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Preface	

Welcome	to	the	“Geometric	Numerical	Integration	and	its	Applications”	(GNI&A)	
international	 conference	 held	 at	 La	 Trobe	 University,	 Melbourne,	 Australia,	
December	5-7,	2016.	

The	 aim	 of	 this	 international	 conference,	 jointly	 organised	 by	 the	 Institute	 of	
Mathematics	for	Industry	(IMI),	Kyushu	University,	and	La	Trobe	University,	was	
to	 foster	 interaction	 between	 new	 and	 established	 numerical	 analysts	 from	
across	 the	globe	 interested	 in	Geometric	 Integration	and	showcasing	 the	 latest	
developments	in	theory	and	applications.	

Since	its	conception	in	the	early	nineties,	geometric	integration	has	caused	a	shift	
of	 paradigms	 in	 the	 numerical	 solution	 of	 differential	 equations.	 The	 previous	
efforts	of	finding	all-purpose	integrators	were	redirected	to	in-depth	analysis	of	
the	 problems	 at	 hand	 and	 their	 classification	 such	 that	 specifically	 tailored	
schemes	 could	 take	 advantage	 of	 the	 underlying	 structural	 properties	 and	
outperform	all-purpose	integrators.	Over	the	last	decades,	the	field	has	evolved	
and	 influenced	 neighbouring	 areas	 and	 applications.	 This	 conference	 aims	 to	
provide	 insight	 into	 cutting-edge	 research	 and	 exhibit	 applications	 of	 the	
developed	methods.	

The	present	 volume	 is	 the	proceedings	of	 	GNI&A.	 Several	 invited	 talks	 attract	
and	 inspire	 the	 attendees	 working	 with	 numerical	 techniques	 to	 solve	
mathematical	and	industrial	problems.	
The	list	of	invited	speakers	collects	a	large	proportion	of	the	experts	in	the	field	
and	 includes	 John	 C.	 Butcher	 (U	 Auckland),	 Elena	 Celledoni	 (NTNU),	 Jason	 E.	
Frank	 (Utrecht	U),	 Volker	Grimm	 (KIT),	 Arieh	 Iserles	 (U	 Cambridge),	 Robert	 I.	
McLachlan	 (Massey	 U),	 Taketomo	Mitsui	 (Nagoya	 U), Yuto Miyatake (Nagoya 
U),	 Hans	 Z.	Munthe-Kaas	 (U	Bergen)	and	Brynjulf	Owren	(NTNU).	
The	 topics	 include	 symplectic	 integrators,	 methods	 on	 Lie	 groups,	 structure	
preservation	 for	 PDEs,	 discrete	 gradients	 in	 image	 processing	 and	 related	
results.	

We	are	very	grateful	to	the	Institute	of	Mathematics	for	Industry	(IMI),	Kyushu	
University,	 for	 sponsoring	 this	 conference.	We	 appreciate	 the	 hard	work	 of	 all	
people	 involved	 in	 the	 realisation	 of	 this	 conference	 and	 wish	 to	 thank	 all	
contributing	authors	and	participants	for	their	involvement.	We	hope	that	all	the	
participants	enjoyed	this	exciting	event	in	Melbourne.	

The	organisers	

G.	R.	W.	Quispel	
P.	Bader	
D.	I.	McLaren	
D.	Tagami	
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MONDAY 5th TUESDAY 6th WEDNESDAY 7th 

9:30 - 10:00 REGISTRATION arrive arrive 
10:00 -10:30 Iserles Frank Owren 
10:30 - 11:00 Matsuo Yaguchi Mitsui 
11:00 - 11:30 morning tea/coffee morning tea/coffee morning tea/coffee 
11:30 - 12:00 McLachlan Minesaki Munthe-Kaas 
12:00 - 12:30 Itoh Benning Sasaki 
12:30 - 13:30 lunch 12:45 DEPART by bus lunch 
12:30 - 13:30   (BYO packed lunch)   
13:30 - 14:00 Butcher 13:45 (approx) ARRIVE Celledoni 
14:00 - 14:30 Miyatake   Ishikawa 
14:30 - 15:00 afternoon tea/coffee walk afternoon tea/coffee 
15:00 - 15:30 Furihata   Grimm 
15:30 - 16:00 Tagami   Bader 
16:00 - 16:30 day end wine tasting day end 
16:30 - 17:00     
17:00 - 17:30     
17:30 - 18:00     
18:00 - 18:30  dinner  
18:30 - 19:00     
19:00 - 19:30     
19:30 - 20:00     
20:00 - 20:30  20:00 DEPART by bus  
20:30 - 21:00     
21:00 -  21:30  21:00 (approx) ARRIVE  
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Discretization of the Schwarzian derivative
and its application

Toshiaki Itoh

Doshisha University, 3-1, Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, JAPAN

toito@mail.doshisha.ac.jp

1 INTRODUCTION

We consider numerical treatment of Schwarzian derivatives. It is well known that Schwarzian
derivative plays important role in many application, for example, 2nd order ODE, con-
formal mapping and geometry [1, 2]. By the way, it is known that Cross ratio is counter
part of Schwarzian derivative in the difference representation [3, 4, 5]. Therefore we can
consider the application of Cross-ratio instead of the Schwarzian derivative. Main result
is possibility of construction of fundamental region of Fuchsian (special) function that
are defined by triangles with arcs in complex plane. Then simultaneous equation by two
Mëbius transformation give conformal mapping of that region with singularity. From
geometrical point of view, we can construct mapping for curve with constant curvature
with singular point in complex plane. By this approach, we can find discrete integrable
system respect to special functions also.

2 Schwarzian derivative in 2nd order ODE and Cross-

ratio as the counter part

We shortly review Schwarzian derivative [1, 3] relate to this study. Let’s consider following
2nd order ODE,

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, (1)

here y′ and y” are the first and second derivatives of y(x) by x. By variable transformation,

y = exp

(
−1
2

∫
p(x)dx

)
u(x),

we get another form of (1),

u′′(x) =
1

2

[
p′(x) +

1

2
p2(x)− 2q(x)

]
u(x) = −1

2
{ζ, x}u(x), (2)

{ζ, x} = 2q(x)− p′(x)− 1

2
p2(x). (3)
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here {ζ, x} is called Schwarzian derivative of (1). It is also defined with two fundamental
solutions y1(x) and y2(x) of (2) and ζ = y1/y2.

{ζ, x} = 2ζ
′ζ ′′′ − 3 (ζ ′′)2

2 (ζ ′)2
(4)

The remarkable property of Schwarzian derivative is invariant of the Mëbius (Γ) trans-
formation, ξ = Γ(ζ) = (aζ + b)/(cζ + d), ad− bc ̸= 0. That is {ζ, x} = {ξ, x}. Therefore,
if u(x) in (2) is automorphic function (Fuchsian), then (2) becomes invariant of Mëbius
transformation.
Next, we consider linear 2nd order finite difference equation which corresponds to (1),

P (k)y(k+1) +Q(k)y(k) +R(k)y(k−1) = 0, (5)

here integer k is abbreviation for x(k) = x0 + k∆ and upper suffix (k) of x(k) and y(k) =
y(x(k)) means step number of variable x and y like usual numerical treatment. We take
x0 is an initial point of x and ∆ is finite difference of x. For simplicity, we treat ∆ as
constant. Using variable ζ(k) = y

(k)
2 /y

(k)
1 in discrete case we get Cross-ratio from the

Mëbius transformation [4],

(
ξ(k+1) − ξ(k−1)

) (
ξ(k+2) − ξ(k)

)
(ξ(k) − ξ(k−1))(ξ(k+2) − ξ(k+1))

=
Q(k + 1)Q(k)

R(k + 1)P (k)
. (6)

The left hand side of (6) is Cross ratio and its right hands is function by coefficient function
of (5). Equation (6) resembles to (3) remarkably. Therefore, we can regard Cross-ratio is
the counterpart of Schwarzian derivative. There were many previous works relate to this
topics, for recent example, see [4, 5] . We use this correspondence to conformal mapping
as an example of application in the next section.

3 Conformal mapping of arc polygon with singular

vertices

It is well known that Schwarzian derivative is useful for conformal mapping of rectangles
whose each edge is arc [1, 2]. Then (6) give the conformal mapping instead of Schwarzian
derivative. Here we assume that any order of the derivative of Schwarzian derivative of
(1) which we need are given. Using abbreviation that the left hand side of (6) equals to
Cr(k+1/2), (6) becomes

ξ(k+2) =

{
(1− Cr(k+1/2))ξ(k) + Cr(k+1/2)ξ(k−1)

}
ξ(k+1) − ξ(k)ξ(k−1)

ξ(k+1) − Cr(k+1/2)ξ(k) − (1− Cr(k+1/2))ξ(k−1)
. (7)

We regard (7) as the evolutional equation and mapping for ξ(k). Then ξ(k+2) is ob-
tained from (7) with ξ(k+1), ξ(k), ξ(k−1) and Cr(k+1/2) sequentially. Note that (7) is Mëbius
transformation from ξ(k+1) to ξ(k+2). Using (7) we can construct mapping at vertex of
intersection of two arcs by different circles.
Because there are many cases of the intersection or crossing of arbitrary two arcs of

circles, we have to treat them on a case-by-case practically. For simplicity, we use symbols

2



Figure 1: Configurations of VO type nodes at the vertex. VO1 (left) and VO2 (right).

Figure 2: Configurations of VR type nodes at the vertex. VR1 (left) and VR2 (right).
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circles, we have to treat them on a case-by-case practically. For simplicity, we use symbols

3



for the each case of the configuration of vertex and nodes as VO1, VO2, VR1 and VR2
defined in Fig. 1 and 2. In figures, we define the angle of intersection also. Each vertex
can be regarded as the singular point of conformal mapping.
VO1: Two arcs intersect at a vertex with same direction of each circles. In other words,

points on two arcs are defined same directions which are defined by angles of each circle.
Then four points on two arcs, ξ(k−1), ξ(k), ξ(k+1) and ξ(k+2) are located as ξ(k−1), ξ(k), ξ(k+1)

are on arc of C1, and ξ(k+1), ξ(k+2) are on arc of C2. ξ
(k+1) is a common point of the two

arcs. VO2: Like VO1, two arcs intersect at a vertex with same direction of each circle.
Though ξ(k−1), ξ(k) are on C1, and ξ(k), ξ(k+1), ξ(k+2) are on C2. VR1: Two arcs intersect
at a vertex with reverse direction of each circle. In other words, points on two arcs are
defined opposite directions which are defined by angles of each circle. Then four points
are located as ξ(k−1), ξ(k), ξ(k+1) are on C1, and ξ(k+1), ξ(k+2) are on C2. ξ

(k+1) is a common
point of the two arcs. VR2: Like VR1, two arcs intersect at a vertex with reverse direction
of each arc. ξ(k−1), ξ(k) are on C1, and ξ(k), ξ(k+1), ξ(k+2) are on C2. ξ

(k) is a common point
of the two arcs.
For simplicity, summary of the four cases to evaluate Cr are listed in the following.

Here we use notation for the Cross ratio as CrO1, CrO2, CrR1 and CrR2. Lower suffix of
the notation corresponds to each case of vertices.
Case VO1,

CrO1 = (1 + exp (−i∆))

(
r1
r2
exp (iα) + exp (i∆)

)
. (8)

here, we use ξ(k+1) = r1 exp (iθ1)+ c1 = r2 exp (iθ2)+ c2 by the definition and α = θ1− θ2.
Case VO2,

CrO2 = (1 + exp (i∆))

(
r2
r1
exp (−iα) + exp (−i∆)

)
. (9)

here, ξ(k) = r1 exp (iθ1) + c1 = r2 exp (iθ2) + c2.
Case VR1,

CrR1 = (1 + exp (i∆))

(
1− c1 − ξ(k+1)

c2 − ξ(k+1)

)

= (1 + exp (i∆))

(
1− r1

r2
exp (iα)

)
. (10)

Case VR2,

CrR2 = (1 + exp (i∆))

(
1− c2 − ξ(k)

c1 − ξ(k)

)

= (1 + exp (i∆))

(
1− r2

r1
exp (−iα)

)
. (11)

In the case of all ξ(j), j = k − 1, k, k + 1, k + 2 are on the same arc (it corresponds to
constant curvature),

Cr = 4 cos2
(
∆

2

)
. (12)

Using above relations, Cross-ratio can be obtained at the near point of vertex with sin-
gularity. From the application of mapping, angles of intersection α which are picked up

4



from the plan of the conformal mapping we desired. For the mapping, we use (8)-(11) to
evaluate Cr in (7) with given angles αj, circles Cj and locations of vertices. Then using
initial vale of ξ(0), ξ(1), ξ(2) on C1 and Cr of each two arcs, we can calculate ξ(3) and
the sequence of ξ(k) by (7).

4 Summary and discussion

Though one of the discrete representation of Schwarzian derivative is following maybe,

{ζ, x}(k+1/2)
approx =

2ζ̃ ′(k+1)ζ̃ ′′′(k+2) − 3ζ̃ ′′(k+2)ζ̃ ′′(k+1)

2ζ̃ ′(k+2)ζ̃ ′(k)
. (13)

here,

ζ̃ ′(k) =
ζ(k) − ζ(k−1)

∆
, ζ̃ ′′(k) =

ζ ′(k) − ζ ′(k−1)

∆
, ζ̃ ′′′(k) =

ζ ′′(k) − ζ ′′(k−1)

∆
, (14)

we can get more clear understanding of it from (6) or (7), because (13) can be obtained
from (6) easily. In this meaning, discrete counterpart of Schwarzian derivative of 2nd
order ODE (1) is (6) that is given by Cross-ratio and coefficient functions. As mentioned
in the introduction, the Schwarzian derivative appears many area. Here we have treated
a simple topic about conformal mapping relate to the Schwarzian derivative. One of the
left and next problem continues to this work is that calculating accessory parameters in
arc polygon with many vertices using cross ratio. As for this problem, we can obtain lin-
ear equation of accessory parameters using formula in the previous section. Then taking
account of invariance of Cross-ratio and Schwarzian derivative under Mëbius transforma-
tion, we can calculate accessory parameters with order of accuracy O(∆2). It should be
studied next. Is is well known that Hypergeometric ODE that has the same form to ODE
(1) is characterized by three parameters α, β, γ in the coefficient function p(x) and q(x).
These three parameters correspond to three inner angles of fundamental region which
are given by triangle with arc polygon. Now we can relate these angles to three pair of
Cross-ratio at the three vertices with (8), (9), (10) and (11) .
Relate to this work, we found the possibility of constructing truncated exact differ-

ence equations which have same Γ invariant symmetry to the original ODE also. It is
unmentioned in this article, because of compactness. These truncated exact difference
equation are candidates of discrete representations of ODEs whose solution functions are
some parts of special functions. On more related topics is discrete integrable system or
discrete representation of the special functions. It has given by many previous works [6]
etc. However, these works seem still apart little from actual purpose. From this approach,
we can rediscover the start-point of discretization of ODE which have special function as
the solution function. For example, we can obtain a difference equation by elimination of
r1/r2 exp (iα) with (8) and (9). Then we get evolutional equation for Cr,

Cr(k+1) =
Cr(k) (1 + exp (i∆))

Cr(k) − (1 + exp (−i∆))
. (15)

Here we put Cr of VO1 as Cr(k+1) and Cr of VO2 as Cr(k). This equation is again
Mëbius transformation for Cr. We can regard this equation and (7) to the simultaneous
equation that gives integrable difference equation, because it is really the same type to

for the each case of the configuration of vertex and nodes as VO1, VO2, VR1 and VR2
defined in Fig. 1 and 2. In figures, we define the angle of intersection also. Each vertex
can be regarded as the singular point of conformal mapping.
VO1: Two arcs intersect at a vertex with same direction of each circles. In other words,

points on two arcs are defined same directions which are defined by angles of each circle.
Then four points on two arcs, ξ(k−1), ξ(k), ξ(k+1) and ξ(k+2) are located as ξ(k−1), ξ(k), ξ(k+1)

are on arc of C1, and ξ(k+1), ξ(k+2) are on arc of C2. ξ
(k+1) is a common point of the two

arcs. VO2: Like VO1, two arcs intersect at a vertex with same direction of each circle.
Though ξ(k−1), ξ(k) are on C1, and ξ(k), ξ(k+1), ξ(k+2) are on C2. VR1: Two arcs intersect
at a vertex with reverse direction of each circle. In other words, points on two arcs are
defined opposite directions which are defined by angles of each circle. Then four points
are located as ξ(k−1), ξ(k), ξ(k+1) are on C1, and ξ(k+1), ξ(k+2) are on C2. ξ

(k+1) is a common
point of the two arcs. VR2: Like VR1, two arcs intersect at a vertex with reverse direction
of each arc. ξ(k−1), ξ(k) are on C1, and ξ(k), ξ(k+1), ξ(k+2) are on C2. ξ

(k) is a common point
of the two arcs.
For simplicity, summary of the four cases to evaluate Cr are listed in the following.

Here we use notation for the Cross ratio as CrO1, CrO2, CrR1 and CrR2. Lower suffix of
the notation corresponds to each case of vertices.
Case VO1,

CrO1 = (1 + exp (−i∆))

(
r1
r2
exp (iα) + exp (i∆)

)
. (8)

here, we use ξ(k+1) = r1 exp (iθ1)+ c1 = r2 exp (iθ2)+ c2 by the definition and α = θ1− θ2.
Case VO2,

CrO2 = (1 + exp (i∆))

(
r2
r1
exp (−iα) + exp (−i∆)

)
. (9)

here, ξ(k) = r1 exp (iθ1) + c1 = r2 exp (iθ2) + c2.
Case VR1,

CrR1 = (1 + exp (i∆))

(
1− c1 − ξ(k+1)

c2 − ξ(k+1)

)

= (1 + exp (i∆))

(
1− r1

r2
exp (iα)

)
. (10)

Case VR2,

CrR2 = (1 + exp (i∆))

(
1− c2 − ξ(k)

c1 − ξ(k)

)

= (1 + exp (i∆))

(
1− r2

r1
exp (−iα)

)
. (11)

In the case of all ξ(j), j = k − 1, k, k + 1, k + 2 are on the same arc (it corresponds to
constant curvature),

Cr = 4 cos2
(
∆

2

)
. (12)

Using above relations, Cross-ratio can be obtained at the near point of vertex with sin-
gularity. From the application of mapping, angles of intersection α which are picked up
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the discrete integrable system in [6]. Therefore we have found again the same type of
difference equation from orthodox approach. In addition we can regard (7) as Mëbius

integrator [7]. Then Mëbius integrator from (7) with variable change y
(k)
2 /y

(k)
1 = ζ(k) is

given by separation numerator and denominator as two difference equations for y
(j)
2 and

y
(j)
1 respectively,

y
(k+2)
2 = ϕ

[
{(1− Cr(k+1/2))y

(k)
2 y

(k−1)
1 + Cr(k+1/2))y

(k−1)
2 y

(k)
1 }y(k+1)

2 − y
(k)
2 y

(k−1)
2 y

(k+1)
1

]
,

y
(k+2)
1 = ϕ

[
y
(k)
1 y

(k−1)
1 y

(k+1)
2 + {(1− Cr(k+1/2))y

(k−1)
2 y

(k)
1 + Cr(k+1/2))y

(k)
2 y

(k−1)
1 }y(k+1)

1

]
.(16)

here ϕ is arbitrary function introduced to separate numerator and denominator.
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[4] Itoh T., Correspondence between Schwarzian derivative of ODE and cross-ratio of
ordinary difference equation , AIP Conference Proceedings, Vol. 1558, 2167 (2013).

