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Abstract

Several kinds of spectral quantities associated with semigroup generators are involved
in the problem of the return to the equilibrium for parabolic or hypoelliptic type linear
evolution equations: the numerical range, the spectrum and the pseudo-spectrum (or ǫ-
spectrum). The distinction between the three spectral objects becomes crucial when the
generator is a parameter-dependent differential operator. In a recent work with T. Gallay and
I. Gallagher, we have studied a simple one dimensional model. It is a parameter dependent
non self-adjoint perturbation of the harmonic oscillator hamiltonian, where the three spectral
notions are related to various quantitative estimates. Such a simple model, originally arising
from the study of the stability of Oseen vortices in fluid mechanics, shows a wide variety
of phenomena. After introducing the motivations and the relationship between spectral
quantitative estimates and quantitative estimates of the time decay, the analysis done in [6]
is summarized.

1 Introduction

1.1 Motivation from fluid mechanics

The problem arose originally from works by T. Gallay and C.E. Wayne in [7][8] about the
stability of Oseen vortices. Consider the incompressible 2D Navier-Stokes equation

{

∂tu + u.∇u = ∆u −∇p
div u = 0, u = u(x, t) ∈ R

2, x ∈ R
2, t > 0 ,

in the vorticity formulation with ω = ∂1u2 − ∂2u1 with the Biot-Savart law

u(x) =
1

2π

∫

R2

(x − y)⊥

|x − y|2 ω(y) dy =: (KBS ∗ ω)(x) .

After introducing self-similar coordinates ξ = x√
t

and τ = log t, ω(x, t) = 1
tw( x√

t
, log t) and

u(x, t) = 1√
t
v( x√

t
, log t), it is written

∂τw + v.∇w = ∆ξw +
1

2
ξ.∇ξw + w , v = KBS ∗ w ,

with the equilibrium solution

G(ξ) =
1

4π
e−

|ξ|2

4 , vG(ξ) =
1

2π

ξ⊥

|ξ|2 (1 − e−
|ξ|2

4 ) .
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The linearized equation around αG (write w = αG+ w̃ and forget the second order corrections)
is

∂τ w̃ = (L1 − αΛ1)w̃

with

L1w̃ = ∆ξw̃ +
1

2
ξ.∇ξw̃ + w̃ and Λ1w̃ = vG.∇w̃ + (KBS ∗ w̃).∇G ,

studied in the natural space L2(R2, G−1 dξ)2 . A conjugation with G1/2 gives

L := −G−1/2L1G
1/2 = −∆ξ +

|ξ|2
16

− 2

4
harmonic oscillator

Λ := −G−1/2Λ1G
1/2 = vG.∇ξ + 2(KBS ∗ G1/2.)∇G1/2 ,

in L2(R2, dξ)2. The first spectral properties of those operators have been studied in [8][21]. The
operator Λ is anti-adjoint and the rotational invariance allows to write

L = ⊕n∈ZLn and Λ = ⊕n∈ZΛn .

When the lower order term 2(KBS ∗G1/2.)∇G1/2 is neglected and with ŵ = G−1/2w̃ = wn(r)e
inθ

in polar coordinates, one is led to the operator

− 1

r2
(r∂r)

2 +
n2

r2
+

r2

16
− 1

2
+ i

αn

2πr2
(1 − e−r

2/4) ,

on L2(R+, rdr). The main difficulty occurs when r → ∞ (the asymptotics α → ∞ is also of
interest) and setting r = 2

√

|n| + ρ leads to

−∂2
ρ +

ρ2

16
(1 + O(

√

|n|
ρ

)) + i
αn

2πρ2
(1 + O(

√

|n|
ρ

)) − ρ−1∂ρ −
αne−(2

√
|n|+ρ)2/4

(ρ + 2
√

|n|)2
. (1.1)

The main term equals

−∂2
ρ +

ρ2

16
+

if(ρ)

ǫ
(1.2)

with ǫ = 2π
|n|α , f(ρ) ∈ R bounded andf(ρ) ∼ ±1

ρ2 as ρ → ∞ .

1.2 Parameter dependent non self-adjoint spectral problems.

The spectral analysis of parameter dependent non self-adjoint operators has known recently a
strong development (see for example [27, 3, 4, 26]) and more specifically for the exponential
decay of contraction semigroups (see for example [14, 11, 17, 15, 16, 28, 29]).

