. R. Soc. A. 386(1790), 95-143.
[26] Sutton A P and Vitek V (1983) On the structure of tilt boundaries in cubic metals I. Symmetrical tilt boundaries. Phil. Trans. R. Soc. Lond. A. 309, 1-36.
[27] Sutton A P and Vitek V (1983) On the structure of tilt boundaries in cubic metals II. Asymmetrical tilt boundaries. Phil. Trans. R. Soc. Lond. A. 309, 37-54.
[28] Sutton A P and Vitek V (1983) On the structure of tilt boundaries in cubic metals III. Generalizations of the structural study and implications for the properties of grain boundaries. Phil. Trans. R. Soc. Lond. A. 309, 55-68.
[29] Sutton A P (1992) Irrational interfaces. Prog. Mat. Sci. 36, 167-202.
[30] Ranganathan S, Srivastava A K and Lord E A (2006) Coincidence-site lattices as rational approximants to irrational twins. J. Mater. Sci. 41, 7696-7703.
[31] Ikuhara Y (2011) Grain boundary atomic structures and light-element visualization in ceramics: combination of Cs-corrected scanning transmission electron microscopy and first-principles calculations. J. Elect. Microscopy. 60(S1), S173-S188.
[32] Pennycook S J and Nellist P D, ed. (2011) Scanning Transmission Electron Microscopy. SpringerVerlag, New York.
[33] Inoue K, Saito M, Wang Z-C, Kotani M and Ikuhara Y (2015) On the periodicity of $\langle 001\rangle$ symmetrical tilt grain boundaries. Mater. Trans. 56(3), 281-287.
[34] Inoue K, Saito M, Wang Z-C, Kotani M and Ikuhara Y (2015) On the decomposition formula of $\langle 001\rangle$ symmetrical tilt grain boundaries. Mater. Trans. 56(12), 1945-1952.
[35] Grimmer H, Bollmann W, Warrington D H (1974) Coincidence-site lattices and complete pattern shift lattices in cubic crystals. Acta Cryst.
[36] Dirichlet P G L (1899) Verallgemeinerung eines satzes aus der lehre von den kettenbrüchen nebst einigen anwendungen auf die theorie der zahlen. In: G. Lejune Dirichlet's werke, ed. Kronecker L, pp. 633-638, (G. Reimer, Berlin); originally appeared in Akad. Wiss. Königl Preuss (1842) 93-95.
[37] Haros C (1802) Tables pour évaluer une fraction ordinaire avec autant de decimals qu'on voudra; et pour trouver la fraction ordinaire la plus simple, et qui approche sensiblement d'une fraction décimale. J. Ecole Polytechn. 4, 364-368.
[38] Farey J (1816) On a curious property of vulger fractions. Philos. Mag. 47(217), 385-386.
[39] Cauchy A (1816) Démonstration d'un théorème curieux sur les nombres. Bull. Sci. Soc. Philomatique (Paris). 1816, 133-135.
[40] Ford L R (1938) Fractions. Amm. Math. Monthly. 45(9), 586-601.
[41] Gourdon O, Izaola Z, Elecoro L, Petricek V and Miller G J (2006) $\mathrm{Zn}_{1-x} \mathrm{Pd}_{x}(x=0.14-0.24)$: a missing link between intergrowth compounds and quasicrystal approximants. Philos. Mag. 86(3-5), 419-425.
[42] Tomás R (2014) From Farey sequences to resonance diagrams. Phys. Rev. ST Accel. Beams. 17, 014001.
[43] Devaney R L (1999) The Mandelbrot Set, the Farey tree, and the Fibonacci sequence. Amm. Math. Monthly. 106(4), 289-302.
[44] Li A Z, Harter W G (2015) Quantum revivals of Morse oscillators and Farey-Ford geometry. Chem. Phys. Lett. 633, 208-213.
[45] Haldane F D M (1983) Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51(7), 605-608.
[46] Nazarov A A and Romanov A E (1987) On the average misorientation angle of general tilt boundaries. Philos. Mag. Lett. 60(5), 187-193.
[47] Chen S P, Srolovitz D J and Voter A F (1989) Computer simulation on surfaces and [001] symmetric tilt grain boundaries in Ni, Al, and $\mathrm{Ni}_{3} \mathrm{Al}$. J. Mat. Res. 4, 62-77.
[48] Browning N D, Pennycook S J, Chisholm M F, McGibbon M M and McGibbon A J (1995) Observation of structural units at symmetric [001] tilt boundaries in SrTiO_{3}. Interface Sci. 2, 397-423.
[49] Ohno T, Ii S, Shibata N, Matsunaga K, Ikuhara Y, and Yamamoto T (2004) High Resolution Microscopy Study for [001] Symmetric Tilt Boundary with a Tilt Angle of 66 DEG. in Rutile-type TiO2 Bicrystal. Mater. Trans. 45(7), 2117-2121.
[50] Pennycook S J and Jesson D E (1991) High-resolution Z-contrast imaging of crystals. Ultramicroscopy. 37(1-4), 14-38.
[51] Inoue K, Saito M, Chen C, Kotani M and Ikuhara Y (2016) Mathematical analysis and STEM observations of arrangement of structural units in $\langle 001\rangle$ symmetrical tilt grain boundaries. Microscopy. 65(6), 479-487.
[52] Inoue K, Feng B, Shibata N, Kotani M and Ikuhara Y (2016) Structure of $\langle 110\rangle$ tilt boundaries in cubic zirconia. J. Mat. Sci. 52, 4278-4287.

Lattice defects from monodromy

FMSP Mathematical Research on Real World Problems, Group G, The University of Tokyo
Hokuto Konno (The Univ. of Tokyo),
Tsukasa Ishibashi (The Univ. of Tokyo), Sho Ejiri (The Univ. of Tokyo),
Junichi Nakagawa (Nippon Steel \& Sumitomo Metal Co.), Yasuhiro Wakabayashi (The Univ. of Tokyo)

We study some lattice defects in terms of monodromy in the sense of William Thurston. This description of lattice defects enables us to encode some special structure of it which arises from original lattice structure.

Latice defects from monodromy
Lattice defects from monodromy
Hokuto Konno, Tsukasa Ishibashi, Sho Ejiri, Junichi Nakawaga,
Yasuhiro Wakabayashi
The University of Tokyo
August 29, 2017

$L_{\text {Introduction }}$

Aim of this talk
Describe "lattice defect" in terms of monodromy.
"Lattice defect"... Most parts look like usual "lattice", but the lattice structure is broken somewhere.

Typical examples of lattice defects ... Dislocations

- edge dislocation

${ }^{1}$ Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153

${ }^{2}$ Adapted from W. D. Callister, Jr., Materials science and engineering : an introduction, John Wiley \& Sons Inc., 1940, p. 90.

Lattice defects from monodromy

- Introduction

Screw dislocation (from another angle):

[^1]- Some screw dislocations are described in terms of monodromy by Hamada-Matsutani-Nakagawa-Saeki-Uesaka '16.
- We shall consider a kind of generalization of their description using monodromy in the sense of William Thurston. It can be applied also to edge dislocations (and also to further general lattice defects).

Lattice defects from monodromy

-Thurston's (G, X)-manifold and monodromy

Outlines

1 Introduction

2 Thurston's (G, X)-manifold and monodromy

3 Monodromy of dislocations

Lattice defects from monodromy
-Thurston's (G, X)-manifold and monodromy

To describe monodromy in the sense of Thurston, we need the notion of (G, X)-manifold. The content of this section is based on W. Thurston's book entitled "The geometry and topology of three-manifolds" (unpublished notes).

Basic Setting

X : a topological space
G : a group
Assume that G continuously acts on X : we have a group
homomorphism $\rho: G \rightarrow \operatorname{Homeo}(X)$, where
$\operatorname{Homeo}(X):=\{f: X \rightarrow X \mid f$ is a homeomorphism $\}$.
Actually we will only use the case that

- X is a C^{ω}-manifold, and
- $G \subset \operatorname{Diff}^{\omega}(X):=\left\{f: X \rightarrow X \mid f\right.$ is a C^{ω}-diffeomorphism $\}$
for our main purpose.

Definition ((G, X)-manifold)

M : a topological space
(1) $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha}$ is a (G, X)-atlas on M if

- $\left\{U_{\alpha}\right\}_{\alpha}$ is an open covering of M,
- each $\phi_{\alpha}: U_{\alpha} \rightarrow X$ is a homeomorphism onto its image, and
- $\left.\phi_{\alpha} \circ \phi_{\beta}^{-1}\right|_{\phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)}: \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is the restriction of an element of $\rho(G)$.
(2) M equipped with a (G, X)-atlas is called a (G, X)-manifold.

Each $\left(U_{\alpha}, \phi_{\alpha}\right)$ is called a (G, X)-chart.

Lattice defects from monodromy

-Thurston's (G, X)-manifold and monodromy

Example

I $X=\mathbb{R}^{n}, G=\operatorname{Homeo}\left(\mathbb{R}^{n}\right)$
$\Rightarrow(G, X)$-manifold $=$ topological manifold
2 $X=\mathbb{R}^{n}, G=\operatorname{Diff}\left(\mathbb{R}^{n}\right)$
$\Rightarrow(G, X)$-manifold $=$ smooth manifold
в $X=\mathbb{C}^{n}, G=\operatorname{Hol}\left(\mathbb{C}^{n}\right)$
$\Rightarrow(G, X)$-manifold $=$ complex manifold
$4 X=\mathbb{H}^{n}$ (hyperbolic space), $G=\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ $\Rightarrow(G, X)$-manifold $=$ hyperbolic manifold

Lattice defects from monodromy
LThurston's (G,X)-manifold and monodromy

Henceforth assume that

- X is a C^{ω}-manifold, and
- $G \subset \operatorname{Diff}^{\omega}(X):=\left\{f: X \rightarrow X \mid f\right.$ is a C^{ω}-diffeomorphism $\}$.

For each (G, X)-manifold M, we can define a group homomorphism which is called the monodromoy

$$
\text { Mon : } \pi_{1}\left(M, p_{0}\right) \rightarrow G
$$

if we fix a point $p_{0} \in M$ and a (G, X)-chart $\left(U_{0}, \phi_{0}\right)$ near p_{0}. (If we change the initial data p_{0} and $\left(U_{0}, \phi_{0}\right)$, the map is changed by conjugation.)
We now sketch the construction of the monodromy map.

Idea of the construction:
1 Take a loop $\gamma:[0,1] \rightarrow M$ with base point p_{0}.
\simeq Take (G, X)-charts $\left(U_{1}, \phi_{1}\right), \ldots,\left(U_{n}, \phi_{n}\right)$ which cover the image of γ. (Note that the neighborhood of the base point is already covered by U_{0}.) Take the covers so that $U_{i} \cap U_{i+1}$ is non-empty and connected $(0 \leqslant \forall i \leqslant n-1)$.
$3 \exists!g_{i} \in G$ s.t. g_{i} gives the coordinate change of $\left(U_{i}, \phi_{i}\right)$ and $\left(U_{i+1}, \phi_{i+1}\right)$. (Here, for the uniqueness, we need to assume C^{ω}.)
4 One can show that $\operatorname{Mon}([\gamma]):=g_{0} \cdots g_{n-1} \in G$ depends only on the homotopy class of γ (for the fixed chart $\left(U_{0}, \phi_{0}\right)$).

If we take another base point p_{0}^{\prime} and a chart $\left(U_{0}^{\prime}, \phi_{0}^{\prime}\right)$ near p_{0}^{\prime}, the monodoromy map is changed by conjugation. In particular, if G is abelian, we have a homomorphism Mon : $\pi_{1}(M) \rightarrow G$ which is independent of the choice of base points and charts near that.

Lattice defects from monodromy
 - Monodromy of dislocations

Outlines

1 Introduction

2 Thurston's (G, X)-manifold and monodromy

3 Monodromy of dislocations
-Monodromy of dislocations

Recall
"Lattice defect"... Most parts look like usual "lattice", but the lattice structure is broken somewhere.

LOCALLY, it looks like the standard \mathbb{Z}^{3} in \mathbb{R}^{3}.
$m \rightarrow$ One can hope to give a $\left(\mathbb{Z}^{3}, \mathbb{R}^{3}\right)$-manifold structure corresponding to the graph of the given lattice defect.
$m \rightarrow$ One can obtain the monodromy (like as "invariant" of lattice defects).

Given a picture of a lattice defect,

- assume that we have the notion of "vertices" (\leftrightarrow lattice point), and
- assume that we have the notion of "edges" (\leftrightarrow nearest lattice points).
e.g. edge dislocation

${ }^{4}$ Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153.
Lattice defects from monodromy
$\left\llcorner_{\text {Monodromy of dislocations }}\right.$

Define M as the "fat graph":

$$
M:=\bigcup_{E: e d g e, p \in E} B_{p}(\epsilon),
$$

where $\epsilon>0$ is a sufficiently small number, and $B_{p}(\epsilon)$ is the open ball centered at p with radius $\epsilon . M$ is an open submanifold of \mathbb{R}^{3}.

In some good situation, we can give a $\left(\mathbb{Z}^{3}, \mathbb{R}^{3}\right)$-manifold structure on M. We now explain the $\left(\mathbb{Z}^{3}, \mathbb{R}^{3}\right)$-manifold structure for edge/screw dislocation.

We first consider a 2-dimensional model of edge dislocation.

