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Preface

The present volume of Math-for-Industry Lecture Note Series collects the
manuscripts and slides of invited talks at the workshop on “Probabilistic
models with determinantal structure” held at Institute of Mathematics for
Industry (IMI), Ito-Campus, Kyushu University, Fukuoka, Japan, April 30th
and May 1st, 2015. The workshop is held during the visit to IMI of Profes-
sor Evgeny Verbitskiy (Leiden and Groningen) and Professor Subhroshekhar
Ghosh (Princeton).

The purpose of this workshop is to overview recent developments around
several probabilistic models with determinantal structure such as abelian
sandpile models and determinantal point processes from various points of
view. Topics are ranging from but not limited to algebraic dynamical sys-
tems, random walk on random spanning trees, persistent homology and ran-
dom topology, quantum Rabi model and representation theory, abelian sand-
pile models, forest-fire models, rigidity in point processes, and diffusions as-
sociated with Gaussian analytic functions.

The 42 participants had many fruitful discussions and exchanges that
contributed to the success of the workshop. We are very much grateful to
all the participants, especially the invited speakers for their contribution to
preparing manuscripts and giving talks. We are also grateful to Ms. Tsubura
Imabayashi for her help. Without her generous effort, the workshop would
not have been so smoothly organized.

We also hope all the participants enjoyed this workshop and had a pleas-
ant stay in Fukuoka.

This workshop is financially supported by Progress 100 (World Premier
International Researcher Invitation Program), Kyushu University, and Grant-
in-Aid for Scientific Research Kiban(B) 26287019 (PI: Tomoyuki Shirai) and
Challenging Exploratory Research 26610026 (PI: Hiroyuki Ochiai).

July 2015

Organizer: Tomoyuki Shirai
(IMI, Kyushu University)
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Spanning Trees, Abelian Sandpiles, and Algebraic
Dynamical Systems

Evgeny Verbitskiy
Institute of Mathematics for Industry, Kyushu University, Japan
Mathematical Institute, Leiden University, The Netherlands

Abstract. This overview talk is based on joint works with K. Schmidt and T. Shirai.

1 Szego’s Theorem and Mahler Measure

This year marks the anniversary of the seminal result by G. Szegd — First Limit Theorem
for Toeplitz determinants, published in Math.Ann. in 1915.

1.1 Toeplitz determinants
Let T=1[0,1) and S={2 € C: |z| =1} = {** : § € T}. Suppose ¢ : S — R, and let

(Zgn — /8—27rin9¢(€27ri9)d0, n e 7.
T
be the n-th Fourier coefficient of ¢. Consider the following Toeplitz matrix

In = (an—m)i\imzl :

Theorem 1.1 (Szegd’s First Limit Theorem). If ¢ : S — R is positive and log¢ is
integrable, then

1 ,
lim —logdet Ty = /log (™) df.
N T

N—oo

Szegd’s First Limit Theorem is a truly fundamental result, with applications in analysis,
probability, combinatorics, and even signal processing.

Theorem 1.1 admits multidimensional generalizations:



Theorem 1.2. Suppose ¢ : S* = {z = (21,...,24) € C?: |z| = 1 forall j} — R is
positive and such that log ¢ is integrable. Let

~

¢n — / 67271'2'(77,,0)@5(62771'9) d07 nc Zd.
Td
Then determinant of the corresponding block Toeplitz matrix

T = ((Zgn—m)n,meAN7 Ay = {1, Ceey N}d7
satisfies

. 1 o 2710
]\}me ~a logdet Ty = /Td log ¢(e“™) dB.

1.2 Mahler measure

Laurent polynomial in d variables uy, ..., uq with integer coefficients is
_ n __ ni ng
f= g fau™ = E faul™ o ouy,
nezd nezd

where f,, € Z for every n € Z? and there are only finitely n with f,, # 0. Two Laurent
polynomial f and g can be added and multiplied in the usual fashion

f+g:Z(f+g)nun> f-g:Z(f-g)nu",
neZzZd nezd
with
(f+g)n:fn+gn7 (f'g)n: anfkgk

kezd

for all n € Z?. The ring of Laurent polynomials in d-variables will be denoted by Rj.
Equivalently, we may say that Ry is group ring of Z%, denoted by Z[Z).

It is an easy application of Szegd’s First Limit Theorem to show the following result.

Theorem 1.3. Suppose f € Rq and f # 0, then

. 1 o 27160
A}l_r}rgomlogdetTN(fﬂ = /Td log | f ()| d@,

where now
TN(f) = (fnfm)n.,mEANa Ay = {17~~-7N}d-
Definition 1.4. The logarithmic Mahler measure of f € R, is defined as

o _ | Jraloglf(em) 6, [ #0,
! +00, f=0.



Example 1.5. Let f(2) =4 — z — L, then
4 -1
-1 4 -1
Ty 7

B—
-1 4

and ay = det Ty satisfies ay = day_1 — ay_2, with ag =1, a1 = 4:

N |1l 2 3 4 5
ay |4 15 56 209 780

The roots of characteristic polynomial of f are 24 /3, and using standard techniques one

easily gets that
. — (2 4 \/g)Nle _ (2 _ \/g)N+1
N 2\/3 )

and hence

1
%bg ay — log(2 +/3) = / log(4 — 2 cos(270))d0.
0

In fact, the logarithmic Mahler measure of f € R; is easily computable: if
f=anz2"+ ... +arz+ag, ap#D0,

factorizes over C as
f=an(z—21)...(2—2zn), z €C,
then the so-called Jensen’s formula gives that
my = log|a,| + Z log |2
J:lzi|>1

Values of Mahler measures of multivariate polynomials are much more interesting and are
subject of active studies. For example,

3v3 = v_3(n
M1tuy4us = ?L(X,{;, 2)7 where L(X*iﬂ? 8) - Z X ;g )
n=1

is the Dirichlet L-series of the character

, n=1 mod 3,

X-3(n)=4¢ -1, n=-1 mod 3,
0, n=0 mod 3.



Few other interesting values:

7
m(1+uy + us + uz) = 3.2 (3).

One particular family of polynomials (which related to dissipative sandpiles) has been
studied rather extensively:

fk:k—(u1+u1_1+uQ+u2_1), kezZ,

Boyd [2] verified numerically (to a very high degree of accuracy) that for 1 < k& < 100,
k # 4, one has
myg, = TkL/(Ekv 0)7 (16)

where 7, € Q, E) is the elliptic curve corresponding to the null set {f; = 0}, and L is the
corresponding L-function. Deninger [3] also related the logarithmic Mahler measure my,
to Eisenstein-Kronecker series. His result, together with the Bloch-Beilinson conjectures,
implies (1.6). Rodriguez-Villegas [19] developed alternative approaches to the evaluation
of my,. For k =4, ie.,

1 1

fed—u—

Uy U2

the Mahler measure can be computed exactly:

4 (=)
my = ;G, where G = Z BT IE - 0.915965 . . .
n=0

is the so-called Catalan constant, which is again a value of number theoretic function,
the Dirichlet S-function

= (-1
Ble)=2 (2n+ 1)+

2 Uniform Spanning Trees

2.1 Enumeration of Spanning Trees of Finite Graphs

Suppose G = (V, E) is a finite connected undirected graph, possibly with multiple edges,
but without loops.

Definition 2.1. A spanning tree T of G is a subgraph that includes all of the vertices of
G that is a tree, i.e., has no cycles.



Enumeration of spanning tress is a classical problem in combinatorics. The number of
spanning trees is given by the Kirkhoff Matrix Tree Theorem.

Theorem 2.2. Suppose G = (V, E) is a finite connected undirected multigraph without
loops. Denote by Ay, ., the number of edges connecting vy and vy in G. Note that

deg(vy) Z Ay, s
vV

The graph Laplacian of G is a matrixz of size |V| x |V| given by

A(vr, v9) = deg(vy), if v1 = vo,
AT ~Au, i1 £ s

Then t(G) — the number of distinct spanning trees t(G) of G, is given by

Vi-1

|V|HA

where A1, ..., Ng—1 are the non-zero eigenvalues of Ag. Equivalently, the number of dis-
tinct spanning trees of G is equal to the absolute value of any principal minor of Ag, i.e.,
determinant of a matriz obtained by deleting the column and the row corresponding to some
vertez v € V.

Often the graph Laplacian is represented as
AG = DG — AG

where D¢ is the diagonal degree matrix, and Ag is the adjacency matrix of G. Note that
determinant of Ag is 0 since all row sums are all equal to 0, and hence Agl = 0.

Let us now define the incidence matrix M for a graph G = (V, E) with n = |V vertices
and k = |E| edges as an n x k indicating which edges are incident to which vertices.
More specifically, let us assume that vertices are indexed by i, ¢ = 1,...,n, and edges
are indexed by j = 1,...,k. Then M = (mi’j)?;kl’j:l is defined as follows: if j-th edge e;
connects vertices v;, and v;,, 91 < 12, then

-1, ifi=14
m;; = 1, if 1 = iQ,
0, otherwise,

in other words, edges are directed from lower numbered vertices to higher numbered
vertices.

Proposition 2.3. The following equality holds Ag = MMT.



Similar equality holds for the reduced Laplacians. For example, if KG is obtained by
removing first column and the first row of Ag, then

Ag=MM",
where M is obtained by removing first row from M.

By the Cauchy-Binet formula

det(MM™) = > det(M;)det(M]) = Z det(M;)?,
1e( M) re(,M)

where sum is taken over all (n — 1)-subsets of [k] = {1,...,k}. It turns out that for every
collection of edges I C {1,...,k} of cardinality n — 1, one has

1, if I gives a spanning tree,

det(M;)? = {

0, otherwise.

If G = (V,E) is a multigraph and e € E’ is an arbitrary edge, then the number t(G) of
spanning trees satisfies the deletion-contraction recurrence

t(G) =t(G —e) +t(G/e)

where G — e is the multigraph obtained by deleting e, and G/e is the edge contraction of
G by e. Here, t(G —e) counts the spanning trees of G that do not use edge e, and the term
t(G/e) counts the spanning trees of G that use e.

2.2 Uniform Random Spanning Trees on Finite Graphs

Let T be a uniformly distributed random spanning tree of G, i.e., T' assumes every possible
(among t(G) possibilities) value with equal probability.

The definition of a uniform random spanning tree does not allow to compute local char-
acteristics of the random tree. For example, the probabilities

t(G/{e1}) t(G/{er, e2})

P(eleT): t(G) s t(G) >

]P’(el,eg € T) =

of the events like that “the edge e; belongs to T”, or “the pair of edges ey, e5 belong to
T7, at first glance, cannot be computed without the need to enumerate all spanning trees.

The following beautiful result is due to Burton and Pemantle [1].



Theorem 2.4 (Transfer-Impedance Theorem). Let G = (V, E) be any finite connected
graph. There is a symmetric function H (e, f) on pairs of edges such that for any ey, ..., e, €
B,

Pley,...,e, € T) = det(H (e, e;))

where H(e, f) with e = (x,y) is the expected signed number of transits of f by a random
walk started at x and stopped when it hits y.

r
i,j=1>

Remark 2.5. Recall that X = {X1,..., X} € {0,1}™ or X = {X,|n € Z¢} with
X, € {0,1} is called a determinantal process if for all mq, ... ny

PXn, =... = X,, = 1] = det(H(n1,ny)).

2.3 Uniform Spanning Forests

We will consider infinite graphs like Z?, d > 1, or the ladder graphs Z x G, G is a finite
graph with

(ny,v1) ~ (ng,vq) if and only if n; = ny and v; ~g ve, or ,ny —ng = £1 and v; = vs.

For these graphs, the uniform spanning forest (USF) is the weak limit of uniform
spanning trees in larger and larger finite boxes. Pemantle [17] showed for Z? that the
limit exists, that it does not depend on the sequence of boxes, and that every connected
component of the USF is an infinite tree. Moreover, the limits with respect to two extremal
boundary conditions, free and wired are the same.

Let us consider the wired boundary conditions. Fix N € N and let Ay = {—N,..., N}%
Let I'y be the finite graph obtained by contracting all vertices outside of Ay. The graph
Iy is a finite graph with (2N + 1)d + 1 vertices. The vertex set of I'y is Ay U 8. Vertices
in Ay are connected if they are nearest-neighbours, and the s is connected to n € Ay by

2d—|{k € Ay : ||k —nl|, =1}
edges. Therefore, s is connected only to vertices on the boundary of Ay.

Let T be a uniform spanning tree on ['y. Weak convergence established by Pemantle
[17] means that for fixed edges ey, ..., e, connecting some vertices in Z?, probability

Py(er,...,e, € Tx)

converges as N — oo, which allows us to define a random variable T" — the uniform spanning
forest on Z?, by
Pga(er,...,e, € T) = lim Py(ey,... e, € Tx).
N—o0

The limiting process, T' is almost surely a single tree if and only if d < 4.



The determinantal structure is preserved in the limit, and the Transfer-Impedance Theorem
remains true for infinite graphs like Z¢ or Z x G. In fact, expressions of the kernel function
become more tractable in the limit.

2.4 Computation of Entropy

The constructed measure Pza on {0, 1}2%" is translation invariant. Therefore, we have a
measure preserving dynamical system (€24, Sg, Pza), where

Qg C {0, 1}E(Zd)

is the set of all infinite edge configurations without loops (spanning trees), and Sy is the
action of Z? by shifts.

Burton & Pemantle [1] have shown that the law of the USF is the unique measure of
maximal entropy on essential spanning trees (spanning forests where every component is
infinite), and computed the entropy

R(S4,Pga) = hiop(Sa, Qa) = hm log t(T'%).

|AN|

The number t(I'y) is the determinant of any principal minor, e.g., the minor obtained by
removing the row and the column corresponding to the special vertex s. The corresponding
matrix is of size |[Ay| X |[Ax| = (2N + 1) x (2N + 1)¢

A/N = (6n,k)n,kEAN

with
2d, ifn=Ek,
Ok =< —1, if|ln—kK|=1,
0, otherwise .

Therefore, 6y, = fn_k, where f € Ry = Z[Z% is given by

d
@ =24 — Z(uj +uyh). (2.6)

j=1

Applying Szeg6’s limit theorem, one concludes that

h(Sa, Pye) = m s _/ log(2d QZCOS (276, )) a0,

j=1



and in particular, for d = 2,

1G
h(S2,Pzz) = —.

Burton & Pemantle also observed that the entropy of the USF processes coincide with
entropies of algebraic dynamical systems associated to f(¥. They wrote:

We are at a loss to explain this apparent coincidence.

General formula for entropies of algebraic dynamical systems was obtained earlier by Lind,
Schmidt, and Ward in [12].

Remark 2.7. Uniform Spanning Forest on the lattice Z% can be seen as a solvable model
in the sense of Statistical Mechanics. Rather remarkably for many solvable models, the free
energy — obtained as a thermodynamic limit (i.e., the limit as the number of particles tends
to infinity)
Fy = lim ———log Z,(8) = lim ——— log 3" exp(—BH (o)
= lim ———1o = lim ———lo exp(— op)),
B AL B|A| g LA AL /8|A| g - p A
coincides with the logarithmic Mahler measure of a certain polynomial. Below we list some
of the models, their resulting free energies F, and the corresponding polynomials f. For
simplicity we take 5 = 1.

Dimer model [9] F = —1imy, f=4—(ug+uy' +ug +uyt)
2
2D Ising model [16] F=—1lmy, f= 4(1f§§> — 25w+ urt e 4 uy ),
where T = tanh(J)
Congugate model [5] F =—1my, f=a—blujuy ' +uytug) — c(ugug + ujtuyt)
Free-fermion model [5] F = —4my, f=a—0blu; +uy") — clug +uy")

—d(ulugl + ul_lu2) — e(uyug + uflugl)

3 Algebraic Dynamical Systems

Let d > 1. We define the shift-action o of Z% on TZ' by

(amx)n = Tm+n (3.1)



for every m,n € Z¢ and z = (z,) € TZ" and consider, for every f € Ry, the group

homomorphism
d

fla) = Z fma™: T2 — T

mezd

(3.2)

Since R, is an integral domain, Pontryagin duality implies that f(«) is surjective for every

nonzero f € Ry (it is dual to the injective homomorphism from Ry = T2 to itself consisting
of multiplication by f).

Then )
X; = ker f(a) C T?

is a compact translation invariant group. More specifically,

Xy = {x = (z,) € T2 . Z fmZnim = Op for every n € Zd}.

meZd

For example, if f(¥ € R, be given by (2.6), then

d
X = ker fD(a) = {x = () € T : 2dz,, — Z(aﬁn+e<1> + 2, ) =0

Jj=1

(3.3)
for every m € Zd}.

Denote by ay the restriction of o to Xy. Since every ayt, m € Z% is a continuous
automorphism of X, the Z-action « preserves the normalized Haar measure Ax ; of Xj.
The algebraic Z%-action a; on X is completely determined by f, and one can express its
dynamical properties in terms of the Laurent polynomial f as follows:
(a) Xy is infinite if and only if f is not a unit in Ry, i.e., if and only if f is not of the
form +u™ for some n € Z%
(b) Xy is connected if and only if f is primitive, i.e., not divisible by an integer m > 1;

(¢) ay is mixing (with respect to the normalized Haar measure Ay, of X;) if and only if
f is not divisible by a polynomial of the form c(u™), where 0 # n € Z% and ¢ € R,
is a cyclotomic polynomial;

(d) If o is mixing it has positive entropy and is isomorphic to a Bernoulli shift;

(e) ay is expansive if and only if

U(f) = {c=(c1,.-,ca) € (C~{OP*: f(c) =0} NS* = &, (3.4)

10



where S = {z € C: |z| = 1}.

The Laurent polynomial f@ can be viewed as a Laplacian on Z¢, and every = = (xn) €
Xy is harmonic (mod 1) in the sense that, for every n € Z¢, 2d - x,, is the sum of
its 2d neighbouring coordinates (mod 1). This is the reason for calling (X, @) the
d-dimensional harmonic model.

The Kolmogorov-Sinai entropy of a4 with respect to A X, (a coincides with the topological
entropy of oy and is given by
hAXfu) (Oéf(d)) = htop((Xf(d)) = Mya). (3.5)
Moreover, since mga > 0, the dynamical system (X ja), @@, Ax is Bernoulli. The
f Y Y f f (@)
same is true for (g4, S,Py). Therefore,
(X, apw, )\Xf(d>) and (4, S4, Pa)

are measure-theoretically isomorphic (as two Bernoulli systems with equal entropy):
thus there exist sets

in C Qd, Pzd(Qg) — 1, and X}-(d) C Xf(d), )\f(d) (X}-(d)) — ].,

and a measure-preserving bijection & : ), — X }(d) such that
o s

il e vnem

/ /
Xf(d) an Xf<d)
F(d)

3.1 Symbolic covers of algebraic dynamical systems

Suppose we are given an algebraic dynamical system: a group Xy C TZ, f € Ry, and
a symbolic system: subshift Y c V2, finite set V C Z, e.g., V = {1,...,M}, M € N.
Suppose furthermore, they have equal entropies

htop(Y) = htop(Xf) = my

Then Y is called an equal entropy symbolic cover of X, if there exist a continuous surjective
equivariant map § : Y > Xy,

The theory of symbolic covers of algebraic dynamical systems has been started by A. Ver-
shik [26], and continued by R. Kenyon [10], N. Sidorov [23], K. Schmidt [20], M. Einsiedler
[4], E. Lindenstrauss [14], and several other. In the paper with K. Schmidt [22], we con-
jectured that: Solvable models are symbolic covers of their natural algebraic counterparts.
There is one class of solvable models — the so-called Abelian Sandpile Models (ASM), which
were proven to form symbolic covers of their algebraic counterparts.

11



4 Abelian Sandpiles

For simplicity we will only consider abelian sandpile model on Z?, generalisation to Z? is
straightforward.

