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We never linearize, but we do consider the associated linear problem. Ed Spiegel
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Chapter 1

Fluid instability, the continuous
spectrum and asymptotic models

1.1 Introduction

Fluid flows in the laboratory and in nature present us with many examples of instability.
Figure 1.1 shows a small fraction of the range and beauty of instabilities. Fluid dynam-
icists have been studying instabilities since the 19th century with the work of Reynolds,
Rayleigh, Couette and others. In fact the work by Reynolds that led to the very concept
of a Reynolds number concerned stability.

The breakdown of apparently simple flows can produce complicated time-dependent
structures which are observed in the ocean and atmosphere. For example, the jet stream,
the Gulf Stream (see Figure 1.1), the wake behind Jan Mayen island and other features
can be interpreted as the result of the instability of a jet-like flow. In the geophysical
context, it is interesting to understand why the entire flow structure, perturbed though
it may be from some putative underlying simple jet or other basic state, does not break
down completely into turbulence. The stratification and rotation present in large-scale
geophysical flows play an important role in this persistence of coherent structures. We
shall not investigate these physical effects, but we will look at coherent structures.

In many applications, one seeks to minimize instabilities so as to retain a certain lami-
nar flow over a range of parameters, or instead to maximize instabilities and hence obtain
a turbulent flow (e.g. to enhance mixing). We will not discuss the transition to turbulence
at all here.

1.1.1 Stability and instability

Reynolds’ original experimental apparatus still survives. As is well known, he examined
the nature of flow in a smooth pipe as he increased the flow rate. In modern terms,
he was increasing the Reynolds number. What he found was that the laminar (literally
‘sheet-like’, i.e. smooth.) state of motion was replaced by a complex turbulent motion
that eventually filled the width of the pipe and led to efficient mixing. Figure 1.2 shows a
typical experimental result.
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Figure 1.1: From left to right and top to bottom. Rayleigh–Taylor instability, simulated
on the Blue Gene supercomputer. Shear instability of a jet: meanders formed on the jet
have broken up to form vortices. Saffman–Taylor instability. Kelvin–Helmholtz instabil-
ity visualized by clouds. Gulf Stream eddies visualized by SST (Sea Surface Temperature).
References are at the of the chapter.

As it happens, the particular problem of the stability of pipe flow is a difficult one
and not yet fully understood (cf. e.g Willis et al. 2008). However, the idea that the flow
is laminar for a control parameter (here the Reynolds number) below some critical value
and unstable above it is fundamental to the whole field. The experimental protocol of
changing the Reynolds number and observing the response of the fluid corresponds to
the theoretical problem of understanding the stability of the flow at a given value of the
Reynolds number (or other control parameter). The notion of a critical value of a control
parameter R requires a little discussion, and one is given in Schmid & Henningson (2001).
This is related to the various notions of stability that exist in the dynamical systems litera-
ture (e.g. Lyapunov stability, asymptotic stability,. . . ). For now we shall limit ourselves to
the critical value obtained from the linear stability problem. As it happens we shall often
be working in the inviscid case where there is no control parameter, and the flow is either
unstable or not, depending on its velocity profile.
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Figure 1.2: Transition from laminar to turbulent flow in pipe (Reynolds’ experiment). The
laminar flow entering the pipe from the right breaks up and becomes disordered.

1.1.2 Outline

In this lecture, I will give a quick overview of what might be called the classical theory of
fluid stability. My goal is to proceed rapidly through the basics to reach critical layers and
the continuous spectrum. These will motivate an outline of more recent work on ‘vorticity
defects’. This defect theory is drawn from the work of del-Castillo-Negrete, Balmforth &
Young (1999), in which further details can be found.

I feel quite apprehensive about providing such an overview, given the wealth of excel-
lent books and articles available (as well as the prospect of following Sherwin Maslowe).
I have drawn heavily from the following sources: Lin (1966), Drazin & Reid (1981),
Maslowe (1985), Drazin (2002a) and Schmid & Henningson (2001). Other relevant books
include Chandrasekhar (1961), Betchov & Criminale (1967), Joseph (1967) and Criminale,
Jackson & Joslin (2003). I will not begin to list the many relevant articles. Any shortness
of treatment can be remedied from these sources.

1.2 Classical theory

1.2.1 Preliminaries

We limit ourselves to flows with constant density and without free surfaces, moving
boundaries, background rotation, magnetic fields or other effects. We are hence losing
a host of physical mechanisms that can destabilize or stabilize a flow. The only param-
eters remaining in our problem are viscosity and the background flow and geometry of
the system. If we non-dimensionalize our equations with an appropriate velocity scale U
and length scale L, we are solving the Navier–Stokes equations

Du
Dt

= −∇p +
1

Re
∇2u, (1.1)

∇·u = 0, (1.2)
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where u and p are the dimensionless velocity and pressure, and Re ≡ UL/ν is the
Reynolds number, with ν the kinematic viscosity. The appropriate no-slip boundary
condition is then u = 0. In what follows we will also consider the inviscid case where
Re → ∞. In that case we lose the highest derivative and the boundary condition applied
to the normal velocity component, giving u·n = 0, the no-penetration condition. If the
flow domain is unbounded, some sort of decay or boundedness condition on velocity is
required. This is usually fairly clear.

The fundamental idea is that we have some basic state, i.e. a velocity field U and a
pressure field P. We wish to understand if, given some initial perturbation, the perturba-
tion grows. In the linearized approach, we neglect quadratic quantities in the governing
equations. Then the linearized equations for the perturbation (u′, p′) become

∂u′

∂t
+ U·∇u′ + u′·∇U = −∇p′ +

1
Re
∇2p′, (1.3)

∇·u′ = 0. (1.4)

The coefficients of this equation are independent of time, so one can find normal mode
solutions with eσt dependence. Similarly, if U is independent of y, one can write the
solution (or Fourier transform) as being proportional to eiβy.

What basic states are possible? The classical geometry is unidirectional flow in a chan-
nel so that U = U(z)i. Then, depending on the boundary conditions, the basic state is
a combination of Couette and plane Poiseuille flow. One can consider semi-infinite do-
mains in which one can obtain e.g. boundary-layer profiles such as the Blasius boundary
layer. Formally this is problematic. Not so much because the equations are not satisfied
(one could add a body force to fix this – see e.g. Young & Manfroi 2002 and other work on
Kolmogorov flows), but rather because of non-parallelism. One can argue that these flows
vary slowly in the alongstream direction and are hence nearly parallel, but this does not
resolve the fundamental problem. I will skirt over these problems for now. If one moves
to the inviscid case, any profile U(z) is possible, both in channels and in unbounded ge-
ometries. Flow with azimuthal symmetry, i.e. u = u(r)eθ has similar properties: Couette
flow in the viscous case, anything in the inviscid case.

