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About MI Lecture Note Series

The Math-for-Industry (MI) Lecture Note Series is the successor to the COE Lecture
Notes, which were published for the 21st COE Program “Development of Dynamic
Mathematics with High Functionality,” sponsored by Japan’s Ministry of Education,
Culture, Sports, Science and Technology (MEXT) from 2003 to 2007. The MI Lec-
ture Note Series has published the notes of lectures organized under the following two
programs: “Training Program for Ph.D. and New Master’s Degree in Mathematics as
Required by Industry,” adopted as a Support Program for Improving Graduate School
Education by MEXT from 2007 to 2009; and “Education-and-Research Hub for
Mathematics-for-Industry,” adopted as a Global COE Program by MEXT from 2008 to
2012.

In accordance with the establishment of the Institute of Mathematics for Industry (IMI)
in April 2011 and the authorization of IMI’s Joint Research Center for Advanced and
Fundamental Mathematics-for-Industry as a MEXT Joint Usage / Research Center in
April 2013, hereafter the MI Lecture Notes Series will publish lecture notes and pro-
ceedings by worldwide researchers of Ml to contribute to the development of M.

October 2014

Yasuhide Fukumoto

Director

Institute of Mathematics for Industry
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IMI Workshop I:

Mathematics in Interface, Dislocation and Structure of Crystals

Aug. 28
13:00-13:05
13:05-13:50
14:10-14:55

15:15-16:00

16:00-16:30
16:30-17:15

17:30-19:30

Aug. 29
9:45-10:30

10:50-11:35

11:55-12:40

12:40-14:10
14:10-14:40

15:00-15:45
15:45-16:10
16:10-17:30
18:20-21:00

at Nishijin Plaza, Kyushu University
(Aug 28-30, 2017)

Program

Opening
Junichi Nakagawa Algebraic analysis of orientation relationship
(Nippon Steel & Sumitomo Metal Co.)  created by phase transition in crystals
Tomohiro Takaki (Kyoto Inst. of Tech.) Phase-field simulations of dendrite solidification
and grain growth
Karel Svadlenka (Kyoto Univ.) Numerical analysis of moving interfaces:
the level-set and phase-field approaches
Group photo & Tea Time
Philip Broadbridge Exact solution of nonlinear boundary value
(La Trobe Univ./IMI, Kyushu Univ.) problems for surface diffusion
One-coin party (1F)*)
(Discussion, with two beer cans and snacks of one-coin = 500 yen/person)

Kenji Higashida On observation of dislocations in crystals
(Nat. Inst. of Tech., Sasebo College)

Akihiro Nakatani ~ (Osaka Univ.) Analysis of stress field of kink boundary based
/ Xiao-Wen Lei (Fukui Univ.) on lattice defect theory

Kazutoshi Inoue (AIMR, Tohoku Univ.)  Structure of tilt grain boundaries from
mathematical perspective

Lunch

FMSP Mathematical Research on Lattice defects from monodromy

Real World Problems, Group G,

The University of Tokyo

Hokuto Konno (The Univ. of Tokyo), Tsukasa Ishibashi (The Univ. of Tokyo),
Sho Ejiri (The Univ. of Tokyo), Junichi Nakagawa (Nippon Steel &

Sumitomo Metal Co.), Yasuhiro Wakabayashi (The Univ. of Tokyo)

Shizuo Kaji (Yamaguchi Univ.) Geometry of closed kinematic chain
Tea Time

Discussion slot

Banquet 5,000yen *) Souen**)

*) Please let the organizers know if you would like to attend the one-coin party and/or the banquet

but have not registered.
**) https://gurunavi.com/en/f429500 /rst/



Aug. 30
9:45-10:30  Patrick van Meurs (Kanazawa Univ) Discrete-to-continuum limits of moving straight edge

dislocations in 2D

10:50-11:35 Masaaki Uesaka (Hokkaido Univ.) Anti-plane deformation model of screw dislocation
and its related variational problem

11:55-12:40  Pierluigi Cesana (IMI, Kyushu Univ)  Variational models of lattice defects

12:40-14:10  Lunch

14:10-14:30  Junichi Nakagawa Sequence representation of graph structure of crystal
(Growth)

(Nippon Steel & Sumitomo Metal Co.)

14:30-14:50 Tea Time

14:50-16:55 Discussion slot

16:55-17:00  Closing

On discussion slots:

Purpose of discussion slots: Crucial problems in industry, basically, cannot be solved in the framework of
a single mathematical field or a single field in science. They are related to a variety of mathematical fields and
wider scientific knowledge. As mentioned above, this conference is arranged so that experts in various fields
gather together and discuss problems related to crystals whose origin is in industry. Its prototype is in the style
of mathematical studies in industry.
It is expected that participants discuss mathematical problems with those from various fields. It is also
expected that the discussions stimulate their own works and generate a new intermediate field of study.
Consequently, there is no rule for discussing problems. Every one will be able to participate in any group to
discuss problems with her/his own interest. The one-coin party is also set for similar discussions accompanied
with some drinks and snacks.
Utilities: We have three rooms including the main room for the discussions. In each room, there are a projector

and a white board. You can also use the lobby.

Report: There is no duty to report the results of the discussions: however, if you think that your discussions
should be shared with others, then we can arrange such occasions in the discussion slots.

Furthermore, we will need to report the discussion slots in the proceedings of this conference later. Therefore,
the organizers would appreciate it if you could record briefly the contents of the discussions made during the

discussion slots. Thank you.
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MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS
August 28-30, 2017, Fukuoka, JAPAN

Algebraic analysis of orientation relationship
created by phase transition in crystals

Junichi Nakagawa
Nippon Steel & Sumitomo Metal Co.

Polycrystalline materials such as iron acquire their properties from various thermo-
mechanical treatments. In many cases, the low temperature behaviors of these materi-
als are sought from high temperature processes, such as re-heating, rolling and cooling,
that are followed by phase transitions. The microstructure of polycrystalline materials
at low temperatures is an important parameter, and it is greatly involved in plastic
deformation. Therefore, the improvement of products designed for a given application
requires the formation of an adapted low temperature microstructure, obtained from
the high temperature state, which can also be characterized by its microstructure. A
grain (for example B ), which is defined by a set of crystals with the same orientation,
is transformed into many grains of the same phase (for example a) with an orien-
tation relationship. We refer to them as daughter crystals. These daughter crystals
(@), which have an orientation relationship with the parent crystal (8 ), are called
variants, and they are algebraically identified with left co-sets. C. Cayron [1] who is a
physicist in crystallography dealt with variants using algebraic analysis and proposed
a method for reconstructing parent crystals from the observed daughter crystals. Our
intention is to redefine the way of describing the method using mathematics and obtain
a comprehensible representation mathematically in order to understand Cayron’ s way
of thinking.

REFERENCES
[1] C. Cayron, Acta Cryst. A62 (2006) 21-40
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What'’s Crystal

A crystal is a solid material whose constituents, such as
atoms, molecules are arranged in a highly ordered microscopic
structure, i.e. semi-product of translation and rotation symmetry,
forming a crystal lattice that extends in all directions.

I'=T=K

In addition, macroscopic single crystals are usually
identifiable by their geometrical shape, consisting of faces
with specific, characteristic orientations.

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. .

The 7 Lattice System and The 14 Bravais Lattice
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Symmetry of Iron Crystal

2 3 2 3 2 3
e,a,ay,a,,a,,a,,a,,ds;,d; ,ds,

d,,d}.d,,d; d,.d3,d,.d},

U Uy Uy Uy Us U,
15Uy s Uss Uy, Us, U,

0(3’Z)_ 2 03 2 03 2 2
r,ral,ral,ral,ra2,ra2,ra2,ras,ra3,ra3,
rdl,rdlz,rdz,rdzz,rd3,rd32,rd4,rdf,
rul,ruz,ruJ,ru4,ru5,ru6

e identity matrix r: reflection matrix

al=e, aj=e al =¢, 90° rotation matrix <100>
di=e d;=e,d;=e,d;=e, 120° rotation <111>

w=eul=e ul=c,ul=c,ul=c,ul=c
180° rotation <110>
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Measurement of Crystal Orientation
EBSD (Electron Back Scattered Diffraction Pattern)

As these electrons leave the sample, they may exit at the
Bragg condition related to the spacing of the periodic
atomic lattice planes of the crystalline structure and diffract.

2200

Escaping electrons may exit near to the Bragg angle and
diffract to form Kikuchi bands. If the system geometry is
well described, it is possible to relate the bands present in
the diffraction pattern to the underlying crystal orientation of
the material within the electron interaction volume.

lattice
wave length Iength . diffraction
)\ ‘ g . angle
"}' N /iﬂ
Bragg condition
electro .
beam 2dsinf@=nA .

Measurement Data regarding Crystal Orientation

Three Euler angles are
measured using EBSD.

————
R,.R,.R, €SO(3.R) =

unit vector of c= R § unit vector of
crystal coordinate R“’Z ¢ R"’ sample coordinate

cosy, —siny, 0 1 0 0 cosy, —siny, 0
R, = siny, cosy, 0| R,=[0 cosg -sing| R, =|siny, cosy, 0
0 0o 1 0 sing cos¢ 0 0 1
©2017 NIPPON STEEL & METAL Al Rights Reserved. r ﬂ:l:lﬂﬂ-‘-
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Objective: Parent Grain Reconstruction for Martensitic Steel

C. Cayron, B. Artaud, L. Briottet, (a)

Reconstruction of parent grains from EBSD data,
Mater. Charact 57 (2006) 386-401

Observed daughter grains

( o: martensitic grains) Stable in

Low temperature

o

Phase
transition

with watel
cooling

7
Stable in
high temperature

e]\

Reconstructed parent grains
( y: austenitic grains)

Lattice correspondenci
(x,»,2),~> (X,Y.Z)a

FCC

[ FEBES

Determination of Prior Austenitic Grains Orientation
from Martensitic Grains

g-8; 60(3, Z) an element of group for cubic lattices, BCC and FCC

R* eSO(3,R) a martensitic grains orientation
R” eSO(3,R) an austenitic grains orientation
@ e’ an eler_n_ent of variant between - )
* austenitic grain (FCC) and martensitic grains (BCC)
g R'=ay g R
i,j=1,""-,48

{ k=1,-++,12 NW (Nishiyama-Wasserman) relationship
k=1,---,24 KS (Kurdjumov-Sachs) relationship

R=(a,g)"g, R*
reconstructed 1 1 measured data

orientation
. mE#ES
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Y.Gao,, Y. Wang, et al., Group theory description of transformation pathway degeneracy in structual phase transformations, Acta Materialia 109 (2016) 353-363

Simple Example for Understanding Variants 3

Go o I off-1 o[l Of[-10 co(2.2) B & Primitive
“llo 1]lo -1]o 1[0 1 ’ lattice
Lattice correspondence [10 10],,[01] —>1/2[11 L
] [10],>[to],, [o1], »1/2[11], .

G/,{l 045} Gm{l 045} ¢ °cc
‘o1 “lo 1 B lattice

1 o][-1 o1 17[-1 -1 2

0 1 0 —1]]0 —=1/]0 1

pen_gemngr [T O] 0 5.
< Lo 1o 1 . .
° °

Variants B

R ~ 2b;
10 -1 0 1 1 1 -1
Gl IHYP = X R , y
Lo | F v A v RNCR /0
o ® @ @ B =
\ v ) L ' ) ® @
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Y.Gao,, Y. Wang, et al., Group theory description of on pathway in structual phase ions, Acta Materialia 109 (2016) 353-363

at-{[, 0 2l 115 )
e |

Calculation of left coset

NS e 13 A i = S
Pyt (e A e e A S|
E J we={ly J{ Hé G G ]

»[ o=l T S

come={ll 3} [0 A0 ) 57
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Study Group Workshop 2017

Algebraic Analysis of Orientation Relationship

Created by Phase Transition in Crystals
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Background & Problem

* In crystallography, phase transition of crystals occurs:

parent crystal daughter crystal
y a
(high temperature) (low temperature)

* The orientation of y cannot be measured, so we would like to
estimate it from the orientation of @ which can be measured.
= Cayron proposes a method to estimate the orientation of the
parent crystal based on the group theory:
+ C. Cayron, Acta Cryst. AG62 (2006) 21-40.
* C.Cayron, B. Artaud, L. Briottet, Mater. Charact. 57 (2006) 386-401.
* We are interested in his method since it is related to a kind of g
inverse problem.
= Our problem in this study group is:
* Tounderstand mathematically Cayron’s way of thinking.
*+ To describe his method in mathematically more
understandable manner.

Phase
transition

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.




Notations in Cayron’s paper

* Transform matrix from a basis B; € GL(3,R) to B, € GL(3,R): B,(B,)!
= Acrystalis f§ = {alef e azef i a3ef | @y, a;, a3 € Z}, where
o {efr ; ef : ef }: (not necessarily orthogonal) basis of R?,

- Bf = (ef.ef.ef) € 6L W), 68={of € 0G.m) 1 o = ),

+ Bf = {B;G =gfBf 1gf € G‘s], gh =0l =Bl By eGh.
* Orientation relationships (OR):
* For the parent crystal § and the daughter crystals «;,
1. fix a basis By* € GL(3, R) of a; and the set T, = B[,
2.foreach i € {1, .., |G|}, define a basis B;"* € GL(3,R)
of the crystal a; by By := T,gf.

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved n ﬁaﬁm
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Variants (Cayron’s notation)

* Let § and a; be the parent and daughter crystals.
» Set TA~%1 := B (B)~1 (transformation matrix from BY to B{").
* Define an equivalent relationship for a; by

TE-ai = Th~a; :1;: TB-a;(Tﬁ—a;)—le G?,

which is equivalent to
def

A =, TR 4 S gf € GF N T,GOTs! = HP,
* Then we call each equivalence class of a; an orientation variant.
* We can identify the variants with elements of G# /H? and write

a; = g'HP (gf € GP).

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved " ﬁaﬁm
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Example: two-dimensional case (1)

2] = T - I
@l my my B =(E,1,mE,mf,ml, mly, b P
b4 G* = {E,m§,m§,m&, 1 5,7%,3)
- ool
v v e I= m,mg = my,m,
A A T4 g: rotation in counter clockwise
P q r_g: rotation in clockwise
- g8 B B
n Since m{’ = My, My, My, My for i = 1,23, we have HE = (E}.
1
2 ay ={E}ay = [mf}»ﬂ': e [rf,.ﬂ].m = {mfy).
LS as = (N as = {mp}.ar = {15y .} aa = (o).
m
[2] €. Cayron. "Groupeid of erientational variants.” Acta Cryst. A2 [2006) 21-50
©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. i ﬁaﬁm
NIPPON STEEL & SUMITOMO METAL




Example: two-dimensional case (2)

2] Wy s B BB B _F B
A 6P = (B, 1,mE,my,me,mig vl o7l Y 1= mlmd] = mbmf
— T G = (E,m&, m&, m&, 1% 5, 5) Ty otation
-« m
Y sincem$ = m” and m& = m?, mg. mfy,mfj, fori =23,
& HP = (E,mF}.
Variants are calculated as left co-sets a; = g;H” (g; € GF):
my m
l) @y = {E‘.mf].az = [mf,.rf,,,z],
mn
ay ={1,mf},ay = 5, ).
[2] C. Cayron. "Groupoid of orientational varisnts.” Acta Cryst. AS2 {2006) 21-40,
©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. n ﬁaﬁm

Redefinition of crystals

* Fix an ambient space R and its standard basis €y, €5, €3.
* GL(3,R) = {A € R¥? | det A # 0}, E : identity matrix of size 3.
cAffGR) ={A:vER3 > Av + € R3| A € GL(3,R),l € R3}.

We consider A € Aff(3,R) as a 4 X 4 matrix A = (g i)
« EG,R) = {4 € Aff3,R)| 44" = E).
« Acrystal § is a triple (Bf , LB, GP) consisting of

=B 2
of = (% o) earram (of = (ef.ef.ef) € L3R, oF € ),

L = [alef‘ + azef" + a3ef’ +0f | a,a5,a; €T,
G# = {g € EG3,R)| gL = LF, gef = e},

(We regard the matrix Bf as a crystal.)

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved n ﬁaﬁm
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Redefinition of variants

* Let # and a be given crystals (a parent and a daughter).
« Define the set of externally equivalent crystals (siblings) of @ w.r.t 8 by
-1
Af~a = {a,- = g,;T-Bf | g; € G/’}, where T, := Bf (Bf) .

(Each a; is seen as a daughter crystal in Cayron’s paper.)
* Introduce an equivalence relationship for a; € A#~% by "’)";;rﬂ‘g same
def ] _ o
a~a; & qat = gig;' € GY (& gjlg; € G).
* Call the equivalence classes of a; variants: the set of variants is given by
VA~ = {g,-H“B'r)B," | g € Gl’}, where H = G% n GA.

We write the variants @ € VA% ~ GF /HP,

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. " ﬁaﬁm
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Summary

* We redefined the method of Cayron by using mathematics:
* E.g. Definition of variants (g; € G#)
Cayron’s definition: a; = g; Hf (Hf = GF N TS'G%T)
Our definition: & = gH*T5B’ (H* = 6% n GF)
* We obtained a mathematically comprehensible representation of the

method of Cayron and this lead to mathematical understanding
variants that have been studied for a century in materials.
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Giving it a Try in Practice: the Outcome of SGW2017
Martenstic Transformation y—a
HEE— AY—hTOERZERE $2%, 35 (2013458)
KS orientation variants ® g2
o BV,
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A condition of the closed packed plane parallel
o 1), (1)
The corresponding above condition of the closed packed direction parallel
Fro a1 -1 1] (2)
from Eq.(1)
(11 1), ={x )| y+z=0}

0 1 1),={x.r.z)|x+z=0}

KS orientation variants #F%&—

S g mmm
e o] gl |
calr [Ty Ele
Moar@le  pamesnaimjue

TR foosaororerorsan
T T Jooon B0 TR0 8
DT focon 550 5707) a0

)

aeaesg.g

from eq.(3) ] ot T oo Ton T} 495
x -1/2 X 0 @ a2
yl=l-12] & |1 =1 @ &
z), L1 z), 1
from Eq.(2) = y
10 1] ~{epa)x-—zy-0]
(5)
1 -1l ={xrz)|x=y=-2| %
m eq. (5)
x) (-1 X\ (-1
yl=lo]| & |v|=-1 (6)
z), (1 z), 1
Since eq. (1) and eq. (2) are a rotation along the common a axis,
x 0 X 0
y|={o] & |¥]|=
=), z) ™ =
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from eq.(4), eq. (6) and eq.(7)

-1 0 -1/2 -10 0 ay
0 0 -1/2[=T|-1 0 -1, ay, (8)
[ -l ag,
The translation matrix is derived as follows.
12 1/2 0
T=[-1/2 1/2 0 )
0 0 1
The relationship between (x y z), and (X Y Z)t is as follows.
x V2 12 0)\Xx
y||-12 12 ofy (10)
z 0 0 1)z
Variant is defined as follows.
V=g T B 267 = 0(,2)] (11

where H*“'=G'NG*

Since G” = O(3,Z) and the rotational symmetry regarding y and o around [0 0 1] in the previous slide’s figure,
1Y% should be as follows.

©2017
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1.0 0)(-1 0 0
=0 1 ollo -1 0 (12)
o0 1)lo o1
©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. . ﬁEﬁEﬁ
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The y lattice is described as
y={te +me; +nel|lmnez } (13)
The basis B/ is written by
B =(d etef )e0(.2) (14)
B, can be taken as
100
B=[0 10 (15)
001
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The 24 Variants (1/3)
2 172 0]-1/2 ~1/2 0 [-1/2 172 0][1/2 -1/2 0
-2 12 0 /2 -1/2 0 12 1/2 0f|-1/2 -1/2 0
o o0 1ff o 0 1 o o 1[0 0 1
(12 12 ol[-1/2 -1/2 ol f—1/2 172 01l 1/2 -1/2 0
~“1/2 U2 0|12 -1/2 0 12 12 oll-12 —12 0
00*100*11 o o -1/l o o -1
a1 61Tz 12 o 172 12 o|[-1/2 1/2 0
]’/2 s o '1/2 '1/’2 o 12 172 ol|-1/2 -1/2 0
- i 0o 0 1|l 0 0 1
o o0 1f[ o0 0 1 -
/2 1/2 ol[-1/2 -2 0 V2 -2 0f/-1/2 12 0
/2 -1/2 0}|-1/2 1/2 0 V2 12 0f-1/2 -1/2 0
o o -1l o 0o -1 Lo o -1ff o 0 -1
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The 24 Variants (2/3)

[12 12 o|[-1/2 -1/2 0 [-1/2 12 o|[1/2 -1/2 0
0o 0 1o 0o 1 0o 0 1o o 1
l-1/2 12 of[ /2 -1/2 0 L2 12 of|-1/2 -1/2 o
112 172 o|[-1/2 -1/2 0 [1/2 12 o|[-1/2 172 0
o o0 1[0 o 1 o o0 1[0 o 1
172 -2 of[-1/2 172 0 L2 12 of|-1/2 -1/2 0
[v2 w2 o][-1/2 -1/2 0 [-1/2 12 o][1/2 -1/2 0

0 0 -1l 0o o0 -1 0o 0 -1/ 0 0 -1
[-1/2 12 of[12 -2 0 L2 12 of[-12 -1/2 0
[/2 172 o0][-1/2 -1/2 0 [/2 -2 o][-1/12 1/2 0

0 0 -1l o 0o -1 0o 0 -1, o0 o0 -1
L2 -2 of[-12 12 o 12 12 0]|-1/2 12 0

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. . ﬁEﬁEﬁ
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The 24 Variants (3/3)

fo o 1][o 0 1 [0 o 1][ o 0 1
12 1/2 0f|-1/2 -1/2 0 -1/2 12 off /2 -1/2 0
12 12 of| V2 -2 0 L1/2 12 of|-1/2 -1/2 0
[0 o 1][ o0 0 1 [0 o 1][ o 0 1
12 172 0f|-1/2 -1/2 0 12 -1/2 of|-1/2 1/2 0
12 -1/2 of[-1/2 1/2 0 L2 12 of|-1/2 -1/2 o

o o -1][o o -1 ~

12 12 0-1/2 -1/2 0 0 0 -Hpo 0

1//2 s o 71//2 71//2 o —12 12 0| U2 -2 0
L 4 - [1/2 12 of[-1/2 -2 0o
J’o o -1[ o o -1 [o o -0 0 -I
12 12 0||-1/2 -2 0 L
Lm w2 oll-2 w2 o 172 12 o][-1/2 -1/2

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved
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A Conversion for Making Rotation Matrix

Since 24 variants in the previous slides are not the rotation matrices,
we try to make a simple conversion for making rotation matrix as follows.