[5] Itoh T., Discretization of the Schwarzian derivative , AIP Conference Proceedings,
Vol.1776, 090025 (2016).

[6] Tamizhmani K. M., Ramani A., Tamizhmani T. and Grammaticos B., Special func-
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1 INTRODUCTION

G-symplectic methods are a special type of general linear method which are, at the same time,

a generalization of symplectic Runge–Kutta methods. Although they cannot conserve quadratic

invariants they can, under certain conditions, achieve a good approximation to this conservation

property for a large number of time steps.

Many methods are known up to order 4 and the aim in this paper is to show how methods

with higher order can be constructed. In particular we will summarise the derivation of a sixth

order method [4].

The structure of the paper is as follows. In Section 2 the properties of the multivaluemethods

known as general linear methods will be reviewed, with special reference to methods with the

G-symplectic property. This is followed by Section 3, which reviews the use of B-series to

represent numerical processes. Finally, the derivation of G-symplectic methods, including the

new sixth order method, is discussed in Section 4.

2 G-SYMPLECTIC GLMS

2.1 General linear methods

We will consider an initial-value problem in the form y′(x) = f (y(x)), f : RN → R
N , y(x0) =
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N . A general linear method is both multivalue, as in a linear multistep method, and
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[n−1]
i , i= 1,2, . . . ,r, to step

number n, r outputs y
[n]
i , i= 1,2, . . . ,r, from step number n, s stages Yi, i= 1,2, . . . ,s, computed

in step n and s derivatives Fi = f (Yi), i= 1,2, . . . ,s, evaluated in step n.
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y[n] =













y
[n]
1

y
[n]
2
...

y
[n]
r













, Y =











Y1
Y2
...

Ys










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









f (Y1)
f (Y2)
...

f (Ys)











and the equations relating these become

Y = h(A⊗R
N)F+(U⊗R

N)y[n−1],

y[n] = h(B⊗R
N)F+(V ⊗R

N)y[n−1],
(1)

where A,U,B,V characterize a specific method.
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Figure 1: Representation of order ofMh, relative to Sh

2.2 The order of methods

For Runge–Kutta methods, and many traditional multistep methods, such as Adams and BDF,

the meaning of the various components is obvious and clear-cut. However, the meaning of the

r components input to a step of a GLM can be quite complicated.

Like all multivaluemethods, a starting method is always needed and this has to be consistent

with the meaning of the input components. In Figure 1, Sh is the starting method and Eh is the

exact flow of the problem. Also Mh will denote the action of computing y[1] for given y[0] and

εh can be thought of as the local truncation error.

Definition 1 A method has order p relative to Sh, if εh = O(h
p+1).

2.3 G-symplectic methods

We will be concerned with the special class of “G-symplectic” general linear methods.

Definition 2 A method is G-symplectic if
�

DA+ATD−BTGB DU−BTGV

UTD−VTGB G−VTGV

�

= 0,

where G is a non-singular symmetric matrix and D is a diagonal matrix.

Methods with this property conserve a generalization of symplectic behaviour and preserve

quadratic invariants in a generalized sense.

If parasitic growth factors are zero, G-symplectic methods closely adhere to conservative

behaviour for extended time intervals and a large number of time steps. They have the advantage

of a lower computational cost than genuine symplectic methods. There is an emerging theory

to explain their good behaviour.

We will discuss methods of order 4 and higher. As an example of the conservation prop-

erties of these methods consider a problem y′ = f (y) satisfying � f (η),Qη� = 0, where Q is

symmetric. For this problem �y(x),Qy(x)� is invariant because

d
dx
�y(x),Qy(x)�=�y′(x),Qy(x)�+ �y(x),Qy′(x)�=� f (y(x)),Qy(x)�+ �y(x),Q f (y(x))�= 0.

We will write

[[[η,η]]] := �η,Qη�= �Qη,η�.

Following the lead of Germund Dahlquist, in his work on G-stability, we will introduce a

“G-norm”. This is based on

[[[y[n],y[n]]]]G =
r

∑
i, j=1

gi j[[[y
[n]
i ,y

[n]
j ]]].
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Figure 2: Deviation of the Hamiltonian H from its initial value for the simple pendulum using

method (2)

In the study of stability questions, G is a positive-definite matrix and the actual G-norm is

defined as
�

[[[y[n],y[n]]]]G

but for conservation questions, there is no need for G to be positive-definite.

It is still worthwhile to look at the conservation of [[[y[n],y[n]]]]G with the hope of approximately

preserving

[[[y
[n]
1 ,y

[n]
1 ]]],

where y
[n]
1 is the “principal component” of y[n]. The matrixGwill be the same as in the definition

of the G-symplectic property.

It could be asked why this is a credible hope? It could be because the non-principal com-

ponents are equal to quantities like hy′ or h2y′′ and they are likely to make a less significant

contribution to the value of [[[y[n],y[n]]]]G. The preservation of [[[y
[n],y[n]]]]G can occur in many prob-

lems which possess quadratic invariants.

Theorem 3 A G-symplectic method conserves the value of [[[y[n],y[n]]]]G for a problem satisfying
[[[ f (η),η]]] = 0.

2.4 An example of a G-symplectic method

An example method is

�

A U

B V

�

=





















1
12

0 0 0 1 1
2

− 1
3

1
6

0 0 1 1
5
3

− 2
3

1
6

0 1 −1
7
6

− 5
12

1
12

1
12

1 − 1
2

2
3

− 1
6

− 1
6

2
3

1 0

1 − 1
2

1
2

−1 0 −1





















. (2)

This method is known to have order 4 and to have zero parasitic growth parameters. To show

that (2) is capable of mimiccing symplectic behaviour, the simple pendulum problem y′1 = y2,
y′2 = −sin(y2), with initial values y1(0) = 3.0 ≈ 172◦, y2(0) = 0 was solved with h = 1/100
for n = 106 time steps. A symplectic method would be able to approximately conserve H =
1
2
y22− cos(y1) and the deviation of H for (2), shown in Figure 2, behaves in a similar way.
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exact flow of the problem. Also Mh will denote the action of computing y[1] for given y[0] and
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behaviour for extended time intervals and a large number of time steps. They have the advantage

of a lower computational cost than genuine symplectic methods. There is an emerging theory

to explain their good behaviour.

We will discuss methods of order 4 and higher. As an example of the conservation prop-
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3 B-SERIES

3.1 Trees and forests

Recall earlier discussions of “order” based on Figure 1. The aim of this section is to represent

the various mappings in Figure 1 in a convenient form so that we can compare the Taylor series

forMh ◦Sh and Sh ◦Eh and find criteria for these agreeing up to a specified order.

In the B-series approach, these Taylor series, are based on trees and forests. Let T denote

the set of graphs such as the following

Members of T are “rooted trees” or simply “trees”. A forest is a juxtaposition of trees, such as

t1t2 · · ·tn or the empty forest 1.

If the members of a forest t1t2 · · · tn are attached to a new root, we obtain a tree written as

[t1t2 · · · tn] or, in Hopf Algebra language, B+(t1t2 · · · tn). Thus [t1t2 · · · tn] is the tree
t1 t2 · · · tn

The order of t, written |t|, is the number of vertices and the symmetry, σ(t), is the order of

the automorphism group of t. These, together with t!, the factorial of t, can be defined and

evaluated recursively:

|τ|= 1, |t|=
n

∑
i=1

|ti|, t = [t1t2 · · · tn],

σ(τ) = 1, σ(t) =
n

∏
i=1

mi!σ(ti)
mi , t = [tm1

1 t
m2

2 · · · tmnn ],

τ!= 1, t!= |t|
n

∏
i=1

ti!, t = [t1t2 · · · tn].

For the empty tree ∅, |∅|= 0, σ(∅) = 1, ∅!= 1.

3.2 Elementary differentials and B-series

Throughout this paper, f will denote f (y0). Similarly the linear operator equal to the matrix of

partial derivatives evaluated at y0 will be written as f ′. The higher derivatives are multilinear

operators and we also evaluate these at y0: f
(n) = f (n)(y0).

Definition 4 The elementary differential F(t) evaluated at y0 is equal to

F(t) =

�

f, t = τ,

f (n)F(t1)F(t2) · · ·F(tn), t = [t1t2 · · · tn].

Definition 5 The B-series based on B-series coefficients a :∅∪T → R is defined by

B(a,h,y0) = a(∅)y0+ ∑
t∈T

a(t)h|t|

σ(t)
F(t).
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To construct series that will represent the terms inMh◦Sh and Sh ◦Eh, we need to be able to find
the B-series coefficients for Eh, the components of Sh and the output from the operationMh◦Sh.
Compositions will be represented by substituting a B-series to replace y0 in a second B-series.

If the coefficients in these two series are a and b then the product ab will be defined by

B(ab,h,y0) = B(b,h,B(a,h,y0)). (3)

To write the formulae for (ab)(t) we need to use subtrees formed by removing some of the

vertices in t to yield a connected tree u which shares the same root as t, together with a forest

t \ u representing the connected components of the vertices removed. The value of a(t1t2 · · · tn)
is defined to be ∏n

i=1a(ti). It is always assumed that ab has a meaning only if a(∅) = 1. With

these assumptions and notations we have

Theorem 6 The product ab is given by

(ab)(∅) = b(∅),

(ab)(t) = a(t)b(∅)+∑
u≤t

a(t \u)b(u).

3.3 Some special B-series

We will start by introducing the B-series for Eh, denoted by E.

Theorem 7 The value of E is given by

E(∅) = 1,

E(t) = 1
t!
, t ∈ T.

A basic operation used in every numerical method is the calculation of h f (a) where a(∅) = 1.

This can be seen as the product aD, where D is the B-series

B(D,h,y0) = h f (y0),

so that we have

Theorem 8 The value of D is given by

D(∅) = 0,

D(τ) = 1,

D(t) = 0, |t|> 1.

We can now find a convenient formula for aD by applying Theorem 6, to Theorem 3.3.

Theorem 9 Given that a(∅) = 1, the value of aD is given by

(aD)(∅) = 0,

(aD)(t) = a(t1)a(t2) . . .a(tn), t = [t1t2 . . . tn].
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τ!= 1, t!= |t|
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Throughout this paper, f will denote f (y0). Similarly the linear operator equal to the matrix of

partial derivatives evaluated at y0 will be written as f ′. The higher derivatives are multilinear

operators and we also evaluate these at y0: f
(n) = f (n)(y0).

Definition 4 The elementary differential F(t) evaluated at y0 is equal to

F(t) =

�

f, t = τ,
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Definition 5 The B-series based on B-series coefficients a :∅∪T → R is defined by

B(a,h,y0) = a(∅)y0+ ∑
t∈T

a(t)h|t|

σ(t)
F(t).
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3.4 B-series representation of order conditions

Denote the B-series for the starting method Sh by ξ . This is a vector of dimension r of mappings

from ∅∪ T to R. Also the stage vectors Y are represented by the s dimensional vector η .
This will mean that the vector of scaled stage derivatives hF is given by the component-by-

component product ηD. From these elements we can write the B-series representation of (1)

as BηD+Vξ , where η = AηD+Uξ . Our aim of obtaining a representation of the order

condition Sh ◦Eh−M ◦ Sh = εh = O(hp+1) can now be completed, where we will write the

B-series coefficients for εh by the symbol ε .

Theorem 10 The method (A,U,B,V) given by (1) is of order p relative to Sh if

η = AηD+Uξ ,

Eξ = BηD+Vξ + ε,

where ε(∅) = ε(t) = 0, for |t| ≤ p.

4 NEW SIXTH ORDER G-SYMPLECTICMETHOD

Runge–Kutta methods satisfying diag(b)A+ATdiag(b) = bbT and characterized by their ability

to conserve quadratic invariants [7] and symplectic behaviour [8], have a simplified set of order

conditions [9] because many families of conditions become equivalent. In [3] it was shown how

to generalize this result to general linear methods.

Many fourth order G-symplectic methods have been derived with promising numerical per-

formance. However, sixth order is a challenge and at present only a single method has been

derived in detail [4, 6].

For the new method, the values r = 4 and s = 5 were chosen because they gave enough

freedom to satisfy the requirements of order and efficiency. Since the eigenvalues of V must be

on the unit circle, the simple choice ±1 and ±i was made.

Considerable simplifications were possible by requiring the method to be symmetric [2] and

to be built on B-series consistent with theC(2) condition first introduced in [1].
Amongst many experiments performed with the new method, a single one is presented here,

based on the Hénon–Heiles problem given by
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In Figure 3, with computations by H. Podhaisky, the variation in H(p,q) is shown for 4 · 108

time steps with h= 0.025.
The result of this and other numerical tests have given very encouraging results for millions

of time steps and it is tempting to assume that there is no real limit as to how far stable behaviour

would continue.

However, this is an unrealistic expectation because, from the analysis in [5], parasitism will

eventually take over and destroy the integrity of the numerical results.
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based on the Hénon–Heiles problem given by

H(p,q) = 1
2

�

p21+ p
2
2

�

+ 1
2

�

q21+q
2
2

�

+q21q2−
1
3
q32, q0 =

�

0, 3
10

�

T

, p0 =
�

�

69
500

, 1
5

�

.

In Figure 3, with computations by H. Podhaisky, the variation in H(p,q) is shown for 4 · 108

time steps with h= 0.025.
The result of this and other numerical tests have given very encouraging results for millions

of time steps and it is tempting to assume that there is no real limit as to how far stable behaviour

would continue.

However, this is an unrealistic expectation because, from the analysis in [5], parasitism will

eventually take over and destroy the integrity of the numerical results.

I am grateful to Yousaf Habib, Adrian Hill, Gulshad Imran, Terry Norton and Helmut

Podhaisky. for collaborations which contributed to this paper.

References

[1] Butcher, J. C., Implicit Runge–Kutta processes, Math. Comp. 18 (1964), pp. 50–64.

13



Structure-preserving Galerkin methods
based on variational structure

Yuto Miyatake

Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan

miyatake@na.nuap.nagoya-u.ac.jp

1 Introduction

For evolutionary partial differential equations (PDEs) that enjoy the energy preservation
or dissipation property, numerical schemes inheriting the property are often advantageous
in that they give qualitatively better numerical solutions than more general purpose meth-
ods. In the last two decades, much effort has been devoted in this topic to find out several
frameworks to derive energy-preserving/dissipative schemes [2, 3, 4, 5]. These frameworks
have been extended in various ways, applied to many PDEs, and correct long time be-
haviour is often observed. However, most of the frameworks, such as the discrete varia-
tional derivative method, are based on finite difference methods, and thus the application
to spatial discretization has been restricted to uniform meshes. This is problematic espe-
cially in multidimensional problems, since such a restriction requires rectangular domains.
Even in one-dimensional cases, nonuniform meshes are often useful when solutions exhibit
locally complicated behaviour. For these reasons, several researchers have extended the
energy-preserving/dissipative methods to nonuniform meshes [6, 11]. Among them, in
this talk, we consider the Galerkin framework proposed by Matsuo [6], which we refer
to as the discrete partial derivative method. In this talk, we point out a drawback of
the original discrete partial derivative method, solve the defect to make the method com-
pletely systematic, and mention further extensions and recent applications, based on the
papers [1, 7, 8, 9, 10].

2 Discrete partial derivative method and its limita-

tion

We consider PDEs of the form

ut = DδH
δu

, H[u] =
∫

H(u, ux, . . . ) dx, (1)

where D is a differential operator. If D is skew-symmetric, (1) has a conservation property
d
dt
H[u] = 0 under appropriate boundary conditions. On the other hand, if D is negative

semidefinite, (1) has a dissipation property d
dt
H[u] ≤ 0 again under appropriate boundary

conditions. In what follows, we call H the energy and consider only conservative PDEs
defined on the torus T just for simplicity.

Basic procedure of the discrete partial derivative method [6] is as follows.
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• We first construct anH1-weak form that explicitly expresses the desired preservation
property. Here, H1 denotes the first order Sobolev space.

• We then spatially discretize the weak form such that the resulting semi-discrete
scheme is consistent in some finite-dimensional approximation spaces of H1, and it
retains the preservation property.

• Finally, we temporally discretize the semi-discrete scheme such that the desired
property is retained. This step is essentially that of the discrete gradient method.

However, finding an appropriate H1-weak form is not straightforward, which compli-
cates the application of the discrete partial derivative method. To explain the difficulty,
we start discussion with the simplest case D = ∂x and H = H(u, ux). In this case, the
following weak form is straightforward.

Weak form 2.1 Suppose that u(0, ·) is given in H1(T). Find u(t, ·), p ∈ H1(T) such that
for any v1, v2 ∈ H1(T),

(ut, v1) = (px, v1),

(p, v2) =

(
∂H

∂u
, v1

)
+

(
∂H

∂ux

, (v2)x

)
.

Here, (f, g) :=
∫
T fg dx denotes the L

2 inner product.

The conservation property of this weak form can be explicitly obtained:

d

dt

∫

T
H(u, ux) dx =

(
∂H

∂u
, ut

)
+

(
∂H

∂ux

, uxt

)
= (p, ut) = (p, px) = 0.

However, if D is more complicated, or H consists of higher order derivatives, finding an
appropriate H1-weak form becomes increasingly difficult.

One solution to overcome this difficulty is to adopt smoother function spaces, however,
we prefer H1 because of the following reasons.

• The H1-formulation can be implemented by computationally inexpensive P1 ele-
ments. This advantage is mandatory in multidimensional problems.

• For high-order PDEs with H1 solutions, such as peakons of the Camassa–Holm
equation, H1-formulations are preferable.

3 Overcoming the difficulty by using L2-projection

operators

The above difficulty can be overcome by using L2-projection operators.
Let X be a finite dimensional approximation space of H1(T). The L2-projection

operator is defined as PX : L
2(T)→ X ⊂ H1(T) satisfying

(u, v) = (PXu, v)

for any v ∈ X. Furthermore, we denote PXux byDXu, namelyDX := PX∂x : H
1(T)→ X.

We can regard Dp
X(:= (DX)

p) as the operator that approximates ∂p
x. It follows that

(DXu, v) = −(u,DXv),
(
D2

Xu, v
)
=

(
u,D2

Xv
)
, (2)
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for any u, v ∈ X.
Below, we illustrate the use of L2-projection operators, taking the Camassa–Holm

(CH) equation

ut − uxxt = uuxxx + 2uxuxx − 3uux

as our working example. The CH can be written as the variational form

(1− ∂2
x)ut = (m∂x + ∂xm)(1− ∂2

x)
−1 δH

δu
, H[u] =

∫

T

u2 + u2
x

2
dx,

where m = (1 − ∂2
x)u. Introducing an intermediate variable p, we can further translate

the variational form into the system

(1− ∂2
x)ut = (m∂x + ∂xm)p,

(1− ∂2
x)p =

δH
δu

.

We then consider the following formal weak form.

Formal weak form 3.1 Find u, p such that, for any v1, v2,
(
(1− ∂2

x)ut, v1
)
= ((m∂x + ∂xm)p, v1),

(
(1− ∂2

x)p, v2
)
=

(
∂H

∂u
, v2

)
+

(
∂H

∂ux

, (v2)x

)
.

Obviously, this formulation is not formulated within H1 space, and thus it makes sense
only formally (this is the reason why we call it a formal weak form). However, if we ignore
this defect, we see that d

dt
H[u] = 0 by formal calculations:

d

dt
H[u] =

(
∂H

∂u
, ut

)
+

(
∂H

∂ux

, uxt

)

=
(
(1− ∂2

x)p, ut

)
=

(
p, (1− ∂2

x)ut

)
= ((m∂x + ∂xm)p, p) = 0.

Here, the symmetry of (1− ∂2
x) and the skew-symmetry of (m∂x + ∂xm) are used.