1.2.2 The Orr–Sommerfeld equation

This is the name applied to the equation governing disturbances to Couette and Poiseuille
flow (and more generally to nearly parallel flows but see above). We start from the dis-
turbance equations written in terms of u′ = (û, v̂, ŵ)eiα(x−ct)+iβy. Here σ = −iαc so the
imaginary part of c determines the stability of the flow. The disturbance equations are

{D2 − (α2 + β2)2 − iαRe(U − c)}û = ReU′ŵ + iαRep̂, (1.5)
{D2 − (α2 + β2)2 − iαRe(U − c)}v̂ = iβRep̂, (1.6)
{D2 − (α2 + β2)2 − iαRe(U − c)}ŵ = ReDp̂, (1.7)

i(αû + βv̂) + Dŵ = 0 (1.8)

where D = d/dz. At rigid boundaries we have û = v̂ = ŵ = 0.
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We can immediately simplify our life by invoking Squire’s transformation. Write

α̃ = (α2 + β2)1/2, α̃ũ = αû + βv̂,
p̃
α̃

=
p̂
α

, w̃ = ŵ, c̃ = c, α̃R̃e = αRe. (1.9)

Then we find

{D2 − α̃2 − iα̃ ˜Rey(U − c)}ũ = ReU′w̃ + iα̃R̃ep̃, (1.10)
{D2 − α̃2 − iα̃ ˜Rey(U − c)}w̃ = R̃eDp̃, (1.11)

iα̃ũ + Dw̃ = 0. (1.12)

But these are the same equations as in the two-dimensional case. Since α̃ ≥ α, we obtain
R̃e ≤ R and Squire’s theorem: it is sufficient to consider two-dimensional disturbances to
obtain the minimum critical Reynolds number.

Since we are now working in two dimensions we can consider the evolution of the
amplitude of the streamfunction, φ(z). We can obtain a single equation either by manip-
ulating the above equations or by considering the vorticity equation. The result is the
Orr–Sommerfeld equation

(iαRe)−1(D2 − α2)2φ = (U − c)(D2 − α2)φ−U′′φ, (1.13)

with boundary conditions φ = Dφ = 0 at the boundaries. This equation may be solved to
given an eigenvalue relation of the form

F (α, c, Re) = 0. (1.14)

For bounded flows and analytic U(z), the eigenvalue spectrum is discrete (Lin 1961). For
unbounded flows, the spectrum e.g. of the Blasius boundary layer consists of a finite
number of discrete eigenvalues and a continuous spectrum for which the eigenfunctions
oscillate sinusoidally for large z.

The Orr–Sommerfeld equation is of fourth order. This may seem paradoxical since the
original set of equations is sixth order. Squire’s transformation has decreased the order
of the system by two. In fact there is an associated decoupled equation in addition to
(1.13), known as Squire’s equation, whose solutions are stable. However Squire’s equa-
tion may be relevant for transient growth situations. For more complicated geometry, this
decoupling need not occur (e.g. Drazin 2002 § 8.10).

The effect of viscosity can be destabilizing as well as stabilizing. The former is perhaps
unexpected. A great deal of work has been carried out on the Orr–Sommerfeld equation,
in particular to understand the behavior of the neutral curve ci = 0 for large Re. This
work is complicated and would take us too far afield. Instead we move to the inviscid
case on our way to defect theory.

1.2.3 The Rayleigh equation

Formally we take Re = ∞. An inviscid version of Squire’s transformation still holds and
we obtain Rayleigh’s equation for the streamfunction φ:

(U − c)(D2 − α2)φ−U′′φ = 0, (1.15)
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with boundary condition φ = 0 at the boundaries (or decay in unbounded domains).
A number of important results about c can be obtained from (1.15) associated with

the names of distinguished mathematicians and physicists. Assume ci > 0 and multiply
(1.15) by φ∗, integrate over the domain (z1, z2), integrate by parts and use the boundary
conditions. Then ∫ z2

z1

(|φ′|2 + α2|φ|2) dz +
∫ z2

z1

U′′

U − c
|φ|2 dz = 0. (1.16)

The imaginary part is

ci

∫ z2

z1

U′′

|U − c|2 |φ|
2 dz = 0 (1.17)

and for an unstable mode with ci > 0, U′′ must change sign in the interval (z1, z2). This
is Rayleigh’s criterion, a necessary condition for instability that can be used to show that
certain flows are stable. Fjørtoft obtained a stronger form: a necessary condition for in-
stability is that U′′(U − Us) < 0 somewhere in the flow, where zs is a point at which
U′′(zs) = 0 and U(zs) = Us. Finally Howard showed that if a mode is unstable, then

[cr − 1
2(Um + UM)]2 + c2

i ≤ [1
2(UM − um)]2. (1.18)

This is the Howard semicircle theorem and shows that the c lies in a semicircle in the upper
half-plane.

It is usual at this point to go through examples using broken line profiles, for which
analytic results can be obtained, but we move on.

1.2.4 Neutral modes and critical layers

Rayleigh’s equation (1.15) has a singularity at points in the domain where U(zc) = c if
Um ≤ c ≤ UM. These z-values are known as critical levels or layers. This property was
termed by Kelvin (1880) ‘The disturbing infinity in Lord Rayleigh’s solution’. The nature
of the streamlines near the critical point was found by Kelvin (1880). Since the mode is
neutral, one can carry out a Galilean transformation so that the velocity profile is U(z)− c.
Then the equation of streamlines become approximately

1
2U′(zc)(z− zc)2 + Aφ(zc) cos αx = constant. (1.19)

This is the famous cat’s eye pattern, shown in Figure 1.3. Note that if the velocity gradient
vanishes at the critical point, this picture no longer holds. The behavior of such flows can
be rather different.

In fact there are two families of eigensolutions for smooth U. First a discrete spectrum
of complex conjugate pairs c and c∗; the number of pairs is less or equal than the number
of inflection points of U (so there may be none). Second a continuous spectrum for all c
in the range [Um, UM] with eigenfunctions that have a discontinuous derivative at zc.

All neutral modes that are the limit of unstable modes as ci → 0 have critical points,
although they are not necessarily singular since U − c can vanish at the critical points.
While c and c∗ are both eigenvalues of the same Rayleigh equation, the unstable mode
of the two has a clear relation with the O–S problem, while the damped mode in general
does not.
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Figure 1.3: Cat’s eye pattern.

