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Preface 
Confidentiality and reliability had been two basic requirements for outsourced storage 
including the clouds, and these had been pursued using encryption and error-
correction, respectively and independently. In the recent years, the secret sharing 
technology has been increasing getting attention as an alternative method for 
achieving both these requirements at once. At present, there even exist commercial-
level systems released by vendor companies. However, theoretical and practical 
aspects such as communication cost vs. computational cost and computational 
security vs. information-theoretic security still need to be rigorously evaluated with respect to their impact 
on dependability, usability and security.  

The purpose of this workshop was to discuss those aspects. There were held 15 distinguished lectures as 
well as one panel discussion gathering more than 40 attendees. The goal of these lecture notes is to raise 
awareness in the topics and results discussed at this workshop, among both researchers in mathematics, 
and developers in cloud computing and information security.   

Hiroaki Anada, Representative of the Organizers 
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Photograph 3. More snapshots.
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Program 
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13:50-14:00 (Opening) 

[1] 14:00-14:40 Yvo Desmedt, The University of Texas at Dallas 
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“Unequal Secret Sharing Scheme - a proposal” 

[6] 10:10-10:40 Keiichi Iwamura, Tokyo University of Science 

“Integration of IoT and big data security by using asymmetric secret sharing scheme” 

[7] 11:00-11:30 Jon-Lark Kim , Sogang University 

“Secret sharing schemes based on additive codes” 

[8] 11:30-12:10 Arkadii Slinko, The University of Auckland 

“Classification of Ideal Secret Sharing Schemes with Weighted Access Structures” 
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“Homomorphic authentication schemes for network coding” 

[11] 15:50-16:30 Patrick P. C. Lee, The Chinese University of Hong Kong 

“Unifying Reliability, Security, and Deduplication in Cloud Storage” 

[12] 16:30-17:15 (Panel Discussion)  Panelists: Yvo Desmedt, Jon-Lark Kim, Patrick P. C. Lee, 
Rocki H. Ozaki, Satoshi Obana,  Moderator: Kirill Morozov 

“Secret Sharing in Real-Life Distributed Systems: Perspectives and Challenges” 

        

Sep 7 (Wednesday) Morning Session 

[13] 9:40-10:10 Partha Sarathi Roy, Kyushu University 

“On The Robustness of Secret Sharing Schemes” 

[14] 10:10-10:40  Rui Xu, KDDI R&D Laboratories, Inc. 

“Secret Sharing against Cheaters” 

[15] 10:40-11:10 Toshinori Araki, NEC Corporation 

“High-Throughput Secure Computation using bit slicing” 

[16] 11:30-12:00 Yuji SUGA, Internet Initiative Japan Inc. 

“XOR-based (2, 2^m) threshold schemes” 
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Applications of Secret Sharing:
Beyond Storage Service

Yvo Desmedt

The University of Texas at Dallas and University College London
Yvo.Desmedt@utdallas.edu

Secure Multiparty Computation is likely the most known application of secret shar-
ing beyond storage. However, this is only one application in which one computes with
shares. Other examples that will be explained are Function Secret Sharing and Thresh-
old Cryptography, a technique used in e-voting. Moreover, recently, secret sharing has
been used to improve Chaum code (internet) voting approach. A proper application
of these techniques can protect against, e.g., state-sponsored malware.

Besides its applications in secure distributed computations, secret sharing is the
foundation of private and reliable communication, which we briefly explain.

We also systematically analyze the concepts used in the context of secret sharing.
We explain why the concept of Access Structure is a Trust concept and explain its
potential applications in such areas as Access Control, Critical Infrastructures and
Disaster Prevention.

We discuss how two of these techniques may have prevented the Fukushima disaster.
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c�Yvo Desmedt

Some of the ideas presented here have not been published yet.

c�Yvo Desmedt 1

OVERVIEW

Part I. The building blocks of secret sharing

Part II. Access Structures as Trust Structures

II.1. Color Based Access Structures

II.2. Application: Critical Infrastructures

II.3. Application: Communication Systems

II.4. Application: Access Control

II.5. Application: Reliable Computation and Untrusted

Hardware/Software

c�Yvo Desmedt 2
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Part III. Secret Sharing as building block

III.1. Communication Systems

III.2. Computations: Secure Multiparty Computation

III.3. Computations: Threshold Cryptography

III.4. Applications of Threshold Cryptography

Part IV. What many missed

IV.1. Solution: using humans

IV.2. Internet-voting as an application

IV.3. Solution: using physics

Part V. Lessons & Challenges

c�Yvo Desmedt 3

Part I. THE BUILDING BLOCKS OF SECRET SHARING

A typical way to describe secret sharing is to state:

A secret sharing scheme contains two algorithms:

1. one which creates shares of a secret � � � for the � parties in

�, so that

2. any � � �P can regenerate the secret using the second

algorithm, however any � �� �P can not. (In the perfect case,

� �� �P has no knowledge of the secret).

One calls �P � �P an adversary structure on � if its

complement, i.e., ��
P
� �P � �P is a monotone access

structure.

This definition only make sense when the adversary is passive.

c�Yvo Desmedt 4

Generalizing the approach used by Dolev-Dwork-Waarts-Yung, we

should define:

� An adversary structure attacking privacy, �P�privacy

� An adversary structure attacking reliability, i.e., in which subset of

parties may deviate from the protocol, �P�reliability

The case usually studied in the active case is the one in which

�P�privacy � �P�reliability.

However, as we will see soon, such a restriction dramatically

reduces the applications!

So, we distinguish between the main building blocks:

I.1. The concepts of adversary and access structures,

I.2. The SS and VSS schemes that realize this.

c�Yvo Desmedt 5
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Notes:

� SS and VSS schemes rely on combinatorics, algebra, etc.

� the concept of secret sharing predates Blakley and Shamir (Shamir

cites Liu’s 1968 book). We will call old SS schemes mechanical

ones.

� There are secondary building blocks, such as:

– Homomorphic secret sharing

– Proactive secret sharing

– Redistribution of shares

c�Yvo Desmedt 6

Part II. ACCESS STRUCTURES AS TRUST STRUCTURES

A lot of research has been done by the computer security

community related to trust (see e.g., at ESORICS,

Beth-Borcherding-Klein 1994, Maurer 1996 and several papers by

Jøsang). However, they are quite different from the trust expressed

by Access Structures.

Are probabilities better?

� They are often difficult to measure,

� When probabilities are independent, then when assuming the

threshold � is big enough, the remaining probability will vanish

exponentially fast.

� Conditional probabilities seem a better measure.

c�Yvo Desmedt 7

II.1. COLOR BASED ACCESS STRUCTURES

Definition 1. An access structure �P is called color based if there exist

a function � from � to �, called the set of colors, such that, for some

constant �:

�P � �� � ������ � ���

Why are these access structures important?

As we will see, they can be used to describe trust failures that are

“correlated.” So, they might be the solution to deal with conditional

probability.

We will also see that in many circumstances, a color based access

structure models modern problems we have to deal with in

(information) security, well.

c�Yvo Desmedt 8
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II.2. APPLICATION: CRITICAL INFRASTRUCTURES

The idea of color based access structures was first introduced

informally when:

� modeling the computers used in a PKI (Public Key Infrastructure)

system (see Burmester-Desmedt, Comm. ACM 2004).

Today we have very few operating systems and CAs (Certifying

Authorities) and RCAs (Root Certifying Authorities) use computers.

Often a weakness in one platform can be exploited to attack many

computers running the same platform. To model this dependency,

computers running the same platform were given the same color.

� The topic was generalized to model “failures” in critical

infrastructures (Burmester-Desmedt-Wang, IASTED 2003).

c�Yvo Desmedt 9

The importance of this model has been made clear with, e.g.,

� the Hengchun earthquake that on Tuesday December 26, 2006

which caused several underwater internet cables to fail in Asia,

We see the same technology being used in circumstances that

have the same vulnerability.

c�Yvo Desmedt 10

II.3. APPLICATION: COMMUNICATION SYSTEMS

Classical results

This goes back to World War I, after the cable ship Telconia lifted

from the bed of the North Sea the German overseas telegraph

cables:

11
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If an adversary can destroy � nodes, then �� � vertex disjoint paths

are needed and sufficient to communicate from sender (node �) to

receiver (node �). If any two non-destroyed nodes want to

communicate, it is necessary and sufficient that the directed graph

must be strongly �� � connected.

Illustration: node disjoint paths: a closed station

12

Dolev-Dwork-Waarts-Yung generalized the Byzantine general

problem to also include private communication. They used secret

sharing to achieve private and reliable (secure) communication

when the adversary can take over � nodes in a point-to-point

communication network.

In practice routers are used in communication systems. Few

companies are making routers. A formal study of the color

adversary setting in the context of communication systems was

done by Desmedt-Wang-Burmester (ISAAC 2005). The first author

wanted to take this correlated vulnerability into account. It turned

out that:

� Addressing the general case (i.e., model adversary in nodes by

using a General Adversary Structure) was conceptual easier.

c�Yvo Desmedt 13

� Kumar-Goundan-Srinathan-Rangan (2002) also looked at the

problem in the case interaction is used.

� Deciding whether a network in which nodes are colored satisfies

the color based access structure for a given � is co-NP complete

(Desmedt-Wang-Burmester, CRITIS 2006).

The model was also used to design networks that are reliable (no

privacy) when untrusted links are used, that have correlated

failures (Wang-Desmedt 2011, IPL).

Note: for outdated survey articles on this huge topic see: IEEE

Information Theory Workshop (2005, Japan) and BT Technology

Journal (2006).

The importance of color based access structures has become

clear in the following contexts:

c�Yvo Desmedt 14
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� Cisco Faces Challenges As Chinese Media Urge Switching To

Domestic Products For National Security Reasons In Wake Of NSA

Surveillance Leaks

http://www.ibtimes.com/cisco-faces-challenges-chinese-media-

urge-switching-domestic-products-national-security-reasons-wake

� BT’s use of Huawei’s equipment:

c�Yvo Desmedt 15

16

17

7



Note that the results are very different than in the case of

�-connected networks (when removing nodes).

Colors: not as in classical graph theory.

c�Yvo Desmedt 18

II.4. APPLICATION: ACCESS CONTROL

Classical access control gives access to subjects, which are

usually single parties. So, elements of the access structure

correspond to singletons (cardinality 1).

Desmedt-Shaghaghi (submitted) briefly considered using general

access structures to specify what subsets of subjects have access

to a certain object.

Access structures as we now know may not be the best way to

describe access control. Indeed, there are many circumstances

that need another approach, such as:

� a subject � is allowed access, after another subject � authorized it.

� a subject � is allowed access, after an entry has been made in a

log file, readable by subject �.

c�Yvo Desmedt 19

� a subject � can only access an object when � is accessing the

same object at the same time.

So, the definition of access structure should be generalized to

have:

� A mix of unordered and ordered sets.

� To allow to specify the role of each subject in its order.

c�Yvo Desmedt 20
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II.5. APPLICATION: RELIABLE COMPUTATION AND

UNTRUSTED HARDWARE/SOFTWARE

Assume we are not interested in privacy. Question: how can we

achieve reliable computation.

Normal Model: replicate the computation and then use a majority

vote.

General Access Structure: it is easy to see that we need that for

any two sets � � �P and � � �P that � � � �� �.

One replicates the computation and one then “votes” in such a way,

that if the same result is produced by each of the computers that

belong to some set � � �P, then this result is considered correct.

When using color access structures, this might allow one to protect

against state sponsored malware.

Important comment: see later, i.e., Part IV.

c�Yvo Desmedt 21

Part III. SECRET SHARING AS BUILDING BLOCK

In Part II we focused on how access structures can be used to

describe trust and lack of it.

We now consider SS and VSS schemes as building blocks.

c�Yvo Desmedt 22

III.1. COMMUNICATION SYSTEMS

When one desires privacy, secret sharing is the building block for

PSMT (Private and “Secure” Message Transmission).

In the case of a threshold adversary, the non-interactive case

corresponds with error-correcting codes. The interactive case also

uses secret shares, but is much more complex (see e.g.,

Kurosawa-Suzuki 2008).

As stated before, there are many variants of these scenarios, e.g.,

using directed hypergraphs instead of point-to-point networks.

Implementations:

1. Erotokritou-Desmedt (unpublished) tried to implement the 1993

non-interactive solution of Dolev-Dwork-Waarts-Yung. The amazing

problem we encountered is that:

� the 1993 internet technology would had allowed a 1993

c�Yvo Desmedt 23
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implementation,

� the current internet technology no longer allows to implement this.

Reasons:

– to guarantee ��� � vertex disjoint paths, we must specify the

path a data packet has to follow. Today any packet that uses the

standard TCP/IP option to specify the path is dropped by modern

routers!!

– companies want to keep the layout of the network private, which

causes another difficulty!

2. Desmedt-Cheney (unpublished) designed and implemented a

Thunderbird extension using mail servers, as gmail, hotmail, yahoo,

etc. For example, gmail and hotmail are considered as intermediary

nodes between the sender and receiver. So, we consider Google

and Microsoft as potential adversaries, not working together.

c�Yvo Desmedt 24

III.2. COMPUTATIONS:

SECURE MULTIPARTY COMPUTATION

Secure Multiparty Computation (MPC) started as a theoretical

problem. Today, many implementations have been programed and

progress has been made in making it more practical, in both a

conditional as unconditional setting. The May 30 - June 3, 2016

workshop on MPC in Aarhus clearly showed the progress in the

area.

Note: a not so well known result is the link between color based

access structures and MPC, which was made by

Desmedt-Pieprzyk-Steinfeld-Wang at Crypto 2007 (see also the

2012 paper in Journal of Cryptology).

Following from an earlier result by Franklin-Yung (1995) follows that

a reliability problem involving color based access structures implies

c�Yvo Desmedt 25

privacy-only MPC over non-Abelian groups.

Some examples: � � � and � � �

c�Yvo Desmedt 26
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� � � and � � �

c�Yvo Desmedt 27

III.3. COMPUTATIONS: THRESHOLD CRYPTOGRAPHY

Threshold Cryptography: much faster than secure multiparty

computation! Usually exploits homomorphic properties.

Comments:

� Extending Shamir SS to deal with RSA (see Desmedt-Frankel,

Siam Discr. Math. 1994) took two years.

� Often Shoup’s scheme, which he called “Practical Threshold

Signatures,” is implemented, but as King (ACISP 2000 and

Asiacrypt 2000) pointed out due to the use of ��, it is not so

practical!

Recommendations:

� At the Eurocrypt 2014 Panel on Post-Snowden Cryptography

Smart recommended one uses threshold cryptography with

co-decryption (co-signature) units in different countries.

c�Yvo Desmedt 28

My recommendation: use software/hardware from different

countries (color based adversary structures), e.g., from China

(developing independent hardware and OS). (So far I know, Japan

is not developing this).

� At Eurocrypt 2016 in his IACR Distinguish Lecture, Preneel

recommended the use of Threshold Cryptography, but stated that

there are few uses and few implementations of it!

c�Yvo Desmedt 29
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III.4. APPLICATIONS OF THRESHOLD CRYPTOGRAPHY

Just some example:

THRESHOLD THINGS THAT THINK (� 4)

Inspired by Things That Think:

sensors and microcomputers in objects, in particular clothing e.g.

in “sneakers, belt buckles, tie clasps, and wristwatches. These

chips would communicate. They would for example allow a user

to be identified when arriving in the lobby of an hotel, and the

elevator will know which floor to take him to, and the door to his

room will swing open as if by magic when he approaches.”

Uses Threshold zero-knowledge. Store the shares as following:

c�Yvo Desmedt 30

Preneel’s 2016 private comment:

A PhD student of Preneel implemented � 4, but then when trying

to convince companies to use this, they could not understand the

concept of threshold or general adversary structure.

c�Yvo Desmedt 31

Part IV. WHAT MANY MISSED

Today MPC is often promoted as a solution to state sponsored

malware.

Now when using different cloud servers from different countries, it

seems this problem is solved. However, the reliability community

knows for decades that this is false!!.

Why? In reliable circuit design one teaches you that:

The gates used for voting must be 100% reliable!

What does it mean in our context?

c�Yvo Desmedt 32
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� When the servers you use are curious:

The gates/computers to perform Lagrange interpolation must

be 100% trustworthy. Means: you better build it yourself! (Yung

recommendation at a panel at Intrust, Beijing.)

However, Lagrange interpolation is too complex for many countries

or corporations to build oneself.

� When the servers can be malicious (Byzantine):

The gates/computers to perform a decoder of a Reed-Solomon

code (e.g., Berlekamp-Massey or Berlekamp-Welch) must be

100% trustworthy. Means: you better build it yourself!

However, these decoders are too complex for many countries or

corporations to build oneself.

c�Yvo Desmedt 33

IV.1. SOLUTION: USING HUMANS

One of our approaches (independent from Yung) uses a human

brain.

Problems:

� Humans can not do Lagrange interpolation, moreover,

� they can not perform a Reed-Solomon decoder (e.g.,

Berlekamp-Massey or Berlekamp-Welch).

Our solution: we design special secret sharing schemes, which

allows humans to recover the secret.

How realistic?

� we tested share reconstruction in the passive adversary case and

got 99% accuracy.

c�Yvo Desmedt 34

� for the active adversary case we use secret sharing schemes in

which we can deal with errors using a variant of repeat codes. (Not

tested.)

Erotokritou-Desmedt developed (SCN 2012) a solution in the

context of communication with untrusted routers (PSMT). When

combining this with the Desmedt-Pieprzyk-Steinfeld (SCN 2012)

work, it is easy to achieve a theoretical solution for MPC in the

active adversary case.

c�Yvo Desmedt 35
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IV.2. INTERNET-VOTING AS AN APPLICATION

A user friendly approach: (multi-seat, not “code-voting”, � � �)

� �� �

��

36

In the single-seat election (mix friendly), we use code-voting (� � �)
We regard the Abelian group �10��� as a subgroup of �10 and

replace the above “shares” by e.g.,

Put this edge 

against Arrow 

Sheet 2 

Put this edge 

against "Trace 

the Line" edge 

Sheet 1 Sheet 2 

Put against 

"Secret Bullets" 

Put against 

Sheet 1 

These corresponding to an addition plus 4 ����� and plus 3

����� respectively. We assume there are 10 candidates.

37

The secret sharing aspect was presented at SCN 2012

(Erotokritou-Desmedt).

The voting aspect, with a new unconditionally secure MIX server

was presented at VoteID 2015 (Desmedt-Erotokritou).

c�Yvo Desmedt 38

14



IV.3. SOLUTION: USING PHYSICS

At ICITS 2016, De Prisco-D’Arco-Desmedt presented a solution to

use visual cryptography to achieve MPC.

Problems with using Visual Cryptography:

� We want to avoid that all computations need to use visual

cryptography (too slow)!

� But then, we seem to have an incompatibility of two secret sharing

schemes!

� Shares are generated by a computer!!!

c�Yvo Desmedt 39

IV.4. LESSONS & CHALLENGES

We should start to use the concepts of secret sharing, in particular

the one of Adversary Structure, in very different circumstances.

Just two examples inspired by the Fukushima nuclear accident:

� In the context of communication: As required by regulations,

two different phone providers were used at the plant to

communicate with headquarters.

Unfortunately, both phone providers were mobile ones and mobile

phones usually fail in the case of earthquakes. So, communication

between the plant and Tokyo Headquarters was impossible,

resulting in not open safety valves, which lead to the explosion.

Lesson: when using color based adversary structures one can

color technology that has the same vulnerability with the same

c�Yvo Desmedt 40

color, showing the lack of proper redundancy.

� In the context of the emergency cooling: they had the same

design, being at same location, they had the same vulnerabilities:

4 failures. The use of color based adversary structure might have

helped.

Challenges: We have many, in particular:

� Lack of understanding by (non-)experts, e.g., in discussions with 2

full professors at University College London, both working in

Information Security, it became clear that they have no trust in

Secret Sharing (summer of 2016).