Figure: $\left(\mathbb{Z}^{2}, \mathbb{R}^{2}\right)$-charts on the edge dislocation

Strictly speaking, to calculate the monodromy following the definition, we have to decompose these two charts to be " $U_{i} \cap U_{i+1}$ is connected for each i ". The coordinate change between new two charts arising from the previous one chart is just id

Figure: Example of decomposition

Lattice defects from monodromy

- Monodromy of dislocations

Calculation of monodromy:

- (coordinate change between (1) and (1)') $=(0,0) \in \mathbb{Z}^{2}$.
- (coordinate change between (2) and (2)') $=(1,0) \in \mathbb{Z}^{2}$.
\leadsto monodromy along this loop $=(0,0)+(1,0)=(1,0) \in \mathbb{Z}^{2}$.
(Since $G=\mathbb{Z}^{2}$ is abelian, we don't care about base points.)

(2)

(2)'
-Monodromy of dislocations

Except for near this loop, one can trivially give $\left(\mathbb{Z}^{2}, \mathbb{R}^{2}\right)$-charts on M.
Since $M \sim \bigvee_{\mathbb{Z}} S^{1}$ (homotopy equivalent), we have $\pi_{1}(M) \cong *_{\mathbb{Z}} \mathbb{Z}$.
The monodromy map

$$
\text { Mon : } \pi_{1}(M) \cong *_{\mathbb{Z}} \mathbb{Z} \rightarrow \mathbb{Z}^{2}
$$

is non-trivial: (the above loop) $\mapsto(1,0)$.
Of course one can consider 3-dimensional model of edge dislocation, and similarly obtain

$$
\text { Mon : } \pi_{1}(M) \cong *_{\mathbb{Z}} \mathbb{Z} \rightarrow \mathbb{Z}^{3}
$$

We have similarly have a distinguished loop, and (the distinguished loop) $\mapsto(1,0,0)$.

Remark

The non-trivial direction $(1,0,0)$ for monodromy is perpendicular to the dislocation line $\mathbb{R} \cdot(0,0,1)$.

${ }^{5}$ Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153

Lattice defects from monodromy

- Monodromy of dislocations

For screw dislocation, we have to get rid of the "zigzag" part to give a $\left(\mathbb{Z}^{3}, \mathbb{R}^{3}\right)$-manifold structure on M , obtained from the following graph:

One reason why we have to do is, for example, the existence of a vertex with three edges. This part cannot be a subgraph of \mathbb{Z}^{3}.
${ }^{6}$ Adapted from W. T. Read, Jr., Dislocations in Crystals, McGraw- Hill Book Company, New York, 1953

However, if we get rid of this zigzag part, we can give a $\left(\mathbb{Z}^{3}, \mathbb{R}^{3}\right)$-manifold structure on M, and calculate the monodromy

This monodromy corresponds to
Hamada-Matsutani-Nakagawa-Saeki-Uesaka 's description.

Remark

The non-trivial direction for monodromy is parallel to the dislocation line.

This suggests that the monodromy detects the difference between edge and screw dislocations.

- Give a mathematical definition of "lattice defect" so that one can give a $\left(\mathbb{Z}^{3}, \mathbb{R}^{3}\right)$-manifold structure on it.
- More precisely, construct $\left(\mathbb{Z}^{3}, \mathbb{R}^{3}\right)$-manifold structure on a given lattice defect canonically. (Then the monodromy turns out to be an invariant of lattice defects.)
- If one need, consider another group $G \subset \operatorname{Diff}^{\omega}\left(\mathbb{R}^{3}\right)$ rather than \mathbb{Z}^{3} to describe more complicated lattice defect.

Geometry of closed kinematic chain

Shizuo Kaji

Yamaguchi University
(joint work with Eliot Fried, Michael Grunwald, and Johannes Schoenke at OIST)

Consider a system consisting of rigid bodies connected to each other. Such a system can be modelled by a graph with edges labelled by elements of the Euclidean group SE(3), where each cycle satisfies a certain closedness condition. We are particularly interested in a system consisting of hinges. To each vertex is assigned one degree-of-freedom, namely the rotation angle, and the configuration space of the system is described by the real solution to a system of polynomial equations. We found an interesting family of systems on cycle graphs, whose configuration spaces form positive dimensional real algebraic varieties. They are a type of so called Kaleidocycle (e.g., [1, 2]), but exhibit intriguing properties such as anti-symmetry and constant bending energy.

References

[1] Safsten, Clarke A., Fillmore, Travis B., Logan, Andrew E., Halverson, Denise M., and Howell, Larry L, Analyzing the Stability Properties of Kaleidocycles, ASME. J. Appl. Mech.2016;83(5):051001-051001-13. doi:10.1115/1.4032572.
[2] D. Schattschneider, D. and W. M. Walker, M. C. Escher Kaleidocycles, Pomegranate Communications: Rohnert Park, CA, 1987.

Discrete-to-continuum limits of moving straight edge dislocations in 2D

Patrick van Meurs
Kanazawa University
(joint work with Adriana Garroni, Mark Peletier, Lucia Scardia)

In the celebrated paper by Groma and Balogh [3] the evolution for the edge dislocation density given by $\left(P_{n}\right)$ is based on performing statistical mechanics on the discrete edge dislocation dynamics given by (P) for a large number of dislocations. Here, we present the first rigorous result of - and counterexample to - the evolutionary convergence of $\left(P_{n}\right)$ to (P).

We consider n edge dislocations with positions $\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{T}^{2}\right)^{n}\left(\mathbb{T}^{2}\right.$ is the flat two-dimensional torus) and Burgers vectors $b_{i} e_{1}$ with $b_{i} \in\{-1,+1\}$. The evolution equation is given by

$$
\left(P_{n}\right) \quad \frac{d x_{i}}{d t}=-\left[\partial_{1} U\left(x_{i}\right)+\frac{1}{n} \sum_{j=1}^{n} b_{j} \partial_{1} V\left(x_{i}-x_{j}\right)\right] b_{i} e_{1}, \quad t \in(0, T), i=1, \ldots, n,
$$

where $\partial_{1}:=e_{1} \cdot \nabla, U: T^{2} \rightarrow \mathbb{R}$ is an external potential, and V is the interaction potential for edge dislocation in \mathbb{T}^{2} with the same Burgers vector (in particular, $V(x)=$ $\left(e_{1} \cdot x /|x|\right)^{2}-\log |x|+o(1)$ for $\left.|x| \ll 1\right)$. The evolution for the dislocation densities ρ^{+} and ρ^{-}of the positive $\left(b_{i}=1\right)$ and negative $\left(b_{i}=-1\right)$ dislocations are given by

$$
\begin{cases}\partial_{t} \rho^{+}=\partial_{1}\left(\rho^{+}\left(\partial_{1} V *\left(\rho^{+}-\rho^{-}\right)+\partial_{1} U\right)\right) & \text { in } \mathcal{D}^{\prime}\left(\mathbb{T}^{2} \times(0, T)\right), \tag{P}\\ \partial_{t} \rho^{-}=\partial_{1}\left(\rho^{-}\left(\partial_{1} V *\left(\rho^{-}-\rho^{+}\right)-\partial_{1} U\right)\right) & \text { in } \mathcal{D}^{\prime}\left(\mathbb{T}^{2} \times(0, T)\right)\end{cases}
$$

The counterexample is constructed for $U \not \equiv 0$ and the initial data $\rho_{\circ}^{+}=\rho_{\circ}^{-} \equiv \frac{1}{2}$, which is not a stationary solution of (P). However, the discrete approximating sequence of $\rho_{\circ}^{ \pm}$given by well-separated dipoles (i.e., $\left|x_{\mathrm{\circ}, i}^{+}-x_{\circ}^{-}\right| \ll \frac{1}{n}$ and $\left|x_{\circ, i}^{+}-x_{\mathrm{\circ}, j}^{+}\right|>\frac{c}{n}$ for all $i, j, n)$ results in an approximately stationary solution to $\left(P_{n}\right)$. Hence, (P) may not be a good approximation for $\left(P_{n}\right)$ for any n large enough.

Our second result is a theorem which specifies evolutionary convergence of a regularised version, called $\left(P_{n}^{\delta_{n}}\right)$, of $\left(P_{n}\right)$ to $(P) .\left(P_{n}^{\delta_{n}}\right)$ is obtained from $\left(P_{n}\right)$ by replacing V by $V_{\delta_{n}}$, where $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$ is the length scale at which the logarithmic singularity of V is regularized (e.g., by convolution with the usual mollifier). The proof of evolutionary convergence is divided into two steps. In the first step, the limit passage $n \rightarrow \infty$ is performed for $\delta_{n}=\delta>0$ fixed by employing the theory of λ-convex Wasserstein gradient flows in [1], which yields an explicit convergence rate of the solutions to $\left(P_{n}^{\delta}\right)$ to those of $\left(P^{\delta}\right)$, where $\left(P^{\delta}\right)$ is obtained from (P) by replacing V by V_{δ}. The second step establishes evolutionary convergence of $\left(P^{\delta}\right)$ to (P) as $\delta \rightarrow 0$ by modifying the well-posedness proof of (P) developed in [2].

References

[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, New York, 2008.
[2] M. Cannone, A. El Hajj, R. Monneau, and F. Ribaud. Global existence for a system of non-linear and non-local transport equations describing the dynamics of dislocation densities. Archive for Rational Mechanics and Analysis, 196(1):71-96, 2010.
[3] I. Groma and P. Balogh. Investigation of dislocation pattern formation in a two-dimensional selfconsistent field approximation. Acta Materialia, 47(13):3647-3654, 1999.

Main question

$\frac{d x_{i}}{d t}=\left[F+\frac{1}{n} \sum_{j=1}^{n} b_{j}\left[-\partial_{1} V\right]\left(x_{i}-x_{j}\right)\right] b_{i} e_{1} \quad l l \begin{aligned} & \partial_{t} \rho^{+}=\partial_{1}\left(\rho^{+}\left[\partial_{1} V *\left(\rho^{+}-\rho^{-}\right)-F\right]\right) \\ & \partial_{t} \rho^{-}=\partial_{1}\left(\rho^{-}\left[\partial_{1} V *\left(\rho^{-}-\rho^{+}\right)+F\right]\right)\end{aligned}$

- Continuum PDE proposed by [Groma, Balogh; 1999]
- No rigorous connection is known
- General theme: micro-macro connection

Lit overview: courtesy of M.A.Peletier

Patrick van Meurs (Kanazawa U)
Simulation with $F>0$: initial condition

Simulation with $F>0$ at $t=t_{1}$

Simulation with $F>0$ at $t=t_{2}$

Rigorous result on mismatch

$$
\begin{aligned}
& \partial_{t} \rho^{+}=\partial_{1}\left(\rho^{+}\left[\partial_{1} V *\left(\rho^{+}-\rho^{-}\right)-F\right]\right) \\
& \partial_{t} \rho^{-}=\partial_{1}\left(\rho^{-}\left[\partial_{1} V *\left(\rho^{-}-\rho^{+}\right)+F\right]\right)
\end{aligned}
$$

With $F>0,(P)$ is not stationary at $\rho_{\circ}^{+}=\rho_{\circ}^{-}=\left\{\begin{array}{ll}1 & \text { on }(0,1)^{2} \\ 0 & \text { otherwise }\end{array}\right\}$.

Picture: $\exists x_{\circ}^{ \pm} \approx \rho_{\circ}^{ \pm}$for which the solution $x(t)$ to $\left(P_{n}\right)$ is 'approximately stationary'

Conclusion: if $n^{3 / 2} \delta_{n} \rightarrow 0$,
then $x^{ \pm}(t) \not \approx \rho^{ \pm}(t)$ for all $t>0$

How about our main question?

$\frac{d x_{i}}{d t}=\left[F+\frac{1}{n} \sum_{j=1}^{n} b_{j}\left[-\partial_{1} V\right]\left(x_{i}-x_{j}\right)\right] b_{i} e_{1} \quad \begin{array}{ll}\partial_{t} \rho^{+} & =\partial_{1}\left(\rho^{+}\left[\partial_{1} V *\left(\rho^{+}-\rho^{-}\right)-F\right]\right) \\ \partial_{t} \rho^{-} & =\partial_{1}\left(\rho^{-}\left[\partial_{1} V *\left(\rho^{-}-\rho^{+}\right)+F\right]\right)\end{array}$

- Seemingly: no (P) exists in terms of ρ^{+}, ρ^{-}only!
- Statistical model of [Groma, Balogh; 1999] has limited applicability

On the other hand...

$\left(P_{n}\right) \xrightarrow{n \rightarrow \infty}(P)$ holds when

- $\partial_{1} V$ is Lipschitz [no singularity; next few slides], or
- all dislocation have the same sign (i.e., $\mu_{n}^{-}=0=\rho^{-}$), and
- V is logarithmic [Schochet; 1996]
- $V(r, \theta)=|r|^{-\alpha}$ with $0<\alpha<1$ [Duerinckx; 2015]
- $\Omega=(a, b)$ with V convex [vM, Muntean; 2014]
- $V(r, \theta)=|r|^{-\alpha}$ with $0<\alpha<d-2$ and $\Omega \subset \mathbb{R}^{d}$ [Hauray; 2009]

Open problem: which properties of V are sufficient/necessary for $\left(P_{n}\right) \rightarrow(P)$ in the single-sign case?

