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Introduction

Only a slim part of linear partial differential equations have solutions represented by explicit
formulas or by approximate explicit expressions, with a controllable errors. Strong demand
for reliable data on spectral and transport characteristics of the corresponding quantum and
classical dynamical systems is nowadays satisfied based on results of expensive and resource
consuming scanning over the multi-dimensional space of essential geometrical and physical
parameters of the systems. The area of the scanning may be essentially reduced based on use
of the fitted solvable models. A large class of the “zero-range models” can be constructed based
on John von Neumann operator extension technique. The corresponding theory, developed in
previous century, is technically demanding and hard to fit into a compact text for the first
reading. Fortunately there exist a representative Friedrichs model of a linear dynamical system
where almost all typical difficulties of the corresponding theory can be reviewed as well as
advanced techniques used to overcome them.

In this paper we provide an extended insight into the Friedrichs model, as an universal tool
of the analytic perturbation theory and give a state-of-art review of others fitted zero-range
models. The text can be considered as a motivation and a practical introduction into the area
of applied spectral analysis of linear dynamical systems.

It is commonly recognized that pure mathematics grows rather “in depth” than “in breadth”.
The problem of fading connections between neighboring branches of pure mathematics was
noticed long ago. Great analyst Mark Krein, in his talk on the Moscow Congress of Mathe-
maticians,1966, declared that, to restore the connections, you should lure pure mathematicians
from their “private caves”, where they live quietly, in deep harmony with their own special
problems. He sketched in his talk a broad program of common prospects of the spectral analy-
sis of nonselfadjoint operators and ones of the theory of analytic functions. His prediction fed
the area of modern spectral analysis for almost 50 years: we witnessed joint growing fruits of
the spectral theory of functions and functional models of nonselfadjoint operators during the
second half of 20-th century.

Extending the Mark Krein program in the applied direction, we hope to attract with this
text an attention of colleagues from neighboring area of applied mathematics, engineering and
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mathematical modeling, to modern problems of mathematical physics and perturbation theory,
by providing advanced tools developed in operator theory for applied spectral analysis.

In attempt to produce a short readable text, we choose here a method of delivering of the
material based on analysis of representative examples rather than in didactic form of a logical
sequence of relevant results. For details we send the reader to the extended list of references
attached.
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1 Operator extension procedure

Operator theory appeared as a tool of quantum mechanics just in time and in almost opti-
mal form to provide an excellent service to physicists. In particular the fundamental Weyl-
Titchmarsh function and the spectral expansion for the Schrödinger operator were discovered
even before E. Schrödinger proposed to use the second order linear differential operator as
mathematical tools of the new theory, see basic fact and the essential history in [1]. By the
beginning of thirties of previous century John von Neumann analyzed in detail the difference
between the symmetric and the selfadjoint operators, see [2]. But this analysis was never taken
in serious by physicists and engineers: they always prefered to discover important mathematical
facts and ideas independently from mathematicians. A classical example of the independence
was the whole story connected with interpretation of the zero-range potential, discovered by E.
Fermi, see [3], and the corresponding subsection below. Fermi conjectured that the zero-range
model can be fitted to results of scattering experiment of neutrons by the nucleons under as-
sumption of presence of a bound state in the scattering system with a small negative energy
level. But in subsequent papers and books, see [4, 5, 6] concerning the zero-range potentials

2



the fitting problem was not discussed. On the other hand the solvable models based on J. von
Neumann operator extension theory, reveal a surprising universality and allow a reasonably
good fitting of zero-range model on a certain interval of energy in the corresponding scattering
problems.

Properly fitted zero-range models may serve as first step A0 → A0
ε in the corresponding analytic

perturbation procedures, allowing “to eliminate the dangerous resonances”, as proposed by H.
Poincare in [13]. Due to the elimination the analytic perturbation procedure A0 −→ Aε is
transformed to the two-steps algorithm :

A0 −→ A0
ε −→ Aε,

corresponding to the chain-decomposition of the scattering matrix S(Aε, A0):

S(Aε, A0) = S(Aε, A
0
ε)S(A0

ε, A0),

with the first step corresponding to the “jump-start” A0
ε ←− A0 and the second step corre-

sponding to the standard geometrically convergent analytic perturbation procedure Aε ←− A0
ε.

The idea of the two-steps procedure was suggested by H. Poincare, see [13], without any sugges-
tions how the intermediate operator A0

ε) could be constructed. I. Prigogine attempted to find
the intermediate operator in form of a function of an unperturbed A0, but eventually came to
the conclusion that it is impossible. Nevertheless the idea of H. Poincare survived, and an ana-
log of the intermediate operator was constructed for quantum networks as a finite-dimensional
perturbation of Aε, see [7, 8]. In [8] the Intermediate Hamiltonian is constructed based on
symplectic version of the John von Neumann operator extension procedure, see [9] for standard
von Neumann operator extension procedure based on Caley transform.

Definition 1.1 For given complex value λ, =λ 6= 0 of the spectral parameter the deficiency
subspaces are

Nλ := H 	 [A0 − λI] D0,

Nλ̄ := H 	
[
A0 − λ̄I

]
D0.

The dimension of Nλ, Nλ̄ is constant on the whole upper and lower half-planes =λ > 0, =λ < 0
respectively.

Definition 1.2 Introduce the deficiency index (dimNλ, dimNλ̄) := (n+, n−) of the operator
A0.

J. von Neumann proved that

Theorem 1.1 The hermitian operator A0 has a self-adjoint extension if and only if n+ =
n− =: n ≤ ∞.
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The idea of construction of the extension is based on the following theorems von Neumann, see
for instance [9]:

Theorem 1.2 The domain of the adjoint operator is represented as a direct sum of the domain
DĀ0

of the closure and the deficiency subspaces, in particular:

DA+
0

= DĀ0
+Ni +N−i.

The deficiency subspaces of the densely-defined operator are the eigen-spaces of the adjoint
operator:

A+
0 ei = −igi, gi ∈ Ni, A+

0 g−i = ig−i, g−i ∈ N−i. (1)

Theorem 1.3 If A0 is an Hermitian operator with equal deficiency indices (n+, n−), and V
is an isometry V : Ni → N−i. Then the isometry V defines a self-adjoint extension AV of A0,
acting on the domain

DAV
= DĀ0

+ {gi + V gi, gi ∈ Ni}
as a restriction of A+

0 onto DAV
:

AV : u0 + gi + V gi → Ā0u0 − igi + iV gi.

J. von Neumann reduced the construction of the extension of the symmetric operator A0 to an
equivalent problem of construction of an extension of the corresponding isometrical operator -
the Caley transform of A0, see [9]. It is much more convenient, for differential operators, to
construct the extensions based on so-called boundary form.

Example. Symplectic extension procedure for the differential operator Consider the
second order differential operator

L0u = −d
2u

dx2
,

defined on all square integrable functions, u ∈ L2(0,∞), with square- integrable derivatives of
the first and second order and vanishing near the origin. This operator is symmetric and it’s
adjoint L+

0 is defined by the same differential expression on all square integrable functions with
square integrable derivatives of the first and second order and no additional boundary condition
at the origin. This operator is not symmetric: its boundary form

J (u, v) = 〈L+
0 u, v〉 − 〈u, L+

0 v〉 = u′(0)v̄(0)− u(0)v̄′(0), u, v ∈ DL+
0

is generally non equal to zero for u, v ∈ DL+
0
. But it vanishes on a ”Lagrangian plane” Pγ ⊂ DL+

0

defined by the boundary condition

u′(0) = γu(0), γ = γ̄.

The restriction Lγ of the L+
0 onto the Lagrangian plane Pγ is a self-adjoint operator in L2(0,∞):

it is symmetric, and the inverse of it (Lγ − λI)−1, at each complex spectral point λ, exists and
is defined on the whole space L2(0,∞).
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The operator extension procedure used above for the differential operator, can be applied to
general symmetric operators and serves a convenient alternative for construction of solvable
models of orthogonal sums of differential operators and non-densely defined operators- finite
matrices. We call the abstract analog of the above extension procedure the symplectic extension
procedure. Let A be a self-adjoint operator in a finite-dimensional Hilbert space E, dim E = d,
and Ni := N is a subspace of E, dim N = n < d/2, which does not overlap with A+iI

A−iINi := N−i:

Ni ∩N−i = {0} .

Define the operator A0 as a restriction of A onto D0 := I
A−iIE	N . This operator is symmetric,

and the subspaces N±i play roles of it’s deficiency subspaces. The operator can A0 can be
extended to the self-adjoint operator AΓsupsetA0 via symplectic extension procedure involving
the corresponding boundary form.

Select a basis {g+
s }

n
s=1 =: gs ∈ Ni, and consider the dual basis

{
A+iI
A−iI gs = g−s

}n
s=1
∈ Ni. Intro-

duce, following [10], another basis in the defect N = Ni +N−i

W+
s =

1

2

[
gs +

A+ iI

A− iI
gs

]
, W−

s =
1

2i

[
gs −

A+ iI

A− iI
gs

]
.

Due to A+
0 gs + igs = 0, [A+

0 − iI]A+iI
A−iI gs = 0 we have,

A+
0 W

+
s = W−

s , A
+
0 W

−
s = −W+

s .

Following [10] we use the representation of elements from the domain of the adjoint operator
by an expansion on the new basis:

u = u0 +
∑
s

ηs+W
+
s + ηs−W

−
s ,

with u0 ∈ D(A0) and symplectic coordinates ηs±.

We also introduce the boundary vectors of elements from D(A+
0 )

~η± =:
∑
s

ηs±gs ∈ Ni,

u = u0 +
A

A− iI
~ηu+ −

I

A− iI
~ηu− := u0 + nu, u0 ∈ D(A0)n

u ∈ N.

Define the formal adjoint operator A+
0 on the defect N = Ni +N−i as:

A+
0 g+ = −ig+, for g+ ∈ Ni, A

+
0 g− = ig−, for g+ ∈ N−i,

A+
0 (g+ + g−) = −ig+ + ig−.

Then we have:
A+

0 W
+
s = W−

s , A
+
0 W

−
s = −W+

s .
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Following [10], we will use the representation of elements from the domain of the adjoint operator
by the expansion on the new basis:

u = u0 +
∑
s

ηs+W
+
s + ηs−W

−
s ,

with u0 ∈ D(A0) and symplectic coordinates ηs±. We also introduce the boundary vectors of
elements from D(A+

0 )
~ξ± :=

∑
s

ηs±gs ∈ Ni,

u = u0 +
A

A− iI
~ηu+ −

I

A− iI
~ηu− := u0 + nu, u0 ∈ D(A0)n

u ∈ N.

The adjoint operator is defined if A+
0 is densely defined. But if Ni, N−i do not overlap, the

formal adjoint on the defect Ni +N−i can be defined based on the J. von Neumann formula.

Lemma 1.1 [10] The boundary form of the formal adjoint operator is calculated in terms of
symplectic variables η

u

± , η
v

± as

J
A
(u, v) = 〈A+

u, v〉 − 〈u, A+

v〉 = 〈ηu

+
, ηv

−〉 − 〈η
u

− , η
v

+
〉

and it depends only on the parts of the vectors u, v in the defect.

The self-adjoint extension can be defined on the defect via standard J. von Neumann procedure,
for given isometry V and then extended to maximal domain via adding the closure of A0.

Theorem 1.4 Krein formula Consider a closed symmetric operator A0 in the Hilbert space
H, obtained via restriction of the self-adjoint operator A onto the dense domain D(A0), with
finite-dimensional deficiency subspaces N∓i, PNi

:= PN , dim Ni = dim N−i. Then the resolvent
of the selfadjoint extension AΓ defined by the boundary conditions with hermitian operator
Γ : Ni → Ni:

~η+ = Γ~η− (2)

is represented, at regular points of AΓ, by the formula:

(AΓ − λI)−1 =
I

A− λI
− A+ iI

A− λI
P+Γ

I

I + PN
I+λA
A−λIPNΓ

PN
A− iI
A− λI

Proof. Solution of the homogeneous equation (A+ − λI)u = f is reduced to finding u0, ~ξ± from
the equation

(A− λI)u0 −
I + λA

A− iI
~ηu+ −

A− λI
A− iI

~ηu− = f.
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Applying to this expression the operator A−iI
A−λI , due to (A− iI)u0⊥Ni, we obtain

~η− = − I

I + PN
I+λA
A−λIP+

PN
A− iI
A− λI

f.

