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— SCHRÖDINGER AND WAVE EQUATIONS —

Mitsuteru Kadowaki, Hideo Nakazawa and Kazuo Watanabe

Abstract. We give an overview for spectral analysis of non-self adjoint operators from
a mathematical standpoints. Among other things, we concentrate our considerations on

operators that appeared for Schrödinger and wave equations. To these examples, we de-

scribe some results of the relation between spectral structure of generator and asymptotic
behavior of solutions (energy decay and scattering). Roughly speaking, continuous spec-

tra which are on the real axis effects existence of scattering states (existence of wave and
scattering operators) and eigenvalues with negative imaginary part provide total energy

decay of solutions.

1. Introduction.

The scene is set in Energy space E, which is a Hilbert space equipped with norm
|| · ||E induced by scalar product (·, ·)E . In E , the governing equation is defined, which
describes motion in system. It is assumed that it has the form of ordinary differential
equations in E of Schrödinger type:

(1.1) i
du

dt
= Hu, u(0) = f.

Here H is a linear operator in E and f ∈ E denote initial data. For the conservative
system, the generator H is self adjoint operator and the spectrum is located only on
a real line σ(H) ⊂ R. In this case, since the spectral decomposition theorem holds,
a comparatively clear result is obtained. On the other hand, under a more realistic
situation, the generator does not become self adjoint. Therefore, the method for the
analysis of the problem is limited to us. We occasionally face the unexpected situation
for the spectrum structure. For instance, there is a possibility that point spectrum
appears in complex lower half-plain, too.

As suggested in the linear algebra, the spectrum decides the behavior of solutions
u(t), where u(t) is given at least formally in the form

u(t) = e−itHf.
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In self adjoint case, spectral resolution theorem means that

u(t) = e−itHf =

∫

R

e−iλtdPH(λ)f

in which PH(λ) denotes a spectral projection associated with H. Since energy conser-
vation law holds in this case, the total energy of solutions at time t, ||u(t)||E is the same
as it at initial time. This is consequence of the fact that spectrum lie only on the real
line. On the other hand, non-self adjoint case, energy conservation law does not hold.
For instance, let’s think about the case where H is maximal dissipative operator. In
this case, the spectrum has the possibility of appearing on the complex lower half-plane
and on the real line σ(H) ⊂ C− ∪ R. If the point spectrum appear in C−;

Hf = zf z = z< + iz= z= < 0,

then the total energy of solutions at time t decays as t goes to infinity:

u(t) = e−itHf = e−itzf = ez= · e−iz<tf → 0 as t→ ∞.

Mathematical picture is given as mentioned above. Here we shall point out the
reason to analyze non-self adjoint problems, compared with self adjoint one:

1 : We want to handle a more realistic situation. The energy-preserving system does
not exist in the actual world. In this situation, some frictional forces inevitably
appear in the movement. This means the operator to consider becomes non-self
adjoint.

2 : The tool of the analysis is insufficient. As is stated in the above, the spectral
decomposition theorem does not hold. As for the rest, spectral structure remains in
general incompletely understood. Under the circumstances it is difficult to foresee
the motion in the future.

In the following, we shall explain some results obtained in the last few years.

Contents of a present paper are outlined as follows. In section 2, it will take a
general view of some basic facts in functional analysis and spectral theory. In section
3, the Schrödinger equation with a dissipative perturbation term is treated. Since the
perturbation term contains Dirac delta function we can clarify the spectrum structure
by explicit calculations. It is especially understood that one eigenvalue appears in com-
plex lower half-plain. It is shown that wave and scattering operators exist. This means
the solution becomes asymptotically free. By the use of the wave operator generalized
Fourier transform is composed, and, as a result, generalized Parseval identity is shown.
Therefore, the classification of the asymptotic behavior of solutions by initial data be-
comes possible because of the relation to the spectrum. In section 4, we shall consider
wave equations with some dissipations. Firstly, we consider that equation with more
general rank one dissipation. For this, we cannot obtain a clear result for the spectrum
structure. However, if we follow the method of section 2, we can reach the same kind
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of conclusions. For very special Coulomb type dissipation, we can explicitly solve the
eigenvalue (stationary) problem to construct solutions of original time-dependent equa-
tions. Hole complex lower half-plains are covered with the eigenvalue, and the total
energy decays exponentially. In section 5, we shall present the result concerning wave
equation with dissipations in layered media. Though it does not make clear the spec-
trum structure, asymptotic behavior of solutions (decay and scattering) can be classified
according to the condition of dissipation. In the final section 6, the reference literature
is given and supplemented for not having been described up to now.

Acknowledgment. We want to declare appreciation to the organizer who gave the
chance of the presentation in this workshop.

2. Basic facts.

In this section, it describes some basic facts that will appear later without proofs.
For readers who want to know in more details, please refer P. D. Hislop and I. M.
Sigal [3] and Z. Yoshida [29] for examples. As for the spectral representation, see K.
Mochizuki [20].