4.1 Sandpile configurations on finite volumes

Let A C Z? and |A| < oo, notation A € Z%. Configurations on A are elements of N*:
Y= (Yn)ner, n=(n1,n2), yn € N={1,2...}.
Configuration y € N* is called stable if
yn <4 VYn e A.

Suppose y € N is unstable: there exists an n € A such that y,, > 4. Then we perform a
toppling at site n: y — ¢ = T, (y), where

Yn = Yn =4
Yo =Ym+1 foralmeA:|m—n|;=1

If y € N* is unstable, keep toppling unstable sites (i.e., apply appropriate T},’s) until you
are left with a stable configurations. Denote the resulting configuration by 7 (y).

Remarks:

e Dissipativity property: if a site n on the boundary of A is toppled, then some
grains of sand are lost. Hence, only a finite number of topplings is possible.

e Abelian property: The order of topplings is not important, hence 7T is well defined.

For A € Z?, define the Laplacian A = Ay = (Ay 1 )nmea as a matrix of size |A| x |A| with

4, if n =m,
Apm =1 -1, if|ln—m| =1,
0, otherwise.

If y € N* (viewed as column vector) and ¥, > 4, then
Tn(y) =Y—- Aé’fh
where 0y, = (0,(1M))mea a column vector of 0’s and one 1.

Corollary 4.1. If y € N*, then

where ¢ = (qn) where qp, is the number of times the site n toppled.
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4.2 Recurrent configurations

A stable configuration y € N is called recurrent if there exists another element v € N4
such that
Tly+v)=y.

Denote by R, the set of all stable recurrent configurations on A € Z2. Then

e R, is an additive group: for y,z € R, let
y®z="T(y+2),
i.e., add two configurations and then topple the resulting configuration.
e R, is called a sandpile or a critical group for A
o Ry 2 ZNA\ZA
o |Ry| =det(Ay)

Note that if A = {—=N,..., N}? then the reduced laplacian of I'; is precisely the Laplacian
Ay, and hence,
RAN = t(F?V)v

i.e., numbers of recurrent configurations and of spanning trees coincide. Dhar found explicit
bijection between these sets, known as the the burning algorithm [7,18]. Burning algorithm
can also be used as a simple test to decide whether a stable configuration y on A is recurrent,
i.e., Yy e Ra.

In [21], using the so-called summable homoclinic points, we constructed an equivariant
surjective map § : Rzz — X, The question whether the USF on 72 is also a symbolic
cover of X (2 TEMAInNs open.

5 Ladder Sandpiles

In a joint work with T. Shirai [25], we consider the simplest infinite graph, namely,
I'=7x{1,2},

with non-trivial USF and abelian sandpile models. The USF on I' has been studied by
Héggstrom [6], and the abelian sandpile model on I' has been studied by Jarai & Lyons
[8]. These papers provide very detailed description of the corresponding models.
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We start by defining the algebraic harmonic model on I'. By analogy with the lattice
sandpiles, the corresponding algebraic model should be

(1) 1 _ @ m @)
Wn, 3wy, —-w —wn’ =0r
X =< w = (Wp)nez, Wn = e T?, Wn-1 il " foralln € Z. 3.
{ (wWn)nez (w(Q) ) 3@ 7(127)1 &)1 — W = 0p
Clearly, X is compact translation invariant subgroup of (’H‘Q) . Denote by « the Z-action

by left-shifts on X. Similarly, to algebraic systems defined by one Laurent polynomial, one
can show that the Pontryagin dual of X is given by the module

)? = RQ/]WR27

where R is the ring of Laurent polynomials in one variable, R = Z[z%!], and M is a 2 x 2
matrix with coefficients in R,
1

3_2_; -1 2 h . 2 2
M:[ c 3_2_1}, R—{<f2>.fieR}, MR® C R,

o= (35 i (1 ) (ooe D) g

By the result of [12], the topological entropy of shift action @ on X is

Note that

1
hiop(X, ) = / log | det(M)(e*™)|d6 = my +mgy =my = log(2 + \f)
0

coincides with the entropies of sandpile and spanning trees on I'. Therefore, the relevant
part of the algebraic system is given by Xy, f =4 — 2z — 27!, and we will discuss symbolic
covers of X;. Note that f = 2% — 4z + 1, has two roots 2 + V3 >1>2— /3, the largest
root thus a Pisot number (unit). Moreover, the shift action ay : X; — X is topologically
conjugated to the total automorphism T4 : T? — T?, where A is the companion matrix of

22 — 4z +1:
0 1
A= (_1 4>.

Symbolic covers of toral automorphisms with largest root being a Pisot number g have been
studied extensively: it is known that the so-called §-shifts — particular sofic shifts arising in
number theory, form almost everywhere one-to-one symbolic covers to (T? T4) = (X;, ay).

The sets of spanning trees, the left-burnable (respectively, right-burnable) recurrent con-
figurations on I" are also sofic [6,8], and in fact they form symbolic covers of X;.

Theorem 5.1 ([25]). There exist equivariant surjective maps from the sets of spanning
trees and the left-burnable (respectively, right-burnable) recurrent configurations on T’ onto
Xy.

This is the first result where it is shown that USF is a symbolic cover of its algebraic
counterpart.
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Rigidity Phenomena in random point sets
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1 Introduction

Rigidity phenomena in random point sets have attracted a fair amount of attention in
the recent years. At its core, this involves singularity behaviour that can be observed
under spatial conditioning in many natural point processes. While the phenomenon
is interesting, and at first, counterintuitive in its own right, several applications of
rigidity phenomena have been found in natural probabilistic questions concerning
point processes, particularly those of a stochastic geometric flavour. In this article,
we will try to give a brief overview of these results.

The most canonical example of point processes is the Poisson point process on Eu-
clidean spaces (and other Riemannian manifolds). A key characteristic of the Poisson
process is the property that the points in mutually disjoint domains are statistically
independent. For the Poisson process, therefore, spatial conditioning is a triviality,
and as a result, it is not interesting from the point of view of rigidity phenomena.
However, there is a wide range of naturally occuring point processes such that do
exhibit remarkable behaviour with regard to spatially conditioned measures. These
include key examples arising from random matrices and random polynomials.

The basic question in studying rigidity phenomena is the following. Suppose we have
a point process Il on a space =, which in general we will think of as a locally Euclidean
metric space. Let S be the Polish space of locally finite point configurations on =,
which means that the point process Il can be thought of as a probability measure
on §. Let D C = be a bounded open set. The partitioning = = D U D¢ induces
a decomposition § = S, X Sout, Where S, and S,y are respectively the spaces of
finite point configurations on D and locally finite point configurations on D¢. This
immediately leads to the natural decomposition T = (Tj,, Toyt) for any T € S, and
consequently a decomposition of the point process II as IT = (Ili,, [oyt ).

By abstract nonsense, we can define the conditional law (that is, the regular con-
ditional distribution) of II;, given Il,y. We will denote this conditional measure by
Pu, wWhere w is the value of Il,y. In the case of the Poisson process, p, does not
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depend on w, and is itself a Poisson point process on D. In the case of naturally
occurring point processes with non-trivial spatial correlation, one would expect that
P would still show some regularity, e.g. being absolutely continuous with respect to
the Poisson process on D. However, this turns out to be far from the case. E.g., for
the Ginibre ensemble on R?, which comes from the canonical non-Hermitian Gaussian
random matrix ensemble, the points outside any bounded open set D determine a.s.
the number of points inside D.

This is an opportune moment to introduce the formal definition of rigidity:

Definition 1. A measurable function fi, : S — C is said to be rigid with respect to
the point process X on S if there is a measurable function fou : Sous — C such that

a.s. we have fin(Xin) = four(Xout)-

2 Rigidity Phenomena in point processes

In [GP], the authors undertook a systematic study of rigidity phenomena, with par-
ticular reference to the Ginibre ensemble and the Gaussian zero process on the plane.
We briefly discuss these point processes here; for a detailed account we refer the reader
to [HKPV].

The Ginibre ensemble was introduced in the physics literature by Ginibre [Gin] as a
model based on non-Hermitian random matrices. For a positive integer n, consider the
eigenvalues of a n X n random matrix whose entries are i.i.d. complex Gaussians. The
Ginibre ensemble is the weak limit of these (finite-dimensional) eigenvalue processes.

o0
2
It is a determinantal point process with the determinantal kernel K (z,w) = g #
: J!
J=0
and the background measure e“z|2dlj(z)7 where £ denotes the Lebesgue measure on

C. The standard planar Gaussian Analytic Function (abbreviated henceforth as GAF')
is the random entire function defined by the series development

9-3

k=0

gkk

k;l
where £;-s are i.i.d. standard complex Gaussians. The zero set of this random analytic

function is the GAF zero process. In comparison to the Ginibre ensemble, it can be
realized as the weak limit of the zero processes of the random polynomials

Both the Ginibre and the GAF zero ensembles are translation-invariant and are er-
godic under the action of the rigid motions of the plane.
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In what follows, we will show that for the Ginibre ensemble, the points outside any
bounded open set D determine a.s. the number of points inside D, and in the GAF
zero process, the points outside D determine the number and the sum of the points
inside. If we think of the points as a particle system, then this can be described by
saying that in the Ginibre ensemble, there is local conservation of mass, while in the
standard planar GAF zero process, the mass as well as the centre of mass are locally
conserved. Moreover, they showed that these are the “only” conservation laws in

these ensembles, in a natural sense. To be precise, we quote the relevant theorems
from [GP].

In Theorems 2.1-2.4 we denote the Ginibre ensemble by G and the GAF zero en-
semble by Z. As before, D is a bounded open set in C.

In the case of the Ginibre ensemble, we prove that a.s. the points outside D deter-
mine the number of points inside D, and “nothing more”.

Theorem 2.1. For the Ginibre ensemble, there is a measurable function N : Souy —
NU {0} such that a.s.

Number of points in Gy, = N(Goyt) -

Since a.s. the length of (the vector of) inside points ¢ equals N(Gout), we can assume
that each measure p(You, -) is supported on DN Teu),

Theorem 2.2. For the Ginibre ensemble, a.s. the measure p(Gou, -) and the Lebesgue
measure £ on DNGow) are mutually absolutely continuous.

In the case of the GAF zero process, we prove that the points outside D determine
the number as well as the centre of mass (or equivalently, the sum) of the points inside
D, and “nothing more”.

Theorem 2.3. For the GAF zero ensemble,
(i) There is a measurable function N : Soue — N U {0} such that a.s.

Number of points in Z;, = N(Zout)-
(ii) There is a measurable function S : Souy — C such that a.s.
Sum of the points in Zi, = S(Z,ut).

For a possible value T of Z,., define the set of admissible vectors of inside points
(obtained by considering all possible orderings of such inside point configurations)

N(Tout)
ZS(Tout) = {g € DN(Tout) : Z Cj = S(Tout)}
=1
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where ¢ = (C1, (N (Tou))-

Since a.s. the length of (the vector of) inside points ¢ equals N (Yot ), we can assume
that each measure p(You, ) gives us the distribution of a random vector in DN (Tout)
supported on Yg(y

out) °

Theorem 2.4. For the GAF zero ensemble, a.s. the measure p(Zou,-) and the
Lebesgue measure Ly, on Yg(z,,,) are mutually absolutely continuous.

In [G-I], the rigidity (of the number of points) in the famous sine kernel process
(on the real line) was established, see Theorem 4.2 therein (which establishes such
behaviour for a more general class of ensembles). On a related note, similar results
were also established for a wide range of translation invariant determinantal point
processes on Z (introduced by Lyons and Steif [LySt]) that correspond to function
spaces characterised by vanishing Fourier transform outside a given set. To be more
precise, let f: T — [0, 1] be a measurable function. Then it is not difficult to check
that one can define a determinantal point process on Z with K (i, j) := f (1 —j) and
counting measure as the background measure. In Theorem 1.5, [G-I], it has been
shown that whenever f is the indicator function of an interval, the corresponding
determinantal process exhibits rigidity of the number of points in a domain. In par-
ticular, this settles in the negative a conjecture in [LySt] to the effect that essentially
all such processes are insertion and deletion tolerant.

In [OsSh], Osada and Shirai showed that for the Ginibre ensemble, the Palm mea-
sures with respect to different point sets are mutually absolutely continuous if the
conditioning set of points have the same cardinality, and are mutually absolutely con-
tinuous otherwise. Such dichotomy is similar in spirit to the rigidity phenomena under
our consideration.

3 Rigidity Hierarchies

Theorems 2.2 and 2.4 lead to a natural definition of “tolerance” for point processes.
Heuristically, this corresponds to the regularity of the (spatially) conditional measures,
modulo local rigidity constraints. Before making a formal definition, let us recall the
definition of linear statistics:

Definition 2. Let II be a point proces on = and ¢ : = — C be a measurable function.
Then the linear statistics A(p) of 11 is defined to be the random variable

A(p)[T] = / (2)dT(2).

In the above and in what follows, d[II] denotes the (random) counting measure
naturally associated with the point process II.
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Definition 3. Let I be a point process on a Riemannian manifold = with volume
measure (1. Let D C = be a bounded open set, and let A(Pg), A(P1),- -+, A(D;) be rigid
linear statistics of the point process 1l;, on D, with &g =1 and &,--- , 9, : D - C
smooth functions.

For an integer m > 0 and s := (s1,--- ,s¢) C C*, consider the submanifold of D™

Ems = {C=(C, -, Gn) € D™ A(Q))[0¢] = 5551 < j <},
where ¢ is the counting measure corresponding to the point set {¢;}i;.

Then 11 is said to be tolerant subject to A(Pg), A(Py),- -+, A(Py) if the conditional
distribution (11, |low = w) s mutually absolutely continuous with the point process
of A(®g) = N(w) points sampled independently from the submanifold Xy s (where

= A(D;) = Si(w),1 < i < t) equipped with the restriction of the volume measure

u®N<“>.

Theorems 2.2 and 2.4 can be phrased in terms tolerance as defined above. E.g.,
Theorem 2.2 can be rephrased by saying that for any bounded open set D, the Ginibre
ensemble is tolerant subject to the number of points in D.

In view of these results, it is natural to ask whether there are point processes which
exhibit higher levels of rigidity, in the sense that higher moments of the points inside
D are also conserved. In a technical sense, we can formulate this question as follows.

Definition 4. We say that a point process 11 on C is rigid at level k if the following
conditions hold for every bounded open set D C C:

e The linear statistics of 11y, given by {A(zj)};?;é are rigid.

o 1I is tolerant subject to {A(zj)}f;é.

In terms of the last definition, we can say that the Ginibre ensemble is rigid at level
1 and the standard planar GAF zero process is rigid at level 2. In an upcoming paper
[GK], the authors exhibit a family of Gaussian entire functions indexed by a paramter
«a, such that the (random) zero set shows phase transitions in its level of rigidity as
« varies, and further, any level of rigidity can be attained by appropriate choice of a.
To be more speficic, they show that

Theorem 3.1. For a real number o > 0, define the a-GAF

Z kl)ka/Q
k=0

The a-GAF zero process is rigid at level (| 1] +1).
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In the same work, they show that a necessary condition for a determinantal point
process to be rigid is that its kernel is a reproducing kernel:

Theorem 3.2. Let I be a determinantal point process with kernel K and background
measure ji. Then 11 exhibits rigidity in the number of points in a domain only if K is
a projection operator on L*(p).

4 Applications to stochastic geometry

An understanding of rigidity phenomena has been used in the recent past to answer
various natural questions related to spatially correlated point processes, extending the
state of the art from the case of the Poisson point process. Many of these questions
have a stochastic geometric flavour. In [GKP], the authors used an understanding
of the rigidity behaviour of the Ginibre ensemble and the standard planar GAF zero
process obtained in [GP] in order to study continuum percolation on these models. In
particular, they showed the existence of a non-trivial critical radius for percolation for
GAF zeroes, and established the uniqueness of the infinite cluster in the supercritical
regime for both the Ginibre and the GAF zero processes (the existence of a critical
radius for the Ginibre ensemble was known in the literature).

To briefly describe the continuum percolation model (also known in the relevant
literature as the Boolean model or the Gilbert disk model), we define a random
geometric graph whose vertices are the points of a point process, and where vertices
are connected by an edge if their mutual distance is less than a threshold r. It is easy
to see that the number of infinite clusters in this graph is a non-decreasing function
of r. We say that there is a non-trivial critical radius for percolation if there exists
a 0 < r. < oo such that a.s. there is no infinite connected component in the random
geometric graph whenever r < r., and a.s. there is an infinite connected component
if » > r.. Further, the number of infinite clusters is a translation invariant random
variable, and hence is a.s. a constant whenever the underlying point process is ergodic.

While it would be too much of a digression to give a detailed outline of the proofs, let
us sketch some of the major features, with emphasis on the aspects related to rigidity
phenomena. The existence of a non-trivial critical radius uses the standard Pierls
type argument, and the key property that is required of the underlying point process
is an exponential decay of the probability of having a long vacant (or overcrowded)
circuit. For the GAF zero process, this was not known, and was established in [GKP]
(Theorem 1.3 therein) exploiting an almost-independence phenomenon exhibited by
the GAF and using a Cantor set type construction.

To establish the uniqueness of the infinite cluster, we would ideally like to appeal
to the famous Burton and Keane type argument from the classical Bond percolation
theory. In the setting of continuum percolation, the same argument can be used to deal
with the Poisson process. The main theme of the Burton and Keane type argument
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is as follows: we want to rule out the possibility that, with positive probability, there
are multiple (but finitely many) infinite clusters (the case of infinitely many infinite
clusters is ruled out because of the amenability of the ambient space R?, and can be
dealt with in a unified manner for all ergodic point process). In the representative
scenario where there are two infinite clusters with positive probability, we intersect the
two infinite clusturs with a large disk D. Then, fixing the Poisson process outside D,
we introduce N new points uniformly inside D. For N large enough, these new points
can be used to connect the two infinite clusters with positive probability. Thus, having
two infinite clusters with positive probability implies that we can have one infinite
cluster with positive probability. This contradicts the fact that the number of infinite
clusters, being a translation-invariant random variable defined on an ergodic point
process, is a.s. a constant.

The Burton and Keane argument crucially depends on the fact that in a Poisson
point process, conditioned on the points outside a bounded domain D, one can insert
more points inside D with positive probability. In the mathematical physics litera-
ture, this property is sometimes abstracted as the “finite energy condition”, under
which assumption many results can be obtained. However, for the Ginibre ensemble
and the GAF zero process, the rigidity of the number of points precludes the finite
energy condition, and therefore renders a direct application of the Burton and Keane
argument invalid.

In order to remedy this difficulty, we observe that the number of points in a disk D
of (large) radius R is ©(R?), whereas the distance to be spanned in order to connect
the two infinite clusters (that D intersects) is O(R). Heuristically, therefore, there
are typically “many more points than necessary” in order to connect the two infinite
clusters. This obviates the need to introduce new points, and the question is whether
the points already present in D can be spatially manipulated in order to “connect”
the infinite clusters, at the same time maintaining all the rigidity constraints relevant
to the point process in question. Invoking Theorems 2.2 and 2.4, this approach can be
pushed through rigorously for the Ginibre and the GAF zero processes, and we refer
the interested reader to the proofs of Theorems 1.1 and 1.2 in [GKP] for the (fairly
elaborate) technical issues involved.

