Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論
 －Tzitéica 方程式の棈円閣敖絊を出発点として一著者：宇田川誠一

九州大学マス・フォア・インダストリ研究所

Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論

－Tzitzéica 方程式の楕円関数解を出発点としてー宇田川 誠一

About MI Lecture Note Series

The Math－for－Industry（MI）Lecture Note Series is the successor to the COE Lecture Notes，which were published for the 21st COE Program＂Development of Dynamic Mathematics with High Functionality，＂sponsored by Japan＇s Ministry of Education，Culture，Sports，Science and Technology（MEXT）from 2003 to 2007．The MI Lecture Note Series has published the notes of lectures organized under the following two programs：＂Training Program for Ph．D．and New Master＇s Degree in Mathematics as Required by Industry，＂adopted as a Support Program for Improving Graduate School Education by MEXT from 2007 to 2009；and＂Education－and－ Research Hub for Mathematics－for－Industry，＂adopted as a Global COE Program by MEXT from 2008 to 2012.

In accordance with the establishment of the Institute of Mathematics for Industry（IMI）in April 2011 and the authorization of IMI＇s Joint Research Center for Advanced and Fundamental Mathematics－for－Industry as a MEXT Joint Usage／Research Center in April 2013，hereafter the MI Lecture Notes Series will publish lecture notes and proceedings by worldwide researchers of MI to contribute to the development of MI．

October 2014
Yasuhide Fukumoto
Director
Institute of Mathematics for Industry

Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論
 －Tzitzéica 方程式の楕円関数解を出発点としてー

MI Lecture Note Vol．75，Institute of Mathematics for Industry，Kyushu University
ISSN 2188－1200
Date of issue：August 4， 2017
Author：Seiichi Utagawa
Publisher：
Institute of Mathematics for Industry，Kyushu University
Graduate School of Mathematics，Kyushu University
Motooka 744，Nishi－ku，Fukuoka，819－0395，JAPAN
Tel＋81－（0）92－802－4402，Fax＋81－（0）92－802－4405
URL http：／／www．imi．kyushu－u．ac．jp／

Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論

－Tzitzéica 方程式の楕円関数解を出発点としてー

> 宇田川 誠一 (H本大学)

論文［9］では，スペクトル曲線が種数 $2 g$ のある種の超楕円曲線の場合にTzitzéica方程式の有限間隙解を与えて，さらに，5次元球面内の有限型水平的極小曲面の表示式を Baker－Akhiezer 関数で厳密に表した。この際に最も重要かつ大変な作業は スペクトル幽線上の第 2 種の Abel 微分形式を厳密に与えることであった。 $[9]$ では， まず種数 2 の例について，Tzitzéica 方程式の惰円関数解を求めて，それを元に有限間隙解の形を見極めること，そして， 5 次元球面内の有限型水平的極小曲面のはめ込 みの表示式についても楕円関数を用いた表示式から Baker－Akhiezer 関数を用いた表示式に書き直す作業を詳しく見てから，それをスペクトル曲線の種数が $2 g$ の場合に一般化している。その種数 2 の例についての記述をさらに詳しく解説したもの が本稿である。

第1章ではJacobi楕円関数の定義から始めて定義変数を複素数に拡張し， 2 重周期関数としてその周期を具体的に書き表す。さらに，Jacobi楕円関数と Weierstrass 8 －関数との関係式を与える。第 2 章では，解が惰円関数解で与えられる微分方程式の解法を考える。例として，mKdV 方程式の解法とTzitzéica 方程式の解法を扱 う。第3章では，楕円幽線が定める種数1のコンパクトRiemann面上のサイクル の取り方とサイクル上の周期積分を考える。特に，第2種のAbel微分形式の周期積分を訃算する。ただし，a－周期は 0 になるように正規化しておく。第 4 章では， Riemann θ 関数を導入して，Jacobi 楕川関数をRiemann θ 関数を用いて書き表す。 さらに，Tzitzéica 方程式の楕円関数解を Riemann θ 関数を用いて書き直す。これ は有限間隙解の形になっていることがわかる。これは，Jacobi θ 関数 θ_{0} が満たす微分方程式と同値であることがわかる。この際に出てくる定数項を Weierstrass く関数の値で書き直す。第5章では，Tzitzéica 方程式を可積分条件とする極小曲面の理論の解説を行う。具体的には， \mathbf{C}^{3} 内の 5 次元球面の水平的極小曲面の満たす微分方程式系を導き，その可稓分条件としてTzitzéica 方程式が現れることを見る。ま た，Tzitzéica 方程式の解が Jaccobi 楕円関数解で与えられる場合に微分方程式系 を解いて水平的極小曲面を特殊関数を用いて表示する。また，微分方程式系にパラ メーターを導入して適当な初期条件のもとに楕円関数解に付随するスペクトル曲線 を導く。それは種数2の超楕円曲線 \mathcal{C} になっていて，上記の楕円曲線への 2 重被覆写像を具体的に書く。第 6 章では，$\hat{\mathcal{C}}$ から $\hat{\mathcal{C}}$ の Prym 多様体への Prym－Abel 写像を

定義して，その性質を調べる。第 7 章では，Prym－Abel 写像とRiemann θ 関数の合成関数のゼロ因子を詳しく調べる。第8～10章では，いよいよ Baker－Akhiezer 関数を導入して，それがSchrödinger 方程式の解になることを示し，最終的に第11章 で，特殊関数で表した 5 次元球面の水平的極小曲面の表示式を Baker－Akhiezer 関数を用いて表す。

目 次

1．Jacobi 楕円関数と Weierstrass 80 －関数 3
［1．1］Jacobi 楕円関数 3
［1．2］導関数 4
［1．3］Weierstrass \wp－関数 5
［1．4］複素変数に拡張 6
2．楕円関数解をもつ微分方程式 9
［2．1］$A<0$ の場合 10
［2．2］$A>0$ の場合 10
［2．3］例 11
3．楕円曲線上のサイクルと周期積分 15
［3．1］第2種の Abel微分形式 18
4．Riemann θ 関数 19
［4．1］θ_{0} が満たす微分方程式 22
5．Tzitzéica 方程式が可積分条件となる曲面のはめ込み 24
［5．1］可積分条件としての Tzitzéica 方程式の導出 24
［5．2］曲面のはめ込みの特殊関数による表示式 28
［5．3］Spectral curve 31
［5．4］Riemann－Hurwitz 公式 32
6．$\hat{\mathcal{C}}$ の Jacobian トーラス $J(\hat{\mathcal{C}})$ への Prym－Abel 写像 35
［6．1］Prym－Abel 写像の性質 39
［6．2］Reciprocity Laws 41
［6．3］Riemann の不等式 42
7．Prym－Abel 写像と θ 関数の合成関数の zero 点が定める因子 43
8．Baker－Akhiezer 関数 $\hat{\Psi}$ の構成 46
9．\uparrow が満たす Reality Condition 53
10．$\hat{\Psi}$ が Schrödinger 方程式 $\partial_{\bar{z}} \partial_{z} \hat{\Psi}=-e^{u} \hat{\Psi}$ の解であること 56
11．$s_{0}: M \longrightarrow S^{5}$ の $\hat{\Psi}$ による表示式 61
12．ς の固有ベクトルと固有値 66
引用文献 67

1 Jacobi 楕円関数と Weierstrass \wp－関数

［1．1］Jacobi 楕円関数
$0<k<1$ に対して

$$
\begin{equation*}
u=\int_{0}^{x} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\int_{0}^{\varphi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}} \tag{1.1}
\end{equation*}
$$

とおく。ここで，$t=\sin \theta, x=\sin \varphi$ とした。これの逆関数を $\varphi=\operatorname{am}(u)$ と書き， amplitude とよぶ。これと \sin 関数との合成関数

$$
\operatorname{sn}(u):=\sin \circ a m(u)=\sin \varphi
$$

をJacobi の sn－関数という。また，

$$
K(k):=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}
$$

を第1種完全楕円積分という。第1種完全楕円積分が現れる物理現象として，単振 り子の周期がある。

「例 ：単振り子の周期」 $T=4 \sqrt{\frac{l}{g}} K(k)$ ，ここで g は重量加速度，l は振り子の長さ を表す。また，$k=\sin \frac{\alpha}{2}$ であり，α は単振り子の最大の振れ角である。尚，$K(k)$ は

$$
K(k)=\frac{\pi}{2}\left\{1+\sum_{n=1}^{\infty} k^{2 n} \frac{((2 n)!)^{2}}{2^{4 n}(n!)^{4}}\right\}
$$

で近似値が訃算できる。
さて，Jacobi のsn－関数の周期を求めるために，

$$
F(\varphi)=\int_{0}^{\varphi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}
$$

とおく。このとき，$F(-\varphi)=-F(\varphi)$ であり，また

$$
\begin{aligned}
F(\varphi+\pi) & =\int_{0}^{\varphi+\pi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}=\int_{-\pi}^{\varphi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}} \\
& =\int_{0}^{\varphi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}+\int_{-\pi}^{0} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}} \\
& =\int_{0}^{\varphi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}+\int_{0}^{\pi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}} \\
& =F(\varphi)+F(\pi)
\end{aligned}
$$

より，$\varphi=-\frac{\pi}{2}$ ととれば

$$
F(\pi)=2 F\left(\frac{\pi}{2}\right)=2 K(k)
$$

を得る。これより

$$
\operatorname{sn}(u+2 K(k))=\operatorname{sn}(u+F(\pi))=\sin (\varphi+\pi)=-\sin \varphi=-\operatorname{sn}(u)
$$

よって， $\operatorname{sn}(u+4 K(k))=\operatorname{sn}(u)$ より， sn の周期の 1 つは $4 K(k)$ で与えられる。つ ぎに，Jacobi cn－関数，dn－関数を

$$
\operatorname{cn}(u):=\cos \varphi, \quad \operatorname{dn}(u):=\sqrt{1-k^{2} \sin ^{2} \varphi}
$$

で定める。このときつぎが成り立つことがわかる：

$$
\begin{equation*}
\operatorname{sn}^{2}(u)+\operatorname{cn}^{2}(u)=1, \quad k^{2} \operatorname{sn}^{2}(u)+\operatorname{dn}^{2}(u)=1 . \tag{1.2}
\end{equation*}
$$

［1．2］導関数

（1．1）より，$\frac{d u}{d x}=\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}$ であるから，逆関数の微分公式より $x=$ $\sin \varphi=\operatorname{sn}(u)$ に注意して

$$
\frac{d x}{d u}=\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}=\sqrt{\left(1-\operatorname{sn}^{2}(u)\right)\left(1-k^{2} \operatorname{sn}^{2}(u)\right)}=\sqrt{\operatorname{cn}^{2}(u) \operatorname{dn}^{2}(u)}=\operatorname{cn}(u) \operatorname{dn}(u)
$$

を得る。すなわち，つぎを得る：

$$
\frac{d}{d u} \operatorname{sn}(u)=\operatorname{cn}(u) \operatorname{dn}(u) .
$$

また

$$
\frac{d}{d u} \operatorname{cn}(u)=\frac{d}{d u} \cos \varphi=\frac{d \varphi}{d u}(-\sin \varphi)=-\operatorname{sn}(u) \frac{d \varphi}{d u}
$$

であるが，$\frac{d u}{d \varphi}=\frac{1}{\sqrt{1-k^{2} \sin ^{2} \varphi}}=\frac{1}{\operatorname{dn}(u)}$ より $\frac{d \varphi}{d u}=\operatorname{dn}(u)$ であるから

$$
\frac{d}{d u} \operatorname{cn}(u)=-\operatorname{sn}(u) \operatorname{dn}(u)
$$

を得る。同様にして

$$
\frac{d}{d u} \operatorname{dn}(u)=\frac{-k^{2} \operatorname{sn}(u) \frac{d}{d u} \operatorname{sn}(u)}{\sqrt{1-k^{2} \operatorname{sn}^{2}(u)}}=\frac{-k^{2} \operatorname{sn}(u) \operatorname{cn}(u) \operatorname{dn}(u)}{\operatorname{dn}(u)}=-k^{2} \operatorname{sn}(u) \operatorname{cn}(u)
$$

を得る。以上まとめると

$$
\left\{\begin{align*}
\frac{d}{d u} \operatorname{sn}(u) & =\operatorname{cn}(u) \operatorname{dn}(u) \tag{1.3}\\
\frac{d}{d u} \operatorname{cn}(u) & =-\operatorname{sn}(u) \operatorname{dn}(u) \\
\frac{d}{d u} \operatorname{dn}(u) & =-k^{2} \operatorname{sn}(u) \operatorname{cn}(u), \quad(k: \text { modulus })
\end{align*}\right.
$$

さて，ここで $\frac{d x}{d u}=\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}$ を 2 乗して

$$
\begin{equation*}
\left(\frac{d x}{d u}\right)^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right) \tag{1.4}
\end{equation*}
$$

を得るが，これは惰円曲線との関連性を示唆する。

［1．3］Weierstrass $\wp 0$－関数

定数 g_{2}, g_{3} に刘して，微分方程式

$$
\begin{equation*}
\left(\frac{d x}{d u}\right)^{2}=4 x^{3}-g_{2} x-g_{3} \tag{1.5}
\end{equation*}
$$

の解を $x=\wp 0(u)$ と書いて Weierstrass の \wp－関数という。 $4 x^{3}-g_{2} x-g_{3}=4(x-$ $\left.\eta_{1}\right)\left(x-\eta_{2}\right)\left(x-\eta_{3}\right)$ と因数分解するとき，$\eta_{1}+\eta_{2}+\eta_{3}=0$ であり，$\eta_{1}<\eta_{2}<\eta_{3}$ と しておく。 $k^{2}=\frac{\eta_{2}-\eta_{1}}{\eta_{3}-\eta_{1}}(<1)$ とおく。

$$
\begin{equation*}
x=\eta_{1}+\frac{\eta_{3}-\eta_{1}}{z^{2}} \tag{1.6}
\end{equation*}
$$

とおくと，$d x=-\frac{2\left(\eta_{3}-\eta_{1}\right)}{z^{3}} d z$ より

$$
\begin{aligned}
u & =\int \frac{d x}{\sqrt{4 x^{3}-g_{2} x-g_{3}}}=-2\left(\eta_{3}-\eta_{1}\right) \int \frac{d z}{z^{3} \sqrt{4 \frac{\left(\eta_{3}-\eta_{1}\right)}{z^{2}}\left(\eta_{3}-\eta_{1}\right)\left(\frac{1}{z^{2}}-k^{2}\right)\left(\eta_{3}-\eta_{1}\right)\left(\frac{1}{z^{2}}-1\right)}} \\
& =-\frac{1}{\sqrt{\eta_{3}-\eta_{1}}} \int \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}
\end{aligned}
$$

従って，つぎを得る：

$$
\frac{d u}{d z}=-\frac{1}{\sqrt{\eta_{3}-\eta_{1}}} \frac{1}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}} .
$$

これを以下のように変形する：

$$
\left(\frac{1}{\sqrt{\eta_{3}-\eta_{1}}} \frac{d z}{d u}\right)^{2}=\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)
$$

これより，$z=\operatorname{sn}\left(\sqrt{\eta_{3}-\eta_{1}} u\right)$ がわかる。これと (1.6) および $x=\wp(u)$ より

$$
\begin{equation*}
\wp(u)=\eta_{1}+\frac{\eta_{3}-\eta_{1}}{\operatorname{sn}^{2}\left(\sqrt{\eta_{3}-\eta_{1} u}\right)}, \quad\left(k^{2}=\frac{\eta_{2}-\eta_{1}}{\eta_{3}-\eta_{1}}\right) \tag{1.7}
\end{equation*}
$$

が得られる。

［1．4］複素変数に拡張

楕円関数の基本周期，半周期における値はつぎのようになる。

$$
\left\{\begin{array}{l}
\operatorname{sn}(K)=\sin \frac{\pi}{2}=1, \quad \operatorname{sn}(2 K)=0, \quad \operatorname{sn}(0)=0, \quad \operatorname{cn}(0)=1, \quad \operatorname{dn}(0)=1, \\
\operatorname{cn}(K)=0, \quad \operatorname{dn}(K)=\sqrt{1-k^{2}}, \quad \operatorname{cn}(2 K)=-1, \quad \operatorname{dn}(2 K)=1 .
\end{array}\right.
$$

ここで，加法定理

$$
\begin{equation*}
\operatorname{sn}(u+v)=\frac{\operatorname{sn}(u) \operatorname{cn}(v) \operatorname{dn}(v)+\operatorname{sn}(v) \operatorname{cn}(u) \operatorname{dn}(u)}{1-k^{2} \operatorname{sn}^{2}(u) \operatorname{sn}^{2}(v)} \tag{1.8}
\end{equation*}
$$

が成り立つ（［15］を参照）。さて，定義域は $-K \leqq u \leqq K$ から始めて，加法定理より

$$
\operatorname{sn}(u+K)=\frac{\operatorname{cn}(u) \operatorname{dn}(u)}{1-k^{2} \operatorname{sn}^{2}(u)}=\frac{\operatorname{cn}(u)}{\operatorname{dn}(u)}
$$

であるから，これを用いて定義域を $-2 K \leqq u \leqq 2 K$ に拡げる。以下，これを繰り返すことにより定義域を実数全体に挂げる。つぎに

$$
u=\int_{0}^{x} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\operatorname{sn}^{-1}(x)=\operatorname{sn}^{-1}(x, k)
$$

において $x=\sqrt{-1} y$ とおくと
$\mathrm{sn}^{-1}(\sqrt{-1} y)=\int_{0}^{\sqrt{-1} y} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\sqrt{-1} \int_{0}^{y} \frac{d \eta}{\sqrt{\left(1+\eta^{2}\right)\left(1+k^{2} \eta^{2}\right)}}=: \sqrt{-1} v$ ，
ここで最後から 2 番目の等式では $t=\sqrt{-1} \eta$ という置換積分を行った。実数 v を計算しよう。 $\eta=\tan \psi(y=\tan \varphi)$ とおくと，

$$
d \eta=\frac{d \psi}{\cos ^{2} \psi}=\frac{\sqrt{1+\tan ^{2} \psi}}{\cos \psi} d \psi=\frac{\sqrt{1+\eta^{2}}}{\cos \psi} d \psi
$$

である。また
$1+k^{2} \eta^{2}=1+k^{2} \tan ^{2} \psi=\frac{\cos ^{2} \psi+k^{2} \sin ^{2} \psi}{\cos ^{2} \psi}=\frac{1-\left(1-k^{2}\right) \sin ^{2} \psi}{\cos ^{2} \psi}=\frac{1-\left(k^{\prime}\right)^{2} \sin ^{2} \psi}{\cos ^{2} \psi}$
であるから

$$
v=\int_{0}^{\varphi} \frac{d \psi}{\sqrt{1-\left(k^{\prime}\right)^{2} \sin ^{2} \psi}}=\mathrm{sn}^{-1}\left(\sin \varphi, k^{\prime}\right)
$$

である。従って，

$$
\sin \varphi=\operatorname{sn}\left(v, k^{\prime}\right)
$$

が成り立つ。また $\cos \varphi=\mathrm{cn}\left(v, k^{\prime}\right)$ と定めているから

$$
y=\tan \varphi=\frac{\operatorname{sn}\left(v, k^{\prime}\right)}{\operatorname{cn}\left(v, k^{\prime}\right)}
$$

と表せる。一方 $\mathrm{sn}^{-1}(\sqrt{-1} y)=\sqrt{-1} v$ より $\sqrt{-1} y=\operatorname{sn}(\sqrt{-1} v)$ である。以上まと めると

$$
\begin{equation*}
\operatorname{sn}(\sqrt{-1} v, k)=\sqrt{-1} \frac{\operatorname{sn}\left(v, k^{\prime}\right)}{\operatorname{cn}\left(v, k^{\prime}\right)} \tag{1.9}
\end{equation*}
$$

でなければならない。よって，この関係式により定義域を複素変数に拡張できる。 k^{\prime} に対する第 1 種完全楕円積分を $K^{\prime}(k)$ で表す。すなわち

$$
K^{\prime}(k)=K\left(k^{\prime}\right)=\int_{0}^{\frac{\pi}{2}} \frac{d \psi}{\sqrt{1-\left(k^{\prime}\right)^{2} \sin ^{2} \psi}}
$$

$\mathrm{cn}(\sqrt{-1} v, k)$ については $\operatorname{sn}^{2}(\sqrt{-1} v)+\mathrm{cn}^{2}(\sqrt{-1} v)=1$ が成り立つように定める。

$$
\mathrm{cn}^{2}(\sqrt{-1} v, k)=1-\operatorname{sn}^{2}(\sqrt{-1} v, k)=1+\frac{\mathrm{sn}^{2}\left(v, k^{\prime}\right)}{\mathrm{cn}^{2}\left(v, k^{\prime}\right)}=\frac{1}{\mathrm{cn}^{2}\left(v, k^{\prime}\right)}
$$

これより，符号も込めて

$$
\operatorname{cn}(\sqrt{-1} v, k)=\frac{1}{\operatorname{cn}\left(v, k^{\prime}\right)}
$$

と定める。同様に， $\operatorname{dn}(\sqrt{-1} v, k)$ についても

$$
\begin{aligned}
\operatorname{dn}^{2}(\sqrt{-1} v, k) & =1-k^{2} \operatorname{sn}^{2}(\sqrt{-1} v, k)=1+\frac{k^{2} \operatorname{sn}^{2}\left(v, k^{\prime}\right)}{\operatorname{cn}^{2}\left(v, k^{\prime}\right)} \\
& =\frac{1-\left(1-k^{2}\right) \operatorname{sn}^{2}\left(v, k^{\prime}\right)}{\operatorname{cn}^{2}\left(v, k^{\prime}\right)}=\frac{\operatorname{dn}^{2}\left(v, k^{\prime}\right)}{\mathrm{cn}^{2}\left(v, k^{\prime}\right)}
\end{aligned}
$$

であるから，符号も込めて

$$
\operatorname{dn}(\sqrt{-1} v, k)=\frac{\operatorname{dn}\left(v, k^{\prime}\right)}{\operatorname{cn}\left(v, k^{\prime}\right)}
$$

により定める。このとき

$$
\operatorname{sn}\left(\sqrt{-1} K^{\prime}(k), k\right)=\infty, \quad \operatorname{cn}\left(\sqrt{-1} K^{\prime}(k), k\right)=\infty, \quad \operatorname{dn}\left(\sqrt{-1} K^{\prime}(k), k\right)=\infty
$$

一般の複素変数では，つぎの玑法定理が成り立つとして定める：

$$
\begin{aligned}
\operatorname{sn}(u+\sqrt{-1} v) & =\frac{\operatorname{sn}(u) \operatorname{cn}(\sqrt{-1} v) \operatorname{dn}(\sqrt{-1} v))+\operatorname{sn}(\sqrt{-1} v) \operatorname{cn}(u) \operatorname{dn}(u)}{1-k^{2} \operatorname{sn}^{2}(u) \operatorname{sn}^{2}(\sqrt{-1} v)} \\
& =\frac{\operatorname{sn}(u) \operatorname{dn}\left(v, k^{\prime}\right)+\sqrt{-1} \operatorname{sn}\left(v, k^{\prime}\right) \operatorname{cn}\left(v, k^{\prime}\right) \operatorname{cn}(u) \operatorname{dn}(u)}{\operatorname{cn}^{2}\left(v, k^{\prime}\right)\left(1+k^{2} \operatorname{sn}^{2}(u) \frac{\operatorname{sn}^{2}\left(v, k^{\prime}\right)}{\operatorname{cn}^{2}\left(v, k^{\prime}\right)}\right)} \\
& =\frac{\operatorname{sn}(u) \operatorname{dn}\left(v, k^{\prime}\right)+\sqrt{-1} \operatorname{sn}\left(v, k^{\prime}\right) \operatorname{cn}\left(v, k^{\prime}\right) \operatorname{cn}(u) \operatorname{dn}(u)}{\operatorname{cn}^{2}\left(v, k^{\prime}\right)+k^{2} \operatorname{sn}^{2}(u) \operatorname{sn}^{2}\left(v, k^{\prime}\right)} .
\end{aligned}
$$

いま
$\operatorname{sn}\left(K^{\prime}(k), k^{\prime}\right)=\operatorname{sn}\left(K\left(k^{\prime}\right), k^{\prime}\right)=1, \quad \operatorname{cn}\left(K^{\prime}(k), k^{\prime}\right)=0, \quad \operatorname{dn}\left(K^{\prime}(k), k^{\prime}\right)=\sqrt{1-\left(k^{\prime}\right)^{2}}=k$
に注意すれば

$$
\operatorname{sn}\left(u+\sqrt{-1} K^{\prime}\right)=\frac{\operatorname{sn}(u) \cdot k}{k^{2} \operatorname{sn}^{2}(u)}=\frac{1}{k \operatorname{sn}(u)}
$$

を得る。同様にして

$$
\begin{aligned}
& \operatorname{cn}\left(u+\sqrt{-1} K^{\prime}\right)=-\frac{\sqrt{-1} \operatorname{dn}(u)}{k \operatorname{sn}(u)} \\
& \operatorname{dn}\left(u+\sqrt{-1} K^{\prime}\right)=-\sqrt{-1} \frac{\operatorname{cn}(u)}{\operatorname{sn}(u)}
\end{aligned}
$$

が得られる。これらを繰り返し利用することにより，つぎも得られる：

$$
\begin{aligned}
\operatorname{sn}\left(u+2 \sqrt{-1} K^{\prime}\right) & =\frac{1}{k \operatorname{sn}\left(u+\sqrt{-1} K^{\prime}\right)}=\operatorname{sn}(u), \\
\operatorname{cn}\left(u+2 \sqrt{-1} K^{\prime}\right) & =-\frac{\sqrt{-1} \operatorname{dn}\left(u+\sqrt{-1} K^{\prime}\right)}{k \operatorname{sn}\left(u+\sqrt{-1} K^{\prime}\right)}=-\operatorname{cn}(u), \\
\operatorname{dn}\left(u+2 \sqrt{-1} K^{\prime}\right) & =-\sqrt{-1} \frac{\operatorname{cn}\left(u+\sqrt{-1} K^{\prime}\right)}{\operatorname{sn}\left(u+\sqrt{-1} K^{\prime}\right)}=-\operatorname{dn}(u) .
\end{aligned}
$$

とくに，これらと（1．7）からつぎのことがわかる；

$$
\begin{cases}\operatorname{sn}(u) & \text { は, } 2 \text { 重周期 } 4 K, 2 \sqrt{-1} K^{\prime} \text { をもつ, } \tag{1.10}\\ \operatorname{sn}^{2}(u) & \text { は, } 2 \text { 重周期 } 2 K, 2 \sqrt{-1} K^{\prime} \text { をもつ, } \\ \wp(u) & \text { は, } 2 \text { 重周期 } \frac{2 K}{\sqrt{\eta_{3}-\eta_{1}}}, \frac{2 \sqrt{-1} K^{\prime}}{\sqrt{\eta_{3}-\eta_{1}}} \text { をもつ. }\end{cases}
$$

ここで，$\wp(u)$ の半周期を

$$
\omega_{1}=\frac{\sqrt{-1} K^{\prime}}{\sqrt{\eta_{3}-\eta_{1}}}, \quad \omega_{3}=\frac{K}{\sqrt{\eta_{3}-\eta_{1}}}
$$

とおく。もちろん，$\wp\left(u+2 \omega_{1}\right)=\wp\left(u+2 \omega_{3}\right)=\wp(u)$ である。また，Weierstrass $\wp-$関数は微分方程式

$$
\left(\wp^{\prime}(u)\right)^{2}=4\left(\wp(u)-\eta_{1}\right)\left(\wp(u)-\eta_{2}\right)\left(\wp(u)-\eta_{3}\right)
$$

を満たしている。いま $\omega_{2}:=-\omega_{1}-\omega_{3}$ とおくと

$$
\omega_{2}=-\frac{K+\sqrt{-1} K^{\prime}}{\sqrt{\eta_{3}-\eta_{1}}}
$$

である。（1．7）と $\operatorname{sn}(K(k), k)=1, \operatorname{sn}\left(\sqrt{-1} K^{\prime}(k), k\right)=\infty$ より $\wp\left(\omega_{1}\right)=\eta_{1}, \wp\left(\omega_{3}\right)=$ η_{3} となっていることがわかる。さらに

$$
\wp\left(\omega_{2}\right)=\eta_{1}+\frac{\eta_{3}-\eta_{1}}{\operatorname{sn}^{2}\left(K+\sqrt{-1} K^{\prime}, k\right)}=\eta_{1}+\left(\eta_{3}-\eta_{1}\right) \frac{\eta_{2}-\eta_{1}}{\eta_{3}-\eta_{1}}=\eta_{2}
$$

も得られる。そして $\wp(u)$ が上記の微分方程式をみたすことからつぎのことがわ かる：

$$
\left\{\begin{array}{l}
\wp_{0}\left(\omega_{j}\right)=\eta_{j}, \tag{1.11}\\
\wp^{\prime}\left(\omega_{j}\right)=0, \quad(j=1,2,3) .
\end{array}\right.
$$

最後に，$L=\left\{2 m_{1} \omega_{1}+2 m_{3} \omega_{3} \mid m_{1}, m_{3} \in \mathbf{Z}\right\}$ とするとき

$$
\wp(u)=\frac{1}{u^{2}}+\sum_{\hat{\omega} \in L \backslash\{0\}}\left(\frac{1}{(u-\hat{\omega})^{2}}-\frac{1}{\hat{\omega}^{2}}\right)
$$

と表せることを記しておく（［17］を参照）。

2 楕円関数解をもつ微分方程式

$(*) \quad \ldots \quad\left\{\begin{aligned}\left(\frac{d Y}{d x}\right)^{2} & =A\left(Y-\zeta_{1}\right)\left(Y-\zeta_{2}\right)\left(Y-\zeta_{3}\right), \\ & \left(\zeta_{1}<\zeta_{2}<\zeta_{3} ; A, \zeta_{1}, \zeta_{2}, \zeta_{3} \text { は定数 }\right)\end{aligned}\right.$
［2．1］$A<0$ の場合
$p^{2}=\frac{\zeta_{3}-\zeta_{2}}{\zeta_{3}-\zeta_{1}}$ とおく。 $1-p^{2}=\frac{\zeta_{2}-\zeta_{1}}{\zeta_{3}-\zeta_{1}}$ に注意しよう。

$$
\left\{\begin{aligned}
Y & =\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) X^{2}(\widetilde{x}) \\
\widetilde{x} & =\frac{1}{2} \sqrt{-A\left(\zeta_{3}-\zeta_{1}\right)} x
\end{aligned}\right.
$$

とおく。微分すると

$$
\frac{d Y}{d x}=-2\left(\zeta_{3}-\zeta_{2}\right) X(\widetilde{x}) \frac{d X}{d x}=-2\left(\zeta_{3}-\zeta_{2}\right) X(\widetilde{x}) \frac{d X}{d \widetilde{x}} \frac{1}{2} \sqrt{-A\left(\zeta_{3}-\zeta_{1}\right)}
$$

であるから，これを $(*)$ に代入すると
$-A\left(\zeta_{3}-\zeta_{1}\right)\left(\zeta_{3}-\zeta_{2}\right)^{2} X^{2}\left(\frac{d X}{d \widetilde{x}}\right)^{2}=A\left(\zeta_{3}-\zeta_{1}\right)\left(1-p^{2} X^{2}\right)\left(\zeta_{3}-\zeta_{2}\right)\left(1-X^{2}\right)\left(-\left(\zeta_{3}-\zeta_{2}\right) X^{2}\right)$
より

$$
\left(\frac{d X}{d \widetilde{x}}\right)^{2}=\left(1-X^{2}\right)\left(1-p^{2} X^{2}\right)
$$

を得る。この解はJacobiのsn－関数で表せる：

$$
X(\widetilde{x})=\operatorname{sn}(\widetilde{x}, p)=\operatorname{sn}\left(\frac{1}{2} \sqrt{-A\left(\zeta_{3}-\zeta_{1}\right)} x, p\right)
$$

以上より，$(*)$ の解はつぎで与えられる：

$$
\begin{equation*}
\left.Y=\zeta_{3}-\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\frac{1}{2} \sqrt{-A\left(\zeta_{3}-\zeta_{1}\right)} x, p\right), \quad\left(p^{2}=\frac{\zeta_{3}-\zeta_{2}}{\zeta_{3}-\zeta_{1}}\right) \tag{2.1}
\end{equation*}
$$

［2．2］$A>0$ の場合

$\hat{p}^{2}=\frac{\zeta_{2}-\zeta_{1}}{\zeta_{3}-\zeta_{1}}$ とおくと，$\hat{p}^{2}=1-p^{2}=\left(p^{\prime}\right)^{2}$ であるから，$\hat{p}=p^{\prime}$ としてよい。

$$
\left\{\begin{array}{l}
Y=\zeta_{1}+\frac{\zeta_{3}-\zeta_{1}}{X^{2}(\widetilde{x})} \\
\widetilde{x}=\frac{1}{2} \sqrt{A\left(\zeta_{3}-\zeta_{1}\right)} x
\end{array}\right.
$$

とおく。微分すると

$$
\frac{d Y}{d x}=-\frac{2\left(\zeta_{3}-\zeta_{1}\right)}{X^{3}(\widetilde{x})} \frac{d X}{d \widetilde{x}} \frac{1}{2} \sqrt{A\left(\zeta_{3}-\zeta_{1}\right)}
$$

これを $(*)$ に代入して
$\left(\zeta_{3}-\zeta_{1}\right)^{2} A\left(\zeta_{3}-\zeta_{1}\right) \frac{1}{X^{6}}\left(\frac{d X}{d \widetilde{x}}\right)^{2}=A \frac{\left(\zeta_{3}-\zeta_{1}\right)}{X^{2}}\left(\zeta_{3}-\zeta_{1}\right)\left(\frac{1}{X^{2}}-\left(p^{\prime}\right)^{2}\right)\left(\zeta_{3}-\zeta_{1}\right)\left(\frac{1}{X^{2}}-1\right)$
より

$$
\left(\frac{d X}{d \widetilde{x}}\right)^{2}=\left(1-X^{2}\right)\left(1-\left(p^{\prime}\right)^{2} X^{2}\right)
$$