- It seems: the stronger the singularity of V, the more (P) regularises $\rho^{ \pm}$ over time, but the worse the control over $\left(P_{n}\right)$

A different approach: regularising the dislocation core

$\frac{d x_{i}}{d t}=\left[F+\frac{1}{n} \sum_{j=1}^{n} b_{j}\left[-\partial_{1} V_{\delta_{n}}\right]\left(x_{i}-x_{j}\right)\right] b_{i} e_{1} \quad \begin{aligned} & \partial_{t} \rho^{+}=\partial_{1}\left(\rho^{+}\left[\partial_{1} V *\left(\rho^{+}-\rho^{-}\right)-F\right]\right) \\ & \partial_{t} \rho^{-}=\partial_{1}\left(\rho^{-}\left[\partial_{1} V *\left(\rho^{-}-\rho^{+}\right)+F\right]\right)\end{aligned}$

- For instance, $V_{\delta}:=V * \eta_{\delta}$
- Other choices: cutting away balls, phase field
- δ_{n} is an atomic length-scale $\rightsquigarrow \delta_{n} \xrightarrow{n \rightarrow \infty} 0$

The auxiliary problem $\left(P^{\delta}\right)$
$\left(P_{n}^{\delta}\right) \quad \frac{d x_{i}}{d t}=\left[F+\frac{1}{n} \sum_{j=1}^{n} b_{j}\left[-\partial_{1} V_{\delta}\right]\left(x_{i}-x_{j}\right)\right] b_{i} e_{1}$
$\left(P^{\delta}\right) \quad\left\{\begin{array}{l}\partial_{t} \rho_{\delta}^{+}=\partial_{1}\left(\rho_{\delta}^{+}\left[\partial_{1} V_{\delta} *\left(\rho_{\delta}^{+}-\rho_{\delta}^{-}\right)-F\right]\right) \\ \partial_{t} \rho_{\delta}^{-}=\partial_{1}\left(\rho_{\delta}^{-}\left[\partial_{1} V_{\delta} *\left(\rho_{\delta}^{-}-\rho_{\delta}^{+}\right)+F\right]\right)\end{array}\right.$
$(P) \quad\left\{\begin{array}{l}\partial_{t} \rho^{+}=\partial_{1}\left(\rho^{+}\left[\partial_{1} V *\left(\rho^{+}-\rho^{-}\right)-F\right]\right) \\ \partial_{t} \rho^{-}=\partial_{1}\left(\rho^{-}\left[\partial_{1} V *\left(\rho^{-}-\rho^{+}\right)+F\right]\right)\end{array}\right.$
$\left(P_{n}^{\delta}\right)$
$\left(P^{\delta}\right)$
(P)
$x^{n, \pm} \quad n \rightarrow \infty$
$\rho_{\delta}^{ \pm}$

For convenience, we set $F=0$

Standard approach: $\left(P_{n}^{\delta}\right) \rightarrow\left(P^{\delta}\right)$ as $n \rightarrow \infty$ (part 1)

- We assume:
- $\partial_{1} V_{\delta}$ Lipschitz, and
- the solution trajectories $x_{i}(t)$ from $\left(P_{n}^{\delta}\right)$ remain in a bounded domain $\Omega \subset \mathbb{R}^{2}$
- We define the empirical measures

$$
\mu_{n}^{+}:=\frac{1}{n} \sum_{i: b_{i}=+1} \delta_{x_{i}}, \quad \mu_{n}^{-}:=\frac{1}{n} \sum_{i: b_{i}=-1} \delta_{x_{i}}
$$

Note: $\left.\left(\mu_{n}^{+}, \mu_{n}^{-}\right) \in \mathcal{P}(\bar{\Omega} \times\{+1,-1)\}\right) \ni\left(\rho^{+}, \rho^{-}\right)$

- Weak topology: $\mu_{n}^{ \pm} \rightharpoonup \rho^{ \pm}$iff

$$
\int_{\bar{\Omega}} \varphi d \mu_{n}^{ \pm} \xrightarrow{n \rightarrow \infty} \int_{\bar{\Omega}} \varphi d \rho^{ \pm} \quad \forall \varphi \in C(\bar{\Omega})
$$

Standard approach: $\left(P_{n}^{\delta}\right) \rightarrow\left(P^{\delta}\right)$ as $n \rightarrow \infty$ (part 2)

Let $x(t)$ satisfy $\left(P_{n}^{\delta}\right)$, and let $\varphi \in C_{c}^{\infty}(\Omega \times(0, T))$. Then

$$
\begin{aligned}
0 & =\int_{0}^{T} \frac{d}{d t} \varphi\left(x_{i}(t), t\right) d t=\ldots \\
& =\int_{0}^{T} \partial_{t} \varphi\left(x_{i}, t\right)+\partial_{1} \varphi\left(x_{i}, t\right) \cdot\left[b_{i}\left(-\partial_{1} V_{\delta} *\left(\mu_{n}^{+}-\mu_{n}^{-}\right)\right)\left(x_{i}\right)\right] d t .
\end{aligned}
$$

Taking $\frac{1}{n} \sum_{i: b_{i}=+1} \ldots$, we obtain

$$
0=\int_{0}^{T} \int_{\bar{\Omega}} \partial_{t \varphi} d \mu_{n}^{+} d t+\int_{0}^{T} \int_{\bar{\Omega}} \partial_{1} \varphi \cdot\left[-\partial_{1} V_{\delta} *\left(\mu_{n}^{+}-\mu_{n}^{-}\right)\right] d \mu_{n}^{+} d t \quad \forall \varphi \in C_{c}^{\infty},
$$

which is $\partial_{t} \mu_{n}^{+}=\partial_{1}\left(\mu_{n}^{+}\left[\partial_{1} V_{\delta} *\left(\mu_{n}^{+}-\mu_{n}^{-}\right)\right]\right)$in distributional sense.
Conclusion: $\left(\mu_{n}^{+}, \mu_{n}^{-}\right)$satisfies $\left(P^{\delta}\right)$

Standard approach: $\left(P_{n}^{\delta}\right) \rightarrow\left(P^{\delta}\right)$ as $n \rightarrow \infty$ (part 3)

$$
0=\int_{0}^{T} \int_{\bar{\Omega}} \partial_{t} \varphi d \mu_{n}^{+} d t+\int_{0}^{T} \int_{\bar{\Omega}} \partial_{1} \varphi \cdot\left[-\partial_{1} V_{\delta} *\left(\mu_{n}^{+}-\mu_{n}^{-}\right)\right] d \mu_{n}^{+} d t
$$

- $\mathcal{P}(\bar{\Omega} \times\{+1,-1\})$ compact in weak topology
\Longrightarrow for a.e. $t \exists n_{k} \exists \rho^{ \pm}(t): \mu_{n_{k}}^{ \pm}(t) \rightharpoonup \rho^{ \pm}(t)$ as $k \rightarrow \infty$
- Arzelà-Ascoli: n_{k} is t-independent
- With

$$
\begin{aligned}
& \int_{\bar{\Omega}} \partial_{1} \varphi \cdot\left[-\partial_{1} V_{\delta} *\left(\mu_{n}^{+}-\mu_{n}^{-}\right)\right] d \mu_{n}^{+} \\
& \quad=\iint_{\bar{\Omega} \times \bar{\Omega}} \partial_{1} \varphi(x)\left(-\partial_{1} V_{\delta}\right)(x-y) d\left[\left(\mu_{n}^{+}-\mu_{n}^{-}\right) \otimes \mu_{n}^{+}\right](y, x)
\end{aligned}
$$

we pass to the limit $n_{k} \rightarrow \infty$ in weak- $\left(P_{n}^{\delta}\right)$

Standard approach: $\left(P_{n}^{\delta}\right) \rightarrow\left(P^{\delta}\right)$ as $n \rightarrow \infty$ (part 4)

We have proven ${ }^{"}\left(P_{n}^{\delta}\right) \xrightarrow{n \rightarrow \infty}\left(P^{\delta}\right)$ ", i.e.,

- Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain, $T, \delta>0$
- Then for all $\left(\rho_{\circ}^{+}, \rho_{\circ}^{-}\right) \in \mathcal{P}(\bar{\Omega} \times\{+1,-1\})$
- for all ${ }^{*} \mu_{n, \mathrm{o}}^{ \pm} \rightharpoonup \rho_{\circ}^{ \pm}$
- there exists n_{k} and $\left(\rho_{\delta}^{+}, \rho_{\delta}^{-}\right) \in A C(0, T ; \mathcal{P}(\bar{\Omega} \times\{ \pm\}))$ such that
(i) $\mu_{n_{k}}^{ \pm}(t) \rightharpoonup \rho_{\delta}^{ \pm}(t)$ for a.e. $0<t<T$
(ii) $\rho_{\delta}^{ \pm}(t)$ satisfies $\left(P^{\delta}\right)$ with $\rho_{\delta}^{ \pm}(0)=\rho_{o}^{ \pm}$
$n \rightarrow \infty \left\lvert\, \begin{gathered}\mu_{n, \mathrm{o}}^{+} \longrightarrow \\ \rho_{\circ}^{+} \xrightarrow{\partial_{t} \mu_{n}^{+}=\partial_{1}\left(\mu_{n}^{+}\left[\partial_{1} V_{\delta} *\left(\mu_{n}^{+}-\mu_{n}^{-}\right)\right]\right)} \begin{array}{l}\mu_{n}^{+}(t) \\ \partial_{t} \rho_{\delta}^{+}=\partial_{1}\left(\rho_{\delta}^{+}\left[\partial_{1} V_{\delta} *\left(\rho_{\delta}^{+}-\rho_{\delta}^{-}\right)\right]\right)\end{array} \downarrow^{+} n_{k}^{+}(t)\end{gathered}\right.$
(*) we assume $x_{i}(t) \in \Omega$ for all i, n, t

Standard approach: $\left(P_{n}^{\delta}\right) \rightarrow\left(P^{\delta}\right)$ as $n \rightarrow \infty$ (part 5)

The following Gronwall estimate holds:

$$
W_{2}\left(\mu_{n}^{ \pm}(t), \rho_{n, \delta}^{ \pm}(t)\right) \leq e^{T\left\|\partial_{1} V_{\delta}\right\|_{L i p}} W_{2}\left(\mu_{n, \mathrm{o}}^{ \pm}, \alpha_{n} \rho_{\circ}^{ \pm}\right)
$$

- $\alpha_{n}:=\frac{\mu_{n, \circ}^{ \pm}(\bar{\Omega})}{\rho_{\circ}^{ \pm}(\bar{\Omega})}$ balances the total \pm-mass
- $\rho_{n, \delta}^{ \pm}(t)$ satisfies $\left(P^{\delta}\right)$ with initial data $\alpha_{n} \rho_{o}^{ \pm}$
- W_{2} : Wasserstein distance; metrises narrow topology
- Proof of estimate:
- either by explicit computation, or
- using that $\left(P_{n}^{\delta}\right)$ and $\left(P^{\delta}\right)$ are gradient flows with
$-\lambda$-convex energies $\left[\lambda=\left\|\partial_{1} V_{\delta}\right\|_{L i p}\right]$

Overview

- Interesting feature:
$\left(P^{\delta}\right): \partial_{1} V_{\delta} *\left(\rho_{\delta}^{+}-\rho_{\delta}^{-}\right)$smooth, but $\rho_{\delta}^{ \pm}$may have delta-peaks
(P) : singularity V regularises $\rho^{ \pm}$, but $\partial_{1} V *\left(\rho^{+}-\rho^{-}\right)$rough
- Note: not clear why (P) makes sense!
- [Monneau et al.; 2010]: (P) is well-posed on \mathbb{T}^{2}
- Note: on $\mathbb{T}^{2}, f \in L^{2}\left(\mathbb{T}^{2}\right) \Longrightarrow \widehat{f} \in \ell^{2}\left(\mathbb{Z}^{2}\right)$
- Reason $\mathbb{T}^{2}: \exists C>0 \forall k \in \mathbb{Z}^{2}: 0 \leq\left(1+|k|^{2}\right) \widehat{V}_{k} \leq C$

We take $V_{\delta} \in W^{2, \infty}\left(\mathbb{T}^{2}\right)$ to satisfy the same bound
We define: $\left[\widehat{\partial_{1} V *} f\right]_{k}:=2 \pi i k_{1} \widehat{V_{k}} \widehat{f_{k}}$

Improvement of Monneau's well-posedness of (P)
Key observation: if $\rho_{\delta}^{ \pm}$smooth solution to $\left(P^{\delta}\right)$, then $\quad\left[\kappa_{\delta}:=\rho_{\delta}^{+}-\rho_{\delta}^{-}\right]$

$$
\begin{aligned}
\sum_{ \pm} \partial_{t} \operatorname{Ent}\left(\rho_{\delta}^{ \pm}\right):= & \sum_{ \pm} \partial_{t} \int_{\mathbb{T}^{2}} \rho_{\delta}^{ \pm} \log \rho_{\delta}^{ \pm}=\ldots \\
& =\int_{\mathbb{T}^{2}}\left[\partial_{11} V_{\delta}\right] * \kappa_{\delta} d \kappa_{\delta} \leq-c\left\|\partial_{1} V_{\delta} * \kappa_{\delta}\right\|_{H^{1}\left(\mathbb{T}^{2}\right)}^{2} \leq 0 .
\end{aligned}
$$