In [Os], an understanding of the quasi-Gibbs property, which has a somewhat simi-
lar flavour to our discussion of rigidity phenomena, was exploited to define an infinite
particle SDE for invariant dynamics on the Ginibre process. In a recent work (draft
under preparation), Osada has established a sub-diffusivity behaviour of tagged par-
ticles in the Ginibre interacting brownian motion, which is another manifestation of
the rigidity of the Ginibre ensemble (compared to Poisson). To execute a similar
programme for invariant dynamics on the standard planar GAF zero process involves
new challenges involving the higher level of rigidity in that process, and there is some
hope of advances in this direction in an ongoing work by Osada, Shirai and the author.
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5 Completeness problems

Another class of problems on which rigidity phenomena has been brought to bear in
the recent past is completeness problems for random point sets. To describe this class
of problems in a simple setting, consider the case of the real line. For any A € R,
define the exponential function e, € L*(—m,7) by

ex(z) = e,

For a point set A C R, this defines a set of exponential functions
En = {er|X € A}

Clearly, Span(&,) is a closed subspace of L?(—m,); the question is whether they are
equal. In other words, do the exponentials arising from the set A span L?(—m,7);
we say that A is “complete” in L*(—m, ) if they do. This question has been of
considerable interest in the classical harmonic analysis literature; the interested reader
can look at the works of Levinson, Beurling, Malliavin and Redheffer, to provide a
partial list. We refer the reader to the comprehensive survey by Redheffer [Re]. For
a more recent discussion of the completeness problem and its generalization to the
world of determinantal point processes, we refer the reader to Lyons’ excellent survey
[Ly-11]

The classical results are usually stated in terms of an asymptotic density of a point
set A called the Beurling-Malliavin density. For reasons to be shortly explained, the
exact definition of this density is not particularly germane to our discussion; the
interested reader can look at [Re]. A is complete if this density > 1, and is incomplete
if this density < 1. The density 1 case is critical, and simple examples can be given
of two locally finite point sets (e.g. Z and Z \ {0}) which have the same density 1,
but one is complete in L?(—m, m) while the other is not.

It is natural to argue that the counterexample above is rather pathological, in the
sense that it demands a very specific geometry of the point set A, and therefore, it is of
interest to try and prove a theorem with regard to completeness for a ” generic” point
set. A canonical way to define a “generic” point set is to think of A as a realization
of an ergodic point process on R. For many natural point processes on R (including
the homogeneous Poisson process and the sine kernel process), the Beurling-Malliavin
density turns out to be the same as the one-point intensity (see [Ly-1]), hence the
question boils down to the completeness properties of an ergodic point process of
intensity 1.

Curiously, the only case of this question where the answer is known in the literature
is that of an i.i.d lattice perturbation, where considerable mileage can be derived from
the fact that we are starting from Z, which is an orthogonal basis of L?(—, 7). In
other processes, which are bereft of a “skeleton” like Z, the answer was not known,
including that of the homogeneous Poisson process on R with unit intensity. A first
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step in this direction was taken in [G-I], where it was proven that if A is a realization
of the sine kernel process (of intensity 1), then it is complete in L?(—m, ) a.s. In
doing so, the rigidity of the number of points in the sine kernel process was exploited.
In fact, the theorem for the sine kernel process was deduced as a special case of a
spanning theorem for rigid determinant point processes, which we explain below.

Consider a determinantal point process with a kernel K and background measure g
such that K acts as a projection operator onto a subspace H of L?(u); in other words,
K is a reproducing kernel for H C L?(u). If A is a realization of this point process,
then it is not hard to see that the (random) set of exponentials { K (-,z) : x € A} C H;
and the question is whether there is equality. In the case where dim(#H) < oo or the
ambient space is countable, the answer to this question is known to be positive,
for details see [Ly-I]. In general, the answer to this question is not known, and it
ties to many interesting questions, as explained in [Ly-1I]. In particular, when the
determinant process is the sine kernel process (of unit intensity) on R, this question
is equivalent to the completeness question on exponentials described above. In [G-I],
this question was settled in the affirmative in the case where the determinantal process
is, in addition, rigid :

Theorem 5.1. LetII be a determinantal point process with a kernel K (-,-) on a second
countable locally compact proper metric space (E,d) and a background measure p which
is a non-negative reqular Borel measure. Suppose K(-,-), as an integral operator from
L?(p) to itself, is the projection onto a closed subspace H C L*(u)

Let 1T be rigid, in the sense that for any open ball B with a finite radius, the point
configuration outside B a.s. determines the number of points Ng of Il inside B. Then
{K(-,z):x € II} is a.s. complete in H, that is, a.s. this set of functions spans H.
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Subsequential scaling limits of simple random walk

on the two-dimensional uniform spanning tree

Probabilistic models with determinantal structure
Kyushu University, 30 April, 2015
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M.T. Barlow (UBC) and D.A. Croydon (Warwick)
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UNIFORM SPANNING TREE IN TWO DIMENSIONS
Let Ap = [-n,n]2NZ2.

A subgraph of the lattice is a spanning tree of A,
if it connects all vertices, no cycles.

Let (™) be a spanning tree of A, selected uniformly
at random from all possibilities.

The UST on Z2, U, is then the local limit of ¢/(™).
NB. Wired/free boundary conditions unimportant.

Almost-surely, U is a spanning tree of 72,

[Aldous, Benjamini, Broder, Haggstrom, Kirchoff, Lyons,
Pemantle, Peres, Schramm. . .]
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WILSON’S ALGORITHM ON 72
Let zg = 0,1, ®5,... be an enumeration of Z2.
Let U(0) be the graph tree consisting of the single vertex zg.
Given U(k — 1) for some k > 1, define U(k) to be the union of
U(k — 1) and the loop-erased random walk (LERW) path run

from z;, to U(k —1).

The UST U is then the local limit of U(k).

xq x1 . x1
- L_I_Eh -> H_L’ - L’_Ugj
x. xQ0 xQ zo

LERW SCALING IN Z4

Consider LERW as a process (Ln)p>0.

In Z¢, d > 5, L rescales diffusively to BM [Lawler 1980].
In Z"', with logarithmic corrections rescales to BM [Lawler].

In Z3, {L, : n € [0,7]} has a scaling limit
[Kozma 2007].

In Z2, {L, : n € [0,7]} has SLE(2) scaling
limit, UST peano curve has SLE(8) scal-
ing limit [Lawler/Schramm/Werner 2004].
Growth exponent is 5/4 [Kenyon, Masson,
Lawler].
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Let M, =|LERW(0,Bg(0,n))| be the length of a LERW run
from 0 to Bg(0,n)¢.

Theorem.(d=2)
. (oY
[Kenyon 2000] Ilmn_,oo@% =5/4

[Lawler 2014] c¢1n°/* < EOM,, < con®/*

Now consider random walk on the UST.

RW on random graphs: General theory.
Let G(w) be a random graph on (£2,P). Assume 30 € G(w).

Let D> 1. For A > 1, we sat that B(0,R) in G(w) is A-good if

ATIRP < |B(0,R)| < ARP,
AR < Regr(0,B(0,R)) < R+ 1.

A-good is a nice control of the volume and resistance for B(0, R).
Theorem. [Barlow/Jarai/K/Slade 2008, K/Misumi 2008]

Suppose Jp > 0 such that

P({w : B(O,R) is A-good.}) >1— AP VR > Rg,VA > Ao.
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Then Jaj,as > 0 and N(w), R(w) € N s.t. the following holds
for P-a.e. w:

D D
(logn)~%n  D+1 < p¥ (0,0) < (logn)®1n DI, Vn > N(w),
(log R)~*2RP+L < 107 1y < (log R)*2RP T VR > R(w).
In particular,

log p%. 2D
ds(G) = lim 975,(0,0) _
n—=co  logn D+1

Examples. (See K 2014: LNM (St. Flour Lect. Notes))

D=2and ds =4/3

e Critical percolation on regular trees conditioned to survive for-
ever. (Barlow/K '06)

e Infinite incipient cluster (IIC) for spread out oriented percola-
tion for d > 6 (Barlow/Jarai/K/Slade '08)

e Invasion percolation on a regular tree. (Angel/Goodman/den
Hollander/Slade '08)

e IIC for percolation on Z%, d > 19 (Kozma/Nachmias '09)

More general
e a-stable Galton-Watson trees conditioned to survive forever
(Croydon/K '08) ds = 2a/(2ac — 1)
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VOLUME AND RESISTANCE ESTIMATES
[BARLOW/MASSON 2010,2011]

With high probability,
Bp(z, A R) C By(x, R®*) C Bp(x,AR),
D as R — oo then A — co.
It follows that with high probability,
p (By(z, R)) < RE/®.

Also with high probability,
Resistance(z, By/(z, R)¢) < R.

= Exit time for intrinsic ball radius R is R13/5,
HK bounds p4,(0,0) = n=8/13. (D =8/5,d; = 16/13)

(Q) How about scaling limit for UST?

Barlow/Masson obtained further detailed properties.

Theorem.[Barlow/Masson 2010]

P(M, > AEM,) < 2e 1},
P(M, < A" 1EM,) < 223

Theorem.[Barlow/Masson 2011]

_\2/3
cqe A ,

CEA_4/15_€.

P(By(0,R%4/\) ¢ Bg(0, R))
P(Bg(0,R) ¢ By(0,AR%/*))

INIA
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While for most points = € Z2, the balls Bg(0, R) and By,(0, R3/%)
will be comparable, there are neighboring points in Z2 which are
far in U.

Lemma. [Benjamini et. al. 2001]

The box [—n,n]2 contains with probability 1 neighbouring points
z,y € Z2 with dy(z,y) > n.

Proof. Consider the path (in Z2) of length 8n around the box
[-n,n]?: If each neiboring pair were connected by a path in i/
of length less than n, then this path would not contain 0. So
we would obtain a loop around 0 — which is impossible since U
is a tree.

UST SCALING [SCHRAMM 2000]

Consider U as an ensemble of paths:
u = {(a7 baﬂ-ab) . avb e Z2}7

where 7, is the unigue arc connecting a and b in U.
cf. [Aizenman/Burchard/Newman/Wilson 1999].

Scaling limit T a.s. satisfies:

each pair a,b € R? connected by a path;

if a # b, then this path is simple;

if a = b, then this path is a point or a

simple loop;

e the trunk, Uzmg\{a, b}, is a dense topo-
logical tree with degree at most 3.

Picture: Oded Schramm

-: This topology does not carry information about in-
trinsic distance, volume, or resistance.
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GENERALISED GROMOV-HAUSDORFF TOPOLOGY
(cf. [GROMOV, LE GALL/DUQUESNE])

Define T to be the collection of measured, rooted, spatial trees,
i.e.

(T.d1, p7: 97, PT),
where:
(7,dr) is a locally compact real tree;
e u7 is a Borel measure on (7,dr);
e ¢ is a cont. map from (7,dy) into RZ;
e p7 is a distinguished vertex in 7.

On T, (compact trees only), define a distance A, by

inf dIZ;(uTowfl,ufTow/*l)-l- sup
Zapap' C: (z,x")eC
(pT.0p)eC

(dz((@),¢/() + |7 (=) — ¢ (a))]) }

Can be extended to locally compact case.

TIGHTNESS OF UST

Theorem. If Ps is the law of the measured, rooted spatial tree

(U, 85/ %dyy, 6%y () , 564, 0)
under P, then the collection (P(;)(;E(OJ) is tight in M (T).
Proof involves:

e strengthening estimates of [Barlow/Masson],
e comparison of Euclidean and intrinsic distance along paths.
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UST LIMIT PROPERTIES

If P is a subsequential limit of (Ps)sc(0.1), then for P-a.e.
(T,dr, pu1, o7, p7) it holds that:

(i) pg is non-atomic, supported on the leaves of 7,

i.e. ur(7°) =0, where 7°:=T\{z € T : degr(z) = 1};
(ii) for any R > 0,

i inf infoeB,(pr.r) T (BT (T,7))
r—0 r8/5(logr—1)—¢
(i) ¢7 is a homeo. between 7° and ¢7(7°) (dense in R2);
(iv) maxger degr(z) = 3;
(V) pr = Lo 7.

)

To prove this, we need the following 'uniform control’:

lim liminf P sup di(x,y) > 6 te| =0,
n—0 =0 :E,yGBu(O,C]_(S_S/“T)I

lim limsup P inf di(z,y) <6 te| =0,
=0 §-0 z,y€By(0,675/4r):
dy(z,y)>675/%n
where dz*z = diam(y(z,y)) (Euclidean diameter of the LERW
between z and y; Schramm’s distance).

= This involves uniform control and requires more detailed es-
timates than those of Barlow/Masson.
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Given such generalized G-H convergence of trees, we can prove
convergence of the process on the trees (generalization of the
theory due to Crodon (2008)).

On the (limiting) real treee (7,dz,pu?) s.t. p? has full support,
one can define a ‘Brownian motion’ X7 = (X7 );>0.

- For z,y,z € T,

dr(b(z,y,2),v)
dr(z,y) .
- Mean occupation density when started at x and Killed at y,

2d7 (b(z,y, 2), y)u” (dz).

P?T (Ti’f < TLI/) - b

“mmf'nfmeTuT(BT(w,r)) >0 3

r—0 rk

k> 0.

LIMITING PROCESS FOR SRW ON UST
Suppose (Pjs,);>1, the laws of
5/4
(ua(sl/ dU761,2:uU762¢M70>7
form a convergent sequence with limit P.

Let (T: dr, T, o7, pT) ~P.

It is then the case that IP’(;i, the annealed laws of

5iXu713/4 ) ;
( 5 t) >0

converge to P, the annealed law of
(67(xD))

as probability measures on C(R+,R2).

t>0’
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HEAT KERNEL ESTIMATES FOR SRW LIMIT

Let R > 0. For P-a.e. realisation of (7,dr,ur,d7,p7), there
exist random constants cy,cp,c3,¢4,tg € (0,00) and determin-
istic constants 64,60,,63,04 € (0,00) such that the heat kernel
associated with the process X7 satisfies:

((17(1', y)13/5
B aClr Dt

p? (z,y) < et /B30 exp ]

5/8
) (dr(z,y)/)% ),

o(dr(z,y) /0% 5,

)13/5 5/8
>

d
pf (z,y) > c3t ¥/ 130t 1) B exp{ —ca <T(L

for all z,y € By (pr,R), t € (0,tg), where £(z) := 1V logz.
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1. Motivation: Materials Science

supercooled
Tiqui

volume

Liquid, Glass or Crystal?

liquid

- Atomic configurations of crystal, glass, and liquid states of Si02
- Geometric properties of glass are not well-understood

- Industrially important (solar energy panel, DVD, BD, etc)

- Can we distinguish between crystal and glass?

1. Motivation: Materials Science arXivi1901.003611, arXivi1502.07445
Persistence Piagram (PD)
liquid alass crystal

- 1st Persistence Diagrams (PDs) distinguish three states (info. of persistent ring)

- Inverse problem from PDs to atomic configurations clarifies new geometric
characterizations of glass

- What are the topological properties in liquid (random) state?

Brief Sketch of PDs for points data T
9 b d
points  birth death

blow up balls and detect appearance and
disappearance of topological features
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3. Persistent Homology
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zetal3)-Limit Theorem

2. From Randowm Graph to Randowm Topology

Erdos-Rényi Randowm Graph

e K, =V, UE, :complete graph with n vertices
Vo, =A{1,....n}, B, ={lij| : i<j}

e t. € [0,1]: i.i.d. uniform random variable for ¢ € E,

Erdos-Rényi Random Graph (Process)
K,t)=V,u{ecE, : t. <t}
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2. From Random Graph to Random Topology

Erdos-Rényi Randowm Graph

Thm(Erdos-Rényi): For t = (logn +w(n))/n,
w(n) — oo = K, (t) is a.s. connected as n — oo

w(n) — —oo = K,(t) is a.s. disconnected as n — oo

e rewriting by reduced homology
w(n) — oo = Hy(K,(t)) =0
w(n) — —o0 = Hy(K,(t)) #0
Randowm Graph ¢ === Ho(G), H1(G) (connectivity, cycle)

In this talk, we study
Random Simplicial Complex X === Hk(X) (higher topological features)

2. From Random Graph to Random Topology

Frieze’s zeta(3)-Limit Theorem

e K, (t): ER random graph e K, = K, (1) : complete graph

e T' C K, is a spanning tree if 7'is a tree containing all vertices

o S(M): the set of spanning trees in K, ><I I—I N """"
Cayley’s formula: [S(V)| = nn—2

e T € SWis the minimum spanning tree
if the weight wt(7)) = > __; tc is minimum in S(Y)

RS e T O
m.s.t.

Frieze’s zeta(3)-limit thm:
E[minpega wt(T)] — ¢(3) =1.202--- asn — o0
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2. From Randowm Graph to Randowm Topology

Persistence and Frieze’s Thm

Key observation: min. csm wt(T) = | 01 Bo(t)dt
ﬁOA 5OA

n—1 s [V

110,

connected connected
1[0, d]

v

t

H ! L
0 a b C q T 1=t

fol Bo(t)dt = lifetime sum

0 a b c d

Generalization of Frieze’s Thm
e random graph ——p random simplicial complex

e spanning tree = Spanning acycle
° Y —p identity using persistent homology

2. From Randowm Graph to Randowm Topology

Simplicial Complex
e Simplicial Complex X on the vertices {1,...,n}:
- a collection of nonempty subsets
-{ite X, Vie{l,...,n}
-oeX, TCo—=T17€X
o 0="{ig,...,ix} ¢ k-simplex, dimo =k
e dim X = max,cx dimo k-dim skeleton
o X, ={0€ X :dimo =k}, X® =1k X,

e graph = 1 dim simplicial complex

e . Ma

dim =1 dim = 2 dim =3
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2. From Random Graph to Random Topology

Randowm Simplicial Complex 1

e Random Clique Complex CL(G)
CL(G) : clique of a graph GG
CL(G) 3 {i1,...,ix} < {isis} € G, Vs,t € {1,...,k}

A, — Ma,
G CL(G)

Take ER random graph G = K,,(¢) , then
Kahle (2009): For random clique complex CL(K,(t)),

1/(2k+1)
- ((2k+1)logn+w(n)) — H;(CL(K,(1))) =

n

w(n) — oo 1=0,...,k

k = 0 recovers one-side of the ER theorem

2. From Random Graph to Random Topology

Randowm Simplicial complex 2
e A,_1:(n—1)-dim maximal simpl cplex on{1, . ‘

n& n=

e t, €[0,1]:i.i.d. uniform random varlable for o€ (A,
Linial-Meshulam Process
D) =AY Lo e (Ap_1)a:te <t}

oed=1 gives ER random graph higher dim generalization
of ER graph process

d=2,n=25
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2. From Randowm Graph to Random Topology Remark

on
simplicial homology

Spanning Acycle ...

- integer coefficient
e X :simplicial complex - reduced homology

e For a set of k-splexs S C X, define Xs = S U X®*~1

S is called a k-spanning acycle if
(@) Hy(Xg) =0  (b) [Hi-1(Xs)| < o0
S) : the set of k-spanning acycles
e For k =1, the graph X has (a) no cycles and is (b)
connected, meaning a spanning tree.

® This definition is originally introduced by Kalai.
(also relating to simplicial spanning tree, k-bases, etc)

o Set 7(X) = |X"| = Bu(X®) + By (X))
Any two of (a), (b), and (c) |S| = v+ (X) imply the third.