1.2.5 The continuous spectrum

An analysis of the Rayleigh equation near critical points can be carried out using Frobe-
nius series. One solution has a logarithmic singularity. The correct choice of path in the
complex plane to avoid this singularity has to be determined using extra information. The
obvious way is from the viscous theory. An alternative approach is to consider the invis-
cid initial-value problem. The very existence of situations with no discrete modes shows
that the continuous spectrum is required to solve the initial-value problem for the invis-
cid problem (the discrete modes of the O–S equation form a complete set for bounded
domains however).

The case of Couette flow is the canonical example. The base profile is U = z between
z = −1 and z = 1. Then the underlying linearized equation becomes(

∂

∂t
+ z

∂

∂x

)
∇2ψ = 0.

This has no discrete modes. Orr (1907) proceeded by solving

∇2ψ = F(x− zt, z)

as a Fourier series in z. A more general approach was developed by Eliassen, Høiland
& Riis (1953), Case (1960) and Dikii (1960). One Fourier transforms (1.2.5) in space and
Laplace transforms in time. Another approach is to use generalized functions: the Rayleigh
equation is

(z− c)(D2 − α2)φ = 0, φ(−1) = φ(1) = 0,

from which one obtains not just
(D2 − α2)φ = 0,

the equation for the discrete modes with no solutions, but also

(D2 − α2)φ = δ(z− c),
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198 N. J. Balmforth, D. del-Castillo-Negrete and W. R. Young
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Figure 1. An illustration of the shear flow configuration under discussion in this paper. The velocity
profile, U(y), is largely a two-dimensional and incompressible Couette flow, with a superposed
vorticity defect.

However, these earlier works do not fully exploit the simplifications which follow
from the assumption of a localized vorticity defect. We continue to mine this vein by
showing that both dissipative effects and advective nonlinearity can be included in
the approximation. Hence, the approximation enables us to present a rather complete
picture of linear stability theory (both ideal and viscous), and to advance into the
nonlinear regime with substantially less effort than if we were to follow the usual
route from the Navier–Stokes equations.

The matched asymptotic expansion that we use in §3 is similar to, though simpler
than, the method used by Stewartson (1978), Warn & Warn (1978), Killworth &
McIntyre (1985) and Haynes (1985, 1987, 1989) in the study of forced Rossby
wave critical layers and their instabilities. The Rossby wave critical layer problem is
not primarily a hydrodynamic stability problem because a wave-like disturbance is
forced by the passage of a shear flow over a corrugated boundary: in this case the
connection between frequency and wavenumber is imposed externally by the spacing
of the corrugations and the speed of the shear flow. By contrast, we are concerned
here with the possibly spontaneous growth of wave-like disturbances whose linear
dispersion relation is not known in advance. The waves we consider in this paper
do have critical layers, but these regions are asymptotically embedded within the
vorticity defect.

The most unappealing feature of the approximation is that, because attention is
restricted to disturbances localized within the defect, there is no guarantee that the
asymptotic formulation captures the dominant processes occurring over the entire
shear flow. But the approximation does allow us to elucidate some physical processes
very readily. For purely inviscid disturbances, we are led to an approximate description
that bears some similarity to the Vlasov equation of plasma physics. Although the
Vlasov equation is more tractable than the original Euler equation it does describe
strongly nonlinear processes such as the formation of coherent structures and the
development of subcritical instabilities.

The main results that we give in this paper are directed towards the derivation of
the equations of motion for the vorticity defect and the construction of a complete
linear stability theory for disturbances within it. For the sake of simplicity, we develop
the theory for a plane parallel, background shear flow which is linear; that is, an
ambient Couette flow like that shown in figure 1. This simplification is not essential,
and in an Appendix we develop a more general theory. A preliminary study of the
nonlinear regime is given by del-Castillo-Negrete, Young & Balmforth (1995).

Figure 1.4: Couette flow with superimposed vorticity effect. From Balmforth, del-
Castillo-Negrete & Young (1997).

which gives the continuous spectrum. A full solution of the system is then easily found
in closed from (in the Laplace variable). For general flows, the same procedure works
formally. The resulting decay for streamfunction and vorticity led to some contention.
Fro an initial disturbance occupying a finite domain in x, the correct result is ψ = O(t−2),
whereas earlier attempts had found ψ = O(t−1). As pointed out by Maslowe (1981),
the initial-value approach and the inviscid limit of the O–S equation are not formally
equivalent. The former breaks down for large times near critical levels.

1.3 Defects in shear

1.3.1 Motivation

We consider a shear flow inside which there is embedded a region in which vorticity
varies rapidly – see Figure 1.4 for an illustration of the situation. This rapid variation is
viewed as a defect atop the background ambient shear. Previously versions of this ap-
proach had been developed for Couette flow by Gill (1965) and Lerner & Knobloch (1988)
in the linear and inviscid cases respectively. These works showed that the defect could
destabilize the Couette flow. The current matched asymptotic expansion framework is
related to the approach used by Stewartson (1978) and others to study forced Rossby
critical wave layers. For purely inviscid disturbances, we are led to an approximate de-
scription that bears some similarity to the Vlasov equation of plasma physics. We work
with Couette flow here, but the ideas generalize to arbitrary background flows.

1.3.2 Derivation

The non-dimensional equation of motion for the disturbance streamfunction ψ is the two-
dimensional vorticity equation. The background flow is sustained by a forcing term
F(y/ε), where ε measures the size of the defect region as well as the size of the dis-
turbance with respect to the basic state. If F = 0, the basic state is Couette flow (which
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needs no forcing). Then

ε∇2ψt + y∇2ψx + ε2 ∂(ψ,∇2ψ)
∂(x, y)

= εα(ε−1F−∇2ψ)− ε3ν∇2(ε−1F−∇2ψ). (1.20)

The disturbance velocity is (u, v) = (−ψy, ψx), the ‘geophysical convention’. Ekman fric-
tion (a scale-free damping that appears naturally in geophysical problems) is included,
with time-scale α−1. Viscosity is also retained, with coefficient ν. The domain is −1 <
y < 1 with boundary conditions ψ(x,±1, t) = 0.

Expanding ψ in ε, we obtain
y∇2ψ0 = 0. (1.21)

We allow for action near y = 0, so the appropriate equation, which corresponds physically
to vorticity begin confined near the region, is

∇2ψ0 = −2A(x, t)δ(y). (1.22)

This is reminiscent of (1.2.5). We solve using Fourier transforms defined by

ψ̃0(k, y, t) ≡
∫ ∞

−∞
ψ0(x, y, t)eikx dx (1.23)

and obtain

ψ̃(k, y, t) = Ã(k, t)k−1 sech k sinh [k(1− |y|)] = B̃(k, t) cosech k sinh [k(1− |y|)], (1.24)

where B(x, t) ≡ ψ(x, 0, t). The transforms of the functions A and B are related by

B̃(k, t) = k−1 tanh kÃ(k, t). (1.25)

To quote BdCNY, ‘the outer flow is driven by the defect, which introduces the term
−2A(x, t)δ(y). This source induces an irrotational outer flow which in turn advects the
defect. This advection is associated with the streamfunction at the defect, denoted by
B(x, t). The system is closed by examining the inner region in which y = O(ε).’