A Hilbert space H is a complete metric space with respect to a norm ||f ||H =
√

(f, f)H induced by an inner product (f, g)H for any f , g ∈ H. Here, “complete”
means that every Cauchy sequences in H converges to an element of H. A Banach
space is a complete metric space with respect to the norm ||f || in which inner product
is not defined. For example, the Lebesgue space L2(X) is a Hilbert space with norm
||f ||L2(X) and inner product

(f, g)L2(X) =

∫

X

f(x)g(x)dx,

where g denotes the complex conjugate of g and X ⊆ R
N (x = (x1, · · · , xn) ∈ X). The

Sobolev space Hm(X) (m = 0, 1, 2 · · · ) is also a Hilbert space with norm ||f ||Hm(X) and
inner product

(f, g)Hm(X) =
∑

0≤|α|≤m

(Dαf,Dαg)L2,

where α = (α1, · · · , αn) is a multi index, |α| =
∑n

j=1 αj , Dj = ∂/∂xj, D
α = D1 · · ·Dn

denotes a differential operator of order |α|. Note that the following inclusion relation
holds

· · · ⊂ H2(X) ⊂ H1(X) ⊂ H0(X) = L2(X).

Let H1 and H2 be two Hilbert spaces. A linear operator A : H1 → H2 is consist of
two objects: (i) a linear subspace D(A) ⊂ H1 which is called the domain of A; (ii) a
linear map A : D(A) → H2. For example, the Laplacian A = −∆ = −∑n

j=1 ∂
2/∂x2

j

with D(A) = H2(RN ) is a linear operator on L2(Rn) (i.e., −∆ : L2(RN ) → L2(Rn)).
The kernel of operator A is defined by kerA = {f ∈ D(A)|Af = 0}. If kerA = {0},
then the inverse operator A−1 : H2 → H1 can be defined. An operator A is said to be
bounded (or continuous), if there exists a constant C > 0 such that ||Af ||H2

≤ C||f ||H1
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holds for any f ∈ D(A). If each f ∈ D(A) is the limit of a sequence of elements of
H1, D(A) is said to be dense in H1 and the operator A is called densely defined. An
operator A is said to be closed if fn ∈ D(A), fn → 0 in H1 and Afn → g in H2 imply
f ∈ D(A) and Af = g.

Let A be a linear operator on H with domain D(A). The resolvent set ρ(A) of A is
defined by

ρ(A) =
{

z ∈ C

∣

∣

∣
∃(A− zI)−1 : bounded, D(A) ⊂ H : dense

}

.

If z ∈ ρ(A), the operator function R(z) = (A− zI)−1 can be defined and is called the
resolvent of A. The spectrum of A denoted by σ(A) is the complement of ρ(A) in C:
σ(A) = C \ ρ(A). If A is a closed linear operator and z 6∈ σ(A), then D(R(z)) = H
holds. Moreover, ρ(A) is open set in C, so σ(A) is closed in C. The spectrum σ(A) is
classified as follows:

σp(A) =
{

z ∈ σ(A)
∣

∣

∣
ker(A− zI) 6= {0}

}

,

σr(A) =
{

z ∈ σ(A)
∣

∣

∣
ker(A− zI) = {0},D(R(z)) ⊂ H : not dense

}

,

σc(A) =
{

z ∈ σ(A)
∣

∣

∣
ker(A− zI) = {0},D(R(z)) ⊂ H : dense, R(z) : unbounded

}

.

These are in turn called the point spectrum (set of eigenvalue), the residual spectrum
and the continuous spectrum of A, respectively. By this definition, we have

σ(A) = σp(A) ∪ σr(A) ∪ σc(A), σp(A) ∩ σr(A) ∩ σc(A) = ∅.

Another classification is given as follows:

σd(A) =
{

z ∈ σp(A)
∣

∣

∣
z is isolated points of finite multiplicity

}

,

σess(A) = σ(A) \ σd(A).

These are in sequence called the discrete spectrum and the essential spectrum of A,
respectively. The set σess(A) consists of the continuous spectrum of A, the accumulation
points of the point spectrum of A and eigenvalues of A of infinite multiplicities.

If A is a linear operator on H with domain D(A) then the adjoint operator A∗ is
defined by the condition that (Af, g)H = (f,A∗g)H for any f ∈ D(A) and g ∈ D(A∗),
where

D(A∗) =
{

g ∈ H
∣

∣

∣
∃h ∈ H such that (Af, g)H = (f, h)H for any f ∈ D(A)

}

.

Then we find that such h is unique and we define A∗g = h. If A is a closed linear
operator with dense domain then A∗ is also a closed linear operator with dense domain.
If Af = A∗f for any f ∈ D(A) ⊂ D(A∗), then A is said to be symmetric. If Af = A∗f
for any f ∈ D(A) = D(A∗), then A is self adjoint. In this case, we have σ(A) ⊂ R
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and σr(A) = ∅. For example, Laplacian −∆ with D(−∆) = H2(Rn) is self adjoint and
the spectral structure is given by σ(−∆) = σc(−∆) = σess(−∆) = [0,∞), σp(−∆) =
σr(−∆) = σd(−∆) = ∅ and ρ(−∆) = C \ [0,∞).

Spectral decomposition theorem means that if A is a self adjoint operator with a
domain D(A) in H, then a uniquely determined projection operator family P (λ) exists
such that

D(A) =

{

f ∈ H
∣

∣

∣

∣

∣

∫

σ(A)

λ2d||P (λ)f ||2H <∞
}

,

∀f ∈ D(A), ∀g ∈ H, (Af, g)H =

∫

σ(A)

λd(P (λ)f, g)H.

(

A =

∫

σ(A)

λdP (λ).

)

The Fourier transform of f (∗1) denoted by f̂ is the projection on (2π)−n/2eix·ξ:

f̂(ξ) =
(

f(x), (2π)−n/2eix·ξ
)(∗2)

L2(Rn)
= (2π)−n/2

∫

Rn

e−ix·ξf(x)dx.

where x, ξ ∈ Rn, x · ξ =
∑n

i=1 xiξi. We also denote it by F0f
(∗3). The inverse Fourier

transform has the similar form(∗1)

g(x) =
(

F0
−1ĝ

)

(x) =
(

ĝ(ξ), (2π)−n/2e−ix·ξ
)(∗2)

L2(Rn)
= (2π)−n/2

∫

Rn

eix·ξ ˆg(ξ)dξ.