2. From Randowm Graph to Randowm Topology

Minimum Spanning Acycle

e {X(t)}:: random filtration of simpl. cplx.
(e.g., clique ER process, LM process)

e t, : birth time of the simplex, i.e.,
te =min{t:o € X(t)}

e S e 8% is a minimum spanning acycle

if the weight wt(S) = >

. . . . k
ses to is minimum in S®*)
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3. Persistent Homology

(Persistent) Howmology 1

Quick review of simplicial homology
e X :simplicial complex
e chain complex in Z-coefficient

s O (X) Ort1 Cu(X) 25 Cp 1 (X) — -

remove

O (vg -+ vy = >, (=1){vg -+ - 0; - - - vy,) : boundary map
(Ok © Ok41 = 0)

® 7i(X) = kerdy : k-cycle, Bi(X) = im0y : k-boundary

betti number

o H,(X)=Z,(X)/Bp(X)~Z% & T, (Z-module)

Howmology to Persistent Homology
Replace Z-wmodule with graded K[R-]-module using filtration
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3. Persistent Homology

Persistent Homology 2

X ={X(t) : t € R>o}: (right cont.) filtration of a simpl. cplex X
(Xt)cX(s)c X, t<s, X(t)=[)csX(5)

Assume there exists a saturation time 7' s.t. X(7) = X

to : birth time of the simplex o, i.e., {, = min{t: 0 € X(t)}

K : field with char(K) =0
K[R>¢] : monoid ring, i.e., the set of formal polynomials with
az' - bz® = abz't, a,be K, t,s € Rxg

Cr(X(t)) : K-vector space spanned by k-simplices in X (¢)

graded K[R>]-module
Cr(X) = Bier., Cr(X(#)) = {(ct) : v € Cu(X(2)), t € Rxo}

s . o / /] Ct—s, 7528
e =@ d={ G 2

3. Persistent Homology

Persistent Homology 3

e For oriented simplex (o), define (o)) = (¢;), ¢ = {
—p = = {((0) : 0 € X} forms a basis of Ci(X)
e boundary map: 4§, (o)) = Zgzo(fl)jzt“*t%‘ (o)
(o) =(vo-vk), o5 =0\{v;}
Bk(X) = im6k+1 C Zk(.)(') = kerdy,
e persistent homology: H,(X) = Z,(X)/Bi(X) (graded K[Rs(|-module)
e structure thm of PID module (with saturation) implies
Hi(X) =~ @7_, I[bi, di]

Ib;, d;] = (2%)/(2%) : interval representation
(%) ={2°f(2) : f(2) € K[R>¢]} : ideal generated by 2°
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3. Persistent Homology

Persistence PDiagram 1

Interval decomp: Hy(X)~@"_, I[b;,d;]

e [[b,d] represents appearance and disappearance of

a topological feature at t = b,d in X = {X (¢)

birth time death time

| e

Cilc-

0 b
w

® Dy(X) = {(bi;d;) eRE,:i=1,...,p}: persistence diagram
death4 & glass liquid
()
d °
[ ]
: » birth
3. Persistent Homology
Persistence Diagram 2
e persistence diagram (multiset):
Dk(X>:{(bZ,dl)ERQZOZ:1,,p} death
A
g ®
e persistence diagram (counting measure): ®e
&k = Zogx<y<oo M(2,5)0(x,y) ¢
where §, , is the delta measure and ’ f bixth
M) = |{1 <i<p|(biydi) = (2,9)}|
o [Bi(t) = Br(X(t)) = &([0,t] x [t, 00))
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3. Persistent Homology

Persistence Diagram 2

e Let L;, = ) ,(d; — b;) be the lifetime sum de“;‘th
- °
—> L= [, Gty ..
t .................. ;
4
pf) By Fubini, | A B TN
t
Ly = (y — )&k (dvdy)
k A k ‘ﬁk
A —
= /Afk(dxdy) /[0 . I0<z<t<y<oo)dt —_— Ji0.00) Br(t)dt
= [t [ Ton@p )6 dody)
[0,00] A :
: [, d’
= / Byt g R v, d]
[0,00] : Ib, d)
bV 7d >
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4. Generalization of Frieze's zeta(3)-Limit Theorem

Algebraic Formula of Ls1

key observation of ER graph process:
Ly = minpcsa) wt(T) = fooo Bo(t)dt %

A —
A .
Bo _1[03;[]0 ) Pa — Ji0,00) Pa—1 ()t
W e
—.1[070] :4
: : IV, d]
100, d] I[b,d]
0 a b c T t bbv d d >0

Theorem: Let X be a simpl. cplx (1 < d < dim X) with
Ba—1(X D) = Ba_o(X4=D) =0
and X = {X(¢) : t € R>(} be a filtration of X . Then,

Ly 1= mMinye ) Wt(T) — MaXgeg(d—1) Wt(Xd,1 \ S) = fooo ﬁdfl(t)dt
Remark: d=1 recovers *

4. Generalization of Frieze’s zeta(3)-Limit Theorewm

Sketch of Proof: Algebraic Formula of Ls-

M : matrix form of the d-boundary map of P.H. under standard bases
(entries are +z%)

D = M]|,=1 : matrix form of the d-boundary map of H
For K C X4_1,5 C X4, Mg, Dgg (etc) mean the restriction to K, S

Prop: For |K| = v4(X), det Mg M!, = z2e(K) Y ses@ (det DKS)2227(S)
(Id-S.A.])

where 7(5) = wt(S) — mingc g wt(S), e(K) = minge g wt(S) — wt(K)
Pf) Binet-Cauchy. m
Prop: For the elementary divisors d; = z°t,...,d, = 2°" of M,
minKesﬁd—l) C(K) — €] I Cp,
where S(471 — {X4 1\L:LeSED}
Pf) Use d; - - - d,, = A, (M) (deteminantal divisor) and
Dgs #£0+= S e S@ K e sV -
P Li-1 =e1+ -+ ¢ leads to
Ld,1 = minTEsmwt(T) — maXSGqu)Wt(Xd,l \ S) ]

48



4. Generalization of Frieze's zeta(3)-Limit Theorem

Main Result

Frieze’s zeta(3)-limit thm:
E[Lo] = Eminpegoywt(T)] — ¢(3) = 1.202--- asn — oo

d-Linial-Meshulam Process: K@ (t) = AV {0 € (Ap_1)a:t, <t}

d=2
iid uniform on [0,1]

higher dim generalization

L 1 1
0

+ of ER graph process (d = 1)

Ly
i

Theorem: For d-LM process, E[L;_1] = O(n?!), asn — oo

Clique Complex Process: A,E?El =C(0) CC(t) CcC(l)=A,
(clique of ER process) where C(t) = Cl(/C(l)(t)), 0<t<1

Theorem: For clique complex process,
end 1 <E[Lg 1] < Cn4llogn (d=1,2)

cen B < E[Lg_1] < Cn4=t (d > 3)

4. Generalization of Frieze’s zeta(3)-Limit Theorem

Sketch of Proof: d-LM process

Prove: E[L; 1] =O(n? 1), asn — oo

Lg_1= Minpe g Wt(T) — maXSes(d—l)Wt(Xd_l \ S) = fol ,@d_l(t)dt

Let YV; = K9 (1),
e For a lower bound, use [ | (with complete (d-1)-skeleton)

Lg—1 = wt(T) > Y\ n
.. . N = (d+1)
T : minimum spanning acycle

u; <up <--- <up : rearrangement of {t, : 0 € (A,_1)4}

T T _
—> ElLi] > DT Bl = 50 g ¢ St
e For an upper bound, use []

E[Lg_1) = [} E[Ba_1(t)]dt < 22 f01E|Rd(Yt)|dt.8%(Z) ~ B a1

lemma:

Tl =("7")
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4. Generalization of Frieze's zeta(3)-Limit Theorem

Sketeh of Proof: d-LM process

e For an upper bound, use []

E[Lg—1] = [, E[Ba_1(t)]dt < %1 f01E|Rd(§Q)|dt.8%(z) ~ B a1

< RiY)={oe(An1)a:Ba-1(YUo)=Ba-1(Y) -1}
Sa(Y)={o€(An-1)i:Ba1(YU0o) = F4-1(Y)}
Lemm: f-1(Y) S 4L1R4(1) S iy
pf) V:=Y US,(Y) - Then,
Ba-1(Y) = Ba—1(Y) = (') —rankdy , < (") — LYl

. c\?: the set of d-dim simpl. cplx on n vertices with

(d — 1)-complete skeleton
¢ ={yec? vyl=m} y@ (n,m): uniform dist on C\%),

First, we show [} E[R(Y))|dt < =2, 1 <Vm < N

where Pn,m = P(U € Rd(Z))v Z~Y@ (TL, m)

4. Generalization of Frieze’s zeta(3)-Limit Theorewm

Sketch of Proof: d-LM process

Let us set m.(n) =min{m < N : p,, ,, < c}.

Hoffman-Kahle-Paquette
ma/2(n) < 4(3)

By setting ¢ = 1/2

1 m n
Jo ElRa(Yy)ldt < 15— < 2my pa(n) < 8(3).

Hence, we have

E[Lq_1] = [, E[Bs_1(t)]dt < 4L f01E|Rd(§Q)|dt.8d#(z) ~ B
|
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4. Generalization of Frieze's zeta(3)-Limit Theorem

Sketch of Proof: Clique complex process
Prove: cn? ! <E[Ls 1] <Cn%llogn (d=1,2)

en 5 <E[Lgq] < Cné1 (d>3)

Lg_1= minTeS(d)Wt(T) — maXSes(d—l)Wt(del \ S) = fol ﬁdfl(t)dt

For both upper & lower bounds, use [ | with the Morse inequality
—fa—2(t) + fa—1(t) — fa(t) < Ba—1(t) < fa-1(t)
where (;(t) = 5;(C(t)) and fi(t) = |C(t)i]

e Lower bound: E[f;(t)] = (jzl)t(j;l) and straightforward cal.
e Upper bound: Discrete Morse Theory, i.e.,
reduce f;_1(t) by critical cells defined by

a lex-order Morse function

Further Discussions

e Limiting constant of d-LM process

Ty = lim, o ——E[Lq 4]
e Central limit theorem of L;_; in d-LM process
e Limit theorem of persistence diagram
® Order in the clique complex process
e Asymptotics of /?-norm and persistence landscape

e Wilson’s algorithm for “uniform” spanning acycles

Thank you very much

51




Spectrum of the quantum Rabi model
and representation theory

Masato Wakayama

Institue of Mathematics for Industry, Kyushu University
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Rabi model and representation theory 2015-4-30 1/12

Non-commutative harmonic oscillators |

The story has begun by the study of non-commutative harmonic
oscillators (NcHO):

The normal form the Hamiltonian Q4 4)(x, D) of NcHO is given by

ot D)=~ 1) o+,

where A:{g g},J:{? _01}.

A. Parmeggiani and M. Wakayama:
Oscillator representations and systems of ordinary differential equations, Proc.
Natl. Acad. Sci. USA 98 (2001), 26-30.

Non-commutative harmonic oscillators-1, I, Corrigenda and remarks to I, Forum.
Math. 14 (2002), 539-604, 669-690, ibid 15 (2003), 955-963.

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 2 /12
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Non-commutative harmonic oscillators |l

Development of the study of NcHO including number theoretic
investigations can be found in the book and its references:

A. Parmeggiani, Spectral Theory of Non-commutative Harmonic
Oscillators: An Introduction. LNM. 1992, Springer, 2010.

There is a second degree element R of U(sl,) such that the
image of R under the oscillator representation of the Lie algebra
sl, gives the NcHO:

H. Ochiai, Non-commutative harmonic oscillators and Fuchsian ordinary
differential operators, Comm. Math. Phys. 217 (2001), 357-373.

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 3/12

e
Purposes of the talk (1)

Draw the following pictures:

1) the image of R under the non-unitary principal series
representation of sl, gives a Heun ODE. Moreover, this Heun
ODE provides the Heun picture of the quantum Rabi model
under suitable (including a parameter of the representation)
confluent procedure [2].

2) there exists another second degree element C of U(sly) such

that the image of C under non-unitary principal series
representation of sl, gives the quantum Rabi model [1].

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 4/12
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|
Purposes of the talk (Il)

Describe the representation theoretic explanation (finite
dimensional representations of sl,) of the degenerate spectrum
of the quantum Rabi model, which was described by Kiis:

M. Kus: On the spectrum of a two-level system, J. Math. Phys., 26 (1985)
2792-2795.

Provide a conjectural statement about the non-degenerate
exceptional spectrum (relating the discrete series representation
of sl,). Numerical evidence is found in

A.J. Maciejewski, M. Przybylska and T. Stachowiak: Full spectrum of the
Rabi model, Phys. Letter A 378, (2014), 16-20.

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 5/12

the quantum Rabi model

The quantum Rabi model is defined by the Hamiltonian
Hiani/ T = wip' + Do, + gon(¥! +0).

Here 1) = (x + 0,)/v/2 (resp. ' = (x — 0,)/V/2) is the annihilation
(resp. creation) operator for a bosonic mode of frequency w,

oy = {(1) (1)} o= {? _0’] o, = {é _01} are the Pauli matrices for the

two-level system, 2A is the energy difference between the two levels,
and g denotes the coupling strength between the two-level system
and the bosonic mode. For simplicity and without loss of generality
we may set h =1 and w = 1.

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 6 /12
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Figure: Courtesy of APS/Alan Stonebraker in E. Solano, Viewpoint: The
dialogue between quantum light and matter, Physics 4, 68 (2011).

The Rabi model describes the simplest interaction between quantum light
and matter. The model considers a two-level atom coupled to a
quantized, single-mode harmonic oscillator.

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 7/12

I
Spectrum of the quantum Rabi model

Spectrum of Hgay; is classified as
Spec(Hrani) = {Regular eigen.} U {Exceptional eigen.}

Exceptional eigenvalues \ are of the form A = N — g2 (N € Z).
Regular eigenvalues are the ones not of the form. Moreover,

{Exceptional eigen.}
={non — degenerate Exceptional eigen.} LI {degenerate Exceptional eigen.}

Degenerate exceptional eigenvalues (A = N — g2 for some N € N)
are described by Kiis (1985).

The regular spectrum was described by D. Braak for the first time in
about 70 years after the proposition of the quantum Rabi model:

D. Braak, On the Integrability of the Rabi Model, Phys. Rev. Lett. 107 (2011),
100401-100404.

Rabi model and representation theory 2015-4-30 8 /12
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|
The element R € U(sly)

For the triplet (k,&,v) € R3,, define a second order element R of
the universal enveloping algebra U(sl,) of sl, by

R = sinﬁ% { [(sinh 2k)(E — F) — (cosh 2k)H + y] (H-v)+ (gy)2}.

Here H, E and F be the standard generators of the Lie algebra sl
defined by
1 0
H= [o —1] , E=

They satisfy the commutation relations

[H, E] = 2E, [H, F] = —2F, [E, F] = H.

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 9/12

NcHO and R

Suppose that o # 3. Determine the triplet (k,c,v) € R by the
formulas

coshk = aiﬁ sinhn:# ez‘ﬂ V:aiw)\.
af -1’ Vaf =1’ a+pl 2\/aB(af — 1)

Then the eigenvalue problem Qp = Ay (¢ € L?(R,C?)) is equivalent
to the equation 7'(R)u = 0 (u € C[y]). Here 7’ is the oscillator
representation of sl, defined on the space C[y] by

m'(H) =y0, +1/2, '(E) = y*/2, «'(F) = —9;/2.

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 10 / 12
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|
The element K € U(sly)

1 A+ g2 5 1 A+g2 1
=|ZH-E+1- F+4 g H- -]
K= [GH-E41- 208 IR v ag) 4 (- 5 - )]
Ys! A+ég? 1 a+g’, 1
himag?(qa+1- 255 ) + (- 55 - 5)

Here a is a parameter of non-unitary principal series w, of the sl,.
(See [1].) Under the representation w, of sl, we have the confluent
Heun picture of the quantum Rabi model as ([1])

HI™ () = {xx = D} x 70 D(@,(K) = A)x2TD (2= —(1 + 6%)),

where

1-(A+g%) 1-(+g2+1)yd 4820 +g)x+u
~ bat

M) = 4 { —ag s
dx? x(x —1)

x—1
with the accessory parameter

po=(A+g%)? — 4g*(A + g°) — A%

Masato Wakayama (IMI) Rabi model and representation theory 2015-4-30 11 /12

I
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Abstract

We introduce a family of abelian sandpile models with two parameters n, m € N defined
on finite lattices on d-dimensional torus. Sites with 2dn + m or more grains of sand are
unstable and topple, and in each toppling m grains dissipate from the system. Because of
dissipation in bulk, the models are well-defined on the shift-invariant lattices and the infinite-
volume limit of systems can be taken. From the determinantal expressions, we obtain the
asymptotic forms of the avalanche propagators and the height-(0, 0) correlations of sandpiles
for large distances in the infinite-volume limit in any dimensions d > 2. We show that both
of them decay exponentially with the correlation length

€(d,a) = (Vdsinh ™ \/a(a +2) )7,

m
if the dissipation rate a = Sdn is positive. Considering a series of models with increasing
In
log &(d
n, we discuss the limit @ | 0 and the critical exponent defined by v, = — h?ol M is
a oga
determined as 1
Vg = 5

for all d > 2. Comparison with the ¢ | 0 limit of ¢g-state Potts model in external magnetic
field is discussed.

Key words. Abelian sandpile models, Dissipation, Avalanches, Height correlations, Determi-
nantal expressions, Correlation length exponent.
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1 Introduction

Let d € {2,3,...} and L € N={1,2,3,...}. Consider a box in the d-dimensional hypercubic
lattice By, = {—L,—L +1,... 7L}d C 724, where Z denotes the collection of all integers. We
impose periodic boundary conditions for all d directions and obtain a lattice on a torus (toroidal),
which is denoted by Az. The number of sites in Ay, is given by |Az| = (2L 4 1)%. In the present
paper we study a family of Markov processes on Ap, hy = {h(z)}zen,, with discrete-time
teNo={0}UN.
Assume n,m € N and let
m

a=g - and he = 2d(1 4+ a).

Define a real symmetric matrix with size (2L + 1)%,

he, if x=y,

AL(X7Y) = -1, if |X - y| =1, (11)
0, otherwise,
where x = (z1,...,24),y = (y1,...,y4) € Ar and |x —y| = Z?Zl(xi —y;)%2. Let 1(w) be

the indicator function of an event w; 1(w) = 1, if w occurs and 1(w) = 0, otherwise. The
configuration space is
A
12 17"
St = {0,7,7,...,}%77} .
n'n n
Given a configuration hy € Sp,,t € Ng, hey1 € S, is determined by the following algorithm.
(i) Choose one site in Af at random. Let x be the chosen site and define
< 1
00y (2) = he(z) + al(z =x), z€AL.

X

If nf‘l)(x) < he, then nZ‘l) = {nz‘l)(z)}zeAL € 8. In this case, we set hyy1 = -
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Figure 1: A toppling for the DASM with the parameters d = 2,n = 2 and m = 1. In this case
he = 2dn +m = 9, and thus the site x with height A(x) = 10 is unstable. In a toppling, hc =9
grains of sand drop from the site x, in which n = 2 grains land on each nearest-neighbor site,
m =1 grain is dissipated from the system, while h(x) — h. = 1 grain remains on the site x.

nE(Z+1) (Z) = 77?@) (Z) - Z AL(ya Z)a RS AL'
y:yGA?‘z)(ht)

If nf‘eﬂ) € Sp, then 7 =041 and hyy; = nZ‘T). Remark that 7 = 7(x, ) and 7 < oo by
Y umen, AL(y,2z) > 0,Vy € Ay as explained below.

We think that 1/n is a unit of grain of sand and h.(z)n represents the height of sandpile at
site z measured in this unit. The step (i) simulates a random deposit of a grain of sand. In the
step (ii), for each 1 < ¢ < 7, the sites y € Az})(ht) are regarded as unstable sites and the process

(7% () haen, — {%(2) = Doy, 2)}aen,
is called a toppling of the site y such that
Ap(y,y)n = hen = 2dn + m grains of sand drop from the unstable site y
and
|AL(y,z)|n = n grains of sand land on each nearest-neighbor site z, |x — z| = 1.

Since there are 2d nearest-neighbor sites of each site, m grains are annihilated in a toppling.
(See Fig.1.) The total number of grains on Ay decreases in each toppling and it guarantees
7 < 00. The configuration space Sy, is a set of all stable configurations of sandpiles in which
height of sandpile is less than the threshold value h. at every site; h(z) < he,Vz € Ar. From
a stable configuration h; to another stable configuration hyy1, Zz;ll \A@)(htﬂ topplings occur.
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Such a series of toppling is called an avalanche. (Note that, if 7 = 1, toppling does not occur.
Even in such a case, we call the transition from h; to hy11 an avalanche, which is just a random
deposit of a grain of sand.) Define

T(x,h)—1
T(X7y7 h) = Z 1(y € Azcé)(h))’ X,y € AL: h e SL- (12)
(=1

This is the number of topplings at site y € Ay, in an avalanche caused by a deposit of a grain of
sand at a site x € Ay, in the configuration h € Sy..