Then, from the above equation (1) and from the boundary condition (2), we derive:

u0 =
1

A− iI

[
I + λA

A− λI
~η+ + ~η−

]
+

I

A− λI
f,

and

u = u0 +
A

A− iI
~η+ −

I

A− iI
~η− = (3)

I

A− λI
f − A+ iI

A− λI
PNΓ

I

I + PN
I+λA
A−λIPNΓ

PN
A− iI
A− λI

f

The end of the proof

See below, in next section, a joint extension of a pair of operators constructed via imposing a
boundary condition onto the corresponding symplectic variables, see Theorem 2.1.

2 Jump start for the Friedrichs model.

The standard technique of the analytic perturbation theory is developed for additive perturba-
tionsAε = A+εB of operators with discrete spectrum, see for instance [11]. It is well known, see
[12], that the analytic perturbation procedure, for operators with continuous spectrum, is con-
vergent only for small values of the perturbation parameter ε - “below the threshold of creation
of resonances”, but can’t be extended beyond this limit. H. Poincaré connected the divergence
of the analytic perturbation procedure in celestial mechanics with resonances, which appear in
[13] as small denominators. H. Poincare conjectured that the improving of convergence of the
analytic perturbation procedure can be achieved via “elimination of dangerous resonances”,
but he did not suggest any standard procedure for that. Following H. Poincaré, I. Prigogine
attempted to elaborate a technical procedure to improve the convergence of the perturbation
procedure on continuous spectrum by a special choice of the “intermediate operator” on the
first step of the procedure. He tried to find an intermediate operator Cε in the commutant of the
non-perturbed operator, see [14, 15, 17, 16, 18], such that the analytic perturbation procedure
is convergent for the pair (Cε , Aε). No such operator was found, and the idea was abandoned.
It arose again when considering the scattering problems on Quantum Neworks, see [19, 7, 8].
It appeared that the intermediate operator for the scattering problem on the quantum network
can be constructed via Glazman’s “splitting” by imposing a semi-transparent boundary con-
dition on some sections of the semi-infinite wires. This boundary condition splits the original
Hamiltonian into two parts: the trivial part in the open channels and the non-trivial part on the
union of the closed channels in the wires and in the energy normed space of the Cauchy data
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on the compact part of the network. In contrast to the assumption of Prigogine, this operator
does not commute with the non-perturbed operator. More important that the corresponding
solvable model, see [8], emulates the perturbed operator locally, in the spectral subspace as-
sociated with the conductivity band. But it is already connected with the perturbed operator
by the standard convergent analytic perturbation procedure serving a first step of the analytic
perturbation procedure. Important detail of the construction suggested in [8] is the ladder-like
continuous spectrum of the quantum network, with a countable sequence of finite jumps of the
multiplicity at the thresholds. The semi-transparent boundary condition defines the splitting of
the perturbed operator into orthogonal sum of two parts corresponding to the open and closed
channels. The solvable model of a junction [8] is obtained via binding the trivial part (in open
channels) with the resonance component of the nontrivial part (in closed channels).

The Friedrichs model - a compact perturbation of the momentum P = i d
dx

, see for instance
[12, 20, 21, 22, 23, 24, 25, 26]

Pε = P + εA

is a highly representative example in the perturbation theory. The continuous spectrum of
it has constant multiplicity and can’t be split by semi-transparent boundary conditions into
the parts corresponding to the open and closed channels. The standard procedure of analytic
perturbation suggested in [12] for the Friedichs model is convergent only for small values of
the perturbation parameter ε. Extension of the perturbation procedure beyond the “threshold
of creation of resonances” requires the non-analytic techniques of the Mathematical Scattering
Theory, see for instance [27, 28, 29].

In this section we consider the scattering problem for the Friedrichs model extending the two-
steps jump-start technique to the operator with Lebesgue spectrum:

P0 −→ Pε0 −→ Pε.

On the first step the scattering matrix S(Pε0 ,P0) consists of a single Blaschke factor which is
non-analytic with respect to ε. The scattering matrix S(Pε,Pε0) on the second step is analytic
with respect to ε, see the discussion in subsection 2.3.

In agreement with the anticipation of Poincaré [13], the “dangerous resonances” appear as
an essential detail in our construction for the Friedrichs model. But the construction of the
“jump start” requires exact data of the resonance. In Friedrichs model we may obtain these
data via solving an algebraic equation. But in general case finding of the exact data is a hard
problem. On the other hand substitution of the exact data by some approximate data hinders
the analyticity of the intermediate scattering matrix S(Pε,Pε0)

2.1 Scattering problem for the Friedrichs model.

We discuss in this paper the Friedrichs model obtained as a perturbation P
β

of the orthogonal

sum P ⊕ A of the momentum P = i d
dx

in L2(R,E), dimE = m < ∞ and a finite hermitian
matrix A acting in the space K, A : K → K, dimK = k < ∞. We construct P

β
via the
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symplectic operator extension procedure, see previous section, by restriction of the momentum
P → P0 onto the domain D0 = W 1,0

2 (R,E) of all smooth functions taking values in E and
vanishing at the origin. The operator P0 is symmetric, with deficiency indices (m,m), m =
dim E. The corresponding adjoint operator P+

0
is defined on W 1

2 (R−) ⊕W 1
2 (R+) of functions

with non - correlated boundary data at the right side and left-side origin 0+, 0−. The boundary
form of the adjoint operator defined in [10, 33, 30] via integration by parts

J(u, v) = 〈P+
0 u, v〉 − 〈u, P

+

0
v〉 = i

[
uv̄(0−)

]
− uv̄(0+)

can be represented in terms of the corresponding symplectic variables ξ±:

ξu+ =
u(0+) + u(0−)

2
, ξu− = i

[
u(0+)− u(0−)

]
as

Jp(u, v) = 〈ξu+, ξ̄v−〉E − 〈ξu−, ξv+〉E . (4)

The restricted hermitian matrix is not densely defined, hence the adjoint operator does not exist.
Yet, if the selected pair of the deficiency subspaces Ni, N−i does not not overlap Ni ∩N−i = 0,
one can define, based on (1), the formal adjoint operator A+

0 on the defect Ni + N−i. The
boundary form of A+

0 can’t be calculated via integration by parts, but can be calculated based
on (1). A version of the operator extension theory for non-densely defined operators was
suggested in [31]. The symplectic rescription of it, based on use of the formal adjoint operator,
was suggested in [10] see also [30, 32]. The main obstacle to the extension procedure in this
case - absence of the adjoint operator - is avoided by reducing the construction of the extension
onto the defect N

i
+ N−i

- the sum of deficiency subspaces N
i

= N, N−i
= A+iI

A−iIN . In this
paper we assume that dim N = n ≤ k/2, and N

i
∩N−i

= 0, which is automatically fulfilled if
n = 1. We derive an expression for the Scattering matrix in case when dim N = n ≤ k/2. In
fact the derived expression for the scattering matrix remains valid also in the case k = 1, see
[34, 35].

The restricted operator A0 is defined on the non-dense domain D
A0

= 1
A−iIK 	N . We define

the formal adjoint A+
0 on the defect in agreement with the above von Neumann theorem:

[A+
0 + iI]N−i

= [A+
0 − iI]Ni

= 0.

Consider an orthogonal sum P0 ⊕ A0 of the restricted operators, and construct a Lagrangian
plane L

β
parametrized by the Hermitian matrix B connecting the symplectic coordinates ξ± of

the “outer” component with the symplectic coordinates η± of the “inner” component

B =

(
β00 β01

β10 β11

)
,

(
ξ+
η+

)
= B

(
ξ−
η−

)
. (5)

Here β
+

10
= β01 ∈ Cm × Cn , β00 ∈ Cm × Cm , β11 ∈ Cn × Cn , .

Theorem 2.1 The joint boundary form Jp(u, v) + JA(u, v) vanishes on the Lagrangian plane
L

β
described by the equation (5). This Lagrangian plane defines the corresponding self-adjoint

extension Pβ of P0 ⊕ A0.

9



Spectral properties of finite-dimensional perturbations of multiplication and differentiation op-
erators were intensely studied in numerous papers, vere intensely studied since mid-eighties
[4, 5, 6, 12, 20, 21, 22, 23, 24, 25, 26] based on explicit expressions for Green functions, eigen-
values and eigenfunctions. Our aim is the construction of fitted solvable models and the use
them as first step in the analytic perturbation procedures. Correspondingly we omit the proofs
of completeness and orthogonality of the scattered waves, but concentrate on asymptotic prop-
erties of the scattering matrix at the typical values of energy E ≈ EF , or, equivalently, on the
fitting of the model on the essential spectral interval.

For the Friedrichs model of our type the scattered waves Ψ have two components: in the “outer”
space L2(R, E) and in the inner space K, Ψ = {Ψ0 , Ψ1}. The components Ψ0 , ΨK satisfy the
adjoint homogeneous equations

i
dΨ0

dx
= pΨ0, (A+ − pI)Ψ

K
(ν) = 0. (6)

which means, in particular, that the symplectic coordinates η± are connected by the corre-
sponding Krein function: (n× n) matrix - functionM(p) = PN

I+pA
A−pI PN , see [?]:

η− = −M(p)η+ .

The Krein function is an abstract analog of the Weyl-Titchmarsh function [1], which is an im-
portant characteristic of the differential operators. Hereafter we call it Krein-Weyl-Titchmarsh
(KWT) function. It belongs to Nevanlinna class (is analytic and has a positive imaginary part
in the upper half-plane =p > 0). Then, presenting the outer component of the “incoming”
eigenfunction by the Ansatz

Ψ0(x, ν) =

{
e−ipxν for x < 0,
e−ipxS ν for x > 0,

, (7)

and the inner component defined as a solution of the corresponding homogeneous adjoint equa-
tion under the above boundary condition (5).

Theorem 2.2 The scattering matrix defined as the transmission coefficient S in the exterior
component of the scattered waves (7) is represented as:

S
β
(p) =

iI + 1
2

[
β00 − β01M (I + β11M)

−1

β10

]
iI − 1

2

[
β00 − β01M (I + β11M)

−1

β10

] . (8)

In particular, if β11 = 0 = β00 + β01PNAPNβ10, then

S
β
(p) =

I + 1
2i
β01PN

I+A2

A−pIPNβ10

I − 1
2i
β01PN

I+A2

A−pIPNβ10

, and Sβ(∞) = I, (9)

with the scattered waves of the perturbed operator defined by (7,6) as:

Ψβ =

 Ψ
β

0

Ψ
β

K

 =

 Ψ
β

0

A−iI
A−pIβ10

[
I − i

2
β01PN

I+A2

A−pIPN β10

]−1

ν

 . (10)
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Proof. We can re-write the equation (5) as(
i(Sν − ν)
η+(ν)

)
=

(
β00 β01

β10 β11

) (
S+1

2
ν

−M (p) η+(ν)

)
,

hence η+(ν) = [I + β11M]−1β10

I+S
2
ν and

2i (S − 1) ν =
[
β00 − β01 M (1 + β11M)

−1

β01

]
[S + I] ν,

which implies

η+(ν) =
1

I + β11M
β10

I + S

2
ν. (11)

and the announced expression for the outer component of the scattered wave. It remains to
check that the inner component Ψ1 of the scattered wave is represented by (6). Indeed (6) can
be represented as

A+ iI

A− pI
η+(ν) =

A

A− iI
η+ +

I

A− iI
I + pA

A− pI
η+ =

A

A− iI
η+ +

I

A− iI
PN

I + pA

A− pI
η+ +

I

A− iI
(I − PN)

I + pA

A− pI
η. (12)

According to the Neumann decomposition (3), which is valid even for non-densely defined
operators (but becomes not unique !), we may set: PN

I+pA
A−pI η+ = −η− and I

A−iI (I−PN) I+pA
A−pI η= :

u0. Then, according to above Theorem 1.4 u = A+iI
A−pI η+(ν) is a solution of the adjoint equation

(A+ − pI)u = 0. It satisfies the boundary conditions, if we choose the scattering matrix as
suggested.