� Bringing the ideas towards deployment.

c�Yvo Desmedt 41
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(joint work with Hidetaka HOSHINO)

Cheating detectable secret sharing is a secret sharing scheme with an extra property
to detect forged shares in reconstructing a secret. Such a property is indispensable
when we have to store shares in possibly malicious environment (e.g., cloud storage.)
Because of its importance in the real world applications, cheating detectable secret
sharing is actively studied so far. When we can assume that cheaters do not know
the secret, Ogata et al. derived the following lower bound on the size of shares [4]:
|Vi| = (|S|−1)/+1 where Vi, S, and  denote a set of share of user Pi, a set of a secret,
and successful cheating probability of cheaters, respectively. Cabello et al. presented
an almost optimum cheating detectable scheme in which the size of share |Vi| satisfies
|Vi| = |S|/, only one bit larger than the lower bound [1]. However, the scheme is secure
only when the secret is an element of a finite field with odd characteristic, that is, the
scheme is insecure when the secret is a element of F2N , a finite field of characteristic
two. Though there are several schemes which are secure when the secret is an element
of F2N [3, 2], few schemes are known to be optimum with respect to the size of share.
Since F2N is the most natural representation of data in computer systems, an efficient
scheme supporting F2N is highly desired.

In this talk, we present cheating detectable secret sharing schemes which are secure
even if the secret is an element of F2N . When the secret is uniformly distributed and
|S| ≥ −2 holds, the size of share of the proposed schemes are almost optimum in the
seance that the bit length of the share meets the lower bound with equality. Moreover,
the proposed schemes are applicable to any any linear secret schemes. We also present
a negative result of cheating detectable secret sharing scheme for supporting F2N when
 = 1/|S| holds.
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Overview of this talk

2

� Models of Secret Sharing against Cheating

� Methodology for Constructing Cheating 
Detectable Secret Sharing Schemes

� Constructions of Cheating Detectable k-out-of-n 
Threshold SSs

� Capable of detecting cheating in the presence of k-1 
cheaters who possibly submit forged shares

� Secure even when a secret is an element of ��

� Optimal with respect to the size of share

� A negative result…

Several Models of SS against Cheating

3

� Cheater Identifiable (CISS)
� Reconstruction algorithm identifies cheaters who 

submit forged shares

� Cheating Detectable SS (CDSS: this talk)
� Reconstruction algorithm just detects the presence of 

cheaters

� CDV model: Assume powerful cheaters who somehow 
know the value of the secret

� OKS model (this talk): Only deal with natural cheaters 
who do not know the secret in forging their shares

18



Model of CDSS (1)

4

Two Types of Participants

� Dealer 

� Dealer is honest (i.e., do not cheat)

� Participate in the protocol only at share generation

� Users 

� Each user � obtains a share � from 

� At most users are malicious

� Malicious users open their shares each other and at 
least one of them submits forged share � � in 
reconstructing a secret to make honest users 
reconstruct forged secret �

Model of CDSS (2)

5

ShareGen

DealerSecret

Share

Share Generation

Model of CDSS (3)

6

Reconst

� � � �

Secret Reconstruction

� � � �

if no cheating is 
detected

if Reconst
detects cheating
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Definition of Secure CDSS

7

Cheaters submitting forged share succeed in 
cheating if

� Reconst fails to detect cheating

� The value output by Reconst is different from 
what was input to ShareGen

Definition

A threshold secret sharing scheme is called 
-secure if no or less cheaters 

succeed in cheating with probability better than 

A Methodology for Constructing -secure 
scheme (in the OKS model)

8

� Protocol Design Phase
� Choose a fixed verification function 

� ShareGen
1. Compute shares �,� �,� for a secret using 

Shamir’s threshold scheme

2. Compute shares �,� �,� for using Shamir’s 
threshold scheme

3. Output � �,� �,� as the share for user �

� Reconst
1. Reconstruct and from �,∗ and �,∗, respectively

2. Output if holds, otherwise output 

Security of CDSS with verification func. 

9

Suppose that the secret is uniformly distributed. 
Then CDSS constructed based on such methodology 
is proven to be -secure where

Our Goal: To find GOOD verification function with 
desired properties

20



Desired Properties of Verification Func.

10

� Must be non-linear (otherwise, …)

� The degree of polynomial representation of 
is low since 

� Share size of resulting scheme is small (as small as the 
following lower bound)

� Applicable to a secret of a finite field of characterisic
two (i.e., �) since the most natural representation of 
data in computer systems is bit string

Known -secure schemes (OKS model)

11

Verification
Function ����

�
Size of Shares

|��|

Supported
Mathematical 
Structures

Ogata-Kurosawa
Eurocrypt ‘98

N/A

different
methodology

�� �
� � 1

�
� 1

meet lower bound

Parameters are 
very much limited

Cabello-Padro-Saez
DCC (2002)

� � � ��
1

�

�� �
|�|

�
almost optimum

Arbitrary Finite 
Fields except for 
���

Araki-Ogata
IEICE Trans. Fund. 
(2013)

� � � ��
2

�
�� �

2|�|

�

Finite Fields of 
Charasteristic 2
(i.e., ���)

Araki-Ogata
IEICE Trans. Fund.
(2012)

� ��, … , ����

� �� ⋅ ����
���

     � ∑ �� ⋅ ����
��

�

log |�|

�
�

��� |�|
�� �

|�| log |�|

�

Arbitrary Finite 
Fields

Why CPS02 is insecure when 

12

� The share of CPS02: where
� �,�: share of the secret 

� �,�: share of the check value �

� Cheaters can choose and arbitrarily such that
� The secret reconstructed from shares �

� The check value reconstructed from shares �

� Cheaters win if holds, that is,

if holds

(if �)

Cheaters succeeds in cheating 
with probability 1 by choosing 

and such that
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Our Contribution

13

Construct three -secure SSs with the 
following properties:

� The scheme deals with the secret of a finite field 
of characteristic two

� The size of share is close to the following lower 
bound

Construction 1

14

� Let a secret be a element of �

� Employ � � as a 
verification function

� Properties of Construction 1:

�
��

�
�

� �
��

When holds, Construction 1 is almost 
optimum with respect to the size of share

Construction 2 (Generalization)

15

� Let a secret be a element of �

� Employ � �) as a 
verification function ( � �: linear function 
with )

� Properties of Construction 2:

�
��

�
�

� �
����

When holds, Construction 1 is almost 
optimum with respect to the size of share
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Construction 3 (Another Generalization)

16

� Let a secret be a element of �

� Employ � �

as a verification function

� Properties of Construction 3:

�
�ℓ�

�
�

� �
��ℓ����

Construction 3 is not only almost optimum but also 
easier to implement & efficiently implementable

What we have obtained

17

Natural Question:
Does optimum construction exist even when ?

2

1

(Almost) Optimum
Constructions Exist

No Optimum
Construction Exists

A negative result when 

18

� For all 
�

functions � �, we have 
checked the security of CDSS when using as a 
verification function

� If optimum construction exists, the successful 
cheating probability of resulting CDSS becomes 
1/8

23



A negative result when (cont’d)

19

� Interestingly, no function which gives optimum 
construction exists!!

# of functions

1/8 0

2/8 688128

3/8 0

4/8 10838016

5/8 0

6/8 5046272

7/8 0

1 204800

Concluding Remarks and Open Problems

20

� In this talk, we have presented three -
secure CDSSs with the following properties

� The scheme deals with the secret of a finite field of 
characteristic two

� When �� holds, the size of share is close to the 
lower bound

� Open Problems: Construct -secure CDSS

� with optimal share size even when ��

21

Thank you!!
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Shamir[1] and Blakley[2] independently introduce the basic idea of a (k, n) threshold
secret sharing scheme in 1979. Shamir also recognize the concept of a hierarchical
scheme, and suggests accomplishing the scheme by giving the participants of the more
capable levels a greater number of shares. Some of hierarchical secret sharing schemes
are known in the way that the secret is shared among a group of participants that is
partitioned into levels. We look at hierarchical secret sharing schemes (HSSS) in the
purpose of the ease of deleting the secret after it is distributed, that is, the reliability of
data deletion depends on the deletion of the shares of the indispensable participants,
and focus on providing a fast method and practicality.
In this talk, we propose two ({1, k}, n) hierarchical secret sharing schemes. The first

scheme[6, 7] inherits Tassa’s idea[3, 4] of using derivatives and Birkhoff interpolation.
The second scheme[6, 8] inherits XOR-based secret sharing scheme proposed by Fujii
et al.’s[5]. The former provides any ({1, k}, n) HSSS in finite fields of characteristic
2. On the otherhand, the latter provides only ({1, 3}, n) HSSS for a small number of
indispensable participants.
We also report the evaluation result of the above two schemes on a PC with Intel

Celeron G1820 2.70GHz and 3.6GB RAM. The ({1, 3}, n) HSSS using Birkhoff interpo-
lation can recover the secret in the processing of around 0.97Gbps. On the otherhand
({1, 3}, n) HSSS using XOR operations can recover the secret in the processing of
around 7.0Gbps.
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Fast ({1,k},n) HSSS 

This presentation is composed of the following 
three works. 

 
[SD15] Shima, Doi, “A study on fast hierarchical secret sharing 

schemes,”  Computer Security Symposium CSS2014, 2E2-4, 
pp.1327-1334, 2015. [in Japanese]  

[SD16a] Shima, Doi, “A Study on ({1,k},n) hierarchical secret 
sharing schemes over finite fields of characteristic 2,” IPSJ 
CSEC, 2016-CSEC-72(5), pp.1-7, 2016. [in Japanese]  

[SD16b] Shima, Doi, “({1,3},n) hierarchical secret sharing 
scheme based on XOR operations for a small number of 
indispensable participants,” AsiaJCIS 2016, pp.108-114, 2016. 

2 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

HSSS: Hierarchical Secret Sharing Scheme 
  SSS: Secret Sharing Scheme 

Outline 
1. Background and Motivation 
2. ({1,k},n) HSSS based on Birkhoff Interpolation 

i. Related Works 
ii. Our method 

3. ({1,3},n) HSSS based on XOR operations for a 
small number of indispensable participants 

i. Related Works 
ii. Our method 

4. Evaluation of Software Implementation 
5. Conclusion 

3 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 
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1. Background 
and Motivation 
• Secret Sharing Scheme 
• Hierarchical Secret Sharing Scheme 
• Our Goal 

4 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

Secret Sharing 
Scheme(1/2) 
• Methods for distributing and managing the secret 

information [S79,B79] 
– Prevention of both information theft and information 

loss 
 

• (3,4) threshold secret sharing scheme 

5 

S Distribute 

4 Shares S 

Cannot obtain any 
information of S 

Secret 

Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

Distribution Recovery  

Secret Sharing 
Scheme(2/2) 
• Shamir also recognized the concept of a 

hierarchical SSS [S79] 
–  The shares of (3,n) SSS are distributed 

• the company’s president : three shares, 
• each vice-president : two shares, 
• each executive : one share 

6 

vice-president 2 

executive 1 
executive 2 

executive 3 

one vice-president 
one executive 

S 

three executives 
without (vice-)president !!! 

S 

president vice-president 1 

Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 
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Hierarchical Secret 
Sharing Scheme 
• The secret is shared among a group of participants that 

is partitioned into levels. 
• (   ) Hierarchical Secret Sharing Scheme [T04, T07] 

– Minimal number of 1st –level participants is 1 
– Minimal number of 2nd  or higher–level participants is 3 

7 

S Distribute 

S 

Cannot obtain any 
information of S 

Secret 

Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

1st level 2nd level 

Goal: Fast HSSS 
• The method can be used in the purpose of the ease of 

deleting the secret after the secret is distributed 
– The deletion of the secret is guaranteed with the deletion 

of the indispensable (1st level) participants’ shares 
• 1 or 2 indispensable participants will be practical for that 

purpose 
 

• We focus on providing a fast method and practicality 
– Using fast operations 

• Operations in GF() / (Only) XOR  
– For fast construction, we restrict the method 

• e.g. For specific access structure (e.g. only ({1,3},n})) 
• e.g. The number of indispensable participants is 1 or 2 

8 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

2. ({1,k},n) HSSS based 
on Birkhoff Interpolation 

• Shamir’s SSS and Lagrange Interpolation 
• Tassa’s HSSS and Birkhoff Interpolation 
• Our Method 

 
 

9 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 
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Shamir’s SSS and 
Lagrange Interpolation 

• Shamir proposed (k,n) secret sharing 
scheme[S79] 
– Using Lagrange Interpolation to recover the 

secret 
 

10 Secret Sharing for Dependability, Usability and Security of 
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1 1 2 3 4 5

10

5

5

10

15

Example (Lagrange 
Interpolation) 
• Distribution: 

            , … 
•     : polynomial with degree 2 

 
• Recovery: 

– Calculate    using 
    

    
    

    
    

    

11 Secret Sharing for Dependability, Usability and Security of 
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Lagrange 
Interpolation 
       

  
– Degree of    is    
   ,        e.g.      

 
• Secret       

  
 

 [S79] Lagrange Interpolation in GF(p) 
 

12 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 
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Tassa’s HSSS and 
Birkhoff Interpolation 
• Tassa proposed (    ) 

hierarchical SSS [T04,T07] 
– Using Birkhoff Interpolation to recover the 

secret 

13 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

(    ) and 
(   ) 
• Access Structure: (    )  

        
    


              

         

         

 
• ( ) HSSS 

– The minimal number of 1st levels participants is  
– The minimal number of 2nd or higher levels participants 

is  
– ( ) is sufficient for our goal 

 
 

14 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

1 1 2 3 4 5

10

5

5

10

15

Example (Birkhoff 
Interpolation) 
• Distribution:  

             
   : polynomial with degree 2 

 

• Recovery:  
– Calculate    using 

    
    

      
      

15 Secret Sharing for Dependability, Usability and Security of 
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Birkhoff 
Interpolation (1/2) 
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Birkhoff 
Interpolation (2/2) 
      

 

     

• Secret     
   

 
 
 

• Birkhoff Interpolation works  if      . 
 
 [T04,T07] Birkhoff Interpolation in GF(p) 
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1 1 2 3 4 5
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5

5

10
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1 1 2 3 4 5

10

5

5

10

15

Birkhoff Interpolation 
(Example) 
• Example 

            
      , 
      ,      ,       

      
 


    =      

18 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

31



Fast ({1,k},n) HSSS 
based on Birkhoff 
Interpolation 
• In GF(2), constructing ({1,3},n) HSSS based on 

Birkhoff Interpolation is not straightforward 

19 

   
     

      
      

Unknowns is (  )  
Number of Eq. is 3 

   
     

    
    

Unknowns is (  )  
Number of Eq. is 2 

In  

GF(p) where p is large GF(2)  

Solvable Cannot 
Solve 

Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

Our Improvement 
for ({1,k},n) 
• Using Polynomial with odd degree + constant(secret) 

         
  

      
  

 
• Birkhoff Interpolation for ({1,3},n) 
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Improvement for 
({1,3},n)  
• ({1,3},n) HSSS where the number of Indispensable 

participants is 1 
 
       

   

   
  

     
  

  
  




  
  


 

 can be reused for fast computing 
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3. ({1,3},n) HSSS based on 
XOR operations for a small number 
of indispensable participants 

• Fujii et al.’s   threshold scheme [FTHTK05] 
 

• Our Method 
– Case: one indispensable participant 
– Case: two indispensable participants 

22 Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

Fujii et al.’s (2,n) threshold 
scheme (1/3) 

• The secret    is equally divided into 
   blocks 

  is a prime number such that    
    

23 Secret Sharing for Dependability, Usability and Security of 
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Fujii et al.’s (2,n) threshold 
scheme (2/3) 

• The dealer  
– chooses    pieces of -bit random number ,…,   
– distributes each share  to the participant  

 
 

• e.g.  n=5 

24 
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Fujii et al.’s (2,n) threshold 
scheme (3/3) 

  and  cooperate to recover the secret using   
• From  as a starting point, we obtain  with  and 

   
• From  as a starting point, we obtain ,,,, 
• Finally, we obtain         . 
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Details of Our Method: 
Distribution 
• We use intermediate shares     
• Secret  is XORed in the shares of level 1 (i.e.  ) 

     are used as intermediate shares 
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Details of Our Method: 
Recovery(1/2) 
• Case: one indispensable participant 

    are used to recover the secret 
     (and    ) are recovered using    

–  Fujii et al.’s (2,n) threshold scheme 
    are recovered using         
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Details of Our Method: 
Recovery(2/2) 
• Case: two indispensable participants 

    are used to recover the secret 
     are recovered using    

– Fujii et al.’s (2,n) threshold scheme 
     are recovered using       
    are recovered using         

28 
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4. Evaluation of Software 
Implementation 

• Environment 
– General purpose machine 

29 

CPU Intel Celeron CPU G1820 @ 
2.70GHz 2 (2MB Cashe) 

RAM 3.6GB 
OS CentOS 7 Linux 3.10.0-

229.20.1.el7.x86_64 
Programming 
Language 

The C language 

Compiler System GCC 4.8.3 (-O3 –flto –DNDEBUG) 
Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

Details for ({1,k},n) 
HSSS based on 
Birkhoff Interpolation  

• Operations in  
 

 
 

• Lookup Table in    
– Precomputing    and  in  
– Creating Table 

char mul[256][256], div[256][256];  // 128KB is needed. 
    operation is implemented by referring mul[][] 
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Irreducible Polynomials 
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Evaluation Result 
(Birkhoff Interpolation) 

• ({1,3},n) HSSS based on Birkhoff Interpolation 
– Recovery (1 indispensable participant) 

31 

GF(28) 40.1 
GF(216) 20.0 
GF(233) 7.6 
GF(264) 3.7 
GF(2128) 0.5 
GF(2256) 0.2 

Mbps 

GF(28) using Lookup Table 971.7 

Secret Sharing for Dependability, Usability and Security of 
Network Storage and Its Mathematical Modeling, 2016 

Details for ({1,3},n) 
HSSS based on XOR 
operations 
• The secret     is divided into 

   blocks 
• = 64 is used for the evaluation 

– We try out four values of = 8, 16, 32, 64 and 
have found = 64 is the fastest and roughly 
twice as fast as = 32 
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Network Storage and Its Mathematical Modeling, 2016 

Evaluation Result 
(XOR operations) 
• ({1,3},n) HSSS based on XOR operations 

– Recovery (1 indispensable Participant) 

33 

({1,3},5) 8.37 
({1,3},13) 7.65 
({1,3},23) 7.38 
({1,3},59) 7.65 
({1,3},109) 7.32 

Gbps (= 1000Mbps) 
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5. Conclusion 
• We proposed two schemes 

– Both schemes are ideal and perfect (Omitted the proofs) 
 

• ({1,k},n) HSSS based on Birkhoff Interpolation 
– k is selectable but effects the performance 
– The performance does not depend on n 
– 0.97Gbps (using Lookup Table) 

• ({1,3},n) HSSS based on XOR operations 
– The performance depends on n 
– Only ({1,3},n) and small number of indispensable participants 

• The number of indispensable participants is one or two 
– around 7.0Gbps 

34 Secret Sharing for Dependability, Usability and Security of 
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SHSS: “Super High-speed (or, Sugoku Hayai)
Secret Sharing” Library for Object Storage Systems

Ryo KIKUCHI (Joint work with Dai Ikarashi, Kota
Tsuyuzaki, and Yuto Kawahara)

NTT Corporation
kikuchi.ryo@lab.ntt.co.jp

Recently, as a measure for the information security and the disaster recovery re-
garding on-line storage systems, the research of secret sharing technology has become
quite active. On the other hand, in the research field of storages, erasure codes has
been widely studied and quickly spread over practical storage systems recently.

In this work [1, 2], we point out that secret sharing has a merit from the aspect
of information security as an upward compatible function of erasure codes when it is
applied for object storage systems, which are becoming popular today, and propose an
efficient secret sharing scheme suitable for object storage systems. Furthermore, we
implemented a secret sharing library called SHSS (Super High-speed / Sugoku Hayai
Secret Sharing), and report it’s performance. It is about 50 times faster itself than that
in the existing report for object storage systems [3], and combined with OpenStack
Swift [4], it performs about 10 Gbps, which is as the same level as the standard erasure
code library [5] without security.
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Unequal Secret Sharing Scheme
- a proposal -

Rocki H. Ozaki Kouichi Sakurai
Real Technology Inc. Kyushu University

Yokohama, Japan Fukuoka, Japan

Prepared by Rocki ozaki

2Copyright © 2016 Real Technology – All rights reserved

Secret Sharing – Brief History

1979 Shamir[1], Blakely[2] invent the basics
Perfect (“information theoretic security” is assured)

1989 Rabin[3] IDA (Information Dispersal 
Algorithm)

Use less resource and faster (Computational Security)

1993 Krawczyk [4] combine perfection and speed
Encrypt data first, and then use SSS to assure perfection

1997 Rivest[5] AONT (all or nothing transform)
Protect against brute force attack (an alternative to SSS)

And many others’ work; in area of Verifiable SS, Robust SS, 

Hierarchical SS, Rational SS, Multi-SS, Ideal SS, Proactive 

SS, etc. and research on the “access structure.”