In [9], we showed that, by making use of the formal weak form and L2-projection
operators, an intended energy-preservingH1 semi-discrete scheme can be readily obtained.
The procedure is to just replace ∂x in the formal weak form with DX . For the above formal
weak form to the CH equation, we immediately get the following semi-discrete scheme.

Semi-discrete scheme 3.1 Suppose u(0, ·) ∈ X is given. We find u(t, ·), p ∈ X such
that, for any v1, v2 ∈ X,

(
(1− (DX)

2)ut, v1
)
= ((m∂x + ∂xm)p, v1),

(
(1− (DX)

2)p, v2
)
=

(
∂H

∂u
, v2

)
+

(
∂H

∂ux

, (v2)x

)
,

where m = (1− (DX)
2)u.

This scheme is now consistent in X(⊂ H1), and the energy-preservation property is still
retained, thanks to the properties (2).

Applying the discrete gradient method for the temporal discretization leads to a fully
discrete energy-preserving Galerkin scheme. We would also like to note that after finding
an intended semi-discrete scheme, an underlyingH1-weak form can also be easily obtained.
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4 Comments and Future work

The proposed method is applicable to numerous conservative and dissipative PDEs, but
mathematical analyses such as unique solvability and convergence have not been studied
so far.

We have also succeeded in extending the proposed method to the (local) discontinu-
ous Galerkin framework [1], and by this extension we can automatically derive spatially
high-order schemes. However, since linear/nonlinear equations associated with discon-
tinuous Galerkin schemes are often ill-conditioned, care must be taken for the choice of
linear/nonlinear solvers.

Based on the proposed method, with a little ingenuity, we could derive several energy-
preserving/dissipative H1-Galerkin schemes, and substantial differences between the nu-
merical solutions obtained by different schemes are sometimes observed (see, for exam-
ple, [7] for the application to the Hunter–Saxton equation). Thus, comparing several weak
forms (and the corresponding Galerkin schemes) theoretically would also be interesting.
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1 Introduction

For nonlinear partial differential equations, we would like to construct some “structure
preserving,” “stable” and “fast” numerical schemes. As you know, we have to struggle
with “nonlinearity” of the problems/schemes to obtain “fast” schemes. To see the compu-
tation cost to solve numerical schemes for nonlinear PDE problems, consider the following
two toy problems, as common target nonlinear PDEs.

Toy problem type 1: These PDEs are “high order polynomial” problems. Let us con-
sider the following toy PDE for unknown function u = u(x, t):

∂u

∂t
=

∂2

∂x2

(
u7

)
. (1)

Toy problem type 2: These PDEs are nonlinear and “non-polynomial” problems.

∂u

∂t
=

∂2

∂x2
(eu) . (2)

1.1 Conventional Discrete Variational Derivative Method

Via the conventional DVDM [1] for equations like
∂u

∂t
=

(
∂2

∂x2

)2
δG

δu
, we propose the

following scheme

U
(n+1)
k − U

(n)
k

∆t
= δ

⟨2⟩
k

δGd

δ(U (n+1),U (n))k
(3)

where U
(n)
k is approximation of u(k∆x, n∆t),

δG

δu
is the variational derivative and

δGd

δ(U ,V )k

is the discrete varitaional derivative. For the toy problem type 1 equation:
∂u

∂t
=

∂2

∂x2

(
u7

)
=

∂2

∂x2

(
δu8/8

δu

)
, via

N∑
k=0

′′
(
U8
k

8
− V 8

k

8

)
∆x =

N∑
k=0

′′ δGd

δ(U ,V )k
(Uk − Vk)∆x, (4)

[10] Miyatake, Y., Yaguchi, T. and Matsuo, T., Numerical integration of the Ostrovsky
equation based on its geometric structures, J. Comput. Phys., 231 (2012), pp. 4542–
4559.

[11] Yaguchi, T. Matsuo, T. and Sugihara, M., An extension of the discrete variational
method to nonuniform grids, J. Comput. Phys., 229 (2010), pp. 4382–4423.
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we obtain the discrete variational derivative

δGd

δ(U ,V )k
=

u7 + u6v + u5v2 + u4v3 + u3v4 + u2v5 + uv6 + v7

8
, (5)

where u = Uk, v = Vk, and we obtain the following DVDM scheme.

u− v

∆t
= δ

⟨2⟩
k

{
u7 + u6v + u5v2 + u4v3 + u3v4 + u2v5 + uv6 + v7

8

}
(6)

where u
def
= U

(n+1)
k , v

def
= U

(n)
k . This result means that we have to solve a system of high-

order polynomial equations to obtain new time step solutions. For the toy problem type
2, the DVDM scheme should be

u− v

∆t
= δ

⟨2⟩
k

(
eu − ev

u− v

)
, (7)

and we have to solve a system of non-polynomial nonlinear equations via this scheme. We
would like to avoid this strong nonlinearity of these schemes.

1.2 Linearized DVDM

The “linearization technique” means decompo-
sitions of polynomial terms by introducing ex-
tra time steps of numerical schemes, and we can
design linear or lineraly-implicit for polynomial-
nonlinear PDEs using this technique [2, 3]. Let
us see what happens if we use this technique for
the toy problems. For the toy problem type 1
equation, via the “symmetric” decomposition:
u8 −→ u2 v2w2ζ2, we obtain the following lin-
earized scheme:

u− ξ

4∆t
= δ

⟨2⟩
k

{
v2w2ζ2(u+ ξ)

2

}
, (8)
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Figure 1. Unstable solution via the

linearized scheme (8) where ∆x = 0.02,

∆t = 5.0 × 10−7.

where u
def
= U

(n+4)
k , v

def
= U

(n+3)
k , w

def
= U

(n+2)
k , ζ

def
= U

(n+1)
k , ξ

def
= U

(n)
k . This is a “linear-

implicit” system and easy-to-obtain new time step solutions, but this scheme is unstable,
as we see in the Fig.1, because “extra 3” timesteps may be too many for this problem.
For the toy problem 2, we cannot apply the linearization technique since the problem is
not a polynomial equation. These results mean that we cannot expect the linearization
technique to struggle with the strong nonlinearity.

2 Asymmetric Linearized DVDM

There are, of course, some simple ideas to weaken or overcome the nonlinear difficulties.
The first one is a relaxation of the linearization technique. We must decompose the
polynomial symmetrically by the original linearization technique; here we extend it so
that we can decompose the term asymmetrically. For example, we can decompose the
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polynomial term in the following manner for the toy problem 1: u8 −→ U
(n+1)
k (U

(n)
k )7 ,

and we obtain an “explicit” DVDM scheme. If we decompose as u8 −→ (U
(n+1)
k )2 (U

(n)
k )6

, we obtain a “quadratic” DVDM scheme. Both of obtained schemes are not strongly
nonlinear and relatively easy to obtain numerical solutions. We can apply this idea
to the toy problem 2, i.e., we can decompose the nonlinear-nonpolynomial terms as:
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U
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Base on this asymmetric decomposition, the definition of the discrete variational derivative
shold be changed. We cannot describe the mathematical definition completely here due
to space limitation and let us show one example when we decompose the energy function
as G(u, v) = u2f(v). In this case, we can show:

G(u, v)−G(v, w) =
δG
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δU(u) (9)
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f(v) + f(w)

2

)
, (10)

δU(u)
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1
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(u− v) +
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)(
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f(v) + f(w)

)}
, (11)

and C(v, w) is a correction coefficient. This means that the relaxed DVDM schemes for
toy problems should be
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k

δG

δ(u)
(12)

where u
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def
= U

(n)
k . These schemes nonlinearity are obviously

weakened, i.e., they are explicit or quadratic, and we can expect that they are faster
schemes than the conventional DVDM schemes. We introduced just one extra time step
in this context, and we can expect that the obtained schemes’ instability is not so strong.
For example, we use this relaxed technique to the higher Cahn–Hilliard equation

∂u

∂t
=

∂2

∂x2

(
u7 − u+ q

∂2u

∂x2

)
, (13)

where q < 0, and it is stable with some appropriate parameters (∆x,∆t). The obtained
solutions are shown in the Fig. 2. The scheme is quadratic and about 30 times faster to
obtain numerical solutions than the conventional DVDM scheme.
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Figure 2. Solutions by the relaxed DVDM scheme for the higher Cahn–Hilliard equation.

we obtain the discrete variational derivative

δGd

δ(U ,V )k
=

u7 + u6v + u5v2 + u4v3 + u3v4 + u2v5 + uv6 + v7

8
, (5)

where u = Uk, v = Vk, and we obtain the following DVDM scheme.
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⟨2⟩
k

{
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}
(6)

where u
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= U

(n+1)
k , v
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= U

(n)
k . This result means that we have to solve a system of high-

order polynomial equations to obtain new time step solutions. For the toy problem type
2, the DVDM scheme should be
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∆t
= δ

⟨2⟩
k

(
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)
, (7)

and we have to solve a system of non-polynomial nonlinear equations via this scheme. We
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1.2 Linearized DVDM

The “linearization technique” means decompo-
sitions of polynomial terms by introducing ex-
tra time steps of numerical schemes, and we can
design linear or lineraly-implicit for polynomial-
nonlinear PDEs using this technique [2, 3]. Let
us see what happens if we use this technique for
the toy problems. For the toy problem type 1
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u8 −→ u2 v2w2ζ2, we obtain the following lin-
earized scheme:

u− ξ

4∆t
= δ

⟨2⟩
k

{
v2w2ζ2(u+ ξ)

2

}
, (8)
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implicit” system and easy-to-obtain new time step solutions, but this scheme is unstable,
as we see in the Fig.1, because “extra 3” timesteps may be too many for this problem.
For the toy problem 2, we cannot apply the linearization technique since the problem is
not a polynomial equation. These results mean that we cannot expect the linearization
technique to struggle with the strong nonlinearity.

2 Asymmetric Linearized DVDM

There are, of course, some simple ideas to weaken or overcome the nonlinear difficulties.
The first one is a relaxation of the linearization technique. We must decompose the
polynomial symmetrically by the original linearization technique; here we extend it so
that we can decompose the term asymmetrically. For example, we can decompose the
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3 Asymmetric Conventional DVDM

Another idea is a relaxation of the discrete variational derivative itself. In this context,
we don’t have to introduce any extra time step. On the conventional DVDM theory, we
consider the following equality under summation: G(u) − G(v) = (δG/δ(u, v)) (u− v),
however, here we relax it as G(u)−G(v) = (δG/δ(u)) (δu), where δG/δ(u) should be an
approximation of δG/δu and δu should be an approximation of ∆t∂u/∂t.

Let us show some examples. For the toy problem 1, we can show u8−v8 = (δG/δ(u)) (δu)

where δG/δu = 8v7 and δu =
(
u7 + u6v + u5v2 + u4v3 + u3v4 + u2v5 + uv6 + v7

)
(u −

v)/8v7 . For the toy problem 2, we can define eu−ev = (δG/δ(u)) (δu) where δG/δu = ev

and δu =
(
eu−v − 1

)
. These definitions bring us explicit DVDM schemes, for ex-

ample, the obtained scheme for the toy problem 2, i.e., an exponential heat equation
problem, is

U
(n+1)
k = U

(n)
k + log

{
1 + ∆t δ

⟨2⟩
k

(
eU

(n)
k

)}
, (14)

and the obtained numerical solutions are shown in Fig. 3. Comparing among some
structure-preserving schemes for the exponential heat problem, this explicit DVDM scheme
is the fastest to obtain numerical solutions.
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Figure 3. Solutions by the explicit DVDM scheme for the toy problems 2.

We confirmed that the total energy of the solutions
∑N

k=0
′′ exp(U

(n)
k )∆x decreases mono-

tonically and the total mass
∑N

k=0
′′U

(n)
k ∆x is conserved strictly through the computation.

This idea is extremely flexible and we sometimes obtain superior DVDM schemes, how-
ever, we do not have sufficient theoretical knowledge of this idea so far and we should pay
much effor to study it.
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Thermostat methods are routinely employed in molecular dynamics to simulate a
system of particles at constant temperature. Molecular dynamics models are typically
formulated as a classical mechanical n-body problem in high dimensions. The equations
of motion constitute a Hamiltonian system

dy

dt
= J∇H(y), H : Rd → R, J = −JT , (1)

with preserved total energy H. The motion is thus constrained to a surface of constant
H (or the intersection of the level sets if more conserved quantities are present). If the
motion is ergodic, then the flow samples the invariant measure

µ(y) ∝ δ(H(y)−H0), H(y(0)) = H0.

On the other hand, a system that evolves in thermal equilibrium with respect to a large
temperature reservoir of inverse temperature β does not evolve at constant energy. In-
stead, the states of the system are distributed according to the Gibbs canonical distribu-
tion

µ(y) ∝ exp(−βH(y)).

To simulate a system at constant temperature, it is necessary to introduce some dynamic
mechanism to perturb trajectories such that they ergodically sample the canonical distri-
bution.

One well-known technique for canonical sampling is Langevin dynamics [3]. Here
the Hamiltonian equations on Rd are equipped with a stochastic diffusion process. An
alternative approach are the Nosé-Hoover type methods [10, 11, 6, 2, 12] where the phase
space is augmented by one or more additional thermostat variables such that the projected
motion on Rd again ergodically samples the canonical distribution. Construction of the

3 Asymmetric Conventional DVDM

Another idea is a relaxation of the discrete variational derivative itself. In this context,
we don’t have to introduce any extra time step. On the conventional DVDM theory, we
consider the following equality under summation: G(u) − G(v) = (δG/δ(u, v)) (u− v),
however, here we relax it as G(u)−G(v) = (δG/δ(u)) (δu), where δG/δ(u) should be an
approximation of δG/δu and δu should be an approximation of ∆t∂u/∂t.

Let us show some examples. For the toy problem 1, we can show u8−v8 = (δG/δ(u)) (δu)

where δG/δu = 8v7 and δu =
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and the obtained numerical solutions are shown in Fig. 3. Comparing among some
structure-preserving schemes for the exponential heat problem, this explicit DVDM scheme
is the fastest to obtain numerical solutions.
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We confirmed that the total energy of the solutions
∑N

k=0
′′ exp(U

(n)
k )∆x decreases mono-

tonically and the total mass
∑N

k=0
′′U

(n)
k ∆x is conserved strictly through the computation.

This idea is extremely flexible and we sometimes obtain superior DVDM schemes, how-
ever, we do not have sufficient theoretical knowledge of this idea so far and we should pay
much effor to study it.
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Nosé-Hoover dynamics makes explicit use of two properties: (1) the original dynamics is
Hamiltonian (specifically, divergence free and Hamiltonian-conserving), and (2) the target
distribution (Gibbs) is a smooth function of the conserved quantity H.

In a recent paper [9] we show how information theory can be used in combination
with Nosé-Hoover type methods to correct dynamics for observations of the mean values
of conserved quantities. Again, the approach of [9] is restricted to unperturbed systems
with Hamiltonian structure, and observables that are functions of the conserved quantities.
The methodology could be made significantly more generic if these restrictions on the
dynamics and probability distributions could be removed. The purpose of this note is to
describe a method that provides for this.

Specifically, we derive a thermostat that can be applied to an arbitrary, smooth differ-
ential equation to perturb its orbits such that they ergodically sample a generic, smooth
target distribution. The target distribution can in principle be any distribution of the
form ρ(y) ∼ exp(−A(y)), where A : Rd → R is bounded and differentiable. However, the
thermostat is most effective when this distribution is ‘close’ in some sense to the invariant
distribution of the unperturbed dynamics. In the §1 we review briefly an information
theoretic approach to correcting a prior distribution for a set of observed expectations.
In §2 we describe the new thermostat. In §2.1 we discuss ergodicity considerations. The
new thermostat is ineffective in the classical setting of a Hamiltonian system and Gibbs
distribution. Therefore, in Section §2.2 we describe necessary modifications for this case.
Finally we demonstrate the new thermostats for some simple examples in Section §3.

1 BAYESIAN MODELLING

For the purpose of this section, suppose y ∈ Rd is a random variable with distribution
(law) y ∼ ρ, where ρ : Rd → R is unknown. Suppose further, that we are given a prior
distribution π : Rd → R, assumed to be close to ρ.

The Kullback-Leibler divergence, or relative entropy,

S[ρ(y)] =


ρ(y) ln
ρ(y)

π(y)
dy

represents a (non-symmetric) distance between measures. In information theory it gives
the information lost in approximating ρ(y) by π(y).

Next, suppose we are given a set of K observations of y in the form of expectations

EρCk(y) =


Ck(y)ρ(y) dy = ck, k = 1, . . . , K. (2)

Then the least biased distribution ρ consistent with the observations ck and prior π is
given by the solution of the constrained minimization problem

ρ = argmin
ρ

S − λ0


1−


ρ(y) dy


−

K
k=0

λk


ck −


Ck(y)ρ(y) dy


,

where the λk are Lagrange multipliers associated with the observations (2). Solving the
minimization problem is an exercise in variational calculus. One finds

ρ(y) = λ0 exp (−λ1C1(y)− · · · − λKCK(y)) π(y), (3)

where the λk are chosen such that the observations (2) are satisfied.
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2 THERMOSTATS FOR THE POSTERIOR MEA-

SURE

Now suppose that we are given a dynamical system, defined by the solution of a differential
equation,

dy

dt
= F (y),

which may be subject to model error. Further suppose we are given a prior distribution
π(y) that we believe to be close to the invariant distribution of the true dynamics, and
a set of K observations of the system of the form (2). We construct a thermostat on
the dynamics of y that samples the posterior distribution (3). To do this, let us write
ρ(y) = exp (−A(y)), and define the extended distribution ρ̂(y, ξ) = ρ(y) exp(−ξ2/2).
Then we consider a thermostat of the form

dy = F (y) dt+ ξ2G(y) dt (4)

dξ = ξX(y) dt− γξ dt+

2γ dw, (5)

where γ > 0 is a diffusion parameter.
The distribution ρ̂ is stationary under the Fokker-Planck equation associated to this

system if
L∗ρ̂ = 0 = −∇ · ρ̂F (y)− ξ2∇ · ρ̂G(y)− ∂ξξρ̂X(y), (6)

since additional terms in the Fokker-Planck operator cancel automatically due to fluctuation-
dissipation balance in the last two terms of (5) (an Ornstein-Uhlenbeck process). A pos-
sible solution of this equation is given by

X(y) = F · ∇A−∇ · F, ∇ · (F +G)− (F +G) · ∇A = 0. (7)

Hence, defining X(y) by the first condition above and choosing a G to satisfy the second
condition ensures stationarity of ρ̂.

One possible choice (which we will not use) for G is G = J∇A − F , where J is
any skew-symmetric matrix. Intuitively, since Eρ̂ξ

2 = 1, this choice just replaces the
dynamics F with the Hamiltonian dynamics J∇A on average. This can obviously have
dire consequences for the thermostated dynamics, unless the vector field G(y) is small in
some sense.

Having found a G that satisfies the above condition, any other vector field G̃ =
G+B∇A for any skew-symmetric matrix B also satisfies the condition. This can be used
to find an optimal skew-symmetric B, for instance, such that the norm of g̃ is minimized.

2.1 Ergodicity

In the previous section we have formally constructed a dynamics under which the target
distribution is stationary. It is also necessary to prove that this distribution is unique and
attracting. Because the distributions we consider have global support, we will see that
it is sufficient to show a Hörmander condition on the vector fields F and G (see related
proofs in [1, 8]). Establishing this condition is problem dependent.