The end of the proof

2.2 Blaschke structure of the scattering matrix.

Let us consider a simplest scattering matrix constructed for a one-dimensional operator A =
α0 e0〉 〈e0. The general formula for the scattering matrix is applicable in this case too, with

P = I, ~β01 := β01Pe0, β11 = 0 and β00 = −β01PAPβ10:

S(p) =
2i+

1+α
2

0

α0−p
~β01〉 〈~β01

2i− 1+α
2

0

α0−p
~β01〉 〈~β01

=
2i+

1+α
2

0

α0−p
B2 ~ν0〉 〈~ν0

2i− 1+α
2

0

α0−p
B2 ~ν0〉 〈~ν0

, (13)

with B =‖ ~β01 ‖, ~β01 =: B ~ν0. Then the scattering matrix of the one-dimensional perturbation
of the momentum can be represented as a multi-dimensional Blaschke-factor, see [65], with a
single zero in the lower half -plane =p0 < 0:

S(p) =
p− [α0 − i

2
(1 + α2

0)B
2P0]

p− [α0 + i
2
(1 + α2

0)B
2P0]

=
p− [α0 − i

2
(1 + α2

0)B
2]

p− [α0 + i
2
(1 + α2

0)B
2]
P0 + P⊥0 =:

p− p0

p− p̄0

P0 + P⊥0 (14)
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with p0 = α0 − i
2
(1 + α2

0)B
2, P0 = ~ν0〉 〈~ν0 and P⊥0 = I − P0.

Vice versa, consider a standard Blaschke factor

S(p) =
p− p0

p− p̄0

P0 + P
⊥

0
, (15)

with a one-dimensional projection P0 = ~ν0〉 〈~ν0. This factor can be obtained as a scattering
matrix for the pair consisting of the conventional momentum operator in the space L2(R,E) and
the perturbed momentum operator obtained via breeding P with a one-dimensional operator
A0 = α0 e0〉 〈e0 with the eigen-value α0 = <p0, the boundary matrix

B =

(
β00 β01

β10 β11

)
with β11 = 0, and β01 defined from the comparison of (13) with (14)

=p0 ~ν0〉 〈~ν0 =
1 + α2

0

2
~ν0〉 |b01|〈e0, e0〉|b10|~ν0,

β01 =

√
2
= p0

1 + α2
0

~ν0〉 〈e0, ∗〉, |β01| =

√
2
= p0

1 + α2
0

, ~β01 = |β01|~ν0. (16)

and β00 = −β01α0β
+
01. Then the model described by the theorems 2.1, , 2.2 has the scattering

matrix S. In particular the scattered waves of the model corresponding to are found based on
the Ansatz (7):

Ψ =

(
Ψ(x)

α0+i
α0−pη+e

)
via eliminating η− from the boundary conditions based on η− = −1+α0p

α0−p
η+. Ii particular, for η

we have from (11)

η = β10
I + S

2
ν =

1 + α2
0

α0 − p
β10

I

I − i
2
B2ν0〉 〈ν0

ν,

with B2 =‖ β01PNe0 ‖2, ν0 = B−1β01PNe0.

Hence we derive, as a corollary of the preceding Theorem 2.2, that the scattering matrix of
each one-dimensional perturbation of the momentum, with the boundary condition satisfying
β11 = 0, β00 + |β01|2α0 = 0, is a Blashke-factor.

Vice versa, each 1d Blaschke-factor with a single zero p0 : =p0 < 0 can be obtained as a scatter-
ing matrix of the corresponding one-dimensional perturbation A = α0 e0〉 〈e0 of the momentum
and appropriate boundary condition with β11 = 0, β00 + |β01|2α0 = 0.

Assuming that the condition of the preceding theorem is fulfilled, consider the rational repre-
sentation (8) of the stationary scattering matrix of the operator P

β
. Due to S(∞) = 1, it is

represented, for small β, as a finite Blashke product

S
β
(p) =

I + 1
2i
β01PN

I+A2

A−pIPNβ10

I − 1
2i
β01PN

I+A2

A−pIPNβ10

= (17)

12



∏
s

{[
p− ps(β)

p− p̄s(β)

]
Ps + P

⊥

s

}
=:
∏

s

Bs(β, p). (18)

of elementary Blaschke factors Bs(β, p). The following statement, similar to the chain rule
for wave operators, see for instance [36], describes scattering systems with common scattering
channels. In our case the role of the systems can play three Friedrichs models P0,Pβ,Pβ0 , where

the scattering matrix S(Pβ1 ,P) = Sβ1 is an elementary Blaschke factor of the scattering matrix
S(Pβ,P) = Sβ, see more comments in Appendix 2.

Consider the spectral problems in L2(R,E), L2(R,E)⊕Kβ
0 , L2(R,E)⊕Kβ: with unperturbed

momentum,
PΨ = pΨ, Ψ ∈ W 1

2 (R,E),

with one-dimensional perturbation Pβ of the momentum, see (2.1):

Pβ0Ψ = pΨ, Ψ ∈ W 1
2 (R,E)⊕Kβ

0 ,

and the scattering matrix Sβ0 (p) represented by a single Blaschke factor, and a multidimensional
perturbation Aβ of the momentum:

PβΨ =
1

i
Ψ, Ψ ∈ W 1

2 (R,E)⊕Kβ,

The Cauchy problems for the corresponding non-stationary equations

PΨ =
1

i

d

dt
Ψ, Ψ

∣∣∣
t=0

= Ψ0 ∈ W 1
2 (R,E),

Pβ0Ψ =
1

i

d

dt
Ψ, Ψ

∣∣∣
t=0

= Ψ0 ∈ W 1
2 (R,E)⊕Kβ

0 ,

PβΨ =
1

i

d

dt
Ψ, Ψ

∣∣∣
t=0

= Ψ0 ∈ W 1
2 (R,E)⊕Kβ,

define the unitary groups in the corresponding Hilbert spaces L2(R,E), L2(R,E) ⊕
Kβ

0 , L2(R,E)⊕Kβ with equivalent incoming and outgoing subspaces

Din = L2(R−, E), Dout = L2(R+, E).

Denote by Pin, Pout the orthogonal projection onto the incoming and outgoing subspaces of the
dynamic u(x) −→ u(x− t) and introduce the Lax-Phillips wave-operators, see [53] as:

W−(Pβ0 , Pβ) = s− limt→∞e
iPβ

0 tPine
−iPβ t,

W+(Pβ0 , Pβ) = s− limt→∞e
−iPβ

0 tPoute
iPβ t,

W−(Pβ0 , P0) = s− limt→∞e
iPβ

0 tPine
−iP0 t,

W−(Pβ0 , P0) = s− limt→∞e
−iPβ

0 tPoute
iP0 t.

(19)
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In particular W∓(Pβ0 , P0) coincide respectively with unity on Dint,out. The wave operators
can be represented in spectral terms of the corresponding operat0rs. For instance, using the
scattered waves Ψβ constructed in previous section, see (10), we obtain

W−(Pβ,Pβ0 ) =
1

2π

∫ ∞

−∞
Ψβ(p)〉〈ΨβPintΨ

β
0 )〉〈Ψβ

0 (p) ∗ dp : L2(R,E)⊕Kβ
0 −→ L2(R,E)⊕Kβ,

W−(Pβ0 ,P0) =
1

2π

∫ ∞

−∞
Ψβ

0 (p)〉〈Ψβ
0PintP0)〉〈Ψ0(p) ∗ dp : L2(R,E) −→ L2(R,E)⊕Kβ

0 , (20)

with Ψ0 = e−ipx, and similar formulae for W+:

W+(Pβ,Pβ0 ) =
1

2π

∫ ∞

−∞
Ψβ
out(p)〉 〈Ψ

β
0PoutP0)〉 〈Ψβ

0 (p) ∗ dp : L2(R)⊕Kβ
0 −→ L2(R,E)⊕Kβ,

W+(Pβ0 ,P0) =
1

2π

∫ ∞

−∞
Ψβ

0,out(p)〉 〈Ψ
β
0PoutP0)〉 〈Ψ0(p) ∗ dp : L2(R) −→ L2(R,E)⊕Kβ

0 .

The scattered waves (10) are called incoming scattered waves and denoted hereafter as
Ψβ
in,Ψ

β
in,0. Introducing the outgoing scattered waves Ψβ(out, ν),Ψ

β
0 (out, ν) with the first com-

ponents

Ψout,0 =

{
e−ipxS+νout if x < 0,
e−ipxνout if x > 0.

,

we obtain for the eigenfunctions of the operators Pβ, Pβ0

Ψout =

(
Ψout,0

A−iI
A−pIβ10

[
I + i

2
β01PN

I+A2

A−pIPN β10

]−1

νout

)
= S+Ψin. (21)

The incoming and outgoing scattered waves of the simplest perturbation Pβ0 of the momen-
tum are parametrized by the components Ψβ

0 in L2(R,E) and by the elements (16) of the
corresponding scattering matrix - a standard Blaschke factor (15), see

Ψβ
0,in νout =

(
Ψβ

0,outνout
Ψβ

0,out,1νout,

)
, (22)

where the first component is represented, as usual, by exponentials and the second is

Ψβ
0,out,1νout =

α0 − i
α0 − p− i

2
B2(1 + α2)

e0〉〈e0β10ν0〉 〈ν0νout〉+
α0 − i
α0 − p

e0〉〈e0β10[I − ν0〉 〈ν0]νout〉.

In our scattering problems the Lax-Phillips wave operators exist and constitute the Lax-Phillips
scattering operators for various P ′:

W+
+ (P ′,P)W−(P ′,P) =: SLP (P ′,P) (23)
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commuting with P and represented, in spectral terms of P by the corresponding “scattering
operators” calculated as:

SLP (Pβ,P0) = s− lim t→∞ e−iP0 tPoute
2iPβ tPine

−iP0 t,

SLP
(
P0,Pβ0

)
= s− lim t→∞ e−iP

β
0 tPoute

2iP0 tPine
−iPβ

0 t.
(24)

Chain rule for the wave operators is true, see [27]

W±(Pβ,Pβ0 )W±(Pβ0 ,P0) = W±(Pβ,P0).

The corresponding simple relation is absent for the scattering operators, but an analog of it
can be derived based on (10)

Theorem 2.3 The Lax-Phillips Scattering operator is connected with the stationary scattering
matrix defined by asymptotic of the first component {e−ipxνin, e−ipxS(p)νin} of the scattered
wave at +∞ :

SLP (Pβ,P0) = Sβ. (25)

Besides the Lax-Phillips scattering operator SLP (Pβ, P0) admits the following factorization:

SLP (Pβ, P0) =
[
W+(Pβ0 , P0)

]+
SLP (Pβ, Pβ0 ) W−(Pβ0 , P0). (26)

Here the framing terms W±(Pβ0 , P0) contain singularities at the resonances p0(β), p̄0(β), and at
the eigenvalue α0, and the central term SLP (Pβ, Pβ0 ) is an analytic function of β at the origin,
if p is in a small neighborhood of α0. The above formula (26) can be represented in terms of
incoming and outgoing scattered waves

Ψβ
0 (ν, in), Ψβ

0 (ν ′, out), Ψβ(ν
′, out), Ψβ(ν

′, out)

in the form
SLPν′,ν(Pβ, P

β
0 ) =

Ψβ
0 (ν ′, out)〉 〈Ψβ

0 (ν ′, out)PoutΨβ(ν, out)〉〈Ψβ(ν
′, out)Ψβ(ν, in)〉

〈Ψβ(ν, in)PinΨ
β
0 (ν, in)〉 〈Ψβ

0 (ν, in) = Ψβ
0 (ν ′, out)〉 Sβ〈 Ψβ

0 (ν, int) = (27)

Ψβ
0 (ν, int) (Sβ0 )+ SβΨ

β
0 (ν, int),

with 〈Ψβ(ν
′, out)Ψβ(ν, in)〉(ν ′, ν) = Sν′, ν equal to the stationary scattering matrix of Pβ with

respect to P0 - the asymptotic coefficient S+
β of the outgoing scattered wave e−ipxS+

β νin in R+.