3Copyright © 2016 Real Technology – All rights reserved

So what now? Yet another…

The problem is…
It is quite unsure “how” to use SSS in practical 
application.
- Who should be the dealer?  Who should be the combiner?
- How to distribute the share? How to keep the share safely?
- How to send to combine? Can you trust the combiner?
- Can you trust other shareholders? 
- Would others trust me? How can I proove I’m a good guy?
- I lost my share. Someone stole it? Can it be invalidated?
- I am a manager and need some authority to combine data 

by myself, without requesting the combiner each time. 
- How can I manage hundreds of shares of hundreds of files?

52
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We need a practical solution

A SSS solution that can:
- Utilize fully the cloud environment and servers.
- Manage hundreds (if not thousands) of files and shares.
- Manage shareholders (users) under levels of “privileges.” 
- Assure information theoretic security. 
- Fast, reliable and easy to use.
- Ultimately, a SSS application should be in the center of a

cloud based file management software.

File management System

Operating System

SSS Engine

Other
Applications

Cloud 
File 
Servers Users

5Copyright © 2016 Real Technology – All rights reserved

Functions needed in next-gen SSS

In order to meet the criteria, per previous slide…
We must implement the following functions.
- No need for a dealer, no need for a combiner. Therefore,
- Fully server stored. Shares distributed over the Internet.
- Split and combine is automatic, but only within user’s PC.
- Keep no original file on PC, split and send to the servers

immediately and automatically.
- Basic access structure managed by server access. But,
- Authorization is managed by the engine, in layers.
- Higher layer managers can combine by themselves, lower

layer staff need approval from higher layer manager(s).
- All shares should not be made equal = Need for unequality.

6Copyright © 2016 Real Technology – All rights reserved

Implementing Unequality into SSS

How to implement “unequality” into SSS shares?
The easiest is to use a tag; but tags can be read 
from outside (or further, manipulated.)

So we have to use a tag that is not readable.
But, if we encrypt the tag, we have to manage an 
extra key, which is contrary to the concept of SSS.

So the idea is; to let the tag itself be a SSS split data 
of the authorization data.

share (split data of the original file)authorization tag

53
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Here’s how it works

Let S be the original data (“secret” as is often called.)

Encrypt this by some algorithm

+

Split this by some SSS algorithm

Original data S (readable)

Encrypted data E (un-readable) Key

Share E1 (un-readable)

Share E2 (un-readable)

Share E3 (un-readable)

Share E4 (un-readable)

Share E5 (un-readable)

Share E6 (un-readable)

Key K1 (un-readable)

Key K2 (un-readable)

Key K3 (un-readable)

Key K4 (un-readable)

8Copyright © 2016 Real Technology – All rights reserved

The trick is…

So up to here, it looks like Krawczykz’s SSMS ?!

The trick is; we link the two elements and make one file, as 

below: **This is a sample of (3,6) SSS for E and (3,4) SSS for K.

Users A+B+C can combine, B+C+D can combine, but users D+E+F 

cannot combine unless they get 2 shares from A,B or C.

Share E1 (un-readable) Key K1 (un-readable)

Share E2 (un-readable) Key K2 (un-readable)

Share E3 (un-readable) Key K3 (un-readable)

Share E4 (un-readable) Key K4 (un-readable)

Share E5 (un-readable) Key K4 (un-readable)

Share E6 (un-readable) Key K4 (un-readable)

give to user A 

give to user B 

give to user C 

give to user D 

give to user E 

give to user F 

The trick is these 
users hold the 
same K4 so they 
cannot combine 
the original file.

9Copyright © 2016 Real Technology – All rights reserved

and users can hold multiple shares

CEO
[E1:K1

]
[E2:K2

]

Manager
[E4:K4

]
[E3:K3]

Staff 1
[E5:K4

]
↑

Staff 2
[E6:K4

]
↑

Share E1 Key K1

Share E2 Key K2

Share E3 Key K3

Share E4 Key K4

Share E5 Key K4

Share E6 Key K4

give to CEO

give to CEO

give to Manager

give to Manager

give to Staff 1

give to Staff 2

Give 2 shares to CEO, 2 shares to Manager.

But [E4:K4] [E5:K4] [E6:K4] has same K4 so they cannot combine.

This is a sample of two layers;

Layer 1 (CEO and Manager) = can combine by themselves

Layer 2 (Staff 1 and 2) = need to access [E3:K3] of Manager

Servers
Users

Allocation Table

A sample of USSS: Data= (2, 6) Key=(2,4)
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A sample of deployment
Under this scheme, it can be deployed in many different variations. 

Below is a sample of how to make this combination of servers and 

shares, according to the pre-set numbers of users. (Diagram shows 

we need (3,9) for data and (3,6) for the key, and 5 servers.

CEO
[E1:K1

]
[E2:K2

]
[E3:K3]

VP
[E6:K6

]
[E4:K4

]
↑

Manager
[E7:K6

]
[E5:K5

]
↑

Staff 1
[E8:K6

]
↑ ↑

Staff 2
[E9:K6

]
↑ ↑

is exclusive 
access (full control)

allow others to
access (full control)

is non-privileged 
(no control)
↑is server access 
only (no control)

Allocation Table

Servers
Users

1
1

Copyright © 2016 Real Technology – All rights reserved

Access to Servers

A B C D E
(CEO) (VP) (Mgr) (Staff 1) (Staff 2)

1
2

Copyright © 2016 Real Technology – All rights reserved

In the previous sample…
In the sample of slide 10, we are managing a company (or group) 

with CEO, VP, Manager and 2 staffs, D and E. The CEO has 

access and full control over servers and so he/she can 

combine the original data any time. The VP has access and full 

control over server but need access right to servers and so 

the CEO could shut out access if needed. Likewise, the Manager 

need and . But then, the VP and Manager has full control over 

and respectively, so they can shut out staff A and B if needed. 

Staffs A and B have no control over servers, so they cannot 

manupulate to combine the data without being permitted to access 

the servers. So in this sample, there are three levels of hierarchy, 

the CEO level, the VP and Manager level, and the staffs level.
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Another sample of deployment

PD

CEO [E1:K1] [E2:K2] [E3:K3] [E4:K5]

VP [E5:K5] [E6:K6]

Project Mgr 1 [E7:K7]
[E8:K8

]

Project Mgr 2 [E9:K9]
[E10:K10

]

Staff 1 (G1) [E11:K11]

Staff 2 (G1)
[E12:K11

]

Staff 3 (G1)
[E13:K11

]

Staff 4 (G2)
[E14:K11

]

Staff 5 (G2)
[E15:K11

]

Staff 6 (G2)
[E16:K11

]

Combine=3: Two new concept, “coverage” and PD = Private Device (e.g. USB mem.)

Device
Users

1
4
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Hierarchy in Layers

This mechanism allows hierarchical management in 
layers. (Introduction of PD=Private Device)

Layer 1 CEO
Coverage 133%, can shut out VP

Layer 2 VP
Coverage 66%, can shut out all lower layers

Layer 3 Managers
Coverage 66%, can shut out project team members

Layer 4 Staff Group A and B
Coverage 33%, must have access rights from bosses.

They cannot combine using their PDs.

1
5
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Defining the Security Policy

Security Policy. (The constitution for “deployment.”)
- who becomes the master controller?
- whether to use PD (private device) or not?
- whether to use a CS (common server) or not?
- how many layers? Define the hierarchy.
- define coverage for each layer or section.
- overlap this with “access management” of information

for example:
level definition who can accesss

Level-3  Top secret information top management only
Level-2 Corporate secret info directors and above
Level-1  Limited access info managers and above
Level-0  General info no restriction (sectional)
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And more, but the base is…
This deployment can be extended further, but the base is, using 

“unequal SSS” mechanism, as explained in slides  7 and 8. 

Adding further, 

1. The encryption of original data S can be a fast but somewhat

weak encryption or can be a strong AONT, as the needs may be.

2. The SSS of encrypted data can be (or better be) a fast but only

secure computationally, such as IDA or similar, while the SSS of

the key can be (or better be) a perfect SSS that is information 

theoretically secure.

3. Having said that, however, it is up to the development of further

optimized SSS engines by researchers of the future.  

1
7
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Other Considerations-1
Application link – Files made by application software (such as 

Word, Excel, etc.) should be restricted not to write out the 

document files directly on PCs and/or cloud storages. They should 

be handed over to the USSS engine and then split before being 

written out to local storage or cloud server.

App software

Storage
Device

USSS engine

Cloud
Storage

1
8
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Other Considerations-2
User authentication – The only protection on the server side is the 

user authentication. Accordingly, an advanced yet simple 

authentication method should be used together.

Automatic generation of the Allocation Table – With tens of 

managers and hundreds of staffs in hierarchical structure, it is not 

easy to make the allocation table. A program should be made to do 

this automatically.

Off-line  combine – In certain case, on-line access may be (should 

be) restricted. More research on combining off-line should be 

studied.
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Thanking for your attention.
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In recent years, the research on big data security and IoT (Things of Internet) security
is prosperous. Especially, to realize utilization and privacy protection of big data,
research on secrecy computation or searchable encryption which calculates or retrieves
without restoring the data enciphered is done briskly. However, research on such
Big data security is premised on that there are enough calculation resources in many
cases. On the other hand, since IoT data is main data which constitutes Big data,
the data enciphered by the IoT device is desired to turn into the data which can
carry out secrecy computation or secrecy retrieval without being restored as it is,
i.e., data compatible with big data security. However, since an IoT device is the
”thing” which was not connected with a network until now, and calculation resource
and communication capability are given and it is made into the part of a network, it is
difficult in cost to give a big calculation resource, electric power, etc. to the ”thing.”
Therefore, it is difficult to reconcile big data security and IoT security.

In this research, the mechanism of realizing Big data security and IoT security
simultaneously using a secret sharing scheme is proposed. In this research, we use
Asymmetric Secret Scharing Scheme [TKI14] by which owner of secret can control the
restoration and the secrecy computation and retrieval of the secret. In addition, we
propose the secrecy computation [SIK16] which can be performed in n¡2k-1. By these,
a mechanism with the following features is realized. IoT device can generates the share
by light processing. The secret is not revealed, since the number of output from IoT
devices is less than k-1, even if all communication paths are intercepted. IoT device of
relay can perform secrecy computation by light processing. The share from IoT device
is saved or used for restoration, secrecy computation and retrieval as it is. The owner
of secret can control the restoration and use after secret sharing only by managing one
key. The secret is not revealed in secrecy computation, even if all the players except
the owner collude.
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A secret sharing scheme (SSS) was introduced by Shamir in 1979 using polynomial
interpolation. It was shown that it is equivalent to an SSS based on a Reed-Solomon
code. SSSs based on linear codes have been studied by numerous researchers. However
there is little research on SSSs based on additive codes (that is, codes closed under
addition). In this talk, we study SSSs based on additive codes, in particular, over
GF (4). We show that they provide higher security level than linear codes based SSSs
since they require at least two steps of calculations to reveal the secret. We also
describe our theorems using several interesting additive codes over GF (4) including
the hexacode of length 6, the dodecacode of length 12 and S18, all of which contain
generalized 2-designs. This is a joint work with Nari Lee.
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Secret sharing schemes based on additive codes

Jon-Lark Kim

This is a joint work with Nari Lee.
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Introduction to SSS Main Results Conclusion

Outline

1. Introduction to SSS

• SSS based on linear codes

2. Main Results

• SSS based on additive codes over GF (4)
• Examples on additive codes over GF (4)

3. Conclusion

Introduction to SSS Main Results Conclusion

Outline

1. Introduction to SSS

• SSS based on linear codes

2. Main Results

• SSS based on additive codes over GF (4)
• Examples on additive codes over GF (4)

3. Conclusion
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Main Reference

This talk is based on the following paper.

J.-L. Kim and N. Lee, Secret sharing schemes based on additive
codes over GF(4), Applicable Algebra in Engineering,
Communication and Computing, DOI: 10.1007/s00200-016-0296-5
(2016).

Introduction to SSS Main Results Conclusion

Introduction to SSS

A secret sharing scheme(SSS) is

• a method of distributing a secret to a finite set of participants

• all the participants receive a piece of the secret, a share

• only qualified subsets of the participants can have access to
the secret by pooling the shares of their members.

Introduction to SSS Main Results Conclusion

Introduction to SSS

About Secret Sharing Scheme...

• It was introduced by Shamir and Blakley independently in
1979.

• Shamir used polynomial interpolation for constructing secret
sharing scheme.

• Blakley used hyperplane geometry.

• Shamir’s SSS turned out to be equivalent to a SSS based on a
Reed-Solomon code.

• It is natural to think about SSSs based on codes.

• SSSs based on linear codes are widely studied for a long time
by numerous people.
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Introduction to SSS

Table: History of secret sharing schemes

Year Author Contribution using

1979 A. Shamir a polynomial interpolation

1979 G. R. Blakley a hyperplane geometry

1981 R.J. McEliece, D.V. Sarwate a linear code

1983 C. Asmuth, J. Bloom a Chinese Remainder Theorem

1985 G. R. Blakley ramp schemes

1993 J.L. Massey minimal codewords
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Introduction to SSS

Some of secret sharing schemes were applied to numerous fields
such as

(i) controling nuclear weapons in military

(ii) cloud computing

(iii) recovering information from multiple servers

(iv) controling access in banking system
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Motivation

• Secret sharing has been focused for decades.

• The access structure of the scheme can be simply defined as
long as the scheme is based on codes holding 1-designs.

• There has been less attention to SSSs based on additive codes.

• What if the properties of additive codes were translated into
SSSs?

• Why codes over GF(4)?

• Self-dual codes over GF (2), GF (3), and GF (4) have the
property that they are divisible by the Gleason-Pierce-Ward
Theorem.

• A code C whose codewords have weights divisible by an
integer c > 1 is said to be divisible by a divisor c .
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SSS based on linear codes

• G = (g0, g1, · · · , gn−1) : a generator matrix of an [n, k , d ]
code over GF (q)

• The secret s ∈ GF (q) in SSS is constructed from an [n, k , d ]
linear code C

• There are n − 1 participants P1,P2, · · · ,Pn−1 and a dealer P0
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SSS based on linear codes

• A dealer randomly takes an element

u=(u0, u1, · · · , uk−1) ∈ GF (q)
k

• Let

t = (t0, t1, · · · , tn−1)=uG

• The secret s is defined as

s = ug0 = t0

• The dealer gives the share ti to participant Pi , i ≥ 1.
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SSS based on linear codes

Lemma 1 ( Massey (1993) ).

Let C be a [n, k , d ] linear code over the finite field GF (q) and let
C⊥ be its dual code. In the secret sharing scheme based on C, a
subset of shares {ti1 , ti2 , · · · , tim}, 1 ≤ i1 < · · · < im ≤ n − 1,
determines the secret if and only if there is a codeword

(1, 0, · · · , 0, ci1 , 0, · · · , 0, cim , 0, · · · , 0) (1)

in C⊥ with cij �= 0 for at least one j.

81



Introduction to SSS Main Results Conclusion

Secret Sharing Schemes Based on Additive Codes

If there is a codeword

(1, 0, · · · , 0, ci1 , 0, · · · , 0, cim , 0, · · · , 0)

in C⊥, then the vector g0 is a linear combination of gi1 , . . . , gim ,

g0 =

m
�

j=1

xjgij , xj ∈ GF (q).

Then the secret s is recovered by computing

s =

m
�

j=1

xj tij .
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SSS based on linear codes

Definition 2.

• An access group is a subset of a set of participants thst can
recover the secret from its shares.

• A collection Γ of access groups is called an access structure of
the scheme.

• An element A ∈ Γ is called a minimal access group if no
element of Γ is a proper subset of A.

• We let Γ̄ = {A|A is a minimal access group}. We call Γ̄ the
minimal access structure.
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Outline

1. Introduction to SSS

• SSS based on linear codes

2. Main Results

• SSS based on additive codes over GF (4)
• Examples on additive codes over GF (4)

3. Conclusion
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SSS based on additive codes

• An additive code C over GF (4) of length n is an additive
subgroup of GF (4)n

• The trace map for x in GF (4) : Tr(x) = x + x2 ∈ GF (2)

• The trace inner product of two vectors x = (x1x2 · · · xn) and
y = (y1y2 · · · yn) in GF (4)

n :

x ⋆ y =

n
�

i=1

Tr(xiyi ) ∈ GF (2),

where yi denotes the conjugate of yi .
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SSS based on additive codes

Lemma 3.
Let C be an (n, 2k) code over GF (4) and C⊥ its dual code defined
by the trace inner product. Let

H1 =
�

x |x = (1, · · · , 0, xi1 , 0, · · · , 0, xim , 0, · · · , 0) ∈ C⊥

xij �= 0 for at least one j} ,

H2 =
�

y |y = (ω, · · · , 0, yi1 , 0, · · · , 0, yil , 0, · · · , 0) ∈ C⊥

yij �= 0 for at least one j} ,

H3 =
�

z |z = (ω, · · · , 0, zi1 , 0, · · · , 0, zir , 0, · · · , 0) ∈ C⊥

zij �= 0 for at least one j} .

In the secret sharing scheme based on C, two subsets of shares
{ti1 , ti2 , · · · , tim} and {ti1 , ti2 , · · · , til}, 1 ≤ i1 < · · · < im ≤ n − 1,

1 ≤ i1 < · · · < il ≤ n − 1, determine the secret if and only if there are
at least two codewords from distinct sets among Hi ’s, 1 ≤ i ≤ 3.
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SSS based on additive codes

The secret s can be recovered by computing any two of the
following:

α1 =

m
�

j=1

�

tij x̄j + (tij x̄j )
2
�

, α2 =

l
�

j=1

�

tij ȳj + (tij ȳj )
2
�

, α3 =

r
�

j=1

�

tij z̄j + (tij z̄j )
2
�

.

Now we can recover the secret s with the values of αi ’s, 1 ≤ i ≤ 3,
as the table below.

α1 0 0 1 1
α2 0 1 0 1
α3 0 1 1 0

s 0 1 ω ω
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SSS based on additive codes

Let

ΓH1 = {the set of supports for x ∈ H1 excluding 1 from each support},

ΓH2 = {the set of supports for y ∈ H2 excluding 1 from each support},

ΓH3 = {the set of supports for z ∈ H3 excluding 1 from each support}.

• The access structure for a linear code based SSS is ΓH1 .

• For an additive code based SSS we need at least two sets of
ΓH1 , ΓH2 , or ΓH3 to define the access structures.
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SSS based on additive codes

• The access structures for SSS based on additive codes are
defined in a different way from those of linear codes.

• SSSs from additive codes provide higher security level than
those from linear codes since it requires at least two steps of
calculations to reveal the secret.

• We call this process as a 2-step SSS.

• The previous SSS based on linear codes can be regarded as a
1-step SSS.
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Assmus-Mattson Theorem for additive codes over GF (4)

Theorem 4 (K. and V. Pless (2003)).
Let C be an additive (n, 2k) code over GF (4) with minimum weight d.
Let C⊥ be its dual (n, 2n−k) code with minimum weight d ′. Let
0 < t < d. Let s be the number of weights Bi �= 0 in C⊥ where
0 < i ≤ n − t. Suppose that s ≤ d − t. Then the following hold.

(i) For each weight u (d ≤ u ≤ n), the set of supports of codewords of
weight u in C holds a t−design with possibly repeated blocks.

(ii) The set of supports of vectors of weight w in C⊥ where Bw �= 0 and
d ′ ≤ w ≤ n − t hold a t−design with possibly repeated blocks.

(iii) The supports of minimum weight vectors are either simple blocks or
have repetition number 3.
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Corollary 5.