Inside the defect we define an inner variable η ≡ y/ε. Then, by writing

ψ = B(x, t) + εϕ1(x, η, t) + O(ε2), (1.26)

we obtain the matching condition

2A(x, t) = −
∫ ∞

−∞
Z(x, η, t) dη. (1.27)

where Z(x, η, t) = ϕ1ηη is the (scaled) vorticity in the defect. Substituting into (1.20) leads
to the system

Zt + ηZx + BxZη = α(F− Z)− ν(F− Z)ηη, (1.28)

2B̃(k, t) = −k−1 tanh k
∫ ∞

−∞
Z̃(k, η, t) dη. (1.29)

This is the equation set we shall consider from now on.
When the dissipative terms are set to zero, (1.29) becomes analogous to the Vlasov

equation of plasma physics (see the appendix below). In this analogy, η is a velocity-like
coordinate, the defect vorticity, Z(x, η, t), plays the role of particle distribution function,
and B(x, t) corresponds to the potential of the electric field. Unlike the Vlasov problem,
the vorticity can have either sign.
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1.3.3 Inviscid stability results

We can now return to the linear stability problem for smooth profiles and nevertheless
obtain analytic results. Consider flows in which Z and B are independent of x, i.e.

Z(x, η, t) = F(η) + ζ, B(x, t) =
1
2

∫ ∞

∞
F(η′) dη′ + b(x, t). (1.30)

Then neglecting the nonlinear term and dissipative effects gives the associated linear
problem

ζt + ηζx + bxFη = 0, 2b̃(k, t) = −k−1 tanh k
∫ ∞

∞
ζ̃(k, η, t) dη. (1.31)

For now we seek modal solutions proportional to ei(kx−ωt). Substituting and integrating
over η gives the dispersion relation∫ ∞

−∞

Fη(η)
η − c

dη = 2k coth k, (1.32)

a relation first found by Gill (1965). Analogues of the Rayleigh and Fjørtoft theorems can
also be derived (the former is not terribly useful).

1.3.4 Nyquist theory

It is possible to do better than the necessary conditions derived so far to obtain a quali-
tatively complete understanding of the modal stability problem. The dispersion relation
(1.32) can be written as

D(c, k) ≡ 2k coth k−
∫ ∞

−∞

Fη(η)
η − c

dη, (1.33)

and instability corresponds to zeros of function D in the upper half plane. The function D
is analytic in the c-plane except along the cr-axis where it has a branch cut. The number
of zeros in the upper half-plane is then equal to the number of times γ′, the image of
the semicircle γ with infinite radius in the upper half-plane, encircles the origin in the
D-plane.

1.3.5 The initial-value problem

The discrete spectrum is not complete. As above, we can study the initial-value problem
using Laplace transform techniques. The results show the various effects of transient
amplification of the continuum, its eventual decay, and the sustained growth of unstable
normal modes.

For Couette flow with F = 0, the Kelvin–Orr solution ζ(x, η, t) = ζ0(x − ηt, η) leads
to an explicit integral for b̃(k, t). One can manufacture qualitatively different examples
of growth followed by decay. There is no universal expression for the time dependence
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of the streamfunction, but provided the initial condition is infinitely differentiable in η,
b(x, t) vanishes faster than any power of t as t → ∞. This result differs from the well-
known result that the streamfunction of a perturbation to a stable shear flow decays as
t−2. This contradiction is resolved at the next order in the expansion of the streamfunction
within the defect: ϕ1(x, η, t) exhibits the universal asymptotic decay t−2.

For the case with non-zero F(η) we use a Fourier-Laplace transform. The result is

b̃(k, t) =
1

2πi

∫ p0+i∞

p0−i∞

N
D

ept dp, (1.34)

where the integration contour lies to right of the abscissa of convergence. We have seen
the function D before. The function N is similar. The behavior of (1.34) is governed by its
singularities. Zeros of D with pr > 0 correspond to unstable normal modes. Modes with
pr < 0 however are not stable normal modes, but are zeros of the analytical continuation
of D. They are ‘Landau poles’ and contribute exponentially decaying responses to b(x, t).
There can also be singularities of N; these do not appear to have a name.

1.3.6 The viscous problem

Restoring the viscous and dissipative terms gives

ζt + ηζx + bxFη = −αζ + νζηη, 2b̃(k, t) = −k−1 tanh k
∫ ∞

∞
ζ̃(k, η, t) dη. (1.35)

Ekman damping just shifts the imaginary part of the normal modes. Diffusion is a singu-
lar perturbation. We can obtain the analog of the O–S equation and apply to it the Nyquist
procedure.

1.4 Conclusion

I have presented classical results of stability theory and a theory for the evolution of a
small, localized vorticity defect. The resulting equation has a simplified nonlinear term
similar of the Vlasov equation. It is straightforward to obtain a number of explicit results,
including dispersion relations, a Nyquist method, and the initial-value problem.

Further developments include more investigation of the viscous case (Balmforth 1998)
and an axisymmetric version (see Lecture 2). Two other possibilities have not been inves-
tigated to my knowledge. One is the case where the ambient shear is non-monotonic:
there is then the possibility of multiple defects that interact with one another and analysis
then gives coupled Vlasov-like equations for the defects. The second is the case of defects
located near the points of vanishing shear (e.g. Brunet & Haynes 1995).

Appendix: the Vlasov equation

The Vlasov equation describes the dynamics of a plasma made up of particles with a
long-range force. The dependent variables are fe(x, p, t) and fi(x, p, t), the electron and
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ion distribution functions, that depend on position x, momentum p and time t. The gov-
erning equations for the distribution fα is

∂ fα

∂t
+ u·∂ fα

∂x
+

qαE
mα

·∂ fα

∂p
= 0, (1.36)

where the notation emphasizes that f depends both on x and p. The charge and mass of
species α are qα and mα respectively. The electric field satisfies a Poisson equation:

∇·E = 4πρ, (1.37)

where ρ is the charge density given by

ρ = e
∫

( fe − fi)dp. (1.38)

Notice the similarity to the Boltzmann equation. In fluid descriptions of plasmas, one
integrates away the momentum dependence.
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Chapter 2

Vortex axisymmetrization

2.1 Introduction

The study of the instability of vortices goes back to Rayleigh (1880) and to Kelvin (1880).
The former derived his celebrated criterion to examine axisymmetric instability. The lat-
ter looked at the instability of what would today be called a vortex patch. The neutral
modes that he found are called Kelvin waves (not to be confused with Kelvin waves in
oceanography – oceanographers and meteorologists call waves on a vorticity gradient
Rossby waves).