Consider in a Hilbert space X with the scalar product 〈 , 〉, a maximal accretive operator
Hǫ, with domain D(Hǫ), depending on the parameter ǫ → 0. The maximal accretivity implies
that the numerical range

Θ(Hǫ) =
{

〈Hǫu, u〉 ∈ C ; u ∈ D(Hǫ) , ‖u‖L2 = 1
}

(1.3)

is contained in {z ∈ C, Re z ≥ 0}. Differentiating ‖e−tHǫu‖2 with respect to t ∈ R+ yields

‖e−tHǫ‖ ≤ e−tdist(iR,Θ(Hǫ)) . (1.4)

Assume further that it is sectorial with the numerical range included in the sector {z ∈ C ; | arg z| ≤
π
2 − 2α} for some α ∈ (0, π4 ] which may depend on ǫ (the case α = 0 can be included with
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some variations like in [14][11]) and that the resolvent (1 + Hǫ)
−1 is compact so that the

σ(Hǫ) = {λn(ǫ), n ∈ N} is discrete. We set

Ξ(ǫ) = dist(iR,Θ(Hǫ)) = inf Re(Θ(Hǫ)) , (1.5)

Σ(ǫ) = inf Re(σ(Hǫ)) = min
n∈N

Re(λn(ǫ)) , (1.6)

Ψ(ǫ) =

(

sup
λ∈R

‖(Hǫ − iλ)−1‖
)−1

. (1.7)

They satisfy
Ξ(ǫ) ≤ Ψ(ǫ) ≤ Σ(ǫ) . (1.8)

The role of Σ(ǫ) and Ψ(ǫ) in the exponential decay of ‖e−tHǫ‖ occurs via the Laplace transform
and the deformation contour in

e−tHǫu =
1

2iπ

∫ −i∞

+i∞

e−tz

(z − Hǫ)−1
u dz , u ∈ D(Hǫ) .

More precisely the next general result can be added to (1.4).

Proposition 1.1 Let A be a maximal accretive operator in a Hilbert space X, with numerical
range contained in the sector {z ∈ C ; | arg z| ≤ π

2 − 2α} for some α ∈ (0, π4 ]. Assume that A is
invertible and let

Σ = inf Re(σ(A)) > 0 , and Ψ =

(

sup
λ∈R

‖(A − iλ)−1‖
)−1

.

Then the following holds:

i) If there exist C ≥ 1 and µ > 0 such that ‖e−tA‖ ≤ C e−µt for all t ≥ 0, then

Σ ≥ µ , and Ψ ≥ µ

1 + log(C)
·

ii) For any µ ∈ (0,Σ), we have ‖e−tA‖ ≤ C(A,µ) e−µt for all t ≥ 0, where

C(A,µ) =
1

π tan α

(

µN(A,µ) + 2π
)

, and N(A,µ) = sup
λ∈R

‖(A − µ − iλ)−1‖ .

iii) For µ ∈ (0,Ψ), the quantity N(A,µ) is not larger than (Ψ − µ)−1.
iv) For µ ∈ (0,Σ), the quantity N(A,µ) is bounded from below by 1

Ψe
µ

eΨ .

This general result applied with A = Hǫ is especially informative when α ∝ O(ǫν0), ν0 ≥ 0,
and

Ψ(ǫ) ∝ ǫ−νψ ≪ Σ(ǫ) ∝ ǫ−νσ , νσ > νψ > 0 .

(a(ǫ) ∝ b(ǫ) means that (a(ǫ)b(ǫ) )
±1 remains bounded as ǫ → 0+)

The conclusion is then

1. A uniform estimate ‖e−tHǫ‖ ≤ 1 × e−tµ holds for µ ≤ Ξ(ǫ). It makes sense for all t ≥ 0.

2. An estimate ‖e−tHǫ‖ ≤ ǫ−νµ × e−tµ, for some νµ ≥ 0, is possible for µ ≤ Ψ(ǫ)/2 . It makes
sense for t ≫ ǫνψ | log ǫ|.

3. An estimate ‖e−tHǫ‖ ≤ C(Hǫ, µ) × e−tµ, holds for µ ≤ Σ(ǫ). It makes sense for t ≫
logC(Hǫ,µ)

µ .

4. When µ ∈ (Ψ(ǫ),Σ(ǫ)), the constant C(Hǫ, µ) is “exponentially large” C(Hǫ, µ) ≥ e
µ−Ψ(ǫ)

Ψ(ǫ)

owing to i) . Upper bounds are worse.
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1.3 Pseudospectral nature of Ψ(ǫ).