/2 1/2 0 142 142 0
T =[-1/2 1/2 0 T.=|-1/42 1/42 0
0 0 1 0 0 1

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.
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Rotation matrix ( Rotation Axis, Angle
1

) and the Determinant

Variant No. Variant No. <)
) 0707107 0.707107 0 0707107 0.707107 0
rotation R1 -0.70711 0.707107 of rotation R1 0707107 -0.70711 0
matirix o o h matirix o o 1
) 0 0
4| rotation B o 4| rotation . o
axis B axis H
angle[°] © 45 angle[*] o 0
L [determinant] _det(R1) 1 L [determinant]_det(R1) |
r 20.70711_-0.70711 0 70711 -0.70711 0
rotation R2 | 0707107 -0.70711 0 rotation R2 | -0.70711 0.707107 0
matirix o o h matirix o o f
4 0 4 0
rotation B o rotation . o
axis 1 axis H
angle[*] o 135 L [Cangier] o 0
" |determinant_det(R2) 1 determinant]_det(R2) [N
Variant No. 2 Variant No. 4
0707107 0.707107 0 - 0.707107] 0.707107 0
rotation R1 -0.70711 0.707107 0 rotation RL | 0707107 -0.70711 0
matirix o o 3 matirix A o o
4| rotation u g q | rotation u 0.03'22:2
axis 1 axis 0
angle[*] o 107.0313 angle(°] o 180
L [determinand_det(R1) L [determinant_det(R1) 1
; -0.70711_-0.70711 0 0.70711_-0.70711 0
oeon | r2 | 0707107 -0.70711 o rotation | gy | 070711 0.707107 o
matirix o o o matirix o o o
i 0 0.382683|
4 | rotation u o 7| rotation u -0.92388
axis B axis o
angle[°] 6 [180-64.651639i anglel®] ° 180
~ |determinant] det(R2) = [determinant] det(R2) 1
q STEEL & SUMIT AL C TION All Rights Reserved HmESES
2017 NIPPON STEEL & SUMITOMO METAL CORPORAT g ﬁ forels i
Variant No. Variant No.
| rotation re “'7”7“’; “707103 ‘; otation g R 0.707102 K
et -0.70711 _0.707107 0 matirix -0.70711_0.707107 0
~0.86289]
| rotation . 035741 4| rotation .
e 0.357407) axis
angle[°] o 98.42106 angiel’] 5 98.42106
| [determinany det(R1) il 5 L [determinang det(R1) 1
rotation o 0.70 o . H otation w 0.70711 0.70713 ?
et 0707107 _-0.70711 o matirix 0707107 _-0.70711 0
i B 0.281085
7| reeen u rotation u -0.6786
0.678598
angle[°] o angle[°] [ 148.6003]
= |determinang]_det(R2) = [determinang det(R2) 1
Variant No. 6 i Veranangy 8
. 07107
rotation Rl 0707103 07" f H otation o 077 0‘70710; ?
et 0707107 _-0.70711 o matirix 0707107 _-0.70711 0
- 0.862856 862856]
4| rotation " 0.359407) 1| rotation . 8_27407
axis 0.357407 axis 0357407
angle[°] © 98.42106 angiel®] 5 2106
L [determinant] det(RD) 1 - . L [qeterminant det(R)
20.70711_-0.7 .
rotation 0 070710 0.70 5 H otation R R o.7o713 T
matirix -070711_0.707107 0 matirix 0707107 o
I — ~0.28108]
ot u 0.678598 4 | rotation ;
e 0.678598| axis
angie[°] o 148.6003 angle[°] .
L [determinan|_det(R2) L [Geterminent] der(r2) [N
2 ) STAL C \ All Rights Reserved HmESES
©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Rese ﬁ fone) -
Variant No. 9 5 Variant No. i1
} -0.70711_0.707107 707107 o
rotation Rl | 0707107 0.707107 0 rotation R1 ?0_30751 o
matirix 0 0 1 matirix o H
4 | rotation 2 0
u 0 4| rotation ; o
axis 0 axis 1
angle[°] ] 0 angle[°] 3 135
L |determinant det(R1) L [determinang _det(R1) 1
rotation 0.707107] -0.70711 9 otation 0707107 -0.70711 o
matirix R2 -0.70711| - o ! R2 0.707107 0.707107 0
0 0 1 matirix o 1
4 0 | 0
rotation . o rotation . 0
axis ol axis 1
| [_angle[°] [ angle[°] ] 45|
determinanty det(R2 " |determinant|_det(R2) 1
Variant No. 10 Veraanoy 7
- -0.70711_0.707107 0 . 0.707107 0
rotation R1 0.707107 0.707107 0| rotation RL ,ﬁ_;g;ﬂ -0.70711 o
matirix o El matirix o o =
0.382683 o
J “’:tl':" u 092388 4 | rotation M o
o axis 1
angle[°] ] 180 angle[°] o 180-64.6516391
L det(R1) 1 5 L [determinant] det(R)
r i 0.707107 0.707107 -0.70711 0
Tt Rz | -0.70711 9 rotation R2 | 0.707107 0707107 o
B =l matirix A o o
) 052388 o
< | rotation “ 038068 1| rotation . g
axis 0 axis 1
angle[°] ] 180) angle[°] ) 107.0313]
L [determinant det(R2) 1 L [Geterminart] det(eo) S

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.

'Y HBSEE

NIPPON STEEL & SUMITOMO METAL

11




[ Variant No. 13 Variant No. 15
rotation 0 9 . 0 0 =
ot R1 0.707107 0.707107 ol rotation - 5707107 0757107 o
-0.70711 _0.707107 o| matirix 070711 0.707107 0
0.357407 ] -
T | rotation 0.357407
o u 0.862856 o | rotation u 0.862856
0.357407 axis
angle[°] [ 98.42106 anglel°] 9
- [d ant] det(R1) L) L [determinant det(R1)
rotation g g 1 [ o ¢ 4
i R2 070711 -0.70711 o rotation . 070711l 07071t o
0.707107_-0.70711 of matirix 0707107 -0.70711 0
B 0678598 X )
rotation u -0.28108] 7| rotation 0678598
axis axis Y ~0.26108
§ 0.678598
L [Cangle®] [ anglel®] ) 148.6003]
determinant]_det(R2) " [determinant| det(R2
_ |variant No. 14 5 5 n Variant No. 16
- 0 0 -1
’;‘:;':: R1 0.707107 0.707107 0| rotation R1 0.707107 0.707107
0.707107 -0.70711 of matirix - -6 70711 0
B ot -0.35741 )
rotation u -0.86286 4 | rotation
axis u
0.357407, axis
| [angle(°] [ 98.42106 angle[°] [} 98.42106
 |determinant| det(R1) L |determinant] det(R1) 1
rotation 0 g . r o 0 =
matirix R2 ~0.70711 -0.70711 0 rotation R2 070711 -0.70711 0
-0.70711 _0.707107 of matirix 070711] 0.707107] o
4 -0.6786] ; -
rotation u 0.281085 4 | rotation 06786
. . u 0.281085
0.678598 axis
| [Canger] © 148.6003 p—— 5 :
determinant]_det(R2) N e B o

AL CORPORATION All Rights Reserved ﬁﬂﬁﬁﬁ
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Variant No. 17 VarantNo o
r -0.70711  0.707107 0] - -
r:;::: R1 0 0 1 rotation at 0.70711 0.70710; VT
0.707107 _0.707107 0 matirix 0707107 0707107 o
0.281085 - -
q ] 0281085
’°;‘I'S°“ u 0.678598 rotation u 0.678598
0.678598 axis 0.678598
angle[°] ] 148.6003| angle[°] ) 148.6003|
= |determinant]_det(R1) 1 L
= |determinang_det(R1)
rotation 0.707107| -0.70711 9 0.707107 -0.70711 o
otetion R2 0 0 1 rotation R o =
-0.70711 _-0.70711 0| matirix -0.70711 o
1 [ romaton ~0.86286) 4 -
Em's u 0.357407, rotation u
0.357407 e 0.357407
L [“angler] © 98.42106 L [anger 5 98.42106
determinand._det(R2) 1 Geterminant] det(R2)
Variant No. 18 I—Vaﬁant No 20
r ] -0.70711 0.707107 0 - -
rotation -0.70711 0.707107 0
-0.70711 _-0.70711 0| matirix -0.70711 o
rotation . 1| rotation
axis axis u
angel®] | © angier®
gle[°] o
determinant] det(R1) —_— e 5 = [determinant_det(R1) 1
rr:taa[tl:: R2 0 0 1 r rotation o 0.707107 —0.70713 VT
! 0.707107_0.707107 0| matirix 0707107 0.707107 0
0.862856 ; -
- 0.862856
rotaitilsor\ u -0.35741 4 | rotation ; Y0.35701
0.357407 axis 0.357407
angle[°] ] w angle[°] ) 98.42106)
L [determinan|_det(R2) L [Geterminent] det(R2)

NIPPON STEEL & SUMITOMO METAL
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_ |Variant No. 21 Variant No. 23
rotation 1 0 1 N rotation 0 g 4
matirix R 0.707107 9 ot Rl | -0.70711 0707107 o
0.707107 of 0.707107 0.707107 0
4 rotation -0.35741
o u b r“;“‘s"” u 0.862856
. 0.357407
L angle_[ 1 2] angle[°] ) 98.42106
¢ |geterminant " det(R1) L [determinant_det(R1) 1
rotation 0 ¢ ! [ 0 0 =
- tati
matirix R2 0.707107| -0.70711 g ri:t\‘:: R2 0.707107 -0.70711 0
| -0.;2;;2 -0.70711 -0.70711_-0.70711 0
rotation u -0.28108| 7| rotation u v;oz'gﬁ:
axis o
_ 0.678598 axis 0678598
L [“angler®] ) 148.6003] angiel®] 5 148.6003]
determinant_det(R2 " |determinant] det(R2) 1
_ |Variant No. 22 5 5 n Variant No. 24
rotation 0 0 -1
matirix R1 -0.70711  0.707107 0] r::tt“:: R1 2070711 0.707107 0
(;03.;3(7‘3 -0.70711 0 -0.70711_-0.70711 0
rotation u '.0.85286 J rotation 0.357407|
axis axis u -0.86286
_ 0357407 0.357407
| [Langler®] ] 98.42106 angle[°] o 98.42106)
det(R1) 1 L [determinant _det(R1)
[| rotation 0 0 L r 0 0 1
matirix R2. | 0707107 -0.70711 9 roraton R2 | 0707107 -0.70711 o
g.éggégg 0.707107 0 0.707107 _0.707107 0
4| rotation - ] 0678598
o u 0.281085 m:ax“‘s"" u 0.281085
o 5 0.678598
angle[® angle[°] o 148.6003]
& [determinand” det(R2) | L [determinant det(R2)
©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. ﬁ yBEEs
NIPPON STEEL & SUMITOMO METAL

12




Picking up Variants Making Rotation Matrix

Variant No.

Rotati

on axis

01: {(001),(001)} 11:{(001),(001)}

04:  {(0.9240.383 0), (0.383, -0.924, 0) }
10:  {(0.3830.924 0), (0.924 -0.383 0)}

06:  {(0.8630.357 0.357), (-0.281 0.679 0.679)}

07 :
13:
16 :

20:

22:
23

01

1o /-1 -1 1]

1

1),/ 1 1)

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved

Rotation angle
{45° , 135° }

{18

{(-0.863 -0.357 0.357), (0.281 -0.679 0.679)}
{(0.357 0.823 0.357), (0.679 -0.281 0.679)}
{ (-0.357 -0.863 0.357), (-0.679 0.281 0.679)}

17:  {(0.2810.679 0.679), (-0.863 0.357 0.357)}
{ (-0.281 -0.679 0.679), (0.863 -0.357 0.357)}
{(0.357 -0.863 0.357), (0.679 0.281 0.679)}
{(-0.357 0.863 0.357), (-0.679 -0.281 0.679)}

%A HOsES

{98.4° , 148.6° }

0° , 180° }
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24 Variants in Morito’s Paper and the Rotation Matricises

06667 03333 —> | ;3 53

025 075 {(Z‘/g”)/b (asve)2 a2 ]

Variant No. | Close-packed Close-packed Rotation from Variant 1 Rotation Matrix
lane paralle! direction parallel [Axis)/Angle(deg.
T - - B
1 [-10 1Jy//[-1 -1 1]a" - - -
[0.577, 0,577, -0.5771/60.0 0.6667
2 [-10 1Jy//[-11-1]a" | -0.3333 06667 -0.6667|
1/J3(1, 1, -1)/60 -0.6667 03333 0.6667]
£0.000, 0.707, 0.7071/60.0 05 -0.6124 06124
3 [01-1]y//[-1-11]a" | 06124 075 0.25
(11 1)y//(011)a" 1/42(0, 1, 11/60.0 06124
£0.000, -0.707, -0.7071/10.5 09833 0.1289 -0.1289)
4 [01-10y/[-11-1]a" | -0.1289 09916  0.0084)
1/J2(0, -1, -1)/10.5 0.1289 _0.0084 _0.9916| |(-
0.000, -0.707, -0.7071/60.0 05 06124 -0.6124]
5 [1-100y//[-1-11]a" | 06124 075 0.25
1/J2(0, -1, -1]/60.0 06124 025 075
0.000, 0.707, 0.7071/49.5 06494 -0.5377 05377
6 [L-100y//[-11-1]a" |1 05377 0.8247  0.1753
1/J2[0, 1, 1]/49.5 -0.5377 01753 0.8247)
[-0.577, -0.577, 0.5771/49.5 07663 -0.3222 -0.5559)
7 [-10 1y//[-1-1 11" L 05559 0.7663 03222
1/J3[-1, -1, 1/49.5 03222 -0.5559 _ 0.7663|
[0.577, 0.577,-0.577)/10.5 09888 0.1108  0.0996]
8 [-10 1]y//[-11-1]a" | -0.09  0.9888 -0.1108|
1//3[1, 1, -1)/105 -0.1108
[-0.615, 0.186, -0.767]/50.5 0.7736
9 [01-1)y//[-1-1 1]a" -0.6331
(L-11)y//(0 1 e’ 0.028
P2 [-0.739, -0.463, 0.490)/50.5 0.8347
10 [01-1]y/{-11-1]a" 0.5024
02255
[0.933, 0.354, 0.065]/14.9 0.9956
1 [1-10)y//[-1-11]a" 0.0278
-0.089_0.2407
[-0.357, 0.603, 0.714)/57.2 06001 -0.6985
12 [1-10ly/[-1 1-1]a" 0.5013  0.7082
-0.6234_-0.1028

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved
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24 Variants in Morito’s Paper and the Rotation Matricises

Variant No. |Close-packed Close-packed Rotation from Variant 1 Rotation Matrix
plane parallel direction parallel [Axis)/Angle(deg.)
[0.354, -0.933, -0.065)/14.9 05706 0.0056 _-0.2407]
13 [-10 1)y//[-1-1 1]a" -0.0278 09956
02391 0.0931
[-0.490, 0.463, -0.739)/50.5 07234 0.4875
14 [-101)y/[-11-1]a" -0.6526  0.714
-0.2255 _-0.5024
[-0.738, -0.246, 0.628)/57.2 07914 -0.4448
15 [0 1-1)y//[-1-11]a" 06112 0.5695
(111y//(01 1)’ -0.0057 _-0.6913
cP3 [0.659, -0.659, -0.3631/20.6 09638 0.0999
16 [0 1-1)y//[-11-1]a" -0.1555 09638
02165 0.2471
[-0.659, 0.363, -0.659)/51.7 07848 0.4262
17 [1-10)y//[-1-11]a" -0.608  0.6699
-0.1198 _ -0.608
[-0.719, -0.302, 0.6261/47.1 08458 -0.3892
18 [1-10Jy//[-11-1]a" 05279 0.7098
00775 _-0.587
[-0.186, 0.767, 0.6151/50.5 06487 -0.5261
19 [-10 1)y//[-1 -1 1]a" 04224 0.8499
06331 0028
[0.357, 0.714, -0.6031/57.2 06001 0.6234
20 [-10 1]y//[-1 1 -1]a" -0.3899 07751
-0.6985  0.1028
[0.955, 0.000, -0.2961/20.6 09944 0.1042
21 [0 1-1]y//[-1 -1 1]a" -0.1042 09361
(11-1y/(01 1)a’ -0.0181 03361
P4 [-0.302, 0.626, 0.7191/47.1 07098 -0.587.
2 [01-1]v//[-11-1]a" 04663 0.8058
-0.5279 _-0.0775
[-0.246, -0.628, -0.738]/57.2 0.5695  0.6913
23 [1-10}y//[-1-11]a" -0.549 07225
06112 0.0057
[0.912, -0.410, 0.000)/21.1 0.9887  -0.0251
24 [1-10ly//[-11-1]a" -0.0251  0.9442
01476 0.3283  0.933

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.

HBSEE
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HBEE—
KS orientation variants

A condition of the closed packed plane parallel
o 1), (1)

The corresponding above condition of the closed packed direction parallel

Fro a1 -1 (2) o pimepmle
from Eq.(1) o @ T T
(1 1), ={(xy.2)|x+y+z=0 @) : @mﬂ"m‘m l.::::mﬂ?i}m
0 1 1),={x.y.z)|x+z=0 L BT fooon Y057 105
o DR oo 57507.0707) 600
from eq.(3) L] ok Tt 000 To7.8 707) 495
x) (-1/2 Xy (o
vl =l-12] e |v| -1 @ (@)
R z), 1
from Eq.(2)
F1oo 1] ={erz)x=—zy=0} ®
5
1 -1 1] ={xrz)|x=y=-2| -
from eq. (5)
(6)

b1 - CLE

Since eq. (1) and eq. (2) are a rotation along the common a axis,

- ()

7

The (xyz),'and (X Y 2),! in these correspondences are not determined uniquely.

(b)

e mtae a2

Thank you for your attention!

©2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved
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MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS

August 28-30, 2017, Fukuoka, JAPAN

Phase-field simulations of dendrite solidification
and grain growth

Tomohiro Takaki
Kyoto Institute of Technology

Phase-field studies of dendrite growth and grain growth are introduces. In the
dendrite growth, the competitive growth among multiple dendrites is investigated. In
the grain growth, the true behaviors of ideal grain growth are investigated by the
very-large simulation.
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Phase-field simulations of

dendrite solidification and grain growth

= &03A Tomohiro Takaki
TSR Faculty of Mechanical Engineering

REPLE=MiH#EKRS  Kyoto Institute of Technology

NS KIT Computational Materials Design Lab.

i
2

39
4.

Overview

Phase-field method

Necessity of large-scale simulation for
solidification and grain growth

Parallel computation by a GPU supercomputer
Simulation examples

* Dendrite competitive growth in directional
solidification

* Ideal grain growth

. Conclusions

N KIT Computational Materials Design Lab.
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Overview

. Phase-field method
. Necessity of large-scale simulation for
solidification and grain growth
. Parallel computation by a GPU supercomputer
. Simulation examples
* Dendrite competitive growth in directional
solidification
* Ideal grain growth
. Conclusions

A KIT Computational Materials Design Lab.
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Kobayashi’s dendrites

=12 1) &= 0.000

- | ) B 0020

R. Kobayashi, Exp. Math. 3 (1994) 59-81.

A KIT Computational Materials Design Lab.

Various phase-field simulations

N/ KIT Computational Materials Design Lab.

Phase-field variable ¢

Solid : =1

Liquid: ¢=0

Sharp inteiface model

Diffuse interface model

iquid :¢=0

S KIT Computational Materials Design Lab.
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Free energy functional

F=|fav

Free energy density f = f;hem +f(ljoub +fgrad

Bulk energy density
-f“e"’_p (¢)f“.+ U= ). . {p(¢>=¢2(3-z¢) or

: energy distribution function
PO encrey Pl8)=¢(10-15¢+66°)

Double well £, = Wq(g)
potential 4(¢) : double well function g(¢)=¢*(1- g}’
W : height of energy wall

. 2
Gradient energy _a 2
density Serat = Tlv ¢|

a : gradient coefficient

Interface energy density

S KIT Computarional Maverials Design Lab.

Time evolution equation

Phase-field variable :

mw

Allen-Cahn equation Cahn-Hilliard equation
%__y o || o, (&
ot op ot op

Second law of thermodynamics

A KIT Computational Materials Design Lab.

Simplest AC type phase-field equation

% _m {v¢+ 70 ¢)(¢~—+—Afﬂ

M : Interface mobility
y+ Interface energy
J: Interface thickness

= A firee energy difference
Evolution of phase-field ¢ (thermochemical driving force)

.IL $=0
Interface migration (contour line of ¢= 0.5)

A KIT Computational Materials Design Lab.




Advantages of phase-field method

* Smooth interface morphology can be expressed, because
the phase-field method is a diffuse interface model.

» There is no need to track the interface position, because

the interface migration is expressed by solving a reaction-

diffusion equation numerically.

Therefore, the complicated morphological changes can be

expressed relatively easily.

* The time evolution equation can be derived based on the
second low of thermodynamics. This means that the
phase-field method is a thermodynamically sound method.

» The time evolution equation is reduced to the simple
reaction-diffusion equation. Therefore, we can use a
simple discretization method.

* The curvature effect is naturally included in the time
evolution equation.

N/ KIT Computational Materials Design Lab.

Overview

1. Phase-field method
2. Necessity of large-scale simulation for
solidification and grain growth
3. Parallel computation by a GPU supercomputer
4. Simulation examples
* Dendrite competitive growth in directional
solidification
* Ideal grain growth
5. Conclusions

A KIT Computational Materials Design Lab.

Dendrite and solidification structure

Single dendrite Multiple dendrites Multiple grains Solidification structure
e L XN K T =

! ‘:‘.'r-- X L A skl !

EPL, 68 (2004) 240 Science, 257 (1992) 497  Metall. Trans. A, 15 (1984) 1665 Trans. AIME, 239 (1967) 1620

Competitive growth among

multiple dendrites multiple grains

S/ KIT Computational Materials Design Lab.
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Large computational cost
due to diffuse interface and dendrite shape

Solid : g=+1
B 5= 4 |

Liquid : g=-1

Solid

Liquid :¢= -1

\/ KIT Computational Materials Design Lab.

3D phase-field simulations

800<800X800

512 X 512 X 512

Mater. Sci. Eng. —414 (2005) 412417 Comp. Matefg8ci. 91 (2014) 146-152

J.'Crysm\G owth 385 (2I 14”‘4(5147
A KIT Computational Materials Design Lab.

Acta Mater. 56 (2008) 496

Overview

1. Phase-field method
2. Necessity of large-scale simulation for
solidification-and grain growth
3. Parallel computation by a GPU supercomputer
4. Simulation examples
*Dendrite competitive growth in directional
solidification
* Ideal grain growth
5. Conclusions

A KIT Computational Materials Design Lab.
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GPU supercomputer TSUBAME?2.5
Tokyo Institute of Technology

1408 nodes
1 node =3 GPU +2 CPU

1408 X 3 =4224 GPU
GPU : NVIDIA Tesla K20X
CPU : Intel Xeon X5670

N/ KIT Computational Materials Design Lab.

GPU : Graphics Processing Unit

GPGPU : General-purpose computing on graphics processing units

KEY FEATURES NVIDIA
Number of processor cores: 2,088 TESLA K20

| Processor core clock: 732 MHz
[ Package size: 45 mm X 45 mm 2397-pin
ball grid array (S-FCBGA)
Board

PCI Express Gen2 X 16 system interface

| Physical dimensions: 4.376 inches X
10.5 inches, dual-slot
Display Connectors

| None

N KIT Computational Materials Design Lab.

Schematic illustration of parallelization

% 7 %

MPI

GPU

Many cores Many cores Many cores Many cores
CUDA CUDA CUDA CUDA
&

CUDA : Compute Unified Device Architecture (parallel computing platform)

N KIT Computational Materials Design Lab.
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Primary arm array of columnar dendrites

Jacobi H, Schwerdtfeger K. Metall. Trans. A 1976:7:811.

* Micro-segregation

* Permeability

Quantitative phase-field model

M. Ohno, K. Matsuura
Quantitative phase-field modeling for dilute alloy
solidification involving diffusion in the solid.
Phys. Rev. E, 79 031603 (2009)

NA KIT Computational Materials Design Lab.

Variables
ur,
T,
CRSCIL Gx
¢ —c
cl _Cs

Liquid : g=-1

A KIT Computational Materials Design Lab.
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Time evolution equations for
directional solidification of binary alloy

Temperature T (Z) =T+ G(Z -V ) Frozen temperature approximation

Phase-field [¢=+1 in solid & ¢ = -1 in liquid]

(Vg)[1-(1-k)u ]a¢ v{w(ve) ve)- (¢) z“lgd—;”)(u+u') of J’*le’

w(ve)’ V¢NV¢\} [ V¢>6W’V¢NV¢\} [ (v9)°

oy

Solute concentration [u =(c;-¢/)/(¢/-¢,°)]

1 8 1 B
E[1+k—(1—k)¢]6—':=v-[1)Lq(¢)Vu—JA,]+E[1+(1—k)u]a—f—v-J

A KIT Computational Materials Design Lab.

Computational conditions

V,=100 pm/s
G 5, 10, 20, 50, 100, 200 K/mm

0,
Al3wt.%Cu For G = 10, 20. 50, 100, 200 K/mm
X Xn_ = 1024 1024X 1024
Ax=0.75 um
0.77X0.77X0.77 mm?
256 GPU

(n, -1) Ax

For G =5 K/mm
n,Xn,Xn,=1536X1536X1024

z Ax=0.75 um
................. 1.15X1.15X0.77 mm?
x KAr 512 GPU

Seed N Total time step = 107 steps
gt At=2.6785716 X107 s
ot = 267.9 s (4.46 min)

n
7 b= VXt = 269 cm
Execution time = one week

Heat-flow
direction

NA KIT Computational Materials Design Lab.