More recent work has examined the problem of axisymmetrization: does a perturbed
vortex return to axisymmetry? There is a subtlety: it is the streamfunction that becomes
axisymmetric. The non-axisymmetrical structure in vorticity winds up in a spiral, and
the coarse-graining effect of the inverse Laplacian operator acting on the vorticity leads to
algebraic decay in time of the streamfunction (Bassom & Gilbert 1998). Figure 2.1 shows
examples of vortices that do not and do return to axisymmetry, respectively, for the same
disturbance amplitude.

It is clear that some vortices cannot return to axisymmetry. As mentioned before,
vortices with compact support in space may support neutral Kelvin modes and hence
cannot return to axisymmetry. Dritschel (1998) carried out contour dynamics simulations
that exhibited these undamped disturbances in the nonlinear regime.

Experiments with non-neutral plasmas (Driscoll & Fine 1990) and rotating fluids (van
Heijst, Kloosterziel & Williams 1991) have examined finite-amplitude perturbations to ax-
isymmetrical vortices. The resulting nonlinear evolution is not predicted by linear theory.
In plasma physics, the decay of the streamfunction has an analogue in the Landau damp-
ing of the electric field. It is generally accepted that perturbations of sufficient amplitude
do not decay back to the undisturbed state, but instead excite a finite-amplitude wave,
known in plasma physics as a BGK-mode (Bernstein, Greene & Kruskal 1958).

We develop a defect theory that examines the fate of the Kelvin mode of the compact
smooth approximant as the latter becomes an extended structure. It becomes a quasi-
mode, i.e. (in linear theory) a solution of the initial-value problem whose streamfunction
decays exponentially while the vorticity wraps up. Our approach is based on the defect
theory of Chapter 1. The small parameter measures the difference between approximants
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Figure 1. Plot of the Gaussian vortex (a) and the tanh profile vortex (b), with σ = σ2 = 0.2,
relaxing to a tripole structure with R = 104 and δ = 0.5. Positive vorticity is shown as white,
negative vorticity is black and zero vorticity is grey; the peak vorticity values are saturated at
|Z| = 0.005.

As more numerical and experimental studies were carried out, it became apparent
that axisymmetrization occurs only for sufficiently weak perturbation amplitudes, and
that for larger amplitudes, the vortex can evolve into a persistent non-axisymmetric
state (Dritschel 1989, 1998; Koumoutsakos 1997; Rossi, Lingevitch & Bernoff 1997).
An example of a persistent nonlinear state is a multipole, which can be formed by
allowing an initial vorticity distribution of the form

Z(r, θ) = Z0(r) + δZm(r)eimθ + complex conjugate, (1.1)

to evolve freely in time. The variables (r, θ) are the usual polar coordinates and
Zm(r)eimθ is an m-fold perturbation to the axisymmetric monopole vortex Z0(r). The
real parameter δ > 0 is an amplitude and axisymmetrization occurs if δ is below a
threshold value. In the most studied case, the vorticity distributions take the form

Z0(r) =
1

4π
e−r2/4, Z2(r) =

r2

4π
e−r2/4, (1.2)

with m =2. The vortex evolves into a tripole which consists of a vortex core with two
opposite-signed satellites of vorticity rotating around it, if δ is above some threshold
value (Rossi et al. 1997; Barba 2006; Barba & Leonard 2007). This tripole structure
can be seen in figure 1(a), which shows the evolution of (1.1) and (1.2) with R = 104

and δ = 0.5 at t = 0, t = 300 and t =700. Negative vorticity is black in the panels,
and at t = 700 we can see the two negative satellites rotating around a positive vortex
core.

Such tripoles can also emerge from instabilities within axisymmetric shielded
monopoles, that is, comprising a vortex core with a ring of opposite-signed vorticity
encasing it and zero total circulation. This has led to many investigations of the
evolution of a tripole from these shielded monopoles by experiments (van Heijst,

Figure 2.1: Evolution of Gaussian and tanh vortices with superimposed mode 2 distur-
bance. From Turner & Gilbert (2008).

and the Gaussian vortex. Details may be found in Balmforth, Llewellyn Smith & Young
(2001). Examples of subsequent work are Le Dizès and Laporte (2002) and Turner &
Gilbert (2008).

2.2 Stability of two-dimensional vortices

First a brief digression on linear stability theory for plane vortices, i.e. flows with az-
imuthal velocity uθ(r). Rayleigh’s equation has a near-identical form to the plane parallel
case (Chapter 1) and one can obtain an analog of Rayleigh’s theorem stating that if the
basic-state vorticity is monotonic, the vortex is stable. Rayleigh’s determinant is a differ-
ent quantity that concerns only axisymmetric flows.

Part of the motivation for understanding the stability of vortices comes from their
prevalence in simulations of two-dimensional turbulence. Gent & McWilliams (1984) pro-
vide a careful review of linear stability calculations for axisymmetric vortices.
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2.3 Defect formulation

2.3.1 Setup

In ideal fluid theory, any circular vortex is a possible equilibrium; we consider only stable
vortices. In polar coordinates (r, θ), the Euler equation governing perturbations to such a
basic state with angular velocity Ω(r) and vorticity Z(r) is

rζt + Ωrζθ − (ψθ + ψext
θ )Z′ +

∂(ψ + ψext, ζ)
∂(r, θ)

= 0. (2.1)

The disturbance vorticity ζ and the disturbance streamfunction ψ are related by

ζ = ψrr + r−1ψr + r−2ψθθ, (2.2)

where ψext(x, y, t) is an externally imposed, irrotational streamfunction which models the
perturbing influence of distant vortices or boundary conditions.

We consider ‘compact vortices’, for which Z(r) = 0 if r > RC. We can approach the
Gaussian vortex more and more closely by varying a parameter p say. Sometimes these
vortices have Kelvin modes, which are the solution to the eigenproblem for ωm,

(ΩC −ωm)rg = Z′
C f . (2.3)

Compact vortices may avoid the critical-level singularity if rm > RC because Z′
C(rm) = 0.

We add small, non-compact, axisymmetric vorticity perturbation to a compact vortex,
creating a dynamically important critical layer at rm. The new profile is

Z(r) = ZC(r) + εZS(r), Ω(r) = ΩC(r) + εΩS(r), (2.4)

and ε is defined so that

max
r

ZS(r) = Zmax, (definition of ε). (2.5)

Figure 2.2 shows that the Gaussian vorticity profile, ZG = Zmax exp(−r2/RG
2), can be

represented as the sum of a dominant compact vortex and a smaller ‘skirt’. Specifically,
in figure 2.2, where p = 0 through 5, one has ε = 0.366, 0.135, 0.057, and so on. Note that
we cannot make the error arbitrarily small: the perturbation scheme that underlies our
analysis is founded on the existence of a Kelvin wave to leading order and these cease to
exist for large enough p.