Let ni := 6m + 2(i − 1) with m ≥ 1 any integer and i = 1, 2, or 3.
Let C be an extremal additive even self-dual (ni , 2

ni ) code over
GF (4) with minimum weight d = 2m+ 2 ≥ 6. Then the vectors of
each weight w in C where Aw �= 0 and d ≤ w ≤ ni hold a
(7− 2i)-design with possibly repeated blocks.

Lemma 6.
Let C be an additive (n, 2k) self-dual code over GF (4). Then the
supports of codewords for all non-trivial weights hold a 1-design
with possible repeated blocks if d ≥ n+2

3 .

Proof.
An additive (n, 2k) self-dual code over GF (4) has n

2 − 1 possible

non-trivial weights. Then d
2 − 1 of these possible weights have no

vectors since d is the minimum weight. Therefore we need
d − 1 ≥ (n2 − 1)− (d2 − 1) for the Assmus-Mattson theorem for
additive codes over GF (4) to apply. This gives that d ≥ n+2

3 .
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A generalized t-design

(Delsarte (1973))

• An element a ∈ GF (q)n is said to be covered
componentwisely (c-covered) by an element b ∈ GF (q)n if
each nonzero component ai of a is equal to the corresponding
component bi of b.

• It is denoted as a ≤ b.

• For example, a = (1, 1, ω, 0) is c-covered by b = (1, 1, ω, ω)
for a, b ∈ GF (4)4.

• µ(i , e)=the number of codewords of weight i that c-cover e,
for e ∈ GF (q)n

• If i < wt(e), then µ(i , e) = 0.
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(Delsarte (1973))

Definition 7.
A subset S of GF (q)n is called a generalized t-design of type
q − 1, with parameters t-(n, k , µt), 0 ≤ t ≤ k ≤ n, µt ≥ 1, if the
following two conditions are satisfied:

(i) all elements of S have the same weights k ,

(ii) each element of weight t in GF (q)n is c-covered by a constant
number µt of elements of S . If a subset S of GF (q)

n holds a
generalized t-design of type q-1, then it holds a generalized
(t-1)-design of type q-1.
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Outline

1. Introduction to SSS

• SSS based on linear codes

2. Main Results

• SSS based on additive codes over GF (4)
• Examples on additive codes over GF (4)

3. Conclusion
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SSS using the (6, 26) hexacode

Let G6 be the [6, 3, 4] hexacode whose generator matrix as linear
GF (4)-code is

�

1 0 0 1 ω ω
0 1 0 ω 1 ω
0 0 1 ω ω 1

�

.

As an additive code, the generator matrix of G6 is













1 0 0 1 ω ω
ω 0 0 ω ω ω
0 1 0 ω 1 ω
0 ω 0 ω ω ω
0 0 1 ω ω 1
0 0 ω ω ω ω













.
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SSS using the (6, 26) hexacode

• The weight distribution of the (6, 26) hexacode is :

1 + 45y4 + 18y6.

• The vectors of weight 4 hold a 2-design with possibly repeated
blocks by A-M theorem for additive codes.

• The vectors of weight 6 hold 1-design.

• There are simple blocks and those with multiplicity 3.

• Note that 45 = λ2

�

6
2

�

/
�

4
2

�

, whence λ2 = 18.

• Thus λ1 = 18
�

5
1

�

/
�

3
1

�

= 30.
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SSS using the (6, 26) hexacode

Since the hexacode G6 is extremal even additive self-dual, the set
of codewords of weight 4 forms a generalized 2-design of type 3 by
Corollary1.

It implies that

• µ(4, e1) = |ΓH1 | = |ΓH2 | = |ΓH3 | = 10

• µ(6, e1) = |ΓH1 | = |ΓH2 | = |ΓH3 | = 6,

where e1 denotes any vector of weight 1 in GF (4)n

1Corollary
Let C be an extremal even additive self-dual code over GF (4) of length
n = 6m (respectively, n = 6m + 2). Then the set of codewords of weight
w in C with Aw �= 0 forms a generalized 2-design (respectively, 1-design)
of type 3.
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The access structure for the hexacode G6

ΓH1
(x0 = 1) ΓH2

(y0 = ω) ΓH3
(z0 = ω)

wt4

{2, 3, 4} {2, 3, 4} {2, 3, 4}
{2, 3, 5} {2, 3, 5} {2, 3, 5}
{2, 3, 6} {2, 3, 6} {2, 3, 6}
{2, 4, 5} {2, 4, 5} {2, 4, 5}
{2, 4, 6} {2, 4, 6} {2, 4, 6}
{2, 5, 6} {2, 5, 6} {2, 5, 6}
{3, 4, 5} {3, 4, 5} {3, 4, 5}
{3, 4, 6} {3, 4, 6} {3, 4, 6}
{3, 5, 6} {3, 5, 6} {3, 5, 6}
{4, 5, 6} {4, 5, 6} {4, 5, 6}

# of wt 4 10 10 10

wt 6 {2, 3, 4, 5, 6} {2, 3, 4, 5, 6} {2, 3, 4, 5, 6}
# of wt 6 6 6 6

Total # 16 16 16
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The size distribution of the access structure of the hexacode G6 :

�

i∈{4,6}

�

j∈{4,6}

µ(i , e1)µ(j , e1)y (i−1,j−1) = 100y (3,3) + 60y (3,5) + 60y (5,3) + 36y (5,5)
.

• These pairs of groups comprise the 256 elements of the access
structure.

• A group of size 6 does not c-cover any group of size 4.

• If a vector of weight 4 were c-covered by a vector of weight 6,
then the sum of the two vectors will yield a weight 2 vector,
which is a contradiction.

• Thus 256 pairs of supports are in the minimal access structure.
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Theorem 8.
In SSS produced from the hexacode we have the following:

• The access structure consists of 100 pairs of groups of size
(4,4), 60 pairs of groups of size (4,6), 60 pairs of groups of
size (4,6), 36 pairs of groups of size (6,6).

• This access structure becomes the minimal access structure.

• No group of size less than 3 can be used in recovering the
secret.
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SSS based on an extremal additive even self-dual
(12, 212, 6) dodecacode QC 12

The dodecacode QC 12 has the following generator matrix.

































0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 ω ω ω ω ω ω
1 1 1 1 1 1 0 0 0 0 0 0
ω ω ω ω ω ω 0 0 0 0 0 0
0 0 0 1 ω ω 0 0 0 1 ω ω
0 0 0 ω ω 1 0 0 0 ω ω 1
1 ω ω 0 0 0 1 ω ω 0 0 0
ω 1 ω 0 0 0 ω 1 ω 0 0 0
0 0 0 1 ω ω ω ω 1 0 0 0
0 0 0 ω 1 ω 1 ω ω 0 0 0
1 ω ω 0 0 0 0 0 0 ω ω 1
ω 1 ω 0 0 0 0 0 0 1 ω ω
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SSS based on the dodecacode QC 12

The weight distribution of the dodecacode QC 12 is :

1 + 396y6 + 1485y8 + 1980y10 + 234y12.

We use the generalized t-design to determine the size distribution
of the access structure for SSS based on the dodecacode QC 12.

• µ(6, e1) = |ΓH1 | = |ΓH2 | = |ΓH3 | = 66 for weight 6 codewords.

• For weight 8 codewords with λ5 = 105, λ1 = 105
�

11
4

�

/
�

7
4

�

= 990.

• µ(8, e1) = |ΓH1 | = |ΓH2 | = |ΓH3 | = 330.

• For weight 10 with λ5 = 630, λ1 = 630
�

11
4

�

/
�

9
4

�

= 1650.

• µ(10, e1) = |ΓH1 | = |ΓH2 | = |ΓH3 | = 550.

• For weight 12 with λ5 = 234, λ1 = 234
�

11
4

�

/
�

11
4

�

= 234.

• µ(12, e1) = |ΓH1 | = |ΓH2 | = |ΓH3 | = 78.
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SSS based on the dodecacode QC 12

The size distribution of the access structure of the dodecacode
QC 12 is

�

i∈{6,8,10,12}

�

j∈{6,8,10,12}

µ(i , e1)µ(j , e1)y (i−1,j−1)

= 4356y (5,5) + 21780y (5,7) + 36300y (5,9) + y
(5,11) + 21780y (7,5) + 108900y (7,7)

+ 181500y (7,9) + 25740y (7,11) + 36300y (9,5) + 181500y (9,7) + 302500y (9,9)

+ 42900y (9,11) + 5148y (11,5) + 25740y (11,7) + 42900y (11,9) + 6084y (11,11).

(2)
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SSS based on the dodecacode QC 12

Theorem 9.
In SSS produced from the dodecacode QC 12 we have the
following:

• The access structure consists of the pairs of groups as in
Equation (2).

• All the pairs of groups with the sizes ∈ {5, 7, 9} are contained
in the minimal access structure.

• No group of size less than 5 can be used in recovering the
secret.
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Conclusion

• In this talk, we have introduced secret sharing schemes based
on linear codes and generalized them to based on additive
codes.

• To construct SSS based on additive codes over GF (4), we
used
- Assmus-Mattson theorem for additive code over GF (4)
- generalized t-designs.

• Using these two theorems, SSS based on additive codes can
be constructed in a different way, generalizing SSS based on
linear codes.
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One of the most important challenges of the theory of secret sharing is to charac-
terize access structures that can carry an ideal secret sharing scheme. Finding such a
description appeared to be quite difficult. A result that generated much hope in this
direction was the paper by Brickell and Davenport [2] who showed that all ideal secret
sharing schemes can be obtained from matroids. Not all matroids, however, define
ideal schemes so the problem was reduced to classifying those matroids that do. There
was little further progress, if any, in this direction.

In his pioneering paper Shamir [5] introduced the notion of weighted threshold ac-
cess structure. In such a structure every agent is given a weight and a coalition is
authorised if their combined weight is at least a certain predefined threshold. Beimel,
Tassa and Weinreb [1] and Farras and Padro [3] partially characterized access struc-
tures of ideal weighted threshold secret sharing schemes in terms of the operation
of composition introduced by Shapley [4]. They proved that any weighted threshold
ideal access structure is a composition of indecomposable ones. Farras and Padro gave
a list of seven classes of access structures—one unipartite, three bipartite and three
tripartite—to which all weighted threshold ideal indecomposable access structures may
belong. Hameed and Slinko [6] determine exactly which access structures from those
classes are indecomposable. They also determined which compositions of indecompos-
able weighted threshold access structures are again weighted threshold and obtained an
if and only if characterization of ideal weighted threshold secret sharing schemes. They
used game-theoretic techniques to achieve this. In my talk I will summarize the afore-
mentioned developments and give a complete characterization of weighted threshold
access structures.
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Plan for the Talk

• The idea of Secret Sharing

• Access Structure

• Weighted and Hierarchical Access Structures

• Linear and Ideal Secret Sharing

• Composition of Access Structures

• Classification Weighted Ideal Secret Sharing Schemes
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Shamir’s idea of storing sensitive data
In 1979 Shamir suggested that for security valuable data can

be stored on several servers so that if some servers are

compromised the data cannot be stolen and can be recovered

from the remaining servers.

He suggested the now classical k -out-of-n scheme based on

Lagrange’s interpolation.
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Shamir’s Scheme

Here is a pictorial interpretation of 3-out-of 4 scheme.

Any three would know the whole polynomial including c.
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Attribute-based encryption

One of the chalanges is to be able to broadcast encrypted

messages which will be meaningful only to a certain category

of users defined by a set of attributes.
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The idea of secret sharing

A secret sharing scheme ‘divides’ the secret S into ‘shares’

—one for each user—in such a way that:

• S can be easily reconstructed by any authorised coalition

of users, but

• an unauthorised coalition of users cannot determine S.
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The idea of secret sharing

A secret sharing scheme ‘divides’ the secret S into ‘shares’

—one for each user—in such a way that:

• S can be easily reconstructed by any authorised coalition

of users, but

• an unauthorised coalition of users cannot determine S.

In the first example the ‘users’ were computers and in the

second they were attributes.

Any secret sharing scheme has the following main ingredients:

• the access structure to the secret;

• mechanism of generating the shares;

• secret recovery algorithm.

6 / 31

Access structure

The set U = {1, 2, . . . ,n} denotes the set of users.

7 / 31
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The set U = {1, 2, . . . ,n} denotes the set of users.

Definition
An access structure is a pair G = (U,W ), where W is a subset

of the power set 2U , different from ∅, which satisfies the

monotonicity condition:

if X ∈ W and X ⊂ Y ⊆ U, then Y ∈ W.

Coalitions from W are called authorised. We also denote

L = 2U \W

and call coalitions from L unauthorised.
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The set U = {1, 2, . . . ,n} denotes the set of users.

Definition
An access structure is a pair G = (U,W ), where W is a subset

of the power set 2U , different from ∅, which satisfies the

monotonicity condition:

if X ∈ W and X ⊂ Y ⊆ U, then Y ∈ W.

Coalitions from W are called authorised. We also denote

L = 2U \W

and call coalitions from L unauthorised.

The access structure is a simple game in the sense of

von-Neumann and Morgenstern (1944).

7 / 31

Why do we need general access structures?

8 / 31

95



Why do we need general access structures?

• Participating agents might have different status, some

more important then the others. The access structure must

reflect this.

8 / 31

Why do we need general access structures?

• Participating agents might have different status, some

more important then the others. The access structure must

reflect this.

• In some scenarios like dynamic distributed encryption, or

attribute-based encryption the sender should be allowed to

choose a decryption policy for each ciphertext.

8 / 31

Why do we need general access structures?

• Participating agents might have different status, some
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choose a decryption policy for each ciphertext.

• This decryption policy can be seen as an access structure

Γ over the set of all attributes.
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Why do we need general access structures?

• Participating agents might have different status, some

more important then the others. The access structure must

reflect this.

• In some scenarios like dynamic distributed encryption, or

attribute-based encryption the sender should be allowed to

choose a decryption policy for each ciphertext.

• This decryption policy can be seen as an access structure

Γ over the set of all attributes.

• Since different attributes may have different significance, it

is not reasonable to restrict the sender to the threshold

access structures only.

8 / 31

Examples of access structures 1

Shamir (1979) suggested two types of structures:

Example (k -out-of-n structure)

X ⊆ U is authorised iff |X | ≥ k .
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Examples of access structures 1

Shamir (1979) suggested two types of structures:

Example (k -out-of-n structure)

X ⊆ U is authorised iff |X | ≥ k .

Example (weighted threshold structure)

An access structure G is called a weighted threshold structure

if there exists a weight function w : U → R+, where R+ is the

set of all non-negative reals, and a real number q, called the

quota, such that

X ∈ W ⇐⇒
�

i∈X

wi ≥ q.

We also call [q;w1, . . . ,wn] as a weighted representation for G.

9 / 31
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Examples of access structures 2

Suppose now U = U1 ∪ U2 with |U1| = n1, |U2| = n2 and

players within each part are equivalent. For a coalition X let

Xi = X ∩ Ui , i ∈ {1, 2}.

Example (hierarchical disjunctive structure, Simmons,
1990)

A hierarchical disjunctive structure H∃(n, k) with n = (n1, n2)
and k = (k1, k2), k1 < k2, is defined by the set of authorised

coalitions

W∃ = {X ⊆ U | (|X1| ≥ k1) ∨ (|X1|+ |X2| ≥ k2)},

where 1 ≤ k1 ≤ n1 and k2 − k1 < n2 (if these conditions are not

satisfied all users becomes equivalent).
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Examples of access structures 3

Suppose now U = U1 ∪ U2 and players within each part are

equivalent. For a coalition X let Xi = X ∩ Ui , i ∈ {1, 2}.

Example (hierarchical conjunctive structure, Tassa, 2007)

A hierarchical conjunctive structure H∃(n, k) with n = (n1, n2)
and k = (k1, k2), k1 < k2, is defined by the set of authorised

coalitions

W∀ = {X ⊆ U | (|X1| ≥ k1) ∧ (|X1|+ |X2| ≥ k2)},

where 1 ≤ k1 ≤ n1 and k2 − k1 < n2 (if these conditions are not

satisfied all users becomes equivalent).
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UN Security Council

The 15 member UN Security Council consists of five permanent

and 10 non-permanent countries. A passage requires:

• approval of at least nine countries,

• subject to a veto by any one of the permanent members.
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UN Security Council

The 15 member UN Security Council consists of five permanent

and 10 non-permanent countries. A passage requires:

• approval of at least nine countries,

• subject to a veto by any one of the permanent members.

This is a conjunctive hierarchical game, it is also a weighted

game with

[39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
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Money Bank Transfert

If a significant sum of money is being transferred, an approval

requires:

• signitures of two vice-presidents, or
• three senior tellers; or
• a vice-president and two senior tellers.
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Money Bank Transfert

If a significant sum of money is being transferred, an approval

requires:

• signitures of two vice-presidents, or
• three senior tellers; or
• a vice-president and two senior tellers.

This disjunctive hierarchical game is also weighted:

[6; 3, . . . 3, 2, . . . ,2].

13 / 31
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Opening the vault

The secret combination

opening the vault key must be

distributed among bank

employees. The bank policy

requires the presence of three

employees in opening the vault,

but at least one of them must

be a departmental manager.
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Opening the vault

The secret combination

opening the vault key must be

distributed among bank

employees. The bank policy

requires the presence of three

employees in opening the vault,

but at least one of them must

be a departmental manager.

Opening the vault game is not weighted:

{m1, t1, t2} ∪ {m2, t3, t4} = {m1,m2} ∪ {t1, t2, t3, t4}

is a trading transform, which is a certificate of

nonweightedness.

14 / 31

Linear secret sharing

Let h0,h1, . . . ,hn ∈ Fk be row vectors with coefficients in a

finite field F . Let

H =











h0

h1
...

hn











be an (n + 1)× k matrix. We can define the access structure

for P = {1, 2, . . . ,n} related to this sequence of vectors as

WH = {{ i1, i2, . . . ik} | h0 ∈ span(hi1 ,hi2 , . . . ,hik )}.

15 / 31
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Linear secret sharing

Let h0,h1, . . . ,hn ∈ Fk be row vectors with coefficients in a

finite field F . Let

H =











h0

h1
...

hn











be an (n + 1)× k matrix. We can define the access structure

for P = {1, 2, . . . ,n} related to this sequence of vectors as

WH = {{ i1, i2, . . . ik} | h0 ∈ span(hi1 ,hi2 , . . . ,hik )}.

Both types of hierarchical structures are linear but weighted

threshold structures are seldom linear.

15 / 31

Linear secret sharing

The shares for the linear schemes are generated as follows:











s0

s1
...

sn











= H











t1
t2
...

tk











where t1, . . . , tk are randomly generated. Then if { i1, i2, . . . ik} is

authorised and

h0 = a1hi1 + a2hi2 + . . .+ akhik ,

then

s0 = a1si1 + a2si2 + . . .+ aksik .

16 / 31

Ideal secret sharing

Linear schemes have two important properties:

• they are secure, i.e., unauthorised coalitions get no

information about the secret;

• the length of any share (in bits) is the same as the length

of the secret.

Such schemes are called ideal.

17 / 31
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Ideal secret sharing

Linear schemes have two important properties:

• they are secure, i.e., unauthorised coalitions get no

information about the secret;

• the length of any share (in bits) is the same as the length

of the secret.

Such schemes are called ideal.

Some very simple access structures, like

{{1, 2}, {2, 3}, {3, 4}}, are not linear and not even ideal.

Classification of access structures that can carry an ideal

secret sharing scheme is an important problem.

17 / 31

Non-ideal secret sharing

It is believed that secure schemes on some access structures

may need very long shares.

18 / 31
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It is believed that secure schemes on some access structures

may need very long shares.

Conjecture (Beimel, 2010)

There exists ǫ > 0 such that for every integer n there is an

access structure with n users for which every secret sharing

scheme distributes shares of length ℓ2ǫn, where ℓ is the length
of the secret.
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Non-ideal secret sharing

It is believed that secure schemes on some access structures

may need very long shares.

Conjecture (Beimel, 2010)

There exists ǫ > 0 such that for every integer n there is an

access structure with n users for which every secret sharing

scheme distributes shares of length ℓ2ǫn, where ℓ is the length
of the secret.

Csirmaz (1994) proved that for sharing ℓ-bit secret shares of

the length Ω(ℓn/ logn) may be necessary.

18 / 31

How to describe ideal access structures?