For ǫ-dependent non self-adjoint differential or pseudo-differential operators, (usually written in
the form p(x, ǫDx)) it is important to distinguish in the complex plane the set of λ’s for which
the resolvent norm is polynomially bounded:

∃Nλ ∈ R, ‖p(x, ǫDx) − λ)−1‖ = O(ǫ−Nλ) .

The complement of this set is usually called the pseudospectrum or ǫ-spectrum (see [3][23][4] for
example).
The dependence w.r.t ǫ > 0 of our operator Hǫ is a bit different and the notion can be refined
by considering ǫ-dependent areas in the complex plane.

Definition 1.2 Let (ωǫ)ǫ∈(0,1] be a family of complex domains, i.e. ωǫ ⊂ C for all ǫ ∈ (0, 1].
We say that ωǫ meets the pseudospectrum of Hǫ as ǫ → 0 if

lim
ǫ→0

ǫN sup
z∈ωǫ

‖(Hǫ − z)−1‖ = +∞ , for all N ∈ N .

On the contrary, we say that ωǫ avoids the pseudospectrum of Hǫ as ǫ → 0 if there exists N ∈ N

such that
sup
z∈ωǫ

‖(Hǫ − z)−1‖ = O(ǫ−N ) , as ǫ → 0 .

The pseudopsectral nature of the quantity Ψ(ǫ) defined in (1.7) and which is so crucial in the
exponential decay, appears in the next result.

Proposition 1.3

i) For any κ ∈ (0, 1), the domain {Re(z) ≤ κΨ(ǫ)} avoids the pseudospectrum of Hǫ as ǫ → 0.

ii) If µǫ ≫ Ψ(ǫ)(1 + log Ψ(ǫ) + log(ǫ−1)) in the sense that the ratio goes to +∞ as ǫ → 0, then
the domain {Re(z) ≤ µǫ} meets the pseudospectrum of Hǫ as ǫ → 0.

2 Main results.

2.1 Assumptions.

Consider for a bounded real-valued function f

Hǫ = −∂2
x + x2 +

i

ǫ
f(x) , x ∈ R , (2.1)

acting on the Hilbert space X = L2(R), with domain D(Hǫ) = {u ∈ H2(R) ; x2u ∈ L2(R)}.
It satifies the assumptions of Subsection 1.2 and its numerical range is contained in the region
Rǫ ⊂ C defined by

Rǫ =
{

λ ∈ C ; Re(λ) ≥ 1 , ǫ Im(λ) ∈ f(R)
}

. (2.2)

Here are the assumptions which fit with the analysis as ρ → ∞ of our fluid mechanics example
(1.1)(1.2).

Hypothesis 2.1 We assume that f ∈ C3(R, R) has the following properties:

i) All critical points of f are non-degenerate; i.e., f ′(x) = 0 implies f ′′(x) 6= 0.

ii) There exist positive constants C and k such that, for all x ∈ R with |x| ≥ 1,
∣

∣

∣

∣

∂ℓx

(

f(x) − 1

|x|k
)

∣

∣

∣

∣

≤ C

|x|k+ℓ+1
, for ℓ = 0, 1, 2, 3 . (2.3)
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2.2 Results.

Theorem 2.2 If f satisfies Hypothesis 2.1, there exists Cψ ≥ 1 such that, for all ǫ ∈ (0, 1],

1

Cψ ǫνψ
≤ Ψ(ǫ) ≤ Cψ

ǫνψ
, where νψ =

2

k + 4
· (2.4)

This provides also a lower bound for Σ(ǫ). But an accurate analysis of Σ(ǫ) requires the control
of exponentially large quantities and is achieved after a complex deformation argument. Hence
the assumption of f have to be strengthened. The next example, which is again related to
(1.1)(1.2), shows that Σ(ǫ) ≫ Ψ(ǫ) occurs.

Theorem 2.3 Fix k > 0 and assume that

f(x) =
1

(1 + x2)k/2
, x ∈ R . (2.5)

Then there exists a constant Cσ > 0 such that the lowest real part of the spectrum satisfies, for
all ǫ ∈ (0, 1],

Σ(ǫ) ≥ Cσ
ǫνσ

, where νσ = min
{1

2
,

2

k + 2

}

. (2.6)

Theorem 2.2 can be refined in a form which shows that the lower and upper bounds for Ψ(ǫ)
result from the competition of various phenomena. Under Hypothesis 2.1, the function f has
only a finite number of critical points. The finite set of critical values of f is denoted by

cv(f) =
{

f(x) ; x ∈ R , f ′(x) = 0
}

.