2.3.2 The expansion

We limit ourselves to a compact vortex with an m = 2 Kelvin mode at a critical radius at
r = r2. We insert (2.4) into (2.1) with the additional scaling assumptions

[ψ(r, θ, t), ζ(r, θ, t)] → ε2[ψ(r, ϑ, τ), ζ(r, ϑ, τ)] ψext(r, θ, t) → ε3ψext(r, ϑ, τ). (2.6)
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Figure 2.2: The family of compact vortices that approximate the Gaussian vortex, showing
scaled vorticity, scaled angular velocity and the small parameter ε as a function of p.

These scalings ensure that the response of the system to leading order is a quasi-mode
that evolves linearly outside the defect region. In (2.6) we have also changed frame so
that the coordinate system is corotating with the speed of the compact vortex at r2:

ϑ ≡ θ −ω2t, τ = εt (2.7)

so that the variables now depend only on the slow time τ. The scaling assumptions in
(2.6) and (2.7) also ensure that the nonlinear terms appear at the same order as the external
forcing. The scaled equations of motion are

εrζτ + (Ω̃C + εΩS)rζϑ −
(
ψϑ + εψext

ϑ

) (
Z′

C + εZ′
S
)
+ ε2 ∂(ψ + εψext, ζ)

∂(r, ϑ)
= 0. (2.8)

In (2.8), Ω̃C(r) ≡ ΩC(r)−ΩC(r2) is, to leading order, the rotation rate in new frame. We
assume that the external perturbation has the irrotational form

ψext = r2
[
b̂(τ)e2iϑ + b̂∗(τ)e−2iϑ

]
(2.9)

and expand [ψ, ζ].
The leading-order outer equation is

Ω̃Crζ0
ϑ = Z′

Cψ0
ϑ, (2.10)

with the solution[
ψ0, ζ0

]
= a [ f , g] , a(ϑ, τ) ≡ â(τ)e2iϑ + â∗(τ)e−2iϑ. (2.11)
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In (2.11), â(τ) is the amplitude of the Kelvin eigenmode of the compact vortex ZC. With
the normalization f (r2) = 1, ψ0(r2, ϑ, τ) = a(ϑ, τ).

To determine â(τ), we follow the usual path of asymptotics: proceed to higher or-
der with the aim of enforcing a solvability condition on the next-order corrections. This
has two effects: solvability ensures that the asymptotic ordering of the solution remains
intact, and the solvability condition, the Fredholm Alternative, provides the evolution
equation for â(τ). In the present case, however, there are some subtleties in the theory
that significantly enrich the asymptotic description. These originate completely as a re-
sult of critical-radius singularity. We now skip a lot of detail and just present the result.
The critical element is the first-order m = 2 mode of the streamfunction, which can be
shown to be

ψ1
2(r, ϑ, τ) ≈ ψ1

2(r2, ϑ, τ) + µ2(r− r2) ln |r− r2|â + (r− r2)
{

c− if r < r2,
c+ if r > r2,

+ · · · . (2.12)

Then the equation for â becomes

iI1 âτ + (I2 + I3 + I4) â = I5b̂ +
(
c+ − c−

)
, (2.13)

where the I are explicit integrals, with I1 > 0. The goal is now to find an expression for
the jump, c+ − c−, in (2.13). To this end we turn to an analysis of the critical layer at r2.

2.3.3 The critical layer at r2

In the inner region, an appropriate radial variable is

Y ≡ ε−1(r− r2). (2.14)

The expansion of the streamfunction is

ψ = ψ0(r2, ϑ, τ) + ε[ψ1(r2, ϑ, τ) + Yψ0
r (r2, ϑ, τ)] + ε2 ln ε µ2Yψ0(r2, ϑ, τ)

+ε2[φ + 1
2Y2ψ0(r2, ϑ, τ)] + · · · . (2.15)

In (2.15), matching to the outer solution has been secured up to and including the terms
of order ε2 ln ε. Matching the terms of order ε2 requires consideration of φ(Y, ϑ, τ).

From (2.15), the leading term in the expansion of the critical layer vorticity is

ζ = φYY + · · · . (2.16)

Noting that ZC(r2) = 0, the leading-order terms from the vorticity equation (2.8) are

φYYτ +
[
ΩS(r2) + YΩ̃′

C(r2)
]

φϑYY − r−1
2 aϑφYYY = r−1

2 Z′
S(r2)aϑ, (2.17)

where a(ϑ, τ) = ψ0(r2, ϑ, τ) is defined in (3.8).
When |Y| is large, the dominant balance in (2.17) is between the right-hand side and

the term proportional to Y on the left. Thus

φYY ∼
µ2a
Y

, as |Y| → ∞. (2.18)
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The result above shows that φYY matches the second radial derivative of ψ1
2 in (2.12).

The jump c+ − c− is now obtained from the critical layer expansion as

c+ − c− = lim
Y±→±∞

[∫ Y+

Y−

∮
e−2iϑφYY

dϑdY
2π

− µ2 â ln
∣∣∣∣Y+

Y−

∣∣∣∣
]

. (2.19)

Here, Y± = (r± − r2)/ε represent coordinates in the matching regions where |r − rc|
becomes small (but not smaller than ε) and |Y| becomes large (though not as large as
1/ε). But, in the asymptotic theory, we may further take the limit ε → 0, and then replace
the limits of the integral in (2.19) by ±∞.

2.3.4 Summary

We now have a closed system of equations: the amplitude of the Kelvin mode, â(τ),
is determined by solving the ordinary differential equation (2.13). But the right-hand
side of (2.13) involves the jump c+ − c−, which must be calculated by solving the critical
layer vorticity equation (2.17), and evaluating the principal part integral in (2.19). The
radial advection in the critical layer vorticity equation is due solely to the velocity field of
the mode (these are the terms involving aϑ in (2.17)). The azimuthal advection in (2.17)
results from the velocity of the main vortex, Ω̃C(r) + εΩS(r); this term appears as the
Taylor-expanded form ΩS(r2) + YΩ̃′

C(r2).
By rescaling space and time scales, we can express the streamfunction as

ψ ≡ −(y2/2) + ϕ(θ, t), ϕ(θ, t) ≡ ϕ̂(t)e2iθ + ϕ̂∗(t)e−2iθ, (2.20)

and the vorticity advection equation (2.17) becomes

ζt +
∂(ψ, ζ + βy)

∂(θ, y)
= ζt + yζθ + ϕθζy + βϕθ = 0. (2.21)

The evolution of ϕ̂(t) is then

iϕ̂t = χ + 〈e−2iθζ〉, where 〈· · ·〉 is 〈 f 〉 ≡ P
∫

dy
∮ dθ

2π
f (θ, y, t). (2.22)

The principal value integral in (2.22) is necessary because ζ ∝ y−1 as |y| → ∞, but we will
drop the notation P from now on.