We shall describe the spectral representation of −∆ here. We define the bounded
operator F0(σ) : L2(Rn) → L2(Sn−1) by

[F0(σ)f ] (ωξ) = σ(n−1)/2f̂(σωξ),

where ξ = σωξ (σ = |ξ|, ωξ ∈ Sn−1) in polar coordinate. This is continuous with respect
to σ. Its adjoint operator F∗

0 (σ) : L2(Sn−1) → L2(Rn) is given by

[F∗
0 (σ)h] (x) = σ(n−1)/2(2π)−n/2

∫

Sn−1

eiσx·ωξh(ωξ)dSωξ
.

Using this, we can define

[F0f ] (σ, ωξ) = [F0(σ)f ] (ωξ)

(∗1) In this case, we assume that the support of f or ĝ is compact. By the Parseval identity which
is stated later, we may assume f , ĝ ∈ L2.

(∗2) Here, to give priority to comprehensible, we abuse the notation to write down variable x or ξ

in inner-product.
(∗3) Subscript 0 means free . In later, we introduce generalized Fourier transform.
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for any f ∈ L2(Rn). Then [F0f ] (σ, ωξ) ∈ L2([0,∞);L2(Sn−1))(∗4) holds and we find
that

[F0(−∆)f ] (σωξ) = σ2 [F0f ] (σ, ωξ),

which is the spectral representation of −∆. Therefor the Parseval identity is given by

(2.1) (f, g)L2(Rn
x ) = (F0f,F0g)L2(Rn

ξ
) =

∫

σ(−∆)

(

F0(σ)f,F0(σ)g
)

L2(Sn−1)
dσ.

3. Schrödinger equations.

In this section, we consider the Schrödinger equation with dissipative perturbation
of rank one [5]:

(3.1) i
du

dt
= Hu, u(0) = f ∈ E = L2(R),

where

H = Hα = H0 + α(·, δ)(∗5)
E δ = − d2

dx2
+ α(·, δ)Eδ.

Here δ is Dirac delta function and α = α< + iα= with α<, α= ≤ 0. The domain of the
operator Hα is defined as follows;

D(Hα) =

{

U = u+ aH0(H
2
0 + 1)−1δ

∣

∣

∣
u ∈ H2, a ∈ C,

(u, δ)E = −a
(

α−1 + (δ,H0(H
2
0 + 1)−1δ)E

)

}

,

where

Hs =
{

f
∣

∣

∣
||f ||2Hs =

∫

R1

(1 + |ξ|2)s
∣

∣[F0f ](ξ)
∣

∣

2
dξ <∞

}

for s ∈ R. Then the operator Hα with α= < 0 is maximal dissipative operator, i.e.,
=(Hαf, f)E ≤ 0 for any f ∈ D(Hα) and R(Hα − i)(∗6) = E hold. Thus Hα with α= < 0
generates a contraction semi-group {e−itHα}t≥0.

Now we shall start to state on spectral structure of Hα.

(∗4) f(σ, ωξ) ∈ L2
(

[0,∞); L2(Sn−1)
)

⇔ ||f(·, ·)||2
L2([0,∞);L2(Sn−1))

=
∫∞

0
||f(σ, ·)||2

L2(Sn−1)
dσ =

∫∞

0

(

∫

Sn−1 |f(σ,ωξ)|2dSωξ

)

dσ < ∞.
(∗5) Since δ ∈ H−1(R); the dual space of H1(R), (·, δ)E is the one to be interpreted as the dual

couplings of H1 and H−1.
(∗6) For operator A, R(A) denotes the range of the operator.
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Theorem 3.1. The following assertions hold:

(1) σ(Hα) =

{

[0,∞) ∪
{

−α2/4
}

(α< < 0),

[0,∞) (α< = 0).

(2) σess(Hα) = σc(Hα) = [0,∞), σr(Hα) = ∅.

(3) σp(Hα) =

{

σd(Hα) =
{

−α2/4
}

(α< < 0),

∅ (α< = 0).

(4) The projection with respect to the eigenvalue− α2/4 (α< 6= 0) is given by

P−α2/4f = −α/2(f, e(α|·|)/2)L2(R)e
(α|x|)/2.

These are obtained from the explicit representation of the resolvent

R(z) = R0(z)f +

∫

R

K(x, y; z)f(y)dy,

K(x, y; z) = − α

2i
√
z(2i

√
z − α)

ei
√

z(|x|+|y|) ∈ L2(Rx × Ry)

(=z > 0, R(z) = (Hα − z)−1, R0(z) = (H0 − z)−1) and the residual theorem. The exis-
tence of wave operator is proved by essentially Enss methods (time-dependent method)
(V. Enss [2], B. Simon [27], S.T. Kuroda [14] and P.A. Perry [24]. See also M. Kadowaki
[4]):

Theorem 3.2. Assume α< ≤ 0 and α= < 0. Then the wave operator

W (α) = s- lim
t→∞

eitH0e−itHα
(∗7)

exists as non-trivial operator in E.

By these two theorems, we find

Corollary 3.3. Assume that α< and α= < 0. Then

R(P−α2/4) ⊂ kerW (α) =
{

f
∣

∣

∣
lim

t→+∞
||e−itHαf ||E = 0

}

.