Taking $\int_{0}^{t} \ldots d s$, we obtain

$$
\sum_{ \pm} \operatorname{Ent}\left(\rho_{\delta}^{ \pm}(t)\right)+c\left\|\partial_{1} V_{\delta} * \kappa_{\delta}\right\|_{L^{2}\left(H^{1}\right)}^{2} \leq \sum_{ \pm} \operatorname{Ent}\left(\rho_{\delta, o}^{ \pm}\right)
$$

where $L^{2}\left(H^{1}\right):=L^{2}\left(0, T ; H^{1}\left(\mathbb{T}^{2}\right)\right)$. Hence, along a subsequence

$$
\begin{array}{cll}
\rho_{\delta}^{ \pm} & \rightharpoonup \rho^{ \pm} & \\
\text {in } L^{\infty}(L \log L) \\
\partial_{1} V_{\delta} * \kappa_{\delta} & \rightharpoonup \partial_{1} V * \kappa & \\
\text { in } L^{2}\left(H^{1}\right)
\end{array}
$$

Passing to the limit in weak- $\left(P^{\delta}\right)$

$$
\begin{array}{rlrl}
\int_{0}^{T} \int_{\bar{\Omega}} \partial_{t} \varphi \rho_{\delta}^{+} d x d t & =\int_{0}^{T} \int_{\bar{\Omega}} \partial_{1} \varphi\left[\partial_{1} V_{\delta} * \kappa_{\delta}\right] \rho_{\delta}^{+} d x d t \\
\rho_{\delta}^{ \pm} & \rightharpoonup \rho^{ \pm} & & \text {in } L^{\infty}(L \log L) \\
\partial_{1} V_{\delta} * \kappa_{\delta} & \rightharpoonup \partial_{1} V * \kappa & & \text { in } L^{2}\left(H^{1}\right)
\end{array}
$$

To get strong convergence of $\left(\partial_{1} V_{\delta} * \kappa_{\delta}\right)_{\delta>0}$:

- Trudinger-Moser: $H^{1}\left(\mathbb{T}^{2}\right) \subset \subset \operatorname{Exp}\left(\mathbb{T}^{2}\right)=(L \log L)\left(\mathbb{T}^{2}\right)^{*}$ $\left[f \in \operatorname{Exp}\left(\mathbb{T}^{2}\right) \Rightarrow \int_{\mathbb{T}^{2}} e^{|f|}<\infty\right]$
- By Aubin-Lions-Simon: $\partial_{1} V_{\delta} * \kappa_{\delta} \rightarrow \partial_{1} V * \kappa$ in $L^{2}(E x p)$

Conclusion: the limit $\rho^{ \pm}$satisfies (P)

Theorem: $\left(P_{n}^{\delta_{n}}\right) \rightarrow(P)$

$$
\underset{\substack{W_{n} \\ \exp \left(T\left\|\partial_{1} V_{\delta_{n}}\right\|_{L i p}\left(P_{n}\right) W_{2}\left(\mu_{n, o}^{ \pm}, \alpha_{n} \rho_{o}^{ \pm}\right)\right.}}{\mu_{n}^{ \pm}} \stackrel{\left(P^{\delta_{n}}\right)}{\substack{\delta_{n} \\ \delta_{n}}} \rho_{\delta_{n}}^{ \pm} \xrightarrow[L^{\infty}(L \log L)]{ } \quad \rho^{ \pm}
$$

Theorem: for $\left\{\begin{array}{l}V_{\delta} \in W^{2, \infty}\left(\mathbb{T}^{2}\right) \\ V_{\delta} \rightarrow V \text { in } L^{2}\left(\mathbb{T}^{2}\right) \\ 0 \leq\left(1+|k|^{2}\right)\left[\widehat{V}_{\delta}\right]_{k} \leq C \forall \delta\end{array}\right.$

- $\forall T>0 \quad \exists \delta_{n} \rightarrow 0 \quad \forall \rho_{\circ}^{ \pm} \in L \log L\left(\mathbb{T}^{2}\right)$
- $\forall \mu_{n, \circ}^{ \pm} \rightharpoonup \rho_{\circ}^{ \pm}: \exp \left(T\left\|\partial_{1} V_{\delta_{n}}\right\|_{L i p}\right) W_{2}\left(\mu_{n, \mathrm{o}}^{ \pm}, \alpha_{n} \rho_{\circ}^{ \pm}\right) \xrightarrow{n \rightarrow \infty} 0$
- $\exists n_{k} \exists \rho^{ \pm} \in L^{\infty}(L \log L)$ solution to (P) :
- $\mu_{n_{k}}^{ \pm}(t) \rightharpoonup \rho^{ \pm}(t)$ as $n_{k} \rightarrow \infty$ for a.e. $t \in(0, T)$

$\left(P_{n}^{\delta_{n}}\right) \rightarrow(P):$ discussion

- Also works for ∇ i.o. ∂_{1}; applies to screw dislocations
- Also works in \mathbb{T}^{d} for all $d \geq 1$ with V at most logarithmic
- Also works for given F Lipschitz
- Extends [Monneau et al.; 2010]'s global existence result of (P) to general V, and a larger class of initial data
- We do not use the gradient flow structure explicitly!
- Conditions on V:
- $\widehat{V}_{k} \geq 0$: prevents 'negative-energy' micro-structures
- $\left(1+|k|^{2}\right) \widehat{V}_{k} \leq C$: at most logarithmic singularities
- Weak link: Gronwall estimate on $W_{2}\left(\mu_{n}^{ \pm}(t), \rho_{\delta_{n}}^{ \pm}(t)\right)$ requires at least $\delta_{n}>2 T / \log n$
- No uniqueness result on (P)

How about counter-example to $\left(P_{n}^{\delta_{n}}\right) \rightarrow(P)$?

Counter example needs $n^{3 / 2} \delta_{n} \rightarrow 0$; incompatible with $\delta_{n} \rightarrow 0$ 'slowly'

My current interpretation

$\delta_{n} \rightarrow 0$ slowly enough
prevents dislocation to cluster in rigid dipole-structures

Current answer to the main question

$\frac{d x_{i}}{d t}=\left[F+\frac{1}{n} \sum_{j=1}^{n} b_{j}\left[-\partial_{1} V_{\delta_{n}}\right]\left(x_{i}-x_{j}\right)\right] b_{i} e_{1} \quad \begin{aligned} & \partial_{t} \rho^{+}=\partial_{1}\left(\rho^{+}\left[\partial_{1} V *\left(\rho^{+}-\rho^{-}\right)-F\right]\right) \\ & \partial_{t} \rho^{-}=\partial_{1}\left(\rho^{-}\left[\partial_{1} V *\left(\rho^{-}-\rho^{+}\right)+F\right]\right)\end{aligned}$

- If $\delta_{n} \rightarrow 0$ very slowly: yes
- If $n^{3 / 2} \delta_{n} \rightarrow 0$: no
- [Groma, Balogh; 1999] uses no regularisation ($\approx \delta_{n} \rightarrow 0$ very fast)

Anti-plane deformation model of screw dislocation and its related variational problem

Masaaki Uesaka

Hokkaido University

As a microscopic model of screw dislocation, Hudson and Ortner [1, 2] propose the lattice model based on anti-plane dislocation. They prove that in this model, the state corresponding to the screw dislocation is a globally stable equilibrium under appropriate conditions for the interaction energy. In this talk, we attempt to obtain the upscale model of the anti-plane deformation model in terms of Γ-convergence. The main point is that the discrete system which takes value in S^{1} is naturally derived from the model. We also point out the mathematical difficulty of this discrete model.

References

[1] Thomas Hudson and Christoph Ortner. Existence and stability of a screw dislocation under antiplane deformation. Arch. Ration. Mech. Anal, 213 (2014) no. 3, 887-929.
[2] Thomas Hudson and Christoph Ortner. Analysis of stable screw dislocation configurations in an anti-plane lattice model. SIAM J. Math. Anal. 47-1 (2015), 291-320.

Dislocations in crystal

Figure: Edge dislocation \& Screw dislocation (cited from wikipedia([4]))

Importance of dislocation

Dislocation is the origin of the plasticity of metals

- Dislocation can move with breaking and reforming a bond.
- As dislocations move, the crystal can be deformed by less energy.
- Dislocation $=$ The carrier of plastic deformation

Figure: moving screw dislocation

Figure: Plasticity

Our Motivation

- How can we describe the atomic configuration when screw dislocation occurs?
- (Not mention the detail today)We introduce the notion using the concept of bundle in topology.
(Hamada, Matsutani, Nakagawa, Saeki, U. 2016, arXiv:1605.09550)
- We find the algebraic method for any crystal structure to calculate
- a bundle structure;
- the corresponding description of a screw dislocation.
by using the group theory.
- How can we introduce the energy of screw dislocation?
- We propose the energy model with S^{1}-valued function (based on our description).
- We consider the continuous limit (the Γ-limit) of an S^{1}-valued interacting particle system

Screw Dislocation is a displacement of \mathbb{Z}-lattice

- We decompose the atomic configuration as a base space $\left(\mathbb{Z}^{2}\right)$ and a fiber (\mathbb{Z})
- We imagine that the alignment of the atom is assigned for each lattice point in the base space.
- Neighboring alignments possibly have the gap.
- From these description, it is natural to consider the interaction between \mathbb{Z}-fiber

Our observation

Hamada, Matsutani, Nakagawa, Saeki, U. [7]

(3) We reveal the fiber structure of the screw dislocation:

- Base space: the lattice in \mathbb{Z}^{2};
- Fiber: \mathbb{Z} (possibly has discrepancy between neighbouring fibers).
(2) We propose the algebraic method of finding the fiber structure for given crystal structure and Burger's vector.
- The discrepancy between neighbouring fibers can be described by the value of S^{1} if we consider the infinite dislocation line.

Our model

Our System

We consider the discrete system where neighboring \mathbb{Z}-fiber interacts each other.
\Rightarrow the position of fiber is described as the value in S^{1}.

Related Results (1/3: Discrete model of screw dislocation)

Hudson and Ortner [8]:

- $\Lambda:=\binom{1 / 6}{\sqrt{3} / 6}+\left\langle\binom{ 1}{0},\binom{1 / 2}{\sqrt{3} / 2}\right\rangle_{\mathbb{Z}}:$ triangular lattice
- $\Omega \subset \Lambda$: sublattice, \mathcal{B}^{Ω} : all bonds of Ω
- $\psi: C^{4}(\mathbb{R}): 1$-periodic, even at 0 and $1 / 2$ (interaction potential)
- For two forms $y, \tilde{y}: \Omega \rightarrow \mathbb{R}$,

$$
E^{\Omega}(y ; \widetilde{y}):=\sum_{b \in \mathcal{B}^{\Omega}}(\psi(D y(b))-\psi(D \widetilde{y}(b))),
$$

where $D y, D \widetilde{y}: \mathcal{B}^{\Omega} \rightarrow[-1 / 2,1 / 2]$ are the differences of y, \tilde{y}.

Related Results (1/3: Discrete model of screw dislocation)

$$
E^{\Omega}(y ; \widetilde{y}):=\sum_{b \in \mathcal{B}^{\Omega}}(\psi(D y(b))-\psi(D \widetilde{y}(b)))
$$

where $D y, D \widetilde{y}: \mathcal{B}^{\Omega} \rightarrow[-1 / 2,1 / 2]$ are the differences of y, \tilde{y}.

Theorem (Hudson, Ortner (2014))

Let ψ satisfy $\psi^{\prime \prime}(0)>0$ and $\psi(x) \geq \frac{\psi^{\prime \prime}(0)}{2} x^{2}$ in $[-1 / 2,1 / 2]$.
Then for given centers of screw dislocations (which are sufficiently separated each other) and a given Burger's vector for each dislocation, There exists a locally stable equilibrium y of E^{Ω} such that y has given screw dislocations.

Remark. y is a locally stable equilibrium $\Leftarrow E(y+u ; y) \geq 0$ for all perturbation u with compact support.

Our model

Remark. We only consider the 1-dim. system. (multi-dim. case could be a future work.)

Formulation in 1D

- $N \in \mathbb{N}$: large integer(number of points), $\varepsilon:=1 / N$.
- $\varepsilon \mathbb{Z}:=\{\varepsilon n \mid n \in \mathbb{Z}\}$.
- S^{1} is parametrized by $\theta \in \mathbb{R}$ as $S^{1}=\left\{\left.\binom{\cos 2 \pi \theta}{\sin 2 \pi \theta} \right\rvert\, \theta \in \mathbb{R}\right\}$.
- $\iota: \mathbb{R} \rightarrow S^{1}, \iota(\theta)=\binom{\cos 2 \pi \theta}{\sin 2 \pi \theta}$: covering map
- $u: \varepsilon \mathbb{Z} \rightarrow S^{1}:$ displacement function. $u_{j}:=u(j \varepsilon)=u(j / N)$
- $f_{N}: S^{1} \rightarrow \mathbb{R}$: interaction potential s.t.
- non-negative, $f_{N}\binom{1}{0}=0$
- attain the unique minimum at 0 .
(We will add more assumptions later.)

Energy

$$
E_{N}(u)=\sum_{j=1}^{N} f_{N}\left(\iota\left(\theta_{j}-\theta_{j-1}\right)\right)
$$

where we choose θ_{j} as $\iota\left(\theta_{j}\right)=u_{j} .\left(E_{N}(u)\right.$ does not depend on the choice of θ_{j}.)