を得る。従って，$X(\widetilde{x})=\operatorname{sn}\left(\widetilde{x}, p^{\prime}\right)$ であるから，$(*)$ の解はつぎで与えられる：

$$
\begin{equation*}
Y=\zeta_{1}+\frac{\zeta_{3}-\zeta_{1}}{\operatorname{sn}^{2}\left(\frac{1}{2} \sqrt{A\left(\zeta_{3}-\zeta_{1}\right)} x, p^{\prime}\right)} \tag{2.2}
\end{equation*}
$$

$\zeta_{1}+\zeta_{2}+\zeta_{3}=a$ とおくと，$\eta_{j}=\zeta_{j}-\frac{a}{3},(j=1,2,3)$ とすれば，$\eta_{1}+\eta_{2}+\eta_{3}=0$ で あり，

$$
k^{2}=\frac{\eta_{2}-\eta_{1}}{\eta_{3}-\eta_{1}}=\frac{\zeta_{2}-\zeta_{1}}{\zeta_{3}-\zeta_{1}}=1-p^{2}=\left(p^{\prime}\right)^{2}
$$

であるから，$p^{\prime}=k$ である。よって，（2．2）と（1．7）より

$$
Y=\eta_{1}+\frac{a}{3}+\frac{\eta_{3}-\eta_{1}}{\operatorname{sn}^{2}\left(\frac{1}{2} \sqrt{A\left(\eta_{3}-\eta_{1}\right)} x, k\right)}=\wp\left(\frac{\sqrt{A}}{2} x\right)+\frac{a}{3}
$$

となり，Weierstrss \wp－関数で表せる。

［2．3］例

例1 $A<0$ の場合：楕円型 Tzitzéica 方程式
$z=x+\sqrt{-1} y$ と表すとき，

$$
\partial_{z}=\frac{1}{2}\left(\partial_{x}-\sqrt{-1} \partial_{y}\right), \quad \partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+\sqrt{-1} \partial_{y}\right)
$$

である。Tzitzéica 方程式は

$$
\begin{equation*}
\partial_{\bar{z}} \partial_{z} u=e^{-2 u}-e^{u} \tag{2.3}
\end{equation*}
$$

という形の 2 階の非線形偏微分方程式である。この方程式が可稹分条件として現 れる曲面の幾何学については 55 を参照のこと。（2．3）の楕円関数による解を求め るために，u は x のみに依存する関数，すなわち，$u=u(x)$ であると仮定する。 $u_{x}=\partial_{x} u, u_{x x}=\partial_{x} \partial_{x} u$ という記号を用いることにする。このとき，（2．3）は

$$
\frac{1}{4} u_{x x}=e^{-2 u}-e^{u}
$$

となる。両辺に u_{x} をかけて 1 回積分すると

$$
\frac{1}{8}\left(u_{x}\right)^{2}=-\frac{1}{2} e^{-2 u}-e^{u}+a, \quad(a \text { は積分定数 })
$$

を得る。 $Y(x)=e^{u(x)}$ とおくと，

$$
\begin{equation*}
\left(\frac{d Y}{d x}\right)^{2}=\left(e^{u} u_{x}\right)^{2}=8 e^{2 u}\left(-\frac{1}{2} e^{-2 u}-e^{u}+a\right)=-8 Y^{3}+8 a Y^{2}-4 \tag{2.4}
\end{equation*}
$$

を得る。これを

$$
\text { 初期条件 } \begin{cases}e^{u(0)} & =\frac{\alpha}{2}, \\ u_{x}(0) & =0\end{cases}
$$

のもとで解く。ここで α は $\alpha \geqq 2$ なる定数である。上の微分方程式に初期条件を代入すると

$$
\begin{equation*}
a=\frac{\alpha}{2}+\frac{1}{2}\left(\frac{\alpha}{2}\right)^{-2}=\frac{\alpha^{3}+4}{2 \alpha^{2}} \tag{2.5}
\end{equation*}
$$

が成り立っている。ここで，$Y=\frac{\alpha}{2}$ は 3 次方程式 $Y^{3}-a Y^{2}+\frac{1}{2}=0$ の 1 つの解 である。残りの解は $Y^{2}-\frac{2}{\alpha^{2}} Y-\frac{1}{\alpha}=0$ の解であるから， 3 次方程式の 3 つの解を $\zeta_{1}, \zeta_{2}, \zeta_{3}$ とするとき，

$$
\zeta_{1}=\frac{1-\sqrt{\alpha^{3}+1}}{\alpha^{2}}, \quad \zeta_{2}=\frac{1+\sqrt{\alpha^{3}+1}}{\alpha^{2}}, \quad \zeta_{3}=\frac{\alpha}{2} .
$$

$\alpha>2$ のときは，$\zeta_{1}<\zeta_{2}<\zeta_{3}$ である。 (2.4) は $(*)$ において $A=-8$ の場合である から，$\widetilde{x}=\frac{1}{2} \sqrt{-(-8)\left(\zeta_{3}-\zeta_{1}\right)}=\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x$ である。よって，（2．1）より

$$
\left\{\begin{array}{l}
e^{u(x)}=\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right), \quad\left(p^{2}=\frac{\zeta_{3}-\zeta_{2}}{\zeta_{3}-\zeta_{1}}\right), \tag{2.6}\\
\text { 半周期 } \quad \omega_{0}=\frac{K(p)}{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}}}, \quad \omega_{0}^{\prime}=\frac{\sqrt{-1} K^{\prime}(p)}{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}}} .
\end{array}\right.
$$

ここで $\operatorname{sn}\left(u+\sqrt{-1} K^{\prime}(p), p\right)=(p \operatorname{sn}(u, p))^{-1}$ という性質と $\eta_{j}=\zeta_{j}-\frac{a}{3},(j=1,2,3)$ を使うと

$$
\begin{aligned}
Y\left(x+\omega_{0}^{\prime}\right) & =\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x+\sqrt{-1} K^{\prime}(p), p\right) \\
& =\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right)\left(\frac{\zeta_{3}-\zeta_{1}}{\zeta_{3}-\zeta_{2}}\right) \frac{1}{\operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)} \\
& =\eta_{3}+\frac{a}{3}-\frac{\eta_{3}-\eta_{1}}{\operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\eta_{3}-\eta_{1}} x, p\right)}=\wp(\sqrt{2} \sqrt{-1} x)+\frac{a}{3},
\end{aligned}
$$

であるが，最後の等式は，$k^{2}=\frac{\eta_{2}-\eta_{1}}{\eta_{3}-\eta_{1}},\left(k^{\prime}\right)^{2}=1-k^{2}=p^{2}, \operatorname{sn}(\sqrt{-1} v, k)=$ $\sqrt{-1} \frac{\mathrm{sn}(v, p)}{\operatorname{cn}(v, p)}$ を用いて計算すると

$$
\begin{aligned}
\wp(\sqrt{2} \sqrt{-1} x) & =\eta_{1}+\frac{\eta_{3}-\eta_{1}}{\operatorname{sn}^{2}\left(\sqrt{-1} \sqrt{2} \sqrt{\eta_{3}-\eta_{1}} x, k\right)} \\
& =\eta_{1}-\frac{\left(\eta_{3}-\eta_{1}\right) \mathrm{cn}^{2}\left(\sqrt{2} \sqrt{\eta_{3}-\eta_{1}} x, p\right)}{\operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\eta_{3}-\eta_{1}} x, p\right)} \\
& =\frac{\eta_{1} \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\eta_{3}-\eta_{1}} x, p\right)-\left(\eta_{3}-\eta_{1}\right)\left(1-\operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\eta_{3}-\eta_{1}} x, p\right)\right)}{\operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\eta_{3}-\eta_{1}} x, p\right)} \\
& =\eta_{3}-\frac{\eta_{3}-\eta_{1}}{\operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\eta_{3}-\eta_{1}} x, p\right)}
\end{aligned}
$$

となることから成り立つことがわかる。以上より，つぎがわかった：

$$
\begin{equation*}
Y\left(x+\omega_{0}^{\prime}\right)=\wp(\sqrt{2} \sqrt{-1} x)+\frac{a}{3} . \tag{2.7}
\end{equation*}
$$

例2（ $A<0$ の場合） mKdV 方程式

x, t の 2 変数関数 $\mathcal{K}=\mathcal{K}(x, t)$ がつぎの 3 階の非線形偏微分方程式を満たしてい る場合を考える。

$$
\begin{equation*}
\mathcal{K}_{x x x}+\frac{3}{2} \mathcal{K}^{2} \mathcal{K}_{x}-\mathcal{K}_{t}=0 \tag{2.8}
\end{equation*}
$$

これを modified KdV 方程式とよぶ。変数変換として

$$
\left\{\begin{array} { l }
{ u = x - c t , } \\
{ v = x + c t , }
\end{array} \quad \left\{\begin{array}{l}
\partial_{x}=\partial_{u}+\partial_{v} \\
\partial_{t}=-c \partial_{u}+c \partial_{v}
\end{array}\right.\right.
$$

を導入する。ここでつぎの仮定をする：
仮定： $\mathcal{K}=\mathcal{K}(u)$ ．
このとき，

$$
\mathcal{K}_{x}=\mathcal{K}_{u}, \quad \mathcal{K}_{x x x}=\mathcal{K}_{u u u}, \quad \mathcal{K}_{t}=-c \mathcal{K}_{u}
$$

であり，（2．8）は

$$
\mathcal{K}_{u u u}+\frac{3}{2} \mathcal{K}^{2} \mathcal{K}_{u}+c \mathcal{K}_{u}=0
$$

となる。1回積分して

$$
\mathcal{K}_{u u}+\frac{1}{2} \mathcal{K}^{3}+c \mathcal{K}=\text { constant }=: a
$$

を得る。 \mathcal{K}_{u} をかけて積分すれば

$$
\frac{1}{2}\left(\mathcal{K}_{u}\right)^{2}+\frac{1}{8} \mathcal{K}^{4}+\frac{c}{2} \mathcal{K}^{2}-a \mathcal{K}=\text { constant }=: b
$$

を得る。以上より，つぎがわかった：

$$
\begin{equation*}
\left(\mathcal{K}_{u}\right)^{2}=-\frac{1}{4}\left(\mathcal{K}^{4}+4 c \mathcal{K}^{2}-8 a \mathcal{K}-8 b\right) . \tag{2.9}
\end{equation*}
$$

これを

$$
\text { 初期条件 } \quad \begin{cases}\mathcal{K}_{u}(0) & =0, \tag{2.10}\\ \mathcal{K}(0) & =\alpha .\end{cases}
$$

のもとで解こう。（2．9）で $u=0$ として（2．10）を用いると $\alpha^{4}+4 c \alpha^{2}-8 a \alpha-8 b=0$ を得るので，定数 b はこれを満たすように選ぶこととする。つぎに，

$$
\begin{equation*}
\mathcal{K}=\frac{1}{z}+\alpha, \quad \mathcal{K}_{u}=-\frac{y}{z^{2}} \tag{2.11}
\end{equation*}
$$

とおく。（2．9）に代入して整理すると

$$
y^{2}=-\left(\alpha^{3}+2 c \alpha-2 a\right) z^{3}-\left(\frac{3}{2} \alpha^{2}+c\right) z^{2}-\alpha z-\frac{1}{4}
$$

を得るので，

$$
\left\{\begin{array}{l}
A=-\left(\alpha^{3}+2 c \alpha-2 \alpha\right) \tag{2.12}\\
B=-\left(\frac{3}{2} \alpha^{2}+c\right)
\end{array}\right.
$$

とおくと $y^{2}=A z^{3}+B z^{2}-\alpha z-\frac{1}{4}$ である。いま， $\mathcal{K}_{u}=-\frac{z_{u}}{z^{2}}$ より $\left(\mathcal{K}_{u}\right)^{2}=\frac{\left(z_{u}\right)^{2}}{z^{4}}$,従って，

$$
y^{2}=\left(z_{u}\right)^{2}
$$

である。 $z=w-\frac{B}{3 A}$ と変換すると，$\left(w_{u}\right)^{2}=\left(z_{u}\right)^{2}=y^{2}$ であるから，

$$
\left(w_{u}\right)^{2}=y^{2}=A w^{3}-\left(\frac{B^{2}}{3 A}+\alpha\right) w+\frac{2 B^{3}}{27 A^{2}}+\frac{B}{3 A} \alpha-\frac{1}{4}
$$

と書けるので，これを $y^{2}=A\left(w-\eta_{1}\right)\left(w-\eta_{2}\right)\left(w-\eta_{3}\right),\left(\eta_{1}+\eta_{2}+\eta_{3}=0, \eta_{1}<\eta_{2}<\eta_{3}\right)$ と分解する。

解 $(A<0$ の場合）

$$
w=\eta_{3}-\left(\eta_{3}-\eta_{2}\right) \operatorname{sn}^{2}\left(\frac{1}{2} \sqrt{-A\left(\eta_{3}-\eta_{1}\right)} u+\delta, p\right), \delta=\sqrt{-1} K^{\prime}(p), p^{2}=\frac{\eta_{3}-\eta_{2}}{\eta_{3}-\eta_{1}}
$$

ととれば初期条件を満たす。解は

$$
\left\{\begin{align*}
z & =\eta_{3}-\frac{B}{3 A}-\frac{\eta_{3}-\eta_{1}}{\operatorname{sn}^{2}\left(\frac{1}{2} \sqrt{-A\left(\eta_{3}-\eta_{1}\right)} u, p\right)} \tag{2.13}\\
\mathcal{K} & =\frac{1}{z}+\alpha
\end{align*}\right.
$$

で与えられる。
解（ $A>0$ の場合）
（2．2）で $a=0$ の場合を考えればよいから，
$(2.14)\left\{\begin{array}{l}z=\eta_{1}-\frac{B}{3 A}+\frac{\eta_{3}-\eta_{1}}{\operatorname{sn}^{2}\left(\frac{1}{2} \sqrt{A\left(\eta_{3}-\eta_{1}\right)} u, k\right)}, \quad\left(k^{2}=\frac{\eta_{2}-\eta_{1}}{\eta_{3}-\eta_{1}}\right), \\ \mathcal{K}=\frac{1}{z}+\alpha\end{array}\right.$
で与えられる。

3 楕円曲線上のサイクルと周期積分

標準理論から始める。楕円曲線 $\mathcal{C}: B^{2}=4\left(\eta-\eta_{1}\right)\left(\eta-\eta_{2}\right)\left(\eta-\eta_{3}\right)$ と種数 1 のコ ンパクト・リーマン面を対応させる。ここで，

$$
\eta_{1}+\eta_{2}+\eta_{3}=0, \quad \eta_{1}<\eta_{2}<\eta_{3}, \quad k^{2}=\frac{\eta_{3}-\eta_{2}}{\eta_{3}-\eta_{1}}
$$

とする。 $B=\wp^{\prime}(z), \eta=\wp(z)$ によりパラメーターを入れることができる。このとき，

$$
\frac{d \eta}{B}=\frac{d \wp}{\wp^{\prime}(z)}=d z
$$

に注意して， \mathcal{C} のサイクル（cycle）$\left\{a_{1}, b_{1}\right\}$ を

$$
\left\{\begin{array}{l}
\int_{a_{1}} \frac{d \eta}{B}=2 \omega_{1}=: 2 \omega(k) \tag{3.1}\\
\int_{b_{1}} \frac{d \eta}{B}=2 \omega_{3}=: 2 \omega^{\prime}(k)
\end{array}\right.
$$

を満たすように選ぶ。さらに，

$$
\begin{equation*}
w_{1}=\frac{\pi \sqrt{-1}}{\omega(k)} \frac{d \eta}{B} \tag{3.2}
\end{equation*}
$$

とおくと， $\int_{a_{1}} w_{1}=2 \pi \sqrt{-1}, \int_{b_{1}} w_{1}=2 \pi \sqrt{-1} \frac{\omega^{\prime}(k)}{\omega(k)}=: \Pi(k)$ を満たす。このとき得ら れる $(2 \pi \sqrt{-1} \Pi(k))$ を \mathcal{C} の Riemann 周期行列という。

ここで，［2．3］の例 1 で $\widetilde{B}=\frac{d Y}{d x}, \zeta=Y$ とおいて，楕円曲線

$$
\mathcal{C}^{0}: \widetilde{B}^{2}=-8\left(\zeta-\zeta_{1}\right)\left(\zeta-\zeta_{2}\right)\left(\zeta-\zeta_{3}\right)
$$

を考える。上記の楕円曲線 \mathcal{C} において

$$
\left\{\begin{align*}
\widetilde{B} & =\sqrt{2} \sqrt{-1} B \tag{3.3}\\
\zeta & =\eta+\frac{a}{3}
\end{align*}\right.
$$

とおけば，これは \mathcal{C} と \mathcal{C}^{0} の間の双有理同型写像を与える。 \mathcal{C}^{0} のサイクル $\left\{a_{1}^{0}, b_{1}^{0}\right\}$ を $a_{1}^{0}=b_{1}, b_{1}^{0}=-a_{1}$ で定める。すると，このとき

$$
\left\{\begin{array}{l}
\int_{a_{1}^{0}} \frac{d \zeta}{\widetilde{B}}=\int_{b_{1}} \frac{d \eta}{\sqrt{2} \sqrt{-1} B}=\frac{2 \omega^{\prime}(k)}{\sqrt{2} \sqrt{-1}}=2 \omega_{0} \tag{3.4}\\
\int_{b_{1}^{0}} \frac{d \zeta}{\widetilde{B}}=-\int_{a_{1}} \frac{d \eta}{\sqrt{2} \sqrt{-1} B}=-\frac{2 \omega(k)}{\sqrt{2} \sqrt{-1}}=2 \omega_{0}^{\prime}
\end{array}\right.
$$

\because 最後の等式だけ確認すればよい。

$$
\begin{aligned}
& \omega^{\prime}(k)=\omega_{1}=\frac{\sqrt{-1} K^{\prime}(k)}{\sqrt{\eta_{3}-\eta_{1}}}=\frac{\sqrt{-1} K(p)}{\sqrt{\zeta_{3}-\zeta_{1}}}=\sqrt{2} \sqrt{-1} \omega_{0} \\
& \omega(k)=\omega_{3}=\frac{K(k)}{\sqrt{\eta_{3}-\eta_{1}}}=\frac{K^{\prime}(p)}{\sqrt{\zeta_{3}-\zeta_{1}}}=-\sqrt{2} \sqrt{-1} \omega_{0}^{\prime} .
\end{aligned}
$$

以上を踏まえて，

$$
\begin{equation*}
w_{1}^{0}=\frac{\pi \sqrt{-1}}{\omega_{0}} \frac{d \zeta}{\widetilde{B}} \tag{3.5}
\end{equation*}
$$

と定めれば， $\int_{a_{1}^{0}} w_{1}^{0}=2 \pi \sqrt{-1}, \int_{b_{1}^{0}} w_{1}^{0}=2 \pi \sqrt{-1} \frac{\omega_{0}^{\prime}}{\omega_{0}}=: \Pi(p)$ となる。従って， \mathcal{C}^{0} の Riemann 周期行列は $(2 \pi \sqrt{-1} \Pi(p))$ である。

「Weierstrass ζ－関数」 $L=\left\{2 m_{1} \omega(k)+2 m_{2} \omega^{\prime}(k) \mid m_{1}, m_{2} \in \mathbf{Z}\right\}$ とおく。

$$
\begin{equation*}
\zeta_{w}(z)=\frac{1}{z}+\sum_{\hat{\omega} \in L \backslash\{0\}}\left(\frac{1}{z-\hat{\omega}}+\frac{1}{\hat{\omega}}+\frac{z}{\hat{\omega}^{2}}\right) \tag{3.6}
\end{equation*}
$$

をWeierstrass く－関数という。 $z=0$ で位数 1 の極をもつ \mathbf{C} 上の有理型関数（mero－ morphic function）であるが，楕円関数ではない。（位数1の楕円関数は存在しない。）

簡単のため，$\omega=\omega(k), \omega^{\prime}=\omega^{\prime}(k)$ とおく。以下の事実が成り立つ：

$$
\left\{\begin{align*}
\zeta_{w}^{\prime}(z) & =-\wp(z), \tag{3.7}\\
\zeta_{w}(z+2 \omega) & =\zeta_{w}(z)+2 \zeta_{w}(\omega), \\
\zeta_{w}\left(z+2 \omega^{\prime}\right) & =\zeta_{w}(z)+2 \zeta_{w}\left(\omega^{\prime}\right), \\
\zeta_{w}\left(\omega+\omega^{\prime}\right) & =\zeta_{w}(\omega)+\zeta_{w}\left(\omega^{\prime}\right), \\
\zeta_{w}(\omega) \omega^{\prime}-\zeta_{w}\left(\omega^{\prime}\right) \omega & =\frac{\pi \sqrt{-1}}{2} \quad \text { (Legendre's relation) }
\end{align*}\right.
$$

\because 第1式はWeierstrass \wp－関数が

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\hat{\omega} \in L \backslash\{0\}}\left(\frac{1}{(z-\hat{\omega})^{2}}-\frac{1}{\hat{\omega}^{2}}\right)
$$

と表せることからわかる。第 2 ，第 3 式は，第 1 式と 2ω と $2 \omega^{\prime}$ が $\wp(z)$ の周期であ ることを用いて

$$
\begin{aligned}
& \left(\zeta_{w}(z+2 \omega)-\zeta_{w}(z)\right)^{\prime}=-\wp(z+2 \omega)+\wp(z)=0 \\
& \left(\zeta_{w}\left(z+2 \omega^{\prime}\right)-\zeta_{w}(z)\right)^{\prime}=-\wp\left(z+2 \omega^{\prime}\right)+\wp(z)=0
\end{aligned}
$$

より

$$
\left.\begin{array}{l}
\zeta_{w}(z+2 \omega)-\zeta_{w}(z)=A \tag{3.8}\\
\zeta_{w}\left(z+2 \omega^{\prime}\right)-\zeta_{w}(z)=B
\end{array}\right\}
$$

とおける。ここで，$\zeta_{w}(-z)=-\zeta_{w}(z)$ であることに注意しよう。これは無限和が $\hat{\omega} \rightarrow-\hat{\omega}$ としても不変であることを用いて示すことができる。（3．8）で $z=-\omega$ と すれば，$\zeta_{w}(-\omega)=-\zeta_{w}(\omega)$ より $A=2 \zeta_{w}(\omega)$ を得る。同様にして，（3．8）で $z=-\omega^{\prime}$ とすれば $B=2 \zeta_{w}\left(\omega^{\prime}\right)$ を得る。第 4 式は，第 2 式において $z=-\omega+\omega^{\prime}$ ，第 3 式にお いて $z=-\omega^{\prime}+\omega$ とすれば

$$
\begin{aligned}
& \zeta_{w}\left(\omega+\omega^{\prime}\right)=\zeta_{w}\left(-\omega+\omega^{\prime}\right)+2 \zeta_{w}(\omega) \\
& \zeta_{w}\left(\omega+\omega^{\prime}\right)=\zeta_{w}\left(-\omega^{\prime}+\omega\right)+2 \zeta_{w}\left(\omega^{\prime}\right)
\end{aligned}
$$

であるが，辺々加えて 2 で割れば第 4 式を得る。第 5 式については，基本周期平行四辺形 Γ をその内部に $\zeta_{w}(z)$ の極が1つだけあるように選ぶ。まず，留数定理より
$\int_{\Gamma} \zeta_{w}(z) d z=2 \pi \sqrt{-1}$ である。一方で，

$$
\begin{aligned}
& \int_{\Gamma} \zeta_{w}(z) d z \\
& =\int_{z_{0}}^{z_{0}+2 \omega} \zeta_{w}(z) d z+\int_{z_{0}}^{z_{0}+2 \omega^{\prime}} \zeta_{w}(z+2 \omega) d z+\int_{z_{0}+2 \omega}^{z_{0}} \zeta_{w}\left(z+2 \omega^{\prime}\right) d z+\int_{z_{0}+2 \omega^{\prime}}^{z_{0}} \zeta_{w}(z) d z \\
& =\int_{z_{0}}^{z_{0}+2 \omega^{\prime}}\left(\zeta_{w}(z+2 \omega)-\zeta_{w}(z)\right) d z-\int_{z_{0}}^{z_{0}+2 \omega}\left(\zeta_{w}\left(z+2 \omega^{\prime}\right)-\zeta_{w}(z)\right) d z \\
& =\int_{z_{0}}^{z_{0}+2 \omega^{\prime}} 2 \zeta_{w}(\omega) d z-\int_{z_{0}}^{z_{0}+2 \omega} 2 \zeta_{w}\left(\omega^{\prime}\right) d z=4 \zeta_{w}(\omega) \omega^{\prime}-4 \zeta_{w}\left(\omega^{\prime}\right) \omega .
\end{aligned}
$$

従って，第4式を得る。第 2 ，第 3 式を繰り返し用いれば

$$
\zeta_{w}\left(z+2 m_{1} \omega+2 m_{2} \omega^{\prime}\right)=\zeta_{w}(z)+2 m_{1} \zeta_{w}(\omega)+2 m_{2} \zeta_{w}\left(\omega^{\prime}\right), \quad\left(m_{1}, m_{2} \in \mathbf{Z}\right)
$$

もわかる。

［3．1］第2種の Abel微分形式

$$
\begin{equation*}
\Omega_{0}^{0}=-\left(\wp(z)+\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}\right) \frac{d \zeta}{\widetilde{B}} \tag{3.9}
\end{equation*}
$$

とおく。ここで，$\frac{d \zeta}{\widehat{B}}=\frac{d z}{\sqrt{2} \sqrt{-1}}$ に注意する。 Ω_{0}^{0} は第 2 種の Able 微分形式である。
これの a_{1}^{0}－周期と b_{1}^{0}－周期を訃算しよう。

$$
\begin{align*}
\int_{a_{1}^{0}} \Omega_{0}^{0} & =\frac{1}{\sqrt{2} \sqrt{-1}} \int_{z_{0}}^{z_{0}+2 \omega^{\prime}}\left(-\wp(z) d z-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}} d z\right) \tag{3.10}\\
& =\frac{1}{\sqrt{2} \sqrt{-1}}\left(\zeta_{w}\left(z_{0}+2 \omega^{\prime}\right)-\zeta_{w}\left(z_{0}\right)-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}} 2 \omega^{\prime}\right)=0 .
\end{align*}
$$

最後の等式では（3．7）の第 3 式を用いた。このように a_{1}^{0}－周期が 0 のものを正規化 されているという。つぎに，b_{1}^{0}－周期については

$$
\begin{aligned}
\int_{b_{1}^{0}} \Omega_{0}^{0} & =-\int_{a_{1}} \Omega_{0}^{0}=-\frac{1}{\sqrt{2} \sqrt{-1}} \int_{z_{0}}^{z_{0}+2 \omega}\left(-\wp(z)-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}\right) d z \\
& =-\frac{1}{\sqrt{2} \sqrt{-1}}\left(\zeta_{w}\left(z_{0}+2 \omega\right)-\zeta_{w}\left(z_{0}\right)-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}} 2 \omega\right) \\
& =-\frac{1}{\sqrt{2} \sqrt{-1}} \frac{2}{\omega^{\prime}}\left(\zeta_{w}(\omega) \omega^{\prime}-\zeta_{w}\left(\omega^{\prime}\right) \omega\right) \\
& =\frac{\pi \sqrt{-1}}{-\sqrt{2} \sqrt{-1} \omega^{\prime}}=\frac{\pi \sqrt{-1}}{2 \omega_{0}}=: \mathbf{U}^{0}
\end{aligned}
$$

となる。

$$
\begin{equation*}
\mathbf{U}^{0}=\frac{\pi \sqrt{-1}}{2 \omega_{0}}=\int_{b_{1}^{0}} \Omega_{0}^{0} \tag{3.11}
\end{equation*}
$$

Ω_{0}^{0} は正規化された第 2 種 Abel微分形式である（normalized Abelian differential of 2nd kind）。

4 Riemann θ 関数

$\Pi=\Pi(p), z \in \mathbf{C}$ に刘して，$\tau=\frac{\Pi}{2 \pi \sqrt{-1}}, v=\frac{z}{2 \pi \sqrt{-1}}$ とおく。Riemann 周期行列 $(2 \pi \sqrt{-1} \Pi)$ をもつ惰円曲線に対する Riemann θ 関数は

$$
\begin{equation*}
\theta(z ; \Pi)=\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi m^{2}+m z\right) \tag{4.1}
\end{equation*}
$$

により定義される。 $m \rightarrow-m$ としても無限和は変わらないので，和が収束していれ ば $\theta(z ; \Pi)=\theta(-z ; \Pi)$ が成り立つことがわかる。すなわち，Riemann θ 関数は偶関数である。（4．1）の無限和は，C の任意のコンパクト集合上で純対かつ一様収束する （［14］田中－伊達「KdV 方程式」95page を参照）。一方で，Jacobi が定義した 4 つの θ 関数があるので，それらとの関係を述べておこう。 $q=\exp (\tau \pi \sqrt{-1})=\exp \left(\frac{1}{2} \Pi\right)$ とおく。

$$
\begin{aligned}
\theta(z ; \Pi) & =1+\sum_{m=1}^{\infty} \exp \left(\frac{1}{2} \Pi m^{2}\right)(\exp (m z)+\exp (-m z)) \\
& =1+2 \sum_{m=1}^{\infty} q^{m^{2}} \cos (2 \pi m v)=\theta_{3}(v \mid \tau)
\end{aligned}
$$

最後の $\theta_{3}(v \mid \tau)$ はJacobi の第 3θ 関数である。Riemann θ 関数の周期性を調べるこ とにする。以下では，θ 関数を書く際に Π の䛉載は省略する。まず，$\theta(z+2 \pi \sqrt{-1})=$
$\theta(z)$ はすぐにわかる。つぎに，無限和が $m \rightarrow-m$ や $m \rightarrow 1-m$ という変換をし ても不変であることに着目すれば

$$
\begin{aligned}
\theta(z+\Pi) & =\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi m^{2}+m z+m \Pi\right)-\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi m^{2}-m z-m \Pi\right) \\
& =\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi(1-m)^{2}-(1-m) z-(1-m) \Pi\right) \\
& =\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi m^{2}+m z\right) \exp \left(\frac{1}{2} \Pi-m \Pi-z-\Pi+m \Pi\right) \\
& =\exp \left(-\frac{1}{2} \Pi-z\right) \theta(z)
\end{aligned}
$$

を得る。以上より，まとめると

$$
\left\{\begin{align*}
\theta(z+2 \pi \sqrt{-1}) & =\theta(z) \tag{4.2}\\
\theta(z+\Pi) & =\exp \left(-\frac{1}{2} \Pi-z\right) \theta(z)
\end{align*}\right.
$$

$2 \pi \sqrt{-1}$ と Π について擬周期的性質をもつので，これらの半分の値ではどうなって いるのかを調べてみよう。

$$
\begin{aligned}
\theta(z+\pi \sqrt{-1}) & =\theta\left(2 \pi \sqrt{-1}\left(v+\frac{1}{2}\right)\right)=\theta_{3}\left(v+\frac{1}{2}\right) \\
& =1+2 \sum_{m=1}^{\infty} q^{m^{2}} \cos (2 \pi m v+\pi m) \\
& =1+2 \sum_{m=1}^{\infty}(-1)^{m} q^{m^{2}} \cos 2 \pi m v=\theta_{4}(v)\left(=\theta_{0}(v)\right)
\end{aligned}
$$

ここで，$\theta_{4}(v)$ はJacobiの第4 θ 関数である。つぎに

$$
\begin{aligned}
\theta\left(z+\frac{1}{2} \Pi\right) & =\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi m^{2}+m z+\frac{1}{2} m \Pi\right) \\
& =\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi\left(m+\frac{1}{2}\right)^{2}+\left(m+\frac{1}{2}\right) z\right) \exp \left(-\frac{1}{8} \Pi-\frac{1}{2} z\right)
\end{aligned}
$$

であるが，

$$
\begin{aligned}
& \sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi\left(m+\frac{1}{2}\right)^{2}+\left(m+\frac{1}{2}\right) z\right)=\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi\left(m+\frac{1}{2}\right)^{2}+(2 m+1) \pi \sqrt{-1} v\right) \\
& =\sum_{m=0}^{\infty} q^{\left(m+\frac{1}{2}\right)^{2}}(\exp ((2 m+1) \pi \sqrt{-1} v)+\exp (-(2 m+1) \pi \sqrt{-1} v)) \\
& =2 \sum_{m=0}^{\infty} q^{\left(m+\frac{1}{2}\right)^{2}} \cos (2 m+1) \pi v=\theta_{2}(v)
\end{aligned}
$$

最後の，$\theta_{2}(v)$ は Jacobiの第 2θ 関数である。従って，つぎを得る：

$$
\theta_{2}(v)=\exp \left(\frac{1}{8} \Pi+\frac{1}{2} z\right) \theta\left(z+\frac{1}{2} \Pi\right) .
$$

Jacobi の第1 θ 関数は $\theta_{1}(v)=-\theta_{2}\left(v+\frac{1}{2}\right)$ により定義される。このとき

$$
\begin{aligned}
& \theta\left(z+\pi \sqrt{-1}+\frac{1}{2} \Pi\right)=\sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2} \Pi m^{2}+m z+m \pi \sqrt{-1}+\frac{1}{2} \Pi m\right) \\
= & \sum_{m \in \mathbf{Z}} \exp \left(\frac{1}{2}\left(m+\frac{1}{2}\right)^{2} \Pi+\left(m+\frac{1}{2}\right)(z+\pi \sqrt{-1})\right) \exp \left(-\frac{1}{8} \Pi-\frac{1}{2}(z+\pi \sqrt{-1})\right) \\
= & \theta_{2}\left(v+\frac{1}{2}\right) \exp \left(-\frac{1}{8} \Pi-\frac{1}{2}(z+\pi \sqrt{-1})\right)=-\theta_{1}(v) \exp \left(-\frac{1}{8} \Pi-\frac{1}{2}(z+\pi \sqrt{-1})\right)
\end{aligned}
$$

より，

$$
\begin{aligned}
\theta_{1}(v) & =-\exp \left(\frac{1}{8} \Pi+\frac{1}{2} z+\frac{1}{2} \pi \sqrt{-1}\right) \theta\left(z+\pi \sqrt{-1}+\frac{1}{2} \Pi\right) \\
& =-\sqrt{-1} \exp \left(\frac{1}{8} \Pi+\frac{1}{2} z\right) \theta\left(z+\pi \sqrt{-1}+\frac{1}{2} \Pi\right)
\end{aligned}
$$