In particular, the matrix of the scattering operator SLP (Lax-Phillips scattering matrix), with
respect to the incoming scattered waves, is represented as:

SLPβ (Pβ,Pβ0 , in) = (Sβ0 )+ Sβ, (28)

and the corresponding representation with respect to outgoing scattered waves is

SLPβ (Pβ,Pβ0 , out) = S+
β S

β
0 . (29)
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2.3 Jump-start

The last formula (27) in the previous section shows that the “total” scattering matrix S(Pβ, P0)

can be expressed in terms of the intermediate scattering matrix S(Pβ, Pβ0 )) and explicitly
constructed framing factors, containing an information about resonances. These factors are
calculated explicitly, see (20,29), and the intermediate term is represented, for the Friedrichs
model, in rational form , or , in general case, is calculated for small β by the standard analytic
perturbation procedure. It is convenient to assume that both terms are given in Blashke form:

SLPβ =

(
p− p1

p− p̄1

P1 + P⊥1

) k∏
s=2

(
p− ps
p− p̄s

Ps + P⊥s

)
=: B1(β, p)

k∏
s=2

Bs(β, p) (30)

Each of functions ps(β) is an analytic function of the “small parameter” beta, see below. The
structure of each Blaschke factor Bs shows that it has a zero at ps(β), a pole at p̄s(β) and
both of them approach to the eigenvalue αs of the inner Hamiltonian A when β → 0. The
Blaschke factor B1 is not analytic near (0, α1) due to convergence of the zero and the pole of
the factor to the same point α1. If the eigenvalues of the inner Hamiltonian A are separated,
mins,t |αs − αt| ≥ δ, then all factors Bs(β, p), s ≥ 2 are analytic with respect to (β, p) on a
small neighborhood of (0, α1). The whole scattering matrix (30) is not analytic with respect
to the perturbation parameter β near the eigenvalue α1 of the “inner Hamiltonian ” A due to
presence of the non-analytic factor B1. One may modify the perturbation procedure locally,
eliminating, for instance, the non-analytic factor Sβ1 := B1 via the “jump-start”: by introducing
of the intermediate operator Pβ1 , which is selected such that Sβ1 = B1 is the scattering matrix

for the pair
(
Pβ1 , P

)
. Then the Scattering matrix can be presented on a neighborhood of α1

as a product of the non-analytic, but explicit factors W±(Pβ)0), S
β
0 , see (26) or (28) and the

analytic factor S(Pβ,Pβ0 ) =
∏k

s=2Bs(β, p). The construction of the intermediate operator Pβ0 ,

with the Scattering matrix S(Pβ0 ,P0) is already described above.

The approximate calculation of the resonance p1(β), for small β can be done based of the matrix-
version of Rouche theorem, see [37], see the Appendix 2, but it is not easy to recover an exact
Blaschke factor B1. Indeed, in the case of Friedrichs model there is a temptation to calculate,
see Appendix 2, the right Blaschke factor B1 approximately based on the rational form (17) of
the scattering matrix, see Appendix 2. But the approximation gives p1(β) only asymptotically,
for β → 0, as a finite power expansion on the perturbation parameter. The intermediate
operator constructed based on the approximate data has scattering matrix which does not
coincide with the exact right factor, hence can’t eliminate the non-analytic exact right factor
B1 of Sβ. This is a reason why the jump-start technique in the analytic perturbation procedure
suggested in previous sections for Friedrichs model should be applied stepwise, depending on
the selected approximation for B1(β, p). Only in the case when we succeeded to split of an
exact Blaschke factor B1, the remaining chain

∏
s≥2Bs(β, p) is analytic with respect to β, p on

a small neighborhood of (0, α1) and hence the scattering matrix and the scattered waves can
be calculated by a single pitch of the two-steps jump-start + analytic perturbation procedure.
Generally a countable sequence of the pitches is needed, but the speed of convergence of the
total procedure depends on selection of the approximation B1 for every pitch.
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3 Effective zero-range Hamiltonians:

history and motivation.

The suggested jump-start technique is applicable to various scattering and spectral problems,
providing a leading thread in the corresponding analytic perturbation analysis. While in the
Friedrichs model the rational form provided basic data for the scattering matrix in form of the
Krein function, in other scattering problems the corresponding data are encoded into a relevant
(sometimes non-standard ) Dirichlet-to-Neumann map. It appeared that the scattering matrix
in most of interesting problems of resonance scattering admits a representation of the scattering
matrix by the formula similar to (17) with the Krein function substituted by an appropriate
Dirichlet-to Neumann map. An analog of the approximate scattering matrix Sβ0 is obtained via
substitution, in the formula for Sβ0 , of the Dirichlet-to Neumann map by an appropriate rational
approximation. The fitted solvable model of the resonance scattering system is constructed as
a Hamiltonian Hβ

0 which corresponds to the approximate scattering matrix Sβ0 taking into
account only nearest resonances on a certain spectral interval.

In the end of previous section we noticed that the approximate scattering matrix can’t help
eliminating the non-analytic factors in the chain of Blaschke factors, but it can give a good
hint for optimization of the corresponding computation procedure anyway. Indeed, only a
small part of linear partial differential equations can be solved analytically, with final result
represented by an elegant formula connecting directly the physical effect described by the
equation with the geometrical and physical parameters of the medium. Powerful computers
are able to produce numerical solutions, but optimization of the result requires expensive and
resource consuming scanning over the multidimensional space of all essential parameters of the
problem. To reduce the area of scanning we need, minimally, a list of essential parameters
or, better, an approximate formula for the solution in terms of the essential parameters. Pure
mathematicians were unable to answer this challenge. First steps in that direction were done by
engineers, physicists and applied mathematicians. Only nowadays the mathematical community
is able to interpret the findings of applied sciences and supply them with solid mathematical
basement. Fortunately this reconstruction extends the field of application and reliability of the
modern analytic perturbation procedure, so that the corresponding mathematics proves to be
useful. Here are some examples presented in chronological order.

3.1 Saint-Venant principle

In 1855 French elasticity theorist Jean Claude Barre de Saint Venant published in the memoir
[38] the statement ”.. the strains that can be produced in a body by the application, to a small
part of its surface, of a system of forces statically equivalent to zero force and zero couple, are
of negligible magnitude at distances which are large compared with the linear dimensions of
the part”. Other words: the strains obtained from the solution of the differential equations of
elasticity under a localized stress on the boundary, depend, in remote area, on a small number
of essential parameters. Richard von Mises proposed a mathematical interpretation of the
principle, see [39], based on asymptotic of the corresponding Green function.
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Question 1.Consider a symmetric 3d Lame or 2d bi-harmonic differential operator L, on
a compact domain Ω3 ⊂ R3 or Ω2 ⊂ R2,respectively, supplied with a self-adjoint boundary
conditions and additionally restricted L→ La by the condition of vanishing of elastic boundary
data on a neighborhood of the given boundary point a, see for instance [40], and construct a self-
adjoint extension of the restricted operator La. Is it possible to recover an explicit dependence
of the eigenfunctions and eigenvalues of the extension from the extension parameters? If it is,
then the parameters of the self-adjoint extension play a role of the Saint Venant parameters.
See more comments in [40].

3.2 Kirchhoff Ansatz

In 1882 Gustav Kirchhoff suggested a final version of his Ansatz for the Green function of the
Helmholtz equation on domains connected by a small opening, see [41].

Fig. 1. Hemlholtz Resonator with a point-wise opening at the point a and an enlarged detail
of the resonator with a narrow short channel, δ << H << λ−1/2.

In the case of a point-wise opening a, connecting the compact domain Ωint with the non-
compact domain Ωout the Kitchhoff Ansatz for the Green function of the Helmholtz equation
in the union Ω = Ωint ∪ Ωout

−∆Gλ(x, y)− λGλ(x, y) = δ(x− y), ∂G

∂nx

∣∣∣
Ω

= 0, x, y ∈ Ω

is taken the form of a linear combination of the Green functions Gint
λ (x, y), Gout

λ (x, y) of the
inner and outer problems:

−∆Gin,out
λ (x, y)− λGin,out

λ (x, y) = δ(x− y), ∂G

∂nx

∣∣∣
Ωin,out

= 0.

Gλ(x, y)−
{

Gout
λ (x, y) + AoutGout

λ (x, a), x, y ∈ Ωout

Aint Gin
λ (x, a), if y ∈ Ωout, x ∈ Ωint,

,
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The Kirchhoff coefficients Aout,int can be defined from a zero-range model for the Neumann
Laplace equation, based on symmetric restriction of the Laplacian onto functions vanishing in
a neighborhood Ua of a. Then the Kirchhoff constants are defined by the extension parameters
and from the local asymptotic of the Green function with the pole at a.

Question 2 Is it possible to define the the extension parameters such that the corresponding
Kirchoff Ansatz gives a first order approximation of the Green function of the full Neumann
problem for the pair of domains Ωint,Ωout connected by the thin short channel ω connecting?

3.3 Fermi zero-range potential

In 1934 Enrico Fermi, [3], proposed using an effective Hamiltonian for the scattering problem
of neutrons n by nucleon S of Sulfur, constructed in form of Laplacian in L2(R3) defined on
smooth functions u ∈ L2(R3) with a singularity at the origin and a boundary condition

u(x) =
Au

4π|x|
+Bu + . . . , Au = γBu, γ = γ̄.

The Laplacian with this boundary condition is symmetric (even self-adjoint) and admits explicit
construction of eigenfunctions - this model is “solvable”. Fermi suggested to “fit” this “ zero-
range model” choosing γ = −4πp−1

0 , if −p2
0 is a small negative eigenvalue in the system n, S.

The model can be extended to the case when γ > 0, and fitted to the small purely imaginary
resonance p0 = iγ. Almost 30 years later Felix Berezin and Ludvig Faddeev suggested an
elegant interpretation of the model proposed by E. Fermi. They interpret the Fermi model in
terms of John von Neumann operator extension theory, see [42]. Two decades later a similar
zero-range model was constructed as a coupling of the Laplacian with a finite hermitian matrix
A, playing the role of an inner Hamiltonian of a joint system n ∪ S:

−∆⊕ A −→ −∆β

defined by the boundary condition β imposed onto the boundary data of elements from the
domain of −∆ and A, see [43].

Question 3 Consider a scattering amplitude of the system n∪ S on a certain spectral interval
∆. Is it possible to select the hermitian matrix A and the parameters of the extension such that
the scattering amplitude of the model constructed by the operator extension procedure gives a
rational approximation of the scattering amplitude of the original system n∪S on given spectral
interval ∆ ?. See more comments in [44]

3.4 Datta-Das Sarma boundary condition at the junction

Quantum nano-electronic networks constructed of quantum wells connected by the straight
leads, width δ, have interesting transport properties which can be used for manufacturing of
nano-electronic devices and, eventually, the quantum computer.
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Fig. 2 Quantum Network: a detail.

A basic detail of the quantum network is a junction, see Fig. (refF:figure 3).

Fig. 3 Junction Ω is the most important basic detail of the quantum network. The simplest
junction is composed of a quantum well and few semi-infinite quantum wires, of constant width,
attached to it.

A one-body “scattering problem ” on a junction is equivalent to the construction of a solution
of the re-normalized Schrödinger equations L0ψ = Eψ with L0 = lω ⊕ Lint with the energy
substituted by the spectral parameter λ = 2mE~−2 and

−4 u+ V u =: L

lml = − d2

dx2
+
π2l2

δ2
+ Vδ, l ≥ 1 ,

satisfying the zero boundary conditions on the border and the matching condition on the
common boundary of the vertex domain and the leads.