ADO0000

Time changes in Voronoi decomposition

G =5K/mm
G =10 K/mm

S KIT Co_mputaz‘ional Materials Design Lab.
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Number of polygons

Number of polygons

ADO0000

Changes in the number of polygon

G =10 K/mm G =20 K/mm

30 30

| Ll
20.80:1" T06 180. 8

1 1 1 I
Time step  [x10'] Time step ~ [x10'] Time ste [x107]

200 ] *
|
i |
" =
4 !
20 i =
g '|. I 1 I .A. I I ‘1.
02 04 06 08 002" 040,508 A@02 04 06 08
Time step  [x10'] Time step  [x107] Time step  [x107]
A KIT Computational Materials Design Lab.

Overview

. Phase-field method
2. Necessity of large-scale simulation for
solidification and grain growth
. Parallel computation by a GPU supercomputer
4. Simulation examples
* Dendrite competitive growth in directional
solidification
* ]deal grain growth
5. Conclusions

(98]

S KIT Computational Materials Design Lab.

Grain growth (GG)
RRGTR TES — Ideal GG

Abnormal GG

4323 grid

T. Takaki, Y. Tomita, Int. J. Mech. Sci. 52 (2010) 320-328.
NS KIT Computational Materials Design Lab.
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Very-large-scale multi-phase-field simulation
for elucidating the authentic statistical
behaviors of the ideal grain growth

np) | Computational Materials

ARTICLE OPEN
Ultra-large-scale phase-field simulation study of ideal grain
growth

. Tomaohing Takski”, , ", Shiryi Sakane’, Takaihi Shimokawabe' and Takayuli Acki®

Gewn growth. nigrason. hmdvnm
dacighing, of gran grewth.
ﬂwﬂ“lﬂ‘!m hmmmmuu Mﬂhwwmn

o . Wemsoer, of e g

S KIT Computational Materials Design Lab.

Multi-phase-field (MPF) model

1. Steinbach, F. Pezzolla, Physica D, 134 (1999) 385-393

* in ath grain

Grain Grain 7 * in other grains

2 | Grain |Grain

S KIT Computational Materials Design Lab.

MPF model (cont.)

I. Steinbach, F. Pezzolla, Physica D, 134 (1999) 385-393

Free energy functional
X Z{ G 4, g, +, mﬂ}

y a=l f=a+l

Time evolution equation

OO
[ 5 5 4, ] - Z¢" =1 (constraint condition)

**Z |: (a/A ak)v &+ ( Wk)¢k:|
=1
Phase-field parameters
6': GB thickness

2
o =255, W= ay=Ty oo
/- ij 5 i8S M : GB mobility

NS KIT Computational Materials Design Lab.
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Computational conditions
Dimensionless parameter

GB energy y=1 GB thickness 6= 6

GB mobility M =1 Total time step = 100000
Time increment 47 = 0.075  Initial grain size :

Grid size Ax = 1 R,;=10.86, ¥, = 17.513

5123 grid points
25000 grains
8 GPUs

1024° grid points | | 1536° grid points | | 20483 grid points | | 2560 grid points
200000 grains 675000 grains 1600000 grains 3125000 grains
64 GPUs 256 GPUs 512 GPUs 800 GPUs

S KIT Computational Materials Design Lab.

Grain size distribution

t=10,0004¢ t=55,0004¢ t=100,0004¢

3 R e
S <N-=260 | € 2\ =29 | & I [ <n>=94
] ] L/ § J
= = / o Ix
g 0.8 g 0.8) g 0.8) | {
D o | \
2 Ik ER A paralal S
Fo4 2o ] 2 oa LAY \\
o [ i\
o« 4 4 \
7 2 7 % 7 2
RI<R> RIsR> RI<R>
3
1536° JISH o | P g AR e
g wwenz| & weos| £ T s Eams
¥ 2 =
=4 ] T
g 0.8y g 0.8) 8 0.8)
= 2 2
£ 04 2 04 2 04
< S 3
14 e @
Q] 2 T 2 T 2
> RI/<R> . RI<R> > RI<R>
g o iy e ] - S
25603 ER% Simuiations 13§ .| gmisiors 13| § Simulatons 1-3.
2 =au20e| 32 N-=20683) & N>=12.450
g e e
£ 2" 204
s k] s
] S o}
4 & = B

i
RI<R>

RI<R> e
A KIT Computational Materials Design Lab.

Maximum difference
in three replicated simulations

O =max{ | DP(i,m)—DP(i, n)| |i=1,2,3,--;mn=1,2, 3}

0.5 ”
—— 512" grid points
A 3 B
12 Simulations 1-3 04 [ —— 1,024 grid points
> ‘ 1,536” grid points
% “Q 1 \1 | — 2,048° grid points
2 0.8 03 ‘ 2,560° grid points
2 ] !
= £
s e &
= | 0.2
© 04 | 3
[} T
o 03
0.1
0
0 1 2
R/ <R> (e

A KIT Computational Materials Design Lab.
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Variations of §,,,, and N

i 3 35
0.1 3
[ S ' E S
r = E =
§ £0.065. . {a% é o
% 0.051 ; V 105k I
[ ! -
[ 18842 grains
0 gt s | 8] e ¢ 10* M TS 1 e T
02% A5 2¥0.3 qP=p2. 50/ N0.6~ 0.8 il
Time t[-] Time t[-]
. 10,000At 55,000At 100,000A¢
Time
3 3] 3 imulations 1-
g0 Zos “aezosns| £°9 Jeitts
3 ] 3
g g g 3
== Socd Oz 2 01042 el Smax % 0.106
£ [ S
5 = k<l
] ] ]
['4 ['4 o
1 2 q 2
R/ <R> RI<R>

S KIT Computational Materials Design Lab.

Temporal evolution
of grain size distribution

1 1

e~ t=25,000at
<N>=92.484

<N>
—¥ = 15,0008t
<N>=190.464

Relative frequency
2

Relative frequency

05 1 2

15
R/<R>

Grain size distribution is same in ¢ = 350004t

A KIT Computational Materials Design Lab.

Steady state regime of ideal grain growth

25603 grid points (3125000 initial grains)
35,0004¢ = ¢ = 75,0004¢
(57,114 grains) (18,842 grains)

1.8 % ‘ 0.6 %

Steady state condition is thought to be a
regime from the end of initial relaxation to
the point where the remaining grains is about
20.000.

A KIT Computational Materials Design Lab.
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Overview

. Phase-field method
. Necessity of large-scale simulation for

solidification and grain growth

. Parallel computation by a GPU supercomputer
. Simulation examples

* Dendrite competitive growth in directional
solidification
* Ideal grain growth

. Conclusions

S KIT Computational Materials Design Lab.

Conclusions

For a highly accurate prediction of solidification
microstructure, it is essential to investigate a
system with the multiple multiple dendrites and
multiple grains.

Phase-field method is the most accurate prediction
method of dendrite structures. However, its high
computational cost is a drawback.

Large-scale phase-field simulation by parallel
GPU computation is a powerful tool for the highly
accurate prediction of solidification microstructure.

S KIT Computational Materials Design Lab.
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MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS
August 28-30, 2017, Fukuoka, JAPAN

Numerical analysis of moving interfaces:
the level-set and phase-field approaches

Karel Svadlenka
Kyoto University

There are several well-established efficient numerical methods for simple interfaces
evolving according to various rules, such as the curve-shortening flow or surface dif-
fusion. Recently, the focus of researchers in this field has shifted towards numerical
solution of interfacial networks with junctions, especially in the anisotropic or non-
symmetric setting (for example, different surfaces tensions for each interface in the
mean curvature flow).

In this talk, I will briefly review the two basic approaches to evolving interfaces that
can be extended to the multiphase anisotropic/non-symmetric case including topolog-
ical changes: the phase-field method and the level-set method (in particular, its sim-
plified version proposed by Merriman, Bence and Osher). I will present an overview
of the state of the art methodologies and their range of applicability, mentioning also
some results of my own.

REFERENCES

(1] K. Svadlenka, E. Ginder, S. Omata: A variational method for multiphase volume-preserving inter-
face motions, Journal of Computational and Applied Mathematics, Vol. 257, pp. 157-179, 2014.

(2] Nur Shofianah, R.Z. Mohammad, K. Svadlenka: Simulation of triple junction motion with arbitrary
surface tensions, IAENG International Journal of Applied Mathematics, Vol. 45, No. 3, pp. 235-
244, 2015.

[3] R.Z. Mohammad, K. Svadlenka, Multiphase volume-preserving interface motions via localized
signed distance vector scheme, Discrete and Continuous Dynamical Systems - Series S, Vol. 8, No.
1, pp. 969-988, 2015.

[4] E. Ginder, K. Svadlenka, Wave-type threshold dynamics and the hyperbolic mean curvature flow,
Japan J. Indust. Appl. Math. 33(2), pp. 501-523, 2016.

[5] H. Garcke: Curvature driven interface evolution, preprint.
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Numerical analysis of moving interfaces:
the level-set and phase-field approaches

Karel Svadlenka, Kyoto University

Mathematics in Interface, Dislocation
and Structure of Crystals

August 28-30, 2017

Kyushu University, Nishijin Plaza

Outline

1) Interface evolution (in physical models)
2) Generalizations of interface evolution
® anisotropy
® multiphase
3) Overview of numerical approaches
4) Remarks on their extensions

® anisotropy
® multiphase

Types of interface motion

1) Mean curvature flow

2) Volume-preserving mean curvature flow
3) Surface diffusion

4) Mullins-Sekerka model

5) Stefan problem

6) Hyperbolic mean curvature flow

interface bulk B

N\
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Gradient flows

Finite dimension (R") Manifold and Hilbert space
« Gradient of a function » Gradient of a function®: Af - R
d:R" >R from a n-dim Riemannian
is defined by manifold M defined by
D%, (v) = (VP(z0)) - v Vv eR" D, ®(v) = (Vy®(z),v) Yoe LM
\ N f \ f
directional derivative ~ gradient Gateaux gradient tangent space
derivative at xe M
+ Gradient flow: < ) ... metric on T, M
z'(t) = =Vo(x(t)) .
« Properties: + Gradient flow:

2'(t) = =V ®(ax(t))
Properties: the same

— among all possible » Hilbert space: replace metric

directions, =V®(x(0)) by inner product
decreases ® most efficiently

d Y
T 2®) = —|VeEW)® <0
dt

Example of gradient flow r@
Area functional E(I') = / 1dH = HOYT)
r

I ... smooth, compact hypersurface in R? without boundary

Directional derivative ¢ :={z+t((x); z€T}. teR
¢C:RY 5 R? ... smooth vector field

d

8 d—
BT oo = —/r;\v(m :

K ... mean curvature
V = (- v ... normal velocity

Inner product (u,v)p2 ::/ur(m‘l'l Yu,v € TrM
. ) r
Gradient has to satisty tangent space
5 d s
(VME. V)2 = BTy = —/rh-v(m‘ 1
SO VpmE = -« and the gradient flow is V =&

1) Mean curvature flow

Gradient flow of the surface energy with respect to
the [2-inner product
V=&

J

S.Angenent

32




1) Mean curvature flow: properties

« Embedded curve in the plane evolving under mean curv.
flow will become convex in finite time [Grayson, 1987].

« A convex hypersurface in ]Rdwill shrink to a point in finite
time, asymptotically converging to a sphere [Gage &
Hamilton, 1986] [Huisken, 1984].

« Self-intersections during the flow are not possible.
Moreover, if initially one surface is contained in another,
this property will be true for all later times (by maximum
and comparison principles, [Ecker, 2008]).

« Nonconvex surfaces in general can develop singularities
[Huisken, 1990, 1993].

R. Nurnberg

O

F s

Sethian & Saye Grain boundaries

2) Volume-preserving curvature flow

* M, ... hypersurfaces enclosing volume m

« Tangent space Tt M,, corresponds to normal
velocities with zero mean because

d — d—1
'(EVOI(Ff) = . VdH

Gradient for [2-inner product:
(Vpm,, E.v) = —/rh-vd’H""‘ Yo € Te M,

so because gradient has zero mean,
va EF=—-k+E% ' ... average curvature on I”

Gradient flow:
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3) Surface diffusion

+ Again consider M,,, but now with H-inner product
on TrM,, defined by %
I" ... surface

(u..U)H_] = / ll(—A[‘)-lUd'Hd_l Laplacian
r
» Gradient of area
(0. V1B = [ o(-A0) VB = - [ ondnt-
r r
VH-lE — Arl\f

« Gradient flow

In physics this equation is derived from mass conservation laws using
appropriate constitutive assumptions [Mullins, 1957].
It models phase transformation due to diffusion along the interface.

3) Surface diffusion: properties

» Volume preserving, area decreasing:
(—IVolumc(I’,) =0, (—lAron(F,) <0
dt dt

Stability near spheres [Escher et al., 1998]

» If flow exists for all times, it converges to a sphere
[Elliott & Garcke, 1997].

Self-intersections are possible [Giga & Ito,1998].
Does not preserve convexity [Giga & Ito, 1999].
Singularities may appear.

il

Quantum dots

Epitaxial growth

(nanotechnology, semiconductor fabrication)

Nix, 1992

Electromigration of voids Bauer, 1999
in (micro)electrical circuits
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4) Mullins-Sekerka problem

» Decrease of area limited by diffusion — expressed by
the inner product

(vi,v2)ms = / Vuy - Vug dx = / vyug dH
QaUNp r

where —Auw; = v;0p

* Leads to
“Au = 0 in Q4(¢) UQp(t)
V = —[Vuf:vonl, normal
H = K on I’y b;;::(?)

In physics, these equations are derived .
from conservation laws based interf
on the principles of thermodynamics. I's

4) Mullins-Sekerka problem: properties

» Volume preserving, area decreasing:
d d
— ) =0, — &
dtVolume(QB(t)) 0, threa(I‘,) <0

« Oswald ripening: mean particle size grows as t1/3,
evolution laws for particle size distribution derived.

U. Weikard

» Existence of solution difficult (results in weak
setting).

5) Stefan problem

» Describes undercooled solidification.

u = d;Au in Q;(t) fori=A.B
AV = —[dVu]5 v on Ty
au+ BV = kK on I'; (Gibbs-Thomson law)

» Can be written as gradient flow too.

normal

bulk B
Qp(t)
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6) Hyperbolic mean curvature flow

Notation
» Family of closed curves 2

)

v(t.9) : [0,T] x [0, 4] — R* ¥

Q

r/VeIocity of curve \\

i1 ¥ '
vn +wt t=— ... unit tangential vector
Acceleration of curve 405 ;
n = —(-1%mn) .«+ it normal vector
an + bt i+ Al
e o T aas curvature

Energy density

_

t':§|7,|2+T /

4

6) Hyperbolic mean curvature flow
» Action of internal and kinetic energy

P
P2 d—1
=m|“=1) dH dt

[: /W (2' d )

2 2 1
- (S(l“ —-w?)+1) h') n+ — (&' + p(w' + xv[y'|)w)t =0

o

+ Stationary points satisfy

M+ (I)["|
!

* Assuming normal flow ( w=0)
p J N
‘ Pyt — eKn + l‘_'|t =0

J

Remark (normal flow)
For tangential velocity w = v; -
(wds)y =0

:> flow is normal for all times if the initial velocity is normal

6) Hyperbolic MCF: properties

* Normal flow property is preserved in time.

» Energy is preserved (globally and for normal flow
also locally).

» Shocks may develop or the flow may blow up.
» Existence results for graphs or locally in time.
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6) Hyperbolic MCF: applications

Oscillating closed spring Melting-freezing waves
in crystals of helium . aurtin etal.]

Institute for Crystal Growth, Germany

Relativistic strings
in Minkowski space [p. kong et al.]

cronodon.com

6) Hyperbolic mean curvature flow
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Next topic:
Generalizations of interface evolution
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Two generalizations

» Anisotropy of surface energy
— the surface energy depends on

the orientation of the surface
normal

E’(I‘)zfrq(u)d’}{d_l where 7 : RY — [0,00)

phase 3

» Multiphase setting

— there are more than two phases
and thus several interfaces meet
at junctions

Anisotropy

+ Surface energy E,(I) =/7(:1)<1’H""
r

where v: R? = [0,00) is one-homogeneous, i.e.,
y(Az) = My(z) YA >0, z € R?
— if 4(x) = |z|, we get the isotropic case

— if ¥ non-constant on unit vectors, some directions are
energetically more favorable

+ Wulff shape solves the isoperimetric problem:

“minimize E.(I') under given enclosed volume”
> @ r 0. {) ®
cubic hexagonal
Frank diagram :={z €R% 7(z) < 1}

and Wulff shape W7 ={reR% z-y<v(y)Vy eR?, |y| =1}

Anisotropic gradient

« Variation

d

= L 50 dH" = | V- (Dy(v)) VdHe?

T
so the [2-gradient is

—VL2E.7 — -—Vr‘ (D"‘( )) =! Ky
=—(%(0) +4"(0))x

Here,
v(0) = (cos f.sinf)
3(0) = ~(v(6))
d—1
Here the surface divergence Vp - F = Z(O,, F) -7
i=1
where {71..... Td—1} is an orthonormal basis of tangent space
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Anisotropic interface evolution

» Mean curvature flow
decrease
V = K.,y or more generally ,B(U)V = Ky anisotropic
surface energy
and converge
to the Wulff
shape

» Surface diffusion

V — —API‘&., (preserves volume)

» Stefan problem

duy = d;jAu inQ;(t) fori=AB
AV = —[dVu§-v onTy
Bw)V = ry—oau onI'y

Anisotropy: applications

Crystal growth

G.Demange, 2017

Multiphase problem

hase 3
» Surface energy 2

(4%

E(T') = E(T'12) + E(T'13) + E(I'23)

» Variation (gradient) away
from junctions gives the same
motion laws as before.

» From perturbation of
junctions arises a boundary
condition to hold at the
junction (balance of forces).
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Multiphase problem
Mean curvature flow -
» Each interface moves by o
V = Yigh %Yij ... surface tension of

interface separating
phases / and j

+ At junctions forces are Is
balanced: S Ty =0
iJ

Example: at triple junction
NT1+7T2+7373=0

or sinf, sinf, sinfy

|f M =72=73 -—) 01262=03=120c

(Herring condition)

Multiphase problem

Anisotropic case
» Condition at junctions becomes

ZD"/ij(Vij)J' =0
ij

Here,
Dy(v)*t =(v)r — (Dy(v) - T)v

/"

surface tension Herring torque
(tangential direction) (normal direction)

Multiphase problem: applications

taken from |.Saye, 2013
(a) Soap bubble foam made with common washing detergent

(b) Metallic foam made out of aluminium

(c) Grains in a polycrystalline metal

(d) Cells in a zebrafish (stained)

(e) Minimal surfaces formed by steady-state soap films
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Next topic:
Overview of basic numerical approaches

Main numerical approaches

| will explain the methods using the example of
mean curvature flow of a closed curve in a plane.

I

Main numerical approaches

@® Parametric method

@ Level-set method

® Phase-field method

@ MBO algorithm

® Voronoi implicit interface method
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Aspects to focus on
» Topological changes and O O
other singularities - CQ
» Accurate tracking of
junctions
» Anisotropy OO — CD
+ Coupling to physics

® ae

Parametric method

Simple algorithm: s S

1. Discretize curve into points. : \-\

2. Compute curvature k and :: 3
normal v at each point. : i :

3. Advance each point by —(At)xv . '\.\. ‘/‘

4. Repeat the above until desired e
time.

Parametric method

» Assumption: surface is given by parametrization over
a fixed manifold.

» Surface is triangulated and triangles moved in time.

» Mesh often degenerates but tangential degrees of
freedom can be used to keep good mesh properties.

» Anisotropy handled by suitable discretization of the
anisotropic mean curvature.

,,,,, ” ey « Surface evolver (non-
physical, stationary)

| . k375 R
{ J:(%/.\“'? S N 45 L « Immersed boundary
el 2| ;*}&S‘éfd L method (fluid-
49:@2"": o /;;?/ls‘{\é % structure interaction)
Sl [ K . « Work by [Garcke —

______________ Barrett — Nurnberg],
R Nurnberg [Dziuk] (FEM).
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Parametric method

Advantages
+ Simple, efficient and straightforward.

Disadvantages

* How to deal with topological changes and
singularities? o . NN~
-W _I )

/" e DN ()

2/ \._‘,.

Requires computing curvature.
Does not “see” outside and inside of the interface.

Level-set method

1. Express the curve I, as level set of a function u(t,x):

— {.r: u(t,z) = ()} ! View from above:

!uﬂ' r)
' @n

2. Find an evolution equation for u(t,x) such that the
level sets move according to the given law (v = —kw ).

3. Solve the equation for u(t,x) and detect level sets of
the solution.

Can be done for any type of evolution (hyperbolic too).

Level-set method

Advantages
+ Handles naturally topological changes.
PPP o 04 0 0

Ads guw.

Disadvantages

+ The governing equation is nonlinear and degenerate.
For example, for the mean curvature flow

6“ |Vu|d|v(izu|) wif

* Dimension of the problem increases by 1.
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Level-set method

» Work by Osher, Sethian, Fedkiw, etc.: based on
methods for Hamilton-Jacobi PDEs
— stationary approach (arrival time) — fast marching method
— evolution approach (level sets) = narrow band method

Developed efficient upwind schemes.

* Regularization approach

. Uy, Uy Uz U, .
u,—Z(o,J |V:|"‘)"”’_Oib ",—Z_(u W) , =0
iJ

id

(Deckelnick et al.)

" |
Then sup |lu —u®|jpe < Ce®, a< 3
t

Phase-field method: idea

Double-well Potential w
» Ginzburg-Landau energy \/\/
Ef(¢):=/( [Vl + -n )) r LN

Q T T

penalizes rapid penalizes values of ¢ Z){o?l?s[jﬁ;aete values of E,

changes of ¢ in space differing from +1

ase—>0 [-converges to area functional

T oy x
E(p) = cw / IV\W:”' dx area“of interface

o / VIR d
(which means that minima of E, are close to minima of E) Profile of ¢

=) Gradient flow of E, should
approximate gradient flow of £

(which is mean curvature flow).

I-convergence

Definition. Let (X, d) be a metric space and (F:).so a family
of functionals F. : X — [—00, 00].

We say that (F.) I'-converges to a functional F : X — [—o0, o0
if the following properties hold:

(i) For every u € X and u. € X, £ > 0,
such that u. = u as € = 0 it holds

F(u) < liminf F.(u.).
e—0
(ii) For every u € X there exist u. € X, >0
such that u, — u as £ = 0 and

limsup F.(u.) < F(u).

=0
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Phase-field method: example 1

+ Gradient flow of Ginzburg-Landau energy w.r.t.
L2-inner product yields Allen-Cahn equation
e
ot
.
o
+ Sharp-interface limit: in the limit as €0, the sharp
interface separating the sets {¢o =1} and {w=-1}
evolves by mean curvature flow.

Similarly, for gradient flow preserving the volume one obtains in the
limit the volume-preserving mean curvature flow.

()3 ()

= cAp.— %""(;t) inQ

= 0 on 99

Phase-field method: example 2

« Gradient flow of Ginzburg-Landau energy preserving
volume w.r.t. H-l-inner product yields Cahn-Hilliard
equation

Rewrite as system:

do. AR T i .
il A (—;AY,; 4+ :_H (,,:-)> inQ :)% = A
[
dp. Ap. a¢ 1
e = 0, = 0 on 92 v = At ;“';(Y,:)

+ Sharp-interface limit: in the limit as €0, the sharp
interface separating the sets {¢o =1} and {w=-1}
evolves by Mullins-Sekerka model:

0 = Au in Q(t) fori=AB
2V = —[Vul§.v onI}

2u = cwk onI',

Phase-field method: example 3

+ Gradient flow of Ginzburg-Landau energy with
degenerate mobility w.r.t. H!-inner product yields
equation of Cahn-Hilliard type

0P, ;
X = V(1B V)
U = —eAge+W'(po)

+ Sharp-interface limit: in the limit as €0, the sharp
interface evolves by surface diffusion:

V= —Arh‘
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Phase-field method: example 4

« Gradient flow of E:(e.¢) :=/ (s(«-;)+ %IV;I" + él"(;)) dx

2

w.r.t. inner product (er.ea)u1 + (e e2) 2 With s(e.9) := (e — )
and u := ¢ — ¢ yields the phase-field system

Nue + p:) — Au
ot h :
e . 1

BE = eAp. 5” () + ue

+ Sharp-interface limit: in the limit as €0, the sharp
interface evolves by Stefan problem:

w = Au inQ;(t) fori=A.B
0V = —[Vn]g v onl}y
244V = &k on I’

cw

Thermodynamically consistent PF

Isothermal case: Helmholtz free energy
£2
Flp) =/ (f(ly‘) s 5.;—)]V,:|2> dx
Q T -
free-energy density

* Requirement of fastest decrease leads to phase-field
equation (Allen-Cahn).