Now we shall state the spectral representation of Hα, where we need the generalized
Fourier transform for it:

(∗7) s- lim means the strong limit : ||eitH0e−itHf − W (α)f ||E → 0 as t → ∞.
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Proposition 3.4. Assume α< ≤ 0 and α= < 0 and define the generalized Fourier
transform Fα by

Fα = F0W (α).

Its representation is given by

[Fαf ](ξ) = lim
R→+∞

∫

|x|<R

ϕα(x, ξ)f(x)dx in E ,

where

ϕα(x, ξ) = (2π)−1/2

(

e−ixξ +
α

(2i|ξ| − α)
ei|x||ξ|

)

.

The spectral representation of Hα is given by this operator as follows:

[FαHαf ](ξ) = |ξ|2[Fαf ](ξ) for f ∈ D(Hα).

To show this, we may calculate (W (α)f, g)E . The standard arguments in the sta-
tionary scattering theory as in S.T. Kuroda [15] and the property of Poisson integrals
means Proposition 3.4. Now we describe the generalized Parseval formula (cf. B.S.
Pavlov [23], Theorem 2.1).

Proposition 3.5. Assume that f, g ∈ E ∩ L1(R).

(1) If α<, α= < 0, then we have

(3.2) (Fαf,Fαg)E = (f, g)E +
α

2
(f, e(α|·|)/2)E(e(α|·|)/2, g)E .

(2) If α< = 0, α= < 0, then we have

lim
ε→0

(Fiα=
f, χεF−iα=

g)E(3.3)

= (f, g)E +
iα=
4

∫

R

e(iα=/2)|x|f(x)dx

∫

R

e(iα=/2)|y|g(y)dy,

where χε is the characteristic function on
{

ξ ∈ Rξ

∣

∣

∣
a ≤

∣

∣|ξ|+α=/2
∣

∣

}

for a > 0.

Remark 3.6. Using Theorem 3.1 (4), we find (3.2) is the same as

(f, g)E = (Fαf,Fαg)E + (P−α2/4f, g)E .

This is generalization of usual Parseval formula (2.1).

Now we shall state main theorem in this section.
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Theorem 3.7.

(1) If α<, α= < 0, then kerW (α) = R(P−α2/4) holds.
(2) If α< = 0, α= < 0, then kerW (iα=) = {0} holds.

To explain the concrete meaning of this, we note

kerP−α2/4 + R(P−α2/4) = E ,
kerP−α2/4 ∩R(P−α2/4) = {0}

(M. Reed - B. Simon [26], Theorem XII.5). Thus for each f ∈ E , unique decomposition
holds:

(3.4) f = fs + f
(∗8)
d ,

where

fs ≡ f − P−α2/4f ∈ kerP−α2/4,

fd ≡ P−α2/4f ∈ R(P−α2/4).

Corollary 3.8 (The classification of asymptotics by the initial data).

(1) If α<, α= < 0, then for each f ∈ E decomposed as in (3.4), we have

(S) The following two assertions are equivalent to each other:

(i) fs 6= 0,

(ii) lim
t→∞

||e−itHαf − e−itH0W (α)f ||E = 0 with W (α)f 6= 0.

(D) The following two assertions are equivalent to each other:

(i) fs = 0,

(ii) lim
t→∞

||e−itHαf ||E = 0 (e−itHαf = ei(α2/4)tfd).

(2) If α< = 0, α= < 0, then the following two assertions are equivalent to each
other:

(i) f ∈ E and f 6= 0,

(ii) lim
t→∞

||e−itHiα= f − e−itH0W (iα=)f ||E = 0 with W (iα=)f 6= 0.

(∗8) Subscript “s” and “d” mean scattering and decay, respectively.
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[ Proof of Theorem 3.7 ]. (1) We have only to show the equivalence of W (α)f = 0 and
fs = 0. Corollary 3.3 means

(3.5) W (α)f = W (α)fs.

Note that f ∈ kerP−α2/4 is equivalent to (f, e(α|·|)/2)E = 0. This and (3.2) with a
density argument give

(

W (α)fs,W (α)fs

)

E = (Fαfs,Fαfs)E = ||fs||2E .

This and (3.5) imply the desired conclusion above. �

(2) It suffices to show that W (iα=)f = 0 imply f = 0. By the definition of Fα in
Proposition 3.4, we may assume Fiα=

f = 0. Then Proposition 3.5 (2) and the relation

(Fiα=
f,F−iα=

g)E = (f, g)E

provide (f, g)E = 0 for any g ∈ E ∩ L1(R) satisfying

∫

R

|x||g(x)|dx <∞ and

∫

R

e−(iα=/2)|x|g(x)dx = 0.

Since the space of whole such function g is dense in E , we obtain f = 0. �

4. Wave equations.

The method similar to the preceding section is also applicable to the case of wave
equation with some rank one dissipations, which is given by the following [8]:

(4.1) ∂2
tw(x, t) − ∂2

xw(x, t) + (∂tw(·, t), ψ(·))L2(R)ψ(x) = 0, (x, t) ∈ R × (0,∞),

where ∂t = ∂/∂t, ∂x = ∂/∂x and ψ ∈ L2
s(R) with s > 1/2. Here, L2

s(R) is weighted
L2-space defined as

L2
s(R) =

{

f(x)
∣

∣

∣
||f ||s <∞

}

, ||f ||2s =

∫

R

(

1 + |x|2
)s|f(x)|2dx

for s ∈ R. We deal with (4.1) as a perturbed system of

(4.2) ∂2
tw(x, t) − ∂2

xw(x, t) = 0, (x, t) ∈ R × (0,∞).