The oscillating solutions in the wires are

χm,l± = e±i
√
λ−λl x eml (y) := e±iK

m,l

+
x eml (y), λ > λl = π2 l2δ−2, (31)
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and the exponentially decreasing solutions (evanescent modes ) are

ξm,s− = ems (y) e−
√
λs−λ x := e−K

m,s
− x ems (y), λ < λs. (32)

The linear combination of them constitutes a scattering Ansatz ψml (x) =:{
χl+(x) +

∑
π2r2/δ2<λ S

m,m
l,r χr−(x) +

∑
π2r2/δ2>λ s

m,m
l,r ξr(x), x ∈ ωm∑

π2r2/δ2<λ S
m,n
l,r χr−(x) +

∑
π2r2/δ2>λ s

m,n
l,r ξ

r(x), x ∈ ωn, n 6= m ,
(33)

with coefficients which should be calculated from the smooth matching conditions on the com-
mon boundary of the wires and the vertex domain of the junction. The result of matching is
the scattered wave satisfying the homogeneous equation Lψ = λψ.

Fig. 4. Symmetric junction is invariant with respect left-right reflection.

The coefficients in front of the oscillating terms of the scattered wave are interpreted as trans-
mission/reflection coefficients which define the transport properties of the junction.

Exponential solutions of the time-dependent equation 1
i
∂ψ
∂t

+ Lψ = 0 are obtained as products
of the scattered wave with the time-dependent exponential eiλt.

Fig. 5 Model 1d junction.

There is a good reason to substitute 2d junction by it’s 1d analog, with one-dimensional
Schrödinger equation on the wires −ψ′′ + V ψ = λψ on the wires and an appropriate boundary
condition at the vertex.
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The boundary conditions for the model T-junction suggested by Supriyo Datta and Sankar
Das Sarma in [45] is presented in terms of limit values of the wave-function on the 1d wires

{ψi}3i=1 := ~ψ and the values of the corresponding outward derivatives ( boundary currents)

{ψ′i}
3
i=1 := ~ψ′ at the vertex:

ψ1 = β−1ψ2 = ψ3 , ψ′1 + βψ′2 + ψ′3 = 0, (34)

or in the form
P⊥β

~ψ = 0 , Pβ ~ψ
′ = 0, (35)

with the projection

Pβ =
1

β2 + 2

 1 β 1
β β2 β
1 β 1

 . (36)

The corresponding scattering matrix is constant Sβ = I − 2Pβ, β is responsible for the connec-
tion between the “bar” and the “leg” of T . The following questions are highly important in
computational nano-electronics, see more comments in [19, 46, 47]

Question 4 Derive the boundary condition suggested by Datta-Das Sarma for 1d model junc-
tion from the first principles.

Question 5 Interpret the phenomenological parameter β, Pβ in spectral terms of the junction.

The marked questions concerning the listed models are now objects of thorough investigation
by extended group of researchers. Similar questions for other scattering systems are waiting
for enthusiasts who are able to dedicate their time and efforts to this branch of mathematical
physics.

4 Spectral meaning of resonances: basic examples

In all above examples the answers to the formulated questions can be found based on universality
of the zero-range interaction defined by the operator extension constructions. The strongest
confirmation of the universality of this interaction comes from the possibility of fitting of the
parameters of the extension procedure, see [47]. The universality of the zero-range interaction
also permits to construct self-adjoint dilatations of the dissipative operators, and to develop
the spectral theory of the dissipative operators based on the dilatation, see [50]

4.1 Discrete shift: invariant subspaces.

Consider the unilateral shift operator s in l2 = {x = (x0, x1, x3, . . . xl, . . .)}:

s : (x0, x1, x3, . . . xl, . . .)→ (0, x0, x1, x3, . . . xl, . . .). (37)
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It is obvious that the subspace of all square-summable sequences with a certain number of
zeros in front is an invariant subspace of s. What are other invariant subspaces? To make the
first step toward the answer of the question one should translate the problem into the language
of analysis in Hardy class H2

+ of analytic functions on the unit disc D with square-integrable
boundary values on the unit circle:

x −→
∑
l≥0

xl z
l ≡ x(z), |z| < 1, l2 −→ H2

+.

Simplest examples of invariant subspaces DB obtained by direct calculations are generated by
finite Blaschke products

BN (z) =
N∏
s=1

zs − z
1− z̄s z

θs, θs = z̄s |zs|−1,

in form Dout = BNH
2
+. All other invariant subspaces are parametrized by the uniform limits of

the finite Blaschke products on the unit disc, for instance infinite Blaschke products B(z) with
convergent

∏
s |zs| or so-called singular functions parametrized by singular measures µ : dµ

dϕ
= 0

a.e.0 < ϕ ≤ 2π :

Θµ(z) = e
−

∫
eiϕ+z

eiϕ−z
dµ
, bβ(z) =

Θµ − β
1−Θµβ

−→ Θµ, if β → +0.

The products S ≡ BΘ of Blaschke products and the singular functions form the class of so-
called inner functions on the unit disc and parametrize the corresponding invariant subspaces
as

DS = SH2
+, H

2
+ = DS ⊕K, (38)

4.2 Scattering problem for the discrete shift.
Characteristic function

Consider the decomposition of the space L2 of all square-integrable functions on the unit circle
into an orthogonal sum of the Hardy class H2

+, the class H2
− of analytic functions on the

complement tending to zero at infinity and more detailed decomposition:

L2 = H2
+ ⊕H2

− = SH2
+ ⊕K ⊕H2

−. (39)

Denote by PK an orthogonal projection in L2 onto K. The positive semigroup
{
zl
}+

, l =
. . . 0, 1, 2, . . . of the unitary shift group U l ≡

{
zl
}
, l = . . . − 2,−1, 0, 1, 2, . . . has an invariant

subspace DoutSH
2
+, and the negative semigroup

{
zl
}
, l = . . .−2,−1 has the invariant subspace

Din = H2
−. These subspaces are called outgoing and incoming subspaces of the unitary group{

zl
}
. The following very simple statement forms the basement of the theory of the Nagy-Foias

functional models for contractions with discrete and singular spectrum :

23



Theorem 4.1 Let S = BΘ be an inner function with simple zeros zs. Then the family of
operators

Z+
l = PKz

lPK , l = 0, 1, 2 . . . (40)

forms a semigroup of contractions Zl = T l, l = 0, 1, 2 . . . and the zeros zs of the Blaschke
product B are the eigenvalues of the generator T . The corresponding eigenfunctions are

Ψs(z) =
S(z)

z − zs
∈ K, |Ψs|K = [1− |zs|2]−1/2. (41)

The adjoint family
Z−l = PKz

−lPK , l = 0, 1, 2 . . . (42)

forms a semigroup [T+]l, with eigenfunctions

Φs(z) =
I

1− zz̄s
∈ K, |Φs|K = [1− |zs|2]−1/2. (43)

and eigenvalues z̄s. The families Φs,Ψs are bi-orthogonal

〈Φs, Φt〉 =
1

2π

∫
Φs(e

ϕ), Ψ̄s(e
ϕ)dϕ = δstΘzsBs(zs)

1

1− |zs|2
, (44)

where Bs(z) =
∏

l 6=s
zl−z

1−z̄l z
θl. The systems of eigenfunctions of T, T+ are complete in K if and

only if the singular factor is trivial Θ ≡ Const.

One can see from the theorem, that the inner function defines all essential spectral properties
of the operator T . There exist also a simple formula connecting the inner function S with
the resolvent of the operator T+. In fact the function S can be calculated for any contraction
T which only slightly deviates from an unitary operator, e.g. I − T+T is one-dimensional.
Complete theory can be developed for operators deviating from a unitary operator by trace -
class perturbation.

Compare the unitary group
{
zl
}
≡
{
U l
}

with the group
{
U l
S

}
restricted onto Dout ⊕ Dint.

Consider the decomposition of elements u ∈ Din ⊕Dout, u = uin ⊕ uout

US [uout + uin] ≡ zuout + SPKzuin + Pinzuin. (45)

Theorem 4.2 The restricted group
{
U l
S

}
is unitary in Dout ⊕Dint and unitary equivalent to{

U l
}
. The equivalence is defined by the wave operators Win,out as

s− liml→∞U
−lPoutU

l
S = Wout = Pout + SPin,

s− liml→−∞U
−lPinU

l
S = Win = Pin + S+Pout,

and
W+
outWin = SLP . (46)
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This theorem shows that the function S can be obtained via comparison of dynamics.

The nearest example of the scattering system with a continuous evolution group which posses
the described properties is provided by the Friedrichs model Pβ, see previous sections 1,2.
Indeed, the role of incoming and outgoing subspaces of the evolution group is played by L2(R,E)
and L2(R,E), the scattering matrix defined by the formula (46) is obtained as an adjoint of
the stationary scattering matrix SLP = S+

β . It is analytic the the upper half-plane =p > 0. Of
course the analog of the theorem 4.1 is true. A convenient and representative example of the
perturbed shift is considered in section 2 when discussing the Lax-Phillips scattering for the
Friedrichs model. In this section we turn to an equivalent classical example of the string with
a point mass:

4.3 A string with a point mass.

The simplest realistic resonance scattering problem may be obtained via attachment to the
homogeneous semi-infinite string [0,∞) a point mass M at x = a. This would not change
the tension, but results in additional term |ut(t, a)|

2
M/2 in the kinetic energy. From our

everyday experience we know that the solution of the wave equation with the point mass is still
a continuous function of x, t, but it is not smooth anymore: it has a jump of the first derivative
at the point a such that the resulting component of the tension gives exactly an additional
negative acceleration of the point mass returning that to the equilibrium position:

2T [ux(a+ 0)− ux(a− 0)] = Mutt(a) (47)

To give the reader a pleasure of independent ( but jet supervised !) study of this simple classical
object, we arrange the text in a form of a sequence of problem, so that each problem lays a
basement for the solution of the following problem. We do not care about maximal generality
or minimal assumption business, but wish to provide an appropriate pool where the reader -
supposedly a graduate student of Physics or Mathematics - could “swim independently”1.

Problem
∗

1 Derive the above boundary condition (47) from Lagrange principle for the string
with the additional kinetic term (due to the point mass) taken into account, assuming that a
possible jump of the derivative [ux ] = ux(a+ 0)− ux(a− 0) 6= 0 may occur at the point a.

Consider the semi-infinite string with constant density ρ, zero boundary condition at the origin,
and a point mass attached at the point a. We are looking for a continuous solution u(t, x) of
the following equation,

ρutt = Tuxx , x 6= a,

2T [ux(a+ 0)− ux(a− 0)] = Mutt(a), u(0) = 0, (48)

which is twice differentiable with respect t, x for x 6= a. The eigen-modes of the equation - the
solutions represented as products of functions depending on t and x respectively- have a form

1Some problems below are supplied my starlets. These problems may require deeper insight.
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of exponentials e
iωt

Ψp(x), where

ρω
2

= T p
2

, or ω = ±c p.

The differential equation for the amplitudes Ψp is

−
d

2
Ψp

dx2 = p
2

Ψp , (49)

and the boundary conditions are

Ψ(0) = 0, 2 [Ψx ]
∣∣∣

x=a

=
M

ρ
c

2

p
2

Ψ(a) := 2 κ
2

p
2

Ψ(a), (50)

with 2κ
2

= c
2
M/ρ. In fact (49, 50) is a Sturm-Liouvilles problem for the corresponding

differential operator la on the semi-infinite interval with the point mass M attached at x = a.

It has the purely continuous spectrum σ = [0,∞), and the system of eigenfunctions
{

Ψ
a

p

}
is complete and orthogonal in L2(0,∞). In our case these eigenfunctions can be chosen as
“scattered waves”, see the Problem 11 below.

Problem 2

The eigenfunctions of the problem (49, 50) can be constructed in form of “scattered waves”

Ψ
a

p
(x) =

{
α sin px, 0 < x < a,

e
ip(x−a) − e−ip(x−a)

Sa(p), a < x <∞ (51)

where

Sa(p) =
ip− p cot pa− κ
ip+ p cot pa+ κ

, α =
1− Sa(p)

sin pa
. (52)

Then the spectral representation of the operator la is defined by the following pair of formulae
similar to the standard for the Fourier transform

ũ(p) =
1√
2π

∫ ∞

0

u(x)Ψ̄
a

p
(x)dx,

u(x) =
1√
2π

∫ ∞

0

ũ(p)Ψ
a

p
(p)dp. (53)

Note that for zero-mass we obtain Sa = e
−2 i p a

, α = −i, and Ψp coincides with the corresponding
eigenfunction of the operator l.