以上，まとめるとつぎを得る：

$$
\left\{\begin{array}{l}
\theta_{0}(v)=\theta(z+\pi \sqrt{-1}) \tag{4.3}\\
\theta_{1}(v)=-\sqrt{-1} \exp \left(\frac{1}{8} \Pi+\frac{1}{2} z\right) \theta\left(z+\pi \sqrt{-1}+\frac{1}{2} \Pi\right), \\
\theta_{2}(v)=\exp \left(\frac{1}{8} \Pi+\frac{1}{2} z\right) \theta\left(z+\frac{1}{2} \Pi\right), \\
\theta_{3}(v)=\theta(z) .
\end{array}\right.
$$

$$
u=2 K(p) v \text { とおいて }
$$

$$
\left\{\begin{array}{l}
\operatorname{sn}(u, p)=\frac{\theta_{3}(0) \theta_{1}(v)}{\theta_{2}(0) \theta_{0}(v)}=\frac{1}{\sqrt{p}} \frac{\theta_{1}(v)}{\theta_{0}(v)} \tag{4.4}\\
\operatorname{cn}(u, p)=\frac{\theta_{0}(0) \theta_{2}(v)}{\theta_{2}(0) \theta_{0}(v)}=\sqrt{\frac{p^{\prime}}{p}} \frac{\theta_{2}(v)}{\theta_{0}(v)} \\
\operatorname{dn}(u, p)=\frac{\theta_{0}(0) \theta_{3}(v)}{\theta_{3}(0) \theta_{0}(v)}=\sqrt{p^{\prime}} \frac{\theta_{3}(v)}{\theta_{0}(v)}
\end{array}\right.
$$

（［15］を参照）。（4．3）と（4．4）より，Jacobi楕円関数を Riemann θ 関数だけを用いて表すことができる：

$$
\left\{\begin{align*}
\operatorname{sn}(u, p) & =-\sqrt{-1} \frac{\theta(0) \theta\left(z+\pi \sqrt{-1}+\frac{1}{2} \Pi\right)}{\theta\left(\frac{1}{2} \Pi\right) \theta(z+\pi \sqrt{-1})} \exp \left(\frac{1}{2} z\right) \tag{4.5}\\
\operatorname{cn}(u, p) & =\frac{\theta(\pi \sqrt{-1}) \theta\left(z+\frac{1}{2} \Pi\right)}{\theta\left(\frac{1}{2} \Pi\right) \theta(z+\pi \sqrt{-1})} \exp \left(\frac{1}{2} z\right) \\
\operatorname{dn}(u, p) & =\frac{\theta(\pi \sqrt{-1}) \theta(z)}{\theta(0) \theta(z+\pi \sqrt{-1})} .
\end{align*}\right.
$$

［4．1］θ_{0} が満たす微分方程式

$\theta_{0}(v)=\theta_{0}\left(\frac{u}{2 K(p)}\right)$ はつぎの微分方程式を満たす（［15］を参照）：

$$
\begin{equation*}
\frac{d^{2}}{d u^{2}} \log \theta_{0}\left(\frac{u}{2 K(p)}\right)=\operatorname{dn}^{2}(u, p)-\frac{E(p)}{K(p)} \tag{4.6}
\end{equation*}
$$

ここで，$E(p)=\int_{0}^{K(p)} \operatorname{dn}^{2}(u, p) d u$ は第 $\mathbf{2}$ 種完全楕円積分である。（4．6）の右辺を積分して

$$
Z(u)=\int_{0}^{u} \operatorname{dn}^{2}(u, p) d u-\frac{E(p)}{K(p)} u
$$

とおく。（4．6）より $Z(u)=\frac{d}{d u} \log \theta_{0}\left(\frac{u}{2 K(p)}\right)$ をジータ関数という。
いま，$u=\frac{K(p)}{\omega_{0}} x$ の場合を考えよう。 $\frac{d}{d u}=\left(\frac{\omega_{0}}{K(p)}\right) \frac{d}{d x}$ に注意して $2 \partial_{\bar{z}} \partial_{z} \log \theta_{0}\left(\frac{x}{2 \omega_{0}}\right)=\frac{1}{2} \frac{d^{2}}{d x^{2}} \log \theta_{0}\left(\frac{x}{2 \omega_{0}}\right)$
$=\frac{1}{2}\left(\frac{K(p)}{\omega_{0}}\right)^{2} \frac{d^{2}}{d u^{2}} \log \theta_{0}\left(\frac{u}{2 K(p)}\right)=\frac{1}{2}\left(\frac{K(p)}{\omega_{0}}\right)^{2}\left(\operatorname{dn}^{2}\left(\frac{K(p)}{\omega_{0}} x\right)-\frac{E(p)}{K(p)}\right)$
$=\left(\zeta_{3}-\zeta_{1}\right)\left(1-p^{2} \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)-\frac{E(p)}{K(p)}\right)$
$=\left(\zeta_{3}-\zeta_{1}\right)\left(1-\frac{E(p)}{K(p)}\right)-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)$
$=\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)-\left(\zeta_{1}+\frac{E(p)}{K(p)}\left(\zeta_{3}-\zeta_{1}\right)\right)$

であるから，$C=\zeta_{1}+\frac{E(p)}{K(p)}\left(\zeta_{3}-\zeta_{1}\right)$ とおけば，(2.6) より

$$
C+2 \partial_{\bar{z}} \partial_{z} \log \theta_{0}\left(\frac{x}{2 \omega_{0}}\right)=\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)=e^{u(x)}
$$

を得る。一方で， $\mathbf{U}^{0}=\frac{\pi \sqrt{-1}}{2 \omega_{0}}$ と（4．3）より

$$
\theta\left(\mathbf{U}^{0}(z+\bar{z})+\pi \sqrt{-1}\right)=\theta\left(\frac{\pi \sqrt{-1}}{\omega_{0}} x+\pi \sqrt{-1}\right)=\theta_{0}\left(\frac{x}{2 \omega_{0}}\right)
$$

であるから，以上よりつぎを得る：

$$
\begin{align*}
e^{u(x)} & =C+2 \partial_{\bar{z}} \partial_{z} \log \theta\left(\mathbf{U}^{0}(z+\bar{z})+\pi \sqrt{-1}\right) \\
& \text { ここで, } \quad C=\zeta_{1}+\frac{E(p)}{K(p)}\left(\zeta_{3}-\zeta_{1}\right) . \tag{4.7}
\end{align*}
$$

最後に，定数項 C を書き換えておく。

Lemma 4．8．

$$
C=\frac{a}{3}-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}
$$

ここで，$a=\frac{\alpha}{2}+\frac{2}{\alpha^{2}}=\zeta_{1}+\zeta_{2}+\zeta_{3}$ である。
$\because[S t e p 1]$ まず
$E(p)=\int_{0}^{K(p)} \operatorname{dn}^{2}(u, p) d u=\int_{0}^{K(p)}\left(1-p^{2} \operatorname{sn}^{2}(u, p)\right) d u=K(p)-p^{2} \int_{0}^{K(p)} \operatorname{sn}^{2}(u, p) d u$
より，

$$
\begin{aligned}
C & =\frac{E(p)}{K(p)}\left(\zeta_{3}-\zeta_{1}\right)+\zeta_{1} \\
& =\left(\zeta_{3}-\zeta_{1}\right)\left(1-\frac{1}{K(p)} \frac{\zeta_{3}-\zeta_{2}}{\zeta_{3}-\zeta_{1}} \int_{0}^{K(p)} \operatorname{sn}^{2}(u, p) d u\right)+\zeta_{1} \\
& =\zeta_{3}-\frac{\left(\zeta_{3}-\zeta_{2}\right)}{K(p)} \int_{0}^{K(p)} \operatorname{sn}^{2}(u, p) d u .
\end{aligned}
$$

［Step 2］（2．7）より

$$
\wp(\sqrt{2} \sqrt{-1} x)+\frac{a}{3}=Y\left(x+\omega_{0}^{\prime}\right)=\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x+\sqrt{-1} K^{\prime}(p), p\right)
$$

であるから，$u=\frac{K(p)}{\omega_{0}}\left(s+\omega_{0}^{\prime}\right)=\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}}\left(s+\omega_{0}^{\prime}\right)$ という変換を行うと，（2．7） および $\sqrt{2} \sqrt{-1} \omega_{0}=\omega^{\prime},-\sqrt{2} \sqrt{-1} \omega_{0}^{\prime}=\omega$ より

$$
\begin{aligned}
\int_{0}^{K(p)} \operatorname{sn}^{2} u d u & =\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} \int_{-\omega_{0}^{\prime}}^{\omega_{0}-\omega_{0}^{\prime}} \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} s+\sqrt{-1} K^{\prime}(p), p\right) d s \\
& =\frac{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}}}{\zeta_{2}-\zeta_{3}} \int_{-\omega_{0}^{\prime}}^{\omega_{0}-\omega_{0}^{\prime}}\left(\wp(\sqrt{2} \sqrt{-1} s)+\frac{a}{3}-\zeta_{3}\right) d s \\
& =\frac{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}}}{\zeta_{2}-\zeta_{3}}\left[-\frac{1}{\sqrt{2} \sqrt{-1}} \zeta_{w}(\sqrt{2} \sqrt{-1} s)+\left(\frac{a}{3}-\zeta_{3}\right) s\right]_{-\omega_{0}^{\prime}}^{\omega_{0}-\omega_{0}^{\prime}} \\
& =\frac{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}}}{\zeta_{2}-\zeta_{3}}\left(-\frac{1}{\sqrt{2} \sqrt{-1}}\left(\zeta_{w}\left(\omega^{\prime}+\omega\right)-\zeta_{w}(\omega)\right)+\left(\frac{a}{3}-\zeta_{3}\right) \omega_{0}\right) \\
& =\frac{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1} \omega_{0}}}{\zeta_{2}-\zeta_{3}}\left(-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}+\frac{a}{3}-\zeta_{3}\right) \\
& =\frac{K(p)}{\zeta_{2}-\zeta_{3}}\left(-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}+\frac{a}{3}-\zeta_{3}\right),
\end{aligned}
$$

を得る。
以上，Step 1，Step 2 より

$$
C=\zeta_{3}-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}+\frac{a}{3}-\zeta_{3}=\frac{a}{3}-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}} .
$$

5 Tzitzéica 方程式が可積分条件となる曲面のはめ込み

［5．1］可積分条件としての Tzitzéica 方程式の導出

$\mathbf{C}^{3} \supset S^{5}=\left\{z \in \mathbf{C}^{3} \mid\langle z, z\rangle=1\right\}$ とする。ただし，\langle,$\rangle は \mathbf{C}^{3}$ の標準的エルミート内積である。 (M, g) を Riemann面とし，等長はめ込み

$$
s_{0}: M \longrightarrow S^{5}
$$

を考える。 g は \mathbf{C}^{3} のエルミート内積から誘導された計量で $g=2 e^{u} d z \overline{d z}=2 e^{u}\left(d x^{2}+\right.$ $\left.d y^{2}\right)$ と表しておく。ここで，$z=x+\sqrt{-1} y, d z=d x+\sqrt{-1} d y, d z=d x-\sqrt{-1} d y$ であり，$d x^{2}=d x \otimes d x, d y^{2}=d y \otimes d y$ は刘称積であるが，$d z d z$ も $d z$ と $d z$ の対称

積であり

$$
\begin{aligned}
d z d \bar{z} & =\frac{1}{2}(d z \otimes d \bar{z}+d \bar{z} \otimes d z) \\
& =\frac{1}{2}((d x+\sqrt{-1} d y) \otimes(d x-\sqrt{-1} d y)+(d x-\sqrt{-1} d y) \otimes(d x+\sqrt{-1} d y)) \\
& =\frac{1}{2}\left(d x^{2}+d y^{2}+\sqrt{-1}(d y \otimes d x-d x \otimes d y)\right. \\
& \left.=d x^{2}+d y^{2} \quad+d x^{2}+d y^{2}-\sqrt{-1}(d y \otimes d x-d x \otimes d y)\right)
\end{aligned}
$$

である。偏微分に関しては $d z\left(\partial_{z}\right)=1, d z\left(\partial_{\bar{z}}\right)=0, d \bar{z}\left(\partial_{z}\right)=0, d \bar{z}\left(\partial_{\bar{z}}\right)=1$ を用い ると

$$
\begin{aligned}
\partial_{z} & =\frac{1}{2}\left(\partial_{x}-\sqrt{-1} \partial_{y}\right), \quad \partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+\sqrt{-1} \partial_{y}\right) \\
\partial_{\bar{z}} \partial_{z} & =\frac{1}{4}\left(\partial_{x} \partial_{x}+\partial_{y} \partial_{y}\right)
\end{aligned}
$$

が成り立つことがわかる。
いま $s_{0}: M \longrightarrow S^{5}$ は極小はめ込み（minimal immersion）であると仮定する。こ れは M の S^{5} における平均曲率ベクトルが 0 の場合をいう。そこで s_{0} に \mathbf{C}^{3} の ラプラシアンを M に制限したもの

$$
\Delta s_{0}=-\left(2 e^{u}\right)^{-1}\left(\partial_{x} \partial_{x}+\partial_{y} \partial_{y}\right) s_{0}=-2 e^{-u} \partial_{\bar{z}} \partial_{z} s_{0}
$$

を作用させると，M の S^{5} における平均曲率ベクトルと，S^{5} の C^{3} における法成分， すなわち，s_{0} 自身の $\operatorname{dim} M=2$ 倍の和になる。よって，s_{0} が極小はめ込みであるこ とと $\Delta s_{0}=2 s_{0}$ が成り立つことが必要十分条件である。これは，言い換えると

$$
\begin{equation*}
\partial_{\bar{z}} \partial_{z} s_{0}=-e^{u} s_{0} \tag{5.1}
\end{equation*}
$$

になる。
つぎに，$s_{0}: M \longrightarrow S^{5}$ が horizontal とは，Hopfファイブレーション $\pi: S^{5} \rightarrow \mathbf{C} P^{2}$ に関して水平的（horizontal）であるときをいう。 S^{5} のリーマン計量 h は

$$
h(X, Y)=\operatorname{Re}(\langle X, Y\rangle)
$$

で与えられる。点 $x \in S^{5}$ における接ベクトル空間 $T_{x} S^{5}$ は $h(x, X)=0$ を満たす $X \in \mathbf{C}^{3}$ の集合であるが，特に，$h(x, \sqrt{-1} x)=0$ であるので，$\sqrt{-1} x$ も $T_{x} S^{5}$ の元 であるが $d \pi(\sqrt{-1} x)=0$ であるので，$\sqrt{-1} x$ は π のファイバー方向のベクトルで ある。よって，$h(\sqrt{-1} x, Y)=0$ を満たす $Y \in T_{x} S^{5}$ の集合が水平ベクトル場の集合である。そこで，s_{0} は horizontal とは

$$
h\left(d s_{0}, \sqrt{-1} s_{0}\right)=0
$$

であるときをいう。これは

$$
h\left(\partial_{x} s_{0}, \sqrt{-1} s_{0}\right)=0, \quad h\left(\partial_{y} s_{0}, \sqrt{-1} s_{0}\right)=0
$$

と同値である。一方で，$h\left(s_{0}, s_{0}\right)=1$ であるので，$h\left(\partial_{x} s_{0}, s_{0}\right)=0, h\left(\partial_{y} s_{0}, s_{0}\right)=0$ で もあるから，結局，

$$
\left\langle\partial_{x} s_{0}, s_{0}\right\rangle=0, \quad\left\langle\partial_{y} s_{0}, s_{0}\right\rangle=0
$$

が成り立つことがわかる。これはつぎと同値である：

$$
\begin{equation*}
\left\langle\partial_{z} s_{0}, s_{0}\right\rangle=0, \quad\left\langle\partial_{\bar{z}} s_{0}, s_{0}\right\rangle=0 \tag{5.2}
\end{equation*}
$$

また，（5．2）の複素共役をとれば

$$
\left\langle s_{0}, \partial_{z}, s_{0}\right\rangle=0, \quad\left\langle s_{0}, \partial_{\bar{z}} s_{0}\right\rangle=0
$$

も成り立つことが直ちにわかる。
ここで，（5．2）の第 1 式を \bar{z} で微分して（5．1）を使うと

$$
-e^{u}=-e^{u}\left\langle s_{0}, s_{0}\right\rangle=\left\langle\partial_{\bar{z}} \partial_{z} s_{0}, s_{0}\right\rangle=-\left\langle\partial_{z} s_{0}, \partial_{z} s_{0}\right\rangle
$$

より

$$
\left\langle\partial_{z} s_{0}, \partial_{z} s_{0}\right\rangle=e^{u}
$$

を得る。同様に（5．2）の第 2 式を z で微分して（5．1）を使うと

$$
\left\langle\partial_{\bar{z}} s_{0}, \partial_{\bar{z}} s_{0}\right\rangle=e^{u}
$$

を得る。誘導訃量は $\left\langle d s_{0}, d s_{0}\right\rangle$ という形で書けるから，

$$
\begin{aligned}
\left\langle d s_{0}, d s_{0}\right\rangle= & \left\langle\partial_{z} s_{0} d z+\partial_{\bar{z}} s_{0} d \bar{z}, \partial_{z} s_{0} d z+\partial_{\bar{z}} s_{0} d \bar{z}\right\rangle \\
= & \left\langle\partial_{z} s_{0}, \partial_{z} s_{0}\right\rangle d z \otimes d \bar{z}+\left\langle\partial_{\bar{z}} s_{0}, \partial_{\bar{z}} s_{0}\right\rangle d \bar{z} \otimes d z \\
& +\left\langle\partial_{z} s_{0}, \partial_{\bar{z}} s_{0}\right\rangle d z \otimes d z+\left\langle\partial_{\bar{z}} s_{0}, \partial_{z} s_{0}\right\rangle d \bar{z} \otimes d \bar{z} \\
= & 2 e^{u} d z d \bar{z}+\left\langle\partial_{z} s_{0}, \partial_{\bar{z}} s_{0}\right\rangle d z \otimes d z+\left\langle\partial_{\bar{z}} s_{0}, \partial_{z} s_{0}\right\rangle d \bar{z} \otimes d \bar{z}
\end{aligned}
$$

であるが，g は誘導計量で $g=2 e^{u} d z d z$ で与えられたから，従って，

$$
\begin{equation*}
\left\langle\partial_{z} s_{0}, \partial_{\bar{z}} s_{0}\right\rangle=0, \quad\left\langle\partial_{\bar{z}} s_{0}, \partial_{z} s_{0}\right\rangle=0 \tag{5.3}
\end{equation*}
$$

が成り立つことがわかる。
以上，（5．2），（5．3）を考慮して，

$$
s_{1}=e^{-\frac{u}{2}} \partial_{z} s_{0}, \quad s_{2}=e^{-\frac{u}{2}} \partial_{\bar{z}} s_{0}
$$

とおけば，$F=\left(s_{0} s_{1} s_{2}\right)$ は $M \times \mathbf{C}^{3}$ 上の unitary frame になることがわかる。計算の都合上，

$$
\phi=e^{\frac{u}{2}}\left\langle\partial_{z} \partial_{z} s_{0}, s_{2}\right\rangle
$$

とおく。

$$
\partial_{z} F=F U, \quad \partial_{\bar{z}} F=F V
$$

とおける。ここで，U, V はそれぞれ 3×3－複素行列であり，具体的表示式を以下求 めよう。定義より $\partial_{z} s_{0}=e^{\frac{u}{2}} s_{1}, \partial_{\bar{z}} s_{0}=e^{\frac{u}{2}} s_{2}$ はすぐにわかる。つぎに，$\partial_{z} s_{1}, \partial_{\bar{z}} s_{1}$ で あるが，$\partial_{\bar{z}} s_{1}$ は（5．1）を用いて

$$
\begin{aligned}
\partial_{\bar{z}} s_{1} & =-\frac{u_{\bar{z}}}{2} s_{1}+e^{-\frac{u}{2}} \partial_{\bar{z}} \partial_{z} s_{0} \\
& =-\frac{u_{\bar{z}}}{2} s_{1}+e^{-\frac{u}{2}}\left(-e^{u} s_{0}\right)=-e^{\frac{u}{2}} s_{0}-\frac{u_{\bar{z}}}{2} s_{1}
\end{aligned}
$$

より得られる。 $\partial_{z} s_{1}$ については，まず

$$
\partial_{z} s_{1}=-\frac{u_{z}}{2} s_{1}+e^{-\frac{u}{2}} \partial_{z} \partial_{z} s_{0}
$$

である。 $\partial_{z} \partial_{z} s_{0}$ を訃算するために

$$
\partial_{z} \partial_{z} s_{0}=a s_{0}+b s_{1}+c s_{2}
$$

とおく。このとき，（5．2），（5．3）を用いて

$$
\begin{aligned}
a & =\left\langle\partial_{z} \partial_{z} s_{0}, s_{0}\right\rangle=-\left\langle\partial_{z} s_{0}, \partial_{\bar{z}} s_{0}\right\rangle=0 \\
b & =\left\langle\partial_{z} \partial_{z} s_{0}, s_{1}\right\rangle=\partial_{z}\left\langle\partial_{z} s_{0}, s_{1}\right\rangle-\left\langle\partial_{z} s_{0}, \partial_{\bar{z}} s_{1}\right\rangle \\
& =\partial_{z}\left(e^{-\frac{u}{2}} e^{u}\right)-e^{\frac{u}{2}}\left\langle s_{1},-e^{\frac{u}{2}} s_{0}-\frac{u_{\bar{z}}}{2} s_{1}\right\rangle=\frac{u_{z}}{2} e^{\frac{u}{2}}+\frac{u_{z}}{2} e^{\frac{u}{2}}=u_{z} e^{\frac{u}{2}} \\
c & =\left\langle\partial_{z} \partial_{z} s_{0}, s_{2}\right\rangle=\phi e^{-\frac{u}{2}}
\end{aligned}
$$

より

$$
\partial_{z} \partial_{z} s_{0}=u_{z} e^{\frac{u}{2}} s_{1}+\phi e^{-\frac{u}{2}} s_{2}
$$

を得るので，結局，つぎが得られた：

$$
\partial_{z} s_{1}=-\frac{u_{z}}{2} s_{1}+u_{z} s_{1}+\phi e^{-u} s_{2}=\frac{u_{z}}{2} s_{1}+\phi e^{-u} s_{2} .
$$

同様にして，つぎも得られる：

$$
\partial_{z} s_{2}=-e^{\frac{u}{2}} s_{0}-\frac{u_{z}}{2} s_{2}, \quad \partial_{\bar{z}} s_{2}=-\bar{\phi} e^{-u} s_{1}+\frac{u_{\bar{z}}}{2} s_{2} .
$$

以上より，つぎが得られた：

$$
U=\left(\begin{array}{ccc}
0 & 0 & -e^{\frac{u}{2}} \tag{5.4}\\
e^{\frac{u}{2}} & \frac{u_{z}}{2} & 0 \\
0 & \phi e^{-u} & -\frac{u_{z}}{2}
\end{array}\right), \quad V=\left(\begin{array}{ccc}
0 & -e^{\frac{u}{2}} & 0 \\
0 & -\frac{u_{z}}{2} & -\bar{\phi} e^{-u} \\
e^{\frac{u}{2}} & 0 & \frac{u_{z}}{2}
\end{array}\right),
$$

「Compatibility Condition」 $\partial_{z} F=F U$ かつ $\partial_{\bar{z}} F=F V$ ならば $\partial_{\bar{z}} \partial_{z} F=\partial_{z} \partial_{\bar{z}} F$ より

$$
\partial_{\bar{z}} U-\partial_{z} V=U V-V U=[U, V]
$$

でなければならない。これはつぎと同値であることがわかる：

$$
\begin{cases}\partial_{\bar{z}} \partial_{z} u & =|\phi|^{2} e^{-2 u}-e^{u} \tag{5.5}\\ \partial_{\bar{z}} \phi & =0\end{cases}
$$

$f^{\prime}(z) \neq 0$ である正則関数 $f(z)$ を用いて，複素座慓変換 $\widetilde{z}=f(z)$ を行うと，$\phi(\widetilde{z})=$ $\frac{\phi(z)}{\left(f^{\prime}(z)\right)^{3}}$ という関係式が得られる。よって，$\left(f^{\prime}(z)\right)^{3}=-\phi(z)$ を満たす f を用いて， $\phi(\widetilde{z})=-1$ とできる。従って，最初から $\phi=-1$ としてよい。以下，$\phi=-1$ とす る。このとき，（5．5）はTzitzéica 方程式になる：

$$
\begin{equation*}
\partial_{\bar{z}} \partial_{z} u=e^{-2 u}-e^{u} . \tag{5.6}
\end{equation*}
$$

［5．2］曲面のはめ込みの特殊関数による表示式

$u=u(x)$ ，すなわち，u は x だけの関数と仮定して，曲面のはめ込みの特殊関数 による表示式を求める。 s_{1}, s_{2} の定義と（5．4）および $\phi=-1$ より

$$
\left\{\begin{array}{l}
\partial_{y} s_{0}=\sqrt{-1} e^{\frac{u}{2}}\left(s_{1}-s_{2}\right), \quad \partial_{y} s_{1}=\sqrt{-1}\left(e^{\frac{u}{2}} s_{0}+\frac{u_{x}}{2} s_{1}-e^{-u} s_{2}\right) \\
\partial_{y} s_{2}=\sqrt{-1}\left(-e^{\frac{u}{2}} s_{0}-e^{-u} s_{1}-\frac{u_{x}}{2} s_{2}\right)
\end{array}\right.
$$

である。これを用いて $\partial_{y}^{2} s_{0}$ を求めると

$$
\begin{aligned}
\partial_{y}^{2} s_{0} & =\sqrt{-1} e^{\frac{u}{2}}\left(\partial_{y} s_{1}-\partial_{y} s_{2}\right) \\
& =-e^{\frac{u}{2}}\left(2 e^{\frac{u}{2}} s_{0}+\left(\frac{u_{x}}{2}+e^{-u}\right) s_{1}+\left(\frac{u_{x}}{2}-e^{-u}\right) s_{2}\right)
\end{aligned}
$$

同様にして $\partial_{y}^{3} s_{0}$ を訃算し，$\frac{1}{8}\left(u_{x}\right)^{2}=-\frac{1}{2} e^{-2 u}-e^{u}+a$ を用いるとつぎが得られる：

$$
\begin{equation*}
\partial_{y}^{3} s_{0}=-2 a \partial_{y} s_{0}-2 \sqrt{-1} s_{0} \tag{5.7}
\end{equation*}
$$

（5．7）の特性多項式は $\mu^{3}+2 a \mu+2 \sqrt{-1}=0$ である。 $\zeta=-\sqrt{-1} \mu^{-1}$ とおいて \quad の多項式に書き直すと

$$
\zeta^{3}-a \zeta^{2}+\frac{1}{2}=0
$$

となる。これは［2．3］でTzitzéica 方程式の解を求めるときに出てきた式と同じであ る。その解 $\zeta_{1}, \zeta_{2}, \zeta_{3}$ はつぎで与えられた。

$$
\zeta_{1}=\frac{1-\sqrt{\alpha^{3}+1}}{\alpha^{2}}, \quad \zeta_{2}=\frac{1+\sqrt{\alpha^{3}+1}}{\alpha^{2}}, \quad \zeta_{3}=\frac{\alpha}{2} .
$$

いま $\mu_{j} \zeta_{j}=-\sqrt{-1}$ となるように $\mu_{1}, \mu_{2}, \mu_{3}$ を選び，$\mu_{j}=\sqrt{-1} r_{j}$ と書くとき

$$
\begin{equation*}
r_{1}=\frac{1+\sqrt{\alpha^{3}+1}}{\alpha}, \quad r_{2}=\frac{1-\sqrt{\alpha^{3}+1}}{\alpha}, \quad r_{3}=-\frac{2}{\alpha}, \tag{5.8}
\end{equation*}
$$

$$
\begin{equation*}
r_{j}=-\frac{1}{\zeta_{j}} \quad(j=1,2,3) \tag{5.9}
\end{equation*}
$$

さて，$s_{0}=\left(e^{\mu_{1} y} C_{1}(x), e^{\mu_{2} y} C_{2}(x), e^{\mu_{3} y} C_{3}(x)\right)$ とおけることに注意しよう。ここで，

$$
\left\{\begin{array}{l}
\partial_{x} s_{0}=e^{\frac{u}{2}}\left(s_{1}+s_{2}\right), \quad \partial_{x} s_{1}=-e^{\frac{u}{2}} s_{0}-e^{-u} s_{2}, \\
\partial_{x} s_{2}=-e^{\frac{u}{2}} s_{0}+e^{-u} s_{1}
\end{array}\right.
$$

であるから，$\partial_{y} s_{0}$ を x で微分して

$$
\partial_{x} \partial_{y} s_{0}=\frac{u_{x}}{2} \partial_{y} s_{0}+\sqrt{-1} e^{\frac{u}{2}}\left(\partial_{x} s_{1}-\partial_{x} s_{2}\right)=\frac{u_{x}}{2} \partial_{y} s_{0}-\sqrt{-1} e^{-u} \partial_{x} s_{0}
$$

を得る。そうすると，ベクトルの成分表示は代表として第 j 成分だけ書くと

$$
\partial_{x} s_{0}=\left(e^{\mu_{j} y} C_{j}^{\prime}(x)\right), \quad \partial_{y} s_{0}=\left(\mu_{j} e^{\mu_{j} y} C_{j}(x)\right), \quad \partial_{x} \partial_{y} s_{0}=\left(\mu_{j} e^{\mu_{j} y} C_{j}^{\prime}(x)\right),
$$

である。よって上記の $\partial_{x} \partial_{y} s_{0}$ の式の両辺に代入して

$$
\mu_{j} e^{\mu_{j} y} C_{j}^{\prime}(x)=\frac{u_{x}}{2} \mu_{j} e^{\mu_{j} y} C_{j}(x)-\sqrt{-1} e^{-u} e^{\mu_{j} y} C_{j}^{\prime}(x)
$$

を得る。 $\mu_{j}=\sqrt{-1} r_{j}$ を代人して，これを整理すると

$$
\left(e^{-u}+r_{j}\right) C_{j}^{\prime}(x)=\frac{u_{x}}{2} r_{j} C_{j}(x)
$$

を得る。両辺に $\frac{2}{r_{j}} e^{u}$ をかけると

$$
\begin{equation*}
u_{x} e^{u} C_{j}(x)=\left(\frac{2}{r_{j}}+2 e^{u}\right) C_{j}^{\prime}(x)=2\left(e^{u}-\zeta_{j}\right) C_{j}^{\prime}(x) \tag{5.10}
\end{equation*}
$$

を得る。一方で，$e^{u(x)}=\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)$ であったから，これを x で微分したものは，$v=\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x$ とおいたとき

$$
\begin{align*}
u_{x} e^{u(x)} & =-2\left(\zeta_{3}-\zeta_{2}\right) \sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} \operatorname{sn}(v) \operatorname{cn}(v) \operatorname{dn}(v) \\
& =-2\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}(v) \frac{d}{d x} \operatorname{sn}(v) \\
& =2\left(\zeta_{3}-\zeta_{2}\right) \operatorname{cn}(v) \frac{d}{d x} \operatorname{cn}(v) \tag{5.11}\\
& =2\left(\zeta_{3}-\zeta_{1}\right) \operatorname{dn}(v) \frac{d}{d x} \operatorname{dn}(v)
\end{align*}
$$

と表すことができる。また，$e^{u(x)}=\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)$ を代入して

$$
2\left(e^{u(x)}-\zeta_{j}\right)= \begin{cases}2\left(\zeta_{3}-\zeta_{1}\right) \mathrm{dn}^{2}(v), & (j=1) \tag{5.12}\\ 2\left(\zeta_{3}-\zeta_{2}\right) \mathrm{cn}^{2}(v), & (j=2) \\ -2\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}(v), & (j=3)\end{cases}
$$

がわかる。（5．12）を（5．10）に代入して，（5．11）と比較すると，例えば $j=1$ のとき

$$
2\left(\zeta_{3}-\zeta_{1}\right) \operatorname{dn}^{2}(v) C_{1}^{\prime}(x)=u_{x} e^{u} C_{1}(x)=2\left(\zeta_{3}-\zeta_{1}\right) \operatorname{dn}(v) \frac{d}{d x} \operatorname{dn}(v) C_{1}(x)
$$

であるから，$\frac{C_{1}^{\prime}(x)}{C_{1}(x)}=\frac{d}{d x} \operatorname{dn}(v)$ を得る。これは簡単に解けて $C_{1}(x)=c_{1} \operatorname{dn}(v)$ が得ら れる。ただし，c_{1} は定数である。同様にして，$C_{2}(x)=c_{2} \operatorname{cn}(v), C_{3}(x)=c_{3} \operatorname{sn}(v)$ を得るので，結局，つぎわかった：

$$
s_{0}(x, y)=\left(c_{1} e^{\mu_{1} y} \operatorname{dn}(v), c_{2} e^{\mu_{2} y} \operatorname{cn}(v), c_{3} e^{\mu_{3} y} \operatorname{sn}(v)\right), \quad\left(v=\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x\right)
$$

最後に，c_{1}, c_{2}, c_{3} を求めよう。まず $\left\langle\left\langle s_{0}, s_{0}\right\rangle=1\right.$ より

$$
c_{1}^{2} \mathrm{dn}^{2}(v)+c_{2}^{2} \operatorname{cn}^{2}(v)+c_{3}^{2} \operatorname{sn}^{2}(v)=1
$$

であるが， $\mathrm{cn}^{2}(v)=1-\mathrm{sn}^{2}(v), \mathrm{dn}^{2}(v)=1-p^{2} \mathrm{sn}^{2}(v)$ を代入して整理すれば

$$
\begin{align*}
& c_{1}^{2}+c_{2}^{2}+\left(c_{3}^{2}-p^{2} c_{1}^{2}-c_{2}^{2}\right) \operatorname{sn}^{2}(v)=1 \\
\Longleftrightarrow & c_{1}^{2}+c_{2}^{2}=1, \quad p^{2} c_{1}^{2}+c_{2}^{2}=c_{3}^{2} . \tag{5.13}
\end{align*}
$$