Non-isothermal case: Entropy functional
. £ e
S(e, ) = / i(e, ) — 7|V,:|‘) dr
Ja L Y «
entropy density internal energy density

* Requirement of positive entropy production (for
non-conserved @) and conservation law for e lead to
phase-field system.

Phase field method

Advantages
» Handles naturally topological changes.

» Can be linked to physics via thermodynamically
consistent derivation.

» Equations are relatively simple (semilinear
parabolic).

Disadvantages

* Requires fine meshes to resolve the interfacial layer
(= computational stiffness).
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Phase-field method

* |n numerical solution, either one discretizes the
Allen-Cahn equation etc. as it is, or

+ Uses a different form of W (double obstacle):
-7 g =
Wr=01-r2? mp W) ={ ; - Llil 11-11

==) |eads to variational inequality but in practice, it can
be solved by a simple explicit scheme or implicit
quadratic minimization problem with constraint.

Advantage: the phase field differs from £1 only in a
band of width c(t)e, which saves computational costs.

MBO algorithm: idea (MCF)

. Bu L
» From level sets: 57 - [Vuldiv(jg;) = ¢

If we start from signed distance function to interface

(|Wu| = 1) then for a short time ol VR i
\Vuldlv(ivul) ~div(Vu) = Au

==) Solve heat equation and re-distance every now and then.

0 u gned distance
function SDF to the
interface.

= MBO algorithm
(works for piecewise constant
/’ \\, initial conditions too: u=£1)

B. Merriman, J.K. Bence, S.J. Osher,
Motion of multiple junctions: a level set
approach, J. Comp. Phys. 112 (1994).

equio strting
from SDF for a
short time

interface as the zero
level set of the
solution.

oP®)

construct
characteristic
(or signed-distance).
function

cut at
height O

solve heat

iterate :
equation for Az
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MBO algorithm: idea (MCF)

* From phase field:
splitting scheme

Allen-Cahn equation Bu

— =AMy Heat equation!
- . & ot
€5; =€hu- =W!'(u)
t € ~ 5y 1 Splits domain into two:
e —;W*(U] with value -1 and value 1

= thresholding.

MBO algorithm: idea (MCF)

oP(1) XpP@
construct
characteristic ()

(or signed-distance).
function
iterate solve heat
equation for Az

cut at
height O

MBO algorithm: convergence

Proofs of convergence
— semigroup theory

L.C. Evans, Convergence of an Algorithm for Mean Curvature Motion,
Indiana U. Math. J., 1993

— viscosity solutions

G. Barles, C. Georgelin, A Simple Proof of Convergence for an Approximation
Scheme for Computing Motions by Mean Curvature, SIAM J. Num. Anal., 1995

— distance function

Y. Goto, K. Ishii, T. Ogawa, Method of the Distance Function to the BMO
Algorithm for Motion by Mean Curvature, Comm. Pure Appl. Anal., 2005
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MBO algorithm

Advantages

» Handles naturally topological changes.

» Only heat equation has to be solved.

» Scheme can be made unconditionally stable —

suitable for long time simulations (foams, etc.).

Disadvantages
* No direct relation to physics.

Remark. /t was said that MBO is limited to mean curvature flow but it
was recently extended to other evolutions (Esedoglu, Elsey, ...), even to
hyperbolic MCF (Ginder & Svadlenka).

MBO algorithm

'Dataliface’ spc”

i | ] i ®
a b
/ f | X
aa |
L [ \ ! |
: X e /
Y ¥ x\.y_—’ Ny
L / . /
h's / 1
[ / ]
( “ jl
| 1 /
! 1 /
%

Multiphase hyperbolic mean curvature flow computed by the MBO algorithm

Voronoi implicit interface method

by J.Sethian & R.Saye

Idea based on level-set method: the motion of &-level

sets regularizes motion of the interface (O-level set),
even when there are junctions

Deledoen 4 At ein (Taken from the dissertation of R.Saye)

Algorithm 1 The Voronoi Implicit Interface Method
Given a multiphase system, calculate the initial unsigned distance function ¢
and indicator function x.
for time step n = 0,1,2,... do
Define a speed function F, which may depend on interface geometry, physics, etc.
Evolve the e-level sets of ¢ by solving ¢, + F|V¢]| = 0 for one time step At.
Reconstruct ¢ and y by using the Voronoi interface of the updated ¢-level sets.
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Voronoi implicit interface method

Advantages

* Handles naturally
topological changes.

« Accurate, efficient and
robust.

 Ability to couple to
physics.

Disadvantages
* Not yet fully analyzed.

* How to deal with
anisotropy?

J.Sethian & R.Saye

Next topic:
Handling of anisotropy and multiphase

Anisotropy

+ Consider only smooth anisotropies (for non-smooth
anisotropies we either use smoothing or the
crystalline approach).

Frank diagram and Wulff shape

for the smoothed cubic anisotropy

2(p) = || + 2l + [pal = %ulp) = 3 \/2pR + 7
-

+ Parametric method: discretize in the same way
. Barrett et al. 2013
* Level set method: regularize

Vu 2
1(W) - ]Vul};l Toson (Vi) taye, =0

1
:> J(/‘,T—"—'”)u., - Ve +|Vu)? Z Yomu (Vtle, =l z0, =0
Ve + [Vuf? =
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Anisotropy

Phase field method
" € o
El(p) = =7 (Ve)|* + -W(p) | dx
2() ‘/Q(QI( )I°+ = ())

Corresponding Allen-Cahn equation
epr — eV - DA(Vo) + }H"(,:) =0 where A(p) = 7;-’}(1;)2

Sharp interface limit 1 .

7(v) :
MBO algorithm: we solve anisotropic heat equation
wu = V - (7(Vu)Dy(Vu))

Multiphase

« Parametric method: not suitable (“surgery” needed).

* Level set method: use multiple level set functions.
To avoid creation of voids and overlaps a “repair”
procedure (usually projection or penalty) is required
at the end of each time step but it is not clear how
this affects the motion (—used in image processing).

» Voronoi IIM: works nicely.

Multiphase

+ Phase field: junction behavior sensitive to the choice
of potential functions.
* Work of Garcke, Nestler et al.:

— Phase field function for each phase
N

W=y 05 uy, ) such that Zu, =]
i=1

— Ginzburg-Landau energy

E(u) = / (ef(u, Vu) + %H'(u)) dx with f(u, Vu) = Z-“';(“-V", - u; Vi)
Q

(includes anisotropy)
and suitable multi-well function W

— Yields correct sharp interface motion laws but it is hard to
relate the potential to given physical parameters, e.g.,

1
surface tension oi;(v) = "il;f/ VWi(p)f(p.p' x v)dy
-1

where p ranges over Lipschitz paths connecting two minima of W
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Multiphase MBO algorlthm (equal surface tensions)

Multiphase case Two-phase case
1. Assign reference vector to each phase 1. Assign value 1
inside, -1 outside.
reference oz
vectors U
D P -1 0
N'7s
I 4]
2. Solve vector-valued heat equation 2. Solve heat eq.
u; = Au u = Au
u(t =0,z) = ug(z) u(t = 0,2) = up(x)

3. Detect interface (closest ref. vector) 3. Detect interface

O-level set:
check if closer
tolorto-1

27PN

Multiphase MBO (example)

initial interface

Multiphase MBO (example)

P T T T ET 4
55////////////55
S AL ek %
f;f?HTf\\\\\ﬁj
RN
YL e
2 HIRIJIIJZZ
L \\\\\//
A A TR o AP Al o
KAV A

reference vectors
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Multiphase MBO (example)

AL ETRILREET T
KA AR DAL HA S
7R R EEER R R
4 f T 1 1 1 1\\\\\//
AN BT g SRR L
L \\\\\//
2t P M sosoion Do
A A AR A A A A A
e S T

initial condition for the heat equation (u,)

Multiphase MBO (example)

K AL
Vo ks

ZINNV P
Rk fam X
=Xt VA
5‘;:\\\\‘4\

S S e’ VNS
AAAA LSS

ANN
~\
N\
N\

AR N SR QAR RN
RO

after diffusing for short time (u(A¢,x))

Multiphase MBO (example)

ARG SN SN RN
AN

interface detection: interface between P, and P; is at points x which satisfy
piu(At,x) =p; -u(At,z) & [u(Al..r) -(pi—p;) = ()]
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Multiphase MBO (example)

new interface

MBO: troubles on uniform mesh

* Piecewise constant identification of the interface
has too little degrees of freedom:

’ -/ 1 !
> A A /X
1 1 -1 1 1 -1

v ¥ At > Az so that interface does not stagnate
Al << 1 not to pollute evolution

» Can be improved by using signed distance function:

F\‘\.
/1_, >
Can we
construct
7 a vector-
G valued
‘ analogy?

MBO: Vector-valued signed distance

R.Z. Mohammad, K. Svadlenka: Multiphase
volume-preserving interface motions via
localized signed distance vector scheme,
Discrete and Continuous Dynamical Systems -
Series S, 2014.

— Consider a suitable combination of reference
vectors with coefficients depending on distances
to phases:

* - pdilz)
d(zr) = Z ('J - :mn{f'—r-—, l}) P
i=1 =
dyx) ... distance of x from phase P
£ ... band width

Analysis

« Does it give correct interface velocity?
v=7K+ O(At)

« Is the condition at junction satisfied?

Angles " at n-th step of the scheme with time step At
satisfy

e
n_ 27 v 1/2 , n ~ 0.5
o - <c(@n+0"), o025

\_ W,
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MBO algorithm

Thank you for your attention!
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MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS
August 28-30, 2017, Fukuoka, JAPAN

Exact solution of nonlinear boundary value
problems for surface diffusion

Philip Broadbridge
La Trobe University / IMI, Kyushu University

Curvature-driven surface diffusion on crystalline surfaces is modelled by a fourth
order nonlinear diffusion equation. There is a class of nonlinear weakly anisotropic
models that is fully integrable. Exact solutions are constructed for development of a
grain boundary groove and for smoothing of an initial ramp dislocation.

Even for linear fourth order “diffusion”, there are strange overshoot phenomena
that are no longer proscribed by maximum principles of second order diffusion.

There are additional phenomena due entirely to the nonlinearity. For example, in
a solvable quasilinear model, the depth of a grain boundary groove remains bounded
as the dihedral angle approaches vertical.

At a dislocation point of infinite curvature, the quasilinear Mullins model should
be extended to a fully nonlinear degenerate model to account for Gibbs-Thompson
evaporation-condensation. An exactly solvable fully nonlinear degenerate diffusion
model shows that unlike in the quasilinear model, deposition rate at the dislocation
point is bounded, and the slope remains discontinuous for a finite delay time.

My group is currently working on classical and non-classical symmetry reductions of
the fourth-order evolution of crystal surfaces near cores with cylindrical phase bound-
aries.
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Exact Solution of Nonlinear Boundary Value Problems with Surface Diffusion.
P. Broadbridge!?, D. Gallage!, D. Triadis?, P. Cesana? J. Goard?® and P. Tritscher®
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Introduction

Partial differential equations for the evolution of curves and surfaces, under isotropic
and homogeneous processes, should be invariant under the Euclidean group. A
comparatively simple example is evolution by mean curvature. Consider a
hypersurface of dimension n-1 embedded in R™

n
0— R
N =‘inward’ unit normal vector.

. or(0.t
n- ﬂ — Bi
ot
, proportional to mean curvature. This models the surface of volatile metals such as
Mg. Surfaces of stable metals such as Au, evolve by 4th order surface diffusion
[ Mullins 1957, Cahn & Taylor 1994]. In 2D,

ON B 0%k

ot 2 0s?

The 2D surface diffusion equation in Cartesian coordinates is

—1/2 Yxa
Yy = — B (1+y2 Op——75
(1+v2) REEE

This equation is invariant under rotations in the XY plane. The 3D surface diffusion
equation, to be revisited later, is invariant under SO(3). This compares with the linear
diffusion equation, Z¢=ZxxtZyy,

which does not have SO(3) invariance.

We will be considering the evolution of grain boundary grooves at the surface of a
polycrystalline surface. These can be clearly discerned on a surface at the nanoscale,
by high-resolution transverse electron microscopy [e.g. Zhang et al, 2007] or by atomic
force microscopy [e.g. Sachenko et al., 2002].
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Schematic diagram of a symmetric surface groove where two crystals meet.

-0.8[

Balance of surface tension and grain boundary tension gives

m = tan() ; Ww(T) = 27s(T)sin(¢)

The nonlinear boundary value problem for the shape of a symmetric grain boundary
groove, was solved by Tritscher & Broadbridge, 1995.

Y(Bu-”.

N 1 L ! " 1 "
1] 2 4 6 8

K(Bl]"“

anaIH’nc.So!u-hon with
groove slope Yy =1 af x=0
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The physically based model of Mullins, 1957.
Volume flux on surface ~ J = v
1/ = particle density
€) =mean volume per particle
UV = mean drift velocity
Nernst-Einstein Relation —Ds oe

YT kT s

@ = chemical potential per particle;

T = absolute temperature; k = Boltzmann constant; Ds = surface diffusion constant
For isotropic material with spherical surface, surface energy is
2
E =~A=4myR%;
4
V= ETI'RS;
de  de /dV 2y
—_—=—— = — = K
av —dr'dr ~ R~ '

so specific energy (per particle) is @ — QerR .

This Laplace formula applies to a general surface (e.g. Defay and Prigogine, 1966).

Laplace-Herring Equation 1814 - 1950

® = Q[y:(¢) + 7 (9)] 5.

7Ys = surface tension
¢ = arctany,
In Cartesian coordinates, the two-dimensional curvature is

—Yzax
(i

Substituting the Mullins flux model into the equation of continuity for local
conservation of mass,

ot ds
oN o (B constant)
o = Pas consta
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That is,

oy 0%k
cos(¢)§ = BasZ

d’r

ds?

2
_ | [aza
a dsdx1/1+yg

Now use k =

2
dr d 1
+ 7| =Y
ds dx VI+y2

00\ 1O + 07(0) + F(O)

1
where 0 =y, , ]‘(49):\/1+7‘92 = cos¢
. Hence,
_ 0V2y U
" Ba””{(l+y””) ax(1+y3;>3/2}

and after differentiating each side with respect to x, we arrive at the boundary value
problem

= ~B& {500 [0SOV OF + o0+ 107 |

0 =0 ,t=0 x>0,

o, [ﬂwf(@)\/ O + 050+ fwﬂ —0 . =0

0—0 ,0,—0,

Tr — OQ.

For surface diffusion on an anisotropic material, both mobility and energy depend on
orientation. In terms of rescaled dimensionless variables,
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Yr = =0y [D(y2)0x [E(Ya) Y]]
T=0;,y=0

r—00;y—0, yp, —0

=0, J=0 <= 0, [E(ya)yas) =0
=03y, =m(r).

m = tan(¢) ; Ww(T) = 2vs(T)sin(¢)

In the above, surface tension and grain boundary tension may depend on temperature
T which may vary in time. Therefore the equilibrium groove slope m may depend on

a time coordinate tau.

The Integrable Model

Progress has been made on this problem because of an integrable nonlinear

anisotropic model

3 1
PO= 59 PO T

This is closest to the isotropic model in Lo, when 3 = 2.026

y2l.  — sitaaine Enoion 1 ——b)= ZF’_%; e

-— Spline with 1 segment

1.0k " Spline with 2 segments
i --- Spline with 4 segments |
__ 08
<
< imtefes
0.6 m#c maftrial
| of all orientations

0.4

0.2

o 1 4

2 3
| o (<Yx)
We cen consfruct an explicit sofufior
To Prob. I when f is plecewise
inverse  linear

spline £ : £, (6) = 'éfi*g M. <=7
cont af &= , synmetric feo)=£©

constraints f50)= | | £@)~67 (B> )

minimising Cheiz:qschev norm |4 “f/
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Polar plot of surface tension vs angle for integrable model

With a single reciprocal linear function for f(y,), the anisotropic surface tension is
close to constant for approximately quarter of the circle. With four segments of a
reciprocal linear spline, the surface tension is approximately constant over all

orientations.

270

The linear model has groove depth proportional to groove slope m. However, the
nonlinear model predicts a bounded groove depth, and has an explicit solution with
vertical groove root. This occurs just before the surface tension is not strong enough
to support the groove, which will be swallowed by an overarching crystal, as has

been observed.

",‘16" =1.2
"o-1.4

! i I

0

Thermal

2 4

x(8t) "4

jroaVc with infinite

slope at x=0
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When mobility and surface tension depend explicitly on time, due to temperature
change,

D = Di(t)Ds(yz); E = E1(t)E2(ya)
, which prompts us define a new separable new time coordinate
t
. / Dy By (D)dE
0

A change of variables u=i~ z:/zwd:r
change ot variables ﬂ+6 ’ o

results in the governing equation transforming to a linear PDE

1
Py = —flyzzy — BR(T)/J/Z ,  where R(7) = —y.(0,7).

—R(7)
B+m(r)

= 2=0, Pzzz =

After a change of accelerating reference frame, this results in an equation with
constant coefficients:

1
Z=z+ By(oﬁ) M = —lzz77

which has scaling symmetry 7 = eEZ7 T=e€e T, 0L=L/MN.

In terms of canonical coords, Y = ZT71/4, S = lOg(T1/4),
the scaling transformation is simply a translation in S,
Y=Y, S=S+¢e j=p.
For any linear equation with a one-parameter Lie group of symmetries, separation of

variables is possible (Miller 1976). Separation of variables allows more general
solutions than the similarity solutions in which S-dependence is neglected:

1= F(S)G(Y).

In fact, F(S) may be any power Sk . By linear superposition we can construct a power
series in time, for which the similarity solution is the leading term at zero degree.

In the following, the similarity solution (j=0) has been separated from the terms of
higher degree, which begin at j=1.

- , .
i e (|22 |2 L 3] Y
/tU(Y)JFZT] Ky 1F5([ 1 ] , [472,4 1956
J=N1
1 4] 13 5] v*
HHaY s ([1 - z] : [m’ﬂ Te)

1 4] [353] v4
Ky V2R (2 =21 ,15,5, 5|, ==
tHe T 3<[2 4]’[4’4’2]’256)

3 537 v*
+Ky;Y 1Fs<[4 4]’[4’2’4]’256 .
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The Y-dependence is expressed exactly in terms of generalized hypergeometric

functions that are evaluated easily:

S (a) 2k
[ 1 Falla). b1, 2,08],2) = ;ﬂmy ]

(@) =ala+1)(a+2)...(a+k—1)

It must be stressed that when the above series is truncated, it still gives an exact
solution to the nonlinear surface diffusion equation with some time dependent slope
at the groove root. For constant groove slope m, we have a similarity solution of form

yr V4t = H(gm—*l/‘l)

For m varying with time, assume the simplest possible power-series extension

y(0,7) = Bri/* Y T birt/t
=0

The boundary conditions then imply a system of recurrence relations for the unknown
coefficients (Broadbridge and Goard, 2010). An example of the solution is given
below. Fourth-order diffusion typically generates numerous extrema. Unlike second-
order diffusion, there is no maximum principle. The solution has an infinite number
of extrema but these have rapidly diminishing displacement. In practice, only the
secondary minimum has been observed at the nano-scale (e.g. Sachenko et al, 2002).

Exact solution of surface diffusion around a groove with time-dependent slope at the
1 4
root.  m(T)="/2+ /2T

Grooving by evaporation-condensation.

In the Mullins 1957 theory of evaporation-condensation, lateral mixing of vapour
keeps pressure p close to the equilibrium value above a flat surface, which is below the
equilibrium value peq above a bulging surface and above peqfor an indented surface.

The Nernst-Einstein theory of non-equilibrium evaporation gives
ON o QX(peq -p)

ot V2rmokT
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where my is the particle mass and X is the evaporation coefficient.

Equilibrium vapour pressure will be proportional to the probability of a particle
escaping the potential well at the solid surface. From the Gibbs canonical
distribution,

Peq —p = p(e®/* — 1) = 2pQyR /KT

which is commonly referred to as the Gibbs-Thompson formula. It follows that in 2D Cartesian
coordinates, the evolution equation on the surface of a volatile crystal takes the general form of th
curve-shortening equation

Yaa

=v——"
T2

The exact solution for grain boundary grooving by this nonlinear model of
evaporation-condensation on an isotropic material, was given by Broadbridge, 1989.

Note that the usual Gibbs-Thompson formula embodies an approximation E/kT<<1.
This need not be true over typically short periods of time and small regions wherein
the curvature is very large. For situations in which slopes are small but curvatures
may be large, it is instructive to consider a fully nonlinear model

Yo = =V [exp(=VYez/KT) = 1]
After choosing length and time scales / s =7 / k‘T, ts = / s / v,
yr =1 —exp(—Yuz) Yoz >>1).

A degenerate model of this type was solved by Broadbridge and Goard, 2004.

Y = 1+ 672:%1 —2¢ Yz =1~ zexp(_yzz) (ya:x >> ]-)

09F 1

2 & B

B

o1t .

o | 1 L I L i L I
= -08 -06 -04 -0.2 o 02 0.4 0.8 o8 1
x

Figure 1. Profiles ¥ (X, T) pmwiuw«\m“?-n $:4.1 (smoothing time), with
m=1. Crosses show finite extent of the disturbance.

Thesoluumud.epmedmﬁgurel Notethﬂ:y,mboundedata.liumeu
since yy = F(y:r) with F bounded. In particular, 1, (0.0) = = i'; This
contrasts with the linear model y, = yz, which has y,(0,0) mﬁmue, Similarly,
ﬁm’jheseintialmndiﬁom,tlmquasﬂinearh{nﬂins quation (1.2) has an unbounded

The solution shows that a sharp surface dislocation does indeed retain infinite curvature
until a finite time delay before the surface is smooth.
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Concomitant surface diffusion and evaporation-condensation at a
ramp.

The flux from a grain boundary due to surface diffusion alone, is proportional to t3/4,
Up to some time scale, this will dominate a flux due to evaporation-condensation,
which is proportional to t/4. For a stable metal such as Au, surface diffusion will
dominate for more than 10,000 years. For an unstable metal such as Mg, evaporation-
condensation will dominate less than an hour after formation of the grain boundary.
When both mechanisms are combined additively in the transport equation, there is no
longer a similarity solution. However if we add an extra second-order diffusion term
to model transport by evaporation-condensation, the following equation remains
integrable by the same sequence of transformations that was used above:

Yt = Vf(yz)2yzz — Oy (f(yz)ar [f(yz)syzz}) )

«
fO) = ——3-
(a+6)
For illustrative purposes, the solutions of Tritscher 1996 for smoothing of a ramp
dislocation, assumed

(am)? (1+0%)'

V= —"=
(a+m)? «
1.0+ 1.0
0.8 0.8
T‘ 0.6 '.:O.B
> >
0.4+ 0.4
0.2+ 0.2
0.0 T T T T T ' T 0.0 T T T T T T
o 1 2 3 4 5 7 0 1 2 3 ;l 5 ]
(@) xb! ®) xh
1.0 o
05- ——-D=EB=_2"_
T_06 at Yo
" 0.6 -
0.4 a:cot§:ﬁ+1.
0.2+

isotropic material
1 T Il T
0o 1 2 3 4 5 6 7
(o) xh!

P. Tritscher 1996

Figure 3.5: Surface profiles for: (a) evaporation-condensation only, (b) surface
diffusion only and (c) concomitant evaporation-condensation and surface diffusi
with » = 1. The ramp is initially inclined at /4 rad:

isotropic material; — — — — — theoretical anisotropic materi

Dimensionless times from left to right: ¢! = 0, 0.005, 0.061, 0.242, 0.970, 3.88,

tt = h=2At for evaporation-condensation, or t' = h~*Bt for surface diffusion
itant evaporati densation and surface diffusion.
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Axi-symmetric surface evolution.