Problem 3 Explore the limit behavior of the eigenfunctions Ψp when the mass becomes large,
κ→∞. Is the result compatible with your expectations based on “common sense” ?
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Now we explore the dynamics of the string with a mass attached assuming that the incident
wave has a form:

u(x+ ct) =
1√
2π

∫ ∞

0

e
ip(x−a+ct)

h̃−(p) dp = h(x− a+ ct), (54)

with a density h̃−(p) analytic in the lower half-plane =p < 0, and rapidly decreasing at infinity.
Then u(x + ct) = 0 if x − a + ct)0. One can prove by standard methods of operator theory,
that the spectrum of the operator

Problem** 12 Using the spectral representation defined by the formulae (53), construct the
solution of the problem (48) defined by the above incident wave (54) and calculate the asymp-
totic of it when t→∞.

The straightforward calculation of the dynamics defined by the equations (48) suggested in
Problem 12 is an elementary ( but not a simple) problem. We will do this calculation based on
reduction of the wave equation to the Lax-Phillips form, see [53].

Introduce Cauchy data of the wave equation (48) as

U(t, x) =

(
u(t, x)

1
c
ut(t, x)

)
:=

(
u0(t)
u1(t)

)
.

Then the equations (48) take the Schrödinger form suggested by Peter Lax and Ralph Phillips:

1

ic

dU

dt
= i

(
0 −1

− d
2

dx2 0

)
U := LaU (55)

. The initial condition defined by the incoming incident wave (54) takes the form:

U(0, x) =

(
h(x− a)
hx(x− a)

)
, x > a,

because for incoming waves depending on (x + ct) the differential operations ∂
∂x

and c
−1 ∂

∂t
are

equivalent. It appeared that the matrix differential operator La defined by (55) is self-adjoint
in the space of Cauchy data U supplied with the “energy metric”

Ea(U) =
1

2

[∫ ∞

0

{
c
−2|ut|

2

+ |ux|
2
}
dx+M |ut(a)|

2

]
. (56)

Problem 4 Define the dot-product which corresponds to the energy norm.

The enegry-normed Hilbert space E of Cauchy data plays the central role in further study of
scattering on the string.

Problem 5 Prove that the transformation of smooth compactly supported Cauchy data defined
by the wave equation is unitary with respect to the energy norm (56).
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Problem 6 The Cauchy data of the outgoing waves u(x− ct) have the form:

U(0, x) =

(
h(x− a)
−hx(x− a)

)
, x > a.

Prove that Cauchy data of outgoing waves are orthogonal in Energy metric to Cauchy data of
incoming waves.

Introduce the closure D
in

in energy norm of all Cauchy data of incoming waves supported by
the interval (0,∞), and the closure Dout in energy norm of all Cauchy data of the outgoing
waves supported by the interval (0,∞). We call them incoming and outgoing subspaces of the
unitary evolution group U(t) of Cauchy data defined by the wave equation. It follows from
the previous problem that the incoming and the outgoing subspaces are orthogonal in energy
norm. Introduce the orthogonal complement K of D

in
⊕Dout in the energy-normed space E of

Cauchy data:
K := E 	 [D

in
⊕Dout ] .

The subspace K is called the co-invariant subspace of the evolution group U(t).

Problem 7 First components of elements from K are continuous and constant on (a,∞). The
second components of elements from K vanish on (a,∞).

The following statement serves a bridge between scattering theory and theory of non-self-adjoint
(dissipative) operators;

Theorem (P.Lax - R. Phillips) Denote by PK the orthogonal projection onto K. Consider the
family of bounded operators in K defined as

PKU(t)
∣∣∣
K

:= Z(t), t ≥ 0.

The family Z(t) is a strongly continuous semigroup. It has a dissipative generator

B = s-limt→0

Z(t)− I
it

,

(2i)
−1
[
B − B+

]
≥ 0.

Proof We just make sure that the family Z(t) is a semigroup. Really, consider the sum of or-

thogonal projections onto D
in
,KDout ,

[
P〉\ + PK + Pout

]
= I and insert it between the unitary

operators U(t1)U(t2) in the formula for Z (t1 + t2):

PKU(t1)
[
P〉\ + PK + Pout

]
U(t2)

∣∣∣
K
.

Due to the invariance of Dout with respect U(t1) we have for t1 > 0:

PKU(t1)Pout = 0.

28



Similarly, due to invariance of D
in

with respect to U+
(t2) we have for t2 > 0:

PKU
+

(t2)Pout = 0,

hence P〉\U(t2)
∣∣∣
K

= 0. End of the proof.

The semigroup Z(t) = e
iBt
, t ≥ 0 is called Lax-Phillips semigroup associated with the scattering

problem. We will re-write the semigroup in spectral representation of the unitary evolution
group.

Problem 8 The spectral representation of the unitary group U(t) associated with scattered
waves

~Ψ(x, p) =

(
(ip)

−1
Ψ(x, p)

Ψ(x, p)

)
, L~Ψ = p~Ψ,

is given by the formula

Ja : U → Ũ = 〈U, ~Ψ〉E =
1

2

∫ ∞

0

[
∂u0

∂x
(−ip)Ψ̄x + u1Ψ̄

]
dx.

In particular, the spectral image of the incoming data (u0 ,
∂u0

∂x
) is calculated as:

1

2

∫ ∞

a

∂u0

∂x
e
−ipx

dx,

and the spectral image of outgoing elements (u0 , −
∂u0

∂x
) is calculated as

1

2
S̄a(p)

∫ ∞

a

∂u0

∂x
e

ipx

dx.

The incoming and outgoing subspaces are closed. Hence, due to Paley-Wiener theorem, the
spectral image of D

in
coincides with the Hardy class H

2

− of all square integrable functions on
the real axis p which can be analytically continued into the lower half-plane =p < 0. Similarly,
the spectral image of Dout coincides with S̄aH

2

+
, where H

2

+
is the Hardy class of all square

integrable functions on the real axis p which can be analytically continued into the upper
half-plane =p > 0. Hence the spectral image of the co-invariant subspace K coincides with
H

2

+
	 S̄aH

2

+
:= K

S
, and the Lax-Phillips semigroup is presented as

P
K
e

ipt
∣∣∣

K
S

:= Z(t), t ≥ 0.

Note that S̄a(p) is a bounded analytic function in the upper half-plane and the zeros of S̄a(p)
are situated in the upper half-plane.

Problem 9 Calculate the asymptotic of zeros pn of S̄a(p) :

pn ≈ nπ + (nπ − 1) + inπ(nπ − 1)
−1

, n→∞.
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Problem 10 Make sure that the eigenvalues of the Lax-Phillips semigroup coincide with
e

ipnt
, t > 0, and the corresponding eigenfunctions in spectral representation are equal to

un(p) =
S̄a(p)

pn − p
.

Problem 11 Make sure that the eigenvalues of the adjoint Lax-Phillips semigroup coincide
with e

−ip̄n t
, t > 0, and the corresponding eigenfunctions in spectral representation are equal to

vn(p) =
1

p̄n − p
.

Problem 12 Make sure that the the system {un , vn} is bi-orthogonal:

〈u
l
, vm〉L2

= 2πi
dS̄a

dp
(p

l
) δ

lm
.

We are able to answer also important questions on completeness of the eigenfunctions {un , vn}
in K and the corresponding spectral expansion. But previously we should observe few basic
facts on the spectral theory of analytic functions.

5 Selfadjoint dilation and a Functional model

of a dissipative operator.

It is well known that the standard model of a selfadjoint operator in form of the multiplication
operator in the space L2(σ) with an appropriate spectral measure σ. All attempts to construct
a model of non-self-adjoint operators in similar form failed, because of non limited growth of
the resolvent of the nonselfadjoint operator at the spectrum. In 1948 Arno Beurling suggested
a remarkable description of invariant subspaces of the shift operator, based on inner functions,
see [51]. That paper by A. Beurling provided a generic example which can be fitted to most
important class of completely non-unitary contractions or completely-nonselfadjoint dissipative
operators. Modern theory of dissipative operators and contractions is reduced to the construc-
tion of the functional model, which is based again on the operator extension technique. In
60-ties a series of papers by B. Szökefalvy-Nagy and C. Foias appeared, see the book [52]. In
these papers the spectral theory of contractions and dissipative operators was considered as a
chapter of the theory of commutative unitary groups, intertwined with the theory of analytic
functions- the spectral theory of function. The role of the spectral representation in this ap-
proach was played by some union of facts of the spectral theory of analytic function united
under the name of functional model. The functional model of the non-selfadjoint operator is
prametrized by the characteristic function, introduced by Mihail Samoilovich Livshits [55].

Simultaneously and independently from [52] a new version of the Scattering Theory appeared
see [53], which provided a profound connection between the functional model and the resonance
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scattering. Soon the whole spectral theory of the dissipative operators was re-written from
the point of view of the spectral theory of functions and functional model see [49, 59, 60,
56]. The field of applications of this elegant theory the resonance scattering in acoustics was
complemented soon by the resonance scattering on the fundamental domain of the modular
group SL2R on the Lobachevsky plane in an interplay with the critical zeros of ζ-function,
see [58, 62]. The union of the resonance scattering theory and the functional model form now
a solid base for the spectral theory of non-selfadjoint operators. In this section we supply a
review of basic achievements in this area since the middle of previous century.

The theory of unitary groups with incoming and outgoing subspaces can be applied to much
broader area of spectral analysis. In particular it may serve a basement for construction of
convenient functional models of dissipative operators with continuous spectrum. First steps
in this direction were dine by C. Foias and B.S-Nagy, see [52]. It appeared that the model
suggested in [52] may be essentially simplified when selecting a natural class of eigenfunction
of the self-adjoint dilation- the scattered waves, see [54]. Find below a compressed version of
the text.

Consider a dissipative operator in a Hilbert space K

L = A+
i

2
Γ+Γ

with a real part A = A+ and a finite-dimensional 2 positive imaginary part. Assuming that
ΓK = E contains a generating subspace of the operator A, consider the extended space E =
L2(R−, E)⊕K ⊕ L2(R+, E) of vector-functions

~u =

 u−
u
u+,


and the operator L in E defined on vector functions ~u, u ∈ D(A), u± ∈ W 1

2 (R±, E) submitted
to the condition u−(0)− u+(0) = iΓu :

L~u =

 idu−
dx

Au+ Γ+

2
[u−(0) + u+(0)]

idu+

dx

 .

Without loss of generality we can assume that the operator Γ is selfadjoint Γ = Γ
+

and positive,
but still we will use both Γ, Γ

+
in futher formulae, if not specified otherwise. The elements from

the domain of L, which vanish on either of semi-axes R±, satisfy the corresponding homogeneous
boundary conditions u−(0) = iΓu, or −u+(0) = iΓu. These conditions are fulfilled for the
absorbing and radiating eigenvectors of the dilation , see (60) below.

Theorem 5.1 The operator L is a self-adjoint operator in E. Moreover, the compression of
the resolvent Rλ, =λ < 0 of the operator L onto the subspace K coincides with the resolvent of
the operator L:

P
K

[L − λI]−1 P
K

= (L− λI)
−1

, =λ < 0. (57)

2this condition can be essentially relaxed, see the remark after the theorem 3.2
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Proof of the corresponding statement for the dissipative Schrödinger operator with complex
potential is given in [64]. Proof of the announced abstract result follows the same pattern:
to obtain the first statement we have to verify the symmetry of L and the symmetry of the
adjoint operator; to prove the second statement we may use a simple algebra and the basic
fact of existence of limits of R-function on the real axis from the upper half-plane. Then using
Riesz-integral of the resolvent one may derive from (57) that for any bounded analytic function
Φ(λ) in upper half-plane =λ > −2ε

P
K

Φ(L)P
K

=

− 1

2πi

∫ ∞−iε

−∞−iε
P

K
Φ(λ) [L − λI]−1 P

K
dλ =

− 1

2πi

∫ ∞−iε

−∞−iε
Φ(λ)[L− λI]−1dλ = Φ(L)

which means, in particular, that for t > 0: eiLt = P
K
eiLtP

K
.