Characterising access structures that can carry an ideal secret

sharing scheme (ideal structures) is an important problem in

secret sharing.

We need ideas from algebra and game theory to start doing

this.

In this talk I will give a description of weighted threshold ideal

access structures.

This is a combined effort of Beimel-Tassa-Weinreb (2008),

Farras-Padro (2010) and Hameed-Slinko (2016).

19 / 31
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Composition of games (example)

It expresses the idea that a collective member may be a player

in a larger game.

We can take a unanimity game as a higher level game, i.e.,

both organisations must approve the decision.

Within each organisation we may its own rule of approval. This

is how the European Union works.
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Composition of games (example)

It expresses the idea that a collective member may be a player

in a larger game.

We can take a unanimity game as a higher level game, i.e.,

both organisations must approve the decision.

Within each organisation we may its own rule of approval. This

is how the European Union works.

Introduced by Shapley (1962), rediscovered by Martin (1993).

20 / 31

Composition of simple games (formal definition)

Definition
Let G = (PG,WG) and H = (PH ,WH) be two games defined on

disjoint sets of players and g ∈ PG. We define the composition

game C = G ◦g H by defining PC = (PG \ {g}) ∪ PH and

WC = {X ⊆ PC | XG ∈ WG or XG ∪ {g} ∈ WG and XH ∈ WH},

where XG = X ∩ PG and XH = X ∩ PH .
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Composition of access structures

Theorem (Beimel-Tassa-Weinreb, 2008)

Composition C = G ◦g H of any two access structures is ideal if

and only if g is not a dummy in G and G and H are ideal.
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UH
gUG

Proof (one way): If G and h are ideal and s is the secret, then:

distribute shares in G, then take the share of user g and make

it the secret for H and distribute shares in H accordingly.
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Associativity of composition

Proposition

Let G,H,K be three games defined on the disjoint set of

players and g ∈ PG, h ∈ PH. Then

(G ◦g H) ◦h K ∼= G ◦g (H ◦h K ),

that is the two products are isomorphic.
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Associativity of composition

Proposition

Let G,H,K be three games defined on the disjoint set of

players and g ∈ PG, h ∈ PH. Then

(G ◦g H) ◦h K ∼= G ◦g (H ◦h K ),

that is the two products are isomorphic.

Definition
A game G is said to be indecomposable if there does not exist

two games H and K and h ∈ PH such that min(|H|, |K |) > 1

and G ∼= H ◦h K .
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Associativity of composition

Proposition

Let G,H,K be three games defined on the disjoint set of

players and g ∈ PG, h ∈ PH. Then

(G ◦g H) ◦h K ∼= G ◦g (H ◦h K ),

that is the two products are isomorphic.

Definition
A game G is said to be indecomposable if there does not exist

two games H and K and h ∈ PH such that min(|H|, |K |) > 1

and G ∼= H ◦h K .

Theorem (Freeman-Slinko, 2013)

Every weighted simple game can be expressed uniquely as a

product of indecomposable weighted simple games.

23 / 31

First classification theorem

Beimel et al (2008) idea was that it is enough to characterise

weighted ideal indecomposable access structures.

Definition
We call an access structure m-partite if the set of users can be

split into m classes of equivalent users.

Theorem (Beimel et al, 2008)

Any weighted threshold ideal access structure is either 1-partite

or 2-partite or 3-partite.

24 / 31

1-partite indecomposable access structures

Since all n players are equivalent, there exist k such that it

takes k or more players to win. Such a game is called

k-out-of-n game, denoted Hn,k .
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1-partite indecomposable access structures

Since all n players are equivalent, there exist k such that it

takes k or more players to win. Such a game is called

k-out-of-n game, denoted Hn,k .

H: Hn,k is indecomposable for 1 < k < n.

The game Un = Hn,n is special and is called the unanimity

game on n players. Only U2 is indecomposable.

The game A = Hn,1 does not have a name in the literature. We

will call it anti-unanimity game. Only A2 is indecomposable.

25 / 31
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Bipartite weighted indecomposable access structures

Farras and Padro (2010) classified these:

B1: The family of bipartite conjunctive hierarchical games

H∀(n, k) with n = (n1, n2) and k = (k1, k2) such that

1 ≤ k1 < n1 and k2 − k1 = n2 − 1 ≥ 1.
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Bipartite weighted indecomposable access structures

Farras and Padro (2010) classified these:

B1: The family of bipartite conjunctive hierarchical games

H∀(n, k) with n = (n1, n2) and k = (k1, k2) such that

1 ≤ k1 < n1 and k2 − k1 = n2 − 1 ≥ 1.

B2: The family of bipartite disjunctive hierarchical games

H∃(n, k) with n = (n1, n2) and k = (k , k + 1) with

2 ≤ k ≤ n1 and n2 ≥ 3.

They also had a third type that appeared to be reducible.

26 / 31
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Tripartite weighted indecomposable access structures

T1: Let n = (n1, n2, n3) and k = (k1, k2, k3), where n1, n2, n3

and k1, k2, k3 are positive integers. The game ∆1(n, k) is

defined on the multiset P = U1 ∪ U2 ∪ U3 with the set of

authorised coalitions X ⊆ U satisfying

(|X1| ≥ k1) ∨ [(|X1|+ |X2| ≥ k2) ∧ (|X1|+ |X2|+ |X3| ≥ k3)].

T2: The game ∆2(n, k) has authorised coalitions X ⊆ U

satisfying

(|X1|+ |X2| ≥ k2) ∨ [(|X1| ≥ k1) ∧ (|X1|+ |X2|+ |X3| ≥ k3)].

In both cases there are restrictions on n and k to prevent

them to have dummies or become bipartite.

27 / 31

Second Classification Theorem

Theorem (Farras-Padro, 2010)

Let U be a set of users and Γ be an ideal weighted threshold
access structure. Then one of the following three conditions

holds:
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4. Γ is a composition of Γ1 and Γ2, where Γ1 and Γ2 are ideal

weighted access structures defined over sets of users
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Second Classification Theorem

Theorem (Farras-Padro, 2010)

Let U be a set of users and Γ be an ideal weighted threshold
access structure. Then one of the following three conditions

holds:

1. Γ is onepartite, i.e., k-out-of-n access structure;

2. Γ is bipartite of types B1, B2, (B3);

3. Γ is tripartite of types T1, T2, (T3);

4. Γ is a composition of Γ1 and Γ2, where Γ1 and Γ2 are ideal

weighted access structures defined over sets of users

smaller than U.

Moreover, there exists a linear ideal secret sharing scheme that

realises Γ.

Comment: Those in brackets later appeared to be reducible.
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Counterexample

Example (Hameed, Slinko, 2015)

Let G be defined on PG = A ∪ B and H on PH = C with

A = {a1, a2}, B = {b1, b2, b3}, C = {c1, c2, c3, c4} and weighted

representations

[7; 3, 3, 2, 2, 2] and H = [2; 1, 1, 1, 1],

respectively. Let g = b3 be the player to be replaced with H.

Then we have the certificate of nonweightedness for G ◦g H:

{a1, b1, c1, c2} ∪ {a2, b2, c3, c4} = {a1, a2, c1} ∪ {b1, b2, c2, c3, c4},

i.e., the union of two authorised coalitions is equal to the union

of two unauthorised (which cannot happen in a weighted case).
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The Main Theorem

Theorem (Hameed-Slinko, 2015)

An access structure G with no dummies is ideal and weighted if

and only if it is a composition

G = H1 ◦ · · · ◦ Hs ◦ I ◦ A1 ◦ · · · ◦ At ,

where Hi is a ki -out-of-ni access structure for each

i = 1, 2, . . . , s, Aj is an indecomposable access structure of

type A for each j = 1, 2, . . . , t , and I is an indecomposable
access structure of types B1, B2, T1, T2.

In this composition we may have s = 0, t = 0 and I also may be

absent. Moreover, we can have t > 0 only if I is of type B2.
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Thank you for your

attention!
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In the smart grid [1], several information systems collaborate to efficiently manage
electricity. Smart meter is an equipment located in each home (and office) to monitor
the electric power usage of each home and to periodically send the metering data to
upper stream. The metering data is transferred from the smart meter to metering
data management (MDM) through some communication channel. There are two well-
known use cases: (i) MDM system statistically estimates the total power usage of some
area in each time to control the power generation, and (ii) MDM system statistically
summarizes the metering data through some time period in each home to charge users
electricity bills, respectively.

MDM system might store huge amount of metering data for lots of sites (such as
home and office) and for time period (such as for several years). As shown in NIST IR
7628 [2], such metering data include users privacy information, such as life cycle and
electric equipment held in the home. Once the stored data in MDM system is leaked,
it causes a big security and privacy issue.

Our motivation is to propose a concept of highly secure MDM system. We believe
that the secret sharing is one of promising solutions for this purpose. We assume that
each metering data is divided into multiple shares and several MDM servers store one
of shares, respectively. Under this assumption, even though some of servers leak stored
data (share) by malicious attack or human mistake, the corresponding metering data
still remains secret and no security nor privacy issue happens. In this scenario, as
shown (i) and (ii) above, MDM system should two types of statistical computations.

In this talk, we give a system model of such MDM system and its requirements.
Then, we show a construction as an example based on [3]. Of course, if we combine
a multiparty computation protocol with secret sharing, we can achieve such system;
however, for simplicity (and to reduce implementation costs), we give an example based
on modular addition and homomorphic message authentication.

References

[1] NIST, “NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0”,
SP 1108, 2014

[2] NIST, “Guidelines for Smart Grid Cybersecurity”, IR 7628 Rev.1, 2014
[3] Shinji YAMANAKA, Yuichi KOMANO and Satoshi ITO, “A Privacy Protection Scheme for

Smart Grid using Secret Sharing Scheme”, SCIS 2013 (in Japanese)
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Ever since the pioneer work of Ahlswede et al. [1], the introduction of network coding
has sparked a flurry of research interest in designing more efficient network systems.
Different from the traditional store and forward or routing mechanisms, network coding
enables intermediate nodes to encode the received packets to generate output packets.
However, the paradigm shift in data transmission also makes the system with network
coding seriously vulnerable to pollution attacks.

In this talk, we first give a brief introduction to homomorphic authentication
schemes for network coding. Then, we show that there exists an efficient multi-
generation pollution attack on two recent homomorphic authentication schemes named
homomorphic subspace signature (HSS) [2]and key predistribution-based tag encoding
(KEPTE) [3]. Specifically, we show that by using packets and their signatures of dif-
ferent generations, the adversary can create invalid packets and their corresponding
signatures that pass the verification of HSS and KEPTE at intermediate nodes as well
as at the destination nodes. After giving a more generic attack, we analyze the cause
of the proposed attack. We then propose the improved key distribution schemes for
HSS and KEPTE, respectively. Next, we show that the proposed key distribution
schemes can combat against the proposed multi-generation pollution attacks. Finally,
we analyze the computation and communication costs of the proposed key distribution
schemes for HSS and KEPTE, and by implementing experiments, we demonstrate that
the proposed schemes add acceptable burden on the system.

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, “Network information flow,” IEEE Transac-
tions on Information Theory, vol. 46, no. 4, pp. 1204-1216, Jul. 2000.

[2] P. Zhang, Y. Jiang, C. Lin, H. Yao, A. Wasef, and X. Shen, “Padding for orthogonality: Efficient
subspace authentication for network coding,” in Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), pp. 1026-1034, Apr. 2011.

[3] X. Wu, Y. Xu, C. Yuen, and L. Xiang, “A Tag Encoding Scheme against Pollution Attack to
Linear Network Coding,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 1,
pp. 33-42, Jan. 2014.
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Overview

1 An introduction to Network Coding

2 Why Homomorphic Authentication for Network Coding?

3 Attacks and improvements on HSS and KEPTE
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Routing Network Coding
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Random Linear Network Coding

At Source S: A file is divided into generations (subfiles), and
each generation consists of ū1, ū2, . . . , ūm ∈ F

n
q
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Random Linear Network Coding

At Source S: A file is divided into generations (subfiles), and
each generation consists of ū1, ū2, . . . , ūm ∈ F

n
q

Generate augmented vectors and forward them

ui = (

m
� �� �

0, . . . , 0, 1
� �� �

i

, 0, . . . , 0, ūi ) ∈ F
n+m
q
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Random Linear Network Coding

At Source S: A file is divided into generations (subfiles), and
each generation consists of ū1, ū2, . . . , ūm ∈ F

n
q

Generate augmented vectors and forward them

ui = (

m
� �� �

0, . . . , 0, 1
� �� �

i

, 0, . . . , 0, ūi ) ∈ F
n+m
q

For example,

2u1 + 3u2 = (

m
� �� �

2, 3, . . . , 0, . . . , 0, 2ū1 + 3ū2)

The first m bits contain the coefficients used in combing the
vectors, which are called the Global Encoding Vector.
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Decoding

After receiving {wi = (vi , w̄i )}
m
i=1in which v1, v2, . . . , vm

are linearly independent
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ū2
· · ·
ūm
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ū1
ū2
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The original messages can be recovered

Ū = V−1W̄
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Decoding

After receiving {wi = (vi , w̄i )}
m
i=1in which v1, v2, . . . , vm

are linearly independent

Set

Ū =







ū1
ū2
· · ·
ūm







,V =







v1
v2
· · ·
vm







, and W̄ =







w̄1
w̄2
· · ·
w̄m







.

The original messages can be recovered

Ū = V−1W̄

q = 28 is sufficient to achieve a successful decoding
probability greater than 99%
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Random Linear Network Coding

At Source S: A file is divided into generations (subfiles), and
each generation consists of ū1, ū2, . . . , ūm ∈ F

n
q
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Random Linear Network Coding

At Source S: A file is divided into generations (subfiles), and
each generation consists of ū1, ū2, . . . , ūm ∈ F
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Generate augmented vectors and forward them
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0, . . . , 0, 1
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, 0, . . . , 0, ūi ) ∈ F
n+m
q

For example,

2u1 + 3u2 = (

m
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2, 3, . . . , 0, . . . , 0, 2ū1 + 3ū2)

The first m bits contain the coefficients used in combing the
vectors, which are called the Global Encoding Vector.
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Network Coding Applications

Network coding for wireless communications
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Network Coding Applications

Network coding for wireless communications

Network coding for distributed storage systems
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First Impression of Homomorphic Authentication

RSA is homomorphic: From Sign(m) = md, we know that

md
1 ·md

2 = (m1m2)
d
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First Impression of Homomorphic Authentication

RSA is homomorphic: From Sign(m) = md, we know that

md
1 ·md

2 = (m1m2)
d

Considered to be undesirable and Hash-and-sign to eliminate
it: Sign [H(m)] = [H(m)]d
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First Impression of Homomorphic Authentication

RSA is homomorphic: From Sign(m) = md, we know that

md
1 ·md

2 = (m1m2)
d

Considered to be undesirable and Hash-and-sign to eliminate
it: Sign [H(m)] = [H(m)]d

Can we find the positive side of homomorphic signatures?
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Pollution Attacks

The adversary inject invalid packets into the network
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Can Regular Cryptographic Tools Help?

The original messages sent by the source have been modified
by the intermediate nodes.

24 / 52

129



Network Coding Homomorphic Authentication for Network Coding Improvements on HSS and KEPTE

Homomorphic Hashing

First for Rateless Erasure Codes (Krohn2004); Related to
Pederson Commitment Scheme
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Homomorphic Hashing

First for Rateless Erasure Codes (Krohn2004); Related to
Pederson Commitment Scheme

Exponential Homomorphic Hash (EHH): Let g1, g2, . . . , gn be
generators of a cyclic group G of order p, and x = (x1, . . . , xn)

h(x) =
n�

i=1

g
xi
i
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Property of Homomorphic Hashing

Homomorphic Property: For scalars α, β and vectors a, b

h(αa+ βb) = h(a)αh(b)β

27 / 52

130



Network Coding Homomorphic Authentication for Network Coding Improvements on HSS and KEPTE

Property of Homomorphic Hashing

Homomorphic Property: For scalars α, β and vectors a, b

h(αa+ βb) = h(a)αh(b)β

Collision Resistance: If h(c) = h(a)αh(b)β for vectors a, b, c ,
then

c = αa+ βb
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Homomorphic Signatures for Network Coding

Homomorphic Property: For scalars α, β and vectors a, b

Sign(αa+ βb) = Sign(a)αSign(b)β

29 / 52

Network Coding Homomorphic Authentication for Network Coding Improvements on HSS and KEPTE

Homomorphic Signatures for Network Coding

Homomorphic Property: For scalars α, β and vectors a, b

Sign(αa+ βb) = Sign(a)αSign(b)β

Any intermediate node can (i) verify the signatures and (ii)
compute a valid signature on each outgoing vector without
knowing the secret key.
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Homomorphic MAC

In homomorphic signature, the encoding coefficients are
chosen from p ≈ 2160 instead of q = 28.

S

N1 N2

N3

R1 R2

N4

(v1, t1) (v2, t2)

(v1+v2, t1+t2)

(v2, t2)

(v1, t1)
(v2, t2)

(v1, v2) (v1, v2)

(v1, t1)
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The Homomorphic Subspace Signature (HSS) Scheme

Parameters: Select a cyclic group H with order p and g is the
generator of H, then randomly select
β = (β1, β2, . . . , βN+1) ∈ FN+1

p , and calculate

h = (h1, h2, . . . , hN+1), where hi = gβi for each
1 ≤ i ≤ N + 1. The public key is (H, p, g , h), and the
private key is β.

P. Zhang et al., “Padding for orthogonality: Efficient subspace authentication for network coding,” in IEEE
INFOCOM 2011.
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The Homomorphic Subspace Signature (HSS) Scheme

Parameters: Select a cyclic group H with order p and g is the
generator of H, then randomly select
β = (β1, β2, . . . , βN+1) ∈ FN+1

p , and calculate

h = (h1, h2, . . . , hN+1), where hi = gβi for each
1 ≤ i ≤ N + 1. The public key is (H, p, g , h), and the
private key is β.

Signatures: For message u = (u1, u2, . . . , uN) ∈ FN
p , the

signature σu of u ∈ FN
p is calculated as

σu = −
N�

i=1

βiu i/βN+1.

P. Zhang et al., “Padding for orthogonality: Efficient subspace authentication for network coding,” in IEEE
INFOCOM 2011.
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The KEy Predistribution-based Tag Encoding (KEPTE)
Scheme

Intermediate and destination nodes use pre-distributed secrets
to detect and filter the corrupted packets by verifying the
validity of signatures appended with the received packets.

X. Wu et al., “A Tag Encoding Scheme against Pollution Attack to Linear Network Coding,” IEEE Trans on
Parallel and Distributed Systems, vol. 25, no. 1, pp. 33-42, January 2014.
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The KEy Predistribution-based Tag Encoding (KEPTE)
Scheme

Intermediate and destination nodes use pre-distributed secrets
to detect and filter the corrupted packets by verifying the
validity of signatures appended with the received packets.

A trusted KDC selects secrets s1, s2, . . . , s l ∈ F
n+m
q , and

sends them to the source S.

X. Wu et al., “A Tag Encoding Scheme against Pollution Attack to Linear Network Coding,” IEEE Trans on
Parallel and Distributed Systems, vol. 25, no. 1, pp. 33-42, January 2014.
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The KEy Predistribution-based Tag Encoding (KEPTE)
Scheme

Intermediate and destination nodes use pre-distributed secrets
to detect and filter the corrupted packets by verifying the
validity of signatures appended with the received packets.

A trusted KDC selects secrets s1, s2, . . . , s l ∈ F
n+m
q , and

sends them to the source S.

For node N , KDC sends zN and xN to N in a secure way.
Here zN = (z1, z2, . . . , zl) ∈ F

l
q is randomly selected and

xk =
l�

j=1

zjsj ,k , 1 ≤ k ≤ n +m.

X. Wu et al., “A Tag Encoding Scheme against Pollution Attack to Linear Network Coding,” IEEE Trans on
Parallel and Distributed Systems, vol. 25, no. 1, pp. 33-42, January 2014.
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A Successful Forgery Attack

If u ∈
�

1 ⊂ F
n+m
p and v ∈

�

2 ⊂ F
n+m
p , the adversary can launch

a successful forgery attack by simply setting u∗ = u + v and
σu

∗ = σu + σv , which can pass the verification at intermediate and
destination nodes. Furthermore, we can show that u∗ does not
belong to

�

1 or
�

2 with a high probability.
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What We can Learn from the Attack

Cause of The Attack: The HSS and KEPTE schemes own the
homomorphic property for messages belong to two different
generations.
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What We can Learn from the Attack

Cause of The Attack: The HSS and KEPTE schemes own the
homomorphic property for messages belong to two different
generations.