For any λ ∈ R and any ǫ ∈ (0, 1), we define

κ(ǫ, λ) = ‖(Hǫ − iλ)−1‖ . (2.7)

The following proposition gives accurate bounds on κ(ǫ, λ) in various parameter regimes:

Proposition 2.4 For ǫ ∈ (0, 1) and λ ∈ R, the quantity κ(ǫ, λ) defined in (2.7) satisfies the
following estimates:

i) If dist(ǫλ, f(R)) ≥ δ > 0, then κ(ǫ, λ) ≤ ǫ/δ.

ii) If dist(ǫλ, cv(f) ∪ {0}) ≥ δ > 0, then κ(ǫ, λ) ≤ Cδ ǫ2/3.

iii) If λ = λ(ǫ) is such that limǫ→0 ǫλ(ǫ) = c ∈ cv(f) \ {0}, then lim supǫ→0 ǫ−1/2κ(ǫ, λ(ǫ)) ≤ C.

iv) For λ = 0, the quantity κ(ǫ, 0) satisfies

κ(ǫ, 0) ≤











C ǫ
2
k+2 if 0 6∈ f(R) ,

C ǫmin{ 2
k+2

, 2
3} if 0 ∈ f(R) \ cv(f) ,

Cǫmin{ 2
k+2

, 1
2} if 0 ∈ cv(f) .

v) There exists C > 1 such that κ(ǫ, λ) ≤ Cǫ
2
k+4 for all (ǫ, λ) ∈ (0, 1) × R. Moreover, if

κ(ǫ, λ) ≥ C−1ǫ
2
k+4 , then λ is comparable to ǫ−

4
k+4 .

Finally all estimates in i), ii), iii), iv), and v) are optimal, in the sense that one can find
λ = λ(ǫ) so that the pair (ǫ, λ(ǫ)) satisfies the required conditions as ǫ → 0 and so that κ(ǫ, λ(ǫ))
is comparable to the upper bound in this limit.

Proposition 2.4 also allows to localize the pseudospectrum of Hǫ accurately. This is summarized
in the next picture.
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1 + 0i1 + 0i

ǫIm z
Im z

Re zRe z

c1
∝ ǫ−1/2

c2
∝ ǫ−1/2

c3
∝ ǫ−1/2

∝ ǫ−
4

k+4

∝ ǫ−
2

k+4

∝ ǫ−
2

k+2

∝ ǫ−2/3

∝ ǫ−2/3

∝ ǫ−2/3

∝ ǫ−1

Rǫ

Fig. 2: The domain ωǫ on the left-hand side of the solid curve avoids the pseudospectrum of Hǫ as ǫ → 0. The
picture on the right shows the geometry at the scale ǫz = O(1), while the left picture focuses on the region where
ǫz is small. Here Rǫ = {z ∈ C ; Re z ≥ 0 , min f ≤ ǫ Im z ≤ max f} and cv(f) = {c1, c2, c3}.

2.3 Summarized proofs.

Theorem 2.2 is a straightforward consequence of Proposition 2.4 which also provides the pseu-
dospectral geometry in Figure 1.
Sketch of the proof of Proposition 2.4: Owing to the symbol type behaviour assumed
for ∂αx f(x) in Hypothesis 2.1, the two asymptotics ǫ → 0 and x → ∞ are better handled by
introducing a dyadic partition of unity

1 =
∞

∑

j=0

χj(x)2 = χ0(x)2 +
∞

∑

j=1

χ̃
( x

2j

)2
,

where χ0, χ̃ ∈ C∞
0 (R) satisfy

χ0(x) =

{

1 if |x| ≤ 3
4 ,

0 if |x| ≥ 1 ,
χ̃(x) =

{

1 if 1
2 ≤ |x| ≤ 3

4 ,

0 if |x| ≤ 3
8 or |x| ≥ 1 .