2

The unitary group eiLt is a unitary dilation [52] of the contracting semigroup eiLt and the
operator L is the self-adjoint dilation of the dissipative operator L. The constructed dilation
is minimal - i.e. it does not have proper self-adjoint parts - if the subspace E is a generating
subspace of the operator A.

We can construct the symmetric spectral representation for the original dissipative operator
following the pattern of the previous section. We begin with description of eigenfunctions of
the dilation.

The space E of the dilation L may be decomposed into orthogonal sum of invariant subspaces
generated by incoming and outgoing waves and corresponding complementary (“radiating”
and “absorbing” ) components E = E− ⊕ E< = E+ ⊕ E>. The spectrum of L± in each of
components E± is absolutely continuous with the constant multiplicity dim Γ on the whole real
axis R. The spectrum of the “absorbing” and “radiating” components L>, L< in subspaces
E>, E< consists of intervals of real axis where nonzero generalized solutions of the homogeneous
equation Lψ−λψ = 0 exist which vanish on L2(R+) (for ψ>) or vanish on L2(R−) (for ψ<). The
corresponding eigen-functions of the dilation in each component E± can be found, according
to philosophy developed in [68, 67, 66] as elements of some rigged space constructed with
a help of some Hilbert-Schmidt operator T which has a dense range i.e. with all non-zero
eigenvalues. This general statement can be specified in our case by selection of a special class
of eigenfunctions which play a role of Scattered waves. This result can be obtained via selection
of a special rigging ( i.e. the operator T ) correlated with the imaginary part of the considered
dissipative operator. Without loss of generality we can assume that the operator Γ = Γ

+
is

a part of the positive Hilbert-Schmidt operator T acting in K, 〈Ku, u〉 > 0. Moreover we
can assume that the operator T 2

> 0 is presented as a product of an operator of the trace
class and an operator from Matsaev class, so that it’s eigenvalues are sn(T

2
) = O(αn βn) with∑

n |αn| < ∞,
∑

n βn/n < ∞ and βn tend to zero monotonically. Consider the Gelfand triple

[68] associated with the operator T as T K = K1 ⊂ K ⊂ K1
= T −1

K. Then the following
statement is true:
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Theorem 5.2 The incoming and outgoing eigen-functions of the ditation L can be presented
as generalized solutions of the corresponding homogeneous equation with exponential behavior
in L2(R±, E) :

ψ−(e) =


e−ikxe, e ∈ E, x ∈ R−,
u−(e) in K1

,
e−ikxS+e, e ∈ E, x ∈ R+,

ψ+(e) =


e−ikxSe, e ∈ E, x ∈ R−,
u+(e) in K1

,
e−ikxe, e ∈ E, x ∈ R+.

(58)

These eigenfunctions are labeled by the “direction vectors” 3 e ∈ E . The mid components u∓
are generalized solutions of the non-homogeneous equation in complex plane and are uniquely
defined by the direction vectors e ∈ E, see (60) below, as T −1

images of strong limits of properly
framed resolvent of the self-adjoint operator A or the resolvent of L, L

+
on the real axis from

the lower (upper) half-planes. The transmission coefficients S, S+ are also uniquely defined
from the homogeneous equation. In particular, S, S+ are analytic matrix-function in upper and
lower half-planes =k > 0, =k < 0

S+(k − i0) = I − i lim
λ→k−i0

Γ
I

L− λI
Γ+ = lim

λ→k−i0

I − i
2
Γ I
A−λIΓ

+

I + i
2
Γ I
A−λIΓ

+
,

S(k + i0) = I + i lim
λ→k+i0

Γ
I

L+ − λI
Γ+. (59)

u−(e) = −1

2

1

A− (k − i0)

(
I + S+(k − i0)

)
e = − I

L− (k − i0)
Γ+e, e ∈ E.

u+(e) = −1

2

I

A− (k + i0)
(I + S(k + i0)) e = − I

L+ − (k + i0)
Γ+e, e ∈ E. (60)

The eigenfunctions ψ>, ψ< of components of the dilation in complementary subspaces E 	E− =
E< and E 	 E+ = E> have a form:

ψ< =

 0
u<

e−ikxe<

 , ψ> =

 e−ikxe>

u>

0

 , (61)

when choosing vectors e>, e< as eigenvectors of operators ∆> = I − S+S, ∆< = I − SS+ with
non-zero eigenvalues δ>, δ< respectively, we obtain:

u>(e>) =
1

δ>
[
u−(e>)− u+(S+e>)

]
,

u<(e<) =
1

δ<
[u+(e<)− u−(Se<)] .

3The term is borrowed from [9]
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Proof. It is easy to verify the above formulae for the eigenfunctions on a formal level, see
for instance [64]. Note that analysis of the absolutely- continuous spectrum of the Symmetric
model in the rigged space is presented in [59, 60, 56]. We suggest below only the sketch of
the proof of existence of the scattered wave of the dilation (actually - the proof of existence
of their mid- components) based on the Theorem 7 from [61]. It is proved in that theorem,
in particular, that the non-tangential limits exist on the real axis for the operator-valued R-
function presented by the properly framed resolvent of a self-adjoint operator. The remark
attached to the theorem shows that the statement remains true for the limit of the R-function

T P
K

I

L − λI
P

K
T =

T I

L+ − λI
T

from the upper half-plane λ → k + i0 and for the adjoint function T I
L−λI T from the lower

half-plane, λ→ k − i0. Now it is easy to verify the existence of the mid-component u+ of the
outgoing scattered wave. Really, the limit

lim
λ→k−i0

T I

L+ − λI
T

exists in the trace class, hence the mid-component can be presented as

u+ = T −1

lim
λ→k−i0

T I

L+ − λI
T e ∈ K1

.

Similarly the mid-component of the scattered wave ψ− can be obtained.The mid-components
u<, u> of the eigenfunctions in the complementary subspaces can be obtained as linear combi-
nations of them with proper coefficients and properly chosen direction vectors.

2

Remark 1 One can see that the above calculation can be applied to the situation when the
imaginary part of the dissipative operator is a positive operator presented as a part in E of the
positive operator T such that the square T 2

of it is product of an operator with a finite trace
and an operator from Matsaev class. This is actually the natural class of dissipative operators
for which the symmetric functional model may be obtained by the procedure described above.
This class can be extended via considering the corresponding relative classes with the imaginary
part subordinated to the real part. It will be done elsewhere.

Based on the explicit formulae for the eigenfunctions one can prove that the characteristic
function obtained above as a stationary transmission coefficient can be also interpreted in non-
stationary terms.

Considering the non-perturbed shift generator in the space Din ⊕ Dout = L2(R−, E) ⊕
L2(R+, E):

L0 = i
d

dx
.
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Then the characteristic function of the original dissipative operator as Lax-Phillips-Adamjan-
Arov scattering matrix, see [63] for the pair L, L0 is

s− lim
t→∞
J′e−iL0tP+e

2iLtP−e
−iL0tJ +

0 .

Theorem 5.3 The Lax-Phillips-Adamjan-Arov scattering matrix for the pair L, L0 coincides
with the transmission coefficient 4 :

S+(k − i0) = I − i lim
λ→k−i0

Γ
I

L− λI
Γ+ =

= lim
λ→k−i0

I − i
2
Γ I
A−λIΓ

+

I + i
2
Γ I
A−λIΓ

+
, (62)

Proof is obtained by the straightforward calculation using the fact that the spectral represen-
tation J0 for the non-perturbed operator is defined by Fourier transform. Hence the scattering
matrix coincides with the transmission coefficient S in front of the exponential e−ikx in the
formula for the scattered wave ψ− in the outgoing subspace.

2

We construct now the symmetric functional model for the original operator L based on eigen-
functions ψ± of it’s self-adjoint dilation , see (58).

Theorem 5.4 Consider the maps J± of the spaces L2(E) into E±:

J+h+ =
1√
2π

∫ ∞

−∞
ψ+ (h+(p)) dp, h+ ∈ L2(E),

J−h− =
1√
2π

∫ ∞

−∞
ψ− (h−(p)) dp, h− ∈ L2(E),

and the map J of the column

(
h+

h−

)
:= h into E:

Jh = J+h+ + J−h−.

Then the following Parseval identity is true:

〈J f , J g〉 = 〈f+, g+〉+ 〈S+f−, g+〉+ 〈Sf+, g−〉+ 〈f−, g−〉 =∫
〈
(

I S+

S I

)
f , g〉

E⊕E
dk (63)

4The numerator and denominator of the the announced representation for the Scattering matrix are com-
muting, so the order of them is not important
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Proof. Note that for h− ∈ H2
−(E)

J
(
h−
0

)
=

 h−(x)
0
0


with h−(x) =

∫∞
−∞ e

−ikxh−(k)dk non equal to zero identically if x ∈ R−. Similarly for h+ ∈
H2

+(E)

J
(

0
h+

)
=

 0
0

h+(x)


with h+(x) =

∫∞
−∞ e

−ikxh+(k)dk 6= 0 if x ∈ R+. Hence incoming and outgoing
subspacesDin,out = L2(R±) are mutually orthogonal. The invariant subspaces E± ∈ E of the
dilation developed from the incoming and outgoing subspaces,

E± =
t=∞∨
t=−∞

∫ ∞

−∞
eiktψ± (h±) dk, h± ∈ H2

±,

are represented as

E+ = J
(

0
L2

)
, E− = J

(
L2

0

)
.

Then for f+ ∈ H2
+, g− ∈ H2

− we obtain :

〈J
(

0
f+

)
,J
(
eiktg−

0

)
〉 =

∫ 0

−∞
〈Sf+, e

iktg−〉L2dx

for any finite t.Following the pattern of the previous section one may derive from it that for
any f+, g− ∈ L2

〈J
(

0
f+

)
,J
(
g−
0

)
〉 =

1

2π

∫ 0

−∞
dx

∫
dk

∫
dk̂e−ikxeik̂xS(k)f+ḡ−+

1

2π

∫ ∞

0

dx

∫
dk

∫
dk̂e−ikxeik̂xf+S+(k̂)g−+

〈u+(f+), u−(g−)〉K = 〈Sf+, g−〉L2 ,

since 〈u+(f+), u−(g−)〉K = 0, and remaining integrals over semi-axes shuld be combined to the
delta-function δ(k − k̂). This way the announced statement is verified for special elements(

0
f+

)
,

(
g−
0

)
.
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The proof is accomplished based on similar arguments for various choice of special elements
and linearity of the map J .

2

Consider the non-perturbed operator E0 = L0 ⊕ L0 in L2(R,E) ⊕ L2(R,E). The correspond-
ing evolution group Ut : u(x) → u(x − t) has unilateral invariant subspaces L2(R−, E) :=
Din, L2(R+, E) := Dout. We denote by Pin,out the orthogonal projections onto Din,out re-
spectively. Similarly to the above reasoning in section 2 we calculate the symmetric spectral
representation via Lax-Phillips wave operators:

Theorem 5.5 The wave-operators

W− = s− lim
t→−∞

e−iL0tPine
iLt

W+ = s− lim
t→∞

e−iL0tPoute
iLt

exist as strong limits and are isometric operators from the invariant subspaces Ein, out ⊂ E
obtained by development of the incoming and outgoing subspaces L2(R− , E) and L2(R+ , E)
with evolution generated by L. The column(

fin
fout

)
:= f

defines the symmetric spectral map as

J f = J−fin + J+fout

which is calculated from the column of Cauchy data as

(
f0

f1

)
= f(0) as

(
fin
fout

)
=

(
FW−f(0)
FW+f(0)

)
where F is the standard Fourier transform in L2:

f(x)→ 1√
2π

∫
eikxf(x)dx = f(k).

Note that we suggested a unique recipe of construction of coordinates of the symmetric spec-
tral representation of the dilation, but , once constructed, the column of coordinates may be
a subject to change within proper limits caused by possible presence of intervals where the
Scattering matrix is unitary, see the discussion in [64].