We have assumed that n,m € N in the above definition of processes. If we set n = 1,m =0,
however, we have a = 0 and Ar|,—o gives the ‘rule matrix’ of the sandpile model introduced by
Bak, Tang and Wiesenfeld (BTW) [2, 3]. The BTW model have been studied on finite lattices
with open boundary conditions in order to make 7 be finite. For example, the BTW model is
considered on a box By. The boundary of box By, is given by dBr, = {y = (y1, -+ ,y4) € B :
1 <3 <dst. .y, =—Lor L}. In the BTW model defined on By, Zz:zeAL Apla=o(y,z) =0
if y € By \ 0Bp; that is, the number of grains of sand is conserved in any toppling in the bulk
of system. By imposing the open boundary condition, we have 3, .\, Arla=o(y,2z) > 0 for
y € 0By, and dissipation of grains of sand can occur in topplings at the boundary sites. In the
present model, in every toppling at any site y € Ar, >, ., AL(y,2)n = m grains of sand
dissipate from the system and hence 7 < 0o is guaranteed in the shift-invariant system. The
quantity a indicates the rate of dissipation in a toppling.

The present process belongs to the class of abelian sandpile models (ASM) studied by Dhar
[6]. We define the operators {a(x)}xea, following Dhar by

ht+1 = a(x)ht, X € AL,

where hy, hyy1 € Sp and the site x is the chosen site in the first step (i) of the algorithm at time
t. That is, a(x) represents an avalanche caused by a deposit of a grain of sand at x. Then the
above algorithm guarantees the abelian property of avalanches (see Lemma 2.1 in Section 2.1)

[a(x),a(y)] = a(x)a(y) —a(y)a(x) =0, Vx,y € Ar. (1.3)

We call the present Markov process the d-dimensional dissipative abelian sandpile model
(DASM for short). The two-dimensional case was studied numerically [10] and analytically
[30, 28, 18]. In the present paper, we will discuss the models in general dimensions d > 2
in finite and infinite lattices. See also [29]. As shown in [17, 26, 16] the DASM is useful to
construct the infinite-volume limit of avalanche models. Importance of the abelian sandpile
models in the extensive study of self-organized criticality in the statistical mechanics and related
fields is discussed in [25].

2 Basic Properties of Dissipative Abelian Sandpile Model

2.1 Abelian property

First we prove the abelian property of avalanches (1.3).
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Lemma 2.1 (Dhar [6]) Assume that the avalanche operators {a(x)}xen, act on Si. Then
[a(x)va(}’)] =0, Vx,y€ArL.

Proof. Let X = Z™-. Define three sets of maps from X7 to Xr; {¥(x)}xen,, {t(X)}xen, and
{d(x)}xen, as follows. For x € Ay, and 1 = {n(x)}xen, € XL define

tx)n(z) = n(z) - AL(x,2),
z) — Ar(x,z), if n(x) > he,
n(z), otherwise,

1(Z = X)7 z € Ap.
By definition of t,

E(Y)t(x)n(z) = U(Z) - AL(X7 Z) - AL(y7z)7 VAS AL~
Similarly we have

tx)Ey)n(z) = n(z) — ALly, 2) = AL(x,2), z€ AL

t(x). t(y)] =0, Vx,y€AL. (2.1)
Assume that y # x. Then
)0 = 1) - Ay = { 109 T E Y=

It implies that if 7(x) > h. then t(y)n(x) > he, Vy # x, that is, any site cannot be stabilized by
topplings which occur at other sites. Therefore, the definition of t(x) and (2.1) give

[t(x), t(y)] =0, Vx,y€AL. (2.2)

It is obvious that
[t(X), d(Y)] =0, Vx,y €A (23)
Consider the situation that h € Sp and A (h) # 0,1 <¢< 7. By(22), Hz:zeA,&)(h)t(z) is

independent of the order of the products of t(z)’s. Then we can write

71
a(x)h = H H t(z) | | d(x)h, x€ AL, heSi.
=1 z:ZEA’(‘e)(h)

By (2.2) and (2.3), the lemma is proved. y
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Figure 2: The set of recurrent configurations Ry, is closed under avalanches.

2.2 Recurrent configurations
Consider a subset of Sy, defined by
Rp={heS: VxeAr,kx) eN, st. (a(x))*®h =h},
which is called the set of recurrent configurations.
Lemma 2.2 (Dhar [6]) If h € Ry, then a(x)h € Ry, for any x € Ar. That is, Ry, is closed
under avalanches (see Fig.2).

Proof. By definition, if h € Ry, then for any y € Az, Fk(y) € N, s.t. (a(y))*™®h = h. If we
operate a(x),x € Az, on the both sides of this equation, then we have a(x)(a(y))*™h = a(x)h.
By Lemma 2.1, LHS= (a(y))*®)a(x)h. This equality implies that a(x)h € Rp. Since it is valid
for any x € Ap, the proof is completed. g

Consider a (2L + l)d—dimensional vector space Vr, in which the orthonormal basis is given
by {e(z)}zen,. For each configuration € Xp,, we assign a vector

n= Y et = Y w22, (2.4
z:zEN], z:2zEN],

where 1/n denotes the unit of grain of sand. Assume that h € Rp; for each x € Ay, there is
k(x) € N such that

(a(x))F®)p = h. (2.5)
Consider the vector corresponding to the configuration (d(x))*™)h,
n=(h(x)+ kx) e(x)+ Y h(z)e(z) €V (2.6)
o L. .

Z:Z#X

Then (2.5) claims that there exists a set {r(z) € N:z € A} such that

h=n+ Y | D rALly.2) |e(). (2.7)

z:z€EAL \y:yEAL
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Note that (2.7) is written as
h=n+ > ry)vy)
y:yeAL
with
v(x)= Y Ap(x,z)e(z), x€AL (2.8)

z:zEA],

[ ]
()/J/F/J [ ]

Figure 3: Hypercubic lattice 2 with the basis {v(x)}xea, in V. Every avalanche from an
unstable configuration n given by (2.6) to a recurrent configuration h € Ry, is represented by a
lattice path n ~ h on .

We can say that, given h € Ry, all points {n} given by (2.6) are identified with sites of a
hypercubic lattice £ with the basis {v(x)}xea, in V. (See Fig.3.) Consider a primitive cell
(fundamental domain) of the lattice defined by

Up =3 > cx)v(x):0<e(x) <1, x€AL g C VL. (2.9)
x:XEAL

By definition, the intersection of the lattice Q2 and Uy, is a singleton, say p. We assume that
the origin of this lattice is given by p and express the lattice by P. We consider a collection
of all lattices with the same basis (2.8) having distinct origin in Uz, {QP : p € Ur}. Then there
establishes a bijection between Ry, = {h} and {QP : p € U }.

Lemma 2.3 (Dhar [6]) The number of recurrent configuration is given by

|RL| = nCLHD? qet Ar.

Proof. The above bijection implies |Rz| = [{QP : p € U }|. Since the unit of grain of sand is
1/n, the origins {p} of lattices {QP} should be in (Z/n)t, and hence (sce Fig.4)

{OP :p e Uy} = Uy N (Z/n) | = nCEADT % (the volume of Uy).

The volume of Uz, given by (2.9) with (2.8) is det Az, and the proof is completed. g
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Figure 4: A primitive cell of Q on the lattice (Z/n)*t. Since the unit of grain of sand is 1/n,
the origin p of lattice 2 should be at a site of (Z/n)?r.

2.3 Stationary distribution
For h € Ry, let IP’}LL be the probability law of the DASM starting from the configuration hg = h.

Definition 2.4 If we restrict {a(x)}xen, to Rr, inverse of the avalanche operator can be defined
by
a(x) "' =a(x)f ™1 x e AL

Assume that h € Ry, is given. Define
(X)) = P'(hy = X),
WX =Y)=P'(hy1=Yh=X), teNy, X, YeRp.
Consider the Master equation
pea(X) =m(X) = DY m(XOWE =Y)+ > m()W(Y - X),
Y:YERL Y:YERL

where we have used the assumption that hg = h € Ry and Lemma 2.2. By definition of the
DASM, we can find that, for XY € Ry,

WX—=Y) = Z Prob(x is chosen)1(a(x)X =Y)
x:xEAL
= G X X =)
xxEA
(2L 2L +1)d xeeA ()Y).

Then we have

pr41(X) — e (X) = 2L+1 Y @)™ X) — (X)), VX € Ry

xX:XEAL
It implies that the uniform measure on R,
1

1
WX)= —1(X eRy) = nCLADT det Af

IRl

is a stationary distribution of the process.

1(X eRy), Xeip
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Lemma 2.5 The DASM on Ay, is irreducible on Ry,.

Proof. Consider the configuration h € Sy, such that h(x) = he — 1/n,¥x € Az. Now we take
two arbitrary configurations X and Y from R;. We have

= H (a(x))hcfl/an(x)X _ H (a(x))h(;fl/an(x)Y' (2.10)

x:X(x)<hc—1/n x:Y (x)<hc—1/n

Since this means that the configuration h is reachable form X and Y by avalanches, Lemma
2.2 guarantees that i € Ry. Since we have assumed that Y € Ry, (a(x))*®Y =Y with some
k(x) € N for any x € Ar. Therefore, the second equality of (2.10) gives (see Definition 2.4)

Y = [I  (a(x)red=(hemt/n=Y 0Dy, (2.11)
x:Y (x)<hc—1/n

Combining (2.10) and (2.11) gives

Y = H (a(X))k(X)—(hc—l/n—Y(x» H (a(y))hc—l/n—X(y)X.
x:Y (x)<hc—1/n v:X(y)<hc—1/n

Let o = Zx:Y(x)<hcfl/n{k(X) - (hC - 1/” - Y(X))} + Zx:X(x)<h671/n{hC - 1/" - X(X)} Then
we see

1 o
]P)ho(ht+5 :Y|ht:X) > (7) for s > 0.
ALl
Since RHS is strictly positive for finite L, this completes the proof. g

Then the following is concluded by the general theory of Markov chains (see, for example,
Chapter 6.4 of [12]).

Proposition 2.6 The stationary distribution of the DASM is uniquely given by the uniform
measure on Ry,.

We write the probability law of the DASM on Ay in the stationary distribution as Py, and its
expectation as Ej.
2.4 Allowed configurations and spanning trees

Dhar also introduced a subset of Sy called a collection of allowed configurations Ay, [6]. He
defined that for h € Sy, if there is a subset F' C Ay, such that F' # () and

hy)< > (-AuLxy)), Vy€F, (2.12)
xX:XEF,X#Y

then h € Sy, has a forbidden subconfiguration (FSC) on F. Then define
Ap ={h € S : h has no FSC}.

Lemma 2.7 For the DASM on Ay,
R C AL.
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Proof. In the proof of Lemma 2.5 we have shown that h € Ry and all recurrent stares are
reachable from this configuration h. We can prove that h € Ay, as follows. We assume that the
contrary; there exists a finite nonempty set F' C Ay, satisfying (2.12). In the DASM, however,
for any y € F, h(y) = he — 1/n = 2d + (m — 1)/n > 2d > > xexeFxty(—AL(X,Y)), which
contradicts our assumption. Since both Ry, and Ay, include h, it is enough to show that Ay is
closed under the process of avalanche to prove the lemma, since we have already proved that R,
is so in Lemma 2.2. Remark that addition of particles only increases h and such procedure on
an allowed configurations cannot create any FSC. Here we assume that there exists an allowed
configuration h such that by a single toppling at the site x it becomes to contain a FSC. Write
I = t(x)d(x)h, that is,

1
W(y) =hly) + -~y =x) = AL(x,y), Vy €A (2.13)
By assumption, there exists F' # () such that

My)< Y. (-Ap(zy)), VyeF (2.14)
z:z€F:z#£y

Combining (2.13) and (2.14) gives

hy)< Y, (—AL(zy) +AL(xy), VyeF\{x}
z:z€F,zty

Since Ar(x,y) < 0 for x # y, this inequality means that h has a FSC on F \ {x} and this
contradicts our assumption that h is allowed. Since any avalanche consists of addition of a
particle and a series of topplings, the proof is completed. g

Definition 2.8 Given a pair (A, ApL), let Gg)) = Ap U{r} with an additional vertex r (the

‘root’), and G(Le) be the collection of |AL(x,y)|n = n edges between x,y € Ap,x # y, and
Zy:yeAL A(x,y)n = m edges between x € Ap, and r. (See Fig.5.) Graph G associated to
(AL, Ap) is defined as

ar= (G, a\).

Definition 2.9 We say a graph T on Gy, is a spanning tree, if the number of vertices of T is
\G(Lv)| = |AL| + 1, the number of connected components is one, and the number of loops is zero.
Lemma 2.10 Let 7z, = {spanning tree on Gy, associated to (Ar,Ar)}. Then

|T| = nCLAD? det Ar.
Proof. See p.133 of [20] and Theorem 6.3 in [4].

Lemma 2.11 (Majumdar and Dhar [20]) There establishes a bijection between Ay, and Tr,.

67



Figure 5: A part of the graph G = (G(LU), G(Le)) associated to the DASM (Ar,Ap) is illustrated
for the case that d = 2,n = 2 and m = 1. In this case, each pair of the nearest-neighbor vertices
are connected by n = 2 edges and each vertex is connected to the ‘root’ r by m =1 edge.

(v)

Proof. First we order all edges incident on each site x € G’ in some order of preference. For
each configuration h € A, we consider a following discrete-time growth process of graph on
G, which is called a burning process on (Gp,h). Let Vo = Vo = {r}, Ey = 0 and Ty = (Vp, Ep).
Assume that we have nonempty sets 73 = (V;, E;) and V, with ¢ € Np. Let

Vi =4y eG\Vith(y)> > (-Arxy))
x:xEG(;)\Vt

For each y € Vi1, consider
Et+1(y) = {e c G(LE) : e connects y and a site in f/'t}

We must have ~
hy)< > (ALxY) + B y),
x:xGng)\Vt

since h € Sp. If |Ey11(y)| = 1, then name that edge as e(y). If |Eyy1(y)| > 2, then write
My)= > (AL
x:xGGS”\W
and choose the (s + 1)-th edge in Ey41(y) as e(y). We define
Vigr = ViUVigr, B = E U{e(y) iy € Viga}, and Tipr = (Vira, Erg)-

By the assumption h € Ay, there is a finite time ¢ < oo such that V, = ng) and E, = Gf).
By the construction, T, = (V,, E,) is a spanning tree on Gp. Since this growth process of
Ti,t € {0,1,--- ,0} is deterministic for a given configuration h € Ay, it gives an injection from
Apr to Tr. This fact and Lemma 2.10 give |AL| < |Tz| = nL+D? det A;. On the other hand,
Lemmas 2.3 and 2.7 give n2L+D" det Ap, < |Az|. Then we can conclude |AL| = nCLAD det A
and the burning process gives a bijection between A;, and 77. g

Combining Lemmas 2.3, 2.7, 2.10, and 2.11, we have the following proposition.
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Proposition 2.12 For the DASM on A, Ry, = Ar.

3 Avalanche Propagators

3.1 Integral expressions for propagators

Define
GL(X7 y) = EL [T(X7 Yy, h)}’ X,y € A7

where T'(x,y,h) is given by (1.2) and the expectation is taken over configurations {h} in the
stationary distribution Pr. Gp(x,y) is regarded as the avalanche propagator from x to y [6].
Sometime in an avalanche caused by a deposit of a grain of sand at x, this site x topples many
times. The set of topplings between the first and the second toppling at x is called the first
wave of toppling. There can occur many waves in one avalanche and G (x, x) gives the average
number of waves of topplings in an avalanche [15].

Consider the stationary distribution Py of the DASM. For addition of a particle at any
site x € Ap, the averaged influx of grains of sand into a site z € Ay, is given by 1(z = x) +
Y yyza GL(X,Y)|AL(y,z)|n, and the averaged outflux of them out of z by GL(x,z)AL(z,2z)n
using the avalanche propagators. In Pp, equivalence between influx and outflux must hold at
any site z € Ay. This balance equation is written as

1
Z Gr(x,y)AL(y,z) = El(z =x) Vx,z€ AL

yiyEAL

and thus the propagator is given using the inverse matrix of Ay.

Lemma 3.1 (Dhar [6])
GrL(x,y) f[A Nx,y), xye€ArL (3.1)

The matrix Ay, can be diagonalized by the Fourier transformation from x = (z1,--- ,24) to
n— (nl’... 7nd)7

_ 1 s
Uln,x) = U7 (xom) = 2L +1)d2 P (2L 1 n> ’

where x -n = "% zn;, as

Y. > Umx)Arxy)U (v, m)

x:xEAL y:yEAL

:2d{ 1+a) —fZCos<2L+1 i)}l(n:m)

=Ar(n,m), nméeAj.
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Then, (3.1) is obtained as

Gr(x,y)

S|

> UM xm)[AL (0, m)UL(m,y)
neA, mmeAy,
1 1 e72ﬂ'\/jl(x7y)-n/(2L+1)
= —_— .nonumber  (3.2)
2dn (2L + 1) dnan:A (1+a)-— (1/d)§:z 1cos(2L_Hnl)

Lemma 3.2 There exists a limit G(x —y) = limz10 GL(%,¥), %,y € Z¢ and

efmx.o
G&) 2dnH/_ﬂ () cost;

x € 74, (3.3)

Proof. Consider the Euler-Maclaurin formula for f € C?(R),

M-1

S L s+ ) Mo + = @ 4
Zf(b“w)—;/b P08+ 5170 + 50+ M)+ 15 3 [P0+ el +0). (3

where M € N, b,c € R, f)(0) is the second derivative of f(6), and 0 < ¢ < 1 (see, for instance,
Appendix D in [1]). Assume that

ef\/jlaﬁ
(1+a)—(1/d)(cosf + as)’

f0) =

where a, a1, g are constants. Applying the Euler-Maclaurin formula (3.4) with b = —27L/(2L+
1), M =2L and ¢ = 2w /(2L + 1), we have

i o—2mv/=Ta1 (n—L)/(2L1+1)
= (1+a) — (1/d){cos(3777(n — L)) + az}
2rL/(2L+1) v Tab
= (2L +1 / 9 ©
—orr)(2041) 27 (1 4+ a) — (1/d)(cos O + )

1 2L 2L
3 {f<_2L+1)+f<2L+1>}

1 22L-1
+E<2L+1> Zf (2L+1”+¢_L)>’

By dividing the both sides of the equality by 2L + 1 and take the limit L 1 oo, we obtain

1 L —271'\/—71(117L/(2L1+1)
lim

Ltoo 2L + 1 :z: (1+a) —(1/d){cos(2L+1 n) + ag}

™ do e~ V-lmd
:/_ﬂ%(1+a)f(l/d)(cosﬁ+a2)'

Repeating this procedure d times, we can prove Lemma 3.2. g

70



3.2 Long-distance asymptotics

Now we consider the asymptotic form in |x| 1 oo of G(x). Here we follow the calculation found
in Section XII.4 of [21] for the asymptotic expansion of two-point spin correlation function of
the two-dimensional Ising model. By using the identity

o0
1
/ dse™ " = —
0 «

and the definition of the modified Bessel function of the first kind

d¢ n Z COS
[n(z)_/ 277 —V—=Ing+ ¢

we have J
1 oo
_ = —(1+a)s
¢ = 5 /0 dse il;[lfzi(s/d).
The asymptotic expansion of I,,(z) for large n is found on p.86 in [9],
1 exp[(n®+ 22)1/2 nsinh™(n/z)]

In(z) = V2 (n2+z2)1/4

x (14+0(1/n)),

and we obtain

Glx) = % <217T>d/2/ dsﬂwexp[—g(x, 9)]

X (1 + (’)(miax{l/wi})> 7 (3.5)

where
d

g(x,5) = (1+ a)s — i [xf + (2)2} L ; 2;sinh~! (gx) .

i=1
We can evaluate (3.5) by the saddle-point method and obtain the following result.