These equations (4.1) and (4.2) are able to reduced to the ordinary differential equation
(1.1) in the energy space E as follows. Here, the energy space E = E(R) is a Hilbert
space associated with energy conservation law, its inner product is given by

((

f1
f2

)

,

(

g1
g2

))

E
=

∫

R

{

∂xf1(x)∂xg1(x) + f2(x)g2(x)
}

dx.
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The norm derived from this is denoted by || · ||E . For equation (4.1), perturbed operator
H is defined by

H = i

(

0 1
∂2

x −(·, ψ)L2(R)ψ

)

with domain

D(H) =

{

f =

(

f1
f2

)

∈ E
∣

∣

∣
∂2

xf1 ∈ L2(R), f2 ∈ H1(R)

}

.

Similarly, for equation (4.2), unperturbed operator H0 is defined by

H0 = i

(

0 1
∂2

x 0

)

with the same domain D(H0) = D(H). It is well-known that σ(H0) = σc(H0) =
σess(H0) = R and σp(H0) = σr(H0) = ∅ hold. Since H is maximal dissipative and H0

is self adjoint in E , we find by M. Reed and B, Simon [25] Theorem X-50 that H and
H0 generate a contraction semi-group {e−itH} and unitary group {e−itH0}, respectively.
Therefore, the next theorem holds good by a reason like Theorem 3.2.

Theorem 4.1. The following statements hold.

(1) σp(H) ∩ R = ∅.
(2) The wave operator W exists as a non-trivial operator in E:

W = s- lim
t→∞

eitH0e−itH .

Since the function ψ does not clear, more detailed spectrum structure of H less
becomes clear. From the above theorem, the problem similar to the former section
arises. To answer this, we assume that the function ψ satisfies

(A1) ψ ∈ L2
s+1(R) with s > 1/2,

(A2) Ψ(α) ≤ Ψ(β) if 0 ≤ α ≤ β,

where
Ψ(α) = |ψ̂(α)|2 + |ψ̂(−α)|2.

For example, ψ(x) = e−|x|2/2 satisfies (A1) and (A2) since ψ̂(α) = e−|α|2/2. These
assumptions are the condition to guarantee that the singularity of the resolvent of H
is simple. Then we find out that the spectral structure depends on the size of ψ as
follows.
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Theorem 4.2. Under the assumption on ψ as above,

σ(H) ∩ C− =

{

∅
(∣

∣

∫

R
ψ(x)dx

∣

∣ ≤
√

2
)

,

{iκ0}
(∣

∣

∫

R
ψ(x)dx

∣

∣ >
√

2
)

for some κ0 < 0. Moreover, iκ0 is an eigenvalue and its multiplicity is one.

In the above example, the function ψ(x) = εe−|x|2/2 satisfies |
∫

R
ψ(x)dx| = ε

√
2π.

Thus, only one eigenvalue appears in case of ε > 1/
√
π, but also it does not appear at

all in case of ε ≤ 1/
√
π.

If the eigenvalue exists, we can define a projection Piκ0
with respect to this eigenvalue

iκ0 as follows:

(Piκ0
f, g)E = − 1

2πi

∫

Γ

(R(z)f, g)Edz for any f, g ∈ E ,

where R(z) = (H − z)−1 is the resolvent of H and Γ(⊂ C−) is a closed curve enclosed
iκ0. The claim corresponding to Corollary 3.3 is given as follows:

Corollary 4.3. R(P ) ⊂ kerW holds.

Now we shall state the construction of spectral representation for the free (unper-
turbed) operator H0.

Proposition 4.4. For f =

(

f1
f2

)

and g =

(

g1
g2

)

∈ E, we define operators F0 by

(F0f)(λ) =

































































λf̂1(λ) + if̂2(λ)√
2

λf̂1(−λ) + if̂2(−λ)√
2











(λ > 0),











−λf̂1(−λ) − if̂2(−λ)√
2

−λf̂1(λ) − if̂2(λ)√
2











(λ < 0).

Then

(1) F0 is extended(∗9) to a unitary operator from E onto L2(R; C2).
(2) For any f ∈ D(H0) and g ∈ E,

(H0f, g)E =

∫ ∞

−∞
λ
(

(F0f)(λ), (F0g)(λ)
)

C2

dλ

holds, where (·, ·)C2 denotes usual inner-product in C2.

(∗9) F0 is originally defined from a slightly narrower space than E to a slightly larger space than this

(these are some kinds of weighted energy space associated with E). The possibility of this extension

follows from the boundedness of F0 in E.



AN ASPECT FOR SPECTRAL ANALYSIS OF NON-SELFADJOINT OPERATORS 13

We call F0 the spectral representation for H0. As for the spectral representation of
perturbed operator H, we have the following proposition.

Proposition 4.5. Define two operators F and G by

(Ff)(λ) = (F0f)(λ) +
i
(

f, v(λ− i0)
)

E
Γ (λ+ i0)

(

F0

(

0
ψ

))

(λ),

(Gf)(λ) = (F0f)(λ) −
i
(

f, v(λ− i0)
)

E
Γ (λ− i0)

(

F0

(

0
ψ

))

(λ),

where Γ (z) is the term appeared in the representation of perturbed resolvent R(z) of H
as follows:

R(z)f = R0(z)f +
i
(

f, v(z)
)

E
Γ (z)

v(z),

where

R0(z)f =

(

r0(z)(zf1 + if2)
i∂xr0(z)∂xf1 + zr0(z)f2

)

is free resolvent of H0,

v(z) =

(

ir0(z)ψ
zr0(z)ψ

)

, r0(z) =
(

−∂2
x − z

)−1
is resolvent of operator − ∂2

x

Γ (z) = 1 − iz
(

r0(z)ψ, ψ
)

L2(R)
, Γ (λ± i0)(∗10) = 1 − iλ

(

r0(λ± i0)ψ, ψ
)

L2(R)
.

