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Abstract

The normal mode approach to investigating the stability of a parallel shear flow

involves the superposition of a small wavelike perturbation on the basic flow. Its

evolution in space and/or time is then determined. In the linear inviscid theory, if

ū(y) is the basic velocity profile, then a singularity occurs at critical points yc, where

ū = c, the perturbation phase speed. This is plausible intuitively because energy

can be exchanged most efficiently where the wave and mean flow are travelling at

the same speed. The problem is of the singular perturbation type; when viscosity or

nonlinearity, for example, are restored to the governing equations, the singularity is

removed. In this lecture, the classical viscous theory is first outlined before presenting

a newer perturbation approach using a nonlinear critical layer (i.e., nonlinear terms

are restored within a thin layer). The application to the case of a density stratified

shear flow is discussed and, finally, the results are compared qualitatively with radar

observations and also with recent numerical simulations of the full equations.
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1 Introduction

In the classical approach to investigating the stability of a parallel shear flow ū(y), a

small perturbation is superimposed on the mean flow and the equations governing this

perturbation are then linearized. If the flow is two dimensional and incompressible, it

is convenient to employ a stream function ψ(x, y) related to the horizontal and vertical

velocity components by (u, v) = (ψy,−ψx). The mean and fluctuating part of the stream

function are separated by writing

ψ(x, y, t) = ψ̄(y) + εψ̂(x, y, t) , (1)

where ε << 1 is a small dimensionless amplitude parameter.

The basic equation describing the evolution of the flow is the vorticity equation which

can be written

ωt + ψy ωx − ψx ωy = Re−1∇2ω, (2)

where the vorticity ω = −∇2ψ and Re is the Reynolds number. Substituting (1) into (2)

leads to the PDE governing the evolution of the perturbation ψ̂, namely,

ω̂t + ū ω̂x + ū′′ψ̂x + ε(ψ̂y ω̂x − ψ̂x ω̂y) = Re−1∇2ω̂ , (3)

where ω̂ = −∇2ψ̂. In the normal mode approach, the variables are separated by writing

ψ̂ = φ(y) exp{iα(x− ct)} and φ satisfies the Orr-Sommerfeld equation

(ū− c)(φ′′ − α2φ)− ū′′φ =
1

iαRe
(φiv − 2α2φ′′ + α4φ) . (4)

In the classical theory, the wavenumber α is real, whereas c is complex and α ci is the

amplification factor of an unstable perturbation. On a solid boundary, both φ and φ′ must

vanish, whereas exponential decay is usually imposed if the flow is unbounded.

For a bounded flow, such as Poiseuille flow in a channel, the modal solutions are complete

and the linear problem is solved. However, in other cases, there is also a continuous

spectrum, so we will say a few words on that topic. First, let us suppose that Re >> 1, as
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it is in most important applications, and we can then neglect the viscous terms on the right-

hand side of (4). The result of doing this is the Rayleigh equation and, for many problems

(e.g., an unbounded mixing layer), the Rayleigh equation yields the most important features

of the stability problem. However, for flows with no inflection point in the velocity profile,

such as Couette flow or Poiseuille flow, there are no inviscid modes and a more general

approach is required. (The case of Couette flow is discussed in the first lecture of Prof.

Llewellyn Smith.)

The most general approach to linear stabiliy would be to solve (3) with ε = 0 by taking

a Fourier transform in x and a Laplace transform in t. However, the essential features are

associated with the Laplace transform inversion, so we may write ψ̂ = exp(iαx)Φ(y, t) and

substitute this into (3). The equation for Φ can be solved approximately by first taking the

Laplace transform in time and then solving the resulting ODE to determine the variation in

y. Finally, asymptotic methods can be used to invert the transform and it is found typically

that ψ̂ ∼ O(t−2) if there are no normal modes. This algebraic decay is the outcome of a

branch cut emanating from a singular point analogous to the normal mode critical point

to be discussed below.

There is also in the case of a boundary layer, for example, a continuous spectrum

associated with the Orr-Sommerfeld Eq. (4). Such solutions are required to be bounded in

the free stream. They, in fact, turn out to be oscillatory rather than to decay exponentially

like normal modes. As a consequence, their magnitude is greater near the edge of the

boundary layer and this property has led to suggestions that they play a role in subcritical

transition (i.e., transition to turbulence at Reynolds numbers below critical). It has long

been known that turbulence in the free stream can induce boundary layer transition and

Zaki & Durbin (2006) have shown in numerical simulations how the continuous spectrum

can be used to model this free-stream turbulence.
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2 Asymptotic solution of the Orr-Sommerfeld eq.