It is remarkable that the system in this form contains no parameters, except for β =
±1 and those which occur in the specification of the external forcing, χ(t). If β = −1
the skirt has increasing vorticity as a function of r and consequently the Kelvin mode is
destabilized. Our main concern is the stable case, β = +1.

We can show using symmetry properties of the model that χ can be taken to be real
without loss of generality. Also we can write ϕ̌ = iϕ̂, giving the real equation

ζt + yζθ + 4ϕ̌ cos 2θ(β + ζy) = 0 and ϕ̌t = χ(t) + 〈ζ cos 2θ〉. (2.23)

We select two sample forcings:

χ = Aχ1 =
1

T2 At exp(−t2/2T2), χ = Aχ2 =
1

T2 At exp(−t/T). (2.24)

In the limit T → 0, both functions amount to an instantaneous kick.
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2.4 The weakly forced limit: A � 1

The amplitude is given by the strength of the forcing. We can construct solutions pertur-
batively by focusing on relatively small forcing amplitudes. At leading order, we obtain
linear dynamics and connect the ‘modes’ of the skirted vortex to the related non-decaying
eigenmode of a compact vortex. Disturbances of finite amplitude do not completely de-
cay, but leave behind ‘remnants’ that can act as sources of secondary instability (we do
not discuss the secondary instabilities).

The linear versions of the amplitude equations (2.21) and (2.22), namely

ζt + yζθ + βϕθ = 0, iϕ̂t = χ + 〈e−2iθζ〉, (2.25)

can be solved in closed form. For the dynamically active harmonic and zero initial condi-
tions, we obtain

ϕ̂t + πβϕ̂ = −iχ, (2.26)

an ordinary differential equation.
If β = −1, then the homogeneous solution to (2.26) grow exponentially. In this in-

stance, the vortex is unstable and the Kelvin wave of the compact vortex is modified into
an unstable mode. However, our interest is in stable vortices with β = 1 and henceforth
we shall focus exclusively on this case.

With β = +1, the homogeneous solution of (2.26), ϕ̂ ∝ exp(−πt), provides the sim-
plest example of hydrodynamic Landau damping. That is, the streamfunction decays ex-
ponentially while the accompanying vorticity is sheared out to ever smaller scales with-
out decaying in amplitude. The exponential decay of ϕ̂ results from spatial averaging
(the 〈〉 in (2.25a)). This does not correspond however to a discrete, decaying mode. The
vorticity is evidently not separable in y and t. It always remains order one, but becomes
increasingly sheared. This is why we refer to the disturbance on the non-compact vortex
as a Kelvin quasi-mode.

By contrast, Bassom & Gilbert (1998) found that Gaussian vortices have streamfunc-
tions that decay algebraically along the pathway to axisymmetrization. There are terms
that lie at higher order in our inner expansion that do, in fact, lead to a protracted alge-
braic decay at large times.

The damping of the Kelvin quasi-mode becomes arbitrarily small as the vortex is made
more compact. Essentially, this observation allows us to reconcile the apparent difference
between truly compact vortices and smooth, almost compact vortices. Whereas the latter
do not have true discrete modes, they have quasi-modes with very low damping rates.
As a result, these modes can appear much like the true modes of compact vortices. Ul-
timately, however, the quasi-mode wraps up the residual vorticity gradient inside the
critical layer and must decay.

Though we have considered only inviscid vortices, it is relevant at this juncture to
mention a property of the viscous problem. Specifically, with the introduction of viscosity
the Landau damped quasi-modes can be transformed into true eigenmodes (Balmforth
1998). Thus the Kelvin quasi-mode may become a real eigenmode when a small amount
of viscosity is present.
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When we disturb the vortex, the induced perturbation does not completely decay
away, but leaves a mean remnant that is itself unstable if the initial forcing amplitude
is high enough. Thus, we cannot expect that the vortex always axisymmetrizes. In fact,
if kicked hard enough, the vortex should suffer secondary instability and develop non-
axisymmetrical structure;

2.5 The strongly forced limit: A � 1

We consider the impulsive case by taking T → 0 in the forcing functions so that χ(t) =
Aδ(t). We introduce a small parameter ε defined by ε ≡ 1√

2A
. In the limit ε → 0 the

dynamics can be reduced to a passive scalar advection problem. Notice that in order not
to violate our original scaling assumptions A cannot be as large as ε−1. Consequently ε
must be greater than

√
ε.

Rescaling appropriately and adopting a perturbation expansion in ε � 1 shows that
the leading order vorticity, q ≡ y + ζ0, is obtained by solving a passive scalar advection
equation

qt + yqθ + 2qy cos 2θ = 0. (2.27)

This passive scalar problem is discussed by O’Neil (1965), Stewartson (1978), Warn &
Warn (1978) and Killworth & McIntyre (1985) in related contexts.

A perturbative calculation shows that as t → ∞ the streamfunction is ϕ̌(∞) = (1/2)−
1.543ε + O(ε2). This shows that nonlinearity prevents a perturbed vortex from relaxing
back to axisymmetry.

As t → ∞ the vorticity becomes crenellated in y. The amplitude of these wiggles
remains finite but their scale is increasingly fine as t → ∞. A coarse-grained average
filters the oscillations and reveals a nontrivial structured averaged field. Because of sym-
metry this averaged vorticity is zero within the cat’s eye (that is, within the area where
ψ > −1). Outside the cat’s eye, the averaged vorticity takes a nonzero mean value which
can be calculated. We determine that coarse-grain average by arguing that advection can-
not transfer any vorticity through the steady streamlines and consequently the amount
of vorticity contained within the differential area enclosed by two adjacent streamlines (a
streamtube) is constant. Thus the coarse-grained average is obtained by taking the initial
vorticity pattern, q(ξ, y, 0) = y, and making an average over a streamtube. Following
Rhines & Young (1983), this streamtube average is

q̄(ψ) =
∮

y
d`ψ

|∇ψ|

/∮ d`ψ

|∇ψ| , (2.28)

where `ψ is the arclength around a streamline. It is clear from the symmetry of the initial
condition that q̄(ψ) = 0 within the region of closed streamlines where ψ > −1. Outside
the cat’s eye, where ψ < −1, the streamtube average is nonzero, and can be calculated by
converting the contour integrals in (2.28) to integrals with respect to ξ.
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2.6 Numerical solutions

We now turn to the full nonlinear problem for arbitrary forcing and solve the equations
numerically. The integration scheme is an operator splitting scheme based on the algo-
rithm of Cheng & Knorr (1976).