Evaporation-condensation at an axi-symmetric surface, leads to flow by mean curvature:

_ Z, 1
(in anisotropic case) = BD(@)[QT + 1(9(1 -+ 92)]
r
Zr =M, T=at1/2; z2=0,t=0; z2z—0,r—= 00
0=z; p=rt""% 0=f(p)

r=0

z=0

1/2

r=at’

phase boundary

For the axi-symmetric flow, Gallage, Broadbridge, Triadis and Cesana are using the
inverse method previously applied to 1D nonlinear diffusion by J. R. Philip, 1960.

- 0
_ —0.5B7' G [y pdf
14601+ 62)dIn(p)/do

D(6)

1.0 s=lsotropic model
o]
06

04

-04

For axisymmetric surface diffusion on surface z=f(r,t),

oJ 1 0 _
Zt = —E - ;J, J = —D(ZT)E(E(ZT)H).

—Zpr 11 Zr

B 1
NTON 2P 2r (Lt 2212
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, scaling invariance allows reduction to a nonlinear ODE for g, with

— . —1/4 _ .
2= g(p); 2tV = Glp);
I . 4 1/4
G =9, p= Tt /
Inverse method: choose solution form G, deduce explicit relationship between
functions D and E. We are progressing on the problem of posing a physically

reasonable solution g, from which we can construct physically reasonable functions D
and E.

D(ZT)[]- + 23]1/2 >0bounded,
E(Zr)[]- + 23]3/2 >0 bounded.
Dig) - P 90)dD 1 JZ 9(p)dp
4p[E(g){g’ + L(1 + ¢*)})
The assumption D=E=1 and the small-slope approximation 1 + g2 ~ 1 gives the

linear radial model, for which we have constructed the solution g as sum of
generalized hypergeometric functions 1F; and Meijer G functions.

The radial solution has either zero slope or infinite slope at r=0. We can substitute the
solution of the linear problem, plus an assumed energy function into the nonlinear
inverse problem for D(g), wherein the small-slope approximation is no longer assumed.
Several speakers at this workshop have shown that mobility within a crystal may be
strongly anisotropic.

For example, the solution depicted below, has an axisymmetric indentation with very
small maximum slope, an isotropic surface energy E=1 and a weakly anisotropic
mobility function D (notation M below).

Axisymmetric surface slope profile.

ar)

Dependence of mobility on radial surface slope.

M(8)| -
o o+
1000000

e i

M
w
.
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MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS
August 28-30, 2017, Fukuoka, JAPAN

On observation of dislocations in crystals
Kenji Higashida

National Institute of Technology, Sasebo College

In this talk, several observation results of dislocations in crystals are reported.
Some experimental results exhibit that the properties of dislocations should play more
important roles in materials for the next generations.
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IMI Workshop on “Mathematics in Interface, Dislocation and Structure of Crystals”
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Outline

Dislocations and Plastic deformation

Interaction between dislocations and a crack
Fracture toughness increased by plastic deformation

Dislocation configuration observed
by high voltage electron microscope (HVEM)

Lattice image of a silicon crystal irradiated by electron beam

lattice defects

http://www.ion-eng.co.jp
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Point defect: vacancy, interstitial atom
RXRME: RFZ=H, wBFERF

Line defect: Dislocation
$RR B - R 41

Plane defect: Stacking fault, free surface
ERHE: RERH BBEE

Volterra distortions in an elastic cylinder
Linear defects in structure-less continuum. There are no low bound restrictions on the strength of

disclinations and dislocations in the conﬁ‘t}tﬂg.caﬁon Volterra (1907)

Disclination

B Volterra dislocations. {a) Initial hollow cylinder with a cut T, e is the unit vector along
cylinder axis. (b,c) Edge dislocations of Burgers vector b. (d) A screw dislocation. (e, f) Twist
disclinations of Frank vector w. (g) A wedge disclination.

Why were dislocations recognized
in crystalline materials?

Crystal growth

X-ray diffraction spot

Mechanical properties
Mechanism of plastic deformation

Burgers vectar

W.D. Callister, Materials Science and Engineering, An Introduction
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Mechanism of plastic deformation in a crystal

p, |Slip deformation ‘ Q000
Q00
©00
000
‘900
900
Q0O
000
0O
0000

Slip bands

F Ay Zincsingle crystal  Tensile stress

! Step by
' slip deformation

(From C. F. Elam, The Distartion of
Metal Crystals, Oxford University Press,
London, 1935.)

Slip deformation in crystals
Slip system:slip direction gepends on
ERUES slip plane crystal structure

Face-centered cubic crystal
{111}plane, <110>direction

Slip plane

Body-centered cubic crystal
{110}plane, <111>direction

Closed-packed hexagonal lattice”
(0001)plane, <1120> direction

Slip direction
<110>
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Proceedings of the Royal Society of London Series A(1934)
20z
G.l. Taylor (1934)

Tihe Mockamite of Plastic Defermaion of Orystals.
Part | —Theoretioal,

By 0. L Tavion, FRE, Ropal Society Yasrww

sceivid Fobruary 7, 1383

Exprmmeits v the platie drbormiaten of nngh copvials of
ok st bave grvem pewslis whish it i detad bt prmsrss o
tarsctrmitas

I grawral the debrmation of & single crpsial in femsion =
wmcits o & shear Wirsn in whish dheets of Sl cryotal paralle
e sk wver sme wnanber, e lireetion of Tedion Ieing bome of
bapaphis axie The meemeste o thin vizain, which will be repe|

L TIPS ———
rmssderm] bl Uy wf lastinity

Negative Dislocation.
Fra. 4.—Positions of atoms during the passage of a dialocation.

British physicist and mathematician,
and a major figure in fluid dynamics and wave theory.

1886-1975

o 08 o @&
e a & & @
o 8 8 & B
a8 0 0 o
oo 0 @ o

(a)

The mechanism of slipping may be like the simple
shift from fig.(a) to (c), in which the whole of the
material on one side of a definite plane shifts
through the length of one lattice cell.

The mechanism of this simple shift differs from
what is observed in real materials.

Differences from real materials:

(1) This ideal slipping would leave the material in the
form of a perfect crystal and the strength would
be unaltered by the distortion.

(2) To shift the whole of the upper row of atoms
simultaneously over the lower row would necessitate
the application of a stress comparable with the elastic
moduli of the material ( 1000 times larger than the
real strength)

(3) No room for explanation of the large observed
effect of temperature on plastic distortion.
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lllustration of stress — strain curves

in fcc, bee and hep crystals

Phenomenon of fg.c.
Work-hardening (Cu)
a
o
=)
(7]
5 b.c.c.
S (NDb)
h.c.p.
(Mg)

Shear strain

Ideal strength for slip deformation

the whole of the slip plane

Simple shear along

b
T =

Shear stress

—— 1
|

(

C% Tideal = G

Shear modulus

1000 times larger
than the real strength

stress

32
24

22

10

t"“' Temperature dependence of s-s relations

Nb crystals
7113';( ‘:

I'P.B.Hirsch et.al
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Slip by dislocatios -

° 00 0 @ 60000 e oo 00
e & a s o 4 6 8 a8 8 e o0 00
o 80 6 n ¢4 go-o-e- a0 oo oo 0
o & o 8 o ‘aa o o0 & o6 00
oo o d s o8 6 0 e o0 o 60

(a) &n

The slipping is considered to occur not simultaneously
over all atoms in the slip plane but over a limited region
which is propagated from side to side of the crystal.

(a) The atoms in the lattice of a crystal block,

(b) A slip of one atomic spacing has been propagated from
left to right into the middle.

(c) The block after the unit slip (dislocation) has passed
through from left to right.

A looper

High voltage Transmission Electron Microscope
at Kyushu University

Q energy filter

Accelerating voltage JEM-1300NEF with Q energy filter

1250kVv
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In-situ observation in silicon crystals

deformed at 700°C

092 [ "15: 15502

0.3um

Characters of dislocations in crystals
defined by two vectors

1.Burgers vector b
2. Dislocation line vector [

Edge dislocation: b L
Screw dislocation: b// t

Mixed dislocation: combination of two
components of edge and screw dislocs.

Edge Dislocation

Burgers vector

W.D. Callister, Materials Science and Engineering, An Introduction
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Edge dislocation
Extra-half plane

Signs of edge dislocations

determined by the direction of extra-half plane

positive negative

’
Directionof _# _#
motion ‘—f"—
Ed
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Top view from the direction perpendicular
tf to the plane on which dislocation line is lying
n

Screw Dislocation ‘

—0 <
' %
F—‘Yv = 1
B =
s o = i i
L DN -~ ?“’_*' Bargen
I ¥= - e iyt —— | YEION
+ o (B |
p i ———4
y { |
' - b
1 T1 4
T ; R
=
1»—‘ ® = G5 o }_‘r +
W.T.Read: m y = b ;,’ b
Dislocations in crystals(1953) «

Signs of screw dislocations

determined by the direction of
spiral configuration of atoms

—
C 2

Right-handed (R-H) Left-handed (L-H)
Screw dislocation Screw dislocation

Mixed Dislocation

Burgers vector is conservative on one dislocation line

Yo—————

Desboscaution line
~ um a horizomal
slip plane

g Burgers veoie
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. . . Top view from the direction perpendicular
Mixed Dislocation to the plane on which dislocation line is lying

—

b

A
f t W.T.Read: Dislocations in crystals(1953)

Dislocation loop

E
=} .
P
-
s = ? 6 y
=¥
+H 1
] LA e 4eee
Ienees i
M
|~
2 2,b
- - = E
Fhps - 0
3
00080
B
W.T.Read

An example of a Frank-Read source in silicon. The dislocation loops have been delineated by
chemical etching. In silicon, the loops are not circular; the anisotropic bonding of Si creates

4 " composed of approxi y straight (From W. G. Dash, Dislocations and
Mechanical Properties of Crystals. ed. 1. C. Fisher, Wiley, New York, 1957.)
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Frank-Read Source Dislocation source in a crystal

http://zig.onera.fr/DisGallery/

Role of dislocations on mechanical properties

Not only the mechanism of plastic deformation
but also
strengthening

Work-hardening: To increase flow stress with
M increasing dislocation density

ghening: To suppress crack extension

BEE by dislocation emission
\ from the crack-tip

Temperature dependence of fracture toughness
and yield strength in Steel

n 200~ =1 1000
] E.T.Wessel (1969)
c S <
S E 150} 4750 o B
S . £ <
2 & S 9
v = -~ &
5~ 100 1500 s~
B & © g
o >
- 50 -1 250

0 . 1 0

-200 -100 0

Temperature / °C
Brittle-to-Ductile Transition (BDT)

P.B. Hirsch and S.G .Roberts (1997)
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BDT in ionic crystals and semiconductor

K Higashida and N Narita(1994) S ik Si Crystal
0.6¢ NaCl Tx10%mimin St John (1975)
IE \ LE ar 5x105mimin ]
& 110 s
§ 04 KCl /A Z3b 510 %mmin
3 N
X 0.2t o
1 y..{g’—); __________________
"0 100 200 300 400 500 0 1000 1100 1200 1300
Temperature / K Temperature / K

BDT: general phenomenon in crystalline materials
Increase in fracture toughness #mp plastic deformation around a crack-tip

Stress Relaxation Mechanism ?

Crack-tip blunting, |:> well known, but not enough
Plastic work to understand what toughness is

[ Crack tip shielding by dislocations ]

proposed independently by R.Thomson and J. Weertman in 1978
Questions

Are there any actual evidences on crack-tip shielding?

Is the nature of crack-tip dislocations shielding type ?

~=

Direct observation of
Crack-tip fields and dislocations

Stress field around a crack tip

(I) Stress from

KI
the external applied load O-ij = W fij (9)

Stress intensity factor O, : Applied external stress

: Crack length
F . Specimen shape factor

Q

KI =0y JTCIF

O0TT 4y
e
crack
N6 .
5 X
£
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Local Stress around a Crack Ti

(I) Stress from the applied external stress

Applied Intel:nal
. &f (9) External Stress
0, = \/? ij Stress ’
o 4y
(IT) Stress from the internal source
I
D @ f 0) crack A'
L i > X
ij \/? ij 0
(I)+(IT) Total stress from l'

the external stress and internal stress

T D
Ojj =0y O > Local stress intensity factor
=" £.(0) ki =K, + kp
\/; v Applied stress _Local k by

intensity factor dislocations

Critical condition for crack extension

crack ZY F ,

surface tension crack extension force

1_
Q-v) 2 _ 2,
2u

where kl = K1 +kD

Local stress  Applied stress  Local k due to
intensity factor intensity factor dislocations

Fr =

wu: shear modulus, v: Poisson’s ratio

Critical condition for crack extension

Fracture 4 ‘u'}/

Toughness K[C = —_— kD
1-v
Interatomic Dislocation
bonding shielding

Q<
&

k,<0 : Shielding = K¢ /_!\é“
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Local stress intensity factor k due to dislocations

=M E b, + b, +ﬂb_j(éi—§)
2i(1-v) 4| 27, \/mgj Qng,)"

iy
l Cf B;: Burgers vector
X u : Shear modulus

crack ’ v : Poisson’s ratio

Critical condition for crack extension

2u
Fracture 4
Toughness K]C = ﬂ - kD
1-v
Interatomic Dislocation
bonding shielding

%24
[ k<0 : Shiclding = K¢ /7 ]

Crack-tip shielding by dislocations

Yy
Y
Crack X
A
.}'\:.
(Unit :MPa) lml
u
No external stress
I:] Tension
Ej Compression
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Crack-tip shielding due to dislocations

Under the same tensile loading

Without With
disloc. emission disloc. emission

High voltage Transmission Electron Microscope

at Kyushu University

Q energy filter

Accelerating voltage JEM-1300NEF with Q energy filter

1250kVv

Dislocation configuration in front of a crack-tip in a MgO crystal

e

B St g e

{001} incidence, g=020 ,9\0*—

Simulated image of screw disloc.

-d
b=a/2[071] ~
L-H Screw Disloc.

RH screw LH screw

4

b=a/2[011]
R-H Screw Disloc.
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Crack and dislocations in Si crystal

Dislocations in a Si crystal

Thickness : 9.89um

80eV slit
centered on 1300eV

Further research necessary in dislocation-related problems

Core structure of screw dislocations in bcc crystals
High Peierls Potential, low-temperature embrittlement

Interaction between dislocations and other defects
Work-hardening, Solution hardening,
fine-grain strengthening

Fracture toughness and hydrogen embrittlement

Dislocation Engineering
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MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS
August 28-30, 2017, Fukuoka, JAPAN

Analysis of stress field of kink boundary based on
lattice defect theory

Akihiro Nakatani
Osaka University
(joint work with Xiao-Wen Lei (Fukui University))

An expression of the displacement field of the continuum limit of uniformly dis-
tributed dislocations on afinite straight segment in an infinite elastic body is formulated
as a closed-form. The exact solution based on the linear elasticity is applied to describe
the elastic field near a kink boundary in magnesium alloy with long-period stacking or-
dered structure. Stress singularity of line of intersection between two kink boundaries
will be discussed in detail by an asymptotic analysis as well as computational analysis.
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MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS
August 28-30, 2017, Fukuoka, JAPAN

Structure of tilt grain boundaries from
mathematical perspective

Kazutoshi Inoue
AIMR, Tohoku University

(joint work with Motoko Kotani! and Yuichi Ikuhara!?)

Functional materials are often used by a polycrystalline form, and their electrical
and physical properties are strongly affected by crystalline defects such as dislocations
and grain boundaries (GBs). Structures and properties of GBs have been intensively
studied both experimentally and numerically for decades. Simplified system of bicrys-
tals has been often investigated in order to determine individual contributions from
various components to the macroscopic properties. Many studies have mainly focused
on special commensurate GBs with a short periodicity. However, any GB deviated
from a typical commensurate orientations can have a rather long periodicity which are
well described by the structural-unit model. It has been shown that the structures of
symmetrical tilt GBs can be described by a part of quasi-periodical arrangements of
structural units as a realization of the lowest energy structure under an assumption
that the structure may change as continuously as possible as a function of misorien-
tations. Consequently, two types of structural units are arranged in a way that GB
dislocations are maximally separated. Because of this property, the periodicity and the
arrangement of structural units in symmetrical tilt GBs can be closely related to the
distribution of rational numbers that is well represented by the Farey sequence. We
have systematically predicted the arrangement of structural units in various types of
GBs in ceramic materials by utilizing the Farey sequence. The atomic configurations
in GBs were characterized by the aberration-corrected scanning transmission electron
microscopy, showing a nice agreement with the prediction [1-3].
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1. INTRODUCTION

Materials are often used by a polycrystalline form, and their macroscopic properties
are strongly affected by crystalline defects such as dislocations and grain boundaries
(GBs). Grain boundary (GB) is an interface formed by two adjacent crystal grains.
Atomic structures and functional properties of GB have been intensively studied ex-
perimentally and numerically. Most of the studies have mainly focused on special
commensurate GBs such as coincidence-site lattice (CSL) GBs with short periodic-
ity [1-4]. Commensurate GBs have been classified by the coincidence index X, and the
CSL theory of high dimensional lattices has been developed after the discovery of qua-
sicrystals [5,6]. Especially, simplified system of symmetrical tilt GBs have been often
investigated in order to determine individual contributions of various components to
their properties. A GB deviated from a commensurate orientation with short period-
icity may show a long periodicity which can be well described by the structural-unit
model [7-9]. High index CSL GBs can be described by a relatively long periodicity of
structural units which form a part of a quasi-periodicity instead of random structures.
It has been found that the arrangement of structural units in a GB can strongly affect
the GB energy which should be important in mechanical behavior, ductility, segrega-
tion and so forth [10-20]. Since there exist only a few CSL orientations with short
periodicity, the O-lattice theory has been proposed in 1960’s in order to interpolate
short-periodicity structures [21-23]. A general theoretical framework in regard to the
symmetry of crystallographic groups on the dichromatic complex of two adjacent lat-
tices was developed [24,25]. Then, a general principle to obtain the arrangement of
structural units has been proposed, assuming that the GB structure can be described
by a combination of two reference structures, and change as continuously as possible
according to the misorientation [26-28]. Relatively recently, irrational interfaces result-
ing in quasi-periodic structures have been studied and a method to approximate the
structure has been demonstrated [29,30]. According to the rapid development of ex-
perimental techniques, direct observation of GB structures due to aberration-corrected
scanning transmission electron microscopy (STEM) combined with the first-principles
calculations has been making important progress in materials science [31, 32].

However, a general mathematical principle is also necessary to be developed for pre-
dicting the stable structure of GBs and their relation to properties in various materials.
We found that the periodicity and the arrangement of structural units in symmetrical
tilt GBs can be closely related to the distribution of rational numbers that was well rep-
resented by the Farey sequence. The arrangement of structural units in various types
of GBs in ceramic materials were systematically predicted by utilizing the Farey se-
quence which nicely agreed with STEM observations in atomic-resolution. This article
is mainly based on [33,34].

2. PRELIMINARIES

2.1. The CSL theory. Let L be an n-dimensional lattice in R™, which is isomorphic
to a finitely generated Abelian subgroup of full rank with the co-compact property, and
O(n) be the group of orthogonal transformations in R™. One of the lattice points in
L is chosen to be the origin, and RL stands for the transformation of L by R € O(n).
Then, the sublattice L N RL is called the coincident-site lattice (CSL) and R € O(n)
is a coincidence isometry if the intersection L N RL forms a sublattice of full rank with
a finite index. The index is defined as the group index ¥ := Yg(L) = [L : L N RL],
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which is equivalent to the ratio |L.N RL|/|L| where [L N RL| and |L| denote the volume
of the fundamental domains of L N RL and L as well as to the reciprocal density of
CSL points. Let Isomc(n) denote the group of coincidence isometries in R™. Then,
R € SO(n) NIsomc(n) is called a coincidence rotation. The CSL is considered as the
maximal sublattice that is contained in both of L and RL. The union LU RL may form
so-called a dichromatic pattern [24]. The CSL dichromatic patterns of £17 and X5 are
shown in Fig.1. For R € Isomc(n), the group

(1) L+RL={121+'U2;U1€L, 'UQERL}

may form a super-lattice of L (and RL) which is called the displacement-shift complete
(DSC) lattice [35]. The DSC lattice is the minimal super-lattice that contains both L
and RL, generated by the minimal translations which preserve the CSL dichromatic
pattern. Later, we may see that a GB dislocation can be introduced according to the
DSC lattice in order to minimize the GB energy by the minimal displacement of lattices.
Therefore, a GB dislocation especially in a high-angle GB is called a DSC dislocation.

2.2. The O-lattice theory. The O-lattice theory was introduced to generalize the
CSL theory [21-23]. For a lattice L in R™ and R € O(n), the O-lattice is defined by

(2) Or(L):={acR"; (I - R YHaecL},

where [ is the identity transformation. The lattice structure of Og(L) is induced from
L unless 7 — R~! degenerates. An element in Og(L) is called an O-lattice point. From
Eq.(2), a € Og(L) is recognized as the origin of R € O(n) in the dichromatic pattern of
L and RL. When det(I — R~!) = 0, a family of hyperplanes may appear. It should be
noted that a smooth variation of R € O(n) induces the smooth variation of O-lattice
while CSL configurations with low ¥ only exist discretely.

The idea of O-lattice was introduced in order to analyze the best matching points
of two lattices where misfit is maximized on the boundary of Voronoi cells of O-lattice
points. We expect that dislocations can be introduced if a GB plane intersects the
boundary of the Voronoi cells of O-lattice points. Therefore, the low density of O-
lattice points results in the low dislocation density. The O-lattice is a way to generalize
the CSL since any CSL points can be the origin of a coincidence rotation. Conversely,
given an O-lattice point and the transformation R, the lattice configuration around it
can be recovered. From Eq.(2), one may see that |L|/|det(I — R~1)| gives the volume
of the fundamental domain of the O-lattice, and therefore that |det(I — R™1)| is the
density of O-lattice points as with ¥ in the CSL theory. Generally, Or(L) is a super-
lattice of the CSL if R is a coincidence rotation.

O-lattice points can be classified in terms of the internal coordinates which is given
by a projection of Or(L) to the quotient R™/ ~ with respect to the translation sym-
metry of L. The set of projected O-lattice points is denoted by @R(L) which is con-
ventionally called the reduced O-lattice. Let #@R(L) denote the number of elements
in Op(L). Then, #Og(L) is finite if R is a coincidence isometry. For R € Isome(n),
we have #Og(L)/|det(I — R™)| = Lr(L) unless det(I — R~!) = 0. The translations
which preserve the total CSL pattern can be classified by the translations in Og(L) [23].
Examples of reduced O-lattice points are shown in table 1 for a 2-dimensional square
lattice L and the coincidence rotation R with the rotation angle 26 around the [001]-
axis.
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TABLE 1. A classification of reduced O-lattice points for the (m 1 0)-
GBs with the rotation angle 20 around the [001]-axis for a positive

integer k.
cotf®  GB plane Y reduced O-lattice points

2k (2k10) 4kT +1 (0,0), (1/2,1/2), (0,1/2), (1/2,0)
2k+1 (2k4+110) 2k2+2k+1 (0,0), (1/2,1/2)

2.3. Structural-unit Model. The periodicity of GBs can be described by the structural-
unit model. A structural unit is a polyhedron of atomic sites which typically appear
around the GB. The cubic crystal viewed along the [001]-direction can form a square
lattice, and the Miller index for the [001]-symmetrical tilt GB with a tilt angle 26 is
given by (g p 0) satisfying cot § = q/p where ¢ and p are coprime positive integers with
q > p (except the case ¢ = 1 and p = 0). It might be useful to consider a polygon of
atomic sites if the problem can be deduced to 2-dimension. As highlighted in Fig.1, a
structural unit of the (¢ p 0)-structure of the [001]-symmetrical tilt CSL GB is defined
to be a kite-shaped tetragon which is made by gluing a pair of right triangles of atomic
sites at their hypotenuses whose sides in the right angles are ¢ and p in the unit of
the lattice constant. It can be useful to utilize the O-lattice as an indicator of the
periodicity of the structural units. In Fig.1, the CSL GBs are defined by the line pass-
ing through the CSL points below which there are points of L and above which there
are points of RL. GBs in Fig.1 can be described by an array of single type structural
units. Let Or(L)|ap and Og(L)|gp denote the subset of Or(L) and Op(L) restricted
on the GB. We notice (0,0), (0,1/2) € Or(L)|gp for the £17 dichromatic pattern in
Fig.1(a), and (0,0), (1/2,1/2) € Og(L)|gs for the X5 dichromatic pattern in Fig.1(b).
Two types of points in @R(L)\GB exist periodically on the GBs and structural units are
superposed passing through the CSL points (0,0) € @R(L)\GB.