Problem: limit of the discrete system

Energy

$$
E_{N}(u)=\sum_{j=1}^{N} f_{N}\left(\iota\left(\theta_{j}-\theta_{j-1}\right)\right)
$$

where we choose θ_{j} as $\iota\left(\theta_{j}\right)=u_{j}$. $\left(E_{N}(u)\right.$ does not depend on the choice of θ_{j}.)

Problem

What is the "limit problem" as $N \rightarrow \infty$?

Problem in "Problem'

What is the definition of "limit problem"?

Γ-convergence

Definition(Γ-convergence)

X :metric space. A sequence $F_{j}: X \rightarrow \mathbb{R} \cup\{\infty\}(j \in \mathbb{N}) \Gamma$-converges to $F_{\infty}: X \rightarrow \mathbb{R} \cup\{\infty\}$ in X if for any $x \in X$,
liminf inequality for every sequence $\left(x_{j}\right)$ converging to x,

$$
F_{\infty}(x) \leq \liminf _{j \rightarrow \infty} F_{j}\left(x_{j}\right)
$$

limsup inequality there exists a sequence $\left(x_{j}\right)$ converging to x such that

$$
F_{\infty}(x) \geq \limsup _{j \rightarrow \infty} F_{j}\left(x_{j}\right)
$$

Theorem ([1])

If $\left(F_{j}\right)$ is equi-mildly coercive on X and if $\left(x_{j}\right)$ is a precompact sequence such that each x_{j} is a minimizer of F_{j}, then every limit of a subseq. of $\left(x_{j}\right)$ is a minimizer of F_{∞}.

Problem: Γ-limit of the discrete system

Energy

$$
E_{N}(u)=\sum_{j=1}^{N} f_{N}\left(\iota\left(\theta_{j}-\theta_{j-1}\right)\right)
$$

where we choose θ_{j} as $\iota\left(\theta_{j}\right)=u_{j}$. $\left(E_{N}(u)\right.$ does not depend on the choice of $\left.\theta_{j}.\right)$

Problem

What is the Γ-limit as $N \rightarrow \infty$?

Related Results(2/3: Г-convergence for dislocations)

Garroni \& Müller [5]

Γ-convergence of the phase field type energy for dislocation pinning Ponsiglione [9]

- $\left\{x_{j}\right\}_{j}$: centers of dislocations
- $\mu:=\sum_{j} z_{j}|\mathbf{b}| \delta_{x_{j}}\left(\mathbf{b}:\right.$ Burger's vector, $\left.|\mathbf{b}|=1, z_{j} \in \mathbb{Z}\right)$

$$
E_{\varepsilon}(u):=\int_{\Omega \backslash \bigcup_{j} \overline{B_{\varepsilon}\left(x_{j}\right)}}|u(x)|^{2} \mathrm{~d} x
$$

Then $\mathcal{F}_{\varepsilon}(\mu):=\frac{1}{|\log \varepsilon|}\left(\min _{u} E_{\varepsilon}(u)+|\mu|(\Omega)\right) \Gamma$-converges to $\mathcal{F}(\mu)=\frac{1}{2 \pi}|\mu|(\Omega)$ in a flat norm topology.

Related Results(3/3: Γ-convergence for discrete system)
If u takes a value in \mathbb{R}, there are many previous results.

$$
E_{N}(u)=\sum_{j=1}^{N} f_{N}\left(u_{j}-u_{j-1}\right)=: \sum_{j=1}^{N} \frac{1}{N} \psi_{N}\left(\frac{u_{j}-u_{j-1}}{1 / N}\right)
$$

- Braides and Gelli [3]: Review on this topic
- Braides and Gelli [2]: Non-convex energies
- $T_{N}^{ \pm} \rightarrow \infty$ and $T_{N}^{ \pm} / N \rightarrow 0$ as $N \rightarrow \infty$.
- ψ_{N} : convex in $\left[T_{N}^{-}, T_{N}^{+}\right]$and concave out of $\left[T_{N}^{-}, T_{N}^{+}\right]$.
$\psi_{N}(z):= \begin{cases}F_{N}(z) & z \in\left[T_{N}^{-}, T_{N}^{+}\right] \\ N G_{N}\left(\frac{z-T_{N}^{\text {sign }}}{N}\right) & z \notin\left[T_{N}^{-}, T_{N}^{+}\right]\end{cases}$

Related Results(3/3: Γ-convergence for discrete system)

Theorem (Braides and Gelli (2002))

With some assumptions on F_{N} and G_{N}, the functionals $E_{N} \Gamma$-converge w.r.t. the convergence in measure on $L^{1}(0,1)$ to

$$
E(u)= \begin{cases}\int_{0}^{1} F\left(u^{\prime}(x)\right) \mathrm{d} x+\sum_{t \in S(u)} G([u](t)) & u \in \operatorname{SBV}(0,1) \\ +\infty & \text { otherwise }\end{cases}
$$

where $S(u)$ is the jump set of u and $[u]$ denote the jump, and $F:=\lim _{N} F_{N}$ and $G:=\lim _{N} G_{N}$.

Main Result: Assumptions

Energy

$$
E_{N}(u)=\sum_{j=1}^{N} f_{N}\left(\iota\left(\theta_{j}-\theta_{j-1}\right)\right)
$$

where we choose θ_{j} as $\iota\left(\theta_{j}\right)=u_{j}$.
Let $\psi_{N}: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
\psi_{N}(z)= \begin{cases}N f_{N}(\iota(z / N)) & z \in[-N / 2, N / 2] \\ +\infty & \text { otherwise }\end{cases}
$$

By using ψ_{N}, we can write

$$
E_{N}(u)=\sum_{j=1}^{N} \frac{1}{N} \psi_{N}\left(\frac{\theta_{j}-\theta_{j-1}}{1 / N}\right)
$$

where $\left(\theta_{j}\right)$ are chosen as $\iota\left(\theta_{j}\right)=u_{j}$ and as $\theta_{j}-\theta_{j-1} \in[-1 / 2,1 / 2]$.

Main Result: Assumptions(cont.)

- ψ_{N} is convex in $\left[T_{N}^{-}, T_{N}^{+}\right.$] and concave out of $\left[T_{N}^{-}, T_{N}^{+}\right.$. Moreover,

$$
\psi_{N}(z):= \begin{cases}F_{N}(z) & z \in\left[T_{N}^{-}, T_{N}^{+}\right] \\ N G_{N}\left(\frac{z}{N}\right) & z \notin\left[T_{N}^{-}, T_{N}^{+}\right]\end{cases}
$$

- $\exists p>1$ s.t. $F_{N}(z) \geq|z|^{p}$ for $\forall z \in \mathbb{R}$.
- $G_{n}(z) \geq c>0$ for $\forall z \neq 0$.
- We identify a discrete function $u: \varepsilon \mathbb{Z} \rightarrow S^{1}$ as a following piecewise constant function:

$$
u(x)=u_{j} \text { if } x \in\left[\frac{j}{N}, \frac{j+1}{N}\right), j=0,1, \ldots, N-1
$$

Main result

Theorem (U.)

In addition to these assumptions, if $F=\lim _{N} F_{N}$ and $G=\lim _{N} G_{N}$ exists, then $E_{N} \Gamma$-converges in L^{1} to the following functional: for $u \in L^{1}(0,1)$, if there exists $\theta \in \operatorname{SBV}(0,1)$ such that $\iota \circ \theta=u$, then

$$
E_{\infty}(u)=\int_{0}^{1} F\left(u^{\prime}(x)\right) \mathrm{d} x+\sum_{t \in S(u)} \inf \left\{\begin{array}{l|l}
G([\theta](t)) & \begin{array}{l}
\theta \in \operatorname{SBV}(0,1) \\
\iota \circ \theta=u
\end{array}
\end{array}\right\}
$$

and otherwise $E_{\infty}(u)=+\infty$.

Remark.

$\theta_{1}, \theta_{2}:(0,1) \rightarrow \mathbb{R}$ satisfies $\iota \circ \theta_{1}=\iota \circ \theta_{2} \Rightarrow \theta_{1}(x)-\theta_{2}(x) \in \mathbb{Z}$ for all $x \in(0,1)$.
Then the second term of the definition of E_{∞} can be written as follows:

$$
\sum_{t \in S\left(\theta_{0}\right)} \inf _{n \in \mathbb{Z}}\left\{G\left(\left[\theta_{0}\right](t)+n\right)\right\}
$$

for fixed $\theta_{0} \in \operatorname{SBV}(0,1)$ with $\iota \circ \theta_{0}=u$.

The key point of proof: concentration

Example from Giaquinta, Modica and Souček [6]:

- Consider the following functions $u_{n}:[0,1] \rightarrow S^{1}(n \in \mathbb{N})$:

$$
u_{n}(t):= \begin{cases}(\cos 2 \pi n t, \sin 2 \pi n t) & t \in[0,1 / n], \\ (1,0) & \text { otherwise } .\end{cases}
$$

- Total variation of u_{n} is 2π for all $n \in \mathbb{N}$.
- $\left(u_{n}\right)$ converges in $L^{1}\left((0,1), \mathbb{R}^{2}\right)$ to the constant map $u_{0}:[0,1]$ with $u_{0}(t)=(1,0)$.
- This limit, however, does not conserve the total variation. $\left(\operatorname{Var}\left(u_{0}\right)=0\right.$.)
- The limit "forgets" how many times it goes around S^{1}.

By the theory of currents, we see that the corresponding graph current $G_{u_{n}}$ converges to

$$
G_{u_{0}}+\delta_{0} \times \llbracket S^{1} \rrbracket
$$

where δ_{0} is a Dirac mass at zero.

Brief Review on Cartesian current (1)

- k-dimensional current on a manifold M : a continuous linear functional on k-form space $\Omega^{k}(M)$.
- By defining $[[M]](\omega):=\int_{M} \omega$, we can regard M as a current.
- Boundary of a current T :

$$
(\partial T)(\omega):=T(d \omega)
$$

- Graph current: Let $u \in B V(\Omega)$ where $\Omega \subset \mathbb{R}^{n}$.

$$
G_{u}:=(-1)^{n} \partial\left[\left[S G_{u}\right]\right]
$$

where $S G_{u}$ is a subgraph of u in \mathbb{R}^{n+1}.

Brief Review on Cartesian current (2)

Definition

Let $\Omega \subset \mathbb{R}^{d_{1}}$ be an open set. Then $d_{1}+d_{2}-1$-dimensional rectifiable current T in $\Omega \times \mathbb{R}^{d_{2}}$ is called a Cartesian current if the following conditions hold:

$$
\begin{gather*}
\partial T_{\llcorner }\left(\Omega \times \mathbb{R}^{2}\right)=0 ; p_{\#} T=[[\Omega]] ; T\llcorner d x \geq 0 \tag{1}\\
\|T\|_{1}<\infty ; \mathbf{M}(T)<\infty \tag{2}
\end{gather*}
$$

where

$$
\begin{equation*}
\|T\|_{1}:=\sup \left\{\langle T, \varphi(x, y)| y|d x\rangle ; \varphi \in C_{0}^{\infty}\left(\Omega \times \mathbb{R}^{2}\right) \text { with }\|\varphi\| \leq 1\right\} \tag{3}
\end{equation*}
$$

We denote by $\operatorname{cart}\left(\Omega \times \mathbb{R}^{d_{2}}\right)$ by the set of Cartesian currents in $\Omega \times \mathbb{R}^{d_{2}}$.