Query in the improved security model: The adversary A
can adaptively chooses vector v ∈

�

i ⊂ F
N
q and sends it to

the challenger C. The challenger C randomly chooses an
identifier idi for

�

i , and signs the vector v . The signature σv

and the identifier idi are then sent to the adversary A.
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An Improved Key Distribution Scheme for HSS

At the beginning of each generation with identification idi , the
source node S obtains βidi = F (k2, idi ) ∈ Fp and updates β as

βidi = (β1 + βidi , β2 + βidi , . . . , βN+1 + βidi ).
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An Improved Key Distribution Scheme for HSS

At the beginning of each generation with identification idi , the
source node S obtains βidi = F (k2, idi ) ∈ Fp and updates β as

βidi = (β1 + βidi , β2 + βidi , . . . , βN+1 + βidi ).

Next, the updated βidi is used to sign the messages. After
that the source node S appends gβidi to each message u and
its corresponding signature σu . With the received information
of gβidi at all the intermediate nodes and receivers, they can
update h in the public key as

hidi = (hidi1 , hidi2 , . . . , hidiN+1) ∈ F
N+1
p

= (h1g
βidi , h2g

βidi , . . . , hN+1g
βidi )

= (gβ1+βidi , gβ2+βidi , . . . , gβN+1+βidi ).
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An Improved Key Distribution Scheme for KEPTE: For All
Nodes

The KDC randomly selects l seeds k1, k2, . . . , kl ∈ KF and
send them in a secure way to all the nodes in the network.
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An Improved Key Distribution Scheme for KEPTE: For All
Nodes

The KDC randomly selects l seeds k1, k2, . . . , kl ∈ KF and
send them in a secure way to all the nodes in the network.

Then, for the transmission messages in the generation with
identification idi , all the nodes in the network can generate
vectors y idi ,1, y idi ,2, . . . , y idi ,l as

y idi ,j = F (kj , idi ) ∈ F
n+m
q , 1 ≤ j ≤ l
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An Improved Key Distribution Scheme for KEPTE: At the
Source

The KDC selects l seeds b1, . . . , bl ∈ KG1 to generate
u1,u2, . . . ,ul in such a way that (u

T
1 ,u

T
2 . . . ,uTl )

T is of full
rank. The KDC sends b1, . . . , bl to the source node S, then
the source node S can get l secret vectors s1, . . . , sl ∈ F

n+m
q

from






u1
u2
· · ·
u l













s1
s2
· · ·
s l






=







y idi ,1
y idi ,2
· · ·

y idi ,l







.
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An Improved Key Distribution Scheme for KEPTE: For
Node N

The KDC selects cN for N and then computes zN ∈ F
l
q as

zN = cN







a1
a2
· · ·
al







.
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An Improved Key Distribution Scheme for KEPTE: For
Node N

The KDC selects cN for N and then computes zN ∈ F
l
q as

zN = cN







a1
a2
· · ·
al







.

cN and zN are then sent to the node N in a secure way by
the KDC. With cN , the node N can get a secret vector
xN ∈ F

n+m
q as

xN = cN







y idi ,1
y idi ,2
· · ·

y idi ,l







.
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Efficiency Analysis of the Improved KEPTE

Main difference: At the beginning of each generation, all the
nodes use a PRF to produce y id,j = F1(kj , id), 1 ≤ j ≤ l ,
instead of one PRG computation in KEPTE.
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Efficiency Analysis of the Improved KEPTE

Main difference: At the beginning of each generation, all the
nodes use a PRF to produce y id,j = F1(kj , id), 1 ≤ j ≤ l ,
instead of one PRG computation in KEPTE.

Therefore, the communication and storage cost of the
improved key distribution scheme is the same with that in
KEPTE, while an additional PRF computation is needed
during data transmission in every generation .
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Added Communication Cost for the Improved HSS

The ratio of the added communication cost R = |p|+r

(N+1)|p| .
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Added Communication Cost for the Improved HSS

The ratio of the added communication cost R = |p|+r

(N+1)|p| .

If we set N = 1000 and |p| = 128, r = 1024, then R is less
than 0.9%, which is acceptable.
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Added Computation Cost for the Improved HSS

Here, we set N = 1000 and |p| = 128

Schemes At source At intermediate node Total

HSS 4.403 ms 803.354 ms 807.757 ms

Proposed 10.676 ms 803.954 ms 814.630 ms

Added cost 6.273 ms 0.600 ms 6.873 ms
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IMI Workshop: Secret Sharing for Dependability, Usability and Security of

Network Storage and Its Mathematical Modeling

September 5–7, 2016, Kyushu University

Unifying Reliability, Security, and Deduplication in
Cloud Storage

Patrick P. C. Lee

The Chinese University of Hong Kong
pclee@cse.cuhk.edu.hk

In this talk, we study the problem of dispersing user backup data across multiple
clouds, with a primary objective of providing a unified multicloud storage solution with
reliability, security, and cost-efficiency guarantees.

We first present CDStore [1], a multi-cloud storage system that builds on an aug-
mented secret sharing scheme called convergent dispersal, which supports deduplication
by using deterministic content-derived hashes as inputs to secret sharing. We describe
how CDStore combines convergent dispersal with two-stage deduplication to achieve
both bandwidth and storage savings and be robust against side-channel attacks. We
evaluate the performance of our CDStore prototype using real-world workloads on
LAN and commercial cloud testbeds. Our cost analysis also demonstrates that CD-
Store achieves a monetary cost saving of 70% over a baseline cloud storage solution
using state-of-the-art secret sharing.

We next present REED [2], a cloud storage system that further addresses the rekey-
ing problem for cloud storage that combines both encryption and deduplication. Rekey-
ing renews security protection, so as to protect against key compromise and enable
dynamic access control in cryptographic storage. However, it is non-trivial to realize
efficient rekeying in the context of encrypted deduplication. REED is rekeying-aware
by extending the CDStore design, such that it enables secure and lightweight rekey-
ing, while preserving the deduplication capability. We propose two REED encryption
schemes that trade between performance and security, and extend REED for dynamic
access control. We implement a REED prototype with various performance optimiza-
tion techniques. Our trace-driven testbed evaluation shows that our REED prototype
maintains high performance and storage efficiency.
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Unifying Reliability, Security, and 
Deduplication in Cloud Storage 

 
Patrick P. C. Lee 

The Chinese University of Hong Kong 

 
 
  

Our Research Focus 
 Dependable storage systems 

• Improve fault tolerance, recovery, security, and performance of 
storage systems 

• Architectures: clouds, data centers, disk arrays, SSDs, memory 

 Fault-tolerant distributed stream analytics 
• Applications 

• Anomaly detection in network traffic monitoring 
• Distributed machine learning 

• Fault tolerance of computation and storage 

 Our approach: 
• Build prototypes, backed by experiments and theoretical analysis 
• Open-source software: http://www.cse.cuhk.edu.hk/~pclee  

 2 

Our Research Focus 

Erasure coding Deduplication Security 

Cloud Data center Disk array SSD 

Streaming Primary I/O, Backup, MapReduce 

Dependable storage systems (e.g., file systems, KV stores) 

Memory 

Big data 
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Single Cloud Problems 

4 

Single point of failure: 

 

 

Vendor lock-in: 

Cloud-of-Clouds 

Exploits diversity of multiple-cloud storage: 
• Reliability (or fault tolerance) 
• No vendor lock-in 
• Security 

5 

Secret Sharing 

 Input: secret; output: multiple shares 

Secret is recoverable from enough shares 
 Reliability 

Secret is inaccessible without enough shares 
 Security  

6 
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Examples 
 Shamir’s [CACM’79] 

• Information-theoretic security 
• Same storage overhead as replication 

 IDA [JACM’89] 
• Weakest security 
• Low storage overhead 

 Ramp’s [Crypto’84] 
• Trade between Shamir’s and IDA 

 Secret sharing made short [Crypto’93] 
• Computational security – Shamir’s for keys and IDA for data 
• Low storage overhead 

 AONT-RS [FAST’11] 
• Computational security with even smaller overhead 
• Allow integrity checking 7 

Challenges 
Cloud storage uses deduplication to save cost 

Deduplication avoids storing multiple data 
copies with identical content 
• Saves storage space 
• Saves write bandwidth 

However, secret sharing breaks deduplication 
• Root cause: security builds on embedded 

randomness  

8 

Challenges 

9 

Identical 
content Different shares! 

Random information 

Random information 

Q: Can we unify secret sharing and 
deduplication in a seamless way?  

144



Challenges 
Secret sharing prohibits deduplication 

• Reason: Security builds on embedded randomness 
 Identical secrets lead to different shares 
 High bandwidth and storage overhead 

Convergent dispersal[*]: 
• Replaces random input with deterministic hash 

derived from original secret 
 Reliability, security, cost efficiency 

How to deploy?  

10 
[*] “Convergent Dispersal: Toward Storage-Efficient Security in a Cloud-of-Clouds”, HotStorage’14 

CDStore 
CDStore[*]: a unified cloud storage system with 

reliability, security, and cost efficiency 

A new instantiation of convergent dispersal 
• Higher throughput than our prior approach 

Two-stage deduplication 
• Bandwidth and storage savings 
• Secure 

Trace-driven experiments and cost analysis 
 

11 [*] “CDStore: Toward Reliable, Secure, and Cost-Efficient Cloud Storage via Convergent Dispersal”,  
USENIX ATC’15, IEEE Internet Computing 16 

CDStore Architecture 

Client-server model 

Target audience: an organization that needs 
storage outsourcing for users’ data 

Target workload: backup and archival 
12 
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Goals 
Reliability: 

• Availability if some clouds are operational 
• No metadata loss if CDStore clients fail  

Security: 
• Confidentiality (i.e., data is secret) 
• Integrity (i.e., data is uncorrupted) 
• Robust against side-channel attacks 

Deduplication: 
• Low bandwidth and storage costs via deduplication 
• Low VM computation and metadata overheads 

13 

Assumptions 
Reliability: 

• Efficient repair is not considered 

Security: 
• Secrets drawn from large message space, so brute-

force attacks are infeasible [Bellare, Security’13] 

• Encrypted and authenticated client-server channels 

Cost efficiency: 
• No billing for communication between co-locating 

VMs and storage  

14 

AONT-RS 

15 

[Resch and Plank, FAST’11] 

Data AONT 
package 

Share 0 

Share 1 

Share k-1 

Share k 

Share n-1 

AONT RS 
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Convergent AONT-RS (CAONT-RS) 

 Extension of AONT-RS 

 Optimal asymmetric encryption padding (OAEP) AONT 
• Single encryption on a large block 

16 

random key  secret’s hash 

n = 4, k = 3 

CAONT-RS Encoding 

 Generate CAONT package (Y, t): 
• h = H(X) 
• Y = X  G(h) 
• G(h) = E(h, C) 
• t  = h  H(Y) 

 Encode CAONT package with Reed-Solomon codes 17 

n = 4, k = 3 

H(.): hash function (e.g., SHA-256) 
G(.): generator function  
E(.): encryption function (e.g., AES-256) 
C: constant value block 

Deduplication 

Deduplication at the secret level 
• Same secret  same shares that are dedup’ed 
• Ensure the same share in the same cloud 

• Share i stored in cloud i, where i = 0, 1, …, n-1 

Naïve approach: client-side global deduplication 
• Saves most upload bandwidth and storage  
• Susceptible to side-channel attacks 

• Attackers can infer if other users have stored same data 

18 
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Two-Stage Deduplication 

Decomposes deduplication into two stages: 
• Client-side intra-user deduplication 

• Each CDStore client uploads unique shares of same user 
• Effective for backup workloads 

• Server-side Inter-user deduplication 
• Each CDStore server dedups same shares from different users 
• Effective if many users share similar data (e.g., VM images) 

Fingerprint index maintained by CDStore servers 

 

19 

CDStore Implementation 
C++ implementation on Linux 

Features: 
• Content-defined chunking 
• Parallelization of encoding and I/O operations 
• Batched network and storage I/Os 

Open issues: 
• Storage reclaim via garbage collection and compression 
• Multiple CDStore servers per cloud 
• Consistency due to concurrent updates 

 

 
20 

Experimental Setup 
Testbeds: 

• Local machines: i5 3.4GHz (fast), Xeon 2.4GHz (slow) 
• LAN: Multiple i5 machines via 1Gb switch 
• Cloud: Google, Azure, AWS and Rackspace 

Datasets: 
• Synthetic unique and fully duplicate data 
• FSL dataset from Stony Brook University  
• Our own VM images of 156 students 

21 
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Encoding Speeds 

 OAEP-based AONT brings high performance gain 
• CAONT-RS achieves 183MB/s on Local-i5 

 Encoding speed slightly decreases with n 
• RS coding has small overhead 

 Multi-threading boosts speed (details in paper) 
22 

Largest k  
with k/n ≤ 3/4 

Storage Savings 

 Intra-user dedup achieves high saving  
• At least 98% after Week 1 

 Inter-user dedup is effective for VM dataset 
• Week 1: 93.4% 
• After Week 1: 11.8% - 47.0% 

 23 

Transfer Speeds 

 (Single-client) upload speeds in LAN: 
• Unique data ~ 77MB/s (network bound) 
• Duplicate data ~ 150MB/s (bounded by encoding + chunking) 

 Performance in cloud bounded by Internet bandwidth 

 Aggregate upload speeds increase with number of 
clients (details in paper)  

24 
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Cost Analysis 

 Compared to solutions w/o dedup:  
• (1) single cloud; (2) multiple clouds with AONT-RS 

 At least 70% savings when dedup ratio is 10x – 50x 

 Jagged curves due to switching cheapest VM instances 
25 

Summary 
CDStore: a unified multi-cloud storage system 

with three goals in mind: reliability, security, 
and deduplication 

Building blocks: 
• Convergent dispersal 
• Two-stage deduplication 

Source code: 
• http://ansrlab.cse.cuhk.edu.hk/software/cdstore  

26 

Encrypted Deduplication 

27 

Message-locked encryption [Bellare, EUROCRYPT’13] 

• Derive encryption key from message itself 
• Same message  Identical cipher text 
• e.g., convergent encryption: key = message hash 

DupLESS [Bellare, USENIX Security’13] 

• Realizes server-aided message-locked encryption 
• A dedicated key manager for key generation 
• MLE key generated by a derivation function 

• Same messages  same ciphers 
• Ciphers appear random 
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Encrypted Deduplication 
Server-aided message-locked encryption: 

28 

Key 
manager 

… 

Cloud 

Metadata 

file File 

Client 

Chunk … Encrypted 
Chunk 

Rekeying 
Rekeying renews security protection 

• Replaces an existing key with a new encryption key 

Benefits: 
• Protects against key compromise 
• Revokes unauthorized users from accessing data 

Challenges: 
• Renewing derivation function makes new data fail to 

be dedup’ed with old data 
• Cipher re-encryption is expensive 

29 

Rekeying Challenges 
 Renewing derivation function (e.g., K  K’): new data 

can’t be dedup’ed with old data: 

 
 
 
 

 Cipher re-encryption with new key K’: 

30 

Message 

Old Cipher 

K 

Message 

New Cipher 

K’ 

Old Cipher 

Message 

New Cipher 

K K’ 
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REED 
REED[*], a Rekeying-aware Encrypted 

Deduplication storage system 
• Provides secure and lightweight rekeying 
• Preserves content similarity for deduplication 

Two encryption schemes for REED 
• Basic: high performance (203MB/s) 
• Enhanced: resilient against key leakage (155MB/s) 

Enabling dynamic access control 

Testbed Experiments 
31 

[*] “Rekeying for Encrypted Deduplication Storage”, DSN’16 

Threat Model 
Honest-but-curious adversary, who can: 

• Compromise storage backend 
• Collude with any revoked client 
• Attempt to learn files beyond access scope 
• Monitor keys returned by key manager 

Assumptions: 
• Encrypted and authenticated communication between 

client and key manager (e.g., by SSL/TLS) 
• Key manager cannot infer message content (OPRF) 
• Key manager is deployed in protected zone 

32 

Main Idea 
Build security on two symmetric keys: 

• File key: renewable, controlling access for files 
• MLE key: unchanged, preserving deduplication 

Extends convergent all-or-nothing transform 
(CAONT) [Li, USENIX ATC’15] 

• Encrypts entire message using MLE key; and  
further encrypts a small part (stub) using file key 

• Performs deduplication on large part; yet message is 
unrecoverable with any small part unavailable 

• Rekeying on stub (64 bytes, 0.78% for 8KB chunks) 

33 
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REED Overview 

Target workload: backup and archival storage 

34 

File 

Client 

Chunk … 

File 

Client 

Chunk … 

Key Manager 

Server Storage 
Backend 

Cloud 

… 

CAONT 

 Limitation: 
• Secure for unpredictable messages only (otherwise, 

vulnerable to brute-force dictionary attacks) 
35 
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[Li, USENIX ATC’15] 

Basic Encryption 

 Two modifications to CAONT 
• Replaces hash key by MLE key from key manager 
• Add a canary for integrity checking 

 Limitation: vulnerable to MLE key compromise 
36 
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Enhanced Encryption 

 Resilient against MLE key leakage:  
• First applies MLE to form a ciphertext 
• Then applies CAONT to the MLE ciphertext 

 Rationale: MLE ciphertext is further protected by CAONT 
37 
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Basic encryption: 
• Vulnerable to MLE key compromise 

• Adversary can recover large part (trimmed package) of the 
original message with MLE key obtained 

• Faster encryption 

Enhanced encryption: 
• Higher security level  

• Adversary needs both MLE key and file key to recover a 
message 

• Even if MLE key is disclosed, remains secure for 
unpredictable messages 

• Slower encryption 
 

Dynamic Access Control 

Uses CP-ABE for access control [Bethencourt, S&P’07]  

Uses key regression for lazy revocation [Kamara, 
NDSS’06] 

39 

File encryption 

File decryption 

CP-ABE enc. 

CP-ABE dec. Key regression 

Key 
state 

H 

File key 

MLE Key 

Private Derivation Key Private Access Key 

Ke

REED 
Server 

REED Client 
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Dynamic Access Control 

40 

Lazy revocation 
• Current key state can derive previous states 
• Revoked user cannot access future key states 
• Allows user to access not-yet-updated files 
• Defers file re-encryption (e.g. midnight update) 

Active revocation 
• Re-encryption happens immediately with new key 

 
 

Confidentiality 

 Level 1: same as DupLESS 
• Adversary can access all trimmed packages, encrypted 

stubs, and encrypted key states 

 Level 2: colluding with revoked users 
• Adversary can learn a set of private access keys from 

any revoked user 

 Level 3: monitoring key generation 
• Adversary can monitor a subset of revoked users and 

identify MLE keys returned by key manager 

 
41 

Integrity 

Basic encryption 
• By checking the canary attached to recovered chunks 

Enhanced encryption 
• By comparing the hash of MLE ciphertext 

 

42 
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Implementation 
Entities: 

• Client: chunking, encryption/decryption, upload/download 
• Key manager: MLE key generation 
• Server: deduplication, metadata storage 
• Cloud: file recipe, stub, key states 

Optimization: 
• Batch key generation requests to mitigate I/O 
• Cache previous MLE keys to reduce computation 
• Parallelize key generation, encryption and upload via 

multi-threading 
43 

Evaluation 

Datasets 
• Synthetic dataset (2 GB files with unique chunks) 
• FSL data trace (147 daily snapshots, 56.2 TB in total) 

Testbed 
• Servers connected over a Gigabit LAN 

 
 

44 

Rekeying Performance 

Rekeying delays remain small 
• 3.4s for 8 GB data 

48 
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Summary 

REED:  
• Enables rekeying for encrypted deduplication storage 
• Proposes two encryption schemes 
• Enables dynamic access control 
• Implements a prototype 
• Conducts extensive trace-driven evaluation 

Software: 
http://ansrlab.cse.cuhk.edu.hk/software/reed  
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Storage and Its Mathematical Modeling

September 5–7, 2016, AirIMaQ, Momochi:Seminar Room, 2F, Industry-University-Government

Collaboration Innovation Plaza, Academic Research and Industrial Collaboration Management Office

of Kyushu University

On The Robustness of Secret Sharing Schemes

Partha Sarathi Roy (Joint work with Avishek Adhikari, Kirill
Morozov, Satoshi Obana, Kouchi Sakurai, Rui Xu)

Faculty of Information Science and Electrical Engineering, Department of
Informatics, Kyushu University
royparthasarathi0@gmail.com

In the basic form of secret sharing schemes, it was assumed that everyone involved
with the protocol is semi-honest. But for the real life scenario, this assumption may
not hold good due to the presence of adversary. This idea leads to the development of
secret sharing under various adversarial models. It may happen that some participants
behave maliciously during the execution of the protocol. Malicious participants may
submit incorrect shares resulting in incorrect secret reconstruction. This observation
led to robust secret sharing schemes [4]. Informally, robust secret sharing schemes allow
the correct secret to be recovered even when some of the shares presented during an
attempted reconstruction are incorrect.