2.4. Diophantine problem. For any irrational number x and an integer ¢ > 0, there
are positive coprime integers p and ¢ such that |z — p/q| < 1/tq [36]. One of the efficient
ways to approximate an irrational number by a rational number can be demonstrated
by the continued-fraction expansion. The principal continued-fraction expansion of a
positive real number x is given by

(3) T =ap+
mt g

as + i

az + —

with a non-negative integer ag and positive integers a;’s (¢ = 1), which can be denoted
by @ = [ap; a1,a2,a3,---]. Let {P,} and {Q,} (n = 0) be sequences defined by Py =
1, P = ao, QO =0, Ql =1, Pn+1 = P, 1+ a,P, and Qn+1 = Qn—l + anQn- Then
P, and @, are coprime and satisfy |z — P,/Qn| < 1/QnQn+1. Thus, an approximating
sequence {P,/Qn} of x can be obtained, and the {(Q, P, 0)}-structures may form a
sequence of the Rational Approzimant Structure(RAS)s [30] which may converge to the
(z 1 0)-structure, realizing a part of a quasi-periodic arrangement of structural units.
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FIGURE 1. Dichromatic patterns of lattices of (a) ¥17, (410)-structure
with 207 ~ 28.07° (cotfy = 4) and (b) X5, (310)-structure with
205 ~ 36.87° (cot f2 = 3). The O-lattice Or(L) corresponding to each
coincidence rotation R, and structural units are superposed [33].

Note that we have

(4) [ao; A1, 7an] = [a0§ Ay, 7an—1] H [a0§a17 ct,0p—1,0n — 1}7
indicating that the rational number [ag;ay, - - ,ay] is uniquely produced by the parent
rational numbers [ag; a1, - ,an—1] and [ag; a1, ,an-1,an — 1].

3. APPLICATION TO THE GB STRUCTURE

3.1. Application of the O-lattice theory. We demonstrate an application of the
O-lattice theory by focusing on the symmetrical tilt CSL GBs. The rotation axis is set
to be the [001]-axis. Since the (g p 0)-plane is spanned by the [001] and the [pg0]-axes,
the problem deduces to a 2-dimensional one. By taking the standard coordinates for a
square lattice L, and letting R = R(26) be the rotation of 20 around the [001]-axis, we
have

1 cotd O
(5) (I—R(29)‘1)_1:% —cotd 1 0],
0 0 1
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restricted on the plane perpendicular to the [001]-axis. By applying Eq.(5) with cot§ =
q/p to a translational vector £(0,1,0) € L ~ Z> to obtain the O-lattice on the (g p 0)-
plane, one may see

0 /
(©) a-reo (1) <L),
0 0

which is on the (¢ p 0)-plane. The CSL points are obtained by Eq.(6) if [ is divisible
by 2p. If I is odd, the first component of Eq.(6) varies while the second component is
maintained at 1/2 in Or(L). Therefore, the periodicity of Eq.(6) in Og(L) can be given
by 2p. Recalling the case of CSL GBs with short periodicity in Fig.1, it can be shown
that the periodicity of the structural units is given by p by drawing structural units as
in Fig.3(b) starting with a CSL point and passing through O-lattice points alternately.
Now, we consider the GB with the misorientation angle 26 ~ 35.30° (cot6 = 22/7)
corresponding to the (22 7 0)-structure which is a near ¥.5, (310)-structure with 26y ~
36.87° (cotfy = 1/3). In Fig.3(b), the dichromatic pattern of the (22 7 0)-structure
with the fundamental domains of L is presented. As in Fig.1, the CSL GBs are defined
by the line passing through the CSL points at the edge of the figure below which there
are points of L and above which there are points of RL. It can be seen that O-lattice
points in the structural unit shifts periodically in Op(L). In the fourth structural unit
from the left, an O-lattice point reaches at the edge of the fundamental domain of L
whose internal coordinates are (0,1/2,0) € Or(L) with respect to the coordinate system
of L. Since the theoretical GB is on the (22 7 0)-plane, the above argument suggests
that the periodicity of the structural units is 7. The angle 26 ~ 35.30° (cot 6 = 22/7)
corresponds to the CSL configuration of ¥533 which is in between 17, (410) (26; ~
28.07°,cot 1 = 4) and the X5, (310) (26, ~ 36.87°,cot 6 = 3), and the structure may
be composed of the (410) and the (310)-structural units. Eq.(6) becomes (0,1/2) for
I = 7(mod 14) which appears typically in the ¥17, (410) structure (Table 1). Namely,
we have (227 0) = (41 0)+6(3 1 0), which is viewed as a decomposition of a reciprocal
vector. As we see, a GB is called the reference structure if it is described by an array
of a single type structural units which can interpolate intermediate GBs in between
them. Once two reference structures are determined appropriately, one can obtain the
integral coeflicients uniquely for each GB.

3.2. Farey sequence and GB structure. The periodicity of the structural units of
the (¢ p 0)-structure can be p corresponding to the periodicity of the O-lattice points.
A mirror-symmetrical sequence {p;}?2,:

(7) 1797 87 77 67 57&7 4717 37§7 57 77&7 27&7 77 57§7 3717 47&7 57 67 77 8797 1

may appear repeatedly for p < 10, corresponding to 0° < 20 < 90°. The sequence
is recognized as the numerators of irreducible rational numbers in between 1/m and
1/(m — 1). For instance, irreducible rational numbers in between 1/4 and 1/3 whose
numerators are less than 10 can be given by 1/4, 9/35, 8/31, 7/27, 6/23, 5/19, 9/34,
4/15,7/26,3/11, 8/29, 5/18, 7/25,9/32, 2/7, 9/31, 7/24, 5/17, 8/27, 3/10, 7/23, 4/13,
9/29, 5/16, 6/19, 7/22, 8/25, 9/28, 1/3. Therefore, if p; = 1 and pag = 1 correspond to
the 317, (410)-structure with 26; ~ 28.07°(cot §; = 4) and the X5, (310)-structure with
205 ~ 36.87° (cot By = 3), respectively, pag = 7 corresponds to the (22 7 0)-structure
with 20 ~ 35.30° (cot @ = 22/7). It is observed that p; = p;—1+p;+1 holds for underlined
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terms in the sequence (7), corresponding to the decomposition of a periodicity p; to
pi—1 and priq.

The hierarchical structure in the distribution of rational numbers can be typically
shown in the Farey sequence [37-39]. The Farey sequence of the order N denoted
by Fy is defined to be an increasing sequence of irreducible rational numbers whose
denominator is not bigger than N. It is closely related to physical phenomena [40-45].
As we see, the sequence (7) appears in the numerators in between 1/m and 1/(m — 1)
(m = 2) as well as in the denominators of the Farey sequence of the order 9. By
introducing the operation H (the Farey summation) defined by

a c a—+c
“H= =
®) b d b+d

Fny1 can be produced by applying the operation to adjacent rational numbers in Fi.
By setting Fj to be {0/1,1/1}, the Farey diagram can be inductively obtained as
in Fig.2. The diagonal line segments in Fig.2 indicate the Farey summation defined
in Eq.(8). Each rational number p/q in Fig.2 may correspond to cotf = ¢/p of a
CSL configuration and thus, it can represent the (¢ p 0)-structure. Note that rational
numbers in the early order of the Farey sequence correspond to the low index GBs.
Here, we assume the summation in Eq.(8) is assumed to be non-commutative, but
cyclic permutations are allowed in order to describe the unique periodical arrangement
of structural units.

FIGURE 2. The Farey diagram up to the order 9 [34].

Many of the previous investigations have shown that the (¢ p 0)-structure of a
symmetrical tilt GB can be composed of an integral linear combination of two types of
reference structures [10-20,46-49]. Let p; and ¢; be coprime, positive integers (except
the case ¢; = 1 and p; = 0), respectively for ¢ = 1,2. The (¢ p 0)-structure can be in
between the (g1 p1 0) and the (g2 p2 0)-structures if p1/q1 < p/q < p2/qe is satisfied.
Moreover, we assume

(9) det (pl p2> =1

q  q2
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Then the general decomposition formula for the (g p 0)-structure of a [001] symmetrical
tilt GBs which is in between the (g1 p1 0) and the (g2 p2 0)-structures can be given by

(10) (g p0)=ni(q p1 0) + n2(g2 p2 0),

corresponding to a decomposition of a reciprocal vector. If p; /g1 and p2/g2 are adjacent
rational numbers in the Farey sequence, Eq.(9) can be always satisfied. Therefore, the
value of tan 6 corresponding to the reference structures can be chosen from an adjacent
pair of rational numbers in the certain order of the Farey sequence. Once two reference
structures satisfying Eq.(9) are determined, the positive integral coefficients n; and ng
are uniquely obtained for each GB. While n; + no = p gives the periodicity of the
structural units, the ratio of the number of the structural units can be given by
(11) n_ P ;7

ni P2 p2(p2cotd — g2)
which is continuous as a function of the misorientation angle. The (g p 0)-structure is
said to be closer to the (¢1 p1 0)-structure than the (g2 p2 0)-structure if n; > ng is
satisfied which is equivalent to p1/q1 < p/q < (p1 + p2)/(q1 + ¢2). Eq.(11) is closely
related to the average spacing of DSC dislocations [11, 19,20, 34]. It is characterized
by the DSC Burgers vector defined by the closure failure of a closed circuit of atomic
sites in the reference structure of the minority structural unit expanded in the reference
structure of the majority structural unit. Its magnitude and orientation is determined
by the DSC lattice. The DSC Burgers vector of the (g2 p2 0)-structure defined in the
(¢1 p1 0)-structure by the Left-Handed-First-to-Start manner can be provided by

—2a
(12) bpsc = ﬁ[tﬂ p1 0]
for the reference structures satisfying Eq.(9) where ag is the lattice parameter. If the
(¢ p 0)-structure satisfies Eq.(10) with n; > ng, the DSC Burgers vector can be ng
times larger than the one in Eq.(12), resulting in the introduction of ng-dislocations at
each of the minority (g2 pa 0)-structure which may be maximally separated.

It has been assumed that the arrangement of structural units should vary as contin-
uously as possible with respect to the misorientation angle [29]. Thus, for each angle,
the arrangement can be determined uniquely among a number of possibilities. Suppose
that a GB structure may be described by s copies of A units and ¢ copies of B units
(s > r > 1) where s and r are coprime, positive integers (i.e. the CSL configuration
is assumed). Let |x] denote the maximal integer which does not exceed z. The algo-
rithm is to arrange the structural units as evenly as possible by applying the Euclidean
division to r—_; = s and rg = t. Namely,

(13)
r_1A+1oB (ro1 > 19> 1)
= ToAl =+ T‘1A0 (AO = A7 A1 = S()A() + B, So = |_7’,1/T0J7 ro>T1r1=7T_1—70So > 1)
= = rpApgr + TR A
(Akr1 = spAr + A1, s = |1h—1/Tk)s Tk > Th1 = Tho1 — SETE > 1)

which can be iterated until 7 becomes 1 for some k > 0.
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4. EXPERIMENTAL VERIFICATION

A crystal of high purity MgO (99.9%) (Shinkosha,Ltd., Tokyo) was purchased to
obtain bicrystals. Symmetrical tilt GBs were fabricated based on the bicrystallographic
relationships of 26 = 35.3° (a near the X5 structure of 26, ~ 36.87° (cot 62 = 3)) by
high-temperature diffusion bonding of the two single crystals at 1500°C for 10 hours in
air. The obtained bicrystals were thinned for STEM observations. The STEM images
were taken with the high-angle annular dark field mode (the semi-angle of 60-180 mrad)
which provided the intensity proportional to the atomic number [50].

As we see, the misorientation angle 260 ~ 35.3° may correspond to the (22 7 0) struc-
ture with cot§ = 22/7. We have 2 = [3;7] =60 2 EE! 4 , supporting the decomposition
(2270)=6(310)+1(410). Itis assumed that DSC dlslocations are introduced in the
minority ¥17, (410) structural units. In Fig.3(a), a STEM image of the symmetrical
tilt GB in MgO with the misorientation angle of 35.3° is presented and a corresponding
schematic structural units are superposed. It shows that the periodicity of the struc-
tural units can be verified as 7. Although it is a simple example, the way to obtain
RAS’s is identical to other GBs [51,52].

S O O e Dt N "!;
SRS NS X TS T cﬁ% %e_a% e
FIGURE 3. (a) A STEM image of a symmetrical tilt GB in MgO. The
tilt angle is approximately 35.3° which is a near X5 GB of 20, ~
36.87° (cotfy = 3). The GB is composed of a X17 structural unit
A and 6 copies of ¥5 structural unit B in a periodical unit. (b) The
dichromatic pattern of lattices L and RL for the misorientation of 35.3°.
CSL points exist at the edge of the figure. The O-lattice and structural
units are superposed so that they pass O-lattice points alternately. The
O-lattice point in the middle of the figure reaches at the edge of the
fundamental domain with (0,1/2) € Og(L). The internal coordinate
of O-lattice points inside the structural units shift gradually, indicating
the periodicity of the GB is 7.

5. SUMMARY

Atomic structure of symmetrical tilt GBs are analyzed from mathematical perspec-
tive. Under the assumption that GB structure may change as continuously as possible
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as a function of misorientation, two types of structural units are arranged so that mi-
nority units where DSC dislocations are introduced are maximally separated. Because
of this property, the structures of symmetrical tilt GBs can be described by a part of
quasi-periodical arrangements of structural units as a realization of the lowest energy
structure. Then, reference structures can linearly interpolate intermediate GBs. The
major structures were well predicted by a simple decomposition formula of symmetrical
tilt GBs with an algorithm due to the Farey sequence. The arrangement of structural
units can be derived so as to maximize the separation of minority units which can be
applicable to other GBs.

Although direct STEM observations in atomic scale can show the combination of
structural units at GBs, the origin and the mechanism of GB phenomena have not been
fully understood yet. For instance, the general criterion for reference structures of GBs
which cannot be easily determined by their GB energy. The mathematical formulation
for the structures of asymmetrical tilt, twist, and their combination are yet unknown.
It should also be important to discuss configurational entropy in the structural unit
model as well as the dependence on geometrical restrictions.
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We study some lattice defects in terms of monodromy in the sense of William
Thurston. This description of lattice defects enables us to encode some special structure
of it which arises from original lattice structure.

101



Lattice defects from monodromy

Lattice defects from monodromy

Hokuto Konno, Tsukasa Ishibashi, Sho Ejiri, Junichi Nakawaga,
Yasuhiro Wakabayashi

The University of Tokyo

August 29, 2017
Mathematics in Interface, Dislocation and Structure of Crystals
at Nishijin Plaza, Kyushu University

Lattice defects from monodromy

L Introduction

Outlines

Introduction

Thurston's (G, X)-manifold and monodromy

Monodromy of dislocations

Lattice defects from monodromy

L Introduction

Outlines

Introduction

102



Lattice defects from monodromy

L Introduction

Aim of this talk

Describe “lattice defect” in terms of monodromy.

“Lattice defect”- - - Most parts look like usual “lattice”, but the
lattice structure is broken somewhere.

Typical examples of lattice defects - - - Dislocations
m edge dislocation

I Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153.

Lattice defects from monodromy

Introduction

m screw dislocation

2Adapted from W. D. Callister, Jr., Materials science and engineering : an introduction, John Wiley & Sons,
Inc., 1940, p. 90

Lattice defects from monodromy

L Introduction

Screw dislocation (from another angle):

3Adapted from W. T. Read, Jr., Dislocations in Crystals, McGraw- Hill Book Company, New York, 1953
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Lattice defects from monodromy

L Introduction

m Some screw dislocations are described in terms of monodromy
by Hamada—Matsutani—-Nakagawa—Saeki—Uesaka '16.

m We shall consider a kind of generalization of their description
using monodromy in the sense of William Thurston. It can be
applied also to edge dislocations (and also to further general
lattice defects).

Lattice defects from monodromy

L Thurston's (G, X)-manifold and monodromy

Outlines

Thurston's (G, X)-manifold and monodromy

Lattice defects from monodromy

L Thurston’s (G, X)-manifold and monodromy

To describe monodromy in the sense of Thurston, we need the
notion of (G, X)-manifold. The content of this section is based on
W. Thurston’s book entitled “The geometry and topology of
three-manifolds” (unpublished notes).

X : a topological space

G : a group

Assume that G continuously acts on X: we have a group
homomorphism p : G — Homeo(X), where

Homeo(X) :={f : X — X | f is a homeomorphism }.

Actually we will only use the case that
m X is a C*-manifold, and
m G c Diff*(X) := {f: X — X | f is a C¥-diffeomorphism }

for our main purpose.
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Lattice defects from monodromy

L Thurston's (G, X)-manifold and monodromy

Definition ((G, X)-manifold)
M : a topological space
(1) {(Un, Pa)}a is a (G, X)-atlas on M if
m {U.}q is an open covering of M,
m each ¢, : Uy — X is a homeomorphism onto its image, and

B $o 0 ¢[;1|¢ﬁ(uwuﬂ> 2 98(Un 0 Ug) = ¢a(Us 0 Up) is the
restriction of an element of p(G).

(2) M equipped with a (G, X)-atlas is called a (G, X)-manifold.

Each (Ua, ¢a) is called a (G, X)-chart.

Lattice defects from monodromy

L Thurston's (G, X)-manifold and monodromy

X =R", G = Homeo(R")
= (G, X)-manifold = topological manifold
X =R", G = Diff(R")
= (G, X)-manifold = smooth manifold
X = C", G = Hol(C")
= (G, X)-manifold = complex manifold
@A X = H" (hyperbolic space), G = Isom(H")
= (G, X)-manifold = hyperbolic manifold

Lattice defects from monodromy

L Thurston’s (G, X)-manifold and monodromy

Henceforth assume that

m X is a C¥-manifold, and

m G DiffY(X) :={f: X - X | fis a C¥-diffeomorphism }.
For each (G, X)-manifold M, we can define a group
homomorphism which is called the monodromoy

Mon : w1 (M, po) — G

if we fix a point pg € M and a (G, X)-chart (Up, ¢o) near po. (If
we change the initial data pg and (Up, ¢o), the map is changed by
conjugation. )

We now sketch the construction of the monodromy map.
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Lattice defects from monodromy

L Thurston's (G, X)-manifold and monodromy

Idea of the construction:

Take a loop 7 : [0,1] — M with base point py.

Take (G, X)-charts (Ui, ¢1), ..., (Un, ¢n) which cover the
image of 4. (Note that the neighborhood of the base point is
already covered by Uo.) Take the covers so that U; n Uj41 is
non-empty and connected (0 < Vi < n—1).

Jlg; € G s.t. g; gives the coordinate change of (U;, ¢;) and
(Uis1, ®it1). (Here, for the uniqueness, we need to assume
cv)

@ One can show that Mon([7]) := go - - - gn—1 € G depends only
on the homotopy class of « (for the fixed chart (Up, ¢o)).

If we take another base point pj and a chart (Up, ¢g) near pg, the
monodoromy map is changed by conjugation. In particular, if G is
abelian, we have a homomorphism Mon : 71 (M) — G which is
independent of the choice of base points and charts near that.

Lattice defects from monodromy

- Monodromy of dislocations

Outlines

Monodromy of dislocations

Lattice defects from monodromy

L Monodromy of dislocations

Recall:
“Lattice defect”- - - Most parts look like usual “lattice”, but the
lattice structure is broken somewhere.

LOCALLY, it looks like the standard Z3 in R3.

s One can hope to give a (Z3, R®)-manifold structure
corresponding to the graph of the given lattice defect.

v~ One can obtain the monodromy (like as “invariant” of lattice
defects).
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Lattice defects from monodromy

L Monodromy of dislocations

Given a picture of a lattice defect,

m assume that we have the notion of “vertices” (< lattice
point), and

m assume that we have the notion of “edges’ (<> nearest lattice
points).

e.g. edge dislocation

Ecgn
dislocation o -
line

“#Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153.

Lattice defects from monodromy

- Monodromy of dislocations

Define M as the “fat graph”:

M := U By (e),
E:edge, peE

where € > 0 is a sufficiently small number, and B (¢) is the open
ball centered at p with radius €. M is an open submanifold of R3.

In some good situation, we can give a (Z3,R3)-manifold structure
on M. We now explain the (Z3, R®)-manifold structure for
edge/screw dislocation.

We first consider a 2-dimensional model of edge dislocation.

Lattice defects from monodromy

L Monodromy of dislocations

Z2

ZZ

Figure: (Z2,R?)-charts on the edge dislocation
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Lattice defects from monodromy

L Monodromy of dislocations

Strictly speaking, to calculate the monodromy following the
definition, we have to decompose these two charts to be “U; n U;+1
is connected for each /”. The coordinate change between new two
charts arising from the previous one chart is just id.

ZQ

Figure: Example of decomposition

Lattice defects from monodromy
- Monodromy of dislocations

Calculation of monodromy:
m (coordinate change between (1) and (1)) = (0,0) € Z2.
m (coordinate change between (2) and (2)') = (1,0) € Z2.
> monodromy along this loop = (0,0) + (1,0) = (1,0) e Z2.
(Since G = Z2 is abelian, we don't care about base points.)

1)

il

Lattice defects from monodromy

L Monodromy of dislocations

Except for near this loop, one can trivially give (Z2,R?)-charts on
M.

Since M ~ \/,, St (homotopy equivalent), we have 71 (M) = zZ.
The monodromy map

Mon : 711 (M) = %37 — 72
is non-trivial: (the above loop) — (1,0).

Of course one can consider 3-dimensional model of edge
dislocation, and similarly obtain

Mon : 71 (M) = %37 — Z3.

We have similarly have a distinguished loop, and
(the distinguished loop) — (1,0,0).
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Lattice defects from monodromy

L Monodromy of dislocations

The non-trivial direction (1,0, 0) for monodromy is perpendicular
to the dislocation line R - (0,0, 1).

5Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976, p. 153.

Lattice defects from monodromy

- Monodromy of dislocations

For screw dislocation, we have to get rid of the “zigzag" part to
give a (Z3,R3)-manifold structure on M, obtained from the
following graph:

- -

One reason why we have to do is, for example, the existence of a
vertex with three edges. This part cannot be a subgraph of Z3.

6Adapted from W. T. Read, Jr., Dislocations in Crystals, McGraw- Hill Book Company, New York, 1953

Lattice defects from monodromy

L Monodromy of dislocations

However, if we get rid of this zigzag part, we can give a
(73, R3)-manifold structure on M, and calculate the monodromy.

This monodromy corresponds to
Hamada—Matsutani—-Nakagawa—Saeki—Uesaka 's description.

The non-trivial direction for monodromy is parallel to the
dislocation line.

This suggests that the monodromy detects the difference between
edge and screw dislocations.
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Lattice defects from monodromy

L Monodromy of dislocations

m Give a mathematical definition of “lattice defect” so that one
can give a (Z3,R3)-manifold structure on it.

m More precisely, construct (73, R3)-manifold structure on a
given lattice defect canonically. (Then the monodromy turns
out to be an invariant of lattice defects.)

m If one need, consider another group G  Diff“(R3) rather
than Z3 to describe more complicated lattice defect.
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Geometry of closed kinematic chain

Shizuo Kaji
Yamaguchi University

(joint work with Eliot Fried, Michael Grunwald, and Johannes Schoenke at OIST)

Consider a system consisting of rigid bodies connected to each other. Such a system can
be modelled by a graph with edges labelled by elements of the Euclidean group SE(3),
where each cycle satisfies a certain closedness condition. We are particularly interested
in a system consisting of hinges. To each vertex is assigned one degree-of-freedom,
namely the rotation angle, and the configuration space of the system is described by
the real solution to a system of polynomial equations. We found an interesting family
of systems on cycle graphs, whose configuration spaces form positive dimensional real
algebraic varieties. They are a type of so called Kaleidocycle (e.g., [1, 2]), but exhibit
intriguing properties such as anti-symmetry and constant bending energy.