Then F is extended(∗11) to a bounded operator from E to L2(R; C2) and satisfies F =
F0W . Moreover we have

(4.3)

∫ ∞

−∞

(

(FHf)(λ), g̃(λ)
)

C2

dλ =

∫ ∞

−∞
λ
(

(Ff)(λ), g̃(λ)
)

C2

dλ

for any f ∈ D(H) and g̃ ∈ L2(R; C2).

Therefore, we call the operator F the spectral representation for H. The operator
G is the formal spectral representation for the adjoint operator H∗. Now we shall state
the generalized Parseval formula.

(∗10) This is justified from the principle of limiting absorption for the operator −∂2
x i.e., the existence

of the limit lim
ε↓0

r0(λ ± iε) in L2
s(R) → L2

−s(R) (s > 1/2).

(∗11) This depends on a reason totally same as what we stated a while ago in footnote (∗9).
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Proposition 4.6. Assume (A1) and (A2). Then

(1) If
∣

∣

∫

R
ψ(x)dx

∣

∣ 6=
√

2, then

(f, g)E =



















∫ ∞

−∞

(

(Ff)(λ), (Gg)(λ)
)

C2
dλ,

(∣

∣

∣

∣

∫

R

ψ(x)dx

∣

∣

∣

∣

<
√

2

)

∫ ∞

−∞

(

(Ff)(λ), (Gg)(λ)
)

C2
dλ+ (Pf, g)E ,

(∣

∣

∣

∣

∫

R

ψ(x)dx

∣

∣

∣

∣

>
√

2

)

for any f, g ∈ E.
(2) If

∣

∣

∫

R
ψ(x)dx

∣

∣ =
√

2, then

(f, g)E =

∫ ∞

−∞

(

(Ff)(λ), (Gg)(λ)
)

C2
dλ

for any f ∈ H, g ∈ Ẽ, where Ẽ ⊂ E is defined by

Ẽ =
{

g ∈ S(R) × S(R)(∗12)
∣

∣

∣
(v(−i0), g)E = 0

}

.

Remark 4.7. We may consider the above Proposition 4.6 as the spectral decomposition
theorem for the dissipative operator H. For instance, in the case

∣

∣

∫

R
ψ(x)dx

∣

∣ >
√

2, it
holds by (4.3) that

(

Af, g
)

E =

∫ ∞

−∞
λ
(

(Ff)(λ), (Gg)(λ)
)

C2
dλ+ iκ0

(

Pf, g
)

E

for any f ∈ D(H) and g ∈ E .

Now we shall state counterpart to Theorem 3.7.

Theorem 4.8. Assume (A1) and (A2).

(1) If
∣

∣

∫

R
ψ(x)dx

∣

∣ ≤
√

2, then kerW = {0} holds.

(2) If
∣

∣

∫

R
ψ(x)dx

∣

∣ >
√

2, then kerW = R(P ) holds.

(∗12) In general, S = S(Rn) is the Schwartz space on Rn, which consists of rapidly decreasing

functions.
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[ Proof ]. (1) Consider the case
∣

∣

∫

R
ψ(x)dx

∣

∣ <
√

2. By Corollary 4.3, we may show
Wf = 0 implies f = 0. Since F0 is unitary in E , we have Ff = 0 by F = F0W in
Proposition 4.5. By Proposition 4.6 (1), we have (f, g)E = 0 for any g ∈ E to obtain

the desired result. In case
∣

∣

∫

R
ψ(x)dx

∣

∣ =
√

2, similar arguments with this works well to

find that Wf = 0 implies (f, g)E = 0 by Proposition 4.6 (2) since the space Ẽ is dense
in E . This shows f = 0. �

(2) In the same way, if
∣

∣

∫

R
ψ(x)dx

∣

∣ >
√

2, we find Wf = 0 implies Ff = 0 to conclude
that (f, g)E = (Pf, g)E by Proposition 4.6 (1), from which the desired result follows. �

Although we obtain the result corresponding to Corollary 3.8 by this theorem, we
omit it.

In the method of up to now, it is essential that the singular point of resolvent is of
order one i.e., the perturbed operator is close to a self adjoint operator in some sense
[9]. In the rest of this section, we shall state a little irregular method [6]. Consider the
radially symmetric solution of wave equation with very special dissipations of Coulomb
type:

(4.4) ∂2
tw(x, t) −∆w(x, t) + b(x)∂tw(x, t) = 0

in (x, t) ∈ Rn × (0,∞), where the function b(x) is defined by

(B) b(x) = b(|x|) = (|n− 2| + 1)|x|−1

and initial data are given by

w(x, 0) = w0(x), ∂tw(x, 0) = w1(x).