By assumption the desired density ρ̂(y) > 0 for all y. Since ρ̂ is stationary under the
Fokker-Planck operator, ergodicity of ρ̂ can be established under the ergodic decomposi-
tion theorem if the Hörmander condition holds [7, 4, 5]. Consider the deterministic and
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Hamiltonian (specifically, divergence free and Hamiltonian-conserving), and (2) the target
distribution (Gibbs) is a smooth function of the conserved quantity H.

In a recent paper [9] we show how information theory can be used in combination
with Nosé-Hoover type methods to correct dynamics for observations of the mean values
of conserved quantities. Again, the approach of [9] is restricted to unperturbed systems
with Hamiltonian structure, and observables that are functions of the conserved quantities.
The methodology could be made significantly more generic if these restrictions on the
dynamics and probability distributions could be removed. The purpose of this note is to
describe a method that provides for this.

Specifically, we derive a thermostat that can be applied to an arbitrary, smooth differ-
ential equation to perturb its orbits such that they ergodically sample a generic, smooth
target distribution. The target distribution can in principle be any distribution of the
form ρ(y) ∼ exp(−A(y)), where A : Rd → R is bounded and differentiable. However, the
thermostat is most effective when this distribution is ‘close’ in some sense to the invariant
distribution of the unperturbed dynamics. In the §1 we review briefly an information
theoretic approach to correcting a prior distribution for a set of observed expectations.
In §2 we describe the new thermostat. In §2.1 we discuss ergodicity considerations. The
new thermostat is ineffective in the classical setting of a Hamiltonian system and Gibbs
distribution. Therefore, in Section §2.2 we describe necessary modifications for this case.
Finally we demonstrate the new thermostats for some simple examples in Section §3.

1 BAYESIAN MODELLING

For the purpose of this section, suppose y ∈ Rd is a random variable with distribution
(law) y ∼ ρ, where ρ : Rd → R is unknown. Suppose further, that we are given a prior
distribution π : Rd → R, assumed to be close to ρ.

The Kullback-Leibler divergence, or relative entropy,

S[ρ(y)] =


ρ(y) ln
ρ(y)

π(y)
dy

represents a (non-symmetric) distance between measures. In information theory it gives
the information lost in approximating ρ(y) by π(y).

Next, suppose we are given a set of K observations of y in the form of expectations

EρCk(y) =


Ck(y)ρ(y) dy = ck, k = 1, . . . , K. (2)

Then the least biased distribution ρ consistent with the observations ck and prior π is
given by the solution of the constrained minimization problem

ρ = argmin
ρ
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
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
ρ(y) dy
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where the λk are Lagrange multipliers associated with the observations (2). Solving the
minimization problem is an exercise in variational calculus. One finds

ρ(y) = λ0 exp (−λ1C1(y)− · · · − λKCK(y)) π(y), (3)

where the λk are chosen such that the observations (2) are satisfied.
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stochastic vector fields

U(y, ξ) =


F (y) + ξ2G(y)
ξX(y)− γξ


, V (y, ξ) =


0√
2γ



The Hörmander condition requires that the Lie algebra generated by U and V span Rn+1:

Rn+1 ⊂ Lie{U, V } = span{U, V, [U, V ], [U, [U, V ]], [V, [U, V ]], . . . }.

Let us suppose that G(y) is chosen such that the vector fields F (y) and G(y) satisfy the
Hörmander condition on Rn. Define vector fields F̂ = (F (y), 0), Ĝ = (G(y), 0) in Rn+1.
We show that

Rn+1 ⊂ Lie{F̂ , Ĝ, en+1} ⊂ Lie{U, V },
where en+1 = (0, . . . , 0, 1) is a canonical unit vector in the auxiliary variable direction.
The first inclusion follows from the Hörmander condition on Rn and is immediate. Since
γ > 0, it follows that V is proportional to en+1. We compute

U1 = [U, en+1] =


2ξ [G(y)− F (y)]

X(y)− γ


,

and

U2 =
1

2
[U1, en+1] =


G(y)− F (y)

0


= Ĝ− F̂ .

Next, define

V1 = U − ξ2

2
U1 −

ξ

2
(X(y)− γ)en+1 =


F (y)
0


= F̂

Clearly, U2 and V1 are contained in Lie{U, V }, as are their higher order commutators.
But V1 = f̂ and U2+ V1 = ĝ, combined with en+1, form the basis for the intermediate Lie
algebra, from which the inclusion follows.

2.2 A double thermostat for Hamiltonian systems

The approach of the previous section can fail in the standard canonical thermostating
situation when the vector field F = J∇H is divergence-free and the posterior measure
is the Gibbs measure, i.e. A(y) = βH(y). Here it can be checked that X(y) in (7) is
identically zero, and hence there is no feedback. We can extend the above approach
with a Nosé-Hoover-Langevin thermostat to ensure that in the absence of observations,
the system samples a prior π ∝ exp(−βH(y)). To do so, let us take F (y) = J∇H(y),
A(y) = βH(y) + λC(y), and introduce a second auxiliary variable η, with dynamics

dy = F (y) dt+ ηg(y) dt+ ξ2G(y, η) dt, (8)

dη = (∇ · g(y)− g(y) · ∇A(y)) dt− γHη dt+

2γHdwH , (9)

dξ = ξX(y, η) dt− γAξ dt+

2γA dw2. (10)

It can be checked that the composite measure ρ ∝ exp(−βH(y) − λC(y) − η2/2 − ξ2/2)
is stationary under the associated Fokker-Planck equation if we define X(y, η) by

X(y, η) = ∇ ·G(y, η)−G(y, η) · ∇A(y),

and ensure that G(y, η) satisfies

∇ ·G(y, η)−G(y, η) · ∇A− λf(y) · ∇C.

We give an example below.
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3 NUMERICAL EXPERIMENTS

In this section we present some specific examples.
Example 1 Consider a Harmonic oscillator, y ∈ R2,

y = F (y) = J∇H(y), H(y) =
1

2
(y21 + y22), J =


0 1
−1 0


,

and suppose we wish to enforce the invariant measure ρ(y) = exp(−1
2
(d1y

2
1+y22)) following

an observation of the variance of y1. We use the method (4)–(5). Taking A = (d1y
2
1+y22)/2,

we may choose G in the direction of the gradient of the observable C(y) = y21 by taking

G(y) = (α(y2), 0)
T .

Recalling that ∇ · F ≡ 0, the function α must satisfy

∇ ·G− (F +G) · ∇A = 0 = (y2 + α(y2),−y1) · (d1y1, y2) = d1y1y2 + α(y2)d1y1 − y1y2 = 0

which we can solve to obtain

α(y2) =
1− d1
d1

y2.

We expect this to be a minimally intrusive perturbation. Figure 1 illustrates short tra-
jectories for d1 = {0.9, 0.75, 0.5, 0.25}. For the case d1 = 0.5, Figure 2 illustrates the
histograms of y1 and y2. We see that the variances of y1, σ

2
1 = 1.8, and y2, σ

2
2 = 0.9 are

close to the target values of 2 and 1, respectively.
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Figure 1: Simulation of harmonic oscillator with A = (d1y
2
1 + y22)/2 and γ = 0.1.

Example 2 As a second example, we take a Hamiltonian system in R2 with double well
potential, given by Hamiltonian:

H(q, p) =
p2

2
+

q4

4
− q2

2
. (11)

We thermostat this system using (8)–(10). We choose the parameters as follows (note
that these satisfy the necessary conditions)

g(q, p) =


0
−p


, G(q, p, η) =


0

λ
β
(q − 1)


, X(q, p, η) = −γp(q − 1).

stochastic vector fields

U(y, ξ) =


F (y) + ξ2G(y)
ξX(y)− γξ


, V (y, ξ) =


0√
2γ



The Hörmander condition requires that the Lie algebra generated by U and V span Rn+1:

Rn+1 ⊂ Lie{U, V } = span{U, V, [U, V ], [U, [U, V ]], [V, [U, V ]], . . . }.

Let us suppose that G(y) is chosen such that the vector fields F (y) and G(y) satisfy the
Hörmander condition on Rn. Define vector fields F̂ = (F (y), 0), Ĝ = (G(y), 0) in Rn+1.
We show that

Rn+1 ⊂ Lie{F̂ , Ĝ, en+1} ⊂ Lie{U, V },
where en+1 = (0, . . . , 0, 1) is a canonical unit vector in the auxiliary variable direction.
The first inclusion follows from the Hörmander condition on Rn and is immediate. Since
γ > 0, it follows that V is proportional to en+1. We compute

U1 = [U, en+1] =


2ξ [G(y)− F (y)]

X(y)− γ


,

and

U2 =
1

2
[U1, en+1] =


G(y)− F (y)

0


= Ĝ− F̂ .

Next, define

V1 = U − ξ2

2
U1 −

ξ

2
(X(y)− γ)en+1 =


F (y)
0


= F̂

Clearly, U2 and V1 are contained in Lie{U, V }, as are their higher order commutators.
But V1 = f̂ and U2+ V1 = ĝ, combined with en+1, form the basis for the intermediate Lie
algebra, from which the inclusion follows.

2.2 A double thermostat for Hamiltonian systems

The approach of the previous section can fail in the standard canonical thermostating
situation when the vector field F = J∇H is divergence-free and the posterior measure
is the Gibbs measure, i.e. A(y) = βH(y). Here it can be checked that X(y) in (7) is
identically zero, and hence there is no feedback. We can extend the above approach
with a Nosé-Hoover-Langevin thermostat to ensure that in the absence of observations,
the system samples a prior π ∝ exp(−βH(y)). To do so, let us take F (y) = J∇H(y),
A(y) = βH(y) + λC(y), and introduce a second auxiliary variable η, with dynamics

dy = F (y) dt+ ηg(y) dt+ ξ2G(y, η) dt, (8)

dη = (∇ · g(y)− g(y) · ∇A(y)) dt− γHη dt+

2γHdwH , (9)

dξ = ξX(y, η) dt− γAξ dt+

2γA dw2. (10)

It can be checked that the composite measure ρ ∝ exp(−βH(y) − λC(y) − η2/2 − ξ2/2)
is stationary under the associated Fokker-Planck equation if we define X(y, η) by

X(y, η) = ∇ ·G(y, η)−G(y, η) · ∇A(y),

and ensure that G(y, η) satisfies

∇ ·G(y, η)−G(y, η) · ∇A− λf(y) · ∇C.

We give an example below.
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Figure 2: Thermostated harmonic oscillator with A = (0.5y21 + y22)/2 and γ = 0.1. Left:
histogram of y1; right: histogram of y2.

To sample just the Gibbsian prior distribution we take β = 10, λ = 0. We obtain the
dynamics and time series labeled Prior in Figure 3. The trajectory exhibits transition
behavior, spending most of its time in the neighborhood of the fixed points q = ±1, and
occasionally switching between these.

Suppose, now, we enforce the observation E(q − 1)2 = 0. Constructing the posterior
distribution as in §1, we take A(y) = βH(y) + λ(q − 1)2/2. In this case, the ratio λ/β
can also be thought of as expressing our relative certainty between the prior and posterior
distributions π and ρ, or put another way, a measure of the degree of confidence in our
observation.

Figure 3 plots the phase trajectory of the dual thermostat (labelled Posterior) on top
of the canonically thermostated trajectory for the case λ = β = 10. The trajectory now
spends all of its time in the potential well around q = 1.
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To sample just the Gibbsian prior distribution we take β = 10, λ = 0. We obtain the
dynamics and time series labeled Prior in Figure 3. The trajectory exhibits transition
behavior, spending most of its time in the neighborhood of the fixed points q = ±1, and
occasionally switching between these.

Suppose, now, we enforce the observation E(q − 1)2 = 0. Constructing the posterior
distribution as in §1, we take A(y) = βH(y) + λ(q − 1)2/2. In this case, the ratio λ/β
can also be thought of as expressing our relative certainty between the prior and posterior
distributions π and ρ, or put another way, a measure of the degree of confidence in our
observation.

Figure 3 plots the phase trajectory of the dual thermostat (labelled Posterior) on top
of the canonically thermostated trajectory for the case λ = β = 10. The trajectory now
spends all of its time in the potential well around q = 1.
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[11] Nosé, S. A unified formulation of the constant temperature molecular dynamics
methods. The Journal of Chemical Physics, 81(1):511–519, 1984.

[12] Samoletov, A., Dettmann, C., and Chaplain, M. Thermostats for “slow” configura-
tional modes. Journal of Statistical Physics, 128(6):1321–1336, 2007.

30



Geometric-Mechanics-Inspired Model of
Stochastic Dynamical Systems

YAGUCHI, T.1

1 Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 JAPAN

JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, JAPAN

yaguchi@pearl.kobe-u.ac.jp

1 INTRODUCTION

In this paper, we propose a geometric-mechanics-inspired model for stochastic time series.
In the parametric approach for static stochastic systems, statistical models are used for
analysis. A statistical model is a parametrised set of probabilistic distributions. As is
known in information geometry [1], most of statistical models form a manifold with a
suitable Riemannian structure and with a pair of affine connections. The model that is
proposed in this paper is a model for stochastic time series, which is itself a time series
on that manifold. In this model the point in the sequence corresponding to the time t
represents a statistical model that generates the data at t. This time series is estimated
in a similar way to the principle of least action with a Lagrangian that is a combination
of the log-likelihood and a penalty term related to the smoothness of the series. As an
application, the model is used for a statistical test of difference of the dynamics of two
given time series.

2 OUTLINE OF THE MODEL

Suppose that a set of time series xn, n = 1, . . . , N is given. We assume that for each time
series and for each fixed n, xn is a sample from a probabilistic distribution P (X; θ(n))

in a statistical model M of which parameters are θ(n) = (θ
(n)
1 , . . . , θ

(n)
m ), where m is the

number of the parameters. The aim is estimating these θ(n)’s from the given data under
the condition that the θ(n)’s are smooth in a certain sense.

To this end, we consider an application of discrete mechanics [2] to this estimation.
Discrete mechanics is a framework for deriving numerical integrators for the equation
of motion of analytical mechanics. This framework defines the discretised equation of
motion on a given configuration manifold by applying the discretised principle of least
action, if a discrete Lagrangian is given. As orbits of motions are typically smooth, we
apply this approach to design a smooth trajectory on the manifold of the statistical model.
Actually, as shown in information geometry, statistical models form manifolds, and hence
this approach is available for dynamical series on statistical manifolds. In information
geometry, quantities are defined so that they are invariant under the change of statistics
between sufficient statistics [1]. In particular, the distance between two points on the
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Figure 1: The normalised stock prices of Toyota (left) and Honda (right) and the esti-
mated models are shown. The horizontal axis indicates the date and the vertical axis the
normalised prices. The crosses represent the stock values and the circles the estimated
mean values. The error bars represent the standard deviation.

manifold can be measured by the Kullback–Leibler divergence. The Lagrangian and the
action sum should be defined by using these geometric quantities only. In this paper, we
use the following action sum, which is a sum of the log-likelihood and the symmetrised
Kullback–Leibler divergence:

minimize
N−1
n=1

1

2h

�
D(θ(n+1) || θ(n)) + D(θ(n) || θ(n+1))


−

N
n=1

lnL(θ(n)),

where D(· || ·) is the Kullback–Leibler divergence and h is a parameter that determines
the balance of the two terms. L(·) is the likelihood.

3 APPLICATION TO A TEST OF THE DIFFER-

ENCE OF TWO TIME SERIES

As an application, we tried to fit this model to the stock prices of Toyota and Honda on
July, 2016. All the calculations are performed by using R. We use the set of normal distri-
butions as the statistical model M and the parameter h = 1.0. The data are normalised
so that the mean values are 0 and the standard deviations 1. The data and the results
are shown in Figure 1.

As shown in these figures, the dynamics of the normalised data of these stock prices
are somewhat similar to each other. With that, we performed a statistical test of the
difference of these two time series. The test is a Kolmogorov–Smirnov-type test. We used
the Kullback–Leibler divergence as the test statistics. More precisely, the procedure of
the test which we performed is as the following.

1. Let θ
(n)
T ’s and θ

(n)
H ’s be the estimated parameters for the Toyota and Honda data.
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2. The null hypothesis H0 is that the data of the Honda stock price are generated by
the distribution with θ

(n)
T ’s.

3. Set the level of significance α.

4. Compute the p-value by the Monte–Carlo method.

(a) Generate samples from the model with θ
(n)
T ’s.

(b) For each sample, estimate the parameter θ̃(n)’s and compute the sum of the
symmetrised KL divergence

T ({θ̃(n)}) =
N−1
n=1

1

2


D(θ

(n)
T || θ̃(n)) + D(θ̃(n) || θ(n)T )



(c) Compute the p-value by p = Prob(T ({θ̃(n)}) < T ({θ(n)H }))

5. H0 is rejected if p ≥ 1 − α.

Although the above test is of the null hypothesis H0 that the data of the Honda stock
price are generated by the distribution of Toyota, we also performed the alternative test
where H0 is that the data of Toyota are generated by the distribution of Honda. The
number of samples in the Monte–Carlo method was 1000. If H0 is the former one, the
computed p-value was 0.626. In the case where H0 is the latter, the computed p-value
was 0.824. Although these p-values are relatively high, they are not enough for rejecting
the hypothesis. That is, according to the tests above the difference is not significant.
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manifold can be measured by the Kullback–Leibler divergence. The Lagrangian and the
action sum should be defined by using these geometric quantities only. In this paper, we
use the following action sum, which is a sum of the log-likelihood and the symmetrised
Kullback–Leibler divergence:

minimize
N−1
n=1

1

2h

�
D(θ(n+1) || θ(n)) + D(θ(n) || θ(n+1))


−

N
n=1

lnL(θ(n)),

where D(· || ·) is the Kullback–Leibler divergence and h is a parameter that determines
the balance of the two terms. L(·) is the likelihood.

3 APPLICATION TO A TEST OF THE DIFFER-

ENCE OF TWO TIME SERIES

As an application, we tried to fit this model to the stock prices of Toyota and Honda on
July, 2016. All the calculations are performed by using R. We use the set of normal distri-
butions as the statistical model M and the parameter h = 1.0. The data are normalised
so that the mean values are 0 and the standard deviations 1. The data and the results
are shown in Figure 1.

As shown in these figures, the dynamics of the normalised data of these stock prices
are somewhat similar to each other. With that, we performed a statistical test of the
difference of these two time series. The test is a Kolmogorov–Smirnov-type test. We used
the Kullback–Leibler divergence as the test statistics. More precisely, the procedure of
the test which we performed is as the following.

1. Let θ
(n)
T ’s and θ

(n)
H ’s be the estimated parameters for the Toyota and Honda data.
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1 INTRODUCTION

We proposed a discrete-time general N -body problem (abbreviated to d-GNBP here)
[5], that retains all conserved quantities except the angular momentum of the original
general N -body problem (abbreviated to GNBP here). d-GNBP is given by an extension
of a d’Alembert-type scheme [1], which is an energy-preserving integration method for
constrained autonomous Hamiltonian systems.

In this lecture note, we prove that d-GNBP has the same rotating polygon formed by
its masses as GNBP for the common initial conditions. Therefore, d-GNBP can exactly
trace the eccentric orbits of equilibrium solutions in the original GNBP, each of which cor-
responds to a vertex of the polygon. Contrastively, generic numerical integration methods
cannot reproduce these orbits over a long time interval. Before this proof, no discrete-
time system had been shown to retain the orbits of the equilibrium solutions in GNBP.
Further, we obtain eighth-order d-GNBP through Yoshida’s composition technique [9],
which also trace the orbits of equilibrium solutions.

Although d-GNBP is merely second-order accurate, it can also precisely reproduce
doubly-symmetric orbits of the general (1 + 4)-body problem, each of which passes near
a square equilibrium solution. However, d-GNBP cannot trace a figure-eight orbit [2, 8]
of the three-body problem since it does not preserve the angular momentum. Eighth-
order d-GNBP overcomes this non-reproducibility, and moreover it as well as the original
d-GNBP can exactly trace the orbits of equilibrium solutions.