REFERENCES
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Discrete-to-continuum limits of moving straight
edge dislocations in 2D

Patrick van Meurs
Kanazawa University

(joint work with Adriana Garroni, Mark Peletier, Lucia Scardia)

In the celebrated paper by Groma and Balogh [3] the evolution for the edge disloca-
tion density given by (P,) is based on performing statistical mechanics on the discrete
edge dislocation dynamics given by (P) for a large number of dislocations. Here, we
present the first rigorous result of — and counterezample to — the evolutionary con-
vergence of (B,) to (P).

We consider n edge dislocations with positions (z1,...,%,) € (T?)" (T? is the flat
two-dimensional torus) and Burgers vectors b;e; with b; € {—1,+1}. The evolution
equation is given by

d.’L’i 1 n )
(Pn) dt = |:81U(l'z)+n;bjal‘/(l’z$]):| biel, te (O,TV)7 1= 1,...,”,
where 9, := e; -V, U : T? — R is an external potential, and V is the interaction

potential for edge dislocation in T? with the same Burgers vector (in particular, V (z) =
(e1-z/]z|)? —log|z| + o(1) for |z| < 1). The evolution for the dislocation densities p*
and p~ of the positive (b; = 1) and negative (b; = —1) dislocations are given by

P Ot =0 (pT (V= (p" = p7)+0U)) in D'(T* x (0,7)),
(P) Op~ =0(p (V= (p~ —p*) = 01U)) inD'(T*x (0,7)).

The counterexample is constructed for U # 0 and the initial data p = p5 = %,
which is not a stationary solution of (P). However, the discrete approximating sequence
of pZ given by well-separated dipoles (i.e., [¢7, — 2;,| < L and |z}, — ;| > £ for all
i,7,n) results in an approximately stationary solution to (P,). Hence, (P) may not be
a good approximation for (P,) for any n large enough.

Our second result is a theorem which specifies evolutionary convergence of a regu-
larised version, called (P2*), of (P,) to (P). (P*) is obtained from (P,) by replacing
V by Vj,, where 6, — 0 as n — oo is the length scale at which the logarithmic singu-
larity of V' is regularized (e.g., by convolution with the usual mollifier). The proof of
evolutionary convergence is divided into two steps. In the first step, the limit passage
n — oo is performed for 0, = § > 0 fixed by employing the theory of A-convex Wasser-
stein gradient flows in [1], which yields an explicit convergence rate of the solutions
to (P?) to those of (P?), where (P°) is obtained from (P) by replacing V by V5. The
second step establishes evolutionary convergence of (P?) to (P) as § — 0 by modifying
the well-posedness proof of (P) developed in [2].
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Patrick van Meurs (Kanazawa U)  Evolutionary convergence of edge dislocations

Patrick van Meurs (Ka

Dislocation dynamics as a system of ODEs

@ n: number of dislocations

z=(z1,...,2,) € (R})™ T, T
dislocation positions [unknowns]
b; € {+l, 71}2

sign of the dislocations [given] T T

@ V: interaction potential n
V(r,0) = —logr + cos? # TT
—V (r,0) = L cos(0) cos(20)
NV(0):=0, O :=e -V L
F € R: external horizontal force el

Evolution driven by interactions:

(Pn)

(;izi(t): |:F+%;bj[781‘/](zi(t)7zj(t)) bier, i=1,....n.

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017
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Main question

TJ.J_ T
L 1
T,TT 1
1 T
T T
1
(Pn)
dx; 1 - B B ‘ opt =01 (pT 01V x(pt —p )~ F])
dt {F + n j;bj[ aV](@i — ;) |biex Op~ =01 (07[31V x(p~ —ph) +F])

@ Continuum PDE proposed by [Groma, Balogh; 1999]
@ No rigorous connection is known

@ General theme: micro—macro connection

Patrick van Meurs (Kanazawa U)  Evolutionary convergence of edge dislocations 30 August, 2017

Lit overview: courtesy of M.A.Peletier
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Simulation with £ > 0: initial condition

(Pn) (P)
di _ 1 - V(e — a o Oipt =01 (pT [V x(pt —p7) — F])
at {” n 2 bl-o e ’)}b’ p = 0u (o [0V * (5 — o) + F))

xd xy
15 15
1 1
05 0s:
(Pn) . 0
45 a5
£ 1
153 4 ] i F] Wi ] (] i 3
+ _
Po Po
is '8
1 1 —
s s
(P) s '
a8 "
1 a4
I w0
wE 4 4 3 2 s (L
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Simulation with £/ > 0 at t = t;

(Pa) (P)
dx;

- 15~y el Q= 0n(p [V x (" —p7) = F])
0 {F+n;b][ nV](zs m}b,el Bup = n (1 + (0 — ) + F))

a(t) x(t)

15
1
0s.
"
a5
1

asig 5
'8
1 = 1
s s
(P) s '
08 a5
) 1

" 1"
wWE 4 8 v g o (L
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(Pn) (P)

@i LN o Vit — o e, 00 =0 10V (0" — o)~ F])
o D S ) D it 4 1 S A A
g T (ta) o (t2) : T (ta) ™ (t2)

05 E ‘ .i‘f" 0s "E ‘ ,}fls
(Pn) . ‘f;‘ 7 " b iy

‘: i i‘}'ﬁ\i , {_': B '};

ar £

"My %, R I W s e §@

L () . p~(t2)
(P) . "

a5 T

'r‘;q' 1 ] i " 3 ':.2 1 ] 1 i 2

(Pn) (P)

dz; 1o Opt =0 (pT[V x (pT —p7) — F)
= |F+ =) bj[-oV](xi —x;)|b:
dt { nz:: =0Vl ’3’)} o ap = V() +F)

1 i 1
s s
(P) s '
a5 n
9 A
s s
wwE 4 8 5 i (A
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Rigorous result on mismatch

Ot =0u(pT [0V x(pt —p) — F))
op~ =01(p [O1V *(p~ —p")+F))
With F > 0, (P) is not stationary at

_ 1 on (0,1)?
pi:ﬂo:{ ( )}-

0 otherwise

Picture: 2t ~ pT for which
the solution x(t) to (P,) is
‘approximately stationary’

Conclusion: if n3/2§, — 0,
then x®(t) % p*(t) for all t > 0
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How about our main question?

T, T
L 1
—
T 1 T T
1 T
- T
1
(Pn) (P)

da; 1NN O =0n(p [V * (0" —p )~ F])
=|F+ — bi[— P — b;
a { o ]; i[O V](xi — x;) | biex G = (p [V *(p —p7)+ F))

@ Seemingly: no (P) exists in terms of p™, p~ only!
o Statistical model of [Groma, Balogh; 1999] has limited applicability

Patrick van Meurs (Ka U Evolutionary convergence of edge dislocations 30 August, 2017

On the other hand...

n—o0

(P,) —— (P) holds when

e 0,V is Lipschitz [no singularity; next few slides], or

@ all dislocation have the same sign (i.e., 1, =0=p ), and
V is logarithmic [Schochet; 1996]

°

e V(r,0) = |r|~® with 0 < o < 1 [Duerinckx; 2015]

e = (a,b) with V convex [vM, Muntean; 2014]

o V(r,0) =|r|~® with 0 < a < d—2 and Q C R? [Hauray; 2009]

Open problem: which properties of V' are sufficient/necessary for
(P,) — (P) in the single-sign case?
o It seems: the stronger the singularity of V, the more (P) regularises p*
over time, but the worse the control over (P,)

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017
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A different approach: regularising the dislocation core

() (P)
da; 1 & Opt =0 (pT OV x(pT —p ) F
CZ = {FwL 5217;[*51‘/5"](361’ —x;)|biex BtZ’ _ Blg;’%&V*gﬁ* —Z7;+FB

=1
@ For instance, Vs :=V % n;
@ Other choices: cutting away balls, phase field

@ 8, is an atomic length-scale ~>  §, 220
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The auxiliary problem (P?)

(P?) % = {FJF%ij[*aﬂfs](mifmj)}biel
j=1
(P9 { Opy =0 (py [01Vs* (o) — py) — FI)
aps = 0u(p5 [O1Vs * (p5 — pi) + Fl)
P) { ot =01 (pT [V x(p" —p )= F))
ap~ =0(p [V * (p~ —p*)+ F))
(P3) (P?) (P)

n — oo 6—0
e I

For convenience, we set I' =0

Patrick van Meurs (Ka U) Evolutionary convergence of edge dislocations 30 August, 2017

Standard approach: (P?) — (P?) as n — oo (part 1)

@ We assume:
e 0,V; Lipschitz, and
o the solution trajectories ;(t) from (P?)
remain in a bounded domain 2 C R?

@ We define the empirical measures

1 _ 1
W= o E Opyy My = o O
i:bj=+1 i:bj=—1

Note: (i1, p1,) € P(Qx {+1,-1)}) 3 (p",p7)

o Weak topology: i — p* iff

/,wdufm/,wdpi Vo eC@)
Q Q

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017
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Standard approach: (P?) — (P?) as n — oo (part 2)

Let z(t) satisfy (P?), and let p € C2°(Q x (0,T)). Then

T d
O:/o atp(zt(t),t)dt:Au

T
:/ Orp(mi,t) + Orp(zi, t) - [bi(falVd- * () 7;L;))(zi)} dt.
0
Taking %Zi:bi=»l ..., we obtain
T T
O:/ /7814,9d;1;rdt+/ /7319% [761V5*(/1i*/1;)} dpydt VeoeCr,
0 Q 0 Q

which is 9y1,; = 01 (11} [01Vis * (1, — 12,)]) in distributional sense.

Conclusion: (17, i) satisfies (P?)

Patrick van Meurs (Kanazawa U)  Evolutionary convergence of edge dislocations 30 August, 2017

Standard approach: (P?) — (P?) as n — oo (part 3)

T T
0= / /7(9t<pd/l¢dt +/ /73150 . [7 NVs* (1, — ;1;)] dy) dt
0o Ja 0o Ja
e P(Q x {+1,—1}) compact in weak topology
= forae t In; IpT(t): ﬂﬁk(t) — pE(t) as k — o0
@ Arzela-Ascoli: ny is t-independent
e With

/ﬁ'aw [ = 01Vs % (i — )] dyi
- /ﬁ _oup(e) (o) — ) (! — ) @ )02 )

we pass to the limit nj, — oo in weak-(P?)

Patrick van Meurs (Ka ) Evolutionary convergence of edge dislocations 30 August, 2017

Standard approach: (P?) — (P?) as n — oo (part 4)

We have proven | “(P?) 222% (P%) | ie.,

o Let Q C R? be a bounded domain, 7,6 > 0

@ Then for all (p!, ps) € P(Q x {+1,-1})

o for all* uio — po

o there exists ng and (p), p; ) € AC(0,T;P(Q x {£})) such that
(i) ufk(t) — p[si(t) forae 0<t<T
(i) pi(t) satisfies (P%) with p3(0) = p

T oy ()
Aepry = O () (01 Vs * (11 — 12,)])

'I’L—)()Ol

" Aoy = 0u(py [01Vs * (5 — p5)]) n
P9 ps (t)

(%) we assume z;(t) € Q for all i,n,¢

Patrick van Meurs (Kanazawa U)  Evolutionary convergence of edge dislocations
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Standard approach: (P?) — (P?) as n — oo (part 5)

The following Gronwall estimate holds:

Wa (4 (£), pry (1) < TWOV Wi (i o )

)

=
ay = u"i’O(,) balances the total 4+-mass
pa ()

° pié(t) satisfies (P?) with initial data a,pZ

Ws: Wasserstein distance; metrises narrow topology
Proof of estimate:

e either by explicit computation, or
o using that (P?) and (P?) are gradient flows with
—A-convex energies [\ = [|01Vs]|Lip)

Patrick van Meurs (Kanazawa U)  Evolutionary convergence of edge dislocations

(P) (P) (P)
e gt >

W (i (t), pr (1)) <
exp(T|01Vs | ip) Wa (1if o, anp)
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Main challenge: (P?) — (P)?

Ay = 0 (pr 100V * (pf — p3)])
Aps = 01(ps [01Vs = (p5 — pi)])

T T
Weak-(P?%) / /78“9 dpfdt = / /781g0 [0uVs = (py = py)] dpfdt
0o Ja 0o Ja

@ Interesting feature:
(P%): &1Vs % (ps — p; ) smooth, but ,05i may have delta-peaks
(P): singularity V regularises p*, but 91V * (p™ — p~) rough

()

Note: not clear why (P) makes sense!

[Monneau et al.; 2010]: (P) is well-posed on T?
Note: on T2, f € L*(T?) = fe (7%

Reason T2 3C >0Vk e Z2:0< (1+ k) <C
We take V5 € W2°(T?) to satisfy the same bound
We define: [0,V x f], := 2miki Vi fi

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017
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Improvement of Monneau's well-posedness of (P)

Key observation: if ;)6i smooth solution to (P?), then [k := pi — p;]

L0 Ent(pf) =3, 0 Jr2 pilogpt = ...
= Jp21001V5] % k5 dris < —c[|01Vs * sl g2y < 0.

Taking [y ... ds, we obtain
ST Ent(pE (1)) + eV * sl < S Ent(p,),
= +

where L2(H') := L%(0,T; H'(T?)). Hence, along a subsequence

py — pt in L®°(Llog L)
O Vs ks — 01V xKk in LZ(Hl)
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Passing to the limit in weak-(P°)

T T
/ /7('3,590 p;f dxdt = / /7('3190 [01Vs * Ks) p;f dxdt
0 Q 0 Q

p? — pF in L>(Llog L)
Vs ks — OV xk in L2(H')
To get strong convergence of (01 Vs * Kkg)s>0:
o Trudinger-Moser: H'(T?) CC Exp(T?) = (Llog L)(T?)*
[f € Exp(T?) = fT2 elfl < o]
@ By Aubin-Lions-Simon: 0, Vj * ks — 01V * k in L*>(Exp)
Conclusion: the limit p* satisfies (P)

Patrick van Meurs (Ka ) Evolutionary convergence of edge dislocations 30 August, 2017

Theorem: (Po") — (P)

(P) (P™) (P)

+ { ; + \ +
Hon p(;" P
Wa (it (1), P, (1) <
exp(T)01Vs,, | Lip) Wa (113 0, cnpi)

Vs € W2(T?)
Theorem: for { Vs — Vin LQ@Q)
0< (1+[k*)[Vals <C V6
e VT >0 35, =0 Vpt e LlogL(T?)
o Yy, — pFexp(T0Vs, |l Lip) Wa (it o, anpt) 2250
e 3n;, Ipt € L®(Llog L) solution to (P):
o it (t) = p*(t) as ng — oo for ae. t € (0,7)

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017
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(P%) — (P): discussion

Also works for V i.o. J1; applies to screw dislocations
Also works in T? for all d > 1 with V" at most logarithmic
Also works for given F' Lipschitz

Extends [Monneau et al.; 2010]'s global existence result of (P) to
general V, and a larger class of initial data

We do not use the gradient flow structure explicitly!
@ Conditions on V:
° XA/;C > 0: prevents ‘negative-energy’ micro-structures
o (1+]k|*)V} < C: at most logarithmic singularities
@ Weak link: Gronwall estimate on Wz(u:f(t),pgin (t)) requires at least
op > 2T/ logn

@ No uniqueness result on (P)

Patrick van Meurs (Kanazawa U)  Evolutionary convergence of edge dislocations

Counter example needs n3/25n —0; @
incompatible with 6,, — 0 ‘slowly’

My current interpretation:
6, — 0 slowly enough
prevents dislocation to cluster
in rigid dipole-structures

%

éﬁ
@i

—V z,g,
o (@ 0m) .
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Current answer to the main question

T, T
L 1
=
T n T T
1 T
s T
1
(Pn) (P)
dw: I, o A=V (ot —p) - F))
b 7[F+n;bj[ O D ot (A AR A

e If §,, — 0 very slowly: yes
e If n?/26, — 0: no
@ [Groma, Balogh; 1999] uses no regularisation (~ d,, — 0 very fast)

Patrick van Meurs (Kanazawa U) Evolutionary convergence of edge dislocations 30 August, 2017

122




MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS
August 28-30, 2017, Fukuoka, JAPAN

Anti-plane deformation model of screw dislocation
and its related variational problem

Masaaki Uesaka
Hokkaido University

As a microscopic model of screw dislocation, Hudson and Ortner [1, 2] propose
the lattice model based on anti-plane dislocation. They prove that in this model,
the state corresponding to the screw dislocation is a globally stable equilibrium under
appropriate conditions for the interaction energy. In this talk, we attempt to obtain
the upscale model of the anti-plane deformation model in terms of I'-convergence. The
main point is that the discrete system which takes value in S! is naturally derived from
the model. We also point out the mathematical difficulty of this discrete model.

REFERENCES

(1] Thomas Hudson and Christoph Ortner. Existence and stability of a screw dislocation under anti-
plane deformation. Arch. Ration. Mech. Anal, 213 (2014) no. 3, 887-929.

[2] Thomas Hudson and Christoph Ortner. Analysis of stable screw dislocation configurations in an
anti-plane lattice model. SIAM J. Math. Anal. 47-1 (2015), 291-320.
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Anti-plane deformation model of screw dislocation and

its related variational problem

Masaaki Uesaka

Research Institute for Electronic Science, Hokkaido University
August 30, 2017

Mathematics in Interface, Dislocation and Structure of Crystals
at Nishijin Plaza, Kyushu University

1/30

Crystallographic defect

Frenkel defect

Schottky defect

Crystallo- || Line defect Screw dislocation

graphic defect =Dislocation Edge dislocation

Twin boundary

P der Stacking fault
anar defect Grain boundary

2/30

Dislocations in crystal

P o

Figure: Edge dislocation & Screw dislocation (cited from wikipedia([4]))
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Importance of dislocation

Dislocation is the origin of the plasticity of metals.
@ Dislocation can move with breaking and reforming a bond.
@ As dislocations move, the crystal can be deformed by less energy.

@ Dislocation = The carrier of plastic deformation

ol So—

1
A L M

S '] F:@‘_
| E*z* | /

f— Ep b Fr ]
Figure: moving screw dislocation Strain (&

Stress (@)

Figure: Plasticity
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Our Motivation

@ How can we describe the atomic configuration when screw dislocation
occurs?
o (Not mention the detail today)We introduce the notion using the concept of
bundle in topology.
(Hamada, Matsutani, Nakagawa, Saeki, U. 2016, arXiv:1605.09550)
» We find the algebraic method for any crystal structure to calculate
@ a bundle structure;
e the corresponding description of a screw dislocation.
by using the group theory.
@ How can we introduce the energy of screw dislocation?
o We propose the energy model with S'-valued function (based on our
description).
o We consider the continuous limit (the I-limit) of an S'-valued interacting
particle system.

5/30

Screw Dislocation is a displacement of Z-lattice

@ We decompose the atomic
configuration as a base space (Z?)
and a fiber (7).

zZ @ We imagine that the alignment of

fiber the atom is assigned for each
lattice point in the base space.
@ Neighboring alignments possibly
have the gap.
@ From these description, it is
natural to consider the

72 interaction between Z-fiber.

base space

6/30
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Our observation

Hamada, Matsutani, Nakagawa, Saeki, U. [7]
@ We reveal the fiber structure of the screw dislocation:

o Base space: the lattice in Z?;
e Fiber: Z (possibly has discrepancy between neighbouring fibers).

crystal structure and Burger's vector.

S' if we consider the infinite dislocation line.

@ We propose the algebraic method of finding the fiber structure for given

© The discrepancy between neighbouring fibers can be described by the value of

. B
. . . . . . .
.
. .
. . . . . . A
.
. B
X o M X
.
. .
. . . . . . L4
.
. .
. . . . . . .

We consider the discrete system where neighboring Z-fiber interacts each
other.
= the position of fiber is described as the value in S*.

Hudson and Ortner [8]:

o A:= ( 1/6 > + <(1) < 1/2 )> : triangular lattice
=vars) (o) (var) ), ione
@ Q C A: sublattice, B all bonds of Q

e ¢: C4(R): 1-periodic, even at 0 and 1/2 (interaction potential)
@ For two forms y,y: Q@ — R,

E(y;y) =Y (¥(Dy(b)) — ¢(Dy(b))),

beBe?

where Dy, Dy: B — [—1/2,1/2] are the differences of y,y.

Related Results (1/3: Discrete model of screw dislocation)
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Related Results (1/3: Discrete model of screw dislocation)

E%(y;y) == Y (¥(Dy(b)) —(Dy(b))),

beBe?

where Dy, Dy: B — [~1/2,1/2] are the differences of y,y.

Theorem (Hudson, Ortner (2014))

1
Let v satisfy ¥ (0) > 0 and ¥(x) > wT(O)ﬂ in [-1/2,1/2].
Then for given centers of screw dislocations (which are sufficiently separated each
other) and a given Burger'’s vector for each dislocation, There exists a locally

stable equilibrium y of E such that y has given screw dislocations.

Remark. y is a locally stable equilibrium < E(y + u;y) > 0 for all perturbation u
with compact support.

0/30

. o
. . . . . . ®
.
. .
o . . . . o *
.
. o
X o ° x
.
. .
o . . . . o *
.
. .
o . . . . . °

We consider the discrete system where neighboring 7 lattice interacts each
other.

Remark. We only consider the 1-dim. system. (multi-dim. case could be a future
work.)

Formulation in 1D

e N € N: large integer(number of points), e := 1/N.
o ¢Z:={en|n € Z}.

1 . 1 cos 270
@ S'is parametrized by 0 € R as §' = {(sinQn‘()) '9 S R}.

. 1 ~ (cos2ml
v:R— St u(9) = <sin27r0
u: eZ — S': displacement function. u; := u(je) = u(j/N)
o fy: S' — R: interaction potential s.t.

>: covering map

@ non-negative, fy (é) =0

» attain the unique minimum at 0.
(We will add more assumptions later.)

N
En(u) = Z fu(e(6; — 0j-1))

j=1

where we choose 0; as +(0;) = uj. (En(u) does not depend on the choice of 6;.)

i
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Problem: limit of the discrete system

N
En(u) = fu(u(8; — 6;-1))
j=1

where we choose 6; as (6;) = uj. (En(u) does not depend on the choice of 6;.)

Problem
What is the “limit problem” as N — oo?

Problem in “Problem”
What is the definition of “limit problem”?

['-convergence

Definition(I™-convergence)

X:metric space. A sequence F;: X — R U {oco} (j € N) I'-converges to
Foo: X = RU{oc} in X if for any x € X,

liminf inequality for every sequence (x;) converging to x,
Foo(x) < liminf F;(x;);
j—oo
limsup inequality there exists a sequence (x;) converging to x such that

Foo(x) > limsup Fj(x;).
j—oo

Theorem ([1]) ]

If (F;) is equi-mildly coercive on X and if (x;) is a precompact sequence such that
each x; is a minimizer of F;, then every limit of a subseq. of (x;) is a minimizer of
[Faso

b 3

4/30

Problem: I'-limit of the discrete system

N
En(u) =) fu(u(8; — 0;-1))
j=1

where we choose 6; as (6;) = u;. (En(u) does not depend on the choice of 6;.)

\

Problem ]
What is the I'-limit as N — co?
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Related Results(2/3: I'-convergence for dislocations)

Garroni & Miiller [5]
I"-convergence of the phase field type energy for dislocation pinning
Ponsiglione [9]

@ {x;};: centers of dislocations

o = sz |b| d,; (b:Burger's vector, |b| =1, z; € Z)

J
E.(u) := / lu(x)[* dx
U, B-(x)
1

. 1
Then F.(p) := Tloge] (muln E.(u) + |p (Q)) I-converges to F(p) = o [1] ()

in a flat norm topology.

@ Braides and Gelli [3]: Review on this topic

@ Braides and Gelli [2]: Non-convex energies

° T,\i,r—>ooand T,\i,r/N—>0asN—>oo.

e ¢y: convex in [Ty, Tx] and concave out of

(T Ta
Fu(2) ze [Ty, 7§ ‘ ‘
vnlz) = NGN<7Z‘WU> 2¢ [Ty T3] 3 |
Ty |

Related Results(3/3: I'-convergence for discrete system)

Theorem (Braides and Gelli (2002))

With some assumptions on Fy and Gy, the functionals Ey T'-converge w.r.t. the
convergence in measure on L*(0,1) to

1
F(u'(x))dx + G([u](t)) we SBV(0,1),
) 2 atie) wesvo
400 otherwise,

where S(u) is the jump set of u and [u] denote the jump, and F := lil{ln Fn and
G:= 11,{’1'1 GN.
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Main Result: Assumptions

N
En(u) = Z fu(e(6) — 0j-1))

j=1

where we choose 0; as +(0;) = u;.