Theorem 3.3 Let

(d,a) = 1 a(a+2)d =/ (3.6)
e, & CAn(a+1) | 2m(a+1 .
and
d, 3.7
§dia) = Vdsinh™! v/a a+2 (3.7)
Then, for the DASM with d > 2,m,n € N,a = m/(2dn),
. 1 nr(d=1/ 1
lle;lo—;log [WG(X(T))} = dda) (3.8)
where
x(r € Zd r > 0. 3.9
0= (G 7a) 39
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Proof. Let g (x,5) and g (x, s) be the first and second derivatives of g(x, s) with respect to
87

1/2

()]

1 1 ’
gW(x5) = (1+a)fg§

d
Do) = 43w

For each x, let s9(x) be the saddle point at which g™ (x, s) vanishes,

g (x, s0(x)) = 0. (3.10)
Then
1 [/ 1\%*¢ 1
X /jo du exp {—%g@)(x, so(x))uQ] X <1+(’)(mlax{1/xi}))

1 1 d/2 d 1
~ 2dn (%> 1:[1 (22 + so(z)2/d2)1/4 exp[—g(z, so(z))]
2 1/2
(o) * (1 omati/mp).

Here we can prove that the higher derivatives of g(x,s) only give the contributions of order
O(max;{1/x;}). See p.304 in [21]. Now we consider the case
r

Vd

in which €;’s are finite and fixed and r > 1. The equation (3.10) for the saddle point is now

€T; + &4,

d

) . o\ 1/2
Z<1+307x)2<\/3+5i) ) = (1+a)d,

=1

so(x) = 4 r—l—izd:e—}—@(l/r)
ala +2) d= ! '
This gives

9(x,50(x)) = é <% + si) sinh~! {ﬁdx) (% + gﬂ

d
= Vdrsinh™'y/a(a+2) +sinh ™! /a(a + 2) x Zsi +0(@1/r)
i=1

and it is solved as
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and
1 (a(a+2))3%1

g?P(x, s0(z)) = Vi a1 r +0(1/r?).
Then we have the estimation
d
_c(da) 1 r ‘
G(x) = o 12 P fmf)\(a)gsz x(14+01/r)), asrtoo

for x = (r/Vd+e1,---,r/Vd+ eq), where ¢1(d,a) and £(d,a) are given by (3.6) and (3.7),
respectively, and

Vd
¢(d, a)
sinh ™' \/a(a + 2)
log(1 + a + v/a(a + 2)). (3.11)

If we put ¢; = 0,1 <14 < d, then G(x) is reduced to be

Aa) =

G(x(r)) =G(r) x (1+0(1/r)), asrtoo

with ) Je(da)
- c1(d,a) e7T/sda
It proves the theorem.
4 Height-0 Density and Height-(0,0) Correlations
For
Oé,ﬁe {0,1’27_._’]7@,1}’

n'n n

define
P,1(x) = Ep[1(h(x)=a)],
Popr(x,y) = Er[l(h(x) =a)l(h(y) = B)], xy€ AL (4.1)

P, 1(x) is the probability that the site x has the height an measured in the unit of grain of
sand, 1/n, and P,g,1(x,y) is the («, 8)-height correlation function [19, 5, 23].

For the two-dimensional BTW model on By, with open boundary condition, Majumdar and
Dhar [19] proved the existence of the infinite-volume limits

Py = lim P,
0 Jim 0,L(X),

Poo(x(r)) = lim Poo,.(0,x(r)),
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where x(r) = (r/v/2,7/v/2). They gave an 8 x 8 matrix My (r), whose elements depend on L
and r, such that

r
V2
and showed that every elements converge in the infinite-volume limit L 1 oo with a finite 7. Then
the matrix M (r) = limp4o My (r) is well-defined and we have the determinantal expression

Poo(x(r)) = det M (r).

Poo,..(0,x(r)) = det Mp(r), VL >

1\/[01‘60\/er7 (hey ShOWed lhal
hnl l 00(:{( )) ‘l 0>
q\

and )
R - 1
Coo(x(r)) = %)2)0 ~——r74 asrtoo. (4.2)
P 2
Majumdar and Dhar claimed [19] that the result (4.2) is generalized for the d-dimensional BTW
model with d > 2 as

Coo(x(r)) ~ 7724 as r 1 . (4.3)

In an earlier paper [28], all these facts also hold for the two-dimensional DASM, if we prepare
10 x 10 matrix Mz (r). (See also [5] and [23] for other generalizations of [19].) Here we show
the result for the height-0 density and the height-(0,0) correlations of the DASM with general
d>2.

4.1 Nearest-neighbor correlations

First we prove the following Lemma.

Lemma 4.1 Any configuration h € Sp, in which there are two adjacent sites z1,29 € Ap,
|z1 — z2| = 1, such that h(z1) < 1 and h(z2) < 1, is not allowed.
Proof. Let F = {z1,z2} C Ar. Then
> (-AL(x 1) = —AL(z2, ) = 1,
x:x€F,x#21

and

> (FALX 7)) = —Ap(z1,22) = 1,

x:XEF x#72
by (1.1). Then if h(z1) < 1 and h(z2) < 1, the condition of FSC (2.12) is satisfied. g

By Propositions 2.6 and 2.12, the above lemma implies the following.

12 1}
i ey O
n n n

1 2 1
Pa,@(oaiei) :LI}TI?CPOLBL(Oa:teZ) :Oz 1 Slgda aaﬁe {Oagzﬁaal_ﬁ}

Proposition 4.2 For any L > 2,
Paﬂ,L(Oyiei):Oa 1<i<d, a,p€ {0,

Then,
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4.2 Determinatal expressions of P 1(0) and Py 1(0,x)

Let e;,1 < i < d be the i-th unit vector in Z¢. Define a real symmetric matrix with size (2L -+ 1)d
as

—he+1/n, if v=w=0,
-1, if v=w,|v|=1,v# —ey,
(0) B —141/n, if v=w=—ey,
By (v, w) = 1, if v=0,|w|=1w# —ey,
1—1/n, if v=0,w=—ey,
0, otherwise,

where v,w € Ay.
Lemma 4.3 Let Er, be the unit matriz with size (2L + 1)%. Then
Po.1(0) = det (EL + nGLBgm) .
Proof. Define a set of allowed configurations conditioned h(0) = 0,
A = (h e AL h(0) =0}

By definition (4.1), Proposition 2.6 with Lemma 2.3 and Proposition 2.12 gives

14
P10 = Tor e der Ay

(4.4)
Assume that h € A(LO). Then as shown in the proof of Lemma 2.11 we can uniquely define a
burning process T}, t € {0,1,...,7 0} on (Gr,h) associated that T} becomes a spanning tree on
G, at time t = 0. Define a configuration h’ as

h(z) — 1, if |z|=1,2+# —ey,
B (z)=1{ h(z)—-1+1/n, if z=—ey,
h(z), otherwise

for z € Ar. Now we consider a new DASM which is defined by the matrix A’ given by

A=A+ BY, (4.5)
and let A’ be a set of all allowed configurations of this DASM and G’; be an associated graph
to (Az, A). Then we consider a burning process T} = (V/, E}),t € {0,1,...,0} on (G, h’). By
definition of A} and b/, we can make

V,=V/, vte{0,1,...,0}

and T, gives a spanning tree on G. By Lemma 2.11, this means b’ € A’ . Since there is a
bijection between h and its associated burning process Ty, ¢t € {0,1,...,0}, we have a bijection
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between A(LO) and A . By Lemmas 2.10 and 2.11, |Ag))| =|A}| = nCLAD? det A, . Combining
(4.4) and (4.5) gives

det A7,

det Ay,

= det(A;*A])

— det(Ep +A;'BY).

Po,L(O) =

Then we use Lemma 3.1 and the proof is completed. g

Next we consider the two-point function Py r,(0,x), where we assume that 2 < |x| < L. We
define a real symmetric matrix with size (2L + 1)? as follows. For v,w € Ap,

—he+1/n, if v=w=0orifv=w=x,
-1, if v=w,|v|=1,v# —ey,
orif v=w,|v—x|=1,v#x—ey,
—1+1/n, if v=w=-¢4, orif v=w=x—e¢g,
Bg)’x)(v,w) = 1, if v=0,|w|=1,w# —ey,

orif v=x,lw—x|=1,w#x—¢q
1-1/n, if v=0,w=—ey,
orif v=x,w=x-—¢g,
0, otherwise.

Following the same argument as Py 1,(0) we can prove the next lemma. (See Fig.6.)
Lemma 4.4 For2 < |x| <L,

F)OO,L(O7 X) — det (EL + nGLBg),X)) '

Figure 6: The matrix A7 = Ap + B(LO’X) is considered for Ppo r(0,x) with |x| = r. In the
corresponding graph G/ the site 0 (resp. x) is connected to —eq4 (resp. x —eq) by a single edge,
but all other edges between 0 (resp. x) and its nearest-neighbor sites are deleted.
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4.3 Infinite-volume limit
Since the number of nonzero elements of B(LO) (resp. BEO’X) ) is only 6d + 1 (resp. 2(6d + 1)),
we can replace the matrix Ey, + nGLBio) (vesp. EL + nGLB(LO’x)) with size (2L + 1)¢ by a
matrix with size (2d + 1) (resp. 2(2d + 1)) without changing the value of determinant. Explicit
expressions are given as follows.
Let
0, it i=1,
Q=19 €-1, if 2<i<d+1,
—€;_d-1, if d+2§2§2d+ 1.

Define a matrix G(X) (x) = (gi(jl/))lgi,jgg(prl with elements
G x) =Gr0,x+qj—q), 1<ij<2d+1. (4.6)
We also define a real symmetric matrix B = (B;;)1<i j<2d+1 With elements

—he+1/n, if i=j=1,

-1, if 2<i=j<2d,
B — -1+ 1/n, if i=j=2d+1,
YY1, 1=1,2<j<2d,
1-1/n, if i=1,7=2d+1,
0, otherwise.

Then define 2(2d + 1) x 2(2d + 1) matrices

- ¢y ¢W(x
6900 - (Sl T80 xen,

where G (x) is a transpose of GV (x), and

s-(21)

We have
Po.1(0) = det (E + ng<L>(0)B) (4.7)
and . .
Pao.1.(0,x) = det (E + G0, x)B) : (4.8)
where E denotes the unit matrix with size 2d + 1 in (4.7) and with size 2(2d + 1) in (4.8),
respectively.

It should be remarked that the sizes of the matrices in the RHS’s are independent of the
lattice size L and determined only by the dimension d of lattice. The dependence of L is
introduced only through each elements of G(V)(x) given by (4.6). Lemma 3.2 guarantees the
existence of infinite-volume limit L 1 oo of these elements and we put

Gi(x) = lm G0 =Glxta—a), 1<ij<+l,
G(x) = (Gij(x))1<ij<2dt1,

w0 (90 9
0.9 = pmotiox = (G0 53 )
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where G(x) is explicitly given by (3.3). Then we have the following.
Proposition 4.5 There exist the infinite-volume limits
P() = lim P()’L(O)7 P()o(X) = lim P()O’L(O7X)7 X € Zd,
Ltoo Ltoo
and they are given by
Py =det (E +nG(0)B)

and R R

Pyo(x) = det (E + nQ(QX)B) , xezl,
4.4 Evaluations of determinantal expressions

From the determinantal expressions of Py and Pyy(x) given in Proposition 4.5, the following
explicit evaluations of these quantities are obtained.

Theorem 4.6 (i) Define

1
ne= QdH/_ﬂ 27 (1+a) — (1/d) 0, cosb;

and o2V =1(01+02)
= 2dH/_,r —(1/d) X%, cosb;
Then, for the DASM with d > 2,m,n € N,
Py o= S22 1y — )} + (1 - dd)a — 2]
X [2(d=1)(71 —72) — (1 — ddy1)a + 2dma®]?
< [ (n =)} = {2d(1 +a)® = Dy — (2d = 12 — (L +a)}?] 7, (4.9)

where a = m/(2dn).

(ii)  Let

Poo(x) — P§
P} ’

Then, there exists a nonzero factor ca(d, a,n) such that for the DASM with d > 2, m,n € N

Co()( ) X € Zd. (4.10)

2

) 1 Tdfl
5 8 | 0 - iy i
where a = m/(2dn), £(d,a) and x(r) are given by (3.7) and (3.9), respectively, and that
(d—3)/2 ey 12
hmw - 4 w ’ (4.12)
alo ald+1)/2 272 27(d — 1)5
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where

B 1— 6*2\/7(91‘%92)
7:2dH/ o
T 1—(1/d) Zz 10059

In the following, we will explain how to prove this theorem. Let
MY (r) = E+nG0,x(r)B, r>0, x(r)ez

where F is a unit matrix with size 2(2d + 1). That is,
@ e
W _ [ ™ miH(r)
M) = ( () m® )
where for 1 <7< 2d+1

100 =1) + X2 nGir(0)

m® = —{(1 = 1/n) 4+ hcinGii(0) — Giaat1(0), if j=1,
Y 1(i = j) 4+ n[Gi1(0) — Gi;(0)], if 2<j<2d,
1(i=2d+ 1)+ (1 —1/n)n[Gi1(0) — Gs244+1(0)], if j=2d+1,
2041 G (x(r)
= (1)(7") —nx 7{(1 = 1/n) + he}Gin(x(r)) — (1/n)Gi2a11(x(7)), it j=1,
" G (x(r)) — Gij(x(r)), if 2<j<2d,
(1= 1/n)(Gia(x(r)) — Gi2a+1(x(r))), if j=2d+1,
! Gri(x(r))
A0y e d A= V) + 0 ulx(r) = (1/m)ar(elr), i =1,
Y Gri(x(r)) = Gji(x(r)), it 2<j<2d,
(1 —=1/n)(G1i(x(r)) — Gaar1i(x(1))), if j=2d+1
We find that
2d+1
mi) + 3" m) =1 - 2danGi (0),
j=2

2d+1
fng)(r) + Z mg? = —2danG; (x(r)),

J=2

2d+1
7D )+ Z mf;) = —2danG1;(x(r)), 1<i<2d+1.
j=2
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For 1 <i<2d+1, let

- 1-— 2dangll(0), if j = ].,
i = it 2<j<2d+1,

ij

n(r) = —2danGi (x(r)), if j=1,
mir) = iy (r), if 2<j<2d+1,
R | —2danGri(x(r)), it j=1,
mhij(r) = (), if 2<j<2d+1.
Then
Py = det m = det m,

Pro(x(r)) = det MU () = det M(r) with M(r):(z m(r) > (4.13)

Note that, if we introduce the the dipole potential
Plin o). (inga) (X(1) = Ginjy (X(r)) = Giap (x(r)), 1 <y, n, 2 < 2+ 1,

the elements of the matrix M (r) are expressed as follows; for 1 < i <2d+ 1,

1-— 2dan§i1(0)7 if ] = 1a
mi; = 1(i = j) +ndg1),i,5)(0), if 2<j<2d, (4.14)

—2dagi1 (X(T)), lf _] = 17

Thij(T) =n X qﬁ(i’l)’(i’j)(x(r)), if 2<j<2d,
(1 =1/n)d ), 62440 (X(r), if j=2d+1,
—2daGri(x(r)), if j=1,

mig(r) =n x < i), ¢ (X)), it 2<j<2d,
(1= 1/n)b(1,4),2d41,i) (X(7)), if j=2d+1

Now we study the asymptotics of Pyo(r) in 7 T co. Theorem 3.3 and its proof given in Section
3 implies that with any finite ¢;’s,

d

d
G <x(r) + Zciei> = G(r)exp (—)\(a) Zq> x (14+0(1/r)), asrtoo
i=1

i=1
with (3.6),(3.7), (3.11), and (3.12). Then we see

= nG(r)n(r, \)(1+ O(1/r)),
nG

r (r)n(r,=A)(1+O(1/r)), asrtoo,

232
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where n(r, \) = (ni;(r, A))1<i j<2d+1 with elements,

—2da, if i=5=1,
(1—e™?), if i=1,2<j<d+1,
(1—et), if i=1,d+2<j<2d,
(1—1/n)(1 —e*), if i=1,j=2d+1,
—2dae?, if 2<i<d+1,5j=1,
nis(r\) = —2dae™?, if d+2<i<2d+1,j=1,
EA M1 —e™H), if 2<i,j<d+1,
M1 —e), if 2<i<d+1,d+2<j<2d,
(1—1/n)er1 —et), if 2<i<d+1,j=2d+1,
e M1 —e™?), if d+2<i<2d+1,2<j<d+1,
e M1 —e), if d4+2<i,j<2d,
(1-1/n)e*1—¢"), if d+2<i<2d+1,j=2d+1.

We obtain a matrix M’(r) from M (r) by subtracting (the first row) xe* from the i-th row
with 2 < i < d+1, (the first row) xe~ from the i-th row with d+2 < i < 2d+1, (the (2d+2)-th
row) xe* from the i-th row with 2d + 3 <4 < 3d + 2, and (the (2d + 2)-th row) xe* from the
i-th row with 3d + 3 < i < 2(2d + 1). We have

iy [ MmN m/(r, \)
M(r) = ( m(r,=X) m/(=)\)
with
1 — 2danG11(0), if i=j=1,
n¢(1’1)7(17j) (O)7 if = ]. 2 S 2d
(1 = 1/n)ng 1), 1,2d+1)(0), it i=1,j=2d+]1,
(1 —e*) = 2dan(Gi1(0) — *G11(0)), if 2<i<d+1,j=1,
(1 —e™*) —2dan(Ga (0) — e *G11(0)), if d+2<i<2d+1,j=1,
1(i = J) + n[d1),6.5)(0) — da1y,1,5(0)], if 2<i<d+1,2<j<2d,
mi;(A) = 1(i = j) +nldg),6.7)(0) — e b1, 0)], if d+2<i<2d+1,
2<j<2d,
(1-1/n)
xn[d1),6.2441)(0) — b1, 12411y (0)],  if 2<i<d+1,j=2d+1,
1(i=2d+1)+ (1—1/n)
X0 1, 3.2d+1)(0) — € d11),(1.2a+1)(0)], if d+2<i<2d+1,
j=2d+1,
(4.15)
and with
—2da(1+ O(1/r)), if i=j=1,
(1—eM(1+0(1/r), if i=1,2<j<d+1,
mi(r,A) =nG(r) x ¢ (1—e*)(1+0(1/r)), if i=1,d+2<j<2d, (4.16)
(1—1/n)(1 —eMA+0(1/r), if i=1,j=2d+1,
O(1/r), otherwise,
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so that
Py0(x(r)) = det M(r) = det M'(r), r>0, x(r)ez

Now we expand det M'(r) along the first and the (2d + 2)-th rows. Let |M'(j, k)| be the de-
terminant of M’'(r) with the first and the (2d + 2)-th rows and the j-th and the k-th columns
removed and multiplied by —(—1)'*7 x (—1)2¢+2+F = (—1)J**, Then we have

2(2d+1) 2(2d+1)

det M'(r) = Z Z M (1)1 M (7)2d 42, M (5, )]

G=1 k=Lk#j
Remark that, by (4.15) and (4.16),
|M'(j,k)| = O(1/r), asr— oo,
ifl1<jk<2d+1or2d+2<jk<2(2d+1), and
M (. k)| = [m' D (V)] x [m D] x (1+0(1/r)), as T = oo,

if1<j<2d4+1<k<22d+1)orl1<k<2d+1<j<22d+1), where |m'@(\)| is the
(1, j)-cofactor of m/(\). Then

2d+1 2d+1
det M’( Z m1 () |m/G)(X) Z mlj ) |m@) (=N)]
2d+1 2d+1
Z (A ) m'D (— Z mh(r, — A)|m/ D (=\)]

= detm/ ()\) x det m' (=) + det m(A) x det m(—A) x (nG(r))* (1+ O(1/r)), (4.17)

where m(A) = (M4ij(N))1<i j<2d+1 With elements

—2da, if i=j=1,
1—e, if i=1,2<j<d+1,
mij(\) = ¢ 1—e™?, if i=1,d+2<j<2d,
(1—1/n)(1—e), if i=1,j=2d+1,
mi;(A), otherwise.
We find that
det m'(A\) = det m/ (=) = det m. (4.18)

The determinantal expressions (4.13) with (3.12), (4.17), and (4.18) give
liTrn Pyo(x(r)) = liTm{(det m)? + det m()\) det m(—\)(nG(r))?}
= (detm)? = P}.