つぎに，$\left\langle\frac{\partial s_{0}}{\partial x}, \frac{\partial s_{0}}{\partial x}\right\rangle=2 e^{u(x)}$ を用いる。

$$
\begin{array}{r}
\frac{\partial s_{0}}{\partial x}=\left(-c_{1} \sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} p^{2} e^{\mu_{1} y} \operatorname{sn}(v) \operatorname{cn}(v),-c_{2} \sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} e^{\mu_{2} y} \operatorname{sn}(v) \operatorname{dn}(v)\right. \\
\left.c_{3} \sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} e^{\mu_{3} y} \operatorname{cn}(v) \operatorname{dn}(v)\right) .
\end{array}
$$

従って,$<\left\langle\frac{\partial s_{0}}{\partial x}, \frac{\partial s_{0}}{\partial x}\right\rangle=2 e^{u(x)}$ と（5．13）より

$$
\left(\zeta_{3}-\zeta_{1}\right)\left(c_{3}^{2}-p^{2} \operatorname{sn}^{2}(v)\right)=e^{u(x)}=\zeta_{3}-\left(\zeta_{3}-\zeta_{2}\right) \operatorname{sn}^{2}(v)
$$

が得られるので，第1式と第3式を比較して，$v=0$ とおけば

$$
c_{3}^{2}=\frac{\zeta_{3}}{\zeta_{3}-\zeta_{1}}=\frac{r_{1}}{r_{1}-r_{3}}
$$

を得る。これを（5．13）に代入して解けば

$$
c_{1}^{2}=\frac{-r_{2}}{r_{1}-r_{2}}, \quad c_{2}^{2}=\frac{r_{1}}{r_{1}-r_{2}},
$$

となるので，結局，つぎの表示式が得られた：

$$
\quad \begin{align*}
& s_{0}(x, y) \\
& =\left(\sqrt{\frac{-r_{2}}{r_{1}-r_{2}}} e^{\mu_{1} y} \operatorname{dn}(v), \sqrt{\frac{r_{1}}{r_{1}-r_{2}}} e^{\mu_{2} y} \operatorname{cn}(v), \sqrt{\frac{r_{1}}{r_{1}-r_{3}}} e^{\mu_{3} y} \operatorname{sn}(v)\right) . \tag{5.14}
\end{align*}
$$

ここに，$v=\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x$ である。

［5．3］Spectral curve

（5．4）で求めた U, V に Spectral parameter を導入する。 $\widetilde{\lambda}=\sqrt{-1} \lambda$ とおいて， $U(\lambda), V(\lambda)$ をつぎで定める：

$$
U(\lambda)=\left(\begin{array}{ccc}
0 & 0 & \widetilde{\lambda} e^{\frac{u}{2}} \tag{5.15}\\
-\widetilde{\lambda} e^{\frac{u}{2}} & \frac{u_{z}}{2} & 0 \\
0 & \widetilde{\lambda}^{-u} & -\frac{u_{z}}{2}
\end{array}\right), V(\lambda)=\left(\begin{array}{ccc}
0 & \widetilde{\lambda}^{-1} e^{\frac{u}{2}} & 0 \\
0 & -\frac{\tilde{z}_{z}}{2} & -\widetilde{\lambda}^{-1} e^{-\mathfrak{u}} \\
-\widetilde{\lambda}^{-1} e^{\frac{u}{2}} & 0 & \frac{u_{\bar{z}}}{2}
\end{array}\right)
$$

こうしても $\partial_{\bar{z}} U(\lambda)-\partial_{z} V(\lambda)=[U(\lambda), V(\lambda)]$ を満たす。そして，これの必要十分条件はやはり u が Tzitzéica方程式の解であることである。 $S^{5} \cong S U(3) / S U(2)$ なの で， $\mathfrak{g}=\mathfrak{s} u(3)$ とおく。 $\epsilon=\exp (2 \pi \sqrt{-1} / 6)$ とし，写像 $\chi: \mathfrak{g} \longrightarrow \mathfrak{g}$ を

$$
\chi(P)=-\operatorname{Ad}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & \epsilon^{4} \\
0 & \epsilon^{2} & 0
\end{array}\right) \cdot{ }^{t} P, \quad(P \in \mathfrak{g})
$$

で定めると，入は \mathfrak{g} の位数 6 の外部自己同型写像である。 χ に関して $\mathfrak{g}^{\mathrm{C}}$ を固有空間分解する。 \mathfrak{g}_{j} を ϵ^{j}－固有空間とする $(j=0,1,2,3,4,5)$ 。このとき，

$$
U(\lambda) \in \mathfrak{g}_{1} \oplus \mathfrak{g}_{0}, \quad V(\lambda) \in \mathfrak{g}_{5} \oplus \mathfrak{g}_{0}
$$

となっている。いま，ループ代数

$$
\Lambda \mathfrak{g}_{\chi}^{\mathbf{C}}=\left\{\xi: S^{1} \rightarrow \mathfrak{g}^{\mathbf{C}} \mid \xi(\epsilon \lambda)=\chi \xi(\lambda) \text { for all } \lambda \in S^{1}\right\}
$$

を考えて，ある $r>\frac{1}{2}$ についてソボレフ H^{r} 位相を入れておく。上で定義した $\Lambda \mathfrak{g}_{\chi}^{\mathrm{C}}$ の実形（real form）$\Lambda \mathfrak{g}_{\chi}=\left\{\xi \in \Lambda \mathfrak{g}_{\chi}^{\mathrm{C}} \mid \xi: S^{1} \rightarrow \mathfrak{g}\right\}$ の元 ξ を Fourier 分解して

$$
\xi=\sum_{j \in \mathbf{Z}} \xi_{j} \lambda^{j}
$$

と書くとき，$\xi_{j} \in \mathfrak{g}_{[j]},[j] \equiv j \bmod 6$ である。いま微分方程式

$$
\begin{equation*}
d F(\lambda)=F(\lambda)(U(\lambda) d z+V(\lambda) d \bar{z}) \tag{5.16}
\end{equation*}
$$

を考える。正の奇数 $d \equiv 1 \bmod 2$ に対して，$\Lambda \mathfrak{g}_{\chi}$ の有限次元部分空間として

$$
\Lambda_{d}=\left\{\xi=\sum_{j} \xi_{j} \lambda^{j} \in \Lambda \mathfrak{g}_{\chi} \mid \xi_{j}=0 \text { for }|. j|>d\right\}
$$

を考える。
「定義」 $\xi: M \longrightarrow \Lambda_{d}$ は微分方程式

$$
\begin{equation*}
d \xi=[\xi, U(\lambda) d z+V(\lambda) d \bar{z}] \tag{5.17}
\end{equation*}
$$

を満たすとする。このとき，微分方程式 $\Phi_{\lambda}^{-1} d \Phi_{\lambda}=U(\lambda) d z+V(\lambda) d \bar{z}$ は解けること がわかる。ある $\lambda \in S^{1}$ に対して，Φ_{λ} が $s_{0}: M \longrightarrow S^{5}$ の unitary frame になって いるとき，s_{0} は有限型であるという。
$\lambda \in S^{1}$ のとき，またはジェネリックな λ に対して（5．16）の解は3つあり，そ れらを F_{1}, F_{2}, F_{3} とすると $\Phi_{\lambda}={ }^{t}\left(F_{1} F_{2} F_{3}\right)$ となっている。（5．17）は $\Phi_{\lambda}^{-1} d \Phi_{\lambda}=$ $U(\lambda) d z+V(\lambda) d \bar{z}$ が解けるための可䅡分条件になっている。そして，適当な初期条件 $\xi(0) \in \Lambda_{d}$ をとり $\xi={\operatorname{Ad} \Phi_{\lambda}^{-1} \xi(0) \text { と書けることが分かる。 }}^{\text {を }}$

「定義」 $s_{0}: M \longrightarrow S^{5}$ は有限型であるとする。 $\lambda, \mu \in \mathbf{C}$ に対して $\operatorname{det}(\xi(\lambda)-\mu I)=$ 0 で定義される \mathbf{C}^{2} 内の affine 曲線をスペクトル曲線という。
$\xi(\lambda)=\operatorname{Ad} \Phi_{\lambda}^{-1} \xi(0)$ であるから，スペクトル曲線は z, \bar{z} に依存しない。初期条件 として

$$
\xi(0)=\left.\lambda U\right|_{z=0}+\left.\lambda^{-1} V\right|_{z=0} \in \lambda \mathfrak{g}_{1}+\lambda^{-1} \mathfrak{g}_{5} \subset \Lambda \mathfrak{g}_{\chi}
$$

をとる。我々が得たTzitzéica方程式の特殊解は $e^{u(0)}=\frac{\alpha}{2}, u_{x}(0)=0$ を両たしたか ら，$\beta=\sqrt{\frac{\alpha}{2}}$ とおくとき

$$
\xi(0)=\left(\begin{array}{ccc}
0 & -\lambda^{-1} \beta & -\lambda \beta \\
\lambda \beta & 0 & \lambda^{-1} \beta^{-2} \\
\lambda^{-1} \beta & -\beta^{-2} \lambda & 0
\end{array}\right) .
$$

従って， $\operatorname{det}(\xi(0)-\mu I)=-\mu^{3}-\lambda^{-3}+\lambda^{3}-\beta^{2} \mu-\beta^{2} \mu-\beta^{-4} \mu=0$ より

$$
\begin{equation*}
\check{\mathcal{C}}: \mu^{3}+2 a \mu=\lambda^{3}-\lambda^{-3} \tag{5.18}
\end{equation*}
$$

を得る。ここで， $2 \beta^{2}+\beta^{-4}=\alpha+\frac{4}{\alpha^{2}}=2 a$ を用いた。このaffine 曲線を無限遠点 $\mu=\infty$ を付け加えてコンパクト化しコンパクト・リーマン面と考える。C゙ の種数 を訃算したいが，その前に Riemann－Hurwitz 公式について述べる。

［5．4］Riemann－Hurwitz 公式

コンパクト Riemann面 $\mathcal{C}_{1}, \mathcal{C}_{2}$ に対して $\pi: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$ を定値でない正則写像とす る。任意の点 $P \in \mathcal{C}_{2}$ に対して $\#\left\{\pi^{-1}(P)\right\}$ は重複度も勘定に入れれば点 P に依 らない。この \＃$\left\{\pi^{-1}(P)\right\}$ を π の次数とよび $\operatorname{deg}(\pi)$ で表す。 π の微分が 0 になる ような点 $\hat{P} \in \mathcal{C}_{1}$ を分岐点とよぶ。いま，\hat{P} を分岐点とし $P=\pi(\hat{P})$ とおく。 \hat{P}, P の回りの局所座標系を，それぞれ，ν, λ とするとき $\lambda=\nu^{m}$ と書ける。分岐点の場合，m は $m \geqq 2$ なる整数である。 $m-1$ を π の点 \hat{P} における分岐度という。

$$
\begin{equation*}
R_{\pi}=\sum_{\hat{P} \in \mathcal{C}_{1}}(m(\hat{P})-1) \hat{P} \tag{5.19}
\end{equation*}
$$

とおいて π の分岐因子（ramification divisor）という。実際，コンパクト Riemann面の分岐点は有限個であり，また，分岐点以外の点 $\hat{Q} \in \mathcal{C}_{1}$ では $m(\hat{Q})=1$ であるか ら（5．19）は有限個の点の形式和になる。

$$
\begin{equation*}
\operatorname{deg}\left(R_{\pi}\right)=\sum_{\hat{P} \in \mathcal{C}_{1}}(m(\hat{P})-1) \tag{5.20}
\end{equation*}
$$

と書いて，分岐因子の次数という。さて， $\operatorname{genus}\left(\mathcal{C}_{j}\right)=g_{j},(j=1,2)$ とするとき，

$$
\begin{equation*}
2 g_{1}-2=\operatorname{deg}(\pi)\left(2 g_{2}-2\right)+\operatorname{deg}\left(R_{\pi}\right) \tag{5.21}
\end{equation*}
$$

が成り立つ。これをRiemann－Hurwitz 公式という。
さて，（5．18）の種数を訃算しよう。射影 $\pi: \mathcal{C} \ni(\mu, \lambda) \rightarrow \lambda \in \mathbf{C} P^{1}$ を考える。こ の π の分岐度を求める。 $(\mu-a(\lambda))^{2}(\mu-b(\lambda))=0$ となる (μ, λ) が分岐点である。展開して（5．18）と比較すれば

$$
\begin{cases}2 a(\lambda)+b(\lambda) & =0 \\ 2 a(\lambda) b(\lambda)+a^{2}(\lambda) & =2 a \\ a^{2}(\lambda) b(\lambda) & =\lambda^{3}-\lambda^{-3}\end{cases}
$$

であるから，第 1 式より $b(\lambda)=-2 a(\lambda)$ ，これと第 2 式より $a^{2}(\lambda)=-\frac{2}{3} a$ ，第 1 式と第 3 式より $-2 a^{3}(\lambda)=\lambda^{3}-\lambda^{-3}$ である。これらより

$$
\left(\lambda^{3}-\lambda^{-3}\right)^{2}=4 a^{6}(\lambda)=-\frac{32}{27} a^{3}
$$

を得る。これは，入の 12 次多項式であるから，重複度も込めて 12 個の解がある。 よって， $\operatorname{deg}\left(R_{\pi}\right)=12$ である。 $\mathcal{C}_{2}=\mathbf{C} P^{1}$ のとき $g_{2}=0$ であり， $\operatorname{deg}(\pi)=3$（ジェネ リックな λ に対して（5．18）を満たす μ は 3 つある）であるから，Riemann－Hurwitz公式より

$$
2 g(\breve{\mathcal{C}})-2=3(2 \cdot 0-2)+12=6
$$

より，$g(\breve{\mathcal{C}})=4$ であることがわかる。さらに，正則写像 $\gamma: \breve{\mathcal{C}} \ni(\mu, \lambda) \rightarrow(\mu, \nu) \in \hat{\mathcal{C}}$ を $\nu=\lambda^{3}$ で定めると，$\hat{\mathcal{C}}$ の各点に対して \breve{C} の点は必ず 3 点ずつあるので， $\operatorname{deg}\left(R_{\gamma}\right)=0$ である。また $\operatorname{deg}(\gamma)=3$ であるから，Riemann－Hurwitz 公式より

$$
2 \cdot 4-2=3(2 g(\hat{\mathcal{C}})-2)+0
$$

従って，$g(\hat{\mathcal{C}})=2$ である。種数が 2 であるコンパクト・リーマン面は超惰円曲線 （hyperelliptic curve）で表せることが知られている。すなわち

$$
\begin{equation*}
\hat{\mathcal{C}}: \mu^{3}+2 a \mu=\nu-\nu^{-1} \tag{5.22}
\end{equation*}
$$

は超楕円曲線である。これを標準形に変換しよう。

$$
\left(\nu+\nu^{-1}\right)^{2}=\left(\nu-\nu^{-1}\right)^{2}+4=\left(\mu^{3}+2 a \mu\right)^{2}+4
$$

Figure1．

より，$\widetilde{\nu}=\nu+\nu^{-1}$ とおけば

$$
\widetilde{\nu}^{2}=\left(\mu^{3}+2 a \mu\right)^{2}+4=\left(\mu^{3}+2 a \mu+2 \sqrt{-1}\right)\left(\mu^{3}+2 a \mu-2 \sqrt{-1}\right)
$$

より

$$
\begin{equation*}
\hat{\mathcal{C}}: \widetilde{\nu}^{2}=\prod_{j=1}^{3}\left(\mu-\mu_{j}\right)\left(\mu+\mu_{j}\right) \tag{5.23}
\end{equation*}
$$

を得る。 $\hat{\mathcal{C}}$ は正則対合（holomorphic involution）$\sigma(\mu, \widetilde{\nu})=(-\mu,-\widetilde{\nu})$ と反正則対合 （anti－holomorphic involution）$\rho(\mu, \widetilde{\nu})=(-\bar{\mu}, \overline{\widetilde{\nu}})$ を許容する。無限遠点 $\mu=\infty$ で

の形を見るために，

$$
\begin{cases}u=\mu^{-1} \tag{5.24}\\ v & =\mu^{-3} \widetilde{\nu}\end{cases}
$$

とおくと，

$$
\begin{equation*}
v^{2}=4 u^{6}+4 a^{2} u^{4}+4 a u^{2}+1 \tag{5.25}
\end{equation*}
$$

を得る。（5．23）と（5．25）を貼り合わせて作ったコンパクト・リーマン面が \hat{C} であ る。 $u=0$ のとき，$v \pm 1$ であるから，(u, v) 座標で

$$
\begin{equation*}
\hat{P}_{0}=(0,1), \quad \hat{P}_{\infty}=(0,-1) \tag{5.26}
\end{equation*}
$$

とする。

$$
\begin{equation*}
\sigma\left(\hat{P}_{0}\right)=\hat{P}_{0}, \quad \sigma\left(\hat{P}_{\infty}\right)=\hat{P}_{\infty}, \quad \rho\left(\hat{P}_{0}\right)=\hat{P}_{\infty} \tag{5.27}
\end{equation*}
$$

を満たす。§3 で導人した惰円曲線 \mathcal{C}^{0} を思い出そう。 2 重被覆写像 $\varphi: \hat{\mathcal{C}} \rightarrow \mathcal{C}^{0}$ を

$$
\begin{equation*}
\zeta=\frac{1}{2}\left(2 a+\mu^{2}\right), \quad \widetilde{B}=-\sqrt{-1} \widetilde{\nu} \tag{5.28}
\end{equation*}
$$

で定義する。人 \mathfrak{C} の標準的ホモロジー基底 $\left\{\hat{a}_{1}, \hat{a}_{2}, \hat{b}_{1}, \hat{b}_{2}\right\}$ を

$$
\begin{equation*}
\varphi^{*} a_{1}^{0}=\hat{a}_{1}+\hat{a}_{2}, \varphi^{*} b_{1}^{0}=\hat{b}_{1}+\hat{b}_{2}, \sigma\left(\hat{a}_{1}\right)=-\hat{a}_{2}, \sigma\left(\hat{b}_{1}\right)=-\hat{b}_{2} \tag{5.29}
\end{equation*}
$$

を満たすように選ぶ（Figure 1 を参照）。 $\mu_{j}=\sqrt{-1} r_{j},(j=1,2,3)$ であり，$-r_{1}<$ $r_{2}<r_{3}<0<-r_{3}<-r_{2}<r_{1}$ となっている。

$6 \hat{\mathcal{C}}$ のJacobian トーラス $J(\hat{\mathcal{C}})$ への Prym－Abel 写像

$\mathrm{H}^{1}(\hat{\mathcal{C}}, \mathbf{C})$ の基底 $\left\{\hat{w}_{1}, \hat{w}_{2}\right\}$ で，$\hat{\mathcal{C}}$ の Riemann 周期行列が $(2 \pi \sqrt{-1} \hat{T})$ となるも のを構成する。ただし，$\hat{T}=\left(\hat{T}_{i j}\right)$ と表すとき $\hat{T}_{i j}=\int_{\hat{b}_{i}} \hat{w}_{j},(i, j=1,2)$ である。 $\Lambda=\operatorname{Span}_{\mathbf{z}}\{2 \pi \sqrt{-1}, \hat{T}\}$ とおくと $J(\hat{\mathcal{C}})=\mathbf{C}^{2} / \Lambda$ が $\hat{\mathcal{C}}$ の Jacobian トーラスである。「 $\left\{\hat{w}_{1}, \hat{w}_{2}\right\}$ の構成」

まず，よく知られた $\mathrm{H}^{1}(\hat{\mathcal{C}}, \mathbf{C})$ の基底から始める。超楕円曲線
$\hat{\mathcal{C}}: \widetilde{\nu}^{2}=\prod_{j=1}^{3}\left(\mu-\mu_{j}\right)\left(\mu+\mu_{j}\right)$ に対して

$$
\begin{equation*}
u_{1}=\frac{d \mu}{\widetilde{\nu}}, \quad u_{2}=\frac{\mu d \mu}{\widetilde{\nu}} \tag{6.1}
\end{equation*}
$$

は $\mathrm{H}^{1}(\hat{\mathcal{C}}, \mathbf{C})$ の 1 つの基底である。
$\because \widetilde{\nu}=\sqrt{\prod_{j=1}^{3}\left(\mu-\mu_{j}\right)\left(\mu+\mu_{j}\right)}$ であるから，$\mu= \pm \mu_{j}(j=1,2,3)$ と $\mu=\infty$ にお ける正則性をみる。点 $\mu=\mu_{j}$ の回りで $z=\sqrt{\mu-\mu_{j}}$ という座標を導人する。この とき，$z^{2}=\mu-\mu_{j}, 2 z d z=d \mu$ であるから

$$
u_{1}=\frac{2 z d z}{z \sqrt{\left(\mu+\mu_{j}\right) \prod_{k \neq j}\left(\mu-\mu_{k}\right)\left(\mu+\mu_{k}\right)}}=\frac{2 d z}{\sqrt{\left(\mu+\mu_{j}\right) \prod_{k \neq j}\left(\mu-\mu_{k}\right)\left(\mu+\mu_{k}\right)}}
$$

となり，$z=0$ ，すなわち $\mu=\mu_{j}$ で正則である。同様に u_{2} も明らかに $\mu=\mu_{j}$ で正則である。 $\mu=-\mu_{j}$ についても同様である。また，$\mu=\infty$ の回りでは $z=\mu^{-1}$ と いう座慓を導入する。このとき，$\mu=z^{-1}, d \mu=-z^{-2} d z$ であるから

$$
\left\{\begin{array}{l}
u_{1}=\frac{-z^{-2} d z}{\sqrt{\prod_{j=1}^{3}\left(z^{-1}-\mu_{j}\right)\left(z^{-1}+\mu_{j}\right)}}= \pm \frac{z d z}{\sqrt{\prod_{j=1}^{3}\left(1-\mu_{j} z\right)\left(1+\mu_{j} z\right)}} \\
u_{2}= \pm \frac{\sqrt{\prod_{j=1}^{3}\left(1-\mu_{j} z\right)\left(1+\mu_{j} z\right)}}{}
\end{array}\right.
$$

であるから，u_{1} は $\mu=\infty$ で 0 で特に正則，u_{2} も $\mu=\infty$ で正則であること がわかる。従って，u_{1}, u_{2} は $\hat{\mathcal{C}}$ 上の正則微分形式である。また，$\mu=\infty$ で $u_{1}=$ $0, u_{2} \neq 0$ であるから 1 次独立であることもわかる。一方で，Riemann－Roch の定理 より $\operatorname{dim}_{\mathbf{C}} \mathrm{H}^{1}(\hat{\mathcal{C}}, \mathbf{C})=2 \operatorname{genus}(\hat{\mathcal{C}})-2=2$ であるから，$\left\{u_{1}, u_{2}\right\}$ は $\mathrm{H}^{1}(\hat{\mathcal{C}}, \mathbf{C})$ の基底 である。
惰円曲線 \mathcal{C}^{0} では $w_{1}^{0}=\frac{\pi \sqrt{-1}}{\omega_{0}} \frac{d \zeta}{\widetilde{B}}$ が基底であった。 2 重被覆写像 $\varphi: \hat{\mathcal{C}} \longrightarrow \mathcal{C}^{0}$ に より w_{1}^{0} を $\hat{\mathcal{C}}$ 上に引き戻す ：

$$
\begin{equation*}
\varphi^{*} w_{1}^{0}=\frac{\pi \sqrt{-1}}{\omega_{0}} \frac{\mu d \mu}{-\sqrt{-1} \widetilde{\nu}}=-\frac{\pi}{\omega_{0}} \frac{\mu d \mu}{\widetilde{\nu}}=-\frac{\pi}{\omega_{0}} u_{2} . \tag{6.2}
\end{equation*}
$$

よって，$\hat{w}_{1}+\hat{w}_{2}=-\frac{\pi}{\omega_{0}} u_{2}$ を満たす $\left\{\hat{w}_{1}, \hat{w}_{2}\right\}$ を構成できれば，$\varphi^{*} u_{1}^{0}=\hat{w}_{1}+\hat{w}_{2}$ と いう関係式が得られることがわかる。いま，$\sigma^{*} u_{1}=u_{1}, \sigma^{*} u_{2}=-u_{2}$ であることに注意しょう。 $C_{i j}=\int_{\hat{a}_{i}} u_{j},(i, j=1,2)$ とおく。このとき次が成り立つことが分かる。

$$
\left\{\begin{aligned}
C_{11} & =\int_{\hat{a}_{1}} u_{1}=\int_{\sigma\left(\hat{a}_{1}\right)} \sigma^{*} u_{1}=-\int_{\hat{a}_{2}} u_{1}=-C_{21} \\
C_{12} & =\int_{\hat{a}_{1}} u_{2}=\int_{\sigma\left(\hat{a}_{1}\right)} \sigma^{*} u_{2}=\int_{\hat{a}_{2}} u_{2}=C_{22}
\end{aligned}\right.
$$

ここで，（6．2）より

$$
-\frac{\pi}{\omega_{0}} \int_{\hat{a}_{1}} u_{2}=\int_{\hat{a}_{1}} \varphi^{*} w_{1}^{0}=\int_{\varphi\left(\hat{a}_{1}\right)} w_{1}^{0}=\int_{a_{1}^{0}} w_{1}^{0}=2 \pi \sqrt{-1}
$$

であるから，つぎが得られる：

$$
\begin{equation*}
C_{12}=C_{22}=-2 \omega_{0} \sqrt{-1} \tag{6.3}
\end{equation*}
$$

ここで，$C_{11} \neq 0$ であることを示そう。
\because Riemannの不等式（これは後で示す）より

$$
\sqrt{-1} \sum_{j=1}^{2}\left\{\left(\int_{\hat{a}_{j}} u_{1}\right) \overline{\left(\int_{\hat{b}_{j}} u_{1}\right)}-\overline{\left(\int_{\hat{a}_{j}} u_{1}\right)}\left(\int_{\hat{b}_{j}} u_{1}\right)\right\} \geqq 0
$$

が成り立ち，等号成立の必要十分条件は $u_{1}=0$ である。これに上で訃算した $C_{i j}$ の関係式を代入すると

$$
\sqrt{-1}\left\{C_{11}\left(\overline{\int_{\hat{b}_{1}} u_{1}}-\overline{\int_{\hat{b}_{2}} u_{1}}\right)-\overline{C_{11}}\left(\int_{\hat{b}_{1}} u_{1}-\int_{\hat{b}_{2}} u_{1}\right)\right\} \geqq 0
$$

これより，もし $C_{11}=0$ ならば Riemannの不等式で等号が成立，従って，$u_{1}=0$ と なり矛盾である。よ口て，$C_{11} \neq 0$ である

ここで A, B, C, D を定数として

$$
\hat{w}_{1}=A u_{1}+B u_{2}, \quad \hat{w}_{2}=C u_{1}+D u_{2},
$$

とおいて，$\hat{\mathcal{C}}$ の Riemann 周期行列が $(2 \pi \sqrt{-1} \hat{T})$ となるように定数 A, B, C, D を定める。（6．3）より

$$
\begin{aligned}
2 \pi \sqrt{-1} & =\int_{\hat{a}_{1}} \hat{w}_{1}=A C_{11}+B C_{12}=A C_{11}-2 \omega_{0} \sqrt{-1} B, \\
0 & =\int_{\hat{a}_{2}} \hat{w}_{1}=A C_{21}+B C_{22}=-A C_{11}-2 \omega_{0} \sqrt{-1} B,
\end{aligned}
$$

より，$A=\frac{\pi \sqrt{-1}}{C_{11}}, B=-\frac{\pi}{2 \omega_{0}}$ を得る。同様にして， $\int_{\hat{a}_{1}} \hat{w}_{2}=0, \int_{\hat{a}_{2}} \hat{w}_{2}=2 \pi \sqrt{-1}$ より $C=-\frac{\pi \sqrt{-1}}{C_{11}}, D=-\frac{\pi}{2 \omega_{0}}$ を得る。以上よりつぎを得る：

$$
\begin{cases}\hat{w}_{1}=\frac{\pi \sqrt{-1}}{C_{11}}\left(u_{1}-\frac{C_{11}}{2 \sqrt{-1} \omega_{0}} u_{2}\right), \tag{6.4}\\ \hat{w}_{2}= & \frac{\pi \sqrt{-1}}{C_{11}}\left(-u_{1}-\frac{C_{11}}{2 \sqrt{-1} \omega_{0}} u_{2}\right), \\ \text { s.t. } & \hat{w}_{1}+\hat{w}_{2}=-\frac{\pi}{\omega_{0}} u_{2} .\end{cases}
$$

従って（6．2）より

$$
\begin{equation*}
\varphi^{*} w_{1}^{0}=\hat{w}_{1}+\hat{w}_{2}, \quad \sigma^{*} \hat{w}_{1}=-\hat{w}_{2} . \tag{6.5}
\end{equation*}
$$

$$
\begin{aligned}
\text { つぎに, } T_{j} & =\int_{\hat{b}_{j}}\left(\hat{w}_{1}-\hat{w}_{2}\right),(j=1,2) \text { とおく。すると } \\
T_{1} & =\int_{\hat{b}_{1}}\left(\hat{w}_{1}-\hat{w}_{2}\right)=\int_{\sigma\left(\hat{b}_{1}\right)} \sigma^{*}\left(\hat{w}_{1}-\hat{w}_{2}\right)=-\int_{\hat{b}_{2}}\left(-\hat{w}_{2}+\hat{w}_{1}\right)=-T_{2}
\end{aligned}
$$

であるから，$T:=T_{1}=-T_{2}$ とおく。ここで，$\sigma\left(\hat{b}_{1}\right)=-\hat{b}_{2}, \sigma^{*} \hat{w}_{1}=-\hat{w}_{2}$ を用いると $\hat{T}_{11}=\hat{T}_{22}, \hat{T}_{12}=\hat{T}_{21}$ がわかる。そこで

$$
\int_{\hat{b}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\int_{\hat{b}_{1}} \varphi^{*} w_{1}^{0}=\int_{\varphi\left(\hat{b}_{1}\right)} u_{1}^{0}=\int_{b_{1}^{0}} w_{1}^{0}=\Pi
$$

より，つぎが得られる：

$$
\begin{equation*}
\hat{T}_{11}=\hat{T}_{22}=\frac{1}{2}(\Pi+T), \quad \hat{T}_{12}=\hat{T}_{21}=\frac{1}{2}(\Pi-T) \tag{6.6}
\end{equation*}
$$

$\hat{\mathcal{C}}$ のサイクルは σ の作用を保ったまま，つぎが成り立つように選ぶことができる：

$$
\left\{\begin{array}{l}
\rho\left(\hat{a}_{j}\right)=-\hat{a}_{j}, \tag{6.7}\\
\rho\left(\hat{b}_{j}\right)=\hat{b}_{j}, \quad(j=1,2)
\end{array}\right.
$$

これは，$\hat{\mathcal{C}}$ が M－curve と呼ばれるものになっていて，ρ の固定点集合の連結成分は 3 つあることが知られている（［1］）。そのうちの 2 つを \hat{b}_{1}, \hat{b}_{2} ととればよい。詳しく はFigure1 を参照のこと。

$「 C_{11}$ と Π は実数であること」

まず $\overline{\rho^{*} u_{1}}=-u_{1}, \overline{\rho^{*} u_{2}}=u_{2}$ に注意する。すると

$$
\overline{C_{11}}=\overline{\int_{\hat{a}_{1}} u_{1}}=-\int_{\hat{a}_{1}} \rho^{*} u_{1}=-\int_{\rho\left(\hat{a}_{1}\right)} u_{1}=\int_{\hat{a}_{1}} u_{1}=C_{11}
$$

より C_{11} は実数である。つぎに，Π が実数であることは $\S 4$ で示してあるが，（6．7） の関係式を用いて示しておこう。

$$
\bar{\Pi}=\overline{\int_{\hat{b}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)}=\int_{\rho\left(\hat{b}_{1}\right)} \overline{\left(\hat{w}_{1}+\hat{w}_{2}\right)}=\int_{\hat{b}_{1}} \overline{\rho^{*}\left(\hat{w}_{1}+\hat{w}_{2}\right)}=\int_{\hat{b}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\Pi
$$

より Π も実数であることが示される。実際，$\omega_{0}=\frac{K(p)}{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}}}, \omega_{0}^{\prime}=\frac{\sqrt{-1} K^{\prime}(p)}{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}}}$ であり，$\Pi=2 \pi \sqrt{-1} \frac{\omega_{0}^{\prime}}{\omega_{0}}=-2 \pi \frac{K^{\prime}(p)}{K(p)} \in \mathbf{R}$ である。

「Prym－Abel 写像 $\mathcal{B}: \hat{\mathcal{C}} \longrightarrow \operatorname{Prym}(\hat{\mathcal{C}})$ 」
点 $\hat{P} \in \hat{\mathcal{C}}$ に対して

$$
\mathcal{B}(\hat{P})=\int_{\hat{P}_{0}}^{\hat{P}}\left(\hat{w}_{1}+\hat{w}_{2}\right)
$$

を考える。ここで，(u, v) 座標で $\hat{P}_{0}=(0,1)$ である。いま $\hat{P} \longrightarrow \hat{P}+m_{j} \hat{a}_{j}+$ $n_{j} \hat{b}_{j}$ と変えると， $\mathcal{B}(\hat{P}) \longrightarrow \mathcal{B}(\hat{P})+2 \pi \sqrt{-1} m_{j}+\Pi n_{j}$ と変化する。そこで，$\Gamma=$ $\operatorname{Span}_{\mathbf{Z}}\{2 \pi \sqrt{-1}, \Pi\}$ とおくと写像 \mathcal{B} の像は $\mathbf{C} / \Gamma \cong \mathcal{C}^{0}$ である。この \mathbf{C} / Γ をPrym－ Abel多様体とよび， $\operatorname{Prym}(\hat{C})$ で表す。また，写像 \mathcal{B} を Prym－Abel 写像とよぶ。以上より，Prym－Abel 写像 $\mathcal{B}: \hat{\mathcal{C}} \longrightarrow \operatorname{Prym}(\hat{\mathcal{C}}) \cong \mathcal{C}^{0}$ を得た。