2 DISCRETE-TIME N-BODY PROBLEM

Minesaki [5] proposed d-GNBP, which is based on an extension of a d’Alembert-type
scheme [1]. Especially, the planar d-GNBP is expressed by




Q
(l+1)
ij −Q

(l)
ij

∆t(l,l+1)
=

M

8mimj

|Q(l+1)
ij |2 + |Q(l)

ij |2

|Q(l+1)
ij |2|Q(l)

ij |2
P

(l+1/2)
ij 1 ≤ i < j ≤ N, (1a)

j−1∑
i=1

G
(l+1)
ij −

N∑
i=j+1

G
(l+1)
ji = 0, 1 ≤ j ≤ N. (1b)

Φ
(l+1)
1ij = 0, 2 ≤ i < j ≤ N. (1c)
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mi (i = 1, · · · , n) is the mass of the i-th particle, M =
∑

i=0 mi, ∆t(l,l+1) (l = 0, 1, · · · )
is a variable-width time step, P

(k)
ij and Q

(k)
ij mean the values of the Levi-Civita variables,

Pij and Qij [3] at (discrete) times t(0) = 0 and t(k) =
∑k−1

l=0 ∆t(l,l+1) (k = 1, 2, · · · ),
respectively, and

G
(l+1)
ij ≡ 1

2|Q(l+1/2)
ij |2

(
P
(l+1)
ij −P

(l)
ij

∆t(l,l+1)
− 1

|Q(l+1)
ij |2|Q(l)

ij |2

·
(

M

8mimj

(
|P(l+1)

ij |2+|P(l)
ij |2

)
−2mimj

)
Q

(l+1/2)
ij

)
L
(
Q

(l+1/2)
ij

)⊤
, 1 ≤ i < j ≤ N,

Φ
(l+1)
1ij ≡ Q

(l+1)
1i L(Q

(l+1)
1i )⊤+Q

(l+1)
ij L(Q

(l+1)
ij )⊤−Q

(l+1)
1j L(Q

(l+1)
1j )⊤, 2 ≤ i < j ≤ N.

Here, we define the midpoint value (•)(l+1/2) ≡
(
(•)(l+1) + (•)(l)

)
/2 of the function (•)(t),

and the Levi–Civita matrix L(Q
(k)
ij ) as

L(Q
(k)
ij ) ≡

[
Q

(k)
ij[1] −Q

(k)
ij[2]

Q
(k)
ij[2] Q

(k)
ij[1]

]
, k = l, l +

1

2
, l + 1.

Since we designed d-GNBP (1) based on a d’Alembert-type scheme [1] which is an energy-
preserving integration method for constrained systems, d-GNBP is second-order accurate
and conserves the total energy.

Setting ∆t as 0 in d-GNBP (1), we can obtain GNBP in the Levi–Civita reference
frame: 



d

dt
Qij=

M

4mimj

Pij

|Qij|2
, 1 ≤ i < j ≤ N,

j−1∑
i=1

Gij −
N∑

i=j+1

Gji = 0, 1 ≤ j ≤ N,

Φ1ij(Q) = 0, 2 ≤ i < j ≤ N,

(2)

where

Gij ≡
1

2|Qij|2

(
d

dt
Pij −

1

|Qij|4

(
M

4mimj

|Pij|2 − 2mimj

)
Qij

)
L(Qij)

⊤, 1 ≤ i < j ≤ N.

The form of GNBP (2) is very different from the well-known form of GNBP in the inertial
barycentric frame, so (1) does not look like d-GNBP. However, through the canonical
transformation from the Levi-Civita reference frame to the inertial relative frame [3]:

qij = QijL(Qij)
⊤, pij =

1

2|Qij|2
PijL(Qij)

⊤, 1 ≤ i < j ≤ N, (3)

and the transformation from the inertial relative frame to the inertial barycentric frame:

q′
i =

1

M

(
N∑

j=i+1

mjqij −
i−1∑
j=1

mjqji

)
, p′

i =
N∑

j=i+1

pij −
i−1∑
j=0

pji, 1 ≤ i ≤ N, (4)

(2) leads to the well-known GNBP in the inertial barycentric frame:

d

dt
q′
i =

p′
i

mi

,
d

dt
p′
i = mi

(
i−1∑
k=1

mk (q
′
k − q′

i)

|q′
k − q′

i|3
−

N∑
k=i+1

mk (q
′
i − q′

k)

|q′
i − q′

k|3

)
, 1 ≤ i ≤ N. (5)

The transformations (3) and (4) ensure that the linear momentum and the point of center
of mass are conserved.
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1 INTRODUCTION

We proposed a discrete-time general N -body problem (abbreviated to d-GNBP here)
[5], that retains all conserved quantities except the angular momentum of the original
general N -body problem (abbreviated to GNBP here). d-GNBP is given by an extension
of a d’Alembert-type scheme [1], which is an energy-preserving integration method for
constrained autonomous Hamiltonian systems.

In this lecture note, we prove that d-GNBP has the same rotating polygon formed by
its masses as GNBP for the common initial conditions. Therefore, d-GNBP can exactly
trace the eccentric orbits of equilibrium solutions in the original GNBP, each of which cor-
responds to a vertex of the polygon. Contrastively, generic numerical integration methods
cannot reproduce these orbits over a long time interval. Before this proof, no discrete-
time system had been shown to retain the orbits of the equilibrium solutions in GNBP.
Further, we obtain eighth-order d-GNBP through Yoshida’s composition technique [9],
which also trace the orbits of equilibrium solutions.

Although d-GNBP is merely second-order accurate, it can also precisely reproduce
doubly-symmetric orbits of the general (1 + 4)-body problem, each of which passes near
a square equilibrium solution. However, d-GNBP cannot trace a figure-eight orbit [2, 8]
of the three-body problem since it does not preserve the angular momentum. Eighth-
order d-GNBP overcomes this non-reproducibility, and moreover it as well as the original
d-GNBP can exactly trace the orbits of equilibrium solutions.

2 DISCRETE-TIME N-BODY PROBLEM

Minesaki [5] proposed d-GNBP, which is based on an extension of a d’Alembert-type
scheme [1]. Especially, the planar d-GNBP is expressed by




Q
(l+1)
ij −Q

(l)
ij

∆t(l,l+1)
=

M

8mimj

|Q(l+1)
ij |2 + |Q(l)

ij |2

|Q(l+1)
ij |2|Q(l)

ij |2
P

(l+1/2)
ij 1 ≤ i < j ≤ N, (1a)

j−1∑
i=1

G
(l+1)
ij −

N∑
i=j+1

G
(l+1)
ji = 0, 1 ≤ j ≤ N. (1b)

Φ
(l+1)
1ij = 0, 2 ≤ i < j ≤ N. (1c)
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3 EQUILIBRIUM SOLUTIONS IN D-GNBP

We give, analytically, the conditions under which d-GNBP (1) has some equilibrium
solutions. In the solutions, all or N −1 of N masses form a rotating polygon whose shape
is invariant and whose size does one of the following: increases or decreases monotonically;
increases and decreases alternately; or is invariant. We obtain the following theorem
regarding the equilibrium solutions.

Theorem 1 (Equilibrium solutions for d-GNBP)

Suppose that (Q
(l)
ij ,P

(l)
ij ) for 1 ≤ i < j ≤ N in d-GNBP (1) satisfy the following condi-

tions.

1. (Q
(l)
1N ,Q

(l+1)
1N ,P

(l)
1N ,P

(l+1)
1N ) is a solution of the discrete-time two-body problem (abbre-

viated to d-2BP here) [6]:




Q
(l+1)
1N −Q

(l)
1N

∆t(l,l+1)
=

M

8m1mN

|Q(l+1)
1N |2 + |Q(l)

1N |2

|Q(l+1)
1N |2|Q(l)

1N |2
P

(l+1/2)
1N , (6a)

P
(l+1)
1N −P

(l)
1N

∆t(l,l+1)
=

1

|Q(l+1)
1N |2|Q(l)

1N |2

(
M

8m1mN

(
|P(l+1)

1N |2+|P(l)
1N |

2
)
−2m1mN

)
Q

(l+1/2)
1N .(6b)

2. Q
(l)
ij = cijQ

(l)
1NR

(
θij
2

)⊤

, P
(l)
ij = c3ij

mimj

m1mN

P
(l)
1NR

(
θij
2

)⊤

(1 ≤ i ≤ j ≤ N) is given,

where c12, · · · , c1,N−1, c1,N ≡ 1 and θ1N = 0 are constants, and the rotation matrix
by an angle θ is

R(θ) ≡
[
cos θ − sin θ
sin θ cos θ

]
.

Further, cij, and θij (1 ≤ i < j ≤ N) are the solutions for the system composed of
N(N − 1) equations:




j−1∑
i=1

mi

c4ij
(c6ij − 1) cos θij −

N∑
i=j+1

mi

c4ji
(c6ji − 1) cos θji = 0, 2 ≤ j ≤ N, (7a)

j−1∑
i=1

mi

c4ij
(c6ij − 1) sin θij −

N∑
i=j+1

mi

c4ji
(c6ji − 1) sin θji = 0, 2 ≤ j ≤ N, (7b)

c21i sin θ1i + c2ij sin θij − c21j sin θ1j = 0, 2 ≤ i < j ≤ N (7c)

c21i cos θ1i + c2ij cos θij − c21j cos θ1j = 0, 2 ≤ i < j ≤ N. (7d)

Then, Q
(l+1)
ij , and P

(l+1)
ij are obtained by

Q
(l+1)
ij = cijQ

(l+1)
1N R

(
θij
2

)⊤

, P
(l+1)
ij = c3ij

mimj

m1mN

P
(l+1)
1N R

(
θij
2

)⊤

, 1 ≤ i ≤ j ≤ N.

Further, Minesaki and Nakamura [6] proved that both of d-2BP (6) and the original
continuous-time two-body problem have orbits uniquely determined by three common
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functionally independent conserved quantities. This also describes a case in which d-2BP
(6) has the same orbit as the original two-body problem to which d-2BP (6) reduces in
the limit ∆t(l,l+1) → 0 (l = 0, 1, · · · ).

Theorem 1 shows that for an arbitrary discrete-time t(l) (l = 0, 1, · · · ),

(a) the ratios between arbitrary two absolute values of the N(N − 1)/2 vectors, |Q(k)
ij |

(1 ≤ i < j ≤ N), and

(b) the angles between the same arbitrary pair of these N(N − 1)/2 vectors, θij (1 ≤
i < j ≤ N)

are invariant. Therefore, for the same initial conditions, the orbit of each of the N masses
mi (i = 1, · · · , N) in d-GNBP (1) is the same as its orbit in GNBP, and the shape of an
(N − 1)-gon around a large mass m1 formed by N − 1 small masses m2, m3, · · · , mN or
N -gon composed of N masses m1, m2, · · · , mN is invariant.

4 Numerical Results

For some equilibrium solutions and some periodic solutions, we compare the orbits by the
following methods.

1. Non-regularized integration methods

1-(a). RK8: The eighth-order Runge–Kutta method with a constant time step, which
is used to integrate GNBP in the heliocentric frame.

1-(b). McL8: The eighth-order symplectic method with a constant time step, which
is applied to GNBP in the heliocentric frame. A composition of the maps
associated with the total kinetic energy and potential yields McL8. McL8 is
one of some composition methods proposed by McLachlan [4].

2. Regularized integration methods

2-(a). LHA8: The eighth-order symplectic method with a variable time step, which
is used to integrate GNBP in the heliocentric frame. Mikkola and Tanikawa
[7] gave a symmetric second-order method with a variable time step. LHA8 is
derived from this symmetric method through Yoshida’s composition technique
[9].

2-(b). d-GNBP: d-GNBP is obtained by (1) and is second-order accurate in ∆t(l,l+1).
However, d-GNBP cannot yield regular results for collisions because it is sin-
gular at each Q

(l)
ij = 0 and Q

(l+1)
ij = 0 (1 ≤ i < j ≤ n). Through the new time

transformation

∆s(l,l+1) ≡ s(l+1) − s(l)

=
2∆t(l,l+1)

(
N−1∑
i=1

N∑
j=i

mimj

|Q(l)
ij |2

)−1

+

(
N−1∑
i=1

N∑
j=i

mimj

|Q(l+1)
ij |2

)−1 ,

d-GNBP can be rewritten as a regularized discrete-time system.

2-(c). 8th-order d-GNBP: The eighth-order d-GNBP in ∆t(l,l+1), which is based on
Yoshida’s composition technique [9] of d-GNBP.

3 EQUILIBRIUM SOLUTIONS IN D-GNBP

We give, analytically, the conditions under which d-GNBP (1) has some equilibrium
solutions. In the solutions, all or N −1 of N masses form a rotating polygon whose shape
is invariant and whose size does one of the following: increases or decreases monotonically;
increases and decreases alternately; or is invariant. We obtain the following theorem
regarding the equilibrium solutions.

Theorem 1 (Equilibrium solutions for d-GNBP)

Suppose that (Q
(l)
ij ,P

(l)
ij ) for 1 ≤ i < j ≤ N in d-GNBP (1) satisfy the following condi-

tions.

1. (Q
(l)
1N ,Q

(l+1)
1N ,P

(l)
1N ,P

(l+1)
1N ) is a solution of the discrete-time two-body problem (abbre-

viated to d-2BP here) [6]:
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2
)
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)
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ij = cijQ

(l)
1NR

(
θij
2

)⊤

, P
(l)
ij = c3ij

mimj

m1mN
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(l)
1NR

(
θij
2

)⊤

(1 ≤ i ≤ j ≤ N) is given,

where c12, · · · , c1,N−1, c1,N ≡ 1 and θ1N = 0 are constants, and the rotation matrix
by an angle θ is

R(θ) ≡
[
cos θ − sin θ
sin θ cos θ

]
.

Further, cij, and θij (1 ≤ i < j ≤ N) are the solutions for the system composed of
N(N − 1) equations:




j−1∑
i=1

mi

c4ij
(c6ij − 1) cos θij −

N∑
i=j+1

mi

c4ji
(c6ji − 1) cos θji = 0, 2 ≤ j ≤ N, (7a)

j−1∑
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c4ij
(c6ij − 1) sin θij −
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(c6ji − 1) sin θji = 0, 2 ≤ j ≤ N, (7b)

c21i sin θ1i + c2ij sin θij − c21j sin θ1j = 0, 2 ≤ i < j ≤ N (7c)

c21i cos θ1i + c2ij cos θij − c21j cos θ1j = 0, 2 ≤ i < j ≤ N. (7d)

Then, Q
(l+1)
ij , and P

(l+1)
ij are obtained by

Q
(l+1)
ij = cijQ

(l+1)
1N R

(
θij
2

)⊤

, P
(l+1)
ij = c3ij

mimj

m1mN

P
(l+1)
1N R

(
θij
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)⊤

, 1 ≤ i ≤ j ≤ N.

Further, Minesaki and Nakamura [6] proved that both of d-2BP (6) and the original
continuous-time two-body problem have orbits uniquely determined by three common
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Figure 1: Elliptic relative equilibrium orbits in the G5BP with eccentricity 0.9 of mi

(2 ≤ i ≤ 5) in the barycentric inertial reference frame. Each panel’s title describes the
numerical method used to produce it.

Figure 2: Figure-eight orbit in the G3BP of m1 in the barycentric inertial reference frame,
and absolute error growth of the angular momentum.
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We show that d-GNBP can precisely compute some elliptic relative equilibrium or-
bits of G5BP in Figure 1, and eighth-order d-GNBP can trace a figure-eight orbit of
G3BP [2, 8] in Figure 2. Although McL8, LHA8, and d-GNBP preserve the energy with
high accuracy, only d-GNBP can reproduce elliptic relative equilibrium orbits. d-GNBP
does not conserve the angular momentum, so that it cannot trace a figure-eight orbit.
Contrastively, because eighth-order d-GNBP precisely conserves both of the energy and
angular momentum, it can reproduce a figure-eight orbit.
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1 Introduction

In this work we study a generalisation of classical gradient descent that has become
known in the literature as the so-called linearised Bregman iteration [8, 7], and – as the
key novelty of this publication – apply it to minimise smooth but not necessarily convex
objectives E : U → R over a Banach space U . For this generalisation we want to consider
proper, lower semi-continuous (l.s.c.), convex but not necessarily smooth functionals J :
U → R ∪ {∞}, and consider their generalised Bregman distances

Dp
J(u, v) = J(u)− J(v)− p, u− v ,

for u, v ∈ U and p ∈ ∂J(v), where ∂J(v) denotes the subdifferential of J . Note that in case
J is smooth we omit p in the notation of the Bregman distance, as the subdifferential is
single-valued in this case. We further assume that there exists a proper, l.s.c., convex and
not necessary smooth functional F : U → R ∪ {∞} such that the functional G := F − E

is also convex. This will imply D
q−∇E(v)
G (u, v) ≥ 0 for all u, v ∈ dom(G) and q ∈ ∂F (v),

since q −∇E is the gradient of G. Hence, the convexity of G yields the descent estimate

E(u) ≤ E(v) + ∇E(v), u− v+Dq
F (u, v) , (1)

for all u, v ∈ dom(F ) and q ∈ ∂F (v). We want to emphasise that in case of F (u) =
L
2
u22 (for some constant L > 0) (1) reduces to the classical Lipschitz estimate; this

generalisation has also been discovered in [2] simultaneously to this work (without the
generalisation of Bregman distances to non-smooth functionals, though).
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2 Linearised Bregman iteration applied to non-convex

problems

The linearised Bregman iteration that we are going to study in this work is defined as

uk+1 = argmin
u∈dom(J)


τ ku− uk,∇E(uk)+Dpk

J (u, u
k)

, (2a)

pk+1 = pk − τ k∇E(uk) , (2b)

for k ∈ N, some u0 ∈ U and p0 ∈ ∂J(u0). Here J : U → R ∪ {∞} is not only proper,
l.s.c. and convex, but also chosen such that the overall functional in (2a) is coercive and
strictly convex and thus, its minimiser well-defined and unique.

We want to highlight that this model has been studied for several scenarios in which E
is the convex functional E(u) = 1

2
Ku−f22, for data f and linear and bounded operators

K (cf. [8, 7]), for more general convex functionals E and smooth J in [6, 3], as well as for
the non-convex functional E(u) = 1

2
K(u)− f22 for data f and a smooth but non-linear

operator K in [1]. However, to our knowledge this is the first work that studies (2) for
general smooth but not necessarily convex functionals E.

3 A sufficient decrease property

We want to show that together with the descent estimate (1) we can guarantee a sufficient
decrease property of the iterates (2) in terms of the symmetric Bregman distance. The
symmetric Bregman distance Dsymm

J (u, v) (cf. [5]) is simply defined as Dsymm
J (u, v) =

Dq
J(u, v) +Dp

J(v, u) = u− v, p− q for all u, v ∈ dom(J), p ∈ ∂J(u) and q ∈ ∂J(v).

Lemma 1 (Sufficient decrease property). Let E : U → R be a l.s.c. and smooth functional
that is bounded from below and for which a proper, l.s.c. and convex functional F : U →
R ∪ {∞} exists such that G := F − E is also convex. Further, let J : U → R ∪ {∞} be
a proper, l.s.c. and convex functional such that (2a) is well defined and unique. Further
we choose τ k such that the estimate

ρDsymm
J (uk+1, uk) ≤ 1

τ k
Dsymm

J (uk+1, uk)−Dqk

F (u
k+1, uk) (3)

holds true, for all k ∈ N, qk ∈ ∂F (uk) and a fixed constant 0 < ρ < ∞. Then the iterates
of the linearised Bregman iteration (2) satisfy the descent estimate

E(uk+1) + ρDsymm
J (uk+1, uk) ≤ E(uk) . (4)

In addition, we observe

lim
k→∞

Dsymm
J (uk+1, uk) = 0 .