Here we set
det m(A\) = adet m*(\),
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with a matrix m*(A) = (m};(A))1<ij<2d+1 with elements

—2d, ifi=j=1,
(1—e)/all?, ifi=1,2<j<d+1,
(1—e?)/a'/?, ifi=1,d+2<j<2d,
(1—1/n)(1 —e*)/a'/?, ifi=1,j=2d+1,
(1—e)/a'/?

—2da'?n(G;1(0) — €*G11(0)), if2<i<d+1,j=1,
(1—e™)/al/?

i (3) = —2da*n(Gi1(0) — e *G11(0)), ifd+2<i<2+1j=1, (g

1(i = §) + nle(i1),6.5)(0) — 1,1, (0)], if2<i<d+1,2<j<2d,

1(i = §) + nlé(i1),3.5)(0) — e b1y, (0)], ifd+2<i<2d+1,
2<j<2d,

(1—-1/n)

xn[éi 1), (i,2d+1) (0) — € d1.1y,(1,2a+1) (0)], if2<i<d+1,j=2d+1,
1(i=2d+ 1)+ (1 — 1/n),
xn[éi 1), i,2d+1)(0) — € 2d1 1) (10041 (0)],  Ifd+2<i<2d+1,
j=2d+1.

By the definition (4.10), we see

2 det m*(\) det m*(=\)
(det m)?

Since G(r) is given by (3.12), (4.11) of Theorem 4.6 (ii) is proved with

gdet m*(A) x det m*(—X\)
(det m)? '

Coo(x(r)) (nG(r)? x (14+0(1/r)), asrtoo.

co(d,a,n) = (ac1(d, a))

Now the problem is reduced to the calculation of detm and det m*(\). Consider a matrix
R = (Rij)1<ij<N with elements

u, if

—
ris

. S S,
I

—_ =S

—~ 0 o
—
—
—

—1/n)c, if i=1j=2d+1,

9<i<d+1,j=1,
d+2<i<2d+1,j=1,
2<i<d+1,2<j<2d,j+i,j+i+d,
tu, if 2<i=j<d+1,

2<i<d,j=1i+d,

1-1/n)f, if 2<i<dj=2d+1,

1—1/n)h, if i=d+1,j=2d+1,
d+2<i<2d+1,2<j<2d,j#i,j#i—d,
d+2<i<2d+1,j=1i—d,
d+2<i=j<2d,

(1-1/n)s, if dr2<i<2d,j=2d+1,

1+ (1-1/n)k, if i=j=2d+1.

el SROIES
e e
R s

(4.20)

-
=

S
.
lanr)

'_‘u
+
&=
S
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We perform the following procedure on R.
i) Subtract (the first row) xq/u from the i-th row with 2 <i <d+ 1.
ii) Subtract (the first row) xe/u from the i-th row with d +2 <i < 2d + 1.

iii) Subtract the second row from the i-th row with 3 <4 <d+ 1.

v) Add the j-th column to the second column with 3 < j <d+ 1.

(
(
(
(iv) Subtract the (d + 2)-th row from the i-th row with d + 3 < ¢ < 2d + 1.
(
(vi) Add the j-th column to the (d + 2)-th column with d + 3 < j < 2d.

(

vii) Add (the (2d + 1)-th column) x1/(1 — 1/n) to the (d + 2)-th column.
(viii) Subtract (the (d+ j)-th column) x (t—s)/(1+k—s) from the j-th column with 3 < j < d.

After these procedures, by changing the orders of rows and columns appropriately, we obtain
the following identity.

d—2

P25 h—pl x4k —s)"2 x det S, (4.21)

detR:uX 1+'U7f71_'_7
— S8

where S = (S;7)1<i j<4 with elements

Sii=14v+(d-1)f —dbg/u, Sia=h+(d—1)f—decg/u,

Sz = (1= 1/n)(f — cq/u), S14 = f —bq/u,

So1 =t+ (d—1)s — dbe/u, Soo=1+4+k+ (d—1)s —dce/u,
Saz = (1—1/n)(s — ce/u), So4 = s — be/u,

S31 =0, S3p = 1/(n - 1)7

Sz3 =14+ (1—-1/n)(k —s), Ssy =t —s,

S =0, Sy =0,

Siz=(1—1/n)(h — f), Su=1+v—f

Define
go = ’I”LG(O), g1 = nG(el)v g2 = nG(2e1)7 g3 = nG(el + e?):

where G(x) is given by (3.3) and e, ez are the unit vectors in the first and second directions in
Z%. Since the system is isotropic, we can find that the matrix m defined by (4.14) is in the form
(4.20) with

u:172dago7 b:C:g()*gl,
q=e=1-2dag, f=s=g1—93 (4.22)
v="Fk=g1 — go, h=t=g1—go.

By Lemma 3.2 and the isotropy of the system gives

2d(1 +a)go — 2dg1 = 1,
2d(1+a)g1 — (go + g2 +2(d — 1)g3) = 0,
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which are written as

(1+a) :
= a _—
g1 go 2d’

g2 = [2d(1+a)®>—1]go—2(d—1)g3 — (1 +a). (4.23)
The formula (4.21) with (4.22) and (4.23) gives

Py =detm = %iago 2{1 —d(g0 — g3)} + (1 — 4dgo)a — 2dgoa]
% [2(d— 1)(g0 — g3) — (1 — 4dgo)a + 2dgoa®]”
< [{1= (90— 93)}* — (92— 99)%]" "

It proves (4.9) of Theorem 4.6 (i).
It should be noted that, if we put n = 1 and take a | 0 limit in (4.24), we have the formula

(4.24)

4(d —1)? o . G219
Py = %(1 — dgo3)go31(1 = g03)” — 73512,

where
Joa = i _ Goa = i — ga).
Go3 lgg(go g3), Go3 ;%(92 93)

In particular, go3 = 1/7 and gog = 1 — 1/7 for d = 2 [27], and thus we have

2 2
ne2(i-2), e
e ™

This coincides with the value of Py obtained by Majumdar and Dhar [19] for the two-dimensional
BTW model.
We can also find that the matrix m*(A) defined by (4.19) is in the form (4.20) with

u = —2d, b=(1-e/a’?,

c=(1-e?)/a'? q=(1—e")/a'/? —2da'*(g1 — e go),
e=(1—e)/a? —2da' (g1 — e Pg0),  f=(91—93)—ego— ),

s = (91— 93) — e g0 — o), v= (91— 90) — e (g0 — 1),

k= (91— g90) —e g0 — 1), h= (g1~ g2) — (g0 — g1),

t= (91— g2) —e g0 — 90)-
The formula (4.21) gives
* d—
detm*(A) = —2d [{1 — (90 — 93)}* — (92 — 93)2] " x det S,

where 1
det S = b1(d,a, A) + ba(d,a, \)—.
n

with some functions b and by of d, a, A. Since (3.11) gives

AN =14+a+4++ala+2) =1+v2a?+0(a), asal0,
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we found that

bi(d,a,\) = O(d?),
4(d—1)(

bg (d, a, )\) = d

90— 93){1 — d(go — gs) 1+ (d — 1)(g0 — g3)} + O(a'/?), as a | 0.

Thus we obtain

_detm*(A)detm*(=A)  [2d{1 + (d — 1)Gos}]?
lim = — .
al0 (det m)2 (d — 1)g03

Since limg,o c1(d, a) /al®=3)/* = (d/(27%))(4=3)/4/(47), (4.12) of Theorem 4.6 is proved.

5 Discussions

5.1 Critical exponent v,

The results (3.8) of Theorem 3.3 and (4.11) of Theorem 4.6 mean that both of G(x(r)) and
Coo(x(r)) decay exponentially as increasing r with a correlation length £(d, a). Since £(d, a) < oo
for any a > 0, the stationary state of the DASM is non-critical [28]. Moreover the theorems
imply that, if we make the parameter n be large with a fixed m, then the value of a = m/(2dn)
can be small and

—r/&(d,a)
-~ d—3)/4€
nG(x(r)) = Cl(d)a( % a0z (5.1)
—2r/&(d,a)
Coolx(r)) = ea(d)a™VPZ—rm— . asr 1 o0, (5.2)

where ¢;(d) = (d/(27%))(3)/%/(4r) and ca(d) is given by (4.12).
Consider a series of DASMs with increasing n with a fixed m. Then we will have an increasing
series of correlation lengths {£(d,a)} and we will see the asymptotic divergence,

1
dya) = ——a " as a—0 5.3
£(d, a) od (5.3)
with 1

Va= g for all d> 2. (5.4)

We notice that, if we identify a with a reduced temperature

|T — Tc|

t = 5.5
- (55)

around a critical temperature Tt in the equilibrium spin system, (5.1) with (5.3) and (5.4) is
exactly in the Ornstein-Zernike form of correlations in the mean-field theory of equilibrium phase
transitions (see, for instance, Eq.(61) in Section 3.1 of [14]). This implies that we can regard
(5.3) as a critical phenomenon with a parameter a approaching to its critical value a. = 0 and
we can say that the associated critical exponent v, is exactly determined as (5.4). Vanderzande
and Daerden discussed the exponent v, for the DASM on more general lattices [29].
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This exponent may be identified with the critical exponent v = 1/2 obtained by Vespignani
and Zapperi by the generalized mean-field theory [30]. They claimed that they made only
use of conservation laws to evaluate v = 1/2 and thus at least on this result their mean-field
theory is exact for any d > 2. The present work justifies their conjecture. We can conclude
that with respect to the avalanche propagators and height-(0,0) correlation functions the upper
critical dimension of the ASM is two. This result does not contradict to the result by Priezzhev
[24], since he studied the intersection phenomena of avalanches and for them the upper critical
dimension is four.

The results (5.1) and (5.2) suggest that there exists a scaling limit such that

lim %G (x(r)) = Fa(k),
r10o0,al0:
al/ZT:n/m

TT;(i)rlrzlw. r2d000(x(r)) =Fco(k), 0<k<oo
al/zrz7n/\/ﬂ

with
Folk) = 2 @H0/2(@1)/2, (4820
_ e [T+ (d—1)772 B
— (d+1) _—(d—1) [ 2 T \& = L)} d+1 —k
Fo(k) 2 s [ =15 KT e™",

This observation is consistent with the statement
Gx(r) ~r 42 asr oo (5.6)

and (4.3) claimed by Majumdar and Dhar [19] for the self-organized criticality realized in the d-
dimensional BTW model with d > 2. (Note that for the two-dimensional BTW model, G(x(r))—
G(0) ~ —(1/2m)logr, as r T 00.)

5.2 The ¢ — 0 limit of the Potts model

Majumdar and Dhar [20] discussed the relationship between the ASM and the ¢ | 0 limit of the
q-state Potts model. For q € {2,3,...}, the ¢-state Potts model on the lattice G, = (Gg}), G(Le))

given by Definition 2.8 is defined as follows. At each vertex v € G(LU) = Ap U {r}, put a spin
variable s(x) € {1,2,...,¢q}. The Hamiltonian for the configuration s = {s(v)} ) is given

by

VGG(LU
H(s)=— > 1s(v) =s(w)).
e:{v,w}EG(Le)

The partition function of the Potts model in the Gibbs ensemble with a temperature 7" > 0 is
defined by

2@1) = 3 M

(v)
se{1,2,..., q}GL

> [T [1+x6m) =sw) (5.7)

sE{l,Q...,q}G(Lv) e:{V’W}EG(LC)
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with x = e!/7—1. We consider a subset of G(Le) denoted by E C G(Le). Each connected component
in E is called a cluster. Let ¢(F) be the number of disconnected clusters of F; E = Uj(:El) E;

where E; N E; = 0,7 # j. If a vertex v € G(LU) is not connected by any edge in E, we write
v ¢ E. By performing binomial expansions and taking the summation over spin configurations
in (5.7), we obtain the Fortuin-Kasteleyn representation of partition function,

(v). .
Z(an): Z ql{VEGL 7V¢E}‘qC(E)X|E‘7 (58)
ECG(LE>

where |E| denotes the number of edges in E. Note that we can regard (5.8) as a function of
g € R and T > 0. We consider the asymptotics of (5.8) in the limit ¢ | 0. The dominant terms

in this limit should be with E such that ¢(E) =1 and {v € G(Lv) :v ¢ E} =) < E contains all

vertices in Gg}) <= F is a spanning subgraph of G. If we further take the high-temperature
limit T' T oo <= x | 0, we have only spanning subgraphs with a minimal number of edges,
which are just the spanning trees. Then we have

BT 2L+1)¢ —1 _
Jim lim T2 (0, T) = |Ta,
where Ty, is the collection of all spanning trees on G1. As shown in Section 2.4, there establishes
a bijection between 77, and Aj, (Lemma 2.11) and Az, = R, (Proposition 2.12). (The relation
between the ¢ | 0 limit of the g-state Potts model with finite temperatures and the ASM is
discussed in Section 7.2 in [7].) The two-dimensional g-state Potts model shows a continuous
phase transition associated with critical phenomena at a finite temperature 0 < T, < oo without
external magnetic field B = 0, when ¢ = 2,3 and 4 [31].

Usual critical phenomena of spin models are specified by the behavior of two-point correlation
functions for the energy density G¢(r,t,b, L) and for the order-parameter density G, (r,t,b, L).
Here r denotes the distance of two points, ¢ the reduced temperature (5.5), b the reduced external
field
_ Bl

T.’
and L the size of the lattice on which the model is defined. It is conjectured in the scaling theory
that, if L is sufficiently large and we observe the system in the very vicinity of the critical point;
t < 1,b <« 1, the correlation functions behave as

b

Gelrt,b, L) = L¥F, (41" bL" )|

Go(r,t,b,L) = L F, (%tLy‘, bLyb) , (5.9)

with the scaling exponents ., Zs, Y, Yo, and the scaling functions F., F,. If the system is of
d-dimensional, the hyperscaling relations z.+y; = d, x5 +yp = d hold (see, for instance, [13, 14]).
From the scaling forms (5.9), we expect the power-law behavior of correlation functions at the
critical point (t = b =0, L 1 00) such that

Ge(r) ~r72e Gy(t) ~r 2% asr 1 oo,
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and in the off-critical regions with L 1 co, the correlation length & = £(t,b) behaves as
_ . 1
(t,0) ~t™ with v, = —,
Ye
1
£0,0) ~b™ with 1y, =—, ast]0,bl0.
Yb

For the two-dimensional g-state Potts model, the critical exponents are determined as func-
tions of ¢ through the parameter

u=u(g) = 2 cos™ (\f)

as [31] X 31— )
+u —Uu
v O
1—u? B—u)(5—u)
e =, =2—p, ="
B TR v ’ 42— )

They give the limits
ze—>2, yy—0, zo—0, yp—2, asqll<=utl.

Majumdar and Dhar [20] noted by their results (4.3) and (5.6) for the BTW models that the
avalanche propagator G(x(r)) and the height-(0, 0) correlation function Cpo(x(r)) in ASM play
the roles of the order-parameter density correlation function G,(r) and the energy density
correlation function G.(r) in the critical phenomena, respectively. In particular, in the two-
dimensional case, the power-law exponents are respectively given as

2, —o0= (d72)‘ o 2
ql0 d=2

¢l0 d=2"

Our interpretation of the present result (5.4) is that introduction of dissipation to the ASM may
correspond to imposing an external magnetic field B to the Potts models and hence v, = 1/2 is

identified with .
14 ‘ = —
ql0 Yb

1

5

ql0
We remark that the critical exponents for the specific heat «, for the order parameter /3, and
for the magnetic-field susceptibility v of the

2(1—2u)% 5 1—|—uH1 7 — du +u?
o= ——>= —00 = —_ = —
31— u) ’ 12 6 T 61—

— 00, asqll0<=utl.

We suspect some interpretation of the value 8|y0 = 1/6 in the DASM.
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5.3 Recent topics on height correlations

In Section 4 the one-point and the two-point correlations of height-0 sites were calculated for
the DASM with general d > 2. In the two-dimensional case, the three-point and the four-point
correlations were also calculated for height-0 sites and general property of ‘the height-0 field of
ASMSs’ have been extensively studied from the view point of a ¢ = —2 conformal field theory
[18, 8§].

For the two-dimensional BTW model, in which the values of stable height of sandpile are
h = 0,1,2, and 3, the height correlations have been calculated also for h > 1. Priezzhev
determined P, for « € {0,1,2,3}, where the results with oo > 1 are expressed using multivariate
integrals of determinantal integrands [23]. Poghosyan et al. [22] claimed that the height-0 state
is the only one showing pure power-law-correlations and that general form of height correlations
for h > 1 contains logarithmic functions. They showed that for o > 1

_ Poa(x(’r‘)) — Popa
POPa

1
~ ﬁ(cllogr—l—cQ), as r T oo

Coa(x(r))

with some constants ¢, co. Moreover, they predicted that Cos(x(r)) ~ log?r/r* if @ > 1 and
B > 1. These results are discussed with the logarithmic conformal field theory. See also [11]. We
will see a lot of interesting open problems concerning height correlations for the BTW models
and the DASMs in higher dimensions.
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Diffusions associated with GAF
Hirofumi Osada (Kyushu University)

This manuscript is an announcement and based on the talk
Diffusions associated with Gaussian analytic functions
on Workshop on (2015/4/30/Thu-2015/5/1/Fri Kyushu)
" Probabilistic models with determinantal structure”.

Proofs of Main theorems will be given elsewhere.

We construct unlabeled diffusion reversible to random point fields
given by zero points of GAF. The standard planar GAF is the random
entire function with Gaussian coefficients:

= &k
f(z) = —=z
2 i

e {&} is i.i.d. standard complex Gaussian.
e The zero points of f are regarded as configuration on C (R?).
o Let ugar be its distribution. Rotation & translation invariant.

The standard planar GAF

Problem 1. We discuss three problems:
e What is the natural ugap-reversible diffusion X = {X;}. Here

o
Xp=) dy; (unlabeled diffusion)
i=1

How to construct X = {X:}7

What is the SDE representation of X; = (X})?

Let S be the configuration space. Let s=7)",ds €S.
Let D is the standard square field on S:

Blf gl =5y oL %0

i=1 é)si 8SZ'

Here f is a local and smooth function on S, and f(s1,...,) is a

symmetric function such that f(s) = f(s1,...,).
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Main theorem: Set Up
e Let Dy be the set of local smooth functions. Let

EHGAR(f, g) = / DI, dldugar  on L2(5, uGar)

with domain DgCAF = {f € L?(ugaF); f € Do, ENGAR(f, f) < oo}
Thm 1 (O. 15) (EHGAF DEGAF) s closable on L?(uGar)-

e Proof of Thm 1 consists of “Ghosh’s quantitative bound of GAF"
and “a generalization of [O. '13]".

Let (EHGAF DHGAF) be the closure on L2(ugar)-
Thm 2 (0O.15). (Construction of dynamics)
(1) ugap-reversible unlabeled diffusions X

oo
X; = Z 6Xf
=1

associated with (EMGAF, DHGAF) on L2(ugap) exists.
(2) X =(X})ien is a CN_valued diffusion.
(3) Each tagged particle X} does not collide each other.