［6．1］Prym－Abel 写像の性質

種数1のコンパクト・リーマン面の標準サイクル $\left\{\hat{a}_{1}, \hat{b}_{1}\right\}$ をとり，そのサイクル に沿って切り開き平行四辺形を $\hat{a}_{1} \hat{b}_{1} \hat{a}_{1}^{-1} \hat{b}_{1}^{-1}$ と表す（Figure2を参照）。種数2のコ ンパクト・リーマン面 $\hat{\mathcal{C}}$ の標準サイクル $\left\{\hat{a}_{1}, \hat{b}_{1}, \hat{a}_{2}, \hat{b}_{2}\right\}$ に沿って切り開くと単連結な領域 $\hat{\mathcal{C}}^{0}$ ができてその境界 $\partial \hat{\mathcal{C}}^{0}$ は

$$
\partial \hat{\mathcal{C}}^{0}=\hat{a}_{1} \hat{b}_{1} \hat{a}_{1}^{-1} \hat{b}_{1}^{-1} \hat{a}_{2} \hat{b}_{2} \hat{a}_{2}^{-1} \hat{b}_{2}^{-1}
$$

である（Figure3を参照）。
点 \hat{P} を \hat{a}_{1} 上にとる。対応する \hat{a}_{1}^{-1} 上の点を \hat{P}^{-}で表す。点 \hat{P} も \hat{P}^{-}も $\hat{\mathcal{C}}$ の点としては同じ点である。さて，$\hat{P} \in \hat{a}_{1}$ のとき $\hat{P}^{-} \in \hat{a}_{1}^{-1}$ であり，$\partial \hat{\mathcal{C}}^{0}$ における \hat{a}_{1} の終点を $\hat{a}_{1}(1), \hat{a}_{1}^{-1}$ の始点を $\hat{a}_{1}^{-1}(0)$ で表す。 $\hat{\mathcal{C}}$ の点としては $\hat{a}_{1}(1)=\hat{a}_{1}^{-1}(0)$ であ る。これより
$\mathcal{B}\left(\hat{P}^{-}\right)=\int_{\hat{P}_{0}}^{\hat{P}}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\int_{\hat{P}}^{\hat{a}_{1}(1)}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\int_{\hat{b}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\int_{\hat{a}_{1}^{-1}(0)}^{\hat{P}^{-}}\left(\hat{w}_{1}+\hat{w}_{2}\right)$

$$
\begin{equation*}
=\mathcal{B}(\hat{P})+\int_{\hat{b}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\mathcal{B}(\hat{P})+\Pi \tag{6.8}
\end{equation*}
$$

を得る。 $\hat{P} \in \hat{a}_{2}$ でも同じ式が成り立つ。つぎに，$\hat{P} \in \hat{b}_{1}$ のとき，$\hat{P}^{-} \in \hat{b}_{1}^{-1}$ であり， $\hat{\mathcal{C}}$ 上の点としては同じ点である。そして

$$
\begin{equation*}
\mathcal{B}\left(\hat{P}^{-}\right)=\int_{\hat{P}_{0}}^{\hat{P}}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\int_{\hat{P}}^{\hat{b}_{1}(1)}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\int_{\hat{a}_{1}^{-1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\int_{\hat{b}_{1}^{-1}(0)}^{\hat{P}^{-}}\left(\hat{w}_{1}+\hat{w}_{2}\right) \tag{6.9}
\end{equation*}
$$

$$
=\mathcal{B}(\hat{P})-\int_{\hat{a}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\mathcal{B}(\hat{P})-2 \pi \sqrt{-1}
$$

Figure2

Figure3

［6．2］Reciprocity Laws

$\mathcal{W}_{i}(\hat{P})=\int_{\hat{P}_{0}}^{\hat{P}} \hat{w}_{i},(i=1,2)$ とおく。 $\mathcal{B}(\hat{P})=\mathcal{W}_{1}(\hat{P})+\mathcal{W}_{2}(\hat{P})$ である。 $\hat{\omega}$ を Abel微分形式で正規化されたもの，すなわち， $\int_{\hat{a}_{j}} \hat{\omega}=0,(j=1,2)$ を満たすものとする。 $\mathcal{W}_{i}^{-}(\hat{P})=\int_{\hat{P}_{0}}^{\hat{P}^{-}} \hat{w}_{i}$ とおく。 \mathcal{B} を $\mathcal{W}_{i},(i=1,2)$ に置き換えても（6．8），（6．9）に相当す るものが得られることに注意しよう。このとき，（6．8），（6．9）を \mathcal{W}_{i} で読みかえれば

$$
\begin{align*}
\int_{\partial \hat{\mathcal{C}}^{0}} \mathcal{W}_{i} \hat{\omega} & =\sum_{j=1}^{2}\left\{\int_{\hat{a}_{j}} \mathcal{W}_{i} \hat{\omega}+\int_{\hat{b}_{j}} \mathcal{W}_{i} \hat{\omega}+\int_{\hat{a}_{j}^{-1}} \mathcal{W}_{i} \hat{\omega}+\int_{\hat{b}_{j}^{-1}} \mathcal{W}_{i} \hat{\omega}\right\} \\
& =\sum_{j=1}^{2}\left\{\int_{\hat{a}_{j}}\left(\mathcal{W}_{i}-\mathcal{W}_{i}^{-}\right) \hat{\omega}+\int_{\hat{b}_{j}}\left(\mathcal{W}_{i}-\mathcal{W}_{i}^{-}\right) \hat{\omega}\right\} \tag{6.10}\\
& =\sum_{j=1}^{2}\left\{-\int_{\hat{b}_{j}} \hat{\psi}_{i} \int_{\hat{a}_{j}} \hat{\omega}+2 \pi \sqrt{-1} \delta_{i j} \int_{\hat{b}_{j}} \hat{\omega}\right\} \\
& =2 \pi \sqrt{-1} \int_{\hat{b}_{i}} \hat{\omega}
\end{align*}
$$

となる。
［Case1］$\hat{\omega}\left(\hat{P}_{0}, 2\right)=\left(-\frac{1}{z^{2}}+O(1)\right) d z$ という形の正規化された第 2 種の Abel微分形式の場合。 z は \hat{P}_{0} の回りの局所座標系である。 \mathcal{W}_{i} は正則微分形式の積分であ るから，$z=0$ の回りで $\mathcal{W}_{i}(\hat{P})=\sum_{k=0}^{\infty} a_{k} z^{k}$ と表せる。

$$
\mathcal{W}_{i} \hat{\omega}\left(\hat{P}_{0}, 2\right)=\left(-\frac{a_{0}}{z^{2}}-\frac{a_{1}}{z}+O(1)\right) d z
$$

であるから，留数定理より $\int_{\partial \hat{c}^{0}} \mathcal{W}_{i} \hat{\omega}\left(\hat{P}_{0}, 2\right)=-2 \pi \sqrt{-1} a_{1}$ である。従って，（6．10） より

$$
\begin{equation*}
\int_{\hat{b}_{i}} \hat{\omega}\left(\hat{P}_{0}, 2\right)=-a_{1}=-\left.\frac{d \mathcal{W}_{i}}{d z}\right|_{z=0}, \quad(i=1,2) . \tag{6.11}
\end{equation*}
$$

従って，同時につぎもわかる：

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{\hat{b}_{i}} \hat{\omega}\left(\hat{P}_{0}, 2\right)=-\left.\frac{d \mathcal{B}}{d z}\right|_{z=0} . \tag{6.12}
\end{equation*}
$$

［Case2］正規化された第 3 種の Abel微分形式の場合。特に， 2 点 \hat{p}^{0}, \hat{q}^{0} で 1 位の

極を持ち，それぞれの留数が $-1,+1$ である正規化された第 3 種の Abel 微分形式を $\hat{\omega}\left(\hat{p}^{0}, \hat{q}^{0}\right)$ で表す。留数定理より

$$
\int_{\partial \hat{\mathcal{C}}^{0}} \mathcal{W}_{i} \hat{\omega}\left(\hat{p}^{0}, \hat{q}^{0}\right)=2 \pi \sqrt{-1}\left(\mathcal{W}_{i}\left(\hat{q}^{0}\right)-\mathcal{W}_{i}\left(\hat{p}^{0}\right)\right)
$$

であるから，（6．10）より

$$
\begin{equation*}
\int_{\hat{b}_{i}} \hat{\omega}\left(\hat{p}^{0}, \hat{q}^{0}\right)=\int_{\hat{P}_{0}}^{\hat{q}^{0}} \hat{w}_{i}-\int_{\hat{P}_{0}}^{\hat{p}^{0}} \hat{w}_{i}=\int_{\hat{p}^{0}}^{\hat{q}^{0}} \hat{w}_{i} \tag{6.13}
\end{equation*}
$$

が得られる。

［6．3］Riemann の不等式

（6．10）において $\hat{\omega}=\overline{\hat{w}_{i}}$ ととる。（6．10）と同様にして

$$
\begin{equation*}
\int_{\partial \hat{C}_{0}} \mathcal{W}_{i} \overline{\hat{w}_{i}}=\sum_{j=1}^{2}\left\{\left(\int_{\hat{a}_{j}}{\hat{\hat{w}_{i}}}\right) \overline{\left(\int_{\hat{b}_{j}} \hat{w}_{i}\right)}-\overline{\left(\int_{\hat{a}_{j}} \hat{w}_{i}\right)}\left(\int_{\hat{b}_{j}} \hat{w}_{i}\right)\right\} \tag{6.14}
\end{equation*}
$$

を得る。一方，Stokes の定理より

$$
\int_{\partial \hat{\mathcal{C}}^{0}} \mathcal{W}_{i} \overline{\hat{u}_{i}}=\int_{\hat{\mathcal{C}}^{0}} d\left(\mathcal{W}_{i} \overline{\hat{u}_{i}}\right)=\int_{\hat{\mathcal{C}}^{0}} \hat{w}_{i} \wedge \overline{\hat{w}_{i}}
$$

であるが，局所正則関数 f と局所座標系を用いて $\hat{w}_{i}=f d z=f d x+\sqrt{-1} f d y$ と表 せるから，

$$
\hat{w}_{i} \wedge \overline{\hat{w}_{i}}=(f d x+\sqrt{-1} f d y) \wedge(\bar{f} d x-\sqrt{-1} \bar{f} d y)=-2 \sqrt{-1}|f|^{2} d x \wedge d y
$$

と（6．14）を併せれば

$$
\begin{equation*}
\sqrt{-1} \sum_{j=1}^{2}\left\{\left(\int_{\hat{a}_{j}} \hat{\psi}_{i}\right) \overline{\left(\int_{\hat{b}_{j}} \hat{\psi}_{i}\right)}-\overline{\left(\int_{\hat{a}_{j}} \hat{\psi}_{i}\right)}\left(\int_{\hat{b}_{j}} \hat{\psi}_{i}\right)\right\}=2 \int_{\hat{\mathcal{C}}^{0}}|f|^{2} d x d y \geqq 0 \tag{6.15}
\end{equation*}
$$

を得る。等号成立の必要十分条件は $f \equiv 0 \Longleftrightarrow \hat{w}_{i} \equiv 0 . \hat{w}_{i}$ は 0 でない正則微分形式であったから，（6．15）の左辺は正でなければならない。系として，\hat{a}－周期がすべて 0 ，あるいは，\hat{b}－周期がすべて 0 であるような正則微分形式は 0 以外に存在しないこ とが分かる。

7 Prym－Abel 写像と θ 関数の合成関数のzero 点が定める因子

$\mathbf{e} \in \mathbf{C}$ とする。 $\hat{P} \in \hat{\mathcal{C}}$ に対して

$$
f(\hat{P})=\theta(\mathcal{B}(\hat{P})-\mathbf{e})
$$

を考える。fは \hat{C} 上では多亚関数であるが，$\hat{\mathcal{C}}^{0}$ 上では 1 価関数になる。 f の zero点の個数を n とすると，留数定理より

$$
n=\frac{1}{2 \pi \sqrt{-1}} \int_{\partial \hat{\mathcal{C}}^{0}} d \log f=\frac{1}{2 \pi \sqrt{-1}} \sum_{j=1}^{2}\left\{\int_{\hat{a}_{j}+\hat{b}_{j}+\hat{a}_{j}^{-1}+\hat{b}_{j}^{-1}} d \log f\right\}
$$

である。 $\hat{P} \in \hat{a}_{j}$ のとき，（6．8）と（4．2）より

$$
f\left(\hat{P}^{-}\right)=\theta\left(\mathcal{B}\left(\hat{P}^{-}\right)-\mathbf{e}\right)=\theta(\mathcal{B}(\hat{P})+\Pi-\mathbf{e})=\exp \left(-\frac{1}{2} \Pi-\mathcal{B}(\hat{P})+\mathbf{e}\right) f(\hat{P})
$$

である。また，$\hat{P} \in \hat{b}_{j}$ のとき，（6．9）と（4．2）より

$$
f\left(\hat{P}^{-}\right)=\theta\left(\mathcal{B}\left(\hat{P}^{-}\right)-\mathbf{e}\right)=\theta(\mathcal{B}(\hat{P})-2 \pi \sqrt{-1}-\mathbf{e})=\theta(\mathcal{B}(\hat{P})-\mathbf{e})=f(\hat{P})
$$

である。 $f^{-}(\hat{P})=f\left(\hat{P}^{-}\right)$と書いて，まとめると

$$
f^{-}(\hat{P})= \begin{cases}\exp \left(-\frac{1}{2} \Pi-\mathcal{B}(\hat{P})+\mathbf{e}\right) f(\hat{P}) & \left(\hat{P} \in \hat{a}_{1} \text { or } \hat{a}_{2}\right) \tag{7.1}\\ f(\hat{P}) & \left(\hat{P} \in \hat{b}_{1} \text { or } \hat{b}_{2}\right)\end{cases}
$$

（7．1）を用いて訃算すると

$$
\begin{aligned}
n & =\frac{1}{2 \pi \sqrt{-1}} \sum_{j=1}^{2}\left\{\int_{\hat{a}_{j}} d \log f-\int_{\hat{a}_{j}} d \log f^{-}+\int_{\hat{b}_{j}} d \log f-\int_{\hat{b}} d \log f^{-}\right\} \\
& =\frac{1}{2 \pi \sqrt{-1}} \sum_{j=1}^{2} \int_{\hat{a}_{j}}\left(d \log f-d \log f^{-}\right)
\end{aligned}
$$

となるが，ここで，$\hat{P} \in \hat{a}_{j}$ のとき（7．1）より

$$
\log f(\hat{P})-\log f^{-}(\hat{P})=\frac{1}{2} \Pi+\mathcal{B}(\hat{P})-\mathbf{e}
$$

であるから，$d \mathcal{B}=\hat{w}_{1}+\hat{w}_{2}$ に注意すれば

$$
\begin{equation*}
d \log f-d \log f^{-}=\hat{w}_{1}+\hat{w}_{2}, \quad\left(\hat{P} \in \hat{a}_{j}\right) \tag{7.2}
\end{equation*}
$$

を得る。よって，（7．2）を上の訃算式に代入して

$$
n=\frac{1}{2 \pi \sqrt{-1}} \sum_{j=1}^{2} \int_{\hat{a}_{j}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\frac{1}{2 \pi \sqrt{-1}} \sum_{j=1}^{2} 2 \pi \sqrt{-1}=2
$$

より \int の zero 点の個数は 2 である。 θ 関数の性質（4．2）より，f の $\hat{\mathcal{C}}$ 上での zero 点 の個数も同じく 2 個である。

「注意」特に， $\mathbf{e}=\pi \sqrt{-1}$ のときは $\theta\left(\pi \sqrt{-1} \pm \frac{1}{2} \Pi\right)=0$ より，f の zero 点は $\mathcal{B}\left(\hat{p}_{j}^{0}\right)= \pm \frac{1}{2} \Pi(\bmod \Gamma)$ となる 2 点 $\left\{\hat{p}_{1}^{0}, \hat{p}_{2}^{0}\right\}$ である。

いま，$\hat{P}_{j}=\left(\mu_{j}, 0\right),\left(\mu_{j}=\sqrt{-1} r_{j}, j=1,2,3\right)$ とおく。 $\hat{P}=\hat{P}_{j}$ であるとき，$\widetilde{\nu}=0$, よって $\widetilde{B}=0$ であるから，$\wp^{\prime}(z)=0$ となる点 z を求める。 $\gamma^{\prime}(z)=0$ となる点は \wp 関数の周期を \bmod として 3 つあり，$z=z_{1}, z_{2}, z_{3}$ とするとき，

$$
z_{1}=\omega^{\prime}, \quad z_{2}=\omega+\omega^{\prime}, \quad z_{3}=\omega
$$

ととる。 $\zeta_{j}=\eta_{j}+\frac{a}{3}=\wp\left(z_{j}\right)+\frac{a}{3}$ であるから

$$
\begin{aligned}
& \hat{P}=\hat{P}_{j} \Longleftrightarrow \mu=\mu_{j} \Longrightarrow \zeta=\zeta_{j} \Longleftrightarrow z=z_{j}\left(\bmod 2 \omega \mathbf{Z}+2 \omega^{\prime} \mathbf{Z}\right) \\
& \hat{P}=\hat{P}_{0} \Longrightarrow \mu=\infty \Longleftrightarrow \zeta=\infty \Longleftrightarrow z=0\left(\bmod 2 \omega \mathbf{Z}+2 \omega^{\prime} \mathbf{Z}\right)
\end{aligned}
$$

を得る。 3 つの点 $\hat{P}=\hat{P}_{1}, \hat{P}_{2}, \hat{P}_{3}$ における $\mathcal{B}(\hat{P})$ の値を求めよう。積分路としては， Figure1 にあるように，$\hat{P}_{0} \longrightarrow \hat{P}_{1} \longrightarrow \hat{P}_{2} \longrightarrow \hat{P}_{3}$ と進み，途中，\hat{b}_{1} の上半分を逆向 きに半周し，\hat{a}_{1} を順路で半周する道を選んで訃算する。

$$
\begin{aligned}
\mathcal{B}\left(\hat{P}_{j}\right) & =\int_{\hat{P}_{0}}^{\hat{P}_{j}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\int_{\hat{P}_{0}}^{\hat{P}_{j}} \varphi^{*} u_{1}^{0}=\frac{\pi \sqrt{-1}}{\omega_{0}} \int_{\hat{P}_{0}}^{\hat{P}_{j}} \varphi^{*}\left(\frac{d \zeta}{\widetilde{B}}\right) \\
& =\frac{\pi \sqrt{-1}}{\sqrt{2} \sqrt{-1} \omega_{0}} \int_{0}^{z_{j}} d z=\frac{\pi \sqrt{-1}}{\omega^{\prime}} z_{j}
\end{aligned}
$$

であるから，つぎを得る：

$$
\mathcal{B}\left(\hat{P}_{j}\right)=\frac{\pi \sqrt{-1}}{\omega^{\prime}} z_{j}= \begin{cases}\pi \sqrt{-1} & (j=1) \tag{7.3}\\ \pi \sqrt{-1}-\frac{1}{2} \Pi & (j=2) \\ -\frac{1}{2} \Pi & (j=3)\end{cases}
$$

積分路を変えると Γ の成分の違いが出てくる。 $2 \omega \mathbf{Z}+2 \omega^{\prime} \mathbf{Z}$ の影響はすべて「に吸収される。つぎの補題はJ．D．Fay による。Fayは，一般の種数 $2 g$ の場合に示し ているが，ここでは種数が 2 の場合だけを述べておく。

Lemma 7．4．（J．D．Fay）$\hat{\mathcal{D}}$ を f のzero因子とするとき

$$
\mathcal{B}(\hat{\mathcal{D}}) \equiv \mathbf{K}+2 \mathbf{e} \quad(\bmod \Gamma)
$$

が成り立つ。ここで，K はRiemannの定数で次の式で与えられる：

$$
\mathbf{K}=\frac{1}{2 \pi \sqrt{-1}} \sum_{j=1}^{2} \int_{\hat{a}_{j}} \mathcal{B}\left(\hat{w}_{1}+\hat{w}_{2}\right)-\sum_{j=1}^{2} \mathcal{B}\left(\hat{b}_{j}(0)\right) .
$$

証明．$f(\hat{P})=\theta(\mathcal{B}(\hat{P})-\mathbf{e})$ の zero 点を $\hat{\mathcal{D}}=\left\{\hat{p}_{1}^{0}, \hat{p}_{2}^{0}\right\}$ とする。

$$
\mathcal{B}(\hat{\mathcal{D}})=\sum_{j=1}^{2} \mathcal{B}\left(\hat{p}_{j}^{0}\right)=\frac{1}{2 \pi \sqrt{-1}} \int_{\partial \hat{\mathcal{C}}^{0}} \mathcal{B}(\hat{P}) d \log f
$$

と書ける。 $\mathcal{B}^{-}(\hat{P})=\mathcal{B}\left(\hat{P}^{-}\right)$と書くとき，

$$
\begin{aligned}
\mathcal{B}(\hat{\mathcal{D}})=\frac{1}{2 \pi \sqrt{-1}} \sum_{j=1}^{2}\left\{\int_{\hat{a}_{j}}\right. & \left(\mathcal{B}(\hat{P}) d \log f-\mathcal{B}^{-}(\hat{P}) d \log f^{-}\right) \\
& \left.+\int_{\hat{b}_{j}}\left(\mathcal{B}(\hat{P}) d \log f-\mathcal{B}^{-}(\hat{P}) d \log f^{-}\right)\right\}
\end{aligned}
$$

となる。これを（6．8），（6．9），（7．1），（7．2）を用いて計算するのであるが，途中で出て くる量を先に計算しておこう。 $\hat{a}_{j}(0), \hat{a}_{j}(1)$ で，それぞれ，\hat{a}^{-}－イクル \hat{a}_{j} の $\partial \mathcal{C}^{0}$ に おける始点と終点を表す。 \hat{b}－サイクルについても同様である。まず，

$$
f\left(\hat{a}_{j}(1)\right)=\theta\left(\mathcal{B}\left(\hat{a}_{j}(0)+\int_{\hat{a}_{j}}\left(\hat{w}_{1}+\hat{w}_{2}\right)-\mathbf{e}\right)=f\left(\hat{a}_{j}(0)\right)\right.
$$

に注意して訃算すると

$$
\int_{\hat{a}_{j}} d \log f=\log f\left(\hat{a}_{j}(1)\right)-\log f\left(\hat{a}_{j}(0)\right)=2 \pi \sqrt{-1} k_{j} \quad\left(k_{j} \in \mathbf{Z}\right),
$$

である。 $2 \pi \sqrt{-1} k_{j}$ は \log の分岐からくる量である。同様にして，

$$
f\left(\hat{b}_{j}(1)\right)=\theta\left(\mathcal{B}\left(\hat{b}_{j}(0)\right)+\int_{\hat{b}_{j}}\left(\hat{w}_{1}+\hat{w}_{2}\right)-\mathbf{e}\right)=\exp \left(-\frac{1}{2} \Pi-\mathcal{B}\left(\hat{b}_{j}(0)\right)+\mathbf{e}\right) f\left(\hat{b}_{j}(0)\right)
$$

に注意して計算すると

$$
\int_{\hat{b}_{j}} d \log f=\log f\left(\hat{b}_{j}(1)\right)-\log f\left(\hat{b}_{j}(0)\right)=-\frac{1}{2} \Pi-\mathcal{B}\left(\hat{b}_{j}(0)\right)+\mathbf{e}+2 \pi \sqrt{-1} l_{j} \quad\left(l_{j} \in \mathbf{Z}\right),
$$

である。これらをもとにして計算する。

$$
\begin{aligned}
A_{j} & :=\frac{1}{2 \pi \sqrt{-1}} \int_{\hat{a}_{j}}\left(\mathcal{B}(\hat{P}) d \log f-\mathcal{B}^{-}(\hat{P}) d \log f^{-}\right) \\
& =\frac{1}{2 \pi \sqrt{-1}}\left\{\int_{\hat{a}_{j}}\left(\mathcal{B}(\hat{P})-\mathcal{B}^{-}(\hat{P})\right) d \log f+\int_{\hat{a}_{j}} \mathcal{B}^{-}\left(d \log f-d \log f^{-}\right)\right\} \\
& =\frac{1}{2 \pi \sqrt{-1}}\left\{-\Pi \int_{\hat{a}_{j}} d \log f+\int_{\hat{a}_{j}}(\mathcal{B}(\hat{P})+\Pi)\left(\hat{u}_{1}+\hat{u}_{2}\right)\right\} \\
& =\frac{1}{2 \pi \sqrt{-1}}\left\{-2 \pi \sqrt{-1} k_{j} \Pi+2 \pi \sqrt{-1} \Pi+\int_{\hat{a}_{j}} \mathcal{B}(\hat{P})\left(\hat{w}_{1}+\hat{w}_{2}\right)\right\} \\
& =\left(1-k_{j}\right) \Pi+\frac{1}{2 \pi \sqrt{-1}} \int_{\hat{a}_{j}} \mathcal{B}\left(\hat{w}_{1}+\hat{w}_{2}\right)
\end{aligned}
$$

である。同様にして，

$$
\begin{aligned}
B_{j} & :=\frac{1}{2 \pi \sqrt{-1}} \int_{\hat{b}_{j}}\left(\mathcal{B}(\hat{P}) d \log f-\mathcal{B}^{-}(\hat{P}) d \log f^{-}\right) \\
& =\frac{1}{2 \pi \sqrt{-1}}\left\{\int_{\hat{b}_{j}}\left(\mathcal{B}(\hat{P})-\mathcal{B}^{-}(\hat{P})\right) d \log f+\int_{\hat{b}_{j}} \mathcal{B}^{-}\left(d \log f-d \log f^{-}\right)\right\} \\
& =\int_{\hat{b}_{j}} d \log f=-\frac{1}{2} \Pi-\mathcal{B}\left(\hat{b}_{j}(0)\right)+\mathbf{e}+2 \pi \sqrt{-1} l_{j}
\end{aligned}
$$

である。以上より，

$$
\begin{aligned}
\mathcal{B}(\hat{\mathcal{D}}) & =\sum_{j=1}^{2} A_{j}+\sum_{j=1}^{2} B_{j} \\
& \equiv \frac{1}{2 \pi \sqrt{-1}} \sum_{j=1}^{2} \int_{\hat{a}_{j}} \mathcal{B}\left(\hat{w}_{1}+\hat{w}_{2}\right)-\sum_{j=1}^{2} \mathcal{B}\left(\hat{b}_{j}(0)\right)+2 \mathbf{e} \quad(\bmod \Gamma) \\
& \equiv \mathbf{K}+2 \mathbf{e} \quad(\bmod \Gamma)
\end{aligned}
$$

が得られる。

8 Baker－Akhiezer 関数 $\hat{\Psi}$ の構成

$\hat{\mathcal{C}}$ 上で $\partial_{\bar{z}} \partial_{z} \hat{\Psi}=-e^{u} \hat{\Psi}$ を満たす解 $\hat{\Psi}=\hat{\Psi}(z, \bar{z}, \hat{\nu})$ を構成したい。ここで，$\hat{\nu}, \hat{\nu}^{-1}$ は，それぞれ，点 \hat{P}_{0} の回りと点 \hat{P}_{∞} の回りの局所パラメーターで，点 \hat{P}_{0} は $\hat{\nu}=0$

の点，点 \hat{P}_{∞} は $\hat{\nu}^{-1}=0$ の点とする。以下の条件を課す ：
条件（1）$\hat{\Psi}$ は $\hat{\mathcal{C}} \backslash\left\{\hat{P}_{0}, \hat{P}_{\infty}\right\}$ 上の有理型関数で，かつ
極因子（pole divisor）$\hat{\mathcal{D}}_{\infty}=\left\{\hat{p}_{1}^{0}, \hat{p}_{2}^{0}\right\}$ は一般因子（non－special divisor）で z, \bar{z} に依存しない

条件（2）$\hat{\Psi}$ は以下の漸近展開をもつ：

$$
\hat{\Psi}= \begin{cases}\exp (z \hat{\nu})\left(1+\sum_{j=1}^{\infty} \hat{\xi}_{j} \hat{\nu}^{-j}\right) & \text { near } \hat{P}_{\infty} \\ \exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(1+\sum_{j=1}^{\infty} \hat{\eta}_{j} \hat{\nu}^{j}\right) & \text { near } \hat{P}_{0}\end{cases}
$$

このような $\hat{\Psi}$ を求めるために，このような $\hat{\Psi}$ があったとして $\omega_{\hat{\Psi}}=d \log \hat{\Psi}$ で定義される Abel 微分形式を考える。 $\omega_{\hat{\Psi}}$ の主要部は

$$
\left\{\begin{aligned}
-z \hat{\nu}^{2} d \hat{\nu}^{-1} & \text { near } \hat{P}_{\infty} \\
\bar{z} \hat{\nu}^{-2} d \hat{\nu} & \text { near } \hat{P}_{0}
\end{aligned}\right.
$$

$\omega_{\hat{\Psi}}$ は有理型微分形式（meromorphic differential）なので $\operatorname{Res}\left(\omega_{\hat{\Psi}}\right)=0$ ，すなわち，留数が 0 である。条件（1）より，$\hat{\Psi}$ の zero 点も 2 点ある。ただし，こちらは一般に z, \bar{z} に依存する。それらを $\hat{\mathcal{D}}_{0}=\left\{\hat{q}_{1}(z, \bar{z}), \hat{q}_{2}(z, \bar{z})\right\}$ で表す。また，$\omega_{\hat{\Psi}}$ は $\hat{\Psi}$ の zero点と極の点で極をもつが，留数はそれぞれ $+1,-1$ である。この部分は第 3 種の Abel微分形式 $\omega\left(\hat{q}_{j}, \hat{p}_{j}^{0}\right)$ で表せるし，$\omega_{\hat{\Psi}}$ の主要部は 2 つの第 2 種 Abel微分形式を用いて表 せる。すると $\omega_{\hat{\Psi}}$ との差は正則微分形式になるので，その部分は正則微分形式の基底 \hat{w}_{1}, \hat{w}_{2} の 1 次結合で表せる。以上より，

$$
\begin{equation*}
\omega_{\hat{\psi}}=z \hat{\Omega}_{\infty}-\bar{z} \hat{\Omega}_{0}+\sum_{j=1}^{2} \omega\left(\hat{q}_{j}, \hat{p}_{j}^{0}\right)+\sum_{j=1}^{2} c_{j} \hat{u}_{j}, \quad\left(c_{j} \in \mathbf{C}\right) \tag{8.1}
\end{equation*}
$$

と表せる。ここで，第 2 種 Abel微分形式 $\hat{\Omega}_{\infty}, \hat{\Omega}_{0}$ はそれぞれ，点 $\hat{P}_{\infty}, \hat{P}_{0}$ の回りで主要部を持ち

$$
\left\{\begin{array}{l}
\hat{\Omega}_{\infty}=\left(-\hat{\nu}^{2}+O(1)\right) d \hat{\nu}^{-1} \quad \text { near } \hat{P}_{\infty} \tag{8.2}\\
\hat{\Omega}_{0}=\left(-\hat{\nu}^{-2}+O(1)\right) d \hat{\nu} \quad \text { near } \hat{P}_{0}
\end{array}\right.
$$

という形をしている。

「第2種 Abel微分形式の具体的な選択」

以下のように定める：

$$
\left\{\begin{array}{l}
\hat{\Omega}_{\infty}=-\varphi^{*} \Omega_{0}^{0}-\frac{\sqrt{-1}}{2} d \mu \tag{8.3}\\
\hat{\Omega}_{0}=\varphi^{*} \Omega_{0}^{0}-\frac{\sqrt{-1}}{2} d \mu
\end{array}\right.
$$

これらの主要部の形を確認しておこう。そこで，点 \hat{P}_{0} の回りで $\hat{\nu}=\sqrt{-1} \mu^{-1}$ とい う局所パラメーターを入れる。これは点 \hat{P}_{0} の回りで $\hat{\nu}(\hat{P})=\left(\int_{\hat{P}_{0}}^{\hat{P}} \hat{\Omega}_{0}\right)^{-1}$ という局所パラメーターを入れるが，それの主要部だけを取り出したものである。
$C=\frac{a}{3}-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}$ であったから，楕円曲線 $\mathcal{C}^{0}: \widetilde{B}^{2}=-8 \prod_{j=1}^{3}\left(\zeta-\zeta_{j}\right)$ 上の第 2 種 Abel微分形式 Ω_{0}^{0} は，$\wp(z)=\eta=\zeta-\frac{a}{3}$ より

$$
\Omega_{0}^{0}=-(\zeta-C) \frac{d \zeta}{\widetilde{B}}
$$

と表せる。そこで 2 重被覆写像 φ の変換式 $\zeta=\frac{1}{2}\left(2 a+\mu^{2}\right), \widetilde{B}=-\sqrt{-1} \widetilde{\nu}$ を代入す ると

$$
\varphi^{*} \Omega_{0}^{0}=-\left(a+\frac{1}{2} \mu^{2}-C\right) \frac{\mu d \mu}{-\sqrt{-1} \widetilde{\nu}}
$$

が得られる。ここで $\hat{\mathcal{C}} の(u, v)$ 座標 $u=\mu^{-1}, v=\mu^{-3} \widetilde{\nu}$ を思い出そう。 $\hat{P}_{0}=(0,1)$ であるから $\hat{\nu} \rightarrow 0$ のとき $v \rightarrow 1$ となっていなければならない。 $\widetilde{\nu}$ と $\mu d \mu$ を $\hat{\nu}$ を用いて表すと

$$
\left\{\begin{align*}
\widetilde{\nu} & =\sqrt{\left(\mu^{3}+2 a \mu\right)^{2}+4}=\mu^{3} \sqrt{1+4 a \mu^{-2}+4 a^{2} \mu^{-4}+4 \mu^{-6}} \tag{8.4}\\
& =-\sqrt{-1} \hat{\nu}^{-3} \sqrt{1-4 a \hat{\nu}^{2}+O\left(\hat{\nu}^{4}\right)} \\
\mu d \mu & =\sqrt{-1} \hat{\nu}^{-1}\left(-\sqrt{-1} \hat{\nu}^{-2} d \hat{\nu}\right)=\hat{\nu}^{-3} d \hat{\nu}
\end{align*}\right.
$$