Brief Review on Cartesian current（3）

Theorem（［6］）

We assume that T is represented locally as $\left(\operatorname{id}_{\Omega} \times \iota\right)_{\#} G_{u}$ for some $B V(\Omega)$ ．Then

$$
\begin{align*}
\mathrm{JC}(T) & =J_{u} \\
T^{(a)} & =\left(\operatorname{id}_{\Omega} \times \iota\right)_{\#} G_{u}^{(a)} \tag{4}\\
T^{(C)} & =\left(\operatorname{id}_{\Omega} \times \iota\right)_{\#} G_{u}^{(C)}
\end{align*}
$$

and for any form of type $\omega=\varphi(x, y) d x_{1} \wedge \cdots \wedge d x_{j-1} \wedge d x_{j+1} \wedge d x_{n} \wedge d y$ for some $\varphi(x, y) \in C_{0}^{\infty}\left(\Omega \times \mathbb{R}^{2}\right)$ ，we have

$$
\begin{align*}
& T^{(a)}(\omega)=(-1)^{d-j} \int_{\Omega} \varphi\left(x, u_{T}(x)\right)\left(D_{i} u_{T}\right)^{(a)} \mathrm{d} x \\
& T^{(C)}(\omega)=(-1)^{d-j} \int_{\Omega} \varphi\left(x, u_{T}(x)\right)\left(D_{i} u_{T}\right)^{(C)} \mathrm{d} x . \tag{5}
\end{align*}
$$

Theorem（［6］，cont．）

Moreover $T^{(J c)}$ have a decomposition

$$
\begin{equation*}
T^{(J c)}=T^{(c o n)}+T^{(J)} \tag{6}
\end{equation*}
$$

which satisfies

－There exist a rectifiable $(n-1)$－current $L_{T}^{(\text {con })}$ such that

$$
T^{(c o n)}=L_{T}^{(c o n)} \times\left[\left[S^{1}\right]\right]
$$

－For any form of type $\omega=\varphi(x, y) d x_{1} \wedge \cdots \wedge d x_{j-1} \wedge d x_{j+1} \wedge d x_{n} \wedge d y$ for some $\varphi(x, y) \in C_{0}^{\infty}\left(\Omega \times \mathbb{R}^{2}\right)$ ，

$$
T^{(J)}(\omega)=(-1)^{d-j} \int_{\Omega}\left\{\int_{\gamma_{u_{-}(x), u_{+}(x)}} \varphi(x, s) \mathrm{d} \ell_{S^{1}}\right\} \nu_{J_{u}}^{(j)}(x) \mathrm{d} \mathcal{H}^{d-1}\left\llcorner J_{u}\right.
$$

where $\gamma_{u_{-}(x), u_{+}(x)}$ is the oriented path in S^{1} which connects $\iota\left(u_{-}(x)\right)$ to $\iota\left(u_{+}(x)\right)$ ．

Main result（Cartesian Current Ver．）

Theorem（U．）

In addition to these assumptions，suppose that $F=\lim _{N} F_{N}$ and $G=\lim _{N} G_{N}$ exists．Then $E_{N} \Gamma$－converges in the space of Cartesian current to the following functional：for all the Cartesian current G on Ω ，if G has no Cantor part，then

$$
E_{\infty}(G)=\int_{0}^{1} F\left(u^{\prime}\right) \mathrm{d} x+\sum_{t \in \mathcal{M}^{(J c)}}[2 \ell(t)] G\left(\frac{1}{2}\right)+G\left(\ell(t)-\frac{[2 \ell(t)]}{2}\right)
$$

and otherwise $E_{\infty}(u)=+\infty$ ，where u is a absolutely continuous part of G and $\mathcal{M}^{J c}$ is the jump and concentration part of G and $\ell(t)$ is the jump and concentration length．

Red part arises from the concentration phenomena．

Summary \& Future work

- From the topological description of screw dislocations, we can naturally imagine the model of the screw dislocation energy where the intaraction between \mathbb{Z}-fiber exists.
- In this model, S^{1}-valued function naturally appears.
- Our model is a discrete model and we consider the Γ-limit of this model.
- Our proof of the Γ-limit theorem is based on Cartesian currents and the concentration phenomena affects the limit functional.
- (Future work) Multi-dimensional base space
- (Future work) Periodic boundary constraints.
- This corresponds to considering function from S^{1} to S^{1}.
- The mapping degree of this function needs to be prescribed.
- (Future work) Gradient Flow of our discrete model
- (Related ongoing work) Numerical Scheme for total variation flow with a function valued in Lie group. (joint w/ Y. Giga, K. Sakakibara and K. Taguchi (Univ. of Tokyo).)

Bibliography I

[1] Braides, A., Γ-convergence for beginners, Oxfor Lecture Series in Mathematics and it Applications, Vol. 22, 2002.
[2] Braides, A. \& Gelli, M. S., Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids, 6, 395-414, 2002.
[3] Braides, A. \& Gelli, M.S., From discrete systems to continuum variational problems: an introduction. In Topics on Concentration Phenomena and Problems with Multiple Scales, pp. 3-77, Lect. Notes Unione Mat. Ital. vol. 2. Springer, Berlin, 2006.
[4] "Vector de Burgers" by Javier Bartolomé Vílchez (Autor de la imagen original: David Gabriel García Andrade) - Modificación de una imagen subida al Commons. Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File: Vector_de_Burgers.PNG\#/media/File:Vector_de_Burgers.PNG.
[5] Garroni, A. and Müller, S., Γ-limit of a phase-field model of dislocations. SIAM Math. Anal., 36(2005), no. 6, 1943-1964.

Bibliography II

[6] Giaquinta, M., Modica, G. \& Souček, J., Variational problems for maps of bounded variation with values in S^{1}, Calc. Var. 1, 87-121, 1993.
[7] Hamada, H., Matsutani, S., Nakagawa, J., Saeki, O., \& Uesaka, M., An algebraic description of screw dislocations in SC and BCC crystal lattices, 2016, arXiv:1605.09550.
[8] Hudson, T. and Ortner, C., Existence and stability of a screw dislocation under anti-plane deformation. Arch. Ration. Mech. Anal., 213 (2014) no. 3, 887-929.
[9] Ponsiglione, M., Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal., 39 (2007), no. 2, 449-469.

Variational models of lattice defects

Pierluigi Cesana

IMI, Kyushu University

A martensitic phase-transformation is a first-order diffusionless transition occurring in elastic crystals and characterized by an abrupt change of shape of the underlying crystal lattice [1]. It is the basic activation mechanism for the so-called Shape-Memory effect. The re-organization of the crystalline structure is not only accompanied by the formation of sharp interfaces delimiting the various martensitic variants but also by presence of defects and mismatches. In this talk I will present a modeling approach for topological defects based on variational (energy-minimization) methods [3]. Considering disclinations (angular defects caused by the mismatch measured around a loop in a planar lattice) I will present a linearized theory based on a continuum model describing the formation of a nested hierarchical martensitic microstructure containing a disclination at the center [2]. The microstructure is described by the solution to a differential inclusion problem. I will then introduce the Gamma-Convergence approach to the description of dislocations (linear defects often observed in metal subject to shear stress). Comparisons are reported for numerical and analytical solutions and experimental observations.

References

[1] Kaushik Bhattacharya. Microstructure of Martensite. Oxford University Press, Oxford (2003)
[2] Pierluigi Cesana, Marcel Porta, Turab Lookman. J. Mech. Phys. Sol. 72 (2014)
[3] Pierluigi Cesana Relaxation of an Energy Model for the Triangle-to-Centred Rectangle Transformation. In: Anderssen B. et al. (eds) The Role and Importance of Mathematics in Innovation. Mathematics for Industry, vol 25. Springer, Singapore (2017)

Elasticity framework

We adopt a Landau-type approach by modeling the system with a multi-well energy density whose wells are represented by the martensitic variants

Figure : Energy density Ψ at fixed temperature $T<T_{c}$ In the regime of linearized elasticity:

- $E \in R^{3 \times 3}, E=E^{T}$ mechanical strain gradient
- $E u:=\frac{1}{2}\left(\nabla u+\nabla^{T} u\right)$
- $\Psi(E)$ the free-energy density
- We apply this model to the Hexagonal-to-Orthorhombic transformation

Hexagonal-to-Orthorhombic transformation

- Energy wells:
$E_{1}=\eta\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], E_{2}=\eta\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right], E_{3}=\eta\left[\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$

- $\Psi(E u)$
- $E_{1} \xrightarrow{2 \pi / 3} E_{2} \xrightarrow{2 \pi / 3} E_{3} \xrightarrow{2 \pi / 3} E_{1}$
- 3-state spin system
- $\eta \in \mathbb{R}^{+}$material parameter

The energy model:

$$
F_{\varepsilon}(u)=\left\{\begin{array}{cl}
\int_{\Omega}\left[\varepsilon|\Delta u(x)|^{2}+\Psi(E u(x))\right] d x & \text { if div u }=0 \\
+\infty & \text { otherwise }
\end{array}\right.
$$

Interfacial Energy + Bulk Energy

Boundary Value Problem

$$
\text { - } F_{\varepsilon}(u):=\int_{\Omega}\left[\varepsilon|\Delta u(x)|^{2}+\Psi(E u(x))\right] d x
$$

- The BVP problem (relaxation):

$$
\begin{aligned}
& \min \rightarrow F_{\varepsilon}(u) \text { with: } \\
& \left.u\right|_{\partial \Omega}=0
\end{aligned}
$$

The homogeneous strain $E=0$ is unstable: the material shows an energetic preference to develop spatially modulated deformations (shear bands) at fixed average deformation $E=0$.

Asymptotics

$$
\begin{align*}
-\min _{\mathcal{A}} \rightarrow F_{\varepsilon}(u) & =\int_{\Omega}\left(\varepsilon|\Delta u(x)|^{2}+\Psi(E u(x)) d x\right. \tag{1}\\
\mathcal{A} & =H_{0}^{1}\left(\Omega, \mathbb{R}^{2}\right) \cap H^{2}\left(\Omega, \mathbb{R}^{2}\right)
\end{align*}
$$

Denote with
(1) \bar{u}_{ε} the minimizers of Eq. (1)
(2) $\left\{m_{\varepsilon}\right\}=\left\{\inf _{\mathcal{A}} F_{\varepsilon}(u)\right\}=\left\{F_{\varepsilon}\left(\bar{u}_{\varepsilon}\right)\right\}$ the minima of Eq. (1)

- The problem: to study the asymptotic behavior of minimizers and minima of the energy.
- We characterize the asymptotic behavior of the system by
Γ-Convergence.

Γ-convergence

Minimality:

- coercivity (compactness)
- lower semicontinuity

Let $\mathcal{F}_{k}, \mathcal{F}_{\infty}: X \rightarrow \mathbb{R} \cup\{+\infty\}, k \rightarrow \infty$. Compute:
(1) $\inf _{X} \mathcal{F}_{k}(x)=\mathcal{F}_{k}\left(\bar{x}_{k}\right):=m_{k}$
(2) $\inf _{X} \mathcal{F}_{\infty}(x)=\mathcal{F}_{\infty}\left(\bar{x}_{\infty}\right):=m_{\infty}$

We are interested in:
(1) (convergence of minimum values) $m_{k} \rightarrow m_{\infty}$
(2) (convergence of minimizers) $\bar{x}_{k} \rightarrow \bar{x}_{\infty}$ (in some topology...)

$$
\text { The result: } \quad \Gamma-\lim _{k \rightarrow \infty} \mathcal{F}_{k}=\mathcal{F}_{\infty}
$$

Definition (by sequences)

Let (X, d) be a metric space, $\mathcal{F}_{k}: X \rightarrow \mathbb{R} \cup\{+\infty\}$. Define
$\Gamma-\liminf _{k \rightarrow+\infty} \mathcal{F}(u):=\inf \left\{\liminf _{k \rightarrow+\infty} \mathcal{F}_{k}\left(u_{k}\right), \quad u_{k} \xrightarrow{d} u\right\}$
$\Gamma-\limsup _{k \rightarrow+\infty} \mathcal{F}(u):=\inf \left\{\limsup _{k \rightarrow+\infty} \mathcal{F}_{k}\left(u_{k}\right), \quad u_{k} \xrightarrow{d} u\right\}$
If
$\Gamma-\liminf _{k \rightarrow+\infty} \mathcal{F}_{k}=\Gamma-\limsup _{k \rightarrow+\infty} \mathcal{F}_{k}:=\Gamma-\lim _{k \rightarrow+\infty} \mathcal{F}_{k}$

Compute the Γ-limit

Matching Upper and Lower Bound

- Lower Bound: Stability
- Upper Bound: Optimality (+Kinematic Compatibility)

Lower Bound

The lower bound is given by Ψ^{c}, the Convex envelope of Ψ

- $0 \leq \Psi$
- $\Psi^{c} \leq \Psi$ (convex envelope).

The (algebraic) inequality above holds at the level of the Γ-limit (in the weak- H^{1} topology):

- $\int_{\Omega} \Psi^{c}(E u) d x \leq \Gamma_{\varepsilon \rightarrow 0^{-}} \lim F_{\varepsilon}$.

Upper Bound

We have a chain of inequalities involving the concepts of partial convexity:

$$
\cdot \Psi^{c} \leq \Psi^{p c} \leq \Psi^{q c} \leq \Psi^{r c}
$$

Where $\Psi^{p c}$ denotes the polyconvex envelope, $\Psi^{q c}$ denotes the quasiconvex envelope, $\Psi^{p c}$ denotes the rank-1 convex envelope of Ψ.
The Upper bound is attained if we prove that:

- $\Psi^{r c} \leq \Psi^{c}$.

This is obtained via a lamination construction if we show all possible convex combinations of variants can be obtained by lamination (kinematically compatible rank- 1 connections).

Kinematic compatibility

Minimizing sequences of the problem

$$
u: \Omega \rightarrow R^{2}, \quad \inf _{u \in H_{0}^{1}\left(\Omega, R^{2}\right)} \rightarrow \int_{\Omega} \Psi(E u(x)) d x
$$

have piecewise constant gradients oscillating at a very fine scale. Continuity is guaranteed by matching the tangential components of the gradients across each interface

In turn this is an algebraic condition on matrices.
Conservation of tangential component of $\nabla u \rightarrow F_{1}-F_{2}=a \otimes n$

Microstructure

A microstructure is the manifestation of a minimizing sequence of the infimum problem.

$$
\inf _{u \in H_{0}^{1}\left(\Omega, R^{2}\right)} \rightarrow \int_{\Omega} \Psi(E u(x)) d x
$$

For the Hexagonal-to-Orthorhombic transformation:

Volume fraction $E_{i}=\frac{1}{3}$
$\frac{1}{3}\left(E_{1}+E_{2}+E_{3}\right)=0$
$\int_{\Omega} \Psi\left(E u_{k}\right) d x \rightarrow \int_{\Omega} \Psi^{c}(0) d x=0$

Self-similar nested microstructure

Next, we show how to model a triple-star disclination occurring in a sample of $\mathrm{Pb}_{3}\left(\mathrm{VO}_{4}\right)_{2}$ undergoing the
hexagonal-to-orthorhombic transformation in plane-strain geometry (find a picture of this structure in C. Manolikas, S.
Amelinckx, Phys. Stat. Sol. 1980).
The triple-star disclination is a striking example of a Volterra's wedge disclination.