Let ¢y: R — R be a function defined by

+o00 otherwise.

Un(z) = {NfN (L(z/N)) z € [-N/2,N/2,
By using 1y, we can write

N
Euto) = Y- ow (2T ).
=1

where (6;) are chosen as «(6;) = uj and as 0; — 0;_, € [—-1/2,1/2].
Main Result: Assumptions(cont.)

@ 1y is convex in [Ty, To] and concave out of [Ty, Ty]. Moreover,

z

o [P ZE T T
vn(@) = NGN(N) 2¢ [Ty, Ty,

e dp>1st. Fy(z) > |z|° for Vz e R.
@ Gy(z) > c >0 for Vz # 0.

@ We identify a discrete function u: €Z — S as a following piecewise constant
function:

. Jj Jj+1 .
u(x) =ujif x € [N,T>,J=0,1,.‘.,N—1.

20/30

Main result

Theorem (U.) i

In addition to these assumptions, if F = limy Fy and G = limy Gy exists, then
En T-converges in L' to the following functional: for u € L*(0,1), if there exists
0 € SBV(0,1) such that vo 6 = u, then

1
Eoo(u)=/0 F(u/'(x)dx+ Y inf{G([&](t))

teS(u)

9 € SBV(0,1) }

tof=u

and otherwise E(u) = +oo.

Remark.
01,02: (0,1) — R satisfies 1o 0y =100y = 01(x) — 02(x) € Z for all x € (0,1).
Then the second term of the definition of E,, can be written as follows:

> inf {G([B)() + )}

teS(0o)

for fixed 6y € SBV(0,1) with t 06y = u.
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The key point of proof: concentration

Example from Giaquinta, Modica and Soucek [6]:
e Consider the following functions u,: [0,1] — S (n € N):

un(t) = (cos2mwnt,sin27nt) t € [0,1/n],
T (1,0 otherwise.

@ Total variation of u, is 27 for all n € N.
e (u,) converges in L1((0,1),R?) to the constant map ug: [0, 1] with
up(t) = (1,0).
@ This limit, however, does not conserve the total variation. (Var(ug) = 0.)
o The limit “forgets” how many times it goes around S*.

By the theory of currents, we see that the corresponding graph current G,

converges to
Guo —+ 0o X [[Sl]]

where d is a Dirac mass at zero.

Brief Review on Cartesian current (1)

@ k-dimensional current on a manifold M: a continuous linear functional on
k-form space Q¥(M).
By defining [[M]] (w) := [,,w, we can regard M as a current.

@ Boundary of a current T:
(OT)(w) = T(dw).
@ Graph current: Let u € BV(Q2) where Q C R".
Gy = (=1)"[[SGu]]

where SG,, is a subgraph of u in R™1.

Brief Review on Cartesian current (2)

Let Q C R% be an open set. Then d; + dy — 1-dimensional rectifiable current T
in Q x R is called a Cartesian current if the following conditions hold:

OTL(Q xR?) =0; pu T = [[Q]]; Trdx > 0; (1)
[Ty < o003 M(T) < o0, @)

where

[Tl == sup {(T, @(x,y) Iyl dx) ; ¢ € C5° (2 x R?) with [lo] <1}.  (3)

We denote by cart (Q x R%) by the set of Cartesian currents in Q x R%.
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Brief Review on Cartesian current (3)

Theorem ([6])
We assume that T is represented locally as (idq x ¢)4 G, for some BV/(S2). Then

JC(T) = Ju,
T = (idg x 1)4 G, (4)
T(©) = (idg x 1)£GL,
and for any form of type w = ¢ (x,y)dx1 A+ Adxj_1 A dxjy1 A dx, A dy for some
o(x,y) € G§° (2 x R?), we have

TOw) = ()% [ ol ur(0)(Drur) @

(5)
TOW) = (_1)d*f/ o, ur (x))(Druir)(© dx.
Q
Theorem ([6], cont.)
Moreover TUS) have a decomposition
TUe) = T(econ) 4 () (6)

which satisfies

@ There exist a rectifiable (n — 1)-current L(-,fan) such that
e — 1) [[51]]

® For any form of type w = p(x,y)dxi A -+ Adxj_1 A dxj11 A dx, A dy for
some ¢(x,y) € C5° (2 x R?),

TOw) = (1" [ { /

where Y,_(x),us (x) is the oriented path in S* which connects 1(u_(x)) to
(g (x)).

o(x,5) dls: } v (x) dHI L,

u_ (), ()

26 /30

Main result (Cartesian Current Ver.)

Theorem (U.)

In addition to these assumptions, suppose that F = limy Fy and G = limy Gy
exists. Then Ey I'-converges in the space of Cartesian current to the following
functional: for all the Cartesian current G on €}, if G has no Cantor part, then

EOQ(G)Z/O1 F(u') dx + Z [zz(t)]c(%>+c<ﬁ<t>7 [2/,’;)])'

te M)

and otherwise Eo(u) = +00, where u is a absolutely continuous part of G and
MY is the jump and concentration part of G and ((t) is the jump and
concentration length.

Red part arises from the concentration phenomena.

132



Summary & Future work

From the topological description of screw dislocations, we can naturally
imagine the model of the screw dislocation energy where the intaraction
between Z-fiber exists.
In this model, S'-valued function naturally appears.
Our model is a discrete model and we consider the I'-limit of this model.
Our proof of the I'-limit theorem is based on Cartesian currents and the
concentration phenomena affects the limit functional.
(Future work) Multi-dimensional base space
(Future work) Periodic boundary constraints.
o This corresponds to considering function from S' to S*.
e The mapping degree of this function needs to be prescribed.
(Future work) Gradient Flow of our discrete model
» (Related ongoing work) Numerical Scheme for total variation flow with a
function valued in Lie group. (joint w/ Y. Giga, K. Sakakibara and K. Taguchi
(Univ. of Tokyo).)
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3]
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5]
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MATHEMATICS IN INTERFACE, DISLOCATION AND STRUCTURE OF CRYSTALS
August 28-30, 2017, Fukuoka, JAPAN

Variational models of lattice defects

Pierluigi Cesana

IMI, Kyushu University

A martensitic phase-transformation is a first-order diffusionless transition occurring
in elastic crystals and characterized by an abrupt change of shape of the underlying
crystal lattice [1]. It is the basic activation mechanism for the so-called Shape-Memory
effect. The re-organization of the crystalline structure is not only accompanied by the
formation of sharp interfaces delimiting the various martensitic variants but also by
presence of defects and mismatches. In this talk I will present a modeling approach for
topological defects based on variational (energy-minimization) methods [3]. Consid-
ering disclinations (angular defects caused by the mismatch measured around a loop
in a planar lattice) I will present a linearized theory based on a continuum model de-
scribing the formation of a nested hierarchical martensitic microstructure containing
a disclination at the center [2]. The microstructure is described by the solution to
a differential inclusion problem. I will then introduce the Gamma-Convergence ap-
proach to the description of dislocations (linear defects often observed in metal subject
to shear stress). Comparisons are reported for numerical and analytical solutions and
experimental observations.

REFERENCES

[1] Kaushik Bhattacharya. Microstructure of Martensite. Oxford University Press, Oxford (2003)

[2] Pierluigi Cesana, Marcel Porta, Turab Lookman. J. Mech. Phys. Sol. 72 (2014)

[3] Pierluigi Cesana Relaxation of an Energy Model for the Triangle-to-Centred Rectangle Transfor-
mation. In: Anderssen B. et al. (eds) The Role and Importance of Mathematics in Innovation.
Mathematics for Industry, vol 25. Springer, Singapore (2017)
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tals vs. elastic cr

We present continuum models of lattice defects observed in a
class of Shape-Memory Alloys (SMAs).

The Shape-Memory effect is the capability of a material to
recover large non-linear (although) elastic deformations.

The Shape-Memory Effect is the manifestation of a martensitic
transformation, a first-order solid-to-solid transition
characterized by a change of shape of the crystalline lattice
driven by temperature or an applied mechanical stress.

Fukuoka — AUGUST 30°", 2017 VARIATIONAL MODELS OF LATTICE DEFECTS

By decreasing the temperature below a critical value T, a
symmetry-break is induced in the crystal structure thus causing
a transition from the high-temperature phase (austenite) to the
low-temperature state called martensite. The low-symmetry
and disordered phase usually appears in the form of a mixture
of symmetry-related crystal variants, called martensitic
microstructure.

. .
- - Austenite

© "Parent” phase (cubic)

@ Stable at high temperatures

Martensite
@ "Product” phase

@ Stable at low temperatures

Fukuoka — Aucust 30", 2017 VARIATIONAL MODELS OF LATTICE DEFECTS
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sticity framework

We adopt a Landau-type approach by modeling the system with a
multi-well energy density whose wells are represented by the
martensitic variants

' |
‘| |

Ve,

MA
Figure : Energy density ¥ at fixed temperature T' < T.
In the regime of linearized elasticity:
e E € R**®, E = ET mechanical strain gradient
o Fu:= %(V’u + VT’U,)
@ U(E) the free-energy density

@ We apply this model to the Hexagonal-to-Orthorhombic
transformation

Fukuoka AvcusT 302, 2017

VARIATIONAL MODELS OF LATTICE DEFECTS

gonal-to-Orthorhombic transformation

@ Energy wells:

1o -3 f
Elzn[o _1],Ez:n VA

o U(Eu)

27/3

° ElﬂEQ%—/‘;)Eg%El

3-state spin system

[

n € RT material parameter

The energy model:

Fou) = /Q{E\Au(x)\z + \P(Eu(x))}dx ifdiva=0
+00 otherwise

Interfacial Energy + Bulk Energy

Fukuoka — AUGL th 2017
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T‘

Boundary Value Problem

oF.(u) = /Q[;\Au,(,rw + U(Bu(z))] da

e The BVP problem (relaxation):

min — F.(u) with:

“!05’2 =0

The homogeneous strain £ = 0 is unstable: the material shows
an energetic preference to develop spatially modulated
deformations (shear bands) at fixed average deformation E = 0.

Fukuoka — Aucust 30", 2017
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° mfi‘n — F.(u) = /Q (e|Au(z)|* + U(Bu(z)) dx

A= H}Q,R?) N H*(Q,R?)
Denote with

@ 7u. the minimizers of Eq. (1)
9 {m.} = {ian F;(u,)} = {F.(u.)} the minima of Eq. (1)

e The problem: to study the asymptotic behavior of minimizers

and minima of the energy.
e We characterize the asymptotic behavior of the system by
I'-Convergence.

Fukuoka AucusT 30°R | 2017 VARIATIONAL MODELS OF LATTICE DEFECTS

I'-convergence

N«; /‘J Minimality:

@ coercivity (compactness)

k/. @ Jower semicontinuity

Let Fry Foo : X = RU {400}, k — co. Compute:
Q infx Fu(z) = Fu(Tr) = my
©Q infx Foo (2) = Foo(Too) 1= Mo

We are interested in:

@ (convergence of minimum values) 17—

© (convergence of minimizers) T, —To (in some topology...)
The result: I'- lim Fp = Foo
k=00

Fukuoka s 2 VARIATIONAL MODELS OF LATTICE DEFECTS

Definition (

Let (X, d) be a metric space, Fj, : X — RU {+o0}. Define

T-liminf F(u) := inf{liminf Fr(ug), ug A u}
k—4o00

k—+o00

I-limsup F(u) := inf{lim sup Fr(ug), ug 4 u}
k—+o0 k—+o00
If
I-liminf F, = [-limsup Fj, := - lim F
k=00 k—+oo k—+00

Fukuoka — Aucust 30", 2017 VARIATIONAL MODELS OF LATTICE DEFECTS
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Compute the I'-limit

Matching Upper and Lower Bound

@ Lower Bound: Stability

@ Upper Bound: Optimality (4+Kinematic Compatibility)

Fukuoka AuGusT 30°R | 2017 VARIATIONAL MODELS OF LATTICE DEFECTS

r Bound

The lower bound is given by W€, the Convex envelope of ¥
e <V

e U < U (convex envelope).

The (algebraic) inequality above holds at the level of the I'-limit
(in the weak-H' topology):
° fﬂ Ue(Eu)dx < Tyo-lim F.

Fukuoka — AUGUST 30°", 2017 VARIATIONAL MODELS OF LATTICE DEFECTS

‘ Upper Bound

We have a chain of inequalities involving the concepts of partial
convexity:

° W(I < @[}(f < \Ij(](f < WTC.
Where WUP¢ denotes the polyconvex envelope, W9 denotes the
quasiconvex envelope, UP¢ denotes the rank-1 convex envelope
of W.
The Upper bound is attained if we prove that:

e Ure < e,
This is obtained via a lamination construction if we show all
possible convex combinations of variants can be obtained by
lamination (kinematically compatible rank-1 connections).

Fukuoka — Aucust 30", 2017 VARIATIONAL MODELS OF LATTICE DEFECTS
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npatibility

Minimizing sequences of the problem

uw:Q— R, inf — / V(Eu(z))dz
ue H} (2,R?) Ja

have piecewise constant gradients oscillating at a very fine scale. Continuity

is guaranteed by matching the tangential components of the gradients

across each interface

TR=Vie A=Y

In turn this is an algebraic condition
on matrices.

Conservation of tangential component
of Vu— F) — Fh =a®n

Fukuoka AuGusT 30°R | 2017 VARIATIONAL MODELS OF LATTICE DEFECTS

ructure

A microstructure is the manifestation of a minimizing sequence
of the infimum problem.

inf — /Q\I/(EU(I))dI

ueHE(Q,R?)

For the Hexagonal-to-Orthorhombic transformation:

Volume fraction E; = %
%(El + Fy + E;;) =0

Jo ¥ (Bug)dz — [, ¥(0)dx = 0

, 2017 'VARIATIONAL MODELS OF LATTICE DEFECTS

similar nested mi ructure

Next, we show how to model a triple-star disclination occurring
in a sample of Pbg(VO,)2 undergoing the
hexagonal-to-orthorhombic transformation in plane-strain
geometry (find a picture of this structure in C. Manolikas, S.
Amelinckx, Phys. Stat. Sol. 1980 ).

The triple-star disclination is a striking example of a Volterra’s
wedge disclination.

Fukuoka — Aucust 30", 2017 VARIATIONAL MODELS OF LATTICE DEFECTS
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Exact calculations

Consider the problem

Jreli — Q[\Il (Eu) + \Vzuﬂ dz, (2)

with ¢ > 0. Under the assumption that fQ |V2ulPdz is small,
we can study the simplified problem

inf %/\I!(Eu) dz. (3)
ueHY (Q,R2) Jo

Fukuoka AuGt 30t 2017 VARIATIONAL MODELS OF LATTICE DE

Kinematic Compatibility

We look for maps which minimize the integrand energy in (3)
pointwise, that is, we solve

inf — V(E)
BERZSE

with techniques from J. Ball, R. James, ARMA 1987. Indeed:

’ T
inf \I/(E) < Ju M

€ {E1, Es, B3}
EeR252 2 {

It is possible to find an explicit formula for u
(Vu+V7Tu)/2 € {E1, Bz, E3} for ae. (x,y) in Q,
volume ratio E; is 1/3

u € WHP(Q, R?),1 < p < oo, |Vu| — o0 as (z,y) — (0,0)

® © © o

P.C., M. Porta, T. Lookman, JMPS 2014

Fukuoka — Aucust 30", 2017 VARIATIONAL MODELS OF LATTICE DEFECTS
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Figure : Level curves of u(z,y). (Here L=n=1).

Fukuoka AuGusT 30tR | 2017 VARIATIONAL MODELS OF LATTICE DEFECTS

k of the linearized model

for L & 0.07um for k = 3 we are in the range 10~ 2nm

Fukuoka — AUGL th 2017 VARIATIONAL MODELS OF LATTICE DEFE
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Sequence representation of graph structure of
crystal (Growth)

Junichi Nakagawa
Nippon Steel & Sumitomo Metal Co.

Growth is defined as a sequential representation of the graphical structure of crystal.
The first growth corresponds to the coordination number of crystals which is used as
a numerical index to describe the crystalline structure in material science.

We counted the number of growths in the case of eight crystals composed of two
kinds of atoms and derived the numeric sequences. The numerical sequences have a
cyclical property.

The generation functions can be derived from the numerical sequences. We show
that the generating function has symmetrical properties which are derived from the
cyclic property of the numerical sequence of the growth.
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SG2013 in the University of Tokyo
Application to Materials Informatics as
Descriptors of Crystal Geometry
Zn0

CsCl

L -different crystal lattice
o @ -different configuration of atoms

' @ etc.

| Use of coordination number //|

? as a descriptor

% ' We would like to estimate
g ¢ the energy of compound

“E ' ° from the information of

5 ° atoms and crystal structure
%‘“ < pp— without ab initio calculation.
§ 0.189321

-I. o a8 an a8 e s 20
Bonding encrgy of crystal {ab initio calculation )
FSRRUPALALRIERFRAMH LU APHRIE. BEERENS a'fﬁBﬂEﬁ

2017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Bights Rossred, NIPPON STEEL & SUMITOMO METAL

SG2013 in the University of Tokyo
Regression Method

» This problem can be viewed as a regression

problem
— Predictors: information of atoms and crystal structure
— Response variable: energy of compound

regression model:y = S1&1 + Baa + - - + PBpxpy + €

Atomic number Position of periodic
Electron affinity table

lonization Energy Electronegativity energy of compound
Atomic mass Number of electrons
Radius Coordination number

Py | Lz -

© 017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved.
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SG2013 in the University of Tokyo
Concept of Growth
NaCl . order # of Growth
@ ﬁ y molecule  crystal lattice ;:oug i and 3rd 4R
BB N Guble 8 16 1 18 38 66
da lﬁée CsCl Cubic 4588 JUSE . 26 56 98
CsCl B-BeD Cubic 46 R i A 18 41
@ 0 Zns Cubic 2400 e 182 24 42
L Zn0 Hexagonal 12 | 4 ! 12 25 44
0 0 a-PbO  tetragonal 16 | 4 | 8 12 16
B-BeO Til Orthorhombic 8 | 7 | 22 47 82
) NiAs Hexagonal 24 6 ;| 20 42 74
# ’ The growth is generalization of the coordination number in material science.
e Zno a-PbO L . NiAs
®., &8s e * 9
° @] 3@3?5 e P : og :
@ oo | Foma
NIPPON STEEL & SUMITOMO METAL
Zn0
the 15t growth=4
(corresponding to coordination number)




Zn0
the 3@ growth=25

Erergy

3" growth

imnate value

2017 NIPPON S & SUMIBEREMETAL CO

"ol
L
o
- prediction error
e 0.189321

prediction error
0.1425921

o
Estimate valu
o

a
Oc
5
=9 gl
- |prediction error
e 0.1510946
Enargy
Non-linear e
Regression p°* 7,
Using SVR° i
—d

P

Sogped oo
o8
o 26

prediction error
0.0382255

o mEmes
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SGW2014 Counting Out of # Growth Using Computer

e i e O T
£ ﬁg SR S 2
SO . a ° s e ,’n o
Growth | “Pb0 | B -Be0 | CsGl | NaCl I_N.As [T Zn0 Zns
gl 4 4 4 4
E2 i} 11 12 12}
| &3 12 24 25 24
gt 16 41 44 42
=i 20 62 67 4
£ 24 90 92
il 28 122 124
g8 32 157] 162
35 200 204
g10 40 247 264 252
gl1 44 296 319 304
gi2 48 354 380 362
g13 418 1016 247 445 424
g4 478 1178 982 516 492
215 552 1352 1127 592 564
816 6209] 1538 1282 674 g_121
gl? _i _| 1736 1447 760| 724
218 1946 1622 852 217
g18 886 2168 1807 949 904
£20 30 977 2402 | 2002l ios2| 1002
Our interesting in mathematics is the g.. . wEEETs
© 0T NIPFPON STEEL & SUMITOMO METAL CORPORATION All Hights Restrred NIFPON STEEL & SUMITOMO METAL
SGW2014
Sequential Representation of # Growth
. -
-_211' 1--1-114 13 (r=1 mod3)
9 9 9
i = 5 3
&"g"s Q 2s walr) -z—zn' _1”+L (m=2 mod3)
M i - ! 9 9 9
e Ba mo(";=4" 292 w42 (n;rn mod 3}
" s
. “lpten (n=l mod3
‘\'Q Zewln)=6m"+2 °, e )
‘ ;‘ Eunalt)= 2;- o+ ‘; (=2 mod 3)
: ) & =
m gookn)=4n"+2 “EI"- +2 (=0 mod3)
e & e -9 .3
, o —n* += (=1 mod2
z guln)=smsz @ .: ® guln)= 4 27 2 ( )
' - ® 9
e = ;n'+2 (r=0 mod 2)
por 00.9 = s ( 4l
» aml mod 2
°s° o g,‘“{n}: 4 2
LB 5.3
L +2 (n=0 mod2)
moMmEs
03017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved. PPOM STEEL A SUMITOMO METAL
Generating Function of Growth
) . H. Ochiai *1
Glx)=1+Y g, x (2016.9.30)
= #1:Kyusyu University IMI

e
_[v];{cl” Q (e x)li+ 22450 60 +5x* 126" £
F Gonl)-( 5 ' Gynoli) T
g G )= u"u'”‘)&) Gool)=
" =(|+.\')‘ G ¥ =1 rdxr+ 8t 4 4!

gﬁ Guen) (l—xf e (1—‘_!'{T

oo Ll .

o 0’0 24t 200+
ﬁ o’g.co Gaslr)= (1-xf (127
[ 2

00017 NIPPON STEEL & SUMITOMO METAL CORPORATION All Rights Reserved,
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Symmetrical Properties of Generating Function (1)
Definition :

fork, Nom, =N, N=0,0 S <N ) qneriiing Ridilin
W S .
numerical sequence (@)= o (n=n, mod &) }

G: My = = *\'_ﬁ.. “‘,'I
of growth (grm L =1, (22"} =0 b2 )

il

Proposition 1 (S. Wakatsuki)

f'}f»‘-"-'."(-r1=["r7'i]u.‘--- (x)

"
5

(i)} G,"'"{.\'}=[—xlr_—l (| pohmomial of degree N, )
1=x
MG x)=G el GV x)=GY for k=0

Proposition 2 (S. Wakatsuki)

et womes

17 NIPPON STEEL & SUMITOMO METAL CORPORATION Al Rights Réserved - NRFROMSTEEL B SUMTOMG METAL

EMSP Mathematical Research on Real World Problems. Group G, The University of Tokyo
Symmetrical Properties of Generating Function (2)

For example, in the case of the numeric sequence of f-BeO

2 .1 13 B
5 W s (m=1 mod3)

25 peolit)= En; _%,H.l.; (7=2 mod3)

: w42 (=0 mod 3)

f'“'),,: ' (n=n, mod N)

Gy nol) =?::Gj'°f!-}+:—jc,"‘[.¥)—% G (x)+ 26> ‘{.\’)+l—:C-‘..'"{.v}+ %o (x)+1

Y22 o 1), 1 (1)1 s ) (113 (1,13 o 1
Gunaf L= 2w L --u'-'[— Y BT —J —r"[-} —('_:'[— [
’H"""\.VJ 9" [.v;|+0 ! \] 9 [\.t]+ I\.\' B Al Y

=- -';2\(_.-'_1 ")+ ;".c.'f x)- éc;,‘ '(x)-2G3(x)- I‘;-Gj )= E‘-u,,’-'{:}-l
Ly _‘l 13, ‘,_l - ) 2T O _E 3.1

-2 G (1456 (0)-5 6 () 2062 (w)=1) Gl

=‘G.-|-r|mt"’

i FEsgs
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Summary and Future Works

|Crystal : | Crystal group

| \ Characterizing crystal
using the generatin
8 crystals composed of funcﬂon g 9 ?
two kinds of atoms
. ‘H\\H-\‘_H .
B — Polynomial | Generating
s (Numerical sequence) function
Cyclical property Symmetrical properties
eq. 2,,-‘ ,-rl,,_,.ﬁ (n=1 mod3) & (11 2 St 4 6 4 5t 4200 450
gi- gty ipnalm)= . =
(1-x) {I -x )'
Epnoln)= -2:':1: l-]}rr + ]; (n=2 mod 3) .
- 22 (=0 mod 3) olk=*q ;)
i FESES
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Thank you for your attention!
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