となっている。このとき

$$
v=\mu^{-3} \widetilde{\nu}=\sqrt{-1} \hat{\nu}^{3}\left(-\sqrt{-1} \hat{\nu}^{-3}\right) \sqrt{1+O\left(\hat{\nu}^{2}\right)} \longrightarrow 1 \quad(\text { as } \hat{\nu} \rightarrow 0)
$$

であることに注意しよう。（8．4）を上で得た $\varphi^{*} \Omega_{0}^{0}$ の式の右辺に代入すれば

$$
\begin{aligned}
\varphi^{*} \Omega_{0}^{0} & =-\left(a-\frac{1}{2} \hat{\nu}^{2}-C\right) \frac{\hat{\nu}^{-3} d \hat{\nu}}{-\hat{\nu}^{-3} \sqrt{1-4 a \hat{\nu}^{2}+O\left(\hat{\nu}^{4}\right)}} \\
& =-\left(a-\frac{1}{2} \hat{\nu}^{-2}-C\right)\left(1+2 a \hat{\nu}^{2}+O\left(\hat{\nu}^{4}\right)\right)(-d \hat{\nu}) \\
& =\left(-\frac{1}{2} \hat{\nu}^{-2}+a-C-a+O\left(\hat{\nu}^{2}\right)\right) d \hat{\nu} \\
& =\left(-\frac{1}{2} \hat{\nu}^{-2}-C+O\left(\hat{\nu}^{2}\right)\right) d \hat{\nu} \quad \text { near } \hat{P}_{0}
\end{aligned}
$$

であるが,$-\frac{\sqrt{-1}}{2} d \mu=-\frac{1}{2} \hat{\nu}^{-2} d \hat{\nu}$ であるから，（8．3）の定義式より

$$
\begin{equation*}
\hat{\Omega}_{\infty}=\left(C+O\left(\hat{\nu}^{2}\right)\right) d \hat{\nu}, \quad \hat{\Omega}_{0}=\left(-\hat{\nu}^{-2}+O(1)\right) d \hat{\nu} \quad \text { near } \hat{P}_{0} \tag{8.5}
\end{equation*}
$$

がわかる。ただし，$C=\frac{a}{3}-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}$ である。また，σ と ρ の作用に関して，つぎも容易に確かめられる：

$$
\begin{equation*}
\sigma^{*} \hat{\Omega}_{\infty}=-\hat{\Omega}_{\infty}, \quad \sigma^{*} \hat{\Omega}_{0}=-\hat{\Omega}_{0}, \quad \overline{\rho^{*} \hat{\Omega}_{\infty}}=\hat{\Omega}_{0} \tag{8.6}
\end{equation*}
$$

さて， $\int_{\hat{a}_{j}} \omega_{\hat{\psi}}=2 \pi \sqrt{-1} k_{j},\left(k_{j} \in \mathbf{Z}\right)$ より，（8．1）を \hat{a}_{j} 上で積分して

$$
2 \pi \sqrt{-1} k_{j}=\sum_{i=1}^{2} c_{i} \int_{\hat{a}_{j}} \hat{w}_{i}=2 \pi \sqrt{-1} c_{j}
$$

となるので，$c_{j}=k_{j} \in \mathbf{Z}$ であることがわかる。第 2 種 Abel微分形式 $\hat{\Omega}_{0}, \hat{\Omega}_{\infty}$ の \hat{b}－周期をつぎのようにおく：

$$
\begin{aligned}
& \mathbf{U}:=\left(U_{1}, U_{2}\right)=\left(\int_{\hat{b}_{1}} \hat{\Omega}_{0}, \int_{\hat{b}_{2}} \hat{\Omega}_{0}\right) \\
& \mathbf{V}:=\left(V_{1}, V_{2}\right)=\left(\int_{\hat{b}_{1}} \hat{\Omega}_{\infty}, \int_{\hat{b}_{2}} \hat{\Omega}_{\infty}\right)
\end{aligned}
$$

U_{j} を計算しよう。 $d \mu$ の周期積分は 0 であるから

$$
U_{j}=\int_{\hat{b}_{j}} \hat{\Omega}_{0}=\int_{\hat{b}_{j}} \varphi^{*} \Omega_{0}^{0}=\int_{\varphi\left(\hat{b}_{j}\right)} \Omega_{0}^{0}=\int_{b_{1}^{0}} \Omega_{0}^{0}=\mathbf{U}^{0}
$$

を得る。従って，

$$
\begin{equation*}
U_{1}=U_{2}=\mathbf{U}^{0}, \quad V_{1}=V_{2}=-\mathbf{U}^{0} \tag{8.7}
\end{equation*}
$$

ここで， $\mathbf{U}^{0}=\frac{\pi \sqrt{-1}}{2 \omega_{0}}$ であった。「Reciprocity Laws」のところで，$\left.\frac{d}{d \hat{\nu}} \mathcal{B}(\hat{P})\right|_{\hat{\nu}=0}$ の訃算方法を示した。（6．12）において，$\hat{\omega}\left(\hat{P}_{0}, 2\right)$ として $\hat{\Omega}_{0}$ をとればよいから

$$
\left.\frac{d}{d \hat{\nu}} \mathcal{B}(\hat{P})\right|_{\hat{\nu}=0}=-\sum_{j=1}^{2} \int_{\hat{b}_{j}} \hat{\Omega}_{0}=-\left(U_{1}+U_{2}\right)=-2 \mathbf{U}^{0}
$$

が得られる。これを，直接，$\hat{\nu}=\sqrt{-1} \mu^{-1}$ を用いて訃算してみよう。

$$
\begin{aligned}
\hat{w}_{1}+\hat{w}_{2} & =\varphi^{*} w_{1}^{0}=\frac{\pi \sqrt{-1}}{\omega_{0}} \varphi^{*} \frac{d \zeta}{\widetilde{B}}=\frac{\pi \sqrt{-1}}{\omega_{0}} \frac{\mu d \mu}{-\sqrt{-1} \widetilde{\nu}} \\
& =-\frac{\pi \sqrt{-1}}{\omega_{0}} \frac{d \hat{\nu}}{\sqrt{1-4 a \hat{\nu}^{2}+O\left(\hat{\nu}^{4}\right)}}=-\frac{\pi \sqrt{-1}}{\omega_{0}}\left(1+2 a \hat{\nu}^{2}+O\left(\hat{\nu}^{4}\right)\right) d \hat{\nu}
\end{aligned}
$$

より

$$
\begin{equation*}
\left.\frac{d}{d \hat{\nu}} \mathcal{B}(\hat{P})\right|_{\hat{\nu}=0}=-\frac{\pi \sqrt{-1}}{\omega_{0}}=-2 \mathbf{U}^{0} \tag{8.8}
\end{equation*}
$$

が得られる。
つぎに，（8．1）を \hat{b}_{j} 上で積分して，（6．13）と（8．7）を用いると

$$
\begin{aligned}
2 \pi \sqrt{-1} l_{j} & =\int_{\hat{b}_{j}} \omega_{\hat{\Psi}} \\
& =z \int_{\hat{b}_{j}} \hat{\Omega}_{\infty}-\bar{z} \int_{\hat{b}_{j}} \hat{\Omega}_{0}+\sum_{k=1}^{2} \int_{\hat{b}_{j}} \omega\left(\hat{q}_{k}, \hat{p}_{k}^{0}\right)+\sum_{k=1}^{2} c_{k} \int_{\hat{b}_{j}} \hat{w}_{k} \\
& =-z \mathbf{U}^{0}-\bar{z} \mathbf{U}^{0}+\sum_{k=1}^{2} \int_{\hat{p}_{k}^{0}}^{\hat{q}_{k}} \hat{w}_{j}+\sum_{k=1}^{2} c_{k} \hat{T}_{j k}
\end{aligned}
$$

が得られる。これを $j=1,2$ について和をとると

$$
2 \pi \sqrt{-1}\left(l_{1}+l_{2}\right)=-2(z+\bar{z}) \mathbf{U}^{0}+\sum_{k=1}^{2} \int_{\hat{p}_{k}^{0}}^{\hat{q}_{k}}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\sum_{k=1}^{2} c_{k}\left(\hat{T}_{1 k}+\hat{T}_{2 k}\right)
$$

であるが，ここで，（6．6）を用いると右辺の第3項は

$$
\sum_{k=1}^{2} c_{k}\left(\hat{T}_{1 k}+\hat{T}_{2 k}\right)=c_{1}\left(\hat{T}_{11}+\hat{T}_{21}\right)+c_{2}\left(\hat{T}_{12}+\hat{T}_{22}\right)=\left(c_{1}+c_{2}\right) \Pi
$$

となる。 $c_{1}, c_{2} \in \mathbf{Z}$ であったから，結局つぎが得られる：

$$
\begin{equation*}
\sum_{k=1}^{2} \int_{\hat{p}_{k}^{0}}^{\hat{q}_{k}}\left(\hat{w}_{1}+\hat{w}_{2}\right) \equiv 2(z+\bar{z}) \mathbf{U}^{0} \quad(\bmod \Gamma) \tag{8.9}
\end{equation*}
$$

ここで，積分計算の便宜上

$$
\begin{equation*}
F(z)=\frac{1}{\sqrt{2} \sqrt{-1}}\left(\zeta_{w}(z)-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}} z\right) \tag{8.10}
\end{equation*}
$$

とおく。 $z_{1}=\omega^{\prime}, z_{2}=\omega+\omega^{\prime}, z_{3}=\omega$ ととっていたことを思い出そう。とくに， $F\left(z_{1}\right)=0$ である。これを用いて，第 2 種の Abel微分形式の積分を表しておく。

$$
\begin{aligned}
\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty} & =-\int_{\hat{P}_{1}}^{\hat{P}} \varphi^{*} \Omega_{0}^{0}-\frac{\sqrt{-1}}{2} \int_{\hat{P}_{1}}^{\hat{P}} d \mu \\
& =-\int_{z_{1}}^{z}\left(-\wp 0(z)-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}}\right) \frac{d z}{\sqrt{2} \sqrt{-1}}-\frac{\sqrt{-1}}{2} \mu(\hat{P})+\frac{\sqrt{-1}}{2} \mu_{1} \\
& =\frac{-1}{\sqrt{2} \sqrt{-1}}\left[\zeta_{w}(z)-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}} z\right]_{z_{1}}^{z}-\frac{\sqrt{-1}}{2} \mu+\frac{\sqrt{-1}}{2} \mu_{1} \\
& =-F(z)-\frac{\sqrt{-1}}{2} \mu+\frac{\sqrt{-1}}{2} \mu_{1}
\end{aligned}
$$

これより，つぎがわかる：

$$
\left\{\begin{array}{l}
\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty}-\frac{\sqrt{-1}}{2} \mu_{1}=-F(z)-\frac{\sqrt{-1}}{2} \mu \tag{8.11}\\
\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{0}-\frac{\sqrt{-1}}{2} \mu_{1}=F(z)-\frac{\sqrt{-1}}{2} \mu
\end{array}\right.
$$

「注意」 積分路は $\mathcal{B}\left(\hat{P}_{j}\right)$ を計算したときと同じものをとる。 \wp 関数の周期のうち， $2 \omega^{\prime}$ は $\hat{\Omega}_{\infty}$ の \hat{a}_{j} 上の 1 周期分の積分， 2ω は \hat{b}_{j} 上の 1 周期分の積分に対応する。 $\hat{\Omega}_{\infty}$ は正規化されているので $2 \omega^{\prime}$ の影響は出ない。
$\mathbf{e}=\pi \sqrt{-1}$ ととり，Φ_{θ}, Φ_{e} をつぎで定める：

$$
\left\{\begin{align*}
\Phi_{\theta}(z, \bar{z}, \hat{P}) & =\frac{\theta\left(\mathcal{B}(\hat{P})-(z+\bar{z}) \mathbf{U}^{0}-\mathbf{e}\right)}{\theta(\mathcal{B}(\hat{P})-\mathbf{e})} \tag{8.12}\\
\Phi_{e}(z, \bar{z}, \hat{P}) & =\exp \left(z\left(\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty}-\frac{\sqrt{-1}}{2} \mu_{1}\right)-\bar{z}\left(\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{0}-\frac{\sqrt{-1}}{2} \mu_{1}\right)\right)
\end{align*}\right.
$$

$(*) \hat{P}_{-j}=\left(-\mu_{j}, 0\right),(j=1,2,3)$ とおく。 Φ_{θ} の分母の zero 点は $\hat{\mathcal{D}}=\left\{\hat{P}_{3}, \hat{P}_{-3}\right\}$ で あり，z，六に依らない。
（＊＊）以下の漸近展開をもつ：

$$
\begin{aligned}
& \int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty}-\frac{\sqrt{-1}}{2} \mu_{1}=\hat{\nu}^{-1}+O(\hat{\nu}) \quad \text { near } \hat{P}_{0}, \\
& \int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{0}-\frac{\sqrt{-1}}{2} \mu_{1}=\hat{\nu}+O\left(\hat{\nu}^{-1}\right) \quad \text { near } \hat{P}_{\infty} .
\end{aligned}
$$

$\hat{\Psi}$ を構成するために，$\Phi_{\theta} \Phi_{e}$ を考えて，$\hat{P} \longrightarrow \hat{P}+m_{j} \hat{a}_{j}+n_{j} \hat{b}_{j}$ と変化させた場合を考 える。まず， $\int_{\hat{a}_{j}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=2 \pi \sqrt{-1}, \theta(z+2 \pi \sqrt{-1})=\theta(z), \int_{\hat{a}_{j}} \hat{\Omega}_{\infty}=\int_{\hat{a}_{j}} \hat{\Omega}_{0}=0$ よ り，$\Phi_{\theta} \Phi_{e}$ は $\hat{P} \longrightarrow \hat{P}+m_{j} \hat{a}_{j}$ なる積分路の変化で不変である。つぎに，$\hat{P} \rightarrow \hat{P}+\hat{b}_{j}$ とするとき，

$$
\begin{aligned}
\Phi_{\theta} \Phi_{e}(\hat{P}) \rightarrow & \frac{\theta\left(\mathcal{B}(\hat{P})-(z+\bar{z}) \mathbf{U}^{0}-\mathbf{e}+\Pi\right)}{\theta(\mathcal{B}(\hat{P})-\mathbf{e}+\Pi)} \Phi_{e} \exp \left(z V_{j}-\bar{z} U_{j}\right) \\
& =\frac{\exp \left(-\frac{1}{2} \Pi-\mathcal{B}(\hat{P})+(z+\bar{z}) \mathbf{U}^{0}+\mathbf{e}\right)}{\exp \left(-\frac{1}{2} \Pi-\mathcal{B}(\hat{P})+\mathbf{e}\right)} \Phi_{\theta} \Phi_{e}(\hat{P}) \exp \left(-(z+\bar{z}) \mathbf{U}^{0}\right) \\
& =\Phi_{\theta} \Phi_{e}(\hat{P})
\end{aligned}
$$

である。途中で，（8．7）を用いた。よって，$\Phi_{\theta} \Phi_{e}$ は $\hat{\mathcal{C}}$ 上の有理型関数（meromorphic function）であることがわかる。いま，$\hat{\Psi}$ の極因子を $\hat{\mathcal{D}}_{\infty}=\hat{\mathcal{D}}=\left\{\hat{p}_{1}^{0}, \hat{p}_{2}^{0}\right\}$ ととる。こ のとき，

Lemma 8．13．$\hat{\Psi} \Phi_{\theta}^{-1} \Phi_{e}^{-1}$ は $\hat{\mathcal{C}}$ 上の正則関数である。従って，Liouville の定理より， これは定数である。

証明．$\hat{\Psi}$ の zero 因子は $\left\{\hat{q}_{1}(z, \bar{z}), \hat{q}_{2}(z, \bar{z})\right\}$ であり，$\hat{\Psi}$ の極因子 $\hat{\mathcal{D}}_{\infty}$ は Φ_{θ}^{-1} の zero因子に等しい。 $\hat{\Psi} \Phi_{\theta}^{-1} \Phi_{e}^{-1}$ の残りの極因子は，Φ_{θ} の zero因子から来るものである。 そこで，Φ_{θ} の zero 因子を $\hat{\mathcal{D}}_{\theta}$ とすると，Lemma 7.4 と（8．9）より

$$
\begin{aligned}
\mathcal{B}\left(\hat{\mathcal{D}}_{\theta}\right) & =\mathbf{K}+2\left((z+\bar{z}) \mathbf{U}^{0}+\mathbf{e}\right)=\mathcal{B}(\hat{\mathcal{D}})+2(z+\bar{z}) \mathbf{U}^{0} \\
& =\sum_{j=1}^{2} \int_{\hat{P}_{0}}^{\hat{p}_{j}^{0}}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\sum_{j=1}^{2} \int_{\hat{p}_{j}^{0}}^{\hat{q}_{j}}\left(\hat{w}_{1}+\hat{w}_{2}\right) \equiv \sum_{j=1}^{2} \int_{\hat{P}_{0}}^{\hat{q}_{j}}\left(\hat{w}_{1}+\hat{w}_{2}\right) \quad(\bmod \Gamma)
\end{aligned}
$$

となるが，これより $\hat{\mathcal{D}}_{\theta}=\left\{\hat{q}_{1}(z, \bar{z}), \hat{q}_{2}(z, \bar{z})\right\}$ が結論され，これは $\hat{\Psi}$ の zero因子に等しいことを示している。以上より，$\hat{\Psi} \Phi_{\theta}^{-1} \Phi_{e}^{-1}$ は極を持たない有理型関数である から， \mathcal{C} 上の正則関数である。 \mathcal{C} はコンパクト Riemann面であるから，Liouvilleの定理より定数でなければならない。
$\hat{\Psi} \Phi_{\theta}^{-1} \Phi_{e}^{-1}$ は定数であることが分かったから，その定数を求めよう。1点での値を求めればよいから，点 \hat{P}_{0} における値を評価すれば良い。 $\left(\hat{\Psi} \Phi_{e}^{-1}\right)\left(\hat{P}_{0}\right)=1$ である

ことに注意すれば

$$
\left(\hat{\Psi} \Phi_{\theta}^{-1} \Phi_{e}^{-1}\right)\left(\hat{P}_{0}\right)=\left(\hat{\Psi} \Phi_{e}^{-1}\right)\left(\hat{P}_{0}\right) \Phi_{\theta}^{-1}\left(\hat{P}_{0}\right)=\frac{\theta(\mathbf{e})}{\theta\left((z+\bar{z}) \mathbf{U}^{0}+\mathbf{e}\right)}
$$

がわかる。以上より，つぎが得られた：
Lemma 8．14．条件（1），（2）を満たす $\bar{\Psi}$ はつぎで与えられる：

$$
\begin{equation*}
\hat{\Psi}(z, \bar{z}, \hat{P})=\frac{\theta\left(\mathcal{B}(\hat{P})-(z+\bar{z}) \mathbf{U}^{0}-\mathbf{e}\right) \theta(\mathbf{e})}{\theta(\mathcal{B}(\hat{P})-\mathbf{e}) \theta\left((z+\bar{z}) \mathbf{U}^{0}+\mathbf{e}\right)} \Phi_{e}(z, \bar{z}, \hat{P}) \tag{8.15}
\end{equation*}
$$

ここで， $\mathbf{e}=\pi \sqrt{-1}$ であり，Φ_{e} は（8．12）で与えたものである。

9 壬が満たす Reality Condition

$\hat{\mathcal{C}}$ 上の第 2 種 Abel微分形式 $\hat{\Omega}_{0}, \hat{\Omega}_{\infty}$ の漸近展開は

$$
\hat{\Omega}_{0}=\left(-\hat{\nu}^{-2}+O(1)\right) d \hat{\nu} \quad \text { near } \hat{P}_{0}, \quad \hat{\Omega}_{\infty}=\left(-\hat{\nu}^{2}+O(1)\right) d \hat{\nu}^{-1} \quad \text { near } \hat{P}_{\infty}
$$

を満たしていた。そこで，点 \hat{P}_{0} と点 \hat{P}_{∞} の回りの局所パラメーター $\hat{\nu}, \hat{\nu}^{-1}$ をつぎ で定める：

$$
\left\{\begin{aligned}
& \hat{\nu}(\hat{P})=\left(\int_{\hat{P}_{0}}^{\hat{P}} \hat{\Omega}_{0}\right)^{-1} \text { near } \hat{P}_{0} \\
& \hat{\nu}^{-1}(\hat{P})=\left(\int_{\hat{P}_{\infty}}^{\hat{P}} \hat{\Omega}_{\infty}\right)^{-1} \text { near } \hat{P}_{\infty}
\end{aligned}\right.
$$

このとき，つぎが成り立つ：

$$
\begin{equation*}
\rho(\hat{\nu})=\hat{\hat{\nu}}^{-1}, \quad \sigma(\hat{\nu})=-\hat{\nu} \tag{9.1}
\end{equation*}
$$

実際，点 \hat{P} を点 \hat{P}_{∞} の回りの点とし，$\hat{P}_{0}=\rho\left(\hat{P}_{\infty}\right), \overline{\rho^{*} \hat{\Omega}_{0}}=\hat{\Omega}_{\infty}$ に注意すれば

$$
\begin{aligned}
\rho(\hat{\nu})(\hat{P}) & =\hat{\nu}(\rho(\hat{P}))=\left(\int_{\hat{P}_{0}}^{\rho(\hat{P})} \hat{\Omega}_{0}\right)^{-1}=\left(\int_{\hat{P}_{\infty}}^{\hat{P}} \rho^{*} \hat{\Omega}_{0}\right)^{-1} \\
& =\overline{\left(\int_{\hat{P}_{\infty}}^{\hat{P}} \hat{\Omega}_{\infty}\right)^{-1}=\overline{\hat{\nu}^{-1}}(\hat{P})}
\end{aligned}
$$

を得る。点 \hat{P} を点 \hat{P}_{0} の回りの点としても同様である。つぎに，点 \hat{P} を点 \hat{P}_{0} の回 りの点として，$\sigma\left(\hat{P}_{0}\right)=\hat{P}_{0}, \sigma^{*} \hat{\Omega}_{0}=-\hat{\Omega}_{0}$ に注意して

$$
\begin{aligned}
\sigma(\hat{\nu})(\hat{P}) & =\hat{\nu}(\sigma(\hat{P}))=\left(\int_{\hat{P}_{0}}^{\sigma(\hat{P})} \hat{\Omega}_{0}\right)^{-1}=\left(\int_{\hat{P}_{0}}^{\hat{P}} \sigma^{*} \hat{\Omega}_{0}\right)^{-1} \\
& =-\left(\int_{\hat{P}_{0}}^{\hat{P}} \hat{\Omega}_{0}\right)^{-1}=-\hat{\nu}(\hat{P})
\end{aligned}
$$

を得る。点 \hat{P} が点 \hat{P}_{∞} の回りの点でも同様である。
手は有理型関数であるから，積分路はFigure1にあるように 1 つ固定して積分を計算することにする。また，以下の積分では積分路のとり方によっては $\bmod \Gamma$ で等しいという場合もあるが，等号で書いておき最後に $\bmod \Gamma$ の条件を付けること とする。

$$
\begin{aligned}
\mathcal{B}(\sigma(\hat{P})) & =\int_{\hat{P}_{0}}^{\sigma(\hat{P})}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\int_{\hat{P}_{0}}^{\hat{P}} \sigma^{*}\left(\hat{w}_{1}+\hat{w}_{2}\right)=-\int_{\hat{P}_{0}}^{\hat{P}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=-\mathcal{B}(\hat{P}), \\
\overline{\mathcal{B}(\rho(\hat{P}))} & =\overline{\int_{\hat{P}_{0}}^{\rho(\hat{P})}\left(\hat{w}_{1}+\hat{w}_{2}\right)}=\int_{\hat{P}_{\infty}}^{\hat{P}} \overline{\rho^{*}\left(\hat{w}_{1}+\hat{w}_{2}\right)}=\int_{\hat{P}_{0}}^{\hat{P}}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\int_{\hat{P}_{\infty}}^{\hat{P}_{0}}\left(\hat{w}_{1}+\hat{w}_{2}\right) \\
& =\mathcal{B}(\hat{P})+\int_{\hat{P}_{\infty}}^{\hat{P}_{0}}\left(\hat{w}_{1}+\hat{w}_{2}\right)
\end{aligned}
$$

となるが，ここで，最後の積分値を訃算しよう。（7．3）より $\mathcal{B}\left(\hat{P}_{1}\right)=\pi \sqrt{-1}$ であり， また $\rho\left(\hat{P}_{1}\right)=\hat{P}_{1}$ に注意して

$$
\mathcal{B}\left(\hat{P}_{1}\right)=\int_{\hat{P}_{0}}^{\hat{P}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\int_{\rho\left(\hat{P}_{\infty}\right)}^{\rho\left(\hat{P}_{1}\right)}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\int_{\hat{P}_{\infty}}^{\hat{P}_{1}} \rho^{*}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\overline{\int_{\hat{P}_{\infty}}^{\hat{P}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)}
$$

より

$$
\int_{\hat{P}_{\infty}}^{\hat{P}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=-\pi \sqrt{-1}
$$

であるから

$$
\int_{\hat{P}_{\infty}}^{\hat{P}_{0}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=\int_{\hat{P}_{\infty}}^{\hat{P}_{1}}\left(\hat{w}_{1}+\hat{w}_{2}\right)+\int_{\hat{P}_{1}}^{\hat{P}_{0}}\left(\hat{w}_{1}+\hat{w}_{2}\right)=-2 \pi \sqrt{-1} \equiv 0 \quad(\bmod \Gamma)
$$

がわかる。従って，まとめるとつぎがわかった：

$$
\begin{equation*}
\overline{\mathcal{B}(\sigma \rho(\hat{P}))}=-\overline{\mathcal{B}(\rho(\hat{P}))}=-\mathcal{B}(\hat{P}) \quad(\bmod \Gamma) \tag{9.2}
\end{equation*}
$$

つぎに， $\int_{\hat{P}_{-1}}^{\hat{P}_{1}} \varphi^{*} \Omega_{0}^{0}=\int_{\varphi\left(\hat{P}_{-1}\right)}^{\varphi\left(\hat{P}_{1}\right)} \Omega_{0}^{0} \equiv 0$ より

$$
\left\{\begin{align*}
\int_{\hat{P}_{-1}}^{\hat{P}_{1}} \hat{\Omega}_{0} & =\int_{\hat{P}_{-1}}^{\hat{P}_{1}}\left(\varphi^{*} \Omega_{0}^{0}-\frac{\sqrt{-1}}{2} d \mu\right) \tag{9.3}\\
& =-\frac{\sqrt{-1}}{2}\left(\mu_{1}-\left(-\mu_{1}\right)\right)=-\sqrt{-1} \mu_{1}, \\
\int_{\hat{P}_{-1}}^{\hat{P}_{1}} \hat{\Omega}_{\infty} & =\int_{\hat{P}_{-1}}^{\hat{P}_{1}}\left(-\varphi^{*} \Omega_{0}^{0}-\frac{\sqrt{-1}}{2} d \mu\right)=-\sqrt{-1} \mu_{1}
\end{align*}\right.
$$

である。よって，$\sigma \rho\left(\hat{P}_{-1}\right)=\hat{P}_{1}$ に注意して，（9．3）を用いるとつぎのようになる：

$$
\begin{aligned}
\overline{\int_{\hat{P}_{1}}^{\sigma \rho(\hat{P})} \hat{\Omega}_{0}} & =\int_{\hat{P}_{-1}}^{\hat{P}} \overline{(\sigma \rho) * \hat{\Omega}_{0}}=-\int_{\hat{P}_{-1}}^{\hat{P}} \hat{\Omega}_{\infty} \\
& =-\int_{\hat{P}_{-1}}^{\hat{P}_{1}} \hat{\Omega}_{\infty}-\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty}=-\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty}+\sqrt{-1} \mu_{1} \\
\overline{\int_{\hat{P}_{1}}^{\sigma \rho(\hat{P})} \hat{\Omega}_{\infty}} & =\int_{\hat{P}_{-1}}^{\hat{P}} \overline{(\sigma \rho) * \hat{\Omega}_{\infty}}=-\int_{\hat{P}_{-1}}^{\hat{P}} \hat{\Omega}_{0} \\
& =-\int_{\hat{P}_{-1}}^{\hat{P}_{1}} \hat{\Omega}_{0}-\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{0}=-\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{0}+\sqrt{-1} \mu_{1} .
\end{aligned}
$$

まとめると，つぎが得られる：

$$
\left\{\begin{array}{l}
\overline{\int_{\hat{P}_{1}}^{\sigma \rho(\hat{P})} \hat{\Omega}_{0}}=-\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty}+\sqrt{-1} \mu_{1}, \tag{9.4}\\
\overline{\int_{\hat{P}_{1}}^{\sigma(\hat{P})} \hat{\Omega}_{\infty}}=-\int_{\hat{P}_{1}}^{\hat{P}_{1}} \hat{\Omega}_{0}+\sqrt{-1} \mu_{1} .
\end{array}\right.
$$

以上の準備のもと，$\overline{\mathbf{e}}=-\mathbf{e}, \overline{\mathbf{U}^{0}}=-\mathbf{U}^{0}, \overline{\mu_{1}}=-\mu_{1}, \theta(-z)=\theta(z)$ に注意して （9．2），（9．4）を用いて訃算すると，

$$
\begin{aligned}
& \bar{\Psi}(z, \bar{z}, \sigma \rho(\hat{P}), \mathbf{e}) \\
&= \frac{\theta\left(\overline{\mathcal{B}(\sigma \rho(\hat{P}))}+(z+\bar{z}) \mathbf{U}^{0}+\mathbf{e}\right) \theta(\mathbf{e})}{\theta(\overline{\mathcal{B}(\sigma \rho(\hat{P}))}+\mathbf{e}) \theta\left((z+\bar{z}) \mathbf{U}^{0}+\mathbf{e}\right)} \\
& \times \exp \left(\bar{z}\left(\overline{\int_{\hat{P}_{1}}^{\sigma \rho(\hat{P})} \hat{\Omega}_{\infty}}-\frac{\sqrt{-1}}{2} \mu_{1}\right)-z\left(\overline{\int_{\hat{P}_{1}}^{\sigma \rho(\hat{P})} \hat{\Omega}_{0}}-\frac{\sqrt{-1}}{2} \mu_{1}\right)\right) \\
&= \frac{\theta\left(\mathcal{B}(\hat{P})-(z+\bar{z}) \mathbf{U}^{0}-\mathbf{e}\right) \theta(\mathbf{e})}{\theta(\mathcal{B}(\hat{P})-\mathbf{e}) \theta\left((z+\bar{z}) \mathbf{U}^{0}+\mathbf{e}\right)} \\
& \times \exp \left(\bar{z}\left(-\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{0}+\sqrt{-1} \mu_{1}-\frac{\sqrt{-1}}{2} \mu_{1}\right)-z\left(-\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty}+\sqrt{-1} \mu_{1}-\frac{\sqrt{-1}}{2} \mu_{1}\right)\right) \\
&= \frac{\theta\left(\mathcal{B}(\hat{P})-(z+\bar{z}) \mathbf{U}^{0}-\mathbf{e}\right) \theta(\mathbf{e})}{\theta(\mathcal{B}(\hat{P})-\mathbf{e}) \theta\left((z+\bar{z}) \mathbf{U}^{0}+\mathbf{e}\right)} \\
& \times \exp \left(z\left(\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{\infty}-\frac{\sqrt{-1}}{2} \mu_{1}\right)-\bar{z}\left(\int_{\hat{P}_{1}}^{\hat{P}} \hat{\Omega}_{0}-\frac{\sqrt{-1}}{2} \mu_{1}\right)\right) \\
&= \hat{\Psi}(z, \bar{z}, \hat{P}, \mathbf{e}) .
\end{aligned}
$$

以上より，つぎが得られた：

$$
\begin{equation*}
\hat{\Psi}(z, \bar{z}, \hat{P}, \mathbf{e})=\bar{\Psi}(z, \bar{z}, \sigma \rho(\hat{P}), \mathbf{e}) \tag{9.5}
\end{equation*}
$$

10 壬 が Schrödinger 方程式 $\partial_{\bar{z}} \partial_{z} \hat{\Psi}=-e^{u} \hat{\Psi}$ の解であること
$\widetilde{\lambda}=\sqrt{-1} \lambda$ とおく。 $\S 5$ で $U(\lambda)$ および $V(\lambda)$ をつぎで与えた $:$
（10．1）$U(\lambda)=\left(\begin{array}{ccc}0 & 0 & \widetilde{\lambda} e^{\frac{u}{2}} \\ -\widetilde{\lambda} e^{\frac{u}{2}} & u_{z_{z}}^{2} & 0 \\ 0 & \widetilde{\lambda}^{\frac{u^{u}}{-u}} & -\frac{u_{z}}{2}\end{array}\right), V(\lambda)=\left(\begin{array}{ccc}0 & \widetilde{\lambda}^{-1} e^{\frac{u}{2}} & 0 \\ 0 & -\frac{u_{\bar{z}}}{2} & -\widetilde{\lambda}^{-1} e^{-u} \\ -\widetilde{\lambda}^{-1} e^{\frac{u}{2}} & 0 & \frac{u_{\bar{z}}}{2}\end{array}\right)$ ，
z, \bar{z}, λ に依存する関数として $F_{j}=F_{j}(z, \bar{z}, \lambda),(j=1,2,3)$ とこれらを並べた 3項行ベクトル $F=\left(F_{1} F_{2} F_{3}\right)$ を考えて，これがつぎの方程式の解である場合を考

える：

$$
d F=F(U(\lambda) d z+V(\lambda) d \bar{z}) .
$$

これは，連立微分方程式 $\partial_{z} F=F U(\lambda), \partial_{\bar{z}} F=F V(\lambda)$ と同値であるが，これの compatibility condition（すなわち，$\partial_{z} \partial_{\bar{z}} F=\partial_{\bar{z}} \partial_{z} F$ ）はTzitzéica 方程式に一致す る。連立微分方程式を簡単にするために，frameの gauge 変換を行う：

$$
P(\lambda)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\widetilde{\lambda} e^{\frac{u}{2}} & 0 \\
0 & 0 & -\widetilde{\lambda}^{2} e^{-\frac{u}{2}}
\end{array}\right)
$$