Proof. First of all, we easily see that update (2b), i.e.

τ k∇E(uk) + (pk+1 − pk) = 0 ,

is simply the optimality condition of (2a), for pk+1 ∈ ∂J(uk+1). Taking a dual product of
(2b) with uk+1 − uk yields

∇E(uk), uk+1 − uk = − 1

τ k
Dsymm

J (uk+1, uk) . (5)
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known in the literature as the so-called linearised Bregman iteration [8, 7], and – as the
key novelty of this publication – apply it to minimise smooth but not necessarily convex
objectives E : U → R over a Banach space U . For this generalisation we want to consider
proper, lower semi-continuous (l.s.c.), convex but not necessarily smooth functionals J :
U → R ∪ {∞}, and consider their generalised Bregman distances

Dp
J(u, v) = J(u)− J(v)− p, u− v ,

for u, v ∈ U and p ∈ ∂J(v), where ∂J(v) denotes the subdifferential of J . Note that in case
J is smooth we omit p in the notation of the Bregman distance, as the subdifferential is
single-valued in this case. We further assume that there exists a proper, l.s.c., convex and
not necessary smooth functional F : U → R ∪ {∞} such that the functional G := F − E

is also convex. This will imply D
q−∇E(v)
G (u, v) ≥ 0 for all u, v ∈ dom(G) and q ∈ ∂F (v),

since q −∇E is the gradient of G. Hence, the convexity of G yields the descent estimate

E(u) ≤ E(v) + ∇E(v), u− v+Dq
F (u, v) , (1)

for all u, v ∈ dom(F ) and q ∈ ∂F (v). We want to emphasise that in case of F (u) =
L
2
u22 (for some constant L > 0) (1) reduces to the classical Lipschitz estimate; this

generalisation has also been discovered in [2] simultaneously to this work (without the
generalisation of Bregman distances to non-smooth functionals, though).
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Due to (1) we can further estimate

E(uk+1) ≤ E(uk) + uk+1 − uk,∇E(uk)+Dqk

F (u
k+1, uk) ,

for qk ∈ ∂F (uk). Together with (5) we therefore obtain

E(uk+1) +
1

τ k
Dsymm

J (uk+1, uk)−Dqk

F (u
k+1, uk) ≤ E(uk) .

Using (3) then allows us to conclude

0 ≤ ρDsymm
J (uk+1, uk) ≤ E(uk)− E(uk+1) ;

hence, summing up over all N iterates and telescoping yields

N
k=0

ρDsymm
J (uk+1, uk) ≤

N
k=0

E(uk)− E(uk+1) ,

= E(u0)− E(uN+1) ,

≤ E(u0)− E < ∞ ,

where E denotes the lower bound of E. Taking the limit N → ∞ then implies

∞
k=0

ρDsymm
J (uk+1, uk) < ∞ ,

and thus, we have limk→∞Dsymm
J (uk+1, uk) = 0 due to ρ > 0.

Remark 1. We want to emphasise that Lemma 1 together with the duality Dsymm
J (uk+1, uk) =

Dsymm
J∗ (pk+1, pk), for pk+1 ∈ ∂J(uk+1) and pk ∈ ∂J(uk), further implies

lim
k→∞

Dsymm
J∗ (pk+1, pk) = 0 ,

and hence, a sufficient decrease property holds also for the dual iterates. Here J∗ : U∗ →
R ∪ {∞} denotes the Fenchel conjugate of J , and U∗ is the dual space of U .

4 A global convergence statement

For the following part we assume that both J and J∗ are strongly convex w.r.t. the U -
respectively the U∗-norm, i.e. there exist constants γ > 0 and δ > 0 such that

γu− v2U ≤ Dsymm
J (u, v) and δp− q2U∗ ≤ Dsymm

J∗ (p, q) (6)

hold true for all u, v ∈ U and p, q ∈ U∗. From Lemma 1 and (6) we readily obtain

ρ1uk+1 − uk2U ≤ E(uk)− E(uk+1) , (7)

for ρ1 := γ/ρ, which implies limk→∞ uk+1 − ukU = 0.
We follow [4] and establish a global convergence result by proving that the dual norm

of the gradient is bounded by the iterates gap in addition to the already proven descent
result (7). Together with a generalised Kurdyka-Lojasiewicz property we will be able to
prove a global convergence statement for (2).

Given (6), we obtain the necessary iterates gap in the corresponding Banach space
norm as an upper bound for the gradient in the dual Banach space norm, as follows.
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(a) Ground truth (b) Gradient descent (c) R(u) = 1
2∇u2L2 (d) R(u) = Cu1

Figure 1: A phase unwrapping example. Figure 1(a) shows the unknown, noise-free,
ground truth signal. Figure 1(b) shows the result of classical gradient descent computa-
tion. Figure 1(c) visualises the solution of model 2.) with α = 1000. Figure 1(d) shows
the solution of model 3.) with α = 50. All reconstructions have been computed from zero
initialisations and were stopped according to the same discrepancy principle.

5 Phase unwrapping as a toy example

We want to conclude this paper with a numerical toy example for which we consider to
minimise E(u) := 1

2
K(u) − f2L2(Ω;R2) for K(u) = (cos(u), sin(u))T , and choose F (u) =

L
2
u2L2(Ω) with L = 1. We will minimise E via (2) with J(u) := 1

2
u2L2(Ω) + αR(u),

for a positive scalar α > 0 and three different choices of R: 1.) R(u) = 0, 2.) R(u) =
1
2
∇u2L2(Ω;R2), and 3.) R(u) = Cu1 , where C denotes the two-dimensional discrete
Cosine transform. The first case simply corresponds to classical gradient descent, case
2.) is gradient descent in a Hilbert space metric and 3.) corresponds to gradient descent
in a non-smooth Bregman distance setting that does not correspond to a metric. Note
that the question, whether E and J satisfy all conditions that are necessary for global
convergence, will be omitted due to the page limit, but addressed in an extended version
of this manuscript in the future. We do want to mention, though, that it is easy to see
that J in 3.) does not meet the requirement (7); this, however, can be corrected via a
smoothing of the 1-norm, for instance via a Huberised 1-norm.

In order to consider numerical examples, we discretise the above scenarios in a straight
forward fashion. Input data f is created by applying the non-linear operator K to a mul-
tiple of the built-in MATLAB c signal ’peaks’ (see Figure 1(a)) and additive normal
distributed noise with mean zero and standard deviation σ = 0.15. Due to noise in the
data, the iteration (2) is stopped as soon as E(uk) ≤ σ2m/2 is satisfied. Here m denotes
the number of discrete samples. Reconstruction results for zero initialisations and the
choice τ k = 1.5 for all k ∈ N can be found in Figure 1(b), 1(c) and 1(d). We want to
emphasise that this example is just a toy example to demonstrate the impact of different
choices of J ; there are certainly much better unwrapping strategies, particularly for the
unwrapping of smooth signals.

Code statement: The corresponding MATLAB c code can be downloaded at
https://doi.org/10.17863/CAM.6714.

6 Conclusions & Outlook

We have presented a short convergence analysis of the linearised Bregman iteration for the
minimisation of general smooth but non-convex functionals. We have proven a sufficient
decrease property, and confirmed that the dual norm of the gradient is bounded by the
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primal iterates under additional strong convexity assumptions of the convex functional
that builds the basis for the Bregman iteration. Under a generalised KL condition, we
have stated a global convergence result that we are going to refine in detail in a future
release. We have concluded with a numerical toy example of phase unwrapping for three
different Bregman distances. In a future work we are going to analyse the linearised
Bregman iteration and its convergence behaviour in more detail and in a more generalised
setting, and are going to investigate different Bregman distance choices as well as different
numerical applications.
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[4] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Mathematical Programming,
146(1-2):459–494, 2014.

[5] Martin Burger, Elena Resmerita, and Lin He. Error estimation for Bregman iterations
and inverse scale space methods in image restoration. Computing, 81(2-3):109–135,
2007.

[6] Arkadi Nemirovski and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1982.

[7] Wotao Yin. Analysis and generalizations of the linearized Bregman method. SIAM
Journal on Imaging Sciences, 3(4):856–877, 2010.

[8] Wotao Yin, Stanley Osher, Donald Goldfarb, and Jerome Darbon. Bregman iterative
algorithms for 1-minimization with applications to compressed sensing. SIAM Journal
on Imaging Sciences, 1(1):143–168, 2008.

(a) Ground truth (b) Gradient descent (c) R(u) = 1
2∇u2L2 (d) R(u) = Cu1

Figure 1: A phase unwrapping example. Figure 1(a) shows the unknown, noise-free,
ground truth signal. Figure 1(b) shows the result of classical gradient descent computa-
tion. Figure 1(c) visualises the solution of model 2.) with α = 1000. Figure 1(d) shows
the solution of model 3.) with α = 50. All reconstructions have been computed from zero
initialisations and were stopped according to the same discrepancy principle.

5 Phase unwrapping as a toy example

We want to conclude this paper with a numerical toy example for which we consider to
minimise E(u) := 1

2
K(u) − f2L2(Ω;R2) for K(u) = (cos(u), sin(u))T , and choose F (u) =

L
2
u2L2(Ω) with L = 1. We will minimise E via (2) with J(u) := 1

2
u2L2(Ω) + αR(u),

for a positive scalar α > 0 and three different choices of R: 1.) R(u) = 0, 2.) R(u) =
1
2
∇u2L2(Ω;R2), and 3.) R(u) = Cu1 , where C denotes the two-dimensional discrete
Cosine transform. The first case simply corresponds to classical gradient descent, case
2.) is gradient descent in a Hilbert space metric and 3.) corresponds to gradient descent
in a non-smooth Bregman distance setting that does not correspond to a metric. Note
that the question, whether E and J satisfy all conditions that are necessary for global
convergence, will be omitted due to the page limit, but addressed in an extended version
of this manuscript in the future. We do want to mention, though, that it is easy to see
that J in 3.) does not meet the requirement (7); this, however, can be corrected via a
smoothing of the 1-norm, for instance via a Huberised 1-norm.

In order to consider numerical examples, we discretise the above scenarios in a straight
forward fashion. Input data f is created by applying the non-linear operator K to a mul-
tiple of the built-in MATLAB c signal ’peaks’ (see Figure 1(a)) and additive normal
distributed noise with mean zero and standard deviation σ = 0.15. Due to noise in the
data, the iteration (2) is stopped as soon as E(uk) ≤ σ2m/2 is satisfied. Here m denotes
the number of discrete samples. Reconstruction results for zero initialisations and the
choice τ k = 1.5 for all k ∈ N can be found in Figure 1(b), 1(c) and 1(d). We want to
emphasise that this example is just a toy example to demonstrate the impact of different
choices of J ; there are certainly much better unwrapping strategies, particularly for the
unwrapping of smooth signals.

Code statement: The corresponding MATLAB c code can be downloaded at
https://doi.org/10.17863/CAM.6714.

6 Conclusions & Outlook

We have presented a short convergence analysis of the linearised Bregman iteration for the
minimisation of general smooth but non-convex functionals. We have proven a sufficient
decrease property, and confirmed that the dual norm of the gradient is bounded by the

45



A computationally inexpensive coordinate
map for Lie group integrators

CURRY, C.1, OWREN, B.1

1 Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, NORWAY

{curry, bryn}@ntnu.no

1 INTRODUCTION

Lie group integrators have been studied systematically for more than two decades,
and there exists several survey articles, such as [3, 1]. Some of these integrators can
be derived via a change of variables. There is a finite dimensional Lie group G acting
transitively on a manifold M . The Lie algebra of G is denoted g. A usual assumption
is that there is a coordinate map Ψ : g → G such that the solution of the differential
equation can be expressed as

y(t) = Ψ(u(t)) · y0

in some neighborhood of the point y0 ∈ M . Vector fields on M are represented by
means of a map f : M → g [4] and the corresponding differential equation can be
pulled back to g locally such that u(t) obeys the differential equation

u̇ = dΨ−1
u (f(Ψ(u(t))))

In this note we shall focus on a choice of Ψ which is computationally inexpensive
and we shall show how the derivative map dΨu can be inverted efficiently as well.
The definition of this map is

dΨu(v) =
d

dt


t=0

Ψ(u + tv) · Ψ(u)−1 (1)

so that dΨu : g → g. The coordinate map we shall consider is called canonical
coordinates of the second kind and is defined relative to a basis e1, . . . , ed for g, More
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precisely, for any

u =
d

i=1

uiei, Ψ(u) = eu1e1 · eu2e2 · · · euded (2)

In parts of this exposition we shall follow relatively closely the paper [5]. It might
seem counter intuitive to use such a large number of exponentials in a coordinate map.
Comparing the standard Runge–Kutta–Munthe–Kaas integrators [3], the coordinate
map is simply Ψ = exp. Standard general software for computing matrix exponential
to machine accuracy typically require Cn3 floating point operation per exponential,
where C is in typically in the range 20–30.

Example For illustration, we now consider the example G = SL(n) of unit deter-
minant n×n matrices. Its Lie algebra is g = sl(n) consisting of n×n-matrices with
zero trace. A very simple and intuitive basis for the Lie algebra sl(n) is obtained by
taking matrices of the form

ei,j = eie

j , i = j, and eii = ei+1e


i+1 − eie


i , 1 ≤ i ≤ n− 1

where ei is the ith canonical unit vector. The computation of Ψ(u) =
n2−1
i,j=1

ui,jei,j can

now be obtained through a simple iteration. Start by defining the diagonal matrix
D with diagonal elements dii = eui,i−ui−1,i−1 , 1 ≤ i ≤ n where u0,0 = un,n = 0 and
then

M := D
for i, j = 1 to n (i = j) in some preferred order do

M = euijeijM = (I + uijeij)M = M + uije

i (ej M)

end

Note that the update in the for-loop just amounts to incrementing the ith row of m
by a multiple ui,j of row j. 

2 THE DIFFERENTIAL OF THE COORDINATE

MAP AND ITS FACTORIZATION

Substituting (2) into (1) we get after some calculations

dΨu(v) = v1e1 + A1(v2e2) + A1A2(v3e3) + · · · + A1A2 · · ·Ad−1(vded) (3)
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where

v =
d

i=1

viei and Ai := Adeuiei

By first sight it might not be straightforward to see how this map can be inverted in
an inexpensive way. Our approach to the problem is to search for modified operators
Âi depending only on the coordinate ui such that the expression can be turned into
the form

dΨu = Â1Â2 · · · Âd−1 (4)

A candidate for such a modified operator Âi might be

Âi = Qi + Ai(I −Qi) (5)

where Qi is the linear projector defined on the basis as

Qiej =


ej, j ≤ i
0 j > i

This allows us trivially to write

dΨu(v) =
d−1
i=1

A1 · · ·Ai−1Âi · · · Âd−1(viei)

since by (5) Âi(ej) = ej when j ≤ i. If it would hold that

Â1 · · · Âi−1(I −Qi) = A1 · · ·Ai−1(I −Qi), i = 1, . . . d, (6)

then our desired factorization (4) would result. A criterion for (6) to hold was given
and proved in [5, Theorem 3]. For any two integers i, j such that 0 ≤ i < j ≤ d, we
define the space

Wi,j = span(ei+1, . . . ej)

Theorem 2.1. Suppose that for each operator Ai one lets r be the smallest integer
such that

Aiw ∈ Wi−r,d−1, w ∈ Wi,d−1,

If whenever r ≥ 1, the space Wi−r,i is an abelian subalgebra of g the condition (6)
holds, and we have the desired factorization (4).

Remark Theorem 2.1 gives sufficient conditions for an ordered basis for a Lie alge-
bra g to yield a coordinate map whose trivialized tangent map factors into elementary
operators each depending on a single coordinate ui.
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3 COMPUTING THE INVERSE DIFFERENTIAL

Each individual Âi in (4) must be invertible so that

dΨ−1
u = Â−1

d−1Â
−1
d−2 · · · Â

−1
1 (7)

We may take advantage of the well known identity

Ai = Adeuiei = exp(aduiei) = I + uiadei +
1

2
u2
i ad

2
ei

+ · · · ,

so that

A−1
i = exp(−aduiei) = I − uiadei +

1

2
u2
i ad

2
ei

+ · · · ,

On the other hand, under the conditions of Theorem 2.1 it also holds that Ai com-
mutes with I − Qi, this allows us to write a similar expression for the inverse of
Âi,

Â−1
i = Qi + A−1

i (I −Qi) = I + (−uiadei +
1

2
u2
i ad

2
ei

+ · · · )(I −Qi)

Not surprisingly, we shall consider basis vectors ei which are ad-nilpotent thus the
infinite expansions become finite.

Remark Suppose that among the basis vectors there is a mutually commutative
subset spanning an abelian subalgebra of g. If these are ordered at the end, i.e. as
(ed∗+1, . . . , ed), then the corresponding Âd∗+i each reduce to the identity operator
and therefore can be ignored in the expression (7).

4 CHOOSING AND ORDERING THE BASIS –

SEMISIMPLE CASE

For semisimple Lie algebras, there is a natural intrinsic decomposition of g called the
Cartan decomposition which gives rise to a particular basis called the Chevalley ba-
sis. This comes from the structure theory of Lie algebras related to root systems, for
details, see [2]. A particular property of the Chevalley basis is that all structure con-
stants are integers. One can identify a maximal toral subalgebra h of dimension , this
is an abelian subalgebra of g often given as the diagonal matrices in representations
of g. Its dual h∗ contains the roots, each of which corresponds to a one-dimensional
subspace. For a root α ∈ h∗, we have for any h ∈ h that adheα = α(h)eα, and
we set gα = span(eα). We can pick a basis for h and let h = span(h1, . . . ,h), and

where

v =
d

i=1

viei and Ai := Adeuiei
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since by (5) Âi(ej) = ej when j ≤ i. If it would hold that
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operators each depending on a single coordinate ui.
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as indicated order them last. The ordering if the roots α1, . . . , αd∗ must be done
carefully in order to satisfy the conditions of Theorem 2.1. Thanks to the properties
of root systems, the basis obtained in this way has several favourable properties. For
instance, for any root α, adeα is nilpotent. Also it holds that if α, β are roots then
[gα, gβ] ⊂ gα+β where by convention g0 = h (though 0 is not itself a root). It turns
out that if α is a root then so is −α, this makes it natural to split the sett of roots
into the positive and negative roots. A complete description of how such a Chevalley
basis can be ordered was given in [5]. In this short note we just give one example,
we shall revisit the example from the introduction where g = A = sl( + 1,C). It
turns out that the basis we listed is precisely the Chevalley basis for this Lie algebra.
Representing A by means of ( + 1) × ( + 1)-matrices of vanishing trace, we find
that the elements

hi = eii = eie

i − ei+1e


i+1, i = 1, . . . , 

spans a maximal toral subalgebra. There are a total of ( + 1) roots, the positive
ones are denoted αi,j, 1 ≤ i ≤ j ≤  and are associated to the root spaces
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
j+1)

The negative roots, −αi,j, 1 ≤ i ≤ j ≤  define the rootspaces

g−αi,j
= span(ej+1e


i )

There are several possible orderings which all lead to the condition (6) being satisfied.
We begin by the positive roots, then the negative roots, and finally the basis for h,
more precisely, we order as follows
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, . . . , eαim,jm

, e−αi1,j1
, . . . , e−αim,jm

,h1, . . . ,h)

where i1 ≤ i2 ≤ · · · ≤ im and m = 1
2
( + 1).