2.6.1 Weak forcing

By ‘low-amplitude’, here, we mean simulations that appear to show axisymmetrization
(ϕ̌ → 0 as t → ∞). As indicated above, such behaviour can only be expected for values of
the forcing amplitude A below some threshold depending on T.

In Figure 2.3 we show streamfunction amplitude as functions of time for both χ = Aχ1
and χ = Aχ2. The solutions all show an initial evolution that follows the linear theory.
But beyond a certain time, the Landau damping is interrupted by a slower decay. Note
that the low-amplitude oscillations in figure 2.3 that become visible at about t = 4 arise
due to the finite domain in which the system is numerically solved (see Appendix A).
These are spurious, as can be seen by changing the domain size which changes their
amplitude and period.

As predicted by the asymptotic theories of section 4, the streamfunction decays pro-
vided A < Ac(T); that is, the vortex axisymmetrizes. If A > Ac(T), the streamfunction
enters a different behavioural regime in which ϕ undergoes large-amplitude oscillations.
These ‘bounces’ coincide with the initial turning over of a cat’s eye. A physical rationale
for the threshold is that there are two characteristic timescales in the problem (excluding
T): the time for Landau damping and the characteristic turn-over time in the core of the
cat’s eye. Broadly speaking, if the damping time greatly exceeds the turn-over time, we
may expect that cat’s eyes form without much decay of the streamfunction. However, if
the damping time is much shorter than the turn-over time, a cat’s eye cannot complete
even one bounce before it disappears. Hence, there should be an amplitude threshold if
the two effects are competitive.

2.6.2 Formation of cat’s eyes

When A > Ac, we unambiguously observe the creation of cat’s eye structures. A typical
example is shown in Figure 2.4 for χ = Aχ2 with T = 1. Qualitatively, the visual ap-
pearance of the cat’s eyes is not sensitive to A and T, nor to the type of forcing function,
provided A well exceeds the critical threshold. This remains true even when the forcing
function decays less quickly than the natural Landau damping.

Runs with different values of A show that for small A the streamfunction amplitudes
follow the linear solution over relatively long initial times. For larger A, the solution
departs from the linear case almost immediately. In each case, the decay of the stream-
function halts and ϕ̂(t) begins to oscillate. The inception of these oscillations corresponds
to the initiation of circulation in the core of the cat’s eye. There are two main differences
between cases with low and high A. The first is that the crenellation of ζ is far more
significant in lower amplitude solutions. The result is that the cat’s eye has a more com-
plicated structure in its early stages of development (and is consequently more prone to
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Figure 2.3: Scaled streamfunction amplitudes, |ϕ̌(t)|/A, against time for (a) χ = Aχ1 and
T = 0.5, and (b) χ = Aχ2 and T = 0.2. In each case, results for different forcing ampli-
tudes, A, are shown, The linear result is also shown together with the trend of Landau
damping.

numerical error). The second difference concerns the streamfunction. For small A, ϕ̌(t)
passes repeatedly through zero. This means that the vortex core overturns one way for
a while, but then unwinds for a subsequent interval. Overall, it is not clear whether the
core ultimately creates a cat’s eye, or whether the vorticity simply continues to wind and
unwind. In other words, the asymptotic state may be time dependent.

2.6.3 Coarse-grained steady states

Both the numerical results and the strongly forced problem illustrate the importance of
finite-amplitude steady states. These states are described by the time-independent ver-
sion of our model system, which implies that q = y + ζ is any function of the total stream-
function, ψ = −y2/2 + 2ϕ̌ cos 2θ. That is, ζ + y = q(ψ). This function need only satisfy
the consistency condition, 〈e−2iθq(ψ)〉 = 0, which does not greatly constrain the possibil-
ities.
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Figure 2.4: A solution with χ = 2.72χ2 with T = 1. Shown is a grey-scale map of the total
vorticity, y + ζ, at the times indicated.

The initial condition used in the computations has ψ = −q2/2. This relation is rapidly
lost in the initial evolution. But over long times, there is evidence that the numerical
solutions converge to states with another q-ψ relation. This is illustrated in Figure 2.5,
which shows a snapshot at t = 40 of a solution computed for the χ = 2.5χ1(t) case with
T = 1. At this time, the vorticity has been wrapped into a fairly tight spiral inside the cat’s
eye, and the outer vorticity field is completely sheared out (the numerical integration has
smoothed over much of this structure). However, the plot of q = ζ + y against ψ shows
two populations of points. The first population lies outside and near the separatrix of the
cat’s eye (see panel (c)).
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Figure 2.5: (a) Plots of ψ against y + ζ for χ = 2.5χ1(t) with T = 1, at time t = 40. In
(b), we plot ψ-q points only for the region with 0.1 < θ/π < 0.39, which corresponds
to a section encompassing the centre of the cat’s eye. Panel (c) is a similar picture for
0.66 < θ/π < 0.86, which contains the hyperbolic point of the separatrices. Also plotted
in panels (a)–(c) are the q-ψ relations for the initial condition (the dotted parabola) and the
passive scalar solution, which is the solid curve. The solid-passive-scalar curve consists of
two branches. Panels (d)–(f ) display some further features of the corresponding solution.

2.7 Conclusions

Our asymptotic analysis takes advantage of the fact that nearly compact, stable vortices
have a special sensitivity to external perturbations. Specifically, the scaling of the exter-
nal perturbation is taken to be order ε3, yet the response of the quasi-mode is order ε2.
This is a kind of resonance, and requires that the external forcing has frequency content
matching the rotation frequency of the quasi-mode. The linear solution is summarized
schematically in the formula

ψ = ε2 (exponentially decaying quasi-mode)+ ε3 (algebraically decaying contributions) ,
(2.29)

as in Chapter 1. In linear theory axisymmetrization occurs in almost all circumstances.
The effect of nonlinearity is to slow the decay of the quasi-mode, or even arrest that
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decay if the initial amplitude of excitation exceeds a threshold. Above the threshold, cat’s
eye structures form, and, in the case of an m = 2 perturbation, the result is a tripolar
vortex, as seen in experiments. Because the forcing is scaled to be order ε3, this threshold
is actually small. Thus, finite-amplitude cat’s eyes are the generic outcome of resonantly
exciting the quasi-mode of the vortex.

We expect that the reduced model (2.20)–(2.22) is broadly applicable as a model of
linear and weakly nonlinear relaxation in ideal plasmas and fluid shear flows. In analogy
with plasma physics, one might call this system the ‘single-wave model’.
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