Theorem 4.9. Assume that the initial data are given by

(4.5) w0(x) =

{ |x|f(|x|), (n = 1)

f(|x|), (n ≥ 2)
, w1(x) = ∂|x|

{

w0(x)
}

,

where f(|x|) = ez=|x|g(|x|) with z= < 0 and g ∈ S ′(∗13). Then the explicit radial solution
of (4.4) with (B) and (4.5) is given by

w(x, t) =

{ |x|f(|x|+ t), (n = 1)

f(|x|+ t). (n ≥ 2)

Therefore if f ∈ H1, then the total energy ||w(·, t)||E decays exponentially as t goes to
infinity, where

||w(·, t)||2E =
1

2

(

||∂tw(·, t)||2L2(Rn) + ||∇w(·, t)||2L2(Rn)

)

(∗13) S′ = S′(Rn) denotes the tempered distribution, which is the dual space of S = S(Rn) (see the

footnote (∗12))
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with E = E(Rn)(∗14) .

Remark 4.10. The solution obtained in the above is an example of disappearing solution
studied by A. Majda [16], which means that the solution disappears at some t0: there
exists some t0 > 0 such that w(x, t) = 0 holds for any t ≥ t0.

As for the spectral structure of generator Hb for (4.4), we have

Theorem 4.11. Define the operator Hb by

Hb = i

(

0 1
∆ −b(x)

)

with domain

D(Hb) =

{

v =

(

v1
v2

)

∈ E(Rn)
∣

∣

∣
Hbf ∈ E(Rn)

}

.

Assume n ≥ 3 and (B). Then

σp(Hb) = C−, σr(Hb) = ∅, σc(Hb) = R, ρ(Hb) = C+.

Result of supplementing the above is

Theorem 4.12. Assume n ≥ 3 and |b(x)| ≤ b1|x|−1 with 0 < b1 < n − 2. Then the
following inclusion relations holds:

σp(Hb) ⊂
{

z = z< + iz= ∈ C

∣

∣

∣
z2
= ≤ b21

(n− 2)2 − b21
z2
<

}

.

[ Proof of Theorem 4.9 ]. Consider the stationary problem associated with (4.4):

(4.6) (−∆− izb(x) − z2)u(x) = 0

with z = z< + iz= ∈ C. If we define u(x) by u(x) = ep(|x|) with

p(|x|) = −iz|x| − (n− 1)

2
log |x| + 1

2

∫ |x|

1

b(s)ds

(Kato [11], Kawashita-Nakazawa-Soga [13]), then we have the Riccati type equation on
b = b(|x|):

2
db

d|x| + b2 − (n− 1)(n− 3)

|x|2 = 0.

(∗14) See the description on E just behind (4.2)
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Putting h = h(|x|) = |x|b(|x|), we have

2|x| dh
d|x| + (h− n+ 1)(h+ n− 3) = 0.

Since this equation is of variable separation type, we can easily solve to obtain the
function b(|x|) given by (B). Then direct computations give the solution for (4.6)

(4.7) u(|x|) =

{ |x|e−iz|x|, (n = 1)

e−iz|x|. (n ≥ 2)

Now we assume that n ≥ 2 (the proof for the case n = 1 is done by the same way). By
(4.7), we find that the function u(|x|; z<) defined by u(|x|; z<) = e−i(z<+iz=)|x| solves
(4.6). Thus the solution w(|x|; z<) of (4.4) with initial data

w0(|x|) = u(|x|; z<), w1(|x|) =
du

d|x|(|x|; z<)

is given by w(|x|; t; z<) = u(|x| + t; z<). Since

g(|x|) = (2π)−1/2

∫

R

e−iz<|x|F0
−1g̃(z<)dz<,

where we extend g to the following g̃

g̃(s) =

{

g(s), (s ≥ 0)

0, (s < 0)

we find that

(2π)−1/2

∫

R

F−1g̃(z<)w(|x|, t; z<)dz< = ez=(|x|+t)g̃(|x| + t) = f(|x| + t)

is the desired solution (4.5). �

[ Proof of Theorem 4.11 ]. (i) On point spectrum. Consider the eigenvalue problem

Hbv = zv for v =

(

v1
v2

)

∈ E .

Then both components of v satisfy stationary equation (4.4). Thus, by Theorem 4.9,
we find that

C− ⊂ σp(Hb).

If z ∈ C+ (i.e., z= > 0), then

z=||v||E ≤ ||(Hb − z)v||E .
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From this, we obtain
σp(Hb) ∩ C+ = ∅.

If z ∈ R, integration by parts of vj-times of (4.4) (j = 1 or 2) gives ||
√
bvj ||L2(Rn) = 0

to conclude
σp(Hb) ∩ R = ∅.

These arguments show
σp(Hb) = C−.

(ii) On residual spectrum. Since H∗
b = H−b, we have σp(H

∗
b ) = C+. If we note the

relation
z ∈ σr(Hb) ⇔ z ∈ σp(H

∗
b ) & z 6∈ σp(Hb),

we have
σr(Hb) = ∅.

(iii) On resolvent set. Since the operator Hb is maximal dissipative, we have C+ ⊂
ρ(Hb) ⊂ R ∩ C+. Using the fact that the resolvent set is open in C, we conclude

ρ(Hb) = C+.