Note that the eigenfunctions of the complementary component are found uniquely, up to the
parametrization with the direction vectors. Their mid-components u<, u> E<, E> may serve
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a canonic system of eigenfunctions of the absolutely continuous spectrum of the original dissi-
pative operator and adjoint operator, respectively. The corresponding spectral expansion

u =
1

2π

∫
σa

|S(k)|2 − 1

S+(k)
u<(k)〈u, u>(k)〉dk, (64)

is converging for elements u represented as orthogonal projections of elements of the comple-
mentary subspace E< onto K. This set is dense in the absolutely-continuous subspace of the
operator L, see [52] and the detailed discussion of the eigen-function expansion of the dissi-
pative Schrödinger Operator with complex potential in [64, 60]. Thus the incoming-outgoing
eigenfunctions of the dilation and eigenfunctions in the complementary subspaces E<, E> play
essentially different roles in spectral problem for the dissipative operator. The above formula
(64) shows that the problem of proper choice of the canonic system of eigenfunction of the
absolutely-continuous spectrum for dissipative operators is naturally resolved. Note that sim-
ilar question about a canonic system of eigenfunctions of absolutely continuous spectrum of a
self-adjoint operator remains obscure. The only bridge between the General Spectral Theorem
for self-adjoint operators and the expansion theorem is formed by classical results of I.Gelfand-
A.Kostyuchenko [66] on differentiation of the spectral measure of a self-adjoint operator in
properly rigged spaces. We hope to discuss the important question of the construction of the
canonic system of eigenvectors of the abstract self-adjoint operator somewhere. For discussion
of choice of the canonic system of eigenfunctions of the absolutely-continuous spectrum in case
of spectral multiplicity one for a unitary operator and a canonic system of eigenfunction of it’s
contracting perturbation see [57].
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7 Appendix 1: Blaschke-product.

If the scattering matrix S
β
(p) is unitary on the real axis, then the right Blaschke factors are

constructed at each zero of S
β
(p):

S
β
(p) = B

s

(p) Bs(p), Bs(p) =
p− ps(ε)

p− p̄s(ε)
Ps + [I −Ps ] . (65)

The right Blaschke factors Bs(p) do not coincide with the corresponding Blaschke factors Bs(p)
in the above product (18), due to the non-commutativity of the factors. We suggest here the
procedure of construction of the factors Bs(p) once the factors Bs(p) are given.

Assume that the factors B1 , B2 , . . . are ordered from the right to the left such that B1 is the
first factor from the right, B2 is the second factor from the right and so on. Denoting by Ns , Ns
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the ranges of Ps , Ps respectively and by νs , νs any vectors from Ns , Ns , we can write down the
following chain of equations

B1(p1) = B1(p1), N1 = N1, P1 = P1,

B2(p2)B1(p2)ν2 = 0, or N2 = B1(p2)N2,

. . . . . . . . . . . . . . .

Bl(pl) . . . B2(pl
)B1(pl

)ν
l
= 0, or N

l
= B

l−1
(p

l
) . . . B1(pl

)N
l
, (66)

We obtain the chain of one-dimensional subspaces if each product B
l−1

(p
l
) . . . B1(pl

)B0(pl
) of

the Blaschke factors does not degenerate on the corresponding subspace N1:

B
l−1

(pl) . . . B1(pl
)ν

l
6= 0. (67)

Theorem 7.1 The condition (67) of transformation of the rational form of the scattering ma-
trix (17) into the Blashke-product (18) is fulfilled for small values of the perturbation parameter
β.

Proof For small values of the perturbation parameter the imaginary parts =ps of resonances
are small, hence each term in the previous chain of equations can be re-written in the form :

N2 =

[
I − i 2=p1

p2 − p̄1

P1

]
N2

. . . . . . . . . . . . . . .

N
l
=

[
I − i

2=p
l−1

p
l
− p̄

l−1

P
l−1

] [
I − i

2=p
l−2

p
l
− p̄

l−2

P
l−2

]
N

l
.

Then due to small =p1 the operator
[
I − i 2=p1

p2−p̄1P1

]
is invertible and hence N1 has the same

dimension as N1. The projection P1 exists. Then the above argument can be applied to the
second equation, to find P2, and so on until all projections Pl are defined.

The end of the proof.

8 Appendix 2: Rouche theorem

Remark 2 Note that the scattering matrix (9) is an analytic function of the small parameter β01

on the complement of the discrete spectrum of the operator A, but is not an analytic function
of β01 on the hermitian neighborhood of the origin β01 = 0. The poles of the scattering matrix
- the resonances - are found as vector-zeros (pβ, µβ) of the denominator

mβ(p) = 2i− β01P
I + A2

A− pI
P β10 = 2i−

k∑
s=1

1 + α2
s

αs − p
B2
sQs (68)

39



where qs = es〉〈es is an orthogonal spectral projection of A at the eigenvalue αs, B
2
s =‖

β01Pes ‖2 and Qs = β01PqsPβ10B
−2
s = νs〉〈νs. Consider the leading term of the denominator

in a neighborhood U1 of the eigenvalue α1 of A:

mβ
0 (p) = 2i− 1 + α2

1

α1 − p
B2

1ν1〉〈e1, (69)

and compare the analytic functions mβ, mβ
0 on the neighborhood U1, based on Gohberg-Sigal

matrix Rouche theorem, see [37]. Find below a “softened” version of this extremely useful
result, which we quote here for finite matrices:

Theorem 8.1 If two finite square matrices m, m0 : F → F , dim F <∞, depend analytically
on the parameter p in the disc D radius δ centered at the point p0, and m0 has only one zero
p0 at the center of the disc, with the multiplicity M0, and both functions have no zeros on the
circle Σ0 = {β : |p− p0| = δ}, and are comparable on the circle:

maxp∈Σ0 ‖ m−1
0

(p) [m(p)−m0(p)] ‖< 1,

then the total multiplicity M1 of zeros of the function m inside the circle Σ0 is equal to the
multiplicity M0 of the zero p0 of the function m0.

Similar more general statement is true for poles and zeros of a pair of comparable analytic
functions with poles and zeros on the disc.

Applying the above theorem 8.1 to the pairmβ
0 , m

β, consider the Gohberg-Sigal ratio for p ≈ α1:

mβ

mβ
0

− I =
k∑
s=2

1 + α2
s

αs − p
B2
sQs

[
mβ

0

]−1

=
k∑
s=2

1 + α2
s

α1 − αs
B2
s B

−2
1

α1 − p
1 + α2

1

. (70)

We see that in δ - neighborhood Uδ of α1

δ <

[
k∑
s=2

|1 + α2
s|

|1 + α2
1|
B2
s B

−2
1

]−1

min
s 6=1
|α1 − αs|

the Rouche condition is fulfilled. Hence, in particular, if the eigenvalue α1 is simple , then in
the disc |p− αβ1 | < δ there exist a unique resonance - the simple vector zero of mβ, which can
be calculated approximately (first order approximation):

pβ ≈ pβ0 +
i

2
(1 + α2)B2

0 , e
β ≈

We supply below a non-formal discussion of the above Theorem 8.1.

Let F0 be a proper subspace of the finite-dimensional Hilbert space F , P0 be an orthogonal
projection onto F0 and P⊥

0 = I −P0 be the projection onto the orthogonal complement F⊥
0

=
F 	 F0 . We say that the analytic matrix-function m defined on the domain Dm has a simple
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isolated right vector zero at the point p0 ∈ Dm, if it is represented on a neighborhood U0 ⊂ Dµ

of the point as a product
m(p) = µr

0
(p)
[
(p− p0)P0 + bP⊥

0

]
(71)

with the complementary orthogonal projection P0 , P
⊥
0 and invertible near p0 analytic matrix-

functions µr
0
(p), b

µr
0
(p) = µ0(p0) +

p− p0

1!
µ′

0
(p0) + . . . , b(p) = b(p0) +

p− p0

1!
b′(p0) + . . . .

Multiple zeroes are defined similarly to (71), with several right factors containing possibly
different projections P0, P1, P2, . . .. One can define, in a similar way, the left vector zero and
the corresponding left projection, based on the factorization

m(β) =
[
p− p0)Q0 + bQ⊥

0

]
µ

l

0
(p), (72)

with the invertible µ
l

0
(p0) and the orthogonal projections Q0, Q

⊥
0 . For the finite-dimensional

square matrix-functions the left and right vector zeroes coincide and dim P0 = dim P
+

0
due to

Fredholm theorem. The vectors e0 , e
+

0
∈ N0 , N

+

0
from the corresponding null-subspaces are

called respectively right and left root-vectors, m(p0)e0 = 0, m
+
(p0)e

+

0
= 0. For vectors e⊥ from

the complementary subspace e⊥ ∈ E0⊥ we have m(p0)e⊥ 6= 0 . Similarly the simple isolated
vector pole is defined : we say that the function m has a simple isolated vector pole at the
point p0 if it is represented as

m(β) = µ

[
P0

p− p0

+ bP⊥
0

]
(73)

with an invertible function b and an orthogonal projection P0 onto proper subspace N0 ⊂ E,
the complementary projection P

⊥

0
and an analytic invertible function µ in a neighborhood U0

of the point p0 ∈ Dm. Similarly the left poles are defined, which coincide with right poles in the
finite-dimensional case. Both isolated poles and zeroes of analytic matrix-functions are called
in [37] characteristic values of the argument p of the function m. The logarithmic residue of
the function m at the simple isolated zero or pole is defined as an integral of the logarithmic
derivative m′(p)m

−1
(β) on a simple smooth loop Γ0 ⊂ U0 oriented in anti-clockwise (“positive”)

direction around the characteristic value m0:

Im,p0 =
1

2πi

∮
Γ0

m′(p)m
−1

(p)dp.

In [37] the period of the logarithmic derivative m′(p)m
−1

(β) on the simple cycle Γ0 ⊂ U0

containing no other characteristic points (zeroes, poles) inside

Mm,η0
=

1

2πi
Trace

∮
Γ0

m′(p)m
−1

(p)dp.

is called the “multiplicity” of the characteristic value. Straightforward calculation of the above
integrals gives the following result:

I(m, p0) =
1

2πi

∮
Γ0

m′(p)m
−1

(p)dp =
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1

2πi

∮
Γ0

µ(β)P0

[
(p0 − p)P0 + bP

⊥

0

]−1

µ
−1

(p)dp =

1

2πi
µ(p0)

∮
Γ0

P0

[
(p0 − p)P0 + bP

⊥

0

]−1

dpµ
−1

(p0) = µ(p0)P0 µ
−1

(p0),

and
Mm,p0

= ±dim P0 ,

where the sign ± is defined by the type of the characteristic value: plus for zero, minus for
pole.

Remark 3 If B = 0, then S = 1, which corresponds to the non-perturbed operator. But
it is impossible to construct an analytic (with respect to the perturbation parameters β

il
)

branch of eigenfunctions Ψν (p, β) of the perturbed operator for any p that coincides with the
eigenfunction eipxν of the non-perturbed operator at B = 0. In the following section we
will suggest a special perturbation procedure which allows us to overcome this basic difficulty
locally, near a certain point (p0 , 0) in the space (p, β) based on introduction of an appropriate
intermediate Hamiltonian. If the boundary parameters are selected such that Sβ(∞) = I, then
the corresponding scattering matrix is represented as a finite Blashke-Potapov product, see
[65], with zeroes (resonances) in the upper half-plane =p > 0.

In particular, the scattering matrix tends to I at infinity if β11 = 0 and β00 + β01PAPβ10 = 0.
Then

S
β
(p) =

2i− β01

I+A
2

A−pI β10

2i+ β01

I+A2

A−pI β10

(74)

with vector zeroes ps : S
β
(ps)νs = 0 in the upper half-plane =ps > 0, in form of the Blaschke-

Potapov product:

S
β
(p) =

∏
s

[
p− ps

p− p̄s

Ps + P⊥s

]
=:
∏

s

Bs. (75)

The orthogonal projections Ps in E depend on the order of factors, see the discussion in the

end of next section. The expressions β01

I+A
2

A−pI β10 in both numerator and denominator of the
scattering matrix are Nevanlinna functions which tend to 0 at infinity. To prove the Blashke-
Potapov decomposition (75), we need to check, if the zero ps and the pole p̄s can be collected
into one Blashke factor in the Blashke-Potapov representation (75). The constructed model
has all typical features of the Lax-Phillips scattering system, see [53], and it can serve as a
simplest model of such a system.
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