A similar study was performed for all the remaining classical semisimple Lie
algebras in [5] and even for the exceptional Lie algebra G2.
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Abstract

Størmer-Cowell method is known to numerically integrate a second-order ordi-
nary differential equation not including the first derivative explicitly. We show a
non-conventional way to derive the methods systematically. Numerical experiments
suggest that the methods have a potential to solve the special type of ODEs directly,
even though they have many constraints in stability and symplecticness.

1 What is Størmer-Cowell method

To integrate second-order ordinary differential equation (ODE) given in the special form

d2y

dx2
= f(x, y) (a < x < b), (1.1)

a method, not including dy/dx, is desired. Here y and f denote functions of [a, b] → Rd

and [a, b]×Rd → Rd, respectively. Series of discrete variable method written in the form

yn+1− 2yn+ yn−1 = h2

k∑
j=0

βjfn+1−j = h2(β0fn+1+ β1fn+ β2fn−1+ · · ·+βkfn+1−k) (1.2)

is often called the Størmer1-Cowell method (p.255 of [3]). Hereafter we refer them by SC
methods. Of course we assume an equi-distant step-points xn = a + nh (h = (b− a)/N)
and the approximate value yj stands for y(xj) and fj means f(xj, yj) (j = 0, 1, 2, . . . , N).
If β0 = 0, the method is explicit, otherwise it is implicit.

Two well-known examples of explicit and implicit are:

yn+1 − 2yn + yn−1 = h2fn, (1.3)

which is referred to Størmer’s or Encke’s method, and

yn+1 − 2yn + yn−1 =
h2

12
(fn+1 + 10fn + fn−1), (1.4)

1The name Størmer is often spelled as Störmer. However, since he was a Norwegian mathematician,
Fredrik Carl Mulertz Størmer (3 September 1874 – 13 August 1957). it should be correctly spelled as
this.
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which is called Numerov’s method (III.10 of [2]) or ‘the royal road formula’ (p. 255 of [3]).
The derivation process of SC method, e.g., in p. 463 of [2] starts with twice integrations
of the ODE (1.1) by Cauchy’s lemma to give

y(xn + h) = y(xn) + hy′(xn) + h2

∫ 1

0

(1− s)f(xn + sh, y(xn + sh)) ds.

Similarly we obtain

y(xn − h) = y(xn)− hy′(xn) + h2

∫ 1

0

(1− s)f(xn − sh, y(xn − sh)) ds.

Thus we can attain

y(xn + h)− 2y(xn) + y(xn − h) =

h2

∫ 1

0

(1− s) (f(xn + sh, y(xn + sh)) + f(xn − sh, y(xn − sh))) ds.

Employing the interpolating polynomial in terms of backward differences, we have the
approximation

f(xn + sh, y(xn + sh)) ≈ p(xn + sh) =
k−1∑
j=0

(−1)j
(
−s

j

)
∇jfn,

where the symbol

(
−s

j

)
denotes the generalized binomial coefficient. Then, substitution

gives the explicit formula yn+1 − 2yn + yn−1 = h2

k−1∑
j=0

σj∇jfn, where

σj = (−1)j
∫ 1

0

(1− s)

{(
−s

j

)
+

(
s

j

)}
ds.

Similarly, the implicit formula can be derived as yn+1 − 2yn + yn−1 = h2

k∑
j=0

σ∗
j∇jfn+1,

where

σ∗
j = (−1)j

∫ 1

0

(1− s)

{(
−s+ 1

j

)
+

(
s+ 1

j

)}
ds

Descriptions about (1.2) from the view point of geometric numerical integration can be
found in Chapter XIV of [1].

2 New way of derivation

We start by integrating three times both sides of the ODE (1.1). For the left-hand side
we obtain

∫ xn

xn−1

∫ xn+1

xn

∫ t

s

d2y

dx2
(x) dx dt ds =

∫ xn

xn−1

∫ xn+1

xn

{
d y

d x
(t)− d y

d x
(s)

}
ds dt

= h (y(xn+1)− 2y(xn) + y(xn−1)) ,
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while the right-hand side becomes
∫ xn

xn−1

∫ xn+1

xn

∫ t

s

f(x, y(x)) dx dt ds.

This means analytically we obtain

y(xn+1)− 2y(xn) + y(xn−1) =
1

h

∫ xn

xn−1

∫ xn+1

xn

∫ t

s

f(x, y(x)) dx dt ds. (2.1)

Then, we replace the integrand f(x, y(x)) with the interpolating polynomial p(x). For
instance, suppose we employ the formula

p(x) = p(xn + θh) =
k∑

j=0

(−1)j
(
−θ + 1

j

)
∇jfn+1. (2.2)

By putting ψ(θ) ≡ p(xn+θh) together with the variable transformation τ = (t−xn)/h, σ =
(s− xn)/h, we obtain

∫ xn

xn−1

∫ xn+1

xn

∫ t

s

p(x) dx dt ds = h3

∫ 0

−1

∫ 1

0

∫ τ

σ

ψ(θ) dθ dτ dσ.

Consequently, defining the coefficients

S∗
j = (−1)j

{∫ 0

−1

∫ 1

0

∫ τ

σ

(
−θ + 1

j

)
dθ dτ dσ

}
(j = 0, 1, 2, . . .), (2.3)

we arrive at the k-step implicit SC method as yn+1 − 2yn + yn−1 = h2

k∑
j=0

S∗
j∇jfn+1

(k = 0, 1, 2, . . .). By carrying out the integration in (2.3), we can obtain

yn+1 − 2yn + yn−1 = h2

(
fn+1 −∇fn+1 +

1

12
∇2fn+1 − 0 · ∇3fn+1 −

1

240
∇4fn+1

− 1

240
∇5fn+1 −

221

60480
∇6fn+1 −

19

6048
∇7fn+1 −

9829

3628800
∇8fn+1

− 407

172800
∇9fn+1 −

330157

159667200
∇10fn+1 + · · ·

)
. (2.4)

Similarly, when the interpolating polynomial (2.2) is replaced with the explicit one

p(x) = p(xn + θh) =
k−1∑
j=0

(−1)j
(
−θ

j

)
∇jfn (k = 1, 2, . . .),

introduction of φ(θ) ≡ p(xn + θh) with τ = (t− xn)/h and σ = (s− xn)/h derives

∫ xn

xn−1

∫ xn+1

xn

∫ t

s

p(x) dx dt ds = h3

∫ 0

−1

∫ 1

0

∫ τ

σ

φ(θ) dθ dτ dσ.

Thus, we arrive at

h2

k−1∑
j=0

(−1)j∇jfn

{∫ 0

−1

∫ 1

0

∫ τ

σ

(
−θ

j

)
dθ dτ dσ

}
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for the right-hand side of (2.1) instead. Defining the coefficients

Sj = (−1)j
{∫ 0

−1

∫ 1

0

∫ τ

σ

(
−θ

j

)
dθ dτ dσ

}
(j = 0, 1, 2, . . .), (2.5)

we can obtain the k-step explicit SC method as yn+1− 2yn+ yn−1 = h2

k−1∑
j=0

Sj∇jfn. In fact

we attain

yn+1 − 2yn + yn−1 = h2

(
fn + 0 · ∇fn +

1

12
∇2fn +

1

12
∇3fn +

19

240
∇4fn

+
3

40
∇5fn +

863

12096
∇6fn +

275

4032
∇7fn +

33953

518400
∇8fn

+
8183

129600
∇9fn +

3250433

53222400
∇10fn + · · ·

)
.

The above process of course means the identities σj = Sj and σ
∗
j = S∗

j , that is, we establish
two integral identities w.r.t. the binomial coefficients:

∫ 0

−1

∫ 1

0

∫ τ

σ

(
−θ + 1

j

)
dθ dτ dσ =

∫ 1

0

(1− s)

{(
−s+ 1

j

)
+

(
s+ 1

j

)}
ds

and ∫ 0

−1

∫ 1

0

∫ τ

σ

(
−θ

j

)
dθ dτ dσ =

∫ 1

0

(1− s)

{(
−s

j

)
+

(
s

j

)}
ds.

Also the expressions can lead that the k-step implicit and explicit SC methods at least
attain (k + 1)-st and k-th order of convergence, respectively. It happens, however, the
actual order exceeds it by calculating the backward differences explicitly. Numerov’s
method, which has the fourth-order convergence, is the case.

3 Stability and symplecticness

Significant issues of numerical solution of Eq. (1.1) are stability and symplecticness,
for the equation of autonomous case is naturally regarded as a Hamiltonian system by
considering x, y and dy/dx as t, q and p, respectively. That is, we solve the problem

d q

d t
= p,

d p

d t
= f(q),

which has the Hamiltonian H(p, q) = (pTp)/2 + U(q). One of the major problems is to
analyse the stability of the SC methods. Our standpoint is the linear stability analysis to
examine the solution behaviour when the method is applied to the scalar test equation

y′′ + λ2y = 0 (λ > 0). (3.1)

Let H denote λh. The method (1.2) reduces to

k∑
j=0

Rj(H
2)yn+1−j ≡

(1 + β0H
2)yn+1 − (2− β1H

2)yn + (1 + β2H
2)yn−1 +H2

k∑
j=3

βjyn+1−j = 0 (3.2)

while the right-hand side becomes
∫ xn

xn−1

∫ xn+1

xn

∫ t

s

f(x, y(x)) dx dt ds.
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j
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when applied to (3.1), where Rj(Z) is a polynomial of first degree in Z. Since two
fundamental solutions of (3.1) at xn = nh are expressed by e inλh and e− inλh, the question
is how large we can take the magnitude of the step-size h so that the numerical solution
follows the periodic behaviour of the analytical solution when the number of steps n is
getting large. The biggest interval (0, H2

0 ) of H which keeps the property is called the
interval of periodicity and, furthermore, the method is called P -stable if it has the interval
of periodicity (0,∞).

However, Lambert and Watson [4] proved that a P -stable linear multistep method
is necessarily implicit and its order of accuracy cannot exceed two. Furthermore, they
showed the interval of periodicity of Numerov’s method is [0, 6] by applying the boundary
locus technique. On the other hand, [4] asserted the interval of periodicity of Encke’s
method is [0, 4]. Unfortunately the method which is proved to be P -stable in [4] does not
fall in the SC family.

Since the SC methods are within the class of linear multistep methods, much restriction
is imposed on them with respect to the symplecticness. In fact, Theorem 3.1 of Chapter
XIV of [1] says:

The underlying one-step method of an irreducible linear multistep method can-
not be symplectic.

This can be interpreted that a linear multistep method cannot be symplectic generally.
The problem is how far it is from ‘symplecticness’. In particular, since SC methods do
not evaluate dy/dx explicitly in the integration process, they may have an advantage in
computation process.

Here we will give a short remark about the Størmer-Verlet method, which is known
to be symplectic and of the second order of convergence for general Hamiltonian sys-
tems, when applied to (1.1). By introducing an auxiliary discrete variable zn+1/2 which

approximates
d y

d x

(
xn +

h

2

)
, the method is expressed as

zn+1/2 = zn−1/2 + hf(xn, yn), yn+1 = yn + hzn+1/2.

Note at the start (n = 0) it requires y0 and z−1/2. Instead, an alternate formulation can
be given by 


yn+1 = yn + hzn +

h2

2
f(xn, yn),

zn+1 = zn +
h

2
(f(xn, yn) + f(xn+1, yn+1)) ,

(3.3)

which requires (y0, z0) at the start. The function value f(xn+1, yn+1) should be stored and
substituted for the next computation of yn+2.

In the autonomous case (f(x, y) ≡ f(y)), it is still a symplectic transformation. Let

F denote the mapping by the method from

[
yn
zn

]
to

[
yn+1

zn+1

]
. Then, it is possible to

write it as

F

([
yn
zn

])
=




yn + hzn +
h2

2
f(yn)

zn +
h

2
f(yn) +

h

2
f

(
yn + hzn +

h2

2
f(yn)

)

 .
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Its Jacobian matrix D is given by

D =




1 +
h2

2
f ′(yn) h

h

2
f ′(yn) +

h

2
f ′
(
yn + hzn +

h2

2
f(yn)

)(
1 +

h2

2
f ′(yn)

)
1 +

h2

2
f ′
(
yn + hzn +

h2

2
f(yn)

)

 .

Hence we can confirm the identity DT

(
O I
−I O

)
D =

(
O I
−I O

)
holds.

4 Numerical results

We carried out numerical computations to show the feature of the SC methods through
the simple pendulum problem, that is,

d2 q

d t2
= − sin q (0 < t < T ), q(0) = q0,

d q

d t
(0) = p0 (4.1)

whose Hamiltonian is H(p, q) = p2/2−cos(q) as described in §3. We compared the results
by Numerov’s, Encke’s, the Størmer-Verlet and the classical Runge-Kutta methods. Here
we only show the results by Numerov’s method.

There are several issues in implementing the SC methods. First, starting values are
required for SC methods, even though Encke’s and Numerov’s require only p1. Our
numerical computations adopted the classical Runge-Kutta solution for this purpose. To
carry through the numerical procedure not evaluating the first derivative, Runge-Kutta-
Nyström methods must be employed. Second, a nonlinear equation solver is called for
Numerov’s method. We simply applied the fixed point iteration with a pre-assigned
tolerance. This has another advantage that it is efficient for small h. Third, since SC
methods never calculate p1, p2, . . . in the numerical process, the problem is how to evaluate
the Hamiltonian and the phase plane plot of {(qn, pn)}. We employed an approximation
by the simple difference quotient pn ≈ (qn − qn−1)/h, which is, however, to be studied
more carefully.

Variation of the Hamiltonian by Numerov’s method starting with (q0, p0) = (2.2, 0)
and (q0, p0) = (0, 1.2) for 0 ≤ t ≤ 10 is depicted in Figs. 4.1 and 4.2, respectively.
Phase plane plots by Numerov’s method on (q, p)-plane over the intervals 0 ≤ t ≤ 10,
50 ≤ t ≤ 60 and 90 ≤ t ≤ 100 with (q0, p0) = (2.2, 0) and (q0, p0) = (0, 1.2) are in Figs.
4.3 and 4.4, respectively. For comparison’s sake, the exact curves of the closed loop are
shown on the phase plane in each right-hand side. Colours distinguish the difference of
computation intervals ([0, 10] by red, [50, 60] by blue, [90, 100] by green), but almost no
difference is observed on the figures.

Our temporal conclusions are:

• Even though SC methods cannot attain excellent stability and genuine symplectic-
ness, they might have a potential to apply to the real problems.

• Close numerical results to the symplectic integrators can be attained in our initial
trials.

• Computational costs can be reduced by SC methods.

• The future problem is to estimate how close (or far) they are theoretically and
numerically.

when applied to (3.1), where Rj(Z) is a polynomial of first degree in Z. Since two
fundamental solutions of (3.1) at xn = nh are expressed by e inλh and e− inλh, the question
is how large we can take the magnitude of the step-size h so that the numerical solution
follows the periodic behaviour of the analytical solution when the number of steps n is
getting large. The biggest interval (0, H2

0 ) of H which keeps the property is called the
interval of periodicity and, furthermore, the method is called P -stable if it has the interval
of periodicity (0,∞).

However, Lambert and Watson [4] proved that a P -stable linear multistep method
is necessarily implicit and its order of accuracy cannot exceed two. Furthermore, they
showed the interval of periodicity of Numerov’s method is [0, 6] by applying the boundary
locus technique. On the other hand, [4] asserted the interval of periodicity of Encke’s
method is [0, 4]. Unfortunately the method which is proved to be P -stable in [4] does not
fall in the SC family.

Since the SC methods are within the class of linear multistep methods, much restriction
is imposed on them with respect to the symplecticness. In fact, Theorem 3.1 of Chapter
XIV of [1] says:

The underlying one-step method of an irreducible linear multistep method can-
not be symplectic.

This can be interpreted that a linear multistep method cannot be symplectic generally.
The problem is how far it is from ‘symplecticness’. In particular, since SC methods do
not evaluate dy/dx explicitly in the integration process, they may have an advantage in
computation process.

Here we will give a short remark about the Størmer-Verlet method, which is known
to be symplectic and of the second order of convergence for general Hamiltonian sys-
tems, when applied to (1.1). By introducing an auxiliary discrete variable zn+1/2 which

approximates
d y

d x

(
xn +

h

2

)
, the method is expressed as

zn+1/2 = zn−1/2 + hf(xn, yn), yn+1 = yn + hzn+1/2.

Note at the start (n = 0) it requires y0 and z−1/2. Instead, an alternate formulation can
be given by 


yn+1 = yn + hzn +

h2

2
f(xn, yn),

zn+1 = zn +
h

2
(f(xn, yn) + f(xn+1, yn+1)) ,

(3.3)

which requires (y0, z0) at the start. The function value f(xn+1, yn+1) should be stored and
substituted for the next computation of yn+2.

In the autonomous case (f(x, y) ≡ f(y)), it is still a symplectic transformation. Let

F denote the mapping by the method from

[
yn
zn

]
to

[
yn+1

zn+1

]
. Then, it is possible to

write it as

F

([
yn
zn

])
=




yn + hzn +
h2

2
f(yn)

zn +
h

2
f(yn) +

h

2
f

(
yn + hzn +

h2

2
f(yn)

)

 .

57



Figure 4.1: Variation of Hamiltonian by Numerov’s method (q0, p0) = (2.2, 0)
(h = 1/8 (red), 1/16 (blue), 1/32 (green), 1/64 (gold))

Figure 4.2: Variation of Hamiltonian by Numerov’s method (q0, p0) = (0, 1.2)
(h = 1/8 (red), 1/16 (blue), 1/32 (green), 1/64 (gold))

Figure 4.3: Phase plane plot of Numerov’s method (q0, p0) = (2.2, 0) with the exact one
([0, 10] red, [50, 60] blue, [90, 100] green)
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Figure 4.4: Phase plane plot of Numerov’s method (q0, p0) = (0, 1.2) with the exact one
([0, 10] red, [50, 60] blue, [90, 100] green)
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1 INTRODUCTION

Kahan’s method for discretizing quadratic differential equations was introduced in [1]. It
was rediscovered in the context of integrable systems by Hirota and Kimura [2]. Suris
and collaborators extended the applications to integrable systems significantly in a series
of papers [3], [4], [5], [6], [7]. Applications to non-integrable Hamiltonian systems and the
use of polarisation to discretise arbitrary degree Hamiltonian systems were studied in [8],
[9] and [10].

The present paper contains an extract of the talk one of the authors (GRWQ) gave
on 6th July 2016 at the 12th International Conference on Symmetries and Integrability of
Difference Equations (SIDE12) in Sainte Adele, Quebec, Canada. We present two classes
of 2-dimensional ODE systems of quadratic vector fields where the Kahan discretization
is integrable. Both classes of systems can be cast in the form

dX

dt
= ϕ(X)K∇H(X), (1)

where

X t = (x, y), K =


0 1
−1 0


,

and ϕ(X) is a scalar function of the components of X. In the first class the Hamiltonian
function is quartic and in the second class it is sextic. These systems can be seen as
generalisations of the examples of the reduced Nahm equations presented in [6]. Some of
the results in this paper were found independently by Petrera and Zander [11].

2 Quartic Hamiltonians in 2D

Consider the 2-dimensional ODE system (1) where ϕ(X) = 1
ax+by

, and the homogeneous

Hamiltonian has the form H = (ax + by)2(cx2 + 2dxy + ey2). Then the Kahan map for
this system preserves the modified Hamiltonian:

H(X) = H

(1 + h2D(ax+ by)2 + h2E(cx2 + 2dxy + ey2))(1 + h29D(ax+ by)2 + h2E(cx2 + 2dxy + ey2)
,
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and the measure:

m(x, y) =
dxdy

(ax+ by)(cx2 + 2dxy + ey2)
.