(iv) On continuous spectrum. We obtain σc(Hb) = R from the arguments (i)−(iii). �

5. Decay and scattering for wave equations with dissipation in layered me-
dia.

In this section we shall describe a result on wave equations with dissipations in
some layered media [10]. Consider the following initial-boundary value problems for
w = w(x, y, t):











∂2
tw −∆w + b(x, y)∂tw = 0, (x, y, t) ∈ Ω × (0,∞),

w(x, y, 0) = w1(x, y), ∂t(x, y, 0) = w2(x, y), (x, y) ∈ Ω,

w(x, 0, t) = w(x, π, t) = 0, (x, t) ∈ Rn × (0,∞),

where the space Ω is given by

Ω = R
n × (0, π) =

{

(x, y)
∣

∣x ∈ R
n, 0 < y < π

}

for n = 1, 2, 3, · · · and b(x, y) is a measurable function decaying as |x| → ∞. Under
these settings, we shall study the behavior of solutions, i.e., total energy decay and
existence of scattering states. To explain our results, we prepare some notations. The
equations can be written as (1.1) under the following settings; the energy space E is the
Hilbert space with the inner product:

((

f1
f2

)

,

(

g1
g2

))

E
=

∫

Ω

(∇f1(x, y) · ∇g1(x, y) + f2(x, y)g2(x, y))dxdy.
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The norm of E is denoted by ‖ · ‖E . The operator H = H0 + V is defined by

H0 = i

(

0 1
∆ 0

)

, V = i

(

0 0
0 −b(x, y)

)

with domain

D(H) = D(H0) =

{

f =

(

f1
f2

)

∈ E
∣

∣

∣
∆f1 ∈ L2(Ω), f2 ∈ H1

0 (Ω)

}

.

As for the function b(x, y) we consider the following two conditions:

(1) (some kinds of long-range conditions)

(L) : b1

(

m
∏

k=0

log[m](em + r)

)−1

≤ b(x, y) ≤ b2

for some b1, b2 > 0.
(2) (some kinds of short-range conditions)

(S) : 0 ≤ b(x, y) ≤ b3

(

m
∏

k=0

log[k](em + r)

)−1
(

log[m](em + r)
)−δ

for some 0 < δ ≤ 1, b3 > 0.

Here, m is non-negative integer, r = |x| and

e0 = 1, em = eem−1 , log[0] s = s, log[m] s = log log[m−1] s (m ≥ 1).

Under these assumptions, operators H and H0 is maximal dissipative and self adjoint
in E , respectively, therefore, H and H0 generates a contraction semi-group {e−itH}t≥0

and unitary group {e−itH0}t∈R, respectively.

The results are as follows:

Theorem 5.1. Under the assumption (L), we have for any f ∈ E,

lim
t→∞

‖e−itHf‖E = 0.

Theorem 5.2. Under the assumption (S), we have

(1) H has no real eigenvalue-values.
(2) The wave operator exists:

W = s- lim
t→∞

eitH0e−itH .

Moreover W is not zero as an operator in E.
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Corollary 5.3. Under the assumption (S), there exist non-trivial initial data f ∈ D(H)
and f+ ∈ D(H0) such that

lim
t→∞

‖e−itHf − e−itH0f+‖E = 0.

We omit proofs of the above. Only some comment are given here. As for Theorem
5.1 on the total energy decay, we prove the following

Proposition 5.4. Assume (L) for fixed m and the initial data w0 = (w1, w2) ∈
C∞

0 (Ω) × C∞
0 (Ω)(∗15). Let ε be positive number satisfying 0 < ε 5 min{1, b1/2}. Then

‖e−itHw0‖E ≤ C1

{

log[m](em + t)
}−ε/2

holds for some positive constant C1 = C1(w1, w2, b1, b2, ε) > 0.

For the proof of this, we follow the same arguments as in Mochizuki and Nakazawa
[21]. On the other hand, for the proof of Theorem 5.2, we need careful manipulation
to control singular points (thresholds) in the spectrum. Although using Kato’s smooth
perturbation theory (Kato [12], Mochizuki [19], Kadowaki [4]), it seems difficult to apply

the same methods with these since the operator
√
V is not H0-smooth near threshold

±k, k = 1, 2, 3 · · · . To relax these singularities,we chose
√
V (H0−i)−2(H0±k) as smooth

operator. Then we need density argument by using the operator
∏n

k=1(H−i)−4(H2−k2)
instead of approximate operator (H − i)−2H by Simon [27].

6. Final remarks.

For basic facts in functional analysis and spectral theory, we refer P.D. Hislop and I.
M. Segal [3] and Z. Yoshida [29]. Especially, [29] has the angle of application of nonself
adjoint problem in fluid mechanics. Z. Yosida [28] is helpful as the book which dealt
with a similar problem more deeply, in which we can find the example that the point
spectrum covers hole complex plain (Theorem 4.5 (2)). For spectral representation we
consult K. Mochizuki [20]. In that book, spectral and scattering theory for Schrödinger
and wave equations are argued. Energy decay-non decay problem for dissipative wave
equations and existence, blow-up and scattering for non-linear wave equations are also
treated.

For rank one perturbation, we quote S. Albeverio and P. Kurasov [1]. Although
non-self adjoint perturbation of Schrödinger equations were studied by many authors,
for example, B.S. Pavlov [23], K. Mochizuki [17], [18] e.t.c. (for detailed informations,
please see the references in [7]), spectral structure for it is not yet made clear.

The situation does not also change to wave equations with dissipations. Smallness
of the function b(x) in (4.4) means the conformance of spectral structure with the free

(∗15) The space C∞
0 (Ω) denotes the vector spaces consisting of all functions which are continuous

on Ω and have compact support in Ω
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case and the validity of the principle of limiting absorption ([22]). But we have no
answer to spectral structure without such a smallness condition except for Theorem
4.11. At present, it is when the order of the singularity of resolvent is one for the
moment, that classification of asymptotic behavior of solutions by initial data in the
relation to spectral structure is possible ([9]).
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