を用いて，$\widetilde{F}=F P(\lambda)$ とおく。このとき，

$$
\begin{aligned}
d \widetilde{F} & =d F P+F d P=F(U d z+V d \bar{z}) P+F d P \\
& =F P P^{-1}(U d z+V d \bar{z}) P+F P P^{-1} d P=\widetilde{F}\left(\operatorname{Ad}\left(P^{-1}\right)(U d z+V d \bar{z})+P^{-1} d P\right)
\end{aligned}
$$

より

$$
d \widetilde{F}=\widetilde{F}(\widetilde{U} d z+\widetilde{V} d \bar{z}) \Longleftrightarrow\left\{\begin{array}{l}
\widetilde{U}=\operatorname{Ad}\left(P^{-1}\right) U+P^{-1} \partial_{z} P \\
\widetilde{V}=\operatorname{Ad}\left(P^{-1}\right) V+P^{-1} \partial_{\bar{z}} P
\end{array}\right.
$$

ここで， $\operatorname{Ad}\left(P^{-1}\right) W=P^{-1} W P$ は行列の随伴表現である。 $\widetilde{U}, \widetilde{V}$ を訃算すると，$\nu=$ λ^{3} とおけば

$$
\widetilde{U}(\nu)=\left(\begin{array}{ccc}
0 & 0 & \sqrt{-1} \nu \tag{10.2}\\
1 & u_{z} & 0 \\
0 & 1 & -u_{z}
\end{array}\right), \quad \widetilde{V}(\nu)=\left(\begin{array}{ccc}
0 & -e^{u} & 0 \\
0 & 0 & -e^{-2 u} \\
\sqrt{-1} \nu^{-1} e^{u} & 0 & 0
\end{array}\right) .
$$

そこで，$\widetilde{F}=\left(\psi_{1} \psi_{2} \psi_{3}\right)$ とおくと，これらは次の連立微分方程式を満たす：
$(10.3) \quad\left\{\begin{array}{l}\partial_{z} \psi_{1}=\psi_{2} \\ \partial_{z} \psi_{2}=u_{z} \psi_{2}+\psi_{3} \\ \partial_{z} \psi_{3}=\sqrt{-1} \nu \psi_{1}-u_{z} \psi_{3}\end{array} \quad, \quad\left\{\begin{array}{l}\partial_{\bar{z}} \psi_{1}=\sqrt{-1} \nu^{-1} e^{u} \psi_{3} \\ \partial_{\bar{z}} \psi_{2}=-e^{u} \psi_{1} \\ \partial_{\bar{z}} \psi_{3}=-e^{-2 u} \psi_{2}\end{array}\right.\right.$
以下，連立微分方程式（10．3）の解を構成する。

$$
\left\{\psi_{1}=\hat{\Psi}, \psi_{2}=\partial_{z} \hat{\Psi}, \psi_{3}=-\sqrt{-1} \nu e^{-u} \partial_{\bar{z}} \hat{\Psi}\right\}
$$

が（10．3）の解であることを以下示そう。まず，
$[$ Step1 $] \partial_{\bar{z}} \partial_{z} \hat{\Psi}=-e^{u} \hat{\Psi}$ をふす。点 \hat{P}_{0} の近くで $\hat{\Psi}(z, \bar{z}, \hat{\nu})=\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(1+\sum_{j=1}^{\infty} \hat{\eta}_{j} \hat{\nu}^{j}\right)$

と表せた。ここで，$e^{u}=\partial_{z} \hat{\eta}_{1}$ ととる。

$$
\begin{aligned}
\partial_{z} \hat{\Psi} \quad & =\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(\sum_{j=1}^{\infty} \partial_{z} \hat{\eta}_{j} \hat{\nu}^{j}\right), \\
\partial_{\bar{z}} \partial_{z} \hat{\Psi} & =\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(-\sum_{j=1}^{\infty} \partial_{z} \hat{\eta}_{j} \hat{\nu}^{j-1}+\sum_{j=1}^{\infty} \partial_{\bar{z}} \partial_{z} \hat{\eta}_{j} \hat{\nu}^{j}\right) \\
& =\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(-e^{u}+\sum_{j=1}^{\infty}\left(\partial_{\bar{z}} \partial_{z} \hat{\eta}_{j}-\partial_{z} \hat{\eta}_{j+1}\right) \hat{\nu}^{j}\right)
\end{aligned}
$$

従って，

$$
\begin{aligned}
\partial_{\bar{z}} \partial_{z} \hat{\Psi}+e^{u} \hat{\Psi} & =\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(\sum_{j=1}^{\infty}\left(\partial_{\bar{z}} \partial_{z} \hat{\eta}_{j}-\partial_{z} \hat{\eta}_{j+1}+e^{u} \hat{\eta}_{j}\right) \hat{\nu}^{j}\right) \\
& =\exp \left(-\bar{z} \hat{\nu}^{-1}\right) O(\hat{\nu})
\end{aligned}
$$

を得る。そこで，$\hat{\Phi}:=\left(\partial_{\bar{z}} \partial_{z} \hat{\Psi}+e^{u} \hat{\Psi}\right) \hat{\Psi}^{-1}$ とおくと，$\hat{\Phi}=O(\hat{\nu})$ であるから，$\hat{\nu} \rightarrow 0$ のとき $\hat{\Phi} \longrightarrow 0$ となる。 $\hat{\Psi}$ の極因子は z, \bar{z} に依存しないから $\left(\partial_{\bar{z}} \partial_{z} \hat{\Psi}+e^{u} \hat{\Psi}\right)$ の極因子も $\hat{\Psi}$ のそれと同じである。よって，$\hat{\Psi}^{-1}$ の zero因子とキャンセルする。 $\hat{\Psi}$ の zero点は $\left\{\hat{q}_{1}(z, \bar{z}), \hat{q}_{2}(z, \bar{z}\}\right.$ であったから $\hat{\Phi}$ は高々 2 点の極因子 $\hat{\mathcal{D}}_{0}=\left\{\hat{q}_{1}(z, \bar{z}), \hat{q}_{2}(z, \bar{z})\right\}$ をもつ $\hat{\mathcal{C}}$ 上の有理型関数である。このことを

$$
\hat{\Phi} \in \mathrm{H}^{0}\left(\mathcal{C}, \mathcal{O}_{\hat{\mathcal{C}}}\left(\hat{q}_{1}(z, \bar{z}), \hat{q}_{2}(z, \bar{z})\right)\right)
$$

と書く。 $\hat{\mathcal{D}}_{0}=\left\{\hat{q}_{1}, \hat{q}_{2}\right\}$ は $z=0$ で $\hat{\mathcal{D}}_{\infty}$ に一致するので一般因子である。従って， $z=0$ の近くで $\hat{\mathcal{D}}_{0}$ は一般因子なので・致の定理より $\operatorname{dimH}^{0}\left(\hat{\mathcal{C}}, \mathcal{O}_{\hat{\mathcal{C}}}\left(\hat{\mathcal{D}}_{0}\right)\right)=1$ であ る。よって，禾は定数でなければならない。一方で，点 \hat{P}_{0} で $\hat{\Phi}=0$ であったから，結局，$\hat{\Phi} \equiv 0$ がわかる。すなわち，

$$
\begin{equation*}
\partial_{\bar{z}} \partial_{z} \hat{\Psi}+e^{u} \hat{\Psi}=0 \tag{10.4}
\end{equation*}
$$

が示された。このとき，出の満たす Reality Condition（9．5）より

$$
\begin{aligned}
-\overline{e^{u}} \hat{\Psi}(z, \bar{z}, \hat{P}, \mathbf{e}) & =-\overline{e^{u}} \overline{\hat{\Psi}}(z, \bar{z}, \sigma \rho(\hat{P}), \mathbf{e}) \\
& =\partial_{z} \partial_{\bar{z}} \overline{\partial_{\bar{z}} \partial_{z} \hat{\Psi}(z, \bar{z}, \sigma \rho(\hat{P}), \bar{z}, \sigma \rho(\hat{P}), \mathbf{e})}=\partial_{\bar{z}} \partial_{z} \hat{\Psi}(z, \bar{z}, \hat{P}, \mathbf{e})=-e^{u} \hat{\Psi}(z, \bar{z}, \hat{P}, \mathbf{e})
\end{aligned}
$$

であるから，$\overline{e^{u}}=e^{u}$ ，すなわち，e^{u} は実数であることがわかる。さらに（10．4）より

$$
\begin{aligned}
\partial_{\bar{z}} \psi_{2} & =\partial_{\bar{z}} \partial_{z} \psi_{1}=\partial_{\bar{z}} \partial_{z} \hat{\Psi}=-e^{u} \hat{\Psi}--e^{u} \psi_{1} \\
\partial_{z} \psi_{3} & =\partial_{z}\left(-\sqrt{-1} \nu e^{-u} \partial_{\bar{z}} \hat{\Psi}\right) \\
& =-u_{z}\left(-\sqrt{-1} \nu e^{-u} \partial_{\bar{z}} \hat{\Psi}\right)-\sqrt{-1} \nu e^{-u} \partial_{z} \partial_{\bar{z}} \hat{\Psi}=\sqrt{-1} \nu \psi_{1}-u_{z} \psi_{3}
\end{aligned}
$$

以上で，ψ_{2}, ψ_{3} の定義と併せて（10．3）の 4 つの式が示された。
［Step 2］つぎに，$\partial_{z} \psi_{2}-u_{z} \psi_{2}-\psi_{3}=0$ を示す。点 \hat{P}_{0} の近くで

$$
\begin{aligned}
& \psi_{1}=\hat{\Psi}=\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(1+\sum_{j=1}^{\infty} \hat{\eta}_{j} \hat{\nu}^{j}\right) \\
& \psi_{2}=\partial_{z} \psi_{1}=\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(\sum_{j=1}^{\infty} \partial_{z} \hat{\eta}_{j} \hat{\nu}^{j}\right)
\end{aligned}
$$

であり，点 \hat{P}_{0} の近くでは $\nu=-\sqrt{-1} \hat{\nu}^{3}$ と表せるので

$$
\left\{\begin{aligned}
\partial_{z} \psi_{2} & =\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(\sum_{j=1}^{\infty} \partial_{z} \partial_{z} \hat{\eta}_{j} \hat{\nu}^{j}\right), \\
u_{z} \psi_{2} & =\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(\sum_{j=1}^{\infty} u_{z} \partial_{z} \hat{\eta}_{j} \hat{\nu}^{j}\right), \\
\psi_{3} & =-\sqrt{-1}\left(-\sqrt{-1} \hat{\nu}^{3}\right) e^{-u} \exp \left(-\bar{z}^{\hat{\nu}^{-1}}\right)\left(-\hat{\nu}^{-1}-\sum_{j=1}^{\infty} \hat{\eta}_{j} \hat{\nu}^{j-1}+\sum_{j=1}^{\infty} \partial_{\bar{z}} \hat{\eta}_{j} \hat{\nu}^{j}\right) \\
& =\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(e^{-u} \hat{\nu}^{2}+\sum_{j=1}^{\infty} e^{-u} \hat{\eta}_{j} \hat{\nu}^{j+2}-\sum_{j=1}^{\infty} e^{-u} \partial_{\bar{z}} \hat{\eta}_{j} \hat{\nu}^{j+3}\right)
\end{aligned}\right.
$$

より，つぎが得られる：

$$
\begin{aligned}
& \partial_{z} \psi_{2}-u_{z} \psi_{2}-\psi_{3} \\
& =\exp \left(-\bar{z} \hat{\nu}^{-1}\right)\left(\left(\partial_{z} \partial_{z} \hat{\eta}_{1}-u_{z} \partial_{z} \hat{\eta}_{1}\right) \hat{\nu}+\left(\partial_{z} \partial_{z} \hat{\eta}_{2}-u_{z} \partial_{z} \hat{\eta}_{2}-e^{-u}\right) \hat{\nu}^{2}+O\left(\hat{\nu}^{3}\right)\right) \\
& =\exp \left(-\bar{z} \hat{\nu}^{-1}\right) O(\hat{\nu})
\end{aligned}
$$

あとは，$\widetilde{\Phi}=\left(\partial_{z} \psi_{2}-u_{z} \psi_{2}-\psi_{3}\right) \hat{\Psi}^{-1}=O(\hat{\nu})$ とおけば $\hat{\nu} \rightarrow 0$ のとき $\widetilde{\Phi} \longrightarrow 0$ であ り，$\widetilde{\Phi} \in \mathrm{H}^{0}\left(\hat{\mathcal{C}}, \mathcal{O}_{\hat{\mathcal{C}}}\left(\hat{\mathcal{D}}_{0}\right)\right)$ であるから，［Step 1］の場合と同じ理由により $\widetilde{\Phi} \equiv 0$ ，すな わち，

$$
\partial_{z} \psi_{2}=u_{z} \psi_{2}+\psi_{3}
$$

が成りたつことが示された。
［Step 3］最後に，$\partial_{\bar{z}} \psi_{3}=-e^{-2 u} \psi_{2}$ を示す。同様の方法でできるが，ここでは別の方法で示そう。（9．5）と $\psi_{1}=\hat{\Psi}$ より

$$
\overline{\psi_{1}(\sigma \rho(\hat{P}))}=\psi_{1}(\hat{P})
$$

である。点 \hat{P}_{0} の近くでは $\nu=-\sqrt{-1} \hat{\nu}^{3}$ であるから

$$
\begin{align*}
\psi_{2}(\hat{P}) & =\partial_{z} \psi_{1}(\hat{P})=\partial_{z} \overline{\psi_{1}(\sigma \rho(\hat{P}))}=\overline{\partial_{\bar{z}} \psi_{1}(\sigma \rho(\hat{P}))} \\
& =-\sqrt{-1} \overline{\nu^{-1}}(\sigma \rho(\hat{P})) e^{u} \overline{\psi_{3}(\sigma \rho(\hat{P}))} \tag{10.5}\\
& =-\sqrt{-1}(-\sqrt{-1}) \overline{\hat{\nu}^{-3}}(\sigma \rho(\hat{P})) e^{u} \overline{\psi_{3}(\sigma \rho(\hat{P}))} \\
& =\hat{\nu}^{3}(\hat{P}) e^{u} \overline{\psi_{3}(\sigma \rho(\hat{P}))} .
\end{align*}
$$

これより

$$
\begin{equation*}
\overline{\psi_{3}(\sigma \rho(\hat{P}))}=\hat{\nu}^{-3}(\hat{P}) e^{-u} \psi_{2}(\hat{P}) \tag{10.6}
\end{equation*}
$$

を得る。（10．5）をzで微分すると

$$
\partial_{z} \psi_{2}(\hat{P})=u_{z} \psi_{2}(\hat{P})+\hat{\nu}^{3}(\hat{P}) e^{u} \overline{\partial_{\bar{z}} \psi_{3}(\sigma \rho(\hat{P}))}
$$

であるが，これと $\left[\right.$ Step 2］で示した $\partial_{z} \psi_{2}=u_{z} \psi_{2}+\psi_{3}$ を比較して

$$
\begin{equation*}
\overline{\partial_{\bar{z}} \psi_{3}(\sigma \rho(\hat{P}))}=\hat{\nu}^{-3}(\hat{P}) e^{-u} \psi_{3}(\hat{P}) \tag{10.7}
\end{equation*}
$$

を得る。（10．7）で $\hat{P} \rightarrow \sigma \rho(\hat{P})$ として複素共役を取り（10．6）を用いると $(\sigma \rho=\rho \sigma$ であることに注意）

$$
\begin{aligned}
\partial_{\bar{z}} \psi_{3}(\hat{P}) & =\overline{\hat{\nu}^{-3}(\sigma \rho(\hat{P}))} e^{-u} \overline{\psi_{3}(\sigma \rho(\hat{P}))} \\
& =-\hat{\nu}^{3}(\hat{P}) e^{-u} \hat{\nu}^{-3}(\hat{P}) e^{-u} \psi_{2}(\hat{P}) \\
& =-e^{-2 u} \psi_{2}(\hat{P})
\end{aligned}
$$

を得る。
以上，［Step 1］，［Step 2］，［Step 3］より $\left\{\psi_{1}=\hat{\Psi}, \psi_{2}=\partial_{z} \hat{\Psi}, \psi_{3}=-\sqrt{-1} \nu e^{-u} \partial_{z} \hat{\Psi}\right\}$ は連立微分方程式（10．3）の解であることがわかった。

「注意」 $e^{u}=\partial_{z} \hat{\eta}_{1}>0$ であること（Non－singularity）を示す必要があるが，これは （10．3）の Compatibility Condition より u は Tzitzéica 方程式の解であることが分 かるので，楕円関数解の形からこれについては問題ない。

つぎに

$$
\begin{equation*}
\hat{V}(\hat{P}, \hat{Q})=\psi_{1}(\hat{P}) \overline{\psi_{1}(\rho(Q))}+e^{-u} \psi_{2}(\hat{P}) \overline{\psi_{2}(\rho(\hat{Q}))}+e^{u} \psi_{3}(\hat{P}) \overline{\psi_{3}(\rho(\hat{Q}))} \tag{10.8}
\end{equation*}
$$

$$
\begin{equation*}
\hat{W}(\hat{P})=\hat{V}(\hat{P}, \hat{P}), \quad(\hat{P}, \hat{Q} \in \hat{\mathcal{C}}) \tag{10.9}
\end{equation*}
$$

と定める。定義では \hat{V}, \hat{W} は z, \bar{z} に依存しているが，実はつぎが成り立つ：
Lemma 10．10．\hat{V} および \hat{W} は z, \bar{z} に依存しない。
$\because(10.1)$ をすべて用いて訃算する。訃算中の点 \hat{P}, \hat{Q} の表記は省略する。

$$
\begin{aligned}
& \partial_{z} \hat{V}(\hat{P}, \hat{Q})=\partial_{z} \psi_{1} \overline{\psi_{1}(\rho)}+\psi_{1} \overline{\partial_{\bar{z}} \psi_{1}(\rho)}-u_{z} e^{-u} \psi_{2} \overline{\psi_{2}(\rho)} \\
&+e^{-u} \partial_{z} \psi_{2} \overline{\psi_{2}(\rho)}+e^{-u} \psi_{2} \overline{\partial_{\bar{z}} \psi_{2}(\rho)}+u_{z} e^{u} \psi_{3} \overline{\psi_{3}(\rho)} \\
&+e^{u} \partial_{z} \psi_{3} \overline{\psi_{3}(\rho)}+e^{u} \psi_{3} \overline{\partial_{\bar{z}} \psi_{3}(\rho)} \\
&=\psi_{2} \overline{\psi_{1}(\rho)}+\psi_{1}\left(-\sqrt{-1} \overline{\lambda^{-3}(\rho)} e^{u} \overline{\psi_{3}(\rho)}\right)-u_{z} e^{-u} \psi_{2} \overline{\psi_{2}(\rho)} \\
&+e^{-u}\left(u_{z} \psi_{2}+\psi_{3}\right) \overline{\psi_{2}(\rho)}+e^{-u} \psi_{2}\left(-e^{u} \overline{\psi_{1}(\rho)}\right)+u_{z} e^{u} \psi_{3} \overline{\psi_{3}(\rho)} \\
&+e^{u}\left(\sqrt{-1} \lambda^{3} \psi_{1}-u_{z} \psi_{3}\right) \overline{\psi_{3}(\rho)}+e^{u} \psi_{3}\left(-e^{-2 u} \overline{\psi_{2}(\rho)}\right) \\
&=0, \\
& \partial_{\bar{z}} \hat{V}(\hat{P}, \hat{Q})=\partial_{\bar{z}} \psi_{1} \overline{\psi_{1}(\rho)}+\psi_{1} \overline{\partial_{z} \psi_{1}(\rho)}-u_{\bar{z}} e^{-u} \psi_{2} \overline{\psi_{2}(\rho)}+e^{-u} \partial_{\bar{z}} \psi_{2} \overline{\psi_{2}(\rho)} \\
&+e^{-u} \psi_{2} \overline{\partial_{z} \psi_{2}(\rho)}+u_{\bar{z}} e^{u} \psi_{3} \overline{\psi_{3}(\rho)}+e^{u} \partial_{\bar{z}} \psi_{3} \overline{\psi_{3}(\rho)}+e^{u} \psi_{3} \overline{\partial_{z} \psi_{3}(\rho)} \\
&=\left(\sqrt{-1} \lambda^{-3} e^{u} \psi_{3}\right) \overline{\psi_{1}(\rho)}+\psi_{1} \psi_{2}(\rho) \\
&-u_{\bar{z}} e^{-u} \psi_{2} \overline{\psi_{2}(\rho)}+e^{-u}\left(-e^{u}\right) \psi_{1} \overline{\psi_{2}(\rho)} \\
&+e^{-u} \psi_{2} \overline{\left(u_{z} \psi_{2}(\rho)+\psi_{3}(\rho)\right)}+u_{\bar{z}} e^{u} \psi_{3} \overline{\psi_{3}(\rho)}+e^{u}\left(-e^{-2 u}\right) \psi_{2} \overline{\psi_{3}(\rho)} \\
&+e^{u} \psi_{3}\left(\sqrt{-1} \lambda^{3}(\rho) \psi_{1}(\rho)-u_{z} \psi_{3}(\rho)\right) \\
&=0 .
\end{aligned}
$$

$11 s_{0}: M \longrightarrow S^{5}$ の $\hat{\Psi}$ による表示式

結果を先に述べると，$\hat{P}_{j}=\left(\mu_{j}, 0\right),(j=1,2,3)$ としたときに

$$
\begin{equation*}
s_{0}(x, y) \equiv\left(\frac{\hat{\Psi}\left(z, \bar{z}, \hat{P}_{1}, \mathbf{e}\right)}{\sqrt{\hat{W}\left(\hat{P}_{1}\right)}}, \frac{\hat{\Psi}\left(z, \bar{z}, \hat{P}_{2}, \mathbf{e}\right)}{\sqrt{\hat{W}\left(\hat{P}_{2}\right)}}, \frac{\hat{\Psi}\left(z, \bar{z}, \hat{P}_{3}, \mathbf{e}\right)}{\sqrt{\hat{W}\left(\hat{P}_{3}\right)}}\right) \tag{11.1}
\end{equation*}
$$

と表せる。ただし＂三＂は S^{5} の等長変換 $U(3)$ の作用を除いて等しいことを表す。以下，（11．1）を示そう。

Lemma 11．2．

（1）

$$
\begin{cases}\int_{\hat{P}_{1}}^{\hat{P}_{j}} \hat{\Omega}_{\infty}-\frac{\sqrt{-1}}{2} \mu_{1} & =-F\left(z_{j}\right)-\frac{\sqrt{-1}}{2} \mu_{j}, \\ \int_{\hat{P}_{1}}^{\hat{P}_{j}} \hat{\Omega}_{0}-\frac{\sqrt{-1}}{2} \mu_{1} & =F\left(z_{j}\right)-\frac{\sqrt{-1}}{2} \mu_{j}, \quad(j=1,2,3), \\ F\left(z_{1}\right)=0, \quad F\left(z_{2}\right) & =-\frac{1}{2} \mathbf{U}^{0}, \quad F\left(z_{3}\right)=-\frac{1}{2} \mathbf{U}^{0} .\end{cases}
$$

（2）

$$
\Phi_{e}\left(z, \bar{z}, \hat{P}_{j}\right)= \begin{cases}\exp \left(\sqrt{-1} r_{1} y\right) & (j=1) \\ \exp \left(\mathbf{U}^{0} x+\sqrt{-1} r_{2} y\right) & (j=2) \\ \exp \left(\mathbf{U}^{0} x+\sqrt{-1} r_{3} y\right) & (j=3)\end{cases}
$$

$\because(1)$ は（8．9），（8．10）より得られる。 $z_{1}=\omega^{\prime}, z_{2}=\omega+\omega^{\prime}, z_{3}=\omega$ であったが，例 えば，

$$
\begin{aligned}
F\left(z_{3}\right) & =\frac{1}{\sqrt{2} \sqrt{-1}}\left(\zeta_{w}\left(z_{3}\right)-\frac{\zeta_{w}\left(\omega^{\prime}\right)}{\omega^{\prime}} z_{3}\right) \\
& =\frac{1}{\sqrt{2} \sqrt{-1} \omega^{\prime}}\left(\zeta_{w}(\omega) \omega^{\prime}-\zeta_{w}\left(\omega^{\prime}\right) \omega\right)=-\frac{\pi \sqrt{-1}}{4 \omega_{0}}=-\frac{1}{2} \mathbf{U}^{0}
\end{aligned}
$$

（2）

$$
\begin{aligned}
\Phi_{e}\left(z, \bar{z}, \hat{P}_{1}\right) & =\exp \left(z\left(-\frac{\sqrt{-1}}{2} \mu_{1}\right)-\bar{z}\left(-\frac{\sqrt{-1}}{2} \mu_{1}\right)\right)=\exp \left(\frac{r_{1}}{2}(z-\bar{z})\right)=\exp \left(\sqrt{-1} r_{1} y\right) \\
\Phi_{e}\left(z, \bar{z}, \hat{P}_{2}\right) & =\exp \left(z\left(\frac{1}{2} \mathbf{U}^{0}-\frac{\sqrt{-1}}{2} \mu_{2}\right)-\bar{z}\left(-\frac{1}{2} \mathbf{U}^{0}-\frac{\sqrt{-1}}{2} \mu_{2}\right)\right) \\
& =\exp \left(\frac{1}{2} \mathbf{U}^{0}(z+\bar{z})+\frac{r_{2}}{2}(z-\bar{z})\right)=\exp \left(\mathbf{U}^{0} x+\sqrt{-1} r_{2} y\right)
\end{aligned}
$$

同様にして，$\Phi_{e}\left(z, \bar{z}, \hat{P}_{3}\right)=\exp \left(\mathbf{U}^{0} x+\sqrt{-1} r_{3} y\right)$ が得られる。
$u=\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x$ のとき，

$$
v=\frac{u}{2 K(p)}=\frac{\sqrt{2}}{2} \sqrt{\zeta_{3}-\zeta_{1}} x \times \frac{1}{\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1} \omega_{0}}}=\frac{x}{2 \omega_{0}}=\frac{\mathbf{U}^{0}}{\pi \sqrt{-1}} x
$$

より

$$
z=2 \pi \sqrt{-1} v=2 \mathbf{U}^{0} x, \quad(z+\bar{z}) \mathbf{U}^{0}=2 \mathbf{U}^{0} x
$$

に注意して，（4．5），（7．3）および Lemma 11.2 より

$$
\begin{aligned}
\operatorname{dn}(u, p) & =\frac{\theta(\pi \sqrt{-1}) \theta\left(2 \mathbf{U}^{0} x\right)}{\theta(0) \theta\left(2 \mathbf{U}^{0} x+\pi \sqrt{-1}\right)} \\
& =\hat{\Psi}\left(z, \bar{z}, \hat{P}_{1}, \pi \sqrt{-1}\right) \Phi_{\theta}^{-1}\left(z, \bar{z}, \hat{P}_{1}\right)=\hat{\Psi}\left(z, \bar{z}, \hat{P}_{1}, \pi \sqrt{-1}\right) \exp \left(-\sqrt{-1} r_{1} y\right) \\
\operatorname{cn}(u, p) & =\frac{\theta(\pi \sqrt{-1}) \theta\left(2 \mathbf{U}^{0} x+\frac{1}{2} \Pi\right)}{\theta\left(\frac{1}{2} \Pi\right) \theta\left(2 \mathbf{U}^{0} x+\pi \sqrt{-1}\right)} \exp \left(\mathbf{U}^{0} x\right) \\
& =\hat{\Psi}\left(z, \bar{z}, \hat{P}_{2}, \pi \sqrt{-1}\right) \exp \left(\mathbf{U}^{0} x\right) \Phi_{\theta}^{-1}\left(z, \bar{z}, \hat{P}_{2}\right) \\
& =\hat{\Psi}\left(z, \bar{z}, \hat{P}_{2}, \pi \sqrt{-1}\right) \exp \left(-\sqrt{-1} r_{2} y\right)
\end{aligned}
$$

である。ただし，sn は奇関数であり $\left.\hat{\Psi}\right|_{z=0}=1$ を考慮すると， sn に関しては cn, dn と同じようには表せない。そこで，まず

$$
\operatorname{sn}(u, p)=-\sqrt{-1} \frac{\theta(0) \theta\left(2 \mathbf{U}^{0} x+\pi \sqrt{-1}+\frac{1}{2} \Pi\right)}{\theta\left(\frac{1}{2} \Pi\right) \theta\left(2 \mathbf{U}^{0} x+\pi \sqrt{-1}\right)} \exp \left(\mathbf{U}^{0} x\right)
$$

と表示して，

$$
\hat{\Psi}\left(z, \bar{z}, \hat{P}_{3}, \pi \sqrt{-1}\right) \Phi_{e}\left(z, \bar{z}, \hat{P}_{3}\right)^{-1}=\frac{\theta(\pi \sqrt{-1}) \theta\left(2 \mathbf{U}^{0} x+\pi \sqrt{-1}+\frac{1}{2} \Pi\right)}{\theta\left(\frac{1}{2} \Pi+\pi \sqrt{-1}\right) \theta\left(2 \mathbf{U}^{0} x+\pi \sqrt{-1}\right)}
$$

と比較する。 $\Pi+\pi \sqrt{-1}$ は θ 関数の zero 点であるので点 \hat{P}_{3} は $\hat{\Psi}$ の極になってい る。よって，これを除去する必要がある。そのために，$\hat{\Psi}\left(\omega_{0}, \omega_{0}, \hat{P}_{3}, \pi \sqrt{-1}\right)$ を訃算 すると

$$
\begin{aligned}
\hat{\Psi}\left(\omega_{0}, \omega_{0}, \hat{P}_{3}, \pi \sqrt{-1}\right) & =\frac{\theta\left(\frac{1}{2} \Pi\right) \theta(\pi \sqrt{-1})}{\theta\left(\frac{1}{2} \Pi+\pi \sqrt{-1}\right) \theta(0)} \exp \left(\omega_{0}\left(\frac{1}{2} \mathbf{U}^{0}-\frac{\sqrt{-1}}{2} \mu_{3}\right)-\omega_{0}\left(-\frac{1}{2} \mathbf{U}^{0}-\frac{\sqrt{-1}}{2} \mu_{3}\right)\right) \\
& =\frac{\theta\left(\frac{1}{2} \Pi\right) \theta(\pi \sqrt{-1})}{\theta\left(\frac{1}{2} \Pi+\pi \sqrt{-1}\right) \theta(0)} \exp \left(\frac{\pi \sqrt{-1}}{2}\right) \\
& =\sqrt{-1} \frac{\theta\left(\frac{1}{2} \Pi\right) \theta(\pi \sqrt{-1})}{\theta\left(\frac{1}{2} \Pi+\pi \sqrt{-1}\right) \theta(0)}
\end{aligned}
$$

を考虑して，

$$
\begin{aligned}
\operatorname{sn}(u, p) & =\left(\hat{\Psi}\left(\omega_{0}, \omega_{0}, \hat{P}_{3}, \pi \sqrt{-1}\right)^{-1} \hat{\Psi}\left(z, \bar{z}, \hat{P}_{3}, \pi \sqrt{-1}\right) \Phi_{e}\left(z, \bar{z}, \hat{P}_{3}\right)^{-1} \exp \left(\mathbf{U}^{0} x\right)\right. \\
& =\left(\hat{\Psi}\left(\omega_{0}, \omega_{0}, \hat{P}_{3}, \pi \sqrt{-1}\right)^{-1} \hat{\Psi}\left(z, \bar{z}, \hat{P}_{3}, \pi \sqrt{-1}\right) \exp \left(-\sqrt{-1} r_{3} y\right)\right.
\end{aligned}
$$

と表しておく。よって，（5．14）より

$$
\begin{aligned}
s_{0}(x, y)= & \left(\sqrt{\frac{r_{2}}{r_{2}-r_{1}}} e^{\mu_{1} y} \operatorname{dn}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right), \sqrt{\frac{r_{1}}{r_{1}-r_{2}}} e^{\mu_{2} y} \operatorname{cn}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)\right. \\
& \left.\sqrt{\frac{r_{1}}{r_{1}-r_{3}}} e^{\mu_{3} y} \operatorname{sn}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x, p\right)\right) \\
=\left(\sqrt{\frac{r_{2}}{r_{2}-r_{1}}} \hat{\Psi}\left(z, \bar{z}, \hat{P}_{1}\right),\right. & \sqrt{\frac{r_{1}}{r_{1}-r_{2}}} \hat{\Psi}\left(z, \bar{z}, \hat{P}_{2}\right), \\
& \left.\sqrt{\frac{r_{1}}{r_{1}-r_{3}}}\left(\hat{\Psi}\left(\omega_{0}, \omega_{0}, \hat{P}_{3}\right)\right)^{-1} \hat{\Psi}\left(z, \bar{z}, \hat{P}_{3}\right)\right)
\end{aligned}
$$

と表せる。ここで，（10．9）で定義した $\hat{W}_{j},(j=1,2,3)$ を用いて $\hat{\Psi}\left(z, \bar{z}, \hat{P}_{j}\right),(j=$ $1,2,3)$ の係数の部分が表せることを以下示そう。そのために，まず $\hat{\mathcal{C}}$ 上の関数 $C(\hat{P})$ を適当にとり

$$
\begin{cases}\widetilde{\Psi}(z, \bar{z}, \hat{P}) & =C(\hat{P}) \hat{\Psi}(z, \bar{z}, \hat{P}) \\ \text { with } & \overline{C(\sigma \rho(\hat{P}))}=C(\hat{P})\end{cases}
$$

と定める。ただし，

$$
C\left(\hat{P}_{1}\right)=1, \quad C\left(\hat{P}_{2}\right)=1, \quad C\left(\hat{P}_{3}\right)=\left(\hat{\Psi}\left(\omega, \omega_{0}, \hat{P}_{3}\right)\right)^{-1}
$$