Main theorem: GAF diffusion
e Thm 2 follows from a general theory in [O.’96,'04,'10,'13]" and
the closability in Thm 1.
e We have not yet obtained the infinite-dimensional stochastic dif-
ferential equation describing the labeled dynamics X = (XZ).

This is a problem to calculate the logarithmic derivative of ugafg-

I have been developing a general theory for interacting Brownian
motions in infinite dimentions, and like to apply to GAF. I would
explain about this.

e We solve ISDEs of the form

dX} = dB} 4+ b(X},XPVdt (i € N) (1)
Here X; = (X},...,) € (R:)N-valued, and X{" = (X{)jem (3}

e The coefficient b(x,y) is symmetric in y = (y;);en for each x € R2.
B, = (B},...,) is (R?)N-valued standard Brownian motion.
We will construct weak solution (X, B).
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Our method can be applied to the case with o(X?, X %) dBi.
For simplicity we talk about (1) only.
e Because of the symmetry of b(z,y) in y, we can rewrite
dX} = dB} + b(X{,X?)dt (i € N) (2)
Here we regard b(zx,-) as a function on the configuration space.
e Gibbsian examples for suitable a and d: (i € N)
e (LJ 6-12): d=3 Lennard-Jones 6-12 potential
e (Riesz): a>d+2 Riesz potential (Gibbsian case)
- . . . )
; ; 12(Xf - X)) 6(x}—Xx]
dXZ':dBizt'i'g Z { S L j1t4)_ (it jt8)
j=1,j%i [ Xt = Xil | X — X
- ) )
X i Xt XJ
dXZ:dB;JréZ L

i J
252 Xt = X~

Yt (LJ 6-12)

(Riesz)

e We recall the examples: (i € N) and o(z) = 7\/;11(—00,0](93)'

: B 1
i oami g By .
dX{ = dB} + 5 ,“j; E = det (Sine)

|Xi-X]|<r, j=i 0t Tt

axi=ani+ 3 Y - [ a4
- Xj z|<r

7, | X |<r

. . a B 1
dX! = dB} dt + — —dt Bessel
t=d t+2XZ( +2§X5—X]( ( )
dX{=dB{+ lim y L L (Ginibre)
r—oo _ |Xz _ X]|2
Ixi-x]|<r Tt t
JF
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Algebraic construction in 1D. Letd=1 and g = 2.
e Sine, Airy, and Bessel can be constructed by space-time correla-
tion functions. So there are two very different constructions for 1D
system woth g = 2 arising from Random matrix theory.

Thm 3 (O.-Tanemura '14). Let u be Sine, Airy or Bessel RPFs.
Stochastic dynamics constructed by stochastic analysis and the space-
time correlation functions are equal.

e The importance is the following. From algebraic construction we
can obtain quantative infomation such as moment bounds of linear
statistics. From analytic construction, we can obtain qualitative
information such as semi-martingale property of tagged particles,
non-collision property, non-explosion property, Itd formula, and so
on.

e At present, such a algebraic construction is restricted d =1, g =
2 and dynamics coming from Random matrix theory (logarithmic
interactions).

Algebraic construction in 1D.
As an example, we explain Airy.
e Space-time correlation functions are given by the extended Airy
kernel:
I due E=9)/2Ai(u 4+ 2)Ai(u + y), t>s
- ff’oo due= =) /2 Aj(u 4 z) Ai(u + y), t<s’

The unlabeled process Z; = Y ;24 5Z,; is given by its moment gener-
t
ating function (f = (f1,..., far), t = (¢, -, tar), t < tig1)

Kpi(s,z; t,y) = {

M
t — xT X
vt =rPloo( 3 /]R F(@)Z4,,(d2)}]

defined as a Fredholm determinant
W] = Det, jyer2, (ny)er2lstd( — v) + Kai(s, 28, 9)xa(y)].
Here I = {t1,...,ty} and x4, (y) = efm) 1,
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Ginibre interacting Brownian motions in infinite-dimensions.
e We write Ginibre in non-consice form SDEs:

o0 1_ i
X! - Xx;
dx} = dB} + lim > R
r—00 ) |X1 _XJ|2
GELIXE=X]|<r T T
00 2 J
X?2-X
dX? = dB? + lim > ale Mt 38
r—00 ) |X2 _XJ|2
JE2,IXP-X]|<r T T
o0 3y
X3 - X
dX? = dB? + lim > ke Bt 38
Y r—00 ) |X3 7X]|2
G XX |<r T T
o) 4 J
XA - X
dXjt = dB} + lim > ks M 2
. . r—00 |Xf7Xi|2

%4 | XX |<r

Ginibre interacting Brownian motions in infinite-dimensions.
e Ginibre in non-consice form SDEs in the 2'nd representation:

0 Xl _Xj
dX} =dB} — X}dt+ lim Y L L
r—00 ) |X1 _XJ|2

GELIX]|<r T T

o0 2 _ i

X? - X;
dX? = dBf — Xfdt+ lim Y —L L
Y Y r—00 ) |X2 _XJ|2

372, X< T T

o0 3y

X3-X
dXP =dBP — XPdt+ lim Y L L
g g g r—00 ) |X3 7X]|2

573, | X |<r ¢

o0 4 J

XA - X
dX} = dB} — X[t + lim S e
g g g r—00 |X;17XtJ|2

4, | X |<r
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Cofiguration spaces
Set up:
e S = R? Space, where particles move,
o Sp ={|z| < r},
o S={s=>",6s;, s(Sr) < oo(Vr)}:
Configuration space over S.
Polish space with vague topology.
The space of unlabeled particles.
e SN is the space of labeled particles.
e s =) .ds, denotes unlabeled particles.
s = (s;) € SN denotes labeled particles.
e Since SN is too large, we use S instead.

e B =372 635 is S-valued Brownian motion.

e By = (B});cn is SN-valued Brownian motion.

Canonical square field B 5
For a fun fonSlet f(s) =: f(s1,...), where f is symmetric, s =" Js,.
Let Dg be the set of bounded, local, smooth functions f on S.
i.e. fis o[ry]-measurable for some r < oo, f is smooth.
Let D be the canonical square field on S:

1 = -
DIf,g1(s) = 5D Vil - Vig.
i
Here V,; = (%,...,%ﬁ).
The rhs is independent of particular choice of label.
e For a RPF p we set

£4(f,g) = /S DI, glu(ds),

D = {f € Do; E(f, ) < o0, f € L*(n)}
e If we take u = A, Poisson RPF with Lebesgue intensiy, then the
bilinear form associates Brownian motion B; =}, 53;"

In this sense D is the canonical square field.
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From RPF to unlabeled diffusion
Outline of the proof:
> .
n=(EM, DY, L2 () =X = ZI‘SXZ =X = (X))ien = ISDE
1=

e The first arrow is automatic. For a given RPF p, we can associated
a positive bilinear form through the square field D.

o If (8“,D6‘,L2(M)) is closable and its closue is quasi-regular, then by
Dirichlet form theory an associated p-reversible diffusion X; exists.
e For this we introduce a notion of quasi-Gibbs measure.

If u is quasi-Gibbs with upper semi-continuous potential W, then the
bilinear form id closable. In addition, u satisies a marginal condition
(local boundedness of correlation functions, say), then the form be-
comes quasi-regular. Hence by the general theory of Dirichlet form
there exists the associated unlabeled diffusion X;.

W-Quasi-Gibbs meas.
e Quasi-Gibbs measures:
o m, E:S—S: projections mr(s) =s(-N.Sy), 7&(s) = s(-NSE)
e For a RPF . we set “Ti(.) = p(mr € +|s(Sr) = m, w&(s) = w<(€))
e Let W:S—RU{co} (interaction).
7’[7' == Z \U(S,,; — 5])
84,8;€5r,i<J

Def: u is W-quasi-Gibbs measure if 3 c;”g s.t.

et e MrdAT <l < e HrdAT
Here A" = A(+|s(Sr) = m) and A, is the Poisson RPF with 1g dx.
e Gibbs measures = Quasi-Gibbs measures: If u satisfies DLA eq.
—Hr= 056 e58 Y (@irgs)

Hrg = Cree dnT (DLA)
then p is a canonical Gibbs m. (DLA) does not make sense for
V(z,y) = —log |z — y|
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Application of quasi-Gibbs property to dynamics

o0
= (DG, L2 (1) =Xe = Y 6y =X = (X]))jen = ISDE
i=1

Unlabeled diffusions
(A1) pis @ W-quasi-Gibbs m with upper-semicont

Thm 4 (0.'96 (CMP) (closability)).
(A1) = (£#,Df) is closable on L?(p).

e Thm implies the existence of the associated L2 Markovian semi-
group.

Thm 1 (A1) = (€#,Df) is closable on L2(p).
Proof. Outline of (1): e Let

g#f,lg(f,g) = /]D)[f,g]du;ng (reflecting BC).
S :

Then (8“XL57D57"5) is closable on Lz(u;ng) by (A1).

e Recall the disintegration: p(:) =Y oo—1 y;“g(-)u(dg).
Then (&}, Df) are closable on L?(u). Here
oo
é#(f,g)z/ > EMre(f,9)du  (reflecting BC).
S

m=1

e By the monotone convergence theorem of closable forms we see
cp = i oH Doy = {f i cH
5 (faf) Tllﬁrgog7(f7f)7 DO {frrll_[gogr(f7f)<oo}

is closable. Hence (8“,1)6‘) is closable. U
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Application of quasi-Gibbs property to dynamics: existence of diffusions
(A2) 372 ku(SE) < oo, of € L2(SE, dx)
Here SF = {s(S,) = k}, oF is k-density fun on Sk,
Thm 5 (0.'96 (CMP) (existence of diffusions)).
Assume (A2). Assume that (8“,1)6‘) is closable on L2(u).
Then 3 diffusion Xy = Zi ) i associated with the closure
t

(&M, DM) of (M, D) on L2(p).
Proof. This follows from a concrete construction of cut off function,
which vyields the quasi-regularity of Dirichlet forms. The general
theory gives the diffusion. L]
Remark 1. e In general, the closures of the limit Dirichlet forms

(EH, D) and (&, DH)

are not equal. We will prove the coincidence of these by using the
strong uniqueness of the solutions of the associated ISDEs.
e Lang’s dynamics ('79) are given by the Dirichlet form (&#,D).
O'’s ('96) dynamics are given by (E#,DH). O.-Tanemura prove these
are the same if tagged particles have no explosions.

Let Wy(x,y) = —log |z — y| be the 2-dim Coulomb potential.

Thm 6 (O. AOP '13, O.-Honda '14, O.-Tanemura '14).

(1) Ginibre RPF is a 2Wy-quasi Gibbs measure.

(2) Sineg RPF are BWy-quasi Gibbs m for f =1,2,4.

(3) Bessel RPF is a 2Wy-quasi Gibbs m.

4) Airyg RPF are pWj-quasi Gibbs m for 8 =1,2,4.

e GAF is not quasi-Gibbsian. Indeed, Ghosh proved:

Thm 7 (Ghosh '12). Let u = ugap- Then there exists constant c:,':%
such that

1 4 _
e MANTICe(O)] < pi < e MraATCe(©)]
r€

for p-a.s. £&. Here Ce is wi-measurable, and

APIMY = NP Y s = M).

i=1
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General theorems on infinite-dim SDEs

[o0]
po=(E", DY L2 () =X = Sy =X = (XDieny = ISDE
i=1
Labeled dynamics
(A1) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y02 ku(SE) < oo, of € L2(SF, dx)
(A3) {X}} do not collide each other (non-collision)

(A4) each tagged particle Xti never explode (non-explosion)
By (A3) and (A4) the labeled dynamics

Xy = (Xt X7,...)
can be constructed from the unlabeled dynamics
Xp=>" Oxi
ieN
Indeed, the particles keep the initial label forever.

Sufficient condition of (A3) & (A4)

Let S,; =SsN5S;:

Ss={s€S;s({z})=0forallze S}, S;={s€S;s(S)=o0}
e (A3) is equaivalent to

Cap#(Sg ;) = 0. 3)

Let p™ be a n-correlation function of pu.
Lem 1. Suppose n is quasi-Gibbs with W. Let p2 be 2-correlation
function of u. Suppose one of the following holds. Then (A3) holds.
(1) d > 2 and p? are locally bounded.
(2) d=1 and

p?(z,y) < Ch(|z — y|) locally near {z = y}.

Here h(t) such that

11
/ L= .
o+ h(t)

Corollary 1. Sineg, Airyg, Besselg (B > 1), Ginibre RPFs satsfy (A2).
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General theorems on infinite-dim SDEs
e By (A3) we represent one-labeled process (X},Z?‘;Q 6X]-) by the
t

Dirichlet space
e, ot 12uy).

Applying Takeda criteria based on Lyons-Zheng decomposition we
deduce (A4) from 3T >0

lim inf{ pl(x)dx}{/ g(u)du} =0 forall . (4)

r—00 |z|<r+R —r

V(r+R)T

Lem 2. (A4) follows from (4).

SDE representation

0.]
po=(EFDE L2(1) =X = Oy =X = (XD)ien = ISDE

i=1

ISDE representation
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Log derivative of u: precise correspondence between RPFs & potentials

e Let uy be the (reduced) Palm m. of u conditioned at =

/Lzzf(') = /L(' - 5:1?‘5(1’) > 1)
e Let ! be the 1-Campbell measure on RZxS:

ur(AxB) = / pl(:c)p,q;(B)d:c

o d¥ € IOC(]Rdxs ul) is called the log derivative of y if

Vofdut = — / fdtdut Vi e CPRY) @ Do
JRAXS RIXS

Here V, is the nabla on RY.
e Very informally

=V log Nfl

Log derivative
A very informal calculation shows:

o If pl(dwds) = m(x,sq,...)ds [1; ds;, then
- /sz(a;sl, C)pt(dadsy )
— /me(x, s1,...)m(x, s1, .. .)dedsi
7

= / f(x,81,...)Vam(x,sq, .. .)dedsi

= / flz,s1,... Vzm(w Lo )m(x, $1,...)dx Hdsi.
m(x S1,...) ;

Hence

Vaem(z,s1,...)

d =
m(x, s1,...)

= Vgzlogm(z,sq,...).
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General theorems on infinite-dim SDEs
(A1) p is a W-quasi-Gibbs m with upper-semicont W.

(A2) 3202 ku(SK) < oo, of € L2(SF, dx)

(A3) {X}} do not collide each other

(A4) each tagged particle X} never explode

(A5) The log derivative d* € LL (ul) exists =(SDE representation)

Thm 8. (0.12(PTRF)) (A1)—(A5) = 3S¢ C S such that u(Sg) = 1,
and that, for Vs € u=1(Sy), there exists a solution (X,B) satisfying

) o1 i ¢
dX} = dB} + Sd"(X}, 3 0, )dt, (Xp)ien ='s
JFi
X, eu1(Sy) forallt

Here u:SN—S such that u((s;)) = 3, s,
Corollary 2. Suppose that there exists a RPF p satisfying (A1)—(A4)
and

Ve log ultl(z,s) = 2b(x,s).
Then ISDE (1) has a weak solution.

General theorems on infinite-dim SDEs
Proof:
e SN does not have good measures = no Dirichlet forms on SN =
Introduce a sequence of spaces with Campbel measures M[M]:

SMxs,  dpt™ = pM (xpp) pix,, (ds)dx
Here pM is a M-correlation function of p and Ix,, 1S the reduced
Palm measure conditioned at x,;.
Let DIM] pe the natural square field of SM xS. Let
eM(f0)= |

(M] (M]
sstD [f; gldp'™,

L2y, g (sM) @ Do.
Lem 3. These bilinear forms are closable, and their closures are
quasi-regular Dirichlet forms. Hence associated diffusion (XM, xM*)
exists:

o0
M,1 MM
(Xg\/‘f7xé\/[*)=(Xt ,..A,Xt s Z 6X]\/I’i)
i=M+1 !
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Coupling of Dirichlet forms:
e Let fix a label £. Let

o0
Xe = i
t Z 5XtL
i=1
be the unlabeld diffusion associated with the original unlabeled Dirich-

let form
(€%, DH, L2 (1)).
Thm 9. Associated diffusions have consistency
(M MM MMAL Y = (xp o x M XML ) in law
or equivalently

oo
XM xMsy = (xt .. xM, Svi) in law
O X)) = (X tl:%lxt)
From this coupling and Fukushima decomposition (Itd formula) we
prove that (Xti) satisfies the ISDE. We use the M-labeled process
(XM, XM*), to apply Itd formula to coordinate functions 1, ...,z;.

Coupling of Dirichlet forms:
e The key point here is that, instead of large space
gN
we use a system of countably infinite good infinite dimensional sapce
StxS, §2xS, §3xS, §4xS, $°xS, S0xS, S7xS, ---
e By the diffusion X on the original unlabeled space
S,
we construct a coupling of diffusions (XM XM*) on these inifinite
many spaces SM x§.
e From this coupling, we have the ISDE representation. Indeed, we
can apply Itod formula to each coordinate functions f(x) = z;. We
use EMI(f g) for 1 <k < M.
e The log derivative gives the precise correspondence
between RPFs u and potentials (d,W).

e We next give examples of logarithmic derivatives
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d* = V log ,ul
Thm 10 (O. PTRF 12/Honda-O. SPA 15/0.-Tanemura).

T —S;
Hgi — | i
dtain(z,s) T|I_>I’Yo102 Z 2 — 52
|x—s;|<r
dtain(z,s) = —2z + lim 2 Z LTS
T |z — si[2
|sil<r
1
Lsin, — i
d smﬂ(m’s)_rlggoﬁ Z p—
|x—si|<r v
a 1
d”bes,Q(x’ s) = a +2 Z
x T —8;
|x—s;|<r
) 1
dHais(z,5) = B lim {( > )—/ @d;c}
e |x—si|<rm TS |z|<r =
vV —Z
o(z) = ———1(—00,0) (%)

Calculation of logarithmic derivative
e Assume that n-point cor funs {pN’"} satisfy for each r,n € N

lim V" (x) = p"(x) uniformly on S”, (5)
N—o0

sup sup pV"(x) < Cf”an", 0<C<o00,0<Cr<1, . (6)
NeNxeSp

e We assume that pV have log derivative d"V such that
dN(z,y) = uN (@) + & (2,y) + wl (2,y) €9
Here g, gV, v, vV: 52 = R? and w:S—R? and set (y = ¥, dy,)

s =[  vendt Y g,

lz—yil<s

g (z,y) =/ Npdy+ > gV (@, w),

[==pl<s o~ gii<s
W= [ Mepd+ Y o @) € L.
sl s<|z—y;l
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o let 1 <p<p<oo. Assume that

lim sup/ |dV — uN PNl < 0o for all r €N (8)
N—oo JSpxS
Jim_ WV =u in LP (S, dx) (9)
A}:ﬂ gN =g in Llpoc(ul) for all s, (10)
lim Iimsup/ lwN (z,y) — w(z)Pdp™N't = 0. (11)
S=00 Nooo JSpxS
Recall that
sen=[ e+ Y g@w
Jz—yl<s .
lz—y;|<s
Thm 11. Assume (5)—(11). Then d* exists in Lf’oc(pl) given by
d“(z,y) = u(z) + lim gs(z,y) + w(). (12)
S—00

Calculation of logarithmic derivative
e Ginibre RPF, we take

N(a:) = u(x) = —2x, UN(a:,y) =v(z,y) =0, w(zx)=2z,

2(z —y)
gV (z,y) = g(z,y) = T
eAiry RPF:
uNa) = p{ [ 22 x(y)d }le/s,Lz” "
w(z) =B lim { Mdy—/ oW, Y}
8200 JIs|<s T — Y lyl<s —Y
1
Nay) = -2 x(y) v(a,y) = —Bw
B

w@ =0, oy =gy ="
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