Here, D := ce− d2 and E := 2abd− a2e− b2c. It follows that the Kahan map is integrable.

3 Sextic Hamiltonians in 2D

Consider the 2-dimensional ODE system (1) with ϕ(X) = 1
(cx+dy)(ex+fy)2

and with the homo-

geneous sextic Hamiltonian H = (ax+ by)(cx+ dy)2(ex+ fy)3. Then the Kahan map for this
system preserves the modified Hamiltonian:

H(X) = H

(1 + a5l22)(1 + a3l21 + a4l23 + a7l1l3)(1 + a5l22 + a6l23))

where

l1 := ax+ by, l2 := cx+ dy, l3 := ex+ fy,

and d1,2 := h(ad − bc), d2,3 := h(cf − ed), d3,1 := h(eb − fa) and a3 :=
−9d22,3

4 , a4 :=
−d21,2

4 ,

a5 :=
−9d23,1

4 ; a6 := −4d21,2, a7 :=
3d1,2d2,3

2 . In this case the Kahan map also preserves the
modified measure

m(x, y) =
dxdy

(ax+ by)(cx+ dy)(ex+ fy)
.

Again, the Kahan map is integrable.
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1 INTRODUCTION

Recently, as a technique to design numerical schemes that preserve a structure and a prop-
erty of a given differential equation, methods so-called the structure-preserving numerical
method are studied widely. The discrete gradient method [1, 2] and the method of the
symmetry [3] are known in particular as methods aiming at the law of the conservation
of energy. The discrete gradient method is a method for the Hamilton mechanics. In
this method numerical schemes are obtained by replacing the gradient with the discrete
gradient, which is defined so that it has a similar property to the usual gradient. Al-
though schemes that are obtained in this way usually show superior stability in practice,
from the theoretical perspective, the natural relations to the variational principle, which
is a foundation of analytical mechanics, are not apparent. In contrast, a method to de-
rive the energy-preserving numerical schemes based on a combination of the variational
principle and the discrete gradient was suggested recently [4]. Because this method has
the variational principle as the base of the method, the wide applications including those
to dissipative systems are possible. Besides, the scheme is shown to be explicit under a
certain mild condition. Moreover, this method shares the idea with the method based on
the symmetry, which is a method for the Lagrange mechanics, and actually the relation
between these two methods was revealed in some specific examples.
On the other hand, we cannot use it for the general Hamilton equation, which includes

the advection equation and the KdV equation, because the Hamilton equations only on
cotangent bundles

q̇ = ∂H
∂p

, ṗ = −∂H
∂q

(1)

are considered in [4]. Indeed the action integral considered in [4] is defined only on
the cotangent bundles, and in order to apply the method to the Hamilton equations
on general symplectic manifolds, an action integral that derives the Hamilton equation
on those manifolds is necessary. In this paper, we extend this method to the general
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Hamilton equations defined on symplectic affine spaces by using a variational principle
which is defined by using the almost complex structure equipped on those spaces.

2 ALMOST COMPLEX STRUCTURE

The almost complex structure is defined as follows.

Definition 1 Let T M be the tangent bundle of a differential manifoldM whose dimen-
sion is even. A self-isomorphism J ∶ T M → TM, (x, v) ↦ (x, Jxv) that satisfies

J2
x = −Id

is called an almost complex structure, where for each x ∈M, Jx is the self-isomorphism
on TxM.

It is known that every symplectic manifold (M, ω) has an almost complex structure
that is compatible of the symplectic form ω in the following sense.

Definition 2 Let (M, ω) be a symplectic manifold and J an almost complex structure on
(M, ω). J is compatible with ω if for all u, v ∈ TxM,

• ωx(Jxu, Jxv) = ωx(u, v) and

• u ≠ 0 implies ωx(u, Jxu) > 0.

Theorem 1 The following two are equivalent.

• For all u, v ∈ TxM, ωx(Jxu, Jxv) = ωx(u, v) and u ≠ 0 implies ωx(u, Jxu) > 0.

• gx(u, v) ∶= ωx(u, Jxv) is a Riemannian metric on M.

In the following, we denote the compatible almost complex structure by the triplet
(J,ω, g) for a fixed manifoldM.

Theorem 2 There exists an compatible almost complex structure for any symplectic man-
ifolds (M, ω).

The compatible almost complex structure is obtained in the following way.
For any Riemannian metric ⟨⋅, ⋅⟩x, define a linear operator A on T M by requiring

ωx(u, v) = ⟨Axu, v⟩x.

Let A∗x be the adjoint operator with respect to the Riemannian metric ⟨⋅, ⋅⟩x. Then

⟨Axu, v⟩x = ωx(u, v) = −ωx(v, u) = −⟨Axv, u⟩x = −⟨A∗xu, v⟩x

and hence A∗x = −Ax. Since for all u ∈ TxM, ⟨Axu,Axu⟩x = ⟨A∗xAxu, u⟩x > 0, A∗xAx = −A2
x =

AxA∗x is positive definite. Thus AxA∗x admits a non-singular square root (AxA∗x)
1
2 . J is

defined by

Jx ∶= Ax(AxA
∗
x)−

1
2 .
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This Jx is actually a compatible almost complex structure. Firstly, because Ax and
(AxA∗x)−

1
2 commute, it is shown that

J2
x = Ax(AxA

∗
x)−

1
2Ax(AxA

∗
x)−

1
2 = AxAx(AxA

∗
x)−

1
2 (AxA

∗
x)−

1
2 = −AxA

∗
x(AxA

∗
x)−1 = −Id,

and hence Jx is an almost complex structure. This also shows that Jx = −J−1x . In addition,
the fact that Ax and (AxA∗x)−

1
2 commute shows that

Jx = Ax(AxA
∗
x)−

1
2 = −(AxA

∗
x)−

1
2A∗x = −J∗x ,

JxAx = Ax(AxA
∗
x)−

1
2Ax = AxAx(AxA

∗
x)−

1
2 = AxJx.

Secondly, it is shown that

ωx(Jxu, Jxv) = ⟨AxJxu, Jxv⟩x
= ⟨JxAxu, Jxv⟩x
= ⟨Axu, J

∗
xJxv⟩x

= ⟨Axu,−J2
xv⟩x

= ⟨Axu, v⟩x
= ωx(u, v)

and

ωx(u, Jxu) = ⟨Axu, Jxu⟩x
= ⟨J∗xAxu, u⟩x
= ⟨J−1x Axu,u⟩x
= ⟨(AxA

∗
x)

1
2u,u⟩x

> 0

since (AxA∗x)
1
2 is positive. Thus J is compatible with ω.

Because the above calculation also shows that ωx(u, Jxu) = ⟨(AxA∗x)
1
2u,u⟩x, gx(u, v) =

⟨(AxA∗x)
1
2u, v⟩x can be used as the Riemannian metric in the triplet (J,ω, g).

3 THE ENERGY-PRESERVING SCHEME

LetM be a symplectic affine space. The Hamilton equation onM is defined by

X⨼ω = dH, u̇ =X (2)

where H is the Hamiltonian, X the Hamiltonian vector field and ⨼ the contraction. We
also assume that the triplet (J,ω, g) is independent of the position onM, and write them
not as Jx, ωx, gx but as J,ω, g for all x ∈ M. Also we denote by T M the tangent space at
any x ∈ M. As explained below, by using (J,ω, g), (2) can be written as

u̇ = −J∇H. (3)

Since ∇H is the gradient of H, it holds that

dH(δu) = g(∇H, δu).
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which is defined by using the almost complex structure equipped on those spaces.
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Definition 2 Let (M, ω) be a symplectic manifold and J an almost complex structure on
(M, ω). J is compatible with ω if for all u, v ∈ TxM,

• ωx(Jxu, Jxv) = ωx(u, v) and

• u ≠ 0 implies ωx(u, Jxu) > 0.

Theorem 1 The following two are equivalent.
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Theorem 2 There exists an compatible almost complex structure for any symplectic man-
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and hence A∗x = −Ax. Since for all u ∈ TxM, ⟨Axu,Axu⟩x = ⟨A∗xAxu, u⟩x > 0, A∗xAx = −A2
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defined by

Jx ∶= Ax(AxA
∗
x)−

1
2 .
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Then, because the left-hand side of the first equation of (2) can be written as

X⨼ω(δu) = ω(u̇, δu) = −ω(u̇, J2δu) = −g(u̇, Jδu) = g(Ju̇, δu),

we get

u̇ = J−1∇H = −J∇H. (4)

This equation is obtained by the principle of least action with the action integral

S(u) = ∫
T

0
(
1

2
g(Ju̇(t), u(t)) −H(u(t)))dt.

Since M is an affine space, M and T M is isomorphic with the isomorphism Id, and
hence g(Ju̇(t), u(t)) makes sense. A straightforward calculation shows that the variation
of S(u) is

δS(u) = ∫
T

0
{
1

2
(g(Jδu̇, u) + g(Ju̇, δu)) − g(∇H, δu)}dt

= ∫
T

0
g(Ju̇ −∇H, δu)dt,

which yields (4).
The combination of this variational principle and the method in [4] gives the following

energy-preserving scheme.

Theorem 3 LetM be a symplectic affine space and (J,ω, g) the compatible almost com-
plex structure. Suppose that a given Hamiltonian H is not dependent on the time variable
explicitly, and also suppose that the initial conditions are given so that δ+u0, δ+u1 ∈M ≃
T M. Then, for a given discrete gradient ∇H of the Hamiltonian H with respect to the
Riemannian structure g, the scheme

un+2 + un+1 − un − un−1

4∆t
= −J∇H(un+1, un) (5)

has the following energy-conservation law:

H(un) −
∆t

4
g(Jδ+un, δ−un) = const. (6)

where δ+ and δ− are the forward and the backward difference operators respectively.

4 EXAMPLE

As an illustration, we show an energy-preserving scheme for the wave equation

(ut

vt
) = ( 0 1

−1 0
)(−uxx

v
) , (7)

HW(u, v) = ∫
L

0
(
1

2
v2 +

1

2
u2
x)dx (8)
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under the periodic boundary condition. We applied the method in the previous section
to a semi-discretized wave equation:

d

dt
(u⃗
v⃗
) = (ON IN

−IN ON
)(−δ

−
xδ
+
x u⃗

v⃗
)

which is a Hamilton equation with the Hamiltonian

HW,d(u⃗, v⃗) ∶=
1

2
∣∣v⃗∣∣22 +

1

4
(∣∣δ+x u⃗∣∣22 + ∣∣δ−x u⃗∣∣22)

and the standard symplectic 2-form ωW,d. δ+x and δ−x are the forward and the backward
difference operators in the x direction. ∥ ⋅ ∥2 is the L2 norm:

⟨u⃗, v⃗⟩ =
N

∑
j=1

ujvj∆x, ∥u⃗∥2 =
√
⟨u⃗, u⃗⟩.

We derive a compatible almost complex structure by using the L2 inner product. The
symplectic 2-form ωW,d is written as

ωW,d((
u⃗
v⃗
) ,(u⃗

′

v⃗′
)) =

N

∑
j=1
(ujv

′
j − vju′j)∆x = ⟨(−v⃗

u⃗
) ,(u⃗

′

v⃗′
)⟩ = ⟨(ON −IN

IN ON
)(u⃗

v⃗
) ,(u⃗

′

v⃗′
)⟩.

Hence we can define the operator A by

A = (ON −IN
IN ON

) . (9)

This operator A gives the almost complex structure J and the Riemannian metric g as

J = A(AA∗)− 1
2 = A(AA−1)− 1

2 = AI− 1
2 = A, (10)

g(u⃗, v⃗) = ⟨(AA∗) 12 u⃗, v⃗⟩ = ⟨u⃗, v⃗⟩. (11)

It is straightforward to check that

∇HW,d((
u⃗n+1

v⃗n+1
) ,(u⃗

n

v⃗n
)) =

⎛
⎜⎜⎜⎜⎜
⎝

−
δ−xδ

+
x(u⃗n+1 + u⃗n)

2

v⃗n+1 + v⃗n

2

⎞
⎟⎟⎟⎟⎟
⎠

is a discrete gradient. Hence Theorem 3 shows that the scheme

u⃗n+2 + u⃗n+1 − u⃗n − u⃗n−1

4∆t
= (ON IN
−IN ON

)

⎛
⎜⎜⎜⎜⎜
⎝

−
δ−xδ

+
x(u⃗n+1 + u⃗n)

2

v⃗n+1 + v⃗n

2

⎞
⎟⎟⎟⎟⎟
⎠

(12)

is energy-preserving.
We show the numerical results in Figure 1. In this numerical test, we set the initial

condition by u(t, x) =exp(−100(0.5 − x)2). The step sizes are ∆t = 1/50,∆x = 1/24. We
used the explicit Euler method as the starting method. The figures show the numerical
solution at t = 10000 and the energy behavior. These show that the scheme is quite stable.
Actually we have shown the following theorem.

Theorem 4 If we rewrite the scheme to the form Un+1 = SUn (∈ R6N) and j = 1, ...,N ,
then S is diagonalizable and all the absolute values of the eigenvalues are 1.

Then, because the left-hand side of the first equation of (2) can be written as

X⨼ω(δu) = ω(u̇, δu) = −ω(u̇, J2δu) = −g(u̇, Jδu) = g(Ju̇, δu),

we get

u̇ = J−1∇H = −J∇H. (4)

This equation is obtained by the principle of least action with the action integral

S(u) = ∫
T

0
(
1

2
g(Ju̇(t), u(t)) −H(u(t)))dt.

Since M is an affine space, M and T M is isomorphic with the isomorphism Id, and
hence g(Ju̇(t), u(t)) makes sense. A straightforward calculation shows that the variation
of S(u) is

δS(u) = ∫
T

0
{
1

2
(g(Jδu̇, u) + g(Ju̇, δu)) − g(∇H, δu)}dt

= ∫
T

0
g(Ju̇ −∇H, δu)dt,

which yields (4).
The combination of this variational principle and the method in [4] gives the following

energy-preserving scheme.

Theorem 3 LetM be a symplectic affine space and (J,ω, g) the compatible almost com-
plex structure. Suppose that a given Hamiltonian H is not dependent on the time variable
explicitly, and also suppose that the initial conditions are given so that δ+u0, δ+u1 ∈M ≃
T M. Then, for a given discrete gradient ∇H of the Hamiltonian H with respect to the
Riemannian structure g, the scheme

un+2 + un+1 − un − un−1

4∆t
= −J∇H(un+1, un) (5)

has the following energy-conservation law:

H(un) −
∆t

4
g(Jδ+un, δ−un) = const. (6)

where δ+ and δ− are the forward and the backward difference operators respectively.

4 EXAMPLE

As an illustration, we show an energy-preserving scheme for the wave equation

(ut

vt
) = ( 0 1

−1 0
)(−uxx

v
) , (7)

HW(u, v) = ∫
L

0
(
1

2
v2 +

1

2
u2
x)dx (8)
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Figure 1: These figures show the numerical solution (left) and the energy behavior (right)
from t = 0 to t = 10000. The step sizes are set to ∆x = 1/24 and ∆t = 1/50. The periodic
boundary condition is imposed. The numerical solution under these conditions seems to
be stable.
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1 INTRODUCTION

In many applications in image processing, dissipative partial differential equations (PDEs)
appear. Let H be a Hilbert space with inner product ·, · and let V : H → R be
a differentiable functional. The gradient of V at x ∈ H is the unique element ∇V (x)
satisfying

∇V (x), v = d

dt
V (x+ tv)


t=0

for all v ∈ H .

A gradient flow is the solution of the initial value problem

ẋ = −∇V (x), x(0) = x0, (1)

where the dot represents differentiation with respect to time. The dissipative character
is seen by the decay

d

dt
V (x(t)) = ∇V (x(t)), ẋ = −∇V (x(t))2 ≤ 0 . (2)

In many applications in image processing, e.g. scale-space theory or time marching
schemes for minimisation of the functional V , the preservation of the dissipativity of
the PDE is more important than accuracy of the solution of the differential equation.
With the help of discrete gradients, which are functions ∇V : H × H → H, that are
continuous and satisfy


∇V (x, x), (x − x) = V (x)− V (x),

∇V (x, x) = ∇V (x)
for all x, x ∈ H (3)

one obtains discrete gradient methods with step sizes τn

xn+1 − xn = −τn∇V (xn, xn+1) (4)

that naturally preserve the decay

V (xn+1)− V (xn) = ∇V (xn, xn+1), (xn+1 − xn)

= −τn∇V (xn, xn+1)2 (5)

≤ 0 .

Figure 1: These figures show the numerical solution (left) and the energy behavior (right)
from t = 0 to t = 10000. The step sizes are set to ∆x = 1/24 and ∆t = 1/50. The periodic
boundary condition is imposed. The numerical solution under these conditions seems to
be stable.
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2 DISCRETISATION AND COMPUTATION

With respect to simplicity, finite differences are the most widely used discretisation of
PDEs in image processing. In [1], a general procedure is described to derive a discrete
functional V : Rn → R based on finite differences. The discretised PDE is represented by
the gradient flow (1) which is now an ordinary differential equation. In order to apply the
discrete gradient method, an implicit equation needs to be solved. If Newton’s method is
used, one has to solve a huge linear system, Ax = b, A ∈ R

N×N , b ∈ R
N , in every iteration.

N represents the number of pixels in a grayscale picture or three times the number of pixels
of a RGB picture. A common method to solve these systems is the method of conjugated
gradients (CG method), cf. [3], that requires the multiple computation of A times a
vector. Since the computation of A times a vector includes the Hessian of the discretised
functional V in every step of Newton’s method, it is often believed that an efficient
implementation of this method were not possible. This changes if an implementation on
a graphics processing unit (GPU) is considered. GPUs are custom-built for computer
graphics and image processing and their highly parallel structure allows for the efficient
implementation of the Hessian of V for large images. This can be illustrated by a total
variation denoising experiment as discussed in [2]. The timings for the evaluation of the
gradient of V and the Hessian matrix of V do not show significant differences in Table 1
for different sizes of grayscale pictures. Using the Gonzalez discrete gradient,

∇V (x, x) = ∇V
�
x+x
2



+
V (x)−V (x)−


∇V


x+x

2


,x−x



x−x2 (x − x) , (x = x),

the evaluation of the discrete gradient takes longer than the application of the Hessian
matrix to a vector due to non-local operations. For a large time step, the number of
iterations in Newton’s method (outer iterations) and the number of CG iterations (inner
iterations) for this experiment stay reasonably small as shown in Table 2.

Table 1: GPU/CPU time comparison

GPU/CPU time 512× 512 1024× 1024 2048× 2048 4096× 4096

∇V < 50 [µs] < 50 [µs] < 50 [µs] < 50 [µs]

Hessian < 50 [µs] < 50 [µs] < 50 [µs] < 50 [µs]

DG eval < 15 [ms] < 38 [ms] < 140 [ms] < 550 [ms]

Table 2: Number of inner and outer iterations

Number of iterations 512× 512 1024× 1024 2048× 2048 4096× 4096

outer iterations 6 6 6 6

CG iterations 9 9 10 11

Altogether, the rise of specialized computing hardware alters the requirements for al-
gorithms to run efficiently and reliably. This works in favour of discrete gradient methods,
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whose implementation is more involved. To explore the possibilities and advantages of
the rich class of discrete gradient methods applied to the numerous dissipative flows in
image processing seems worthwhile.
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