Here, we consider the problem of (t, δ) robust secret sharing secure against rushing
adversary. We present a simple t-out-of-n secret sharing scheme, which can reconstruct
the secret in presence of t cheating participants except with probability at most δ,
provided t < n/2. The later condition on cheater resilience is optimal for the case of
public reconstruction of the secret, on which we focus our work.

Our construction improves the share size of Cevallos et al. (EUROCRYPT-2012)
robust secret sharing scheme by applying the “authentication tag compression” tech-
nique devised by Carpentieri in 1995. Our improvement is by a constant factor that
does not contradict the asymptotic near-optimality of the former scheme. Finally, we
discuss the further improvement of our construction.
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Preliminaries

The Reed-Solomon Code

The R-S Code

Let (a0, . . . ,at) ∈ F
t+1 and f (x) = a0 + a1x + . . .+ atx

t ∈ F[X ] be
a polynomial of degree at most t . Let x1, x2, . . . , xn ∈ F \ {0}, for
n > t , be distinct elements.

Then C = (f (x1), f (x2), . . . , f (xn)) is a codeword of Reed-Solomon
error correcting code [20] of the message (a0, . . . ,at).

Reed-Solomon code can correct up to e erroneous symbols, i.e.

when e out of n evaluation points f (xi) (1 ≤ i ≤ n) are
manipulated, the polynomial (i.e., the message) can be uniquely

determined if and only if n ≥ t + 1+ 2e.

There exist efficient algorithms implementing Reed-Solomon

decoding, such as Berlekamp-Welch algorithm [4].
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Preliminaries

Robust Secret Sharing for t < n/3
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Preliminaries

Robust Secret Sharing
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Preliminaries

Message Authentication Codes

MAC

A message authentication code (or MAC) for a finite message space

M consists of a function MAC :M×K → T for finite sets K and T . It
is called ǫ-secure if for all m,m′ ∈ M with m �= m′ and for all τ, τ ′ ∈ T :

P[MAC(m′,K ) = τ ′|MAC(m,K ) = τ ] ≤ ǫ,

where the random variable K is uniformly distributed over K .

Example

MAC : Fl × F
2 → F, ((m1, . . . ,ml), (α, β))→ Σlk=1α

i .mi + β (1)

is a ǫ-secure MAC with ǫ = l/|F|.
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State of The Art Comparison

State of The Art

Table: Comparison Among Existing Efficient RSS

Scheme Overhead (bits)

Rabin and Ben-Or [26] 3(n − 1)(2log(k + 1) + µ)

Cevallos et al. [6] 3(n − 1)(log(k + 1) + log(m) + 2
k+1

(µ + log(e)))

Roy et al. [27] (2n + k − 2)(log(k + 1) + log(l) + 2
k+1

(µ + log(e)))

Adhikari et al. [1] (n + k)(log(k) + log(l) + 2
k+1

(µ + log(e)))

Here, m is the bit length of the secret and m is an integer multiple of l ,

k is the number of cheaters, n = 2k + 1 is the number of total

participants, e = exp(1), and µ is the security parameter s.t. the

scheme fails to reconstruct the authentic secret with probability at most

2−µ.
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State of The Art Share Authentication

Rabin and Ben-Or [26] Technique

Let si be the Shamir share for the player Pi .

⇓

For every pair of players Pi and Pj , Pi ’s Shamir share si is

authenticated to the player Pj with an authentication tag τi,j obtained
by message authentication code, where the corresponding

authentication key kj,i is held by player Pj .

⇓

Specifically, this step may be done by choosing kj,i = (gj,i , bj,i)
uniformly at random from F× F and then computing τj,i = sigj,i + bj,i .

⇓

Each player will get n − 1 keys and n − 1 tags.
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State of The Art Share Authentication

Cevallos et al. [6] Technique

Use small tags and keys.

⇓
MAC has weak security.

⇓
Incorrect shares may be approved by some honest players and Rabin

& Ben-Or reconstruction fails.

⇓
Cevallos et al. introduce a novel reconstruction technique by using R-S

error correcting code where t < n/2.

⇓
Still, each player will get n − 1 keys and n − 1 tags.
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Our Contribution

Technique to Reduce the Number of Auth.

Tags [8]

Instead of sending n − 1 tags to each player, send a seed ci to player

Pi .

⇓
The necessary authentication tags will be generated from the seed ci

together with some public information.

⇓
The seed for Pi is ci = (di,1, . . . ,di,t), where di,j for j ∈ {1, . . . , t} is

randomly chosen from F and the authentication tag of Pi against Pj ’s

key is τi,j = αi dj,1 + α2
i dj,2 + · · ·+ αti dj,t .

⇓
Compared to the setting of Rabin and Ben-Or, each player now gets a

seed of t field elements from which the n − 1 authentication tags are

generated. Thus, the share size of each player is reduced by n − t − 1

field elements.
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Our Contribution Roy et al. [27]

Adversarial Model

The dealer D and the reconstructor R are assumed to be honest.

The dealer delivers the shares to respective participants over

point-to-point private channels.

We assume that A is computationally unbounded, active,

adaptive, rushing adversary who can corrupt up to t < n/2
participants (but neither D nor R).

Note that assuming R to be honest is equivalent to assuming a

broadcast channel available to each participant.
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Roy et al. [27]

Initialization: For i = 1, . . . ,n, let the distinct elements
αi ∈ F2m \ {0} be fixed and public. Moreover, let αi be also
non-zero and distinct in F2q , where m, q are two positive integers
and the cardinalities of both fields are larger than n.
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Our Contribution Roy et al. [27]

Sharing Phase

The dealer D chooses randomly a polynomial f (x) ∈ F2m [X ] of
degree at most t , where f (0) = s is the secret to be shared, and
computes f (αi) = si in F2m , where i = 1, . . . ,n.

If q < m, we let l = m/q (for simplicity, assuming that l is an
integer) and sj = sj,1|| . . . ||sj,l .
D chooses randomly di,1, . . . ,di,t and gi,j from F2q , and computes

bi,j =

�
gi,j sj +Σ

t
k=1α

k
i dj,k for q ≥ m

Σlk=1g
k
i,j sj,k +Σ

t
k=1α

k
i dj,k for q < m

where j = 1, . . . , i − 1, i + 1, . . . ,n and i = 1, . . . ,n.

D privately sends to each Pi the share

Si = (si , di,1, . . . ,di,t , gi,1, . . . ,gi,i−1, gi,i+1, . . . ,gi,n,

bi,1, . . . ,bi,i−1, bi,i+1, . . . ,bi,n).
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Our Contribution Roy et al. [27]

Reconstruction Phase

Round 1: Each Pi sends (s
′
i , d

′
i,1, . . . ,d

′
i,t) to the reconstructor R.

Round 2: Each Pi sends

(g′i,1, . . . ,g
′
i,i−1, g

′
i,i+1, . . . , g

′
i,n, b

′
i,1, . . . ,b

′
i,i−1, b

′
i,i+1, . . . ,b

′
i,n)

to the reconstructor R.
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Reconstruction Phase

Computation by R:
1 R sets vij , i , j ∈ {1, 2. . . . ,n}, to be 1 if Pi ’s authentication tag is

accepted by Pj , i.e., if

b′i,j =

�

g′i,j s
′

j +Σ
t
k=1α

k
i d

′

j,k for q ≥ m

Σlk=1g
′
k
i,j s

′

j,k +Σ
t
k=1α

k
i d

′

j,k for q < m
,

otherwise she sets vij to 0.
2 R computes the largest set I ⊆ {1, 2, . . . ,n} with the property that

∀i ∈ I : |{j ∈ I|vij = 1}| = Σj∈I
vij ≥ t + 1.

Clearly, I contains all honest participants. Let e = |I| − (t + 1) be
the maximum number of corrupted participants in I.

3 Using the error correction algorithm for Reed-Solomon code, R
computes a polynomial f (x) ∈ F2m [X ] of degree at most t such that
f (αi) = s

′

i for at least (t + 1) + e
2
participants i in I.

If no such polynomial exists then output ⊥,
otherwise, output s = f (0).
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Proof of Security

Lemma 1

The above scheme provides perfect secrecy, i.e. the adversary A
controlling any t participants during the sharing phase will get no

information about the secret s. Proof

Lemma 2

Any corrupted participant Pi who submits s
′
i �= si in Round 1 of the

reconstruction phase will be accepted by an honest participant with

probability at most ǫ =

�
1
2q for q ≥ m
l
2q for q < m

.

Proof
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Our Contribution Roy et al. [27]

Proof of Security

Theorem

For any positive integer t such that n = 2t + 1, the proposed

construction forms (t , δ)-robust secret sharing scheme for n
participants with the space of secrets F2m and

δ ≤ e.((t + 1)ǫ)(t+1)/2

where e = exp(1) and ǫ =

�
1
2q for q ≥ m
l
2q for q < m

.

Proof
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Our Contribution Adhikari et al. [1]

Authentication Technique

MAC : Fl×n × F
n+1, where F is a finite field of size q is a

authentication code to authenticate n messages. MAC is

constructed as follows: the n messages are (mi,1, . . . ,mi,l) for
i ∈ [n], the authentication key is (g, b1, . . . ,bn), where
[n] = {1, 2, . . . ,n}. The tag for message i is τi = Σlk=1g

k .mi,k + bi .
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Initialization

For i = 1, . . . ,n, let the distinct elements αi ∈ F2m \ {0} be fixed
and public. Moreover, let αi be also non-zero and distinct in F2q ,

where m, q are two positive integers, m = l · q (for simplicity,
assuming that l is an integer) and the cardinality of both fields are

larger than n.
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Sharing Phase

The dealer D chooses randomly a polynomial f (x) of degree at
most (k − 1) in x from F2m [X ] such that f (0) = s, where s is the
secret to be shared. Also, the dealer D computes f (αi) = si in
F2m , where i = 1, . . . ,n and si = si,1|| . . . ||si,l .

The dealer first chooses gi ∈R F2q and a polynomial of degree at

most k − 1 with free coefficient 0,

ti(x) = ti,1x + ti,2x
2 + · · ·+ ti,k−1x

k−1, from F2q [X ].
The dealer computes, τi,j = ti(αj) and bi,j = tj(αi)− Σlu=1g

u
i · sj,u for

i ∈ [n] \ j .

D sends each Pi the share

Vi = (si , ti(x), gi , bi,1, . . . ,bi,i−1, bi,i+1, . . . ,bi,n).
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Our Contribution Adhikari et al. [1]

Proof of Security

Theorem

For any positive integer k such that n = 2k − 1, the proposed

construction forms (k , δ)-robust secret sharing scheme for n
participants with the space of secrets F2m and

δ ≤ e.(kǫ)k/2

where e = exp(1) and ǫ = l
2q .
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proof

The dealer D shares the secret s through a polynomial f (x), where the
degree of the polynomial is at most t in x , and the share of each Pi is

Si = (si , di,1, . . . ,di,t , gi,1, . . . ,gi,i−1, gi,i+1, . . . ,gi,n,

bi,1, . . . ,bi,i−1, bi,i+1, . . . ,bi,n).

Without loss of generality, we may assume that the first t participants

P1, . . . ,Pt are under A’s control. Now, according to Lagrange’s
interpolation, t + 1 such values si fully define a degree-t polynomial.

Thus, we need to choose one more si , where i ∈ {1, 2, . . . ,n} \ L and
L = {1, 2, . . . , t}. Without loss of generality, we may assume that

i = t + 1. Let us now estimate the information regarding st+1 which is

available to each Pi , i ∈ L, via (gi,t+1, bi,t+1).
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Case 1 (q ≥ m):For all i ∈ L,

bi,t+1 = gi,t+1st+1 + αi dt+1,1 + α2
i dt+1,2 + · · ·+ αti dt+1,t .

So, for all i ∈ L,

bi,t+1 − gi,t+1st+1 = αi dt+1,1 + α2
i dt+1,2 + · · ·+ αti dt+1,t .

Note that the above system of linear equations is associated with the

following matrix, which is non-singular in F2q :







α1 α2
1 . . . αt1

α2 α2
2 . . . αt2

. . . . . . . . . . . .

αt α2
t . . . αtt






.

Now, we conclude that A can guess the correct st+1 with probability at

most 1
2m as st+1 ∈ F2m .
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proof Contd.

Case 2 (q < m):
For all i ∈ L,

bi,t+1 = Σlk=1g
k
i,t+1st+1,k +Σ

t
k=1α

k
i dt+1,k .

Here q < m, l = m/q (for simplicity, l is assumed to be an integer) and
sj = sj,1|| . . . ||sj,l . So, for all i ∈ L,

bi,t+1 − Σlk=1g
k
i,t+1st+1,k = Σtk=1α

k
i dt+1,k .

Now, for any fixed value of st+1 = st+1,1|| . . . ||st+1,l , we can use the

same argument as in Case 1 in order to show that the probability for A
to guess st+1 correctly is at most (1/2

q)l = 1/2m.

Return
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proof

Without loss of generality, we assume that the corrupted participant is

P1 who submits s
′
i �= si in Round 1 of the reconstruction phase.

Case 1 (q ≥ m):
P1 will be accepted by honest Pj if

bj,1 = gj,1s
′
1 + αj d

′
1,1 + α2

j d
′
1,2 + · · ·+ αtj d

′
1,t . Thus P1 has to guess gj,1

correctly. Now, let

gj,1s
′
i +Σ

t
k=1α

k
j d

′
1,k = gj,1si +Σ

t
k=1α

k
j d1,k .

Then,

gj,1 = (s′1 − s1)
−1Σtk=1α

k
j (d1,k − d

′
1,k ).

Note that gj,1 is independent of all information that the adversary A
has obtained and gj,1 ∈ F2q .
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Thus, P1 will be accepted by Pj with probability at most
1
2q ≥ Pr(v1j = 1). Therefore, any dishonest participant Pi submitting
s′i �= si in Round 1 of the reconstruction phase will be accepted by a
honest participant Pj with probability Pr(vij = 1) ≤ 1/2q.
Case 2 (q < m):

P1 will be accepted by honest Pj if bj,1 = Σlk=1g
′k
j,1s

′
1,k +Σ

t
k=1α

k
j d

′
1,k .

As s1 �= s′1, at least one of s1,k �= s
′
1,k . Assume that only one

s1,k �= s
′
1,k . So, as in Case 1, P1 will be accepted by Pj with probability

at most 1
2q ≥ Pr(v1j = 1). Taking into account the union bound, P1 will

be accepted by Pj with probability at most
l
2q ≥ Pr(v1j = 1). Therefore,

any dishonest participant Pi submitting s
′
i �= si in Round 1 of the

reconstruction phase will be accepted by a honest participant Pj with

probability Pr(vij = 1) ≤ l/2q.

Return
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proof

Privacy: Follows from Lemma 23.

Reconstructability: From Lemma 23, we have found that

Pr(vij = 1) ≤ ǫ. The rest of the proof is the same as in [6,
Theorem 3.1].

Return
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Information theoretically secure secret sharing first proposed by Shamir [2] and
Blarkley [1] is a useful tool for many cryptographic applications. A secret sharing
scheme allows a so-called dealer to distribute his secret to a group of parties in such
a way that authorized sets of parties can collaboratively reconstruct the secret, while
unauthorized sets of parties get no information regarding the secret.

We consider the case where some parties may cheat while reconstructing the secret
in order to fool other parties. However, the dealer is assumed to be honest in this
work. We introduce two cheater identifiable secret sharing (CISS) schemes with efficient
reconstruction, tolerating t < k/2 cheaters and one robust secret sharing scheme (RSS).

Cheater identifiable secret sharing (CISS) is an upgrade of (k, n)-threshold secret
sharing schemes [2, 1] that can tolerate up to t actively corrupt participants. The dealer
in CISS is assumed to be honest. The goal in this scenario is to identify cheaters from
the threshold k number of players, and to recover a correct secret whenever possible.
Our constructions [3], which provide public cheater identification, feature a novel ap-
plication of multi-receiver authentication codes to ensure integrity of shares. The first
CISS scheme, which tolerates rushing cheaters, has the share size |S|(n−t)n+t+2/n+t+2

in the general case, that can be ultimately reduced to |S|(k − t)k+t+2/k+t+2 assum-
ing that all the t cheaters are among the k reconstructing players. The second CISS
scheme, which tolerates non-rushing cheaters, has the share size |S|(n − t)2t+2/2t+2.
These two constructions have the smallest share size among the existing CISS schemes
of the same category, when the secret is a single field element.

Robust secret sharing (RSS) differs from CISS in that it aims to assure the correct
recovery of the shared secret by requiring all parties to appear in the reconstruction
phase. More specifically in a (t, n, δ) RSS, the dealer shares the secret to n parties
and an adversary can adaptively corrupt t of the parties and modify there shares in an
arbitrary way. Finally, we use the tool of multi-receiver authentication to construct a
robust secret sharing scheme, which updates the start-of-art against rushing adversary
by reducing the share overhead by slightly more than one half.
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� Authentication Key: (owned by transmitter)

w+1 polynomials e=(P0(x), …, Pw(x)) of degree at most t

� Verification Key: (owned by each receiver)

ei = P0(xi), …, Pw(xi) for i=1,…,n

� Authentication tag: (to be broadcast)

for a message s, As(x) = P0(x) + sP1(x) + … + swPw(x) 

� Verification: (conducted by each receiver)

As(xi) � P0(xi) + sP1(xi) + swPw(xi) 

� Property: The probability that t corrupt receivers and/or the 
outside opponent upon seeing up to w messages and their 
corresponding tags succeed in deceiving any receiver Ri is at 
most 1/q.
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High-Throughput Secure Computation using bit
slicing

Toshinori ARAKI Joint work with J. Furukawa, Y. Lindell, A.
Nof, K. Ohara.

NEC Corporation
t-araki@ek.jp.nec.com

This talk is about the result of [1]. We describe a new information-theoretic protocol
(and a computationally-secure variant) for secure three-party computation with an
honest majority. The protocol has very minimal computation and communication; for
Boolean circuits, each party sends only a single bit for every AND gate (and nothing
is sent for XOR gates). This protocol is efficiently parallelizable by using bit slicing
method. This protocol is (simulation-based) secure in the presence of semi-honest
adversaries, and achieves privacy in the client/server model in the presence of malicious
adversaries.
We ran our implementation on a cluster of three mid-level servers connected by

a 10Gbps LAN with a ping time of 0.13 ms. Each server has two Intel Xeon E5-
2650 v3 2.3GHz CPUs with a total of 20 cores. On a cluster of three 20-core servers
with a 10Gbps connection, the implementation of our protocol carries out over 1.3
million AES computations per second, which involves processing over 7 billion gates
per second. Moreover, we developed a Kerberos extension that replaces the ticket-
granting-ticket encryption on the Key Distribution Center (KDC) in MIT-Kerberos
with our protocol, using keys/ passwords that are shared between the servers. This
enables the use of Kerberos while protecting passwords. Our implementation is able
to support a login storm of over 35,000 logins per second, which suffices even for very
large organizations. Our work demonstrates that high-throughput secure computation
is possible on standard hardware.