を満たすものとする。この $\widetilde{\Psi}$ をもとに連立微分方程式（10．1）の解を $\widetilde{\psi}_{j},(j=1,2,3)$ とし，これを用いて（10．8），（10．9）で定義されるものを，それぞれ，$\widetilde{V}(\hat{P}, \hat{Q}), \widetilde{W}(\hat{P})$ とする。このとき，\widetilde{W} と \hat{W} は

$$
\begin{aligned}
\widetilde{W}(\hat{P})= & \widetilde{\psi}_{1}(\hat{P}) \overline{\tilde{\psi}_{1}(\rho(\hat{P}))}+e^{-u} \widetilde{\psi}_{2} \overline{\psi_{2}(\rho(\hat{P}))}+e^{u} \widetilde{\widetilde{\psi}_{3} \widetilde{\psi_{3}}(\rho(\hat{P}))} \\
= & C(\hat{P}) \psi_{1}(\hat{P}) \overline{C(\rho(\hat{P})) \psi_{1}(\rho(\hat{P}))}+C(\hat{P}) \overline{C(\hat{P})} e^{-u} \psi_{2}(\hat{P}) \overline{\psi_{2}(\rho(\hat{P}))} \\
& +C(\hat{P}) \psi_{3}(\hat{P}) \overline{C(\rho(\hat{P})) \psi_{3}(\rho(\hat{P}))} \\
= & C(\hat{P}) \overline{C(\rho(\hat{P}))} \hat{W}(\hat{P})
\end{aligned}
$$

という関係式を満たしている。従って，特に $\widetilde{W} も z, \bar{z}$ に依存しない。いま，

$$
\left\{\begin{array}{l}
\widetilde{\Psi}\left(z, \bar{z}, \hat{P}_{1}\right)=e^{\sqrt{-1} r_{1} y} \operatorname{dn}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x\right) \tag{11.3}\\
\widetilde{\Psi}\left(z, \bar{z}, \hat{P}_{2}\right)=e^{\sqrt{-1} r_{2} y} \operatorname{cn}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x\right) \\
\widetilde{\Psi}\left(z, \bar{z}, \hat{P}_{3}\right)=e^{\sqrt{-1} r_{3} y} \operatorname{sn}\left(\sqrt{2} \sqrt{\zeta_{3}-\zeta_{1}} x\right)
\end{array}\right.
$$

である。よって，この表示式を逆に利用して $\widetilde{\Psi}\left(\hat{P}_{j}\right)$ の微分を計算できる。

$$
\left\{\begin{aligned}
\left.\partial_{z} \widetilde{\Psi}\left(\hat{P}_{1}\right)\right|_{z=0} & =\frac{r_{1}}{2},\left.\quad \partial_{z} \widetilde{\Psi}\left(\hat{P}_{2}\right)\right|_{z=0}=\frac{r_{2}}{2},\left.\quad \partial_{z} \widetilde{\Psi}\left(\hat{P}_{3}\right)\right|_{z=0}=\frac{\sqrt{2}}{2} \sqrt{\zeta_{3}-\zeta_{1}}, \\
\left.\partial_{\bar{z}} \widetilde{\Psi}\left(\hat{P}_{1}\right)\right|_{z=0} & =-\frac{r_{1}}{2},\left.\quad \partial_{\bar{z}} \widetilde{\Psi}\left(\hat{P}_{2}\right)\right|_{z=0}=-\frac{r_{2}}{2},\left.\quad \partial_{\bar{z}} \widetilde{\Psi}\left(\hat{P}_{3}\right)\right|_{z=0}=\frac{\sqrt{2}}{2} \sqrt{\zeta_{3}-\zeta_{1}}, \\
\left.e^{u}\right|_{z=0} & =\zeta_{3}=-r_{3}^{-1}
\end{aligned}\right.
$$

$\widetilde{\psi}_{2}=\partial_{z} \widetilde{\Psi}, \widetilde{\psi_{3}}=-\sqrt{-1} \nu e^{-u} \partial_{\bar{z}} \widetilde{\Psi}$ であるが，$\hat{P}=\hat{P}_{1}, \hat{P}_{2}, \hat{P}_{3}$ となるのは $\lambda=\sqrt{-1}$ のと きであり，$\nu=(\sqrt{-1})^{3}=-\sqrt{-1}$ の場合である。よって，$\widetilde{\psi}_{3}\left(\hat{P}_{j}\right)=-e^{-u} \partial_{\bar{z}} \widetilde{\Psi}\left(\hat{P}_{j}\right),(j=$ $1,2,3)$ となっていることに注意しよう。これらと，$r_{1} r_{2} r_{3}=2$ および $C_{j}=-r_{j}^{-1},(j=$ $1,2,3)$ に注意して

$$
\left\{\begin{array}{l}
\widetilde{W}\left(\hat{P}_{1}\right)=1-\frac{1}{2} r_{1}^{2} r_{3}=1-\frac{r_{1}}{r_{2}}=\frac{r_{2}-r_{1}}{r_{2}} \tag{11.4}\\
\widetilde{W}\left(\hat{P}_{2}\right)=1-\frac{1}{2} r_{2}^{2} r_{3}=1-\frac{r_{2}}{r_{1}}=\frac{r_{1}-r_{2}}{r_{1}} \\
\widetilde{W}\left(\hat{P}_{3}\right)=-r_{3}\left(\zeta_{3}-\zeta_{1}\right)=\frac{r_{1}-r_{3}}{r_{1}}
\end{array}\right.
$$

を得る。（11．3）と（11．4）よりつぎを得る：

$$
s_{0}(x, y)=\left(\frac{\widetilde{\Psi}\left(z, \bar{z}, \hat{P}_{1}, \pi \sqrt{-1}\right)}{\sqrt{\widetilde{W}\left(\hat{P}_{1}\right)}}, \frac{\widetilde{\Psi}\left(z, \bar{z}, \hat{P}_{2}, \pi \sqrt{-1}\right)}{\sqrt{\widetilde{W}\left(\hat{P}_{2}\right)}}, \frac{\widetilde{\Psi}\left(z, \bar{z}, \hat{P}_{3}, \pi \sqrt{-1}\right)}{\sqrt{\widetilde{W}\left(\hat{P}_{3}\right)}}\right)
$$

ところが，

$$
\frac{\widetilde{\Psi}\left(z, \bar{z}, \hat{P}_{j}, \pi \sqrt{-1}\right)}{\sqrt{\widetilde{W}\left(\hat{P}_{j}\right)}}=\frac{\hat{\Psi}\left(z, \bar{z}, \hat{P}_{j}, \pi \sqrt{-1}\right)}{\sqrt{\hat{W}\left(\hat{P}_{j}\right)}} \times \frac{C\left(\hat{P}_{j}\right)}{\left|C\left(\hat{P}_{j}\right)\right|}
$$

がわかる。しかも，$C\left(\hat{P}_{1}\right)=C\left(\hat{P}_{2}\right)=1$ であり，$C\left(\hat{P}_{3}\right)= \pm \sqrt{-1}\left|C\left(\hat{P}_{3}\right)\right|$ もわかる。従って，$U(3)$ の作用を modulo として

$$
s_{0}(x, y) \equiv\left(\frac{\hat{\Psi}\left(z, \bar{z}, \hat{P}_{1}, \pi \sqrt{-1}\right)}{\sqrt{\hat{W}\left(\hat{P}_{1}\right)}}, \frac{\hat{\Psi}\left(z, \bar{z}, \hat{P}_{2}, \pi \sqrt{-1}\right)}{\sqrt{\hat{W}\left(\hat{P}_{2}\right)}}, \frac{\hat{\Psi}\left(z, \bar{z}, \hat{P}_{3}, \pi \sqrt{-1}\right)}{\sqrt{\hat{W}\left(\hat{P}_{3}\right)}}\right)
$$

が得られる。

12ξ の固有ベクトルと固有値

（10．1）の解から F を求めると

$$
\begin{aligned}
F & =\widetilde{F} P^{-1}=\left(\begin{array}{lll}
\hat{\Psi} & \partial_{z} \hat{\Psi} & -\sqrt{-1} \lambda^{3} e^{-u} \partial_{\bar{z}} \hat{\Psi}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \sqrt{-1} \lambda^{-1} e^{-\frac{u}{2}} & 0 \\
0 & 0 & \lambda^{-2} e^{\frac{u}{2}}
\end{array}\right) \\
& =\left(\begin{array}{lll}
\hat{\Psi} & \sqrt{-1} \lambda^{-1} e^{-\frac{u}{2}} \partial_{z} \hat{\Psi} & -\sqrt{-1} \lambda e^{-\frac{u}{2}} \partial_{\bar{z}} \hat{\Psi}
\end{array}\right)
\end{aligned}
$$

より，

$$
\begin{equation*}
F_{1}=\hat{\Psi}, \quad F_{2}=\sqrt{-1} \lambda^{-1} e^{-\frac{u}{2}} \partial_{z} \hat{\Psi}, \quad F_{3}=-\sqrt{-1} \lambda e^{-\frac{u}{2}} \partial_{\bar{z}} \hat{\Psi} \tag{12.1}
\end{equation*}
$$

となっている。実際，これを微分してみると， 55 で与えた $U(\lambda), V(\lambda)$ に対して $d F=F(U(\lambda) d z+V(\lambda) d \bar{z})$ が成り立っていることを確かめることができる。一方， Spectral curve を定義するときに用いた $\xi(0)=\left.\lambda U\right|_{z=0}+\left.\lambda^{-1} V\right|_{z=0}$ は

$$
\xi(0)=\left(\begin{array}{ccc}
0 & -\lambda^{-1} \sqrt{-r_{3}^{-1}} & -\lambda \sqrt{-r_{3}^{-1}} \\
\lambda \sqrt{-r_{3}^{-1}} & 0 & -\lambda^{-1} r_{3} \\
\lambda^{-1} \sqrt{-r_{3}^{-1}} & \lambda r_{3} & 0
\end{array}\right), \quad\left(\lambda \in S^{1}\right)
$$

となる。 $\vec{H} \xi(0)=\mu \vec{H}$ を満たす固有ベクトルを求めると，$\hat{r}_{3}=\sqrt{-r_{3}}$ とおくとき，

$$
\begin{equation*}
\vec{H}=\left(\hat{r}_{3} \lambda\left(\lambda^{3} \hat{r}_{3}^{2}-\mu\right) \quad \hat{r}_{3}^{4} \lambda^{3} \mu+1 \quad-\lambda^{2}\left(\hat{r}_{3}^{2} \mu^{2}+1\right)\right) \tag{12.2}
\end{equation*}
$$

となることがわかる。ジェネリックな λ に対して，μ の値は 3 つあるから，それら を $\widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \widetilde{\mu}_{3}$ とする。 $\lambda=\sqrt{-1}$ のとき $\widetilde{\mu}_{j}=\mu_{j}=\sqrt{-1} r_{j},(j=1,2,3)$ である。 $\widetilde{P}_{j}=\left(\widetilde{\mu}_{j}, \lambda\right),(j=1,2,3)$ とし

$$
\vec{H}_{j}=\left.\vec{H}\right|_{\mu=\widetilde{\mu}_{j}}, \quad \widetilde{\varphi}_{j}=F\left(z, \bar{z}, \widetilde{P}_{j}\right) \quad(j=1,2,3)
$$

とおく。このとき，$\vec{H}_{j} \xi(0)=\widetilde{\mu}_{j} \vec{H}_{j},(j=1,2,3)$ を満たしている。 $\Phi={ }^{t}\left(\begin{array}{lll} & \widetilde{\varphi}_{1} & \widetilde{\varphi}_{2} \\ \widetilde{\varphi}_{3}\end{array}\right)$ により 3×3－行列を定めれば，

$$
d \Phi=\Phi(U(\lambda) d z+V(\lambda) d \bar{z})
$$

を満たす。さらに，$\xi(z, \bar{z}, \lambda)=\operatorname{Ad}\left(\Phi^{-1}\right) \xi(0)$ は

$$
d \xi=\left[\xi, \Phi^{-1} d \Phi\right]=[\xi, U(\lambda) d z+V(\lambda) d \bar{z}]
$$

を満たすことがわかる。ここで，$\hat{F}_{j}=\vec{H}_{j} \Phi,(j=1,2,3)$ により 3 つの行ベクトル を定義すると，つぎが成り立つ：

$$
\left\{\begin{array}{l}
\partial_{z} \hat{F}_{j}=\vec{H}_{j} \Phi U(\lambda)=\hat{F}_{j} U(\lambda), \\
\partial_{\bar{z}} \hat{F}_{j}=\vec{H}_{j} \Phi V(\lambda)=\hat{F}_{j} V(\lambda), \quad(j=1,2,3)
\end{array}\right.
$$

これはつぎと同値である：

$$
d \hat{F}_{j}=\hat{F}_{j}(U(\lambda) d z+V(\lambda) d \bar{z}), \quad(j=1,2,3)
$$

このとき

$$
\hat{F}_{j} \xi=\vec{H}_{j} \Phi \xi=\vec{H}_{j} \xi(0) \Phi=\widetilde{\mu}_{j} \vec{H}_{j} \Phi=\widetilde{\mu}_{j} \hat{F}_{j}, \quad(j=1,2,3)
$$

より $\hat{F}_{j} \xi=\widetilde{\mu}_{j} \hat{F}_{j},(j=1,2,3)$ である。すなわち，\hat{F}_{j} は ξ の $\widetilde{\mu}_{j}$－固有ベクトルである。 いま，ξ は正規行列 $\left(\xi \xi^{*}=\xi^{*} \xi\right)$ なので，異なる固有値に対応する固有ベクトルはエ ルミート内積に関して互いに直交している。すなわち，\hat{F}_{i} と $\hat{F}_{j},(j \neq i)$ はエルミー ト内積に関して直交している。一方で，$\xi(0)$ も正規行列なので \vec{H}_{i} と $\vec{H}_{j},(j \neq i)$ もエルミート内積に関して直交している。固定した入に対して，これらは定数ベク トルであるから，定数 $c_{1}, c_{2}, c_{3} \in \mathbf{C}$ を選んで

$$
\mathcal{V}:=\left(\begin{array}{l}
c_{1} \vec{H}_{1} \\
c_{2} \vec{H}_{2} \\
c_{3} \vec{H}_{3}
\end{array}\right) \in U(3)
$$

とできる。従って，最初から $\mathcal{V} \in U(3)$ となるように $\vec{H}_{j},(j=1,2,3)$ を選んでお く。このとき

$$
\left(\begin{array}{l}
\widetilde{\varphi}_{1} \\
\widetilde{\varphi}_{2} \\
\widetilde{\varphi}_{3}
\end{array}\right)=\Phi=\mathcal{V}^{-1}\left(\begin{array}{l}
\hat{F}_{1} \\
\hat{F}_{2} \\
\hat{F}_{3}
\end{array}\right)
$$

であるから，Φ の各行ベクトル $\widetilde{\varphi}_{i}$ と $\widetilde{\varphi}_{j},(j=1,2,3)$ はエルミート内積に関して直交していることがわかる。まとめると，つぎがわかった：
Proposition 12．3．$\hat{\mathcal{C}} \ni \hat{P}, \hat{Q}$ が，$\hat{P} \neq \hat{Q}$ かつ $\lambda(\hat{P})=\lambda(\hat{Q})$ を満たすならば $\hat{V}(\hat{P}, \hat{Q})=0$ である。

引用文献

［1］E．D．Belokolos，A．I．Bobenko，V．Z．Enol＇skiI，A．R．Its and V．B．Matveev， Algebro Geometric Approach to Nonlinear Integrable Equations，Springer series in Nonlinear Dynamics，（1994），Springer－Verlag．
［2］F．E．Burstall，Harmonic tori in spheres and complex projective spaces，J．Reine Angew． Math． 469 （1995），149－177．
［3］B．Y．Chen and K．Ogiue，On totally real submanifolds，Trans．Amer．Math．Soc． 193 （1974），257－266．
［4］I．Castro and F．Urbano，New examples of minimal Lagrangian tori in the complex projective plane，Manuscripta Math． 85 （1994），265－281．
［5］I．Yu．Cherdantsev and R．A．Sharipov，Finite－gap solutions of the Bullough－Dodd－ Zhiber－Shabat equation，Teor i Mathema．Fizika 82（1990），155－160．English translation： Theoretand MathPhys． 82 （1990），no．1，108－111．
［6］N．Ejıri，A generalization of minimal cones，Trans．Amer．Math．Soc． 276 （1983），347－360．
［7］J．D．FAy，Theta functions on Riemann surfaces，LectNotes in Math 352（1973），Springer－ Verlag．
［8］H．Hashimoto，T．Taniguchi and S．Udagawa，Constructions of almost complex 2－tori of type（III）in the nearly Kähler 6－sphere，Differential Geom．and its Appl． 21 （2004）， 127－145．
［9］J．Inoguchi，T．Taniguchi and S．Udagawa，Finite gap solutions for horizontal minimal surfaces of finite type in 5－sphere，Journal of Integrable Systems 1（2016），1－34．
［10］H．Ma and Y．Ma，Totally real minimal tori in CP P^{2} ，Math．Z． 249 （2005），241－267．
［11］R．H．McKean and V．Moll，Elliptic curves，Cambridge University Press，Cambridge， 1997.
［12］Y．Ohnita and S．Udagawa，Harmonic maps of finite type into generalized flag manifolds， and twistor fibrations，Integrable Systems in Differential Geometry（Proceedings of the 9th MSJ－IRI，Tokyo，2000），Contemporary Math． 308 （2002），245－270，American Math．Soc． Providence．
［13］R．A．Sharipov，Minimal tori in the five dimensional sphere in \mathbf{C}^{3} ，Theor．Math．Phys． $\mathbf{8 7}$ （1991），363－369．
［14］田中俊一，伊達悦郎，「KDV 方程式－非線形数理物理入門」，紀伊國屋，1979年1月．
［15］戸田盛和，「楕円関数入門」，日本評論社，2001年9月．
［16］G．Tzitzèıca，Sur une nouvelle classe de surfaces，C．R．Seances Acad．Sci．Paris， 144 （1907），1257－1259．
［17］A．Hurwitz，R．Courant（著），足立恒雄，小松啓一（翻訳），「楕円関数論」，シュプリンガー数学クラシックス，シュプリンガー・ジャパン，2007年2月．

Nihon University，School of Medicine，Division of Mathematics，Itabashi，Tokyo， 173－0032，Japan

E－mail address：udagawa．seiichi＠nihon－u．ac．jp

MI レクチャーノートシリーズ刊行にあたり

本レクチャーノートシリーズは，文部科学省 21 世紀COE プログラム「機能数理学の構築 と展開」（H．15－19年度）において作成したCOE Lecture Notes の続刊であり，文部科学省大学院教育改革支援プログラム「産業界が求める数学博士と新修士養成」（H19－21年度）お よび，同グローバルCOE プログラム「マス・フォア・インダストリ教育研究拠点」（H．20－ 24年度）において行われた講義の講義録として出版されてきた。平成23年4月のマス・フ オア・インダストリ研究所（TMI）設立と平成 25 年 4 月のIVI の文部科学省共同利用•共同研究拠点として「産業数学の先進的•基礎的共同研究拠点」の認定を受け，今後，レクチャ ーノートは，マス・フォア・インダストリに関わる国内外の研究者による講義の講義録，会議録等として出版し，マス・フォア・インダストリの本格的な展開に資するものとする。

平成 26 年 10 月
マス・フォア・インダストリ研究所
所長 福本康秀

Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論

－Tzitzéica 方程式の楕円関数解を出発点としてー

```
発 行 2017年8月4日
著 者 宇田川誠一
発 行 九州大学マス•フォア•インダストリ研究所
九州大学大学院数理学府
〒819-0395福岡市西区元岡744
九州大学数理•IMI 事務室
TEL 092-802-4402 FAX 092-802-4405
URL. http://www. imi.kyushu-u. ac. jp/
```


シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note	Mitsuhiro T．NAKAO Kazuhiro YOKOYAMA	Computer Assisted Proofs－Numeric and Symbolic Approaches－ 199pages	August 22， 2006
COE Lecture Note	M．J．Shai HARAN	Arithmetical Investigations－Representation theory，Orthogonal polynomials and Quantum interpolations－174pages	August 22， 2006
COE Lecture Note Vol． 3	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2005 155pages	October 13， 2006
COE Lecture Note Vol． 4	宮田 健治	辺要素有限要素法による磁界解析－機能数理学特别講義 21 pages	May 15， 2007
COE Lecture Note Vol． 5	Francois APERY	Univariate Elimination Subresultants－Bezout formula，Laurent series and vanishing conditions－89pages	September 25， 2007
COE Lecture Note Vol． 6	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2006 209pages	October 12， 2007
COE Lecture Note Vol． 7	若山 正人 中尾 充宏	九州大学産業技術数理研究センターキックオフミーティング 138pages	October 15， 2007
COE Lecture Note Vol． 8	Alberto PARMEGGIANI	Introduction to the Spectral Theory of Non－Commutative Harmonic Oscillators 233pages	January 31， 2008
COE Lecture Note Vol． 9	Michael I．TRIBELSKY	Introduction to Mathematical modeling 23pages	February 15， 2008
COE Lecture Note Vol． 10	Jacques FARAUT	Infinite Dimensional Spherical Analysis 74pages	March 14， 2008
COE Lecture Note Vol． 11	Gerrit van DIJK	Gelfand Pairs And Beyond 60pages	August 25， 2008
COE Lecture Note Vol． 12	Faculty of Mathematics， Kyushu University	Consortium＂MATH for INDUSTRY＂First Forum 87pages	September 16， 2008
COE Lecture Note Vol． 13	九州大学大学院数理学研究院	プロシーディング「損保数理に現れる確率モデル 一日新火災•九州大学共同研究2008年11月研究会—82pages	February 6， 2009

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 14	Michal Beneš， Tohru Tsujikawa Shigetoshi Yazaki	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2008 77pages	February 12， 2009
COE Lecture Note Vol． 15	Faculty of Mathematics， Kyushu University	International Workshop on Verified Computations and Related Topics 129pages	February 23， 2009
COE Lecture Note Vol． 16	Alexander Samokhin	Volume Integral Equation Method in Problems of Mathematical Physics 50pages	February 24， 2009
COE Lecture Note Vol． 17	$\begin{array}{lr}\text { 矢鴆 } & \text { 徹 } \\ \text { 及川 } & \text { 正行 } \\ \text { 梶原 } & \text { 健司 } \\ \text { 辻 } & \text { 英 } \\ \text { 福本 } & \text { 康秀 }\end{array}$	非線形波動の数理と物理 66pages	February 27， 2009
COE Lecture Note Vol． 18	Tim Hoffmann	Discrete Differential Geometry of Curves and Surfaces 75pages	April 21， 2009
COE Lecture Note Vol． 19	Ichiro Suzuki	The Pattern Formation Problem for Autonomous Mobile Robots －Special Lecture in Functional Mathematics－23pages	April 30， 2009
COE Lecture Note Vol． 20	Yasuhide Fukumoto Yasunori Maekawa	Math－for－Industry Tutorial：Spectral theories of non－Hermitian operators and their application 184pages	June 19， 2009
COE Lecture Note Vol． 21	Faculty of Mathematics， Kyushu University	Forum＂Math－for－Industry＂ Casimir Force，Casimir Operators and the Riemann Hypothesis 95pages	November 9， 2009
COE Lecture Note Vol． 22	Masakazu Suzuki Hoon Hong Hirokazu Anai Chee Yap Yousuke Sato Hiroshi Yoshida	The Joint Conference of ASCM 2009 and MACIS 2009： Asian Symposium on Computer Mathematics Mathematical Aspects of Computer and Information Sciences 436pages	December 14， 2009
COE Lecture Note Vol． 23	荒川 恒男 金子 昌信	多重ゼータ値入門 111pages	February 15， 2010
COE Lecture Note Vol． 24	Fulton B．Gonzalez	Notes on Integral Geometry and Harmonic Analysis 125pages	March 12， 2010
COE Lecture Note Vol． 25	Wayne Rossman	Discrete Constant Mean Curvature Surfaces via Conserved Quantities 130pages	May 31， 2010
COE Lecture Note Vol． 26	Mihai Ciucu	Perfect Matchings and Applications 66pages	July 2， 2010

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 27	九州大学大学院 数理学研究院	Forum＂Math－for－Industry＂and Study Group Workshop Information security，visualization，and inverse problems，on the basis of optimization techniques 100pages	October 21， 2010
COE Lecture Note Vol． 28	ANDREAS LANGER	MODULAR FORMS，ELLIPTIC AND MODULAR CURVES LECTURES AT KYUSHU UNIVERSITY 2010 62pages	November 26， 2010
COE Lecture Note Vol． 29	木田 雅成 原田 昌晃 横山 俊一	Magma で広がる数学の世界 157pages	December 27， 2010
COE Lecture Note Vol． 30	原 隆 松井 卓 廣島 文生	Mathematical Quantum Field Theory and Renormalization Theory 201pages	January 31， 2011
COE Lecture Note Vol． 31	若山 正人福本 康秀高木 剛山本 昌宏	Study Group Workshop 2010 Lecture \＆Report 128pages	February 8， 2011
COE Lecture Note Vol． 32	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2011 ＂TSUNAMI－Mathematical Modelling＂ Using Mathematics for Natural Disaster Prediction，Recovery and Provision for the Future 90pages	September 30， 2011
COE Lecture Note Vol． 33	若山 正人福本 康秀高木 剛山本 昌妄	Study Group Workshop 2011 Lecture \＆Report 140pages	October 27， 2011
COE Lecture Note Vol． 34	Adrian Muntean Vladimír Chalupecký	Homogenization Method and Multiscale Modeling 72pages	October 28， 2011
COE Lecture Note Vol． 35	$\begin{array}{ll} \text { 横山 } & \text { 俊一 } \\ \text { 夫 } & \text { 紀恵 } \\ \text { 林 } & \text { 卓也 } \end{array}$	計算機代数システムO進展 210pages	November 30， 2011
COE Lecture Note Vol． 36	Michal Beneš Masato Kimura Shigetoshi Yazaki	Proceedings of Czech－Japanese Seminar in Applied Mathematics 2010 107pages	January 27， 2012
COE Lecture Note Vol． 37	若山 正人高木 剛 Kirill Morozov平岡 裕章木村 正人白井 朋之西井 龍映栄 伸一郎穴井 宏和福本 康秀	平成 23 年度 数学•数理科学と諸科学•産業との連携研究ワータ ショップ 拡がっていく数学～期待される＂見えない力＂～ 154pages	February 20， 2012

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 38	Fumio Hiroshima Itaru Sasaki Herbert Spohn Akito Suzuki	Enhanced Binding in Quantum Field Theory 204pages	March 12， 2012
COE Lecture Note Vol． 39	Institute of Mathematics for Industry， Kyushu University	Multiscale Mathematics：Hierarchy of collective phenomena and interrelations between hierarchical structures 180pages	March 13， 2012
COE Lecture Note Vol． 40	井ノ口順一太田 泰広筧 三郎梶原 健司松浦 望	離散可積分系•離散微分幾何チュートリアル2012 152pages	March 15， 2012
COE Lecture Note Vol． 41	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2012 ＂Information Recovery and Discovery＂91pages	October 22， 2012
COE Lecture Note Vol． 42	$\begin{array}{ll} \text { 佐伯 } & \text { 修 } \\ \text { 若山 } & \text { 正人 } \\ \text { 山本 } & \text { 昌宏 } \end{array}$	Study Group Workshop 2012 Abstract，Lecture \＆Report 178pages	November 19， 2012
COE Lecture Note Vol． 43	Institute of Mathematics for Industry， Kyushu University	Combinatorics and Numerical Analysis Joint Workshop 103pages	December 27， 2012
COE Lecture Note Vol． 44	萩原 学	モダン符号理論からストモダン符号理論への展望 107pages	January 30， 2013
COE Lecture Note Vol． 45	金山 寛	Joint Research Workshop of Institute of Mathematics for Industry （IMI），Kyushu University ＂Propagation of Ultra－large－scale Computation by the Domain－ decomposition－method for Industrial Problems（PUCDIP 2012）＂ 121pages	February 19， 2013
COE Lecture Note Vol． 46	西井 龍映栄 伸一郎岡田 勘三落合 啓之小磯 深幸斎藤 新悟白升 朋之	科学•技術の研究課題への数学アプローチ一数学モデリングの基脴と展開— 325pages	February 28， 2013
COE Lecture Note Vol． 47	SOO TECK LEE	BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE COMPLEX CLASSICAL GROUPS 40pages	March 8， 2013
COE Lecture Note Vol． 48	溝口 佳寛蓩 隼人平坂 貢谷口 哲至島袋修	博多ワークショツプ「組み合わせとその心用」124pages	March 28， 2013

シリーズ既刊

Issue	Author／Editor	Title	Published
COE Lecture Note Vol． 49	照井 章 小原 功任 濱田 龍義 横山 俊－ 穴井 宏和 横田 博史	マス・フォク・インダストリ研究所 共同利用研究集会II数式処理研究と産学連携の新たな発展 137pages	August 9， 2013
MI Lecture Note Vol． 50	Ken Anjyo Hiroyuki Ochiai Yoshinori Dobashi Yoshihiro Mizoguchi Shizuo Kaji	Symposium MEIS2013： Mathematical Progress in Expressive Image Synthesis 154pages	October 21， 2013
MI Lecture Note Vol． 51	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂ 2013 ＂The Impact of Applications on Mathematics＂97pages	October 30， 2013
MI Lecture Note Vol． 52	$\begin{array}{lr}\text { 佐伯 } & \text { 修 } \\ \text { 岡田 } & \text { 勘三 } \\ \text { 宸木 } & \text { 剛 } \\ \text { 若山 } & \text { 正人 } \\ \text { 山本 } & \text { 昌宏 }\end{array}$	Study Group Workshop 2013 Abstract，Lecture \＆Report 142pages	November 15， 2013
MI Lecture Note Vol． 53	四方 義啓 櫻井 幸一 安田 貴德 Xavier Dahan	平成 25 年度 九州大学マス・フォフ・インダストリ研究所共同利用研究集会 安全•安心社会基盤構矮のための代数構造 ～サイバー社会の信頼性確保のための数理学～158pages	December 26， 2013
MI Lecture Note Vol． 54	Takashi Takiguchi Hiroshi Fujiwara	Inverse problems for practice，the present and the future 93pages	January 30， 2014
MI Lecture Note Vol． 55	栄 伸一郎 溝口 佳寛 胴 隼人 渋田 敬史	Study Group Workshop 2013 数学協働プログラム Lecture \＆Report 98pages	February 10， 2014
MI Lecture Note Vol． 56	Yoshihiro Mizoguchi Hayato Waki Takafumi Shibuta Tetsuji Taniguchi Osamu Shimabukuro Makoto Tagami Hirotake Kurihara Shuya Chiba	Hakata Workshop 2014 ～Discrete Mathematics and its Applications～141pages	March 28， 2014
MI Lecture Note Vol． 57	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂2014： ＂Applications＋Practical Conceptualization + Mathematics $=$ fruitful Innovation＂93pages	October 23， 2014
MI Lecture Note Vol． 58	安生健 落合啓之	Symposium MEIS2014： Mathematical Progress in Expressive Image Synthesis 135pages	November 12， 2014

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol． 59	西井 龍映 岡田 勘三 梶原 健司 高木 剛 若山 正人 脇 隼人 山本 昌宏	Study Group Workshop 2014 数学協働プログラム Abstract，Lecture \＆Report 196pages	November 14， 2014
MI Lecture Note Vol． 60	西浦 博	平成 26 年度九州大学 IMI 共同利用研究•研究集会（I）感染症数理モデルの実用化と産業及び政策での活用のための新 たな展開 120pages	November 28， 2014
MI Lecture Note Vol． 61	溝口 佳寛 Jacques Garrigue稀原 学 Reynald Affeldt	研究集会 高信頼な理論と実装のための定理証明うるよび定理証明器 Theorem proving and provers for reliable theory and implementations （TPP2014）138pages	February 26， 2015
MI Lecture Note Vol． 62	白井 朋之	Workshop on＂β－transformation and related topics＂59pages	March 10， 2015
MI Lecture Note Vol． 63	白井 朋之	Workshop on＂Probabilistic models with determinantal structure＂ 107pages	August 20， 2015
MI Lecture Note Vol． 64	落合 啓之 土橋 宜典	Symposium MEIS2015： Mathematical Progress in Expressive Image Synthesis 124pages	September 18， 2015
MI Lecture Note Vol． 65	Institute of Mathematics for Industry，Kyushu University	Forum＂Math－for－Industry＂ 2015 ＂The Role and Importance of Mathematics in Innovation＂74pages	October 23， 2015
MI Lecture Note Vol． 66	岡田 勘三 藤澤 克己 白井 朋之 若山 正人 脇 隼人 Philip Broadbridge 山本 昌宏	Study Group Workshop 2015 Abstract，Lecture \＆Report 156pages	November 5， 2015
MI Lecture Note Vol． 67	Institute of Mathematics for Industry，Kyushu University	IMI－La Trobe Joint Conference ＂Mathematics for Materials Science and Processing＂ 66pages	February 5， 2016
MI Lecture Note Vol． 68	古庄 英和 小谷 久寿 新甫 洋史	結び日と Grothendieck－Teichmüller 群 116pages	February 22， 2016
MI Lecture Note Vol． 69	土橋 宜典鍛治 静雄	Symposium MEIS2016： Mathematical Progress in Expressive Image Synthesis 82pages	October 24， 2016
MI Lecture Note Vol． 70	Institute of Mathematics for Industry， Kyushu University	Forum＂Math－for－Industry＂ 2016 ＂Agriculture as a metaphor for creativity in all human endeavors＂ 98pages	November 2， 2016
MI Lecture Note Vol． 71	小磯 深幸 二宮 嘉行 山本 昌宏	Study Group Workshop 2016 Abstract，Lecture \＆Report 143pages	November 21， 2016

シリーズ既刊

Issue	Author／Editor	Title	Published
MI Lecture Note Vol． 72	新井 朝雄 小鴆 泉 廣島 文生	Mathematical quantum field theory and related topics 133pages	January 27， 2017
MI Lecture Note Vol． 73	穴田 啓昆 Kirill Morozov 須賀 祐治 奥村 伸也 櫻井 幸一	Secret Sharing for Dependability，Usability and Security of Network Storage and Its Mathematical Modeling 211pages	March 15， 2017
MI Lecture Note Vol． 74	QUISPEL，G．Reinout W． BADER，Philipp MCLAREN，David I． TAGAMI，Daisuke	Geometric Numerical Integration and its Applications 71 pages	March 31， 2017
MI Lecture Note Vol． 75	手塚 集 田上 大助 山本 昌宏	Study Group Workshop 2017 Abstract，Lecture \＆Report 118pages	October 20， 2017