Exact calculations

Consider the problem

$$
\begin{equation*}
\inf _{u \in \mathcal{A}} \rightarrow \int_{\Omega}\left[\Psi(E u)+\left|\nabla^{2} u\right|^{q}\right] d x \tag{2}
\end{equation*}
$$

with $q>0$. Under the assumption that $\int_{\Omega}\left|\nabla^{2} u\right|^{p} d x$ is small, we can study the simplified problem

$$
\begin{equation*}
\inf _{u \in H_{0}^{1}\left(\Omega, R^{2}\right)} \rightarrow \int_{\Omega} \Psi(E u) d x \tag{3}
\end{equation*}
$$

Kinematic Compatibility

We look for maps which minimize the integrand energy in (3) pointwise, that is, we solve

$$
\inf _{E \in R_{s y m}^{2 \times 2}} \rightarrow \Psi(E)
$$

with techniques from J. Ball, R. James, ARMA 1987. Indeed:

$$
\inf _{E \in R_{R_{y m}^{2 \times 2}}} \Psi(E) \Leftrightarrow \exists u: \frac{\nabla u+\nabla^{T} u}{2} \in\left\{E_{1}, E_{2}, E_{3}\right\}
$$

The result

- It is possible to find an explicit formula for u
- $\left(\nabla u+\nabla^{T} u\right) / 2 \in\left\{E_{1}, E_{2}, E_{3}\right\}$ for a.e. (x, y) in Ω,
- volume ratio E_{i} is $1 / 3$
- $u \in W^{1, p}\left(\Omega, R^{2}\right), 1 \leq p<\infty,|\nabla u| \rightarrow \infty$ as $(x, y) \rightarrow(0,0)$
P.C., M. Porta, T. Lookman, JMPS 2014

Level curves and graphs

Figure: Level curves of $u(x, y)$. (Here $\mathrm{L}=\eta=1$).

Drawback of the linearized model

for $L \approx 0.07 \mu m$ for $k=3$ we are in the range $10^{-2} n m$

Acknowledgments

- JSPS Research Category Grant-in-Aid for Young Scientists (B) 16 K 21213
cesana@imi.kyushu-u.ac.jp

Sequence representation of graph structure of crystal (Growth)

Junichi Nakagawa

Nippon Steel \& Sumitomo Metal Co.

Growth is defined as a sequential representation of the graphical structure of crystal. The first growth corresponds to the coordination number of crystals which is used as a numerical index to describe the crystalline structure in material science.

We counted the number of growths in the case of eight crystals composed of two kinds of atoms and derived the numeric sequences. The numerical sequences have a cyclical property.

The generation functions can be derived from the numerical sequences. We show that the generating function has symmetrical properties which are derived from the cyclic property of the numerical sequence of the growth.

Mathematics in Interface，Dislocation and Structure of Crystals Sequential Representation of Graphical Structure of Crystals（Growth）

2017．8．28－8．30
Institute of Mathematics for Industry
Kyusyu University

Nippon Steel \＆Sumitomo Metal Corporation Advanced Technology Research Laboratories Mathematical Science \＆Technical Research Lab．

SG2013 in the University of Tokyo
 Regression Method

－This problem can be viewed as a regression problem
－Predictors：information of atoms and crystal structure
－Response variable：energy of compound

SG2013 in the University of Tokyo							
NaCl	molecule	crstal lattice	order		\# of	wth	
	molecuie	crystarlatice	group	1st	2nd	3rd	4th
	NaCl	Cubic	48	6	18	38	66
	CsCl	Cubic	48	8	26	56	98
Cl	$\beta-\mathrm{BeO}$	Cubic	16	4	11	18	41
	ZnS	Cubic	24	4	12	24	42
	ZnO	Hexagonal	12	4	12	25	44
	$\alpha-\mathrm{PbO}$	tetragonal	16	4	8	12	16
β-BeO	TII	Orthorhombic	8	7	22	47	82
0	NiAs	Hexagonal	24	6	20	42	74

The growth is generalization of the coordination number in material science.

ZnO
the $2^{\text {nd }}$ growth=12

SGW2014	Counting Out of \＃Growth Using Computer							
						$\underset{\theta}{\infty}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	
Growth	Crystals							
	a－ Pb O	$\beta-\mathrm{BeO}$	CsCl	NaCl	NiAs	TII	ZnO	ZnS
g 1	4	4	8	6	6	7	4	4
E 2	8	11	26	18	20	22	12	12
g 3	12	24	56	38	42	47	25	24
14	16	41	98	66	74	82	44	42
g5	20	62	152	102	114	127	67	64
g6	24	90	218	146	164	182	96	92
87	28	122	296	198	222	247	130	124
g8	32	157	386	258	290	322	170	162
g_{0}	36	200	488	326	366	407	214	204
810	40	247	602	402	452	502	264	252
g11	44	296	728	486	546	607	319	304
812	48	354	866	578	650	722	380	362
g13	52	416	1016	678	762	847	445	424
g14	56	479	1178	786	884	982	516	492
815	60	552	1352	902	1014	1127	592	564
816	64	629	1538	1026	1154	1282	674	642
817	68	706	1736	1158	1302	1447	760	724
818	72	794	1946	1298	1460	1622	852	812
819	76	886	2168	1446	1626	1807	949	904
820	80	977	2402	1602	1802	2002	1052	1002
Our intere 02017 NIIPONST	ting in m \＆sumitos	nathem O METAL．CO	ics is oration	e $g_{o r}$ Righte Reser				住金 a sumitomo metal

Generating Function of Growth

$$
G(x)=1+\sum_{n=1}^{n} g_{n} x^{\prime \prime}
$$

H. Ochiai *1
(2016.9.30)
※1:Kyusyu University IMI

Definition：

Proposition 1 （S．Wakatsuki）

Proposition 2 （S．Wakatsuki）

$$
G_{1}^{v_{n}(x)}\left(\frac{1}{x}\right)=(-1)^{+1} G_{i}^{N_{1} N(x)}(x)
$$

03017 NIPPON STEEL \＆SUMITOMO METAL CORPORATHON Al Rights Resened．
FMSP Mathematical Research on Real World Problems，Group G．The University of Tokyo
Symmetrical Properties of Generating Function（2）
For example，in the case of the numeric sequence of $\beta-\mathrm{BcO}$

$$
\left.\begin{array}{c}
g_{\rho-\operatorname{koo}}(n)=\left\{\begin{array}{ll}
\frac{22}{9} n^{2}+\frac{1}{9} n+\frac{13}{9} & (n=1 \bmod 3) \\
\frac{22}{9} n^{2}-\frac{1}{9} n+\frac{13}{9} & (n=2 \\
\frac{22}{9} n^{2}+2 & (n=0
\end{array} \bmod 3\right)
\end{array}\right\}
$$

$$
G_{\rho-\text { nos }}(x)=\frac{22}{9} G_{2}^{1,0}(x)+\frac{1}{9} G_{1}^{31}(x)-\frac{1}{9} G_{1}^{\mu, 2}(x)+2 G_{0}^{33}(x)+\frac{13}{9} G_{0}^{3,1}(x)+\frac{13}{9} G_{0}^{3,2}(x)+1
$$

$$
G_{p-\operatorname{nos}}\left(\frac{1}{x}\right)=\frac{22}{9} G_{2}^{L 0}\left(\frac{1}{x}\right)+\frac{1}{9} G_{1}^{\text {M, }}\left(\frac{1}{x}\right)-\frac{1}{9} G_{1}^{\mu 2}\left(\frac{1}{x}\right)+2 G_{0}^{M,}\left(\frac{1}{x}\right)+\frac{13}{9} G_{0}^{\text {su }}\left(\frac{1}{x}\right)+\frac{13}{9} G_{0}^{32}\left(\frac{1}{x}\right)+1
$$

$$
=-\frac{22}{9} G_{2}^{\prime 4}(x)+\frac{1}{9} G_{1}^{32}(x)-\frac{1}{9} G_{1}^{31}(x)-2 G_{0}^{30}(x)-\frac{13}{9} G_{0}^{32}(x)-\frac{13}{9} G_{0}^{3,1}(x)+1
$$

$$
=-\frac{22}{9} G_{2}^{10}(x)+\frac{1}{9} G_{1}^{32}(x)-\frac{1}{9} G_{1}^{\text {N, }}(x)-2\left(G_{0}^{33}(x)+1\right)-\frac{13}{9} G_{0}^{3,2}+1
$$

$$
=-G_{\beta-\text { ano }}(x)
$$

02017 NIPPON STEEL \＆SUMITOMO METAL CORPORATION All Righas Romend，

Summary and Future Works

$$
g_{\nu-\text { noo }}^{\text {e.g. }}(n)= \begin{cases}\frac{22}{9} n^{2}+\frac{1}{9} n+\frac{13}{9} & (n=1 \bmod 3) \\ \frac{22}{9} n^{2}-\frac{1}{9} n+\frac{13}{9} & (n=2 \\ \bmod 3) \\ \frac{22}{9} n^{2}+2 & (n=0 \quad \bmod 3)\end{cases}
$$

$$
\begin{aligned}
& \text { (1) } G_{t=1}^{x+1}(x)=\left(x \frac{d}{d x}\right) G_{t}^{\times x}(x) \\
& \text { (2) } G_{4}^{x, n}(x)=\frac{x^{*}}{\left(1-x^{*}\right)^{x+1}} \times\left(\text { polynomial of deg ree } N_{4}\right) \\
& \text { (3) } G_{0}^{x, 0}(x)=G_{0}^{*, N}(x)+1, G_{i}^{\gamma, x}(x)=G_{i}^{*, N} \quad \text { for } k>0
\end{aligned}
$$

Thank you for your attention！

MI レクチャーノートシリーズ刊行にあたり

本レクチャーノートシリーズは，文部科学省 21 世紀 COE プログラム「機能数理学の構築と展開」（H．15－19 年度）において作成した COE Lecture Notes の続刊であり，文部科学省大学院教育改革支援プログラム「産業界が求める数学博士と新修士養成」（H19－21 年度）および，同グローバルCOE プログラ ム「マス・フォア・インダストリ教育研究拠点」（H．20－24 年度）において行 われた講義の講義録として出版されてきた。平成 23 年 4 月のマス・フォア・ インダストリ研究所（IMI）設立と平成 25 年 4 月の IMIの文部科学省共同利用•共同研究拠点として「産業数学の先進的•基礎的共同研究拠点」の認定を受け，今後，レクチャーノートは，マス・フォア・インダストリに関わる国内外の研究者による講義の講義録，会議録等として出版し，マス・フォア・インダ ストリの本格的な展開に資するものとする。

平成 26 年 10 月
マス・フォア・インダストリ研究所
所長 福本康秀

平成29年度 九州大学マス・フォア・インダストリ研究所共同利用研究集会（I）
 結晶の界面，転位，構造の数理

[^2]印 刷 城島印刷株式会社
〒810－0012福岡市中央区白金2丁目9番6号
TEL 092－531－7102 FAX 092－524－4411

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note	Mitsuhiro T．NAKAO Kazuhiro YOKOYAMA	Computer Assisted Proofs－Numeric and Symbolic Approaches－ 199pages	August 22， 2006
COE Lecture Note	M．J．Shai HARAN	Arithmetical Investigations－Representation theory，Orthogonal polynomials and Quantum interpolations－174pages	August 22， 2006
COE Lecture Note Vol． 3	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2005 155pages	October 13， 2006
COE Lecture Note Vol． 4	宮田 健治	辺要素有限要素法による磁界解析－機能数理学特別講義 21pages	May 15， 2007
COE Lecture Note Vol． 5	Francois APERY	Univariate Elimination Subresultants－Bezout formula，Laurent series and vanishing conditions－89pages	September 25， 2007
COE Lecture Note Vol． 6	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2006 209pages	October 12， 2007
COE Lecture Note Vol． 7	若山 正人中尾 充宏	九州大学産業技術数理研究センターキックオフミーティング 138pages	October 15， 2007
COE Lecture Note Vol． 8	Alberto PARMEGGIANI	Introduction to the Spectral Theory of Non－Commutative Harmonic Oscillators 233pages	January 31， 2008
COE Lecture Note Vol． 9	Michael I．TRIBELSKY	Introduction to Mathematical modeling 23pages	February 15， 2008
COE Lecture Note Vol． 10	Jacques FARAUT	Infinite Dimensional Spherical Analysis 74pages	March 14， 2008
COE Lecture Note Vol． 11	Gerrit van DIJK	Gelfand Pairs And Beyond 60pages	August 25， 2008
COE Lecture Note Vol． 12	Faculty of Mathematics， Kyushu University	Consortium＂MATH for INDUSTRY＂First Forum 87pages	September 16， 2008
COE Lecture Note Vol． 13	九州大学大学院数理学研究院	プロシーデイング「損保数理に現れる確率モデル」 一日新火災•九州大学共同研究2008年11月研究会—82pages	February 6， 2009