Then the problem is reduced to finding regularity lower bounds for local problems which are
parametrized by (ǫ, 2j , λ):

Lemma 2.5 For j ∈ N, ǫ > 0, and λ ∈ R, consider the operator

Pj,ǫ,λ = −2−2j∂2
x + 22jx2 +

i

ǫ
f(2jx) − iλ , (2.8)

and let
Cj(ǫ, λ) = inf

{

‖Pj,ǫ,λu‖ ; u ∈ C∞
0 (R) , suppu ⊂ Kj , ‖u‖ = 1

}

, (2.9)

where K0 = [−1, 1] and Kj = [−1,−1/4] ∪ [1/4, 1] for any j > 0. Then the quantity κ(ǫ, λ) =
‖(Hǫ − iλ)−1‖ satisfies

(

inf
j∈N

Cj(ǫ, λ)
)−1

≤ κ(ǫ, λ) ≤ C
(

inf
j∈N

Cj(ǫ, λ)
)−1

, (2.10)
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for some constant C ≥ 1 independent of ǫ, λ.

Essentially three cases have to be considered

1. j is bounded and ǫλ 6∈ cv(f). The term 22jx2 can be forgotten and one is reduced with
the (micro)-local model

P̃j;λ;ǫ = −∂2
y +

i

ǫ
y

which is unitarily equivalent to −ǫ−2α∂2
y+iǫ−1+αy. Taking α = 1/3 yields the lower bound

Cj(ǫ, λ) ∝ ǫ−2/3.

2. j is bounded and ǫλ ∈ cv(f). Then the (micro)-local model is

P̃j;λ;ǫ = −∂2
y +

i

ǫ
y2

which is unitarily equivalent to −ǫ−2α∂2
y + iǫ−1+2αy2. Taking α = 1/4 yields Cj(ǫ, λ) ∝

ǫ−1/2 .

3. j → ∞, ǫλ → 0. Several regimes have to be discussed. When |x| or 2j is very large, the
real part −∂2

x + x2 alone brings the lower bound for Cj(ǫ, k). Owing to the homogeneity

f(x) ∼ 1
|x|k as x → ∞, the critical regime occurs when h2 := ǫ2(k−2)j = O

(

ǫ
6
k+4

)

and the

(micro)-local model is

1

ǫ2kj
(−h2∂2

y + iy) with h2 = ǫ2(k−2)j .

This corresponds to the regime in x ∝ 2j ∝ ǫ−
1

k+4 which specifies the position in terms
of ǫ where the main phenomenon occurs. For those worst indices j’s, this provides the

behaviour Cj(ǫ, k) ∝ ǫ−
2
k+4

4. Those lower bounds can be proved to be optimal by constructing approximate quasi-modes
with the (micro)-local models.

�

Sketch of the proof of Theorem 2.3: The approach is similar to the analysis of resonances for
Schrödinger operators (see[1][2][18][13]). Consider the change of variable (Uθφ)(x) = eθ/2f(eθx)
which defines a unitary operator Uθ when θ ∈ R. The operator

Hǫ(θ) = UθHǫU−θ = −e−2θ∂2
x + e2θx2 +

i

ǫ(1 + e2θx2)k/2

defines an analytic family of type (A) of operators. Hence its spectrum does not depend on θ,
| Im θ| < π/4, and it has to be included in the intersection the ǫ-spectra of all the Hǫ(θ). By
taking θ = itk with tk = π

4(k+2) , the operator Hǫ(itk) behaves like a sectorial operator in a region
{

z ∈ C, |z| ≤ cǫ−1
}

with c > 0 small enough. Combined with the pseudospectral estimate of
Proposition 2.4 summarized in Figure 1, this yields the result. �
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2.4 Comments.

1. In the example (1.1)(1.2), the assumption says k = 2 and this leads to

Ψ(ǫ) ∝ ǫ−1/3 and Σ(ǫ) ≥ C−1ǫ−1/2 ,

which corresponds to numerical observations done before this analysis.

2. The competition of several microlocal models according to the size of ǫλ and illustrated in
Figure 1, can be observed numerically.

3. Additional proofs and results are given in [6]. One of them concerns an hypocoercivity
approach adapted from [28][29]. It gives a slightly weaker result but with possibly more
flexibility.

4. Several things are still to be studied:

• Give an accurate description of the spectrum around {C−1Σ(ǫ) ≤ Re z ≤ CΣ(ǫ)}.
Only a few elements are given in [6] showing that the lower bound of Σ(ǫ) should be
optimal.

• Complete the analysis of (1.1)(1.2) after including the neglected terms and possibly
adding the lower order pseudodifferential term 2(KBS ∗ G1/2. )∇G1/2.

• Finally, exploit those linear results for improving the nonlinear stability analysis of
Oseen vortices.
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