Cores AES/sec Latency CPU % Network

1 100,103 ± 1632 128.5 ± 2.1 73.3% 0.572
5 530,408 ± 7219 121.2 ± 1.7 62.2% 2.99
10 975,237 ± 3049 131.9 ± 0.4 54.0% 5.47
16 1,242,310 ± 4154 165.7 ± 0.4 49.5% 6.95
20 1,324,117 ± 3721 194.2 ± 0.9 49.6% 7.38

Table 1. Experiment results running AES-CTR. The CPU column
shows the average CPU utilization per core, and the network column
is in Gbps per server. Latency is given in milliseconds.

References

[1] T. Araki, J. Furukawa, Y. Lindell, Ariel Nof, K. Ohara. High-Thrhoughout Semi-Honest Secure
Three-Party Computation with an Honest Majority. ACM CCS 2016.
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About this talk

▌ This talk is about the following paper and demo.

�High-Throughput Semi-Honest Secure Three-Party Computation 
with an Honest Majority(ACM-CCS 2016 Toshinori Araki, Jun 

Furukawa (NEC), Yehuda Lindell, Ariel Nof (Bar-llan University) and 
Kazuma Ohara (NEC)

https://eprint.iacr.org/2016/768

� High-Throughput Secure Three-Party Computation of 

Kerberos Ticket Generation (ACM-CCS2016)
Toshinori Araki (NEC Corporation), Assaf Barak (Bar-Ilan University), 
Jun Furukawa (NEC Corporation), Yehuda Lindell (Bar-Ilan University), 
Ariel Nof (Bar-Ilan University) and Kazuma Ohara (NEC Corporation)
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What  is Secure Multi-party Computation(SMPC)?

▌SMPC enable us to compute with respect to secret shared data  
without revealing data  & result  to Parties hold shared data.

Party1 Party2 Party3
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Summary

Year Latency Throughput

2010 I. Damgard , M. Keller. 2000sec -

2012 J. Launchbury, I.S. Diatchki, 
T. DuBuisson , A. Adams-Moran.

14.28 msec 320/sec

2013 S. Laur, R. Talviste J. Willemson. 323 msec 3,450/sec

2016 R. Talviste 223 msec 25,000/sec

2016 Sharemind - 90,000/sec

2016 This work 194 msec 1,324,117 /sec

▌We developed New SMPC protocol for achieving High 
throughput.

�Secure three party computation with an honest majority.

�This scheme is secure in the presence of semi-honest adversary.

▌By using this scheme, we can process 1.3 million AES per sec. 

�This is corresponding to 40,000 Login processes of  Kerberos,

�This performance is sufficient  even for very large organization.

The Performance  of AES computation by SMPC 

5 © NEC Corporation 2015 NEC Group Internal Use Only5 © NEC Corporation 2016 NEC Group Internal Use Only

Our approach for achieving High-Throughput

▌We have tried to  reduce the amount of communication. 

�Du-Atallah protocol (Sharemind uses)

•Each party sends 10 bit  per AND gate. 

•XOR gate is free from communication.

•Assuming AES circuit has 5000 AND gates and parties are connected 
by 10Gbps band, 200,000 AES per sec is the limit.

Our goal is breaking this limit.

�Our protocol

•Each party sends only 1 bit per AND gate.

•XOR gate is free from communication.

•Specialized in (2,3) access structure.

5bit5bit
5bit 5bit

5bit

5bit

Du-Atallah Protocol

1bit 1bit

1bit

Our Protocol
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About our scheme

� Secret Sharing

� Exclusive OR gates

� AND gates

� Parallelization
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Secret Sharing

▌Share Generation   

� Choose � � � such that � � � . 

� Compute following values.

• �’s share :  � � � �

• �’s share :  � � � �

• �’s share :  � � � �

▌Secret Reconstruction

�From any combination of two share, � � � can get.

▌Properties

�The sum of former part is equal to 

• � � � � � � � � �

�The sum of latter part is equal to .

• � � �

8 © NEC Corporation 2015 NEC Group Internal Use Only8 © NEC Corporation 2016 NEC Group Internal Use Only

XOR gates

▌Input for computing ( � � �, � � �)

� �’s input :  � � where � � � ,   � � where � � �

� �’s input : � � where � � � ,   � � where � � �

� �’s input : � � where � � � , � � where � � �

▌XOR gate computation ( replace with 3 )

�Each � computes ( � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � �

�Then,  � � is the �’s share of .

▌This computation can be done by each party without 
communication

Shares of Shares of 

0 0

9 © NEC Corporation 2015 NEC Group Internal Use Only9 © NEC Corporation 2016 NEC Group Internal Use Only

AND gates[1/3]

▌Input for computing ( � � �, � � �)

� �’s input :  � � where � � � ,   � � where � � �

� �’s input : � � where � � � ,   � � where � � �

� �’s input : � � where � � � , � � where � � �

▌AND gate computation ( replace with 1. 0 replace with 3 .)

�Now suppose  � has � such that  � � � .

�Each � computes � � � � � � sends � to ���.

•Each party sends only 1bit!. 

• � is used as mask.  ��� can not get additional information from �.

�Each � computes � � ��� � � .

�Then � � is  �’s share of .

▌Clearly, � � � � � � � � � . 

Shares of Shares of 
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AND gates[2/3]

▌Confirming � � � .

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � �

� � � �

� � � �

� � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � �

0

� �

� �
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AND gates[3/3]

▌How to generate � � � non-interactively. 

� � is pseudorandom function outputting a single bit. is key.

▌Init

�Each � chooses a random �
� ( is security parameter).

�Each � sends � to ��� . ( replace with 3)

�After that, 

• � has � � .

• � has � � .

• � has � � .

▌GenRandom: Given a unique identifier ,

� � computes � �� ��
.

� � computes � �� ��
.

� � computes � �� ��
.

▌Note:

���⨁��⨁�� � ��� �� ⊕ ��� �� ⊕ ��� �� ⊕ ��� �� ⨁��� �� ⊕ ��� �� � 0
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▌We used Bit-slicing method  for parallelization.

�Bit-slicing

�Computation on the Bit sliced data 

Parallel computation [1/4] 

�� �� ��

�� �� ��

�� �� ��

...

1th input 

2th input  

...

th input  

Each input length is 

�� ��

��

�� ��

��

�� �� ��

1th slice 

2th slice  

...

th slice  

Each slice length is .

�� ��

�� ��...

�� ��

�� ��

�� ��

th slice 

th slice 

-parallel computation
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▌We used Bit-slicing method  for parallelization.

Parallel computation [2/4] 

�� ��

��

�� �� ��

Bit sliced inputs

�� ��

��

�� �� ��

�� ��

��

�� �� ��

-parallel secure computation

Bit sliced share of �

�� ��

�� ��

-parallel computation

�� ���� ��

�� ���� ��
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▌We used Bit-slicing method  for parallelization.

Parallel computation [3/4] 

�� ��

��

�� �� ��

Bit sliced inputs

�� ��

��

�� �� ��

�� ��

��

�� �� ��
-parallel secure computation

Bit sliced share of �

�� ��

�� ��

-parallel computation

�� ��

�� ��

�� ��

�� ��

� �
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▌We used Bit-slicing method  for parallelization.

�Bit-slicing

�Computation on the Bit sliced data 

Parallel computation[4/4] 

�� �� ��

�� �� ��

�� �� ��

...

1th input 

2th input  

...

th input  

Each input length is 

�� �� ��

�� �� ��

�� �� ��

1th slice 

2th slice  

...

th slice  

Each slice length is .

�� ��

�� ��...

�� ��

�� ��

�� ��

th slice 

th slice 

-parallel computation
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[1/3] 

▌We have implemented Bit-slicing using  Intel Intrinsics.

�Mainly, we used unpack and movmskb.

�The unit of our bit-slicing is 16 messages of length 8 bytes.

▌Unpack(VPUNPCHBW)

�This instruction can be used for mixing two input.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Register 1

Register 2

15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8

16bytes

Register 3

� �,� �,� �,� �,� �,� �,� �,� �,�

...

�� ��,� ��,� ��,� ��,� ��,� ��,� ��,� ��,�

8bytes

� �,� �,� �,� �,� �,� �,� �,� �,�
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[2/3] 

▌We have implemented Bit-slicing using  Intel Intrinsics.

�Mainly, we use unpack and movmskb.

�The unit of our bit-slicing is 16 messages of length 8 bytes.

▌Unpack(VPUNPCHBW)

�By applying 32 unpack instruction, Byte-sliced data can be made.

� �,� �,� �,� �,� �,� �,� �,� �,�

...

�� ��,� ��,� ��,� ��,� ��,� ��,� ��,� ��,�

8bytes

� �,� �,� �,� �,� �,� �,� �,� �,�

� �,� �,� �,� ��,�

...

� �,� �,� �,� ��,�

� �,� �,� �,� ��,�

16bytes
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[3/3] 

▌Movmskb instruction can  be used for making bit-sliced data 
from byte-sliced data. 

▌movmskb

� Register 2 contains bit-sliced data. 

� By applying 64 times movmskb and shift, Bit-sliced data can 
be made.

� �,� �,� �,� ��,�

...

� �,� �,� �,� ��,�

� �,� �,� �,� ��,�

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16bytes

Register 1

zero-clearRegister 2

15 0
Each most significant bit
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Experiment : Performance[1/3]

▌Server

�CPU : Two Intel Xeon E5-2650 v3 2.3GHz (Total 20 cores)

�Network : 10Gbps LAN with a ping time of 0.13 ms

▌Encryption scheme

�AES-128 using expanded key 

�These computations can be with different keys and plaintexts .

�Mode of operation is AES-CTR

Cores AES/sec Latency (ms) CPU % Network(Gbps)   

1 100,103 128.5 73.3% 0.572

5 530,408 121.2 62.2% 2.99

10 975,237 131.9 54.0% 5.47

16 1,242,310 165.7 49.5% 6.95

20 1,324,117 194.2 49.6% 7.38
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Experiment : Throughput per core[2/3]

▌ Up to 10 cores, the throughput is stable at  approximately  
100,000 AES/sec per core.

21 © NEC Corporation 2015 NEC Group Internal Use Only21 © NEC Corporation 2016 NEC Group Internal Use Only

Experiment : Micro Benchmark[3/3]

Protocol part Percentage

Server bitslice and deslice 8.70%

AND and XOR gate computation 49.82%

Randomness generation 9.54%

Comm. delays between MPC servers 27.87%

Communication delays for input/output 4.07%
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Authentication
Server

SMPC Servers

Clients

………

Applied to Kerberos authentication server

▌ We took the Open Source MIT Kerberos
�We modified the encryption mode used to encrypt the TGT to counter 

mode. 

�Since CBC mode does not enable parallel computation.

1,324,117AES 
corresponding to

40,124  TGT encryption. 
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Summary

▌Proposed scheme can process 1.3 million AES/sec.

▌This throughput corresponds to 40,000 Kerberos Authentication.

�Single authentication needs 33 AES computations.

▌This performance is sufficient  even for very large organization.

We developed SMPC protocol for achieving 
High throughput.
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XOR-based (2, 2m) threshold schemes

Yuji SUGA

Internet Initiative Japan Inc.
suga@iij.ad.jp

The (k,n)-threshold secret sharing schemes using exclusive-OR operations (XOR-
(k,n)-SSS) are proposed by Fujii et al. and Kurihara et al. [1] independently. Their
method are ideal that share size is equal to the size of the data to be distributed with
the benefits that can be handled very fast for using only XOR operation at distribution
and restoration processes.

A new method proposed in WAIS2013 [2]: A new method have proposed, this
leads to general constructions of (2, p+ 1)-threshold secret sharing schemes using only
exclusive-OR operations with the same assumption of previous XOR-(k,n)-SSS.

Example 1 (XOR-(2, 4)-SSS [2]). M =M1|| M2 (n
′
= 2),M0 ∈ {0}d

W0 M0 ⊕R0 M1 ⊕M2 ⊕R1
W1 M1 ⊕M2 ⊕R0 M1 ⊕R1
W2 M1 ⊕R0 M0 ⊕R1
W3 M2 ⊕R0 M2 ⊕R1

Definition 2 (2-propagation bases set defined in [3]). 2-propagation bases set {bi}(i =
1, . . . , l) is a set of bases over Zm

2 satisfies the following properties: b1 is a set of m
zero-vectors and for all distinct two bases bi, bj, bi + bj is also a basis over Zm

2 .

Theorem 3 (Main Theorem). When an optimal 2-propagation bases set {bi} (i =
1, . . . , 2m) over Zm

2 , these exists an XOR-(2, 2m)-SSS with vector-representation {wij =

bji} (i = 1, . . . , 2m, i = 1, . . . ,m).
Proof. From the definition of 2-propagation bases set, for distinct u, v, bu+ bv is a

basis, so w∗
1 = wu1 + wv1 , . . . , w

∗
m = wum + wvm are bases over Zm

2 . The l-th element
of Wu ⊕ Wv equals

⊕m
s=1w

∗
l
(s)Ms. In this case, these exist m linearly independent

simultaneous equations for Ms(s = 1, . . . ,m), so we can reconstruct all Ms.

Example 4 (m = 4 : XOR-(2, 24)-SSS).

W0 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
W1 (1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
W2 (1, 1, 0, 0) (1, 0, 0, 0) (0, 0, 1, 1) (0, 0, 1, 0)
W3 (0, 0, 1, 1) (1, 0, 0, 1) (0, 1, 1, 0) (0, 1, 0, 0)
W4 (0, 1, 0, 1) (0, 1, 1, 0) (1, 1, 0, 0) (1, 0, 0, 0)

References

[1] J. Kurihara, S. Kiyomoto, K. Fukushima, T. Tanaka, ”On a Fast (k, n)-Threshold Secret Sharing Scheme”, IEICE
Trans. on Fundamentals, vol.E91-A, no.9, 2008.

[2] Y. Suga, ”New Constructions of (2,n)-Threshold Secret Sharing Schemes Using Exclusive-OR Operations”, The
7th International Workshop on Advances in Information Security (WAIS2013), 2013.

[3] Y. Suga, ”Consideration of the XOR-operation based Secure Multiparty Computationg”, The Ninth International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS2015), 2015.
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2

Agenda

• Previous XOR-based secret sharing schemes
– Using circulant permutation matrices

• A new proposal : (2,2m)-SSS
using m-dimensional vector spaces over Z2

3

XOR-based SSS

• Very fast (k,n)-threshold secret sharing
– uses only XOR operation in both of the 

distribution phase and reconstruction phase.
– proposed by KDDI and Toshiba Solutions 

independently.

• From 2012, IIJ also proposed similar 
schemes.
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Allowing cyclic flow
• Assume that 2 operations are commutative

Secret Sharing

Encryption M

C

{ m_i }

{ c_i }

M { m_i }

{ c_i }

Type-E Counterclockwise Type-F Clockwise

C

encryption-then-distribution distribution-then-encryption
decryption-then-reconstruct reconstruct-then-decryption

Encryption: CTR mode or stream cipher

5

A toy example: XOR-(2,3)-SSS
Secret M is divided into M_i’s
where M=M_1 || M_2 and M_0=Zero-bit-binary

for random data R_0, R_1.

|M_1| = |M_2| = |M_0| = d

|R_0| = |R_1| = d

KDDI

Kurihara et.al, On a fast (k,n)-threshold secret sharing scheme, IEICE TRANS. FUNDAMENTALS, VOL.E91-A, No.9, 2008.

6

A toy example: XOR-(2,3)-SSS

for random data R_0, R_1.

|M_1| = |M_2| = |M_0| = d

|R_0| = |R_1| = d

F({W0,W1}) = {M1, M2}
F({W0,W2}) = {M2, M1+M2}
F({W1,W2}) = {M1+M2, M1}
A not-strictly-defined function F() 

outputs the data to be recovered in each part.

KDDI

Kurihara et.al, On a fast (k,n)-threshold secret sharing scheme, IEICE TRANS. FUNDAMENTALS, VOL.E91-A, No.9, 2008.
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Pros./Cons. of KDDI methods

• FAST!! because using only XOR-op.
• For all (k,n), there exist XOR-(k,n)-SSS

– # of the number of pieces of block is n-1

• Target data must be equally divided into 
p-1 pieces where p is a prime of more than n
– XOR-(2,4)-SSS is from XOR-(2,5)-SSS

8

Our (previous) contributions in 
WAIS2013

• (1) # of divisions for the original data is 
able to be less than n-1

• (2) the size of the share is able to be 
smaller than the size of target data

• (3) makes it possible to select the number 
of shares other than prime numbers

• A (3,2,4) ramp secret sharing scheme proposed 
by Matsumoto et al. announced in SCIS2012

Yuji Suga ,"New Constructions of (2, n)-Threshold Secret Sharing Schemes Using Exclusive-OR Operations",
Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2013

9

Proposal-1(New XOR-(k,n)-SSS)

where indexes are calculated as 
So, we got
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An example proposed in WAIS2013
• XOR-(2,4)-SSS with n’ = 2 = n 1 = 3

• W1: M0          + R0 || M1 + M2 + R1
• W2: M1 + M2 + R0 || M1          + R1
• W3: M1          + R0 || M0          + R1
• W4: M2          + R0 || M2          + R1

IIJ 

11

An example proposed in WAIS2013
• W0: M0          + R0 || M1 + M2 + R1
• W1: M1 + M2 + R0 || M1          + R1
• W2: M1          + R0 || M0          + R1
• W3: M2          + R0 || M2          + R1

F({W0,W1}) = {M1+M2, M2}
F({W0,W2}) = {M1, M2}
F({W0,W3}) = {M2, M1}
F({W1,W2}) = {M2, M1}
F({W1,W3}) = {M1, M1+M2}
F({W2,W3}) = {M1+M2, M2}

IIJ 

12

Introduction of a concept 
isomorphism for XOR-SSS

• For an XOR-(2,n)-SSS Psi with matrix-
representation of W_ij,

• an XOR-(2,n)-SSS generated from the 
following operations is isomorphic to Psi.

(3) For all sub-shares of a column, add same data with XOR-operations.

(1) Replace a line 
with some other line.

(2) Replace a column 
with some other column.
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Modification of a previous example

• See modified left part is added by M_1.

14

KDDI vs. IIJ in XOR-(2,3)-SSS

• KDDI

• IIJ(WAIS2013) There must be something relevant!

15

Another representation
• Matrix-representation

• Vector-representation
(Elements of Z2

n’ )
(Coefficients)
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• We can see that…
– w10  = w20 + w30       w11 = w21  + w31
– (1,1) = (1,0) + (0,1)     (0,1) = (1,1) + (1,0)

+ : addition over Z2
2

17

• And also…
– {w10, w11} is a basis of Z2

2

18

• And also…
– {w10, w11} is a basis of Z2

2

– {w20, w21} is a basis of Z2
2

– {w30, w31} is a basis of Z2
2
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New definition for “a set of bases”
b1
b2
b3
b4

20

2-propagation bases set XOR-SSS

for distinct u, v,  b_u + b_v is a basis,
there exist m linearly independent simultaneous equations for M_s.

21

XOR-(2,23)-SSS
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XOR-(2,24)-SSS
We implemented search algorithm of 2-propagation bases sets for small m.

23

XOR-(2,25)-SSS

24

XOR-(2,26)-SSS
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Concluding remarks

• Consideration for next generation cloud
– Affinity with mobile, Asymmetric cloud
– New Issues / Problems

• Requirements for deploying SSS
– Transparency on data flow in cloud

• Coexistence of Confidentiality and Secret sharing
– By using XOR-based primitives
– A light-weight proposal from m-dimensional vector 

spaces over Z2

26

Future works

• In the cases with k > 2 ?

• I believe there exists extended scheme
– Ex) GF(3)m :  random data could be cancelled 

as

– But calculation would be not efficient
• Needs operations over GF(3) 

3 3R R R = 0

27

IIJ
TEL 03-5205-4466 9 30 17 30 / /

info@iij.ad.jp
http://www.iij.ad.jp/
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Panel Discussion

Secret Sharing in Real-Life Distributed 
Systems: Perspectives and Challenges

Panelists:    Yvo Desmedt, Jon-Lark Kim, Patrick P. C. Lee, 
Rocki H. Ozaki, Satoshi Obana,  

Moderator: Kirill Morozov

The video of our panel discussion is  
available at “YouTube”: 
• Video1: https://youtu.be/gpUOT43FQVM
• Video2: https://youtu.be/AuRBxiKr6lU
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