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 14	Michal Beneš， Tohru Tsujikawa Shigetoshi Yazaki	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2008 77pages	February 12， 2009
COE Lecture Note Vol． 15	Faculty of Mathematics， Kyushu University	International Workshop on Verified Computations and Related Topics 129pages	February 23， 2009
COE Lecture Note Vol． 16	Alexander Samokhin	Volume Integral Equation Method in Problems of Mathematical Physics 50pages	February 24， 2009
COE Lecture Note Vol． 17	矢嶋 徽 及川 正行 梶原 健司 辻 英一 福本 康秀	非線形波動の数理と物理 66pages	February 27， 2009
COE Lecture Note Vol． 18	Tim Hoffmann	Discrete Differential Geometry of Curves and Surfaces 75pages	April 21， 2009
COE Lecture Note Vol． 19	Ichiro Suzuki	The Pattern Formation Problem for Autonomous Mobile Robots －Special Lecture in Functional Mathematics－23pages	April 30， 2009
COE Lecture Note Vol． 20	Yasuhide Fukumoto Yasunori Maekawa	Math－for－Industry Tutorial：Spectral theories of non－Hermitian operators and their application 184pages	June 19， 2009
COE Lecture Note Vol． 21	Faculty of Mathematics， Kyushu University	Forum＂Math－for－Industry＂ Casimir Force，Casimir Operators and the Riemann Hypothesis 95pages	November 9， 2009
COE Lecture Note Vol． 22	Masakazu Suzuki Hoon Hong Hirokazu Anai Chee Yap Yousuke Sato Hiroshi Yoshida	The Joint Conference of ASCM 2009 and MACIS 2009： Asian Symposium on Computer Mathematics Mathematical Aspects of Computer and Information Sciences 436pages	December 14， 2009
COE Lecture Note Vol． 23	荒川 恒男 金子 昌信	多重ゼータ値入門 111pages	February 15， 2010
COE Lecture Note Vol． 24	Fulton B．Gonzalez	Notes on Integral Geometry and Harmonic Analysis 125pages	March 12， 2010
COE Lecture Note Vol． 25	Wayne Rossman	Discrete Constant Mean Curvature Surfaces via Conserved Quantities 130pages	May 31， 2010
COE Lecture Note Vol． 26	Mihai Ciucu	Perfect Matchings and Applications 66pages	July 2， 2010

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 27	九州大学大学院数理学研究院	Forum＂Math－for－Industry＂and Study Group Workshop Information security，visualization，and inverse problems，on the basis of optimization techniques 100pages	October 21， 2010
COE Lecture Note Vol． 28	ANDREAS LANGER	MODULAR FORMS，ELLIPTIC AND MODULAR CURVES LECTURES AT KYUSHU UNIVERSITY 2010 62pages	November 26， 2010
COE Lecture Note Vol． 29	木田 雅成原田 昌晃横山 俊一	Magma で広がる数学の世界 157pages	December 27， 2010
COE Lecture Note Vol． 30	$\begin{array}{lr}\text { 原 } & \text { 隆 } \\ \text { 松井 } & \text { 卓 } \\ \text { 廣島 } & \text { 文生 }\end{array}$	Mathematical Quantum Field Theory and Renormalization Theory 201pages	January 31， 2011
COE Lecture Note Vol． 31	若山 正人 福本 康秀 高木 剛 山本 昌宏	Study Group Workshop 2010 Lecture \＆Report 128pages	February 8， 2011
COE Lecture Note Vol． 32	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2011 ＂TSUNAMI－Mathematical Modelling＂ Using Mathematics for Natural Disaster Prediction，Recovery and Provision for the Future 90pages	September 30， 2011
COE Lecture Note Vol． 33	若山 正人 福本 康秀 高木 剛 山本 昌宏	Study Group Workshop 2011 Lecture \＆Report 140pages	October 27， 2011
COE Lecture Note Vol． 34	Adrian Muntean Vladimír Chalupecký	Homogenization Method and Multiscale Modeling 72pages	October 28， 2011
COE Lecture Note Vol． 35	$\begin{array}{ll}\text { 横山 } & \text { 俊一 } \\ \text { 夫 } & \text { 紀恵 } \\ \text { 林 } & \text { 卓也 }\end{array}$	計算機代数システムの進展 210pages	November 30， 2011
COE Lecture Note Vol． 36	Michal Beneš Masato Kimura Shigetoshi Yazaki	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2010 107pages	January 27， 2012
COE Lecture Note Vol． 37	若山 正人高木 剛 Kirill Morozov平岡 裕章木村 正人白井 朋之西井 龍映栄 伸一郎穴井 宏和福本 康秀	平成 23 年度 数学•数理科学と諸科学•産業との連携研究ワーク ショップ 拡がっていく数学～期待される＂見えない力＂～ 154pages	February 20， 2012

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 38	Fumio Hiroshima Itaru Sasaki Herbert Spohn Akito Suzuki	Enhanced Binding in Quantum Field Theory 204pages	March 12， 2012
COE Lecture Note Vol． 39	Institute of Mathematics for Industry， Kyushu University	Multiscale Mathematics：Hierarchy of collective phenomena and interrelations between hierarchical structures 180pages	March 13， 2012
COE Lecture Note Vol． 40	井ノ口順一 太田 泰広 筧 三郎 梶原 健司 松浦 望	離散可積分系•離散微分幾何チュートリアル 2012 152pages	March 15， 2012
COE Lecture Note Vol． 41	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2012 ＂Information Recovery and Discovery＂91pages	October 22， 2012
COE Lecture Note Vol． 42	佐伯 修 若山 正人 山本 昌宏	Study Group Workshop 2012 Abstract，Lecture \＆Report 178pages	November 19， 2012
COE Lecture Note Vol． 43	Institute of Mathematics for Industry， Kyushu University	Combinatorics and Numerical Analysis Joint Workshop 103pages	December 27， 2012
COE Lecture Note Vol． 44	萩原 学	モダン符号理論からポストモダン符号理論への展望 107pages	January 30， 2013
COE Lecture Note Vol． 45	金山 寛	Joint Research Workshop of Institute of Mathematics for Industry （IMI），Kyushu University ＂Propagation of Ultra－large－scale Computation by the Domain－ decomposition－method for Industrial Problems（PUCDIP 2012）＂ 121pages	February 19， 2013
COE Lecture Note Vol． 46	西井 龍映栄 伸一郎 岡田 勘三 落合 啓之 小磯 深幸 斎藤 新悟 白井 朋之	科学•技術の研究課題への数学アプローチ —数学モデリングの基礎と展開— 325pages	February 28， 2013
COE Lecture Note Vol． 47	SOO TECK LEE	BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE COMPLEX CLASSICAL GROUPS 40pages	March 8， 2013
COE Lecture Note Vol． 48	$\begin{array}{lr} \text { 溝口 } & \text { 佳寛 } \\ \text { 脇 } & \text { 隼人 } \\ \text { 平坂 } & \text { 貢 } \\ \text { 谷口 } & \text { 哲至 } \\ \text { 島袋 } & \text { 修 } \end{array}$	博多ワークショップ「組み合わせとその応用」 124pages	March 28， 2013

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 49	照井 章 小原 功任 濱田 龍義 横山 俊一 穴井 宏和 横田 博史	マス・フォア・インダストリ研究所 共同利用研究集会 II数式処理研究と産学連携の新たな発展 137pages	August 9， 2013
MI Lecture Note Vol． 50	Ken Anjyo Hiroyuki Ochiai Yoshinori Dobashi Yoshihiro Mizoguchi Shizuo Kaji	Symposium MEIS2013： Mathematical Progress in Expressive Image Synthesis 154pages	October 21， 2013
MI Lecture Note Vol． 51	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂ 2013 ＂The Impact of Applications on Mathematics＂97pages	October 30， 2013
MI Lecture Note Vol． 52	佐伯 修 岡田 勘三 高木 剛 若山 正人 山本 昌宏	Study Group Workshop 2013 Abstract，Lecture \＆Report 142pages	November 15， 2013
MI Lecture Note Vol． 53	四方 義啓櫻井 幸一安田 貴徳 Xavier Dahan	平成25年度 九州大学マス・フォア・インダストリ研究所共同利用研究集会 安全•安心社会基艦構築のための代数構造 ～サイバー社会の信頼性確保のための数理学～158pages	December 26， 2013
MI Lecture Note Vol． 54	Takashi Takiguchi Hiroshi Fujiwara	Inverse problems for practice，the present and the future 93pages	January 30， 2014
MI Lecture Note Vol． 55	栄 伸一郎溝口 佳寛脇 隼人渋田 敬史	Study Group Workshop 2013 数学協働プログラム Lecture \＆Report 98pages	February 10， 2014
MI Lecture Note Vol． 56	Yoshihiro Mizoguchi Hayato Waki Takafumi Shibuta Tetsuji Taniguchi Osamu Shimabukuro Makoto Tagami Hirotake Kurihara Shuya Chiba	Hakata Workshop 2014 ～Discrete Mathematics and its Applications～141pages	March 28， 2014
MI Lecture Note Vol． 57	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂2014： ＂Applications + Practical Conceptualization + Mathematics $=$ fruitful Innovation＂93pages	October 23， 2014
MI Lecture Note Vol． 58	安生健一落合啓之	Symposium MEIS2014： Mathematical Progress in Expressive Image Synthesis 135pages	November 12， 2014

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol． 59	西井 龍映岡田 勘三梶原 健司高木 剛若山 正人脇 隼人山本 昌宏	Study Group Workshop 2014 数学協働プログラム Abstract，Lecture \＆Report 196pages	November 14， 2014
MI Lecture Note Vol． 60	西浦 博	平成 26 年度九州大学 IMI 共同利用研究•研究集会（I）感染症数理モデルの実用化と産業及び政策での活用のための新 たな展開 120pages	November 28， 2014
MI Lecture Note Vol． 61	溝口 佳寛 Jacques Garrigue萩原 学 Reynald Affeldt	研究集会 高信頼な理論と実装のための定理証明および定理証明器 Theorem proving and provers for reliable theory and implementations （TPP2014）138pages	February 26， 2015
MI Lecture Note Vol． 62	白井 朋之	Workshop on＂β－transformation and related topics＂59pages	March 10， 2015
MI Lecture Note Vol． 63	白井 朋之	Workshop on＂Probabilistic models with determinantal structure＂ 107pages	August 20， 2015
MI Lecture Note Vol． 64	落合 啓之 土橋 宜典	Symposium MEIS2015： Mathematical Progress in Expressive Image Synthesis 124pages	September 18， 2015
MI Lecture Note Vol． 65	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂ 2015 ＂The Role and Importance of Mathematics in Innovation＂74pages	October 23， 2015
MI Lecture Note Vol． 66	岡田 勘三 藤澤 克己 白井 朋之 若山 正人 脇 隼人 Philip Broadbridge 山本 昌宏	Study Group Workshop 2015 Abstract，Lecture \＆Report 156pages	November 5， 2015
MI Lecture Note Vol． 67	Institute of Mathematics for Industry，Kyushu University	IMI－La Trobe Joint Conference ＂Mathematics for Materials Science and Processing＂ 66pages	February 5， 2016
MI Lecture Note Vol． 68	古庄 英和 小谷 久寿 新甫 洋史	結び目と Grothendieck－Teichmüller 群 116pages	February 22， 2016
MI Lecture Note Vol． 69	土橋 宜典鍛治 静雄	Symposium MEIS2016： Mathematical Progress in Expressive Image Synthesis 82pages	October 24， 2016
MI Lecture Note Vol． 70	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2016 ＂Agriculture as a metaphor for creativity in all human endeavors＂ 98pages	November 2， 2016
MI Lecture Note Vol． 71	小磯 深幸 二宮 嘉行 山本 昌宏	Study Group Workshop 2016 Abstract，Lecture \＆Report 143pages	November 21， 2016

Issue	Author／Editor	Title	Published
MI Lecture Note Vol． 72	新井 朝雄小嶋 泉廣島 文生	Mathematical quantum field theory and related topics 133pages	January 27， 2017
MI Lecture Note Vol． 73	穴田 啓晃 Kirill Morozov 須賀 祐治 奥村 伸也 櫻井 幸一	Secret Sharing for Dependability，Usability and Security of Network Storage and Its Mathematical Modeling 211pages	March 15， 2017
MI Lecture Note Vol． 74	QUISPEL，G．Reinout W． BADER，Philipp MCLAREN，David I． TAGAMI，Daisuke	IMI－La Trobe Joint Conference Geometric Numerical Integration and its Applications 71pages	March 31， 2017
MI Lecture Note Vol． 75	$\begin{aligned} & \text { 手塚 集 } \\ & \text { 田上 大助 } \\ & \text { 山本 昌宏 } \end{aligned}$	Study Group Workshop 2017 Abstract，Lecture \＆Report 118pages	October 20， 2017
MI Lecture Note Vol． 76	宇田川誠一	Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論 —Tzitzéica 方程式の楕円関数解を出発点として— 68pages	August 4， 2017

Institute of Mathematics for Industry
 Kyushu University

[^0]: ${ }^{1}$ WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai; 980-8577
 ${ }^{2}$ Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo; 113-8656

[^1]: ${ }^{3}$ Adapted from W. T. Read, Jr., Dislocations in Crystals, McGraw- Hill Book Company, New York, 1953

[^2]: 発 行 2017年12月20日
 編 集 松谷茂樹，佐伯修，中川淳一，田上大助，上坂正晃，Pierluigi Cesana，演田裕康
 発 行
 九州大学マス・フォア・インダストリ研究所
 九州大学大学院数理学府
 〒819－0395福岡市西区元岡744
 九州大学数理•IMI 事務室
 TEL 092－802－4402 FAX 092－802－4405
 URL http：／／www．imi．kyushu－u．ac．jp／