In this section, the Orr-Sommerfeld theory for high Reynolds numbers is reviewed briefly

in order to gain some historical perspective. At the same time, we can set the stage

for presenting below the newer, nonlinear critical layer approach and its application to

stratified shear flows. To begin, we suppose that the solution of (4) can be expressed as

a power series in powers of δ = (αRe)−1. The lowest-order term in the expansion, φ(0),

satisfies the Rayleigh equation, i.e., (4) with the right hand side equal to zero. The Rayleigh

equation provides an adequate representation of the solution everywhere except near a solid

boundary or at a critical point yc, where ū = c. The method of Frobenius can be used to

express the solution of φ(0) as a linear combination of the two power series

φA = (y − yc) +
ū′′c
2ū′c

(y − yc)2 + · · · and φB = 1 + · · ·+ ū′′c
ū′c
φA log(y − yc) + · · · (5)

y

Yc 81/2

-
u

Figure 1: Boundary layer profile showing location of viscous layers.

The logarithmic singularity in φB leads to two difficulties in the case of a neutral or

nearly-neutral mode. (Note that these series solutions are valid even for ci 6= 0, in which
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case, the critical point is off the real axis.) First, the horizontal perturbation velocity is

proportional to φ′, which becomes unbounded as y → yc. Secondly, the eigenvalue problem

associated with Rayleigh’s equation cannot be solved until it is decided how to write the

log term in φB when y < yc. An asymptotic analysis of (4) employing a viscous critical

layer (see Fig. 1) shows that for y < yc, we must write log(y − yc) = log |y − yc| − i π

(if ū′c > 0). One says, in that case, that there is a “−π phase change” across the critical

layer. This causes a jump in the Reynolds stress τ ≡ −%u′v′ that leads to the celebrated

Tollmien-Schlichting mechanism of instability. Miles (1957) employed this same mechanism

in his theory for the generation of water waves by wind.

3 Stability of stratified shear flows

A stratified shear flow can be thought of, in mathematical terms, as the flow of an in-

compressible fluid of variable density. The inviscid governing equations are the vorticity

equation and a second equation requiring that the density of an individual fluid particle

remains constant. These equations can be written

D~ω

Dt
= (~ω · ∇)~u+

1

ρ2
(∇ρ×∇p) and

Dρ

Dt
=
∂ρ

∂t
+ u·∇ρ = 0 . (6).

Denoting the stream function and density perturbations ψ̂ and ρ̂, respectively, the two-

dimensional linearized vorticity equation can be written

∇2ψ̂t + ū∇2ψ̂x − ū′′ψ̂x −
g

ρ̄
ρ̂x = 0 , (7)

where ū(y) and ρ̄(y) are the velocity and density profiles of the mean flow. An approxi-

mation similar to the Boussinesq approximation has been made in deriving (7) from the

momentum equations. Specifically, derivatives of the density ρ have been neglected except

in that term where g, the gravitational constant, appears. Separating variables now, we

again let ψ̂ = φ(y) exp{iα(x − ct)} and, in addition, ρ̂ = P (y) exp{iα(x − ct)}. From the

second of eqs. (6), after linearizing and employing normal modes, we obtain

P =
ρ̄′

(ū− c)
φ (8)
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and, after substituting into (7), φ satisfies the Taylor-Goldstein equation

d2φ

d y2
−
[
α2 +

ū ′′

(ū− c)
− r̄ ′J0

(ū− c)2

]
φ = 0 . (9)

The overall Richardson number is defined by J0 = gL/V 2 and r̄ ′ = −d(logρ̄)/dy .

The Miles-Howard theorem is the best known result of the linear stability theory, i.e.,

the theory associated with (9). Specifically, Miles(1961) demonstrated that a necessary

condition for instability is that the local Richardson number J(y) = gr̄ ′/ū ′2 be somewhere

less than 1/4. His proof was limited to monotonic velocity profiles, but was generalized by

Howard (1961) to include non monotonic profiles such as jets.

Miles used Frobenius expansions near the critical point to derive a number of impor-

tant results, including the Richardson number 1/4 theorem. Following his approach and

notation, all variable coefficients in (9) are expanded around the critical point yc to obtain

a solution valid locally having the form

φ(y) = Aφ+(y) +B φ−(y) , (10)

where

φ±(y) = (y − yc)
1
2

(1±ν)w±(y) (11)

and the functions w±(y) are regular in the neighborhood of yc; the parameter ν in (11) is

related to Jc by ν = (1− 4 Jc)
1/2.

Using arguments based on the variation of the Reynolds stress, Miles proved a number

of useful results that apply to singular neutral modes. For example, within the framework of

linear theory, a neutral mode comprising part of a stability boundary must be proportional

to one or the other of the Frobenius solutions. With the exception of profiles that are

specially constructed to avoid dealing with critical points, there is a −π phase change as

yc is crossed and this is true whether the initial-value approach is used or diffusive effects

are restored within a critical layer.

A closed form neutral solution that illustrates many of the theorems proved by Miles

was found by Hølmboe (unpublished lecture notes) for the velocity and density profiles

6



ū = tanh y and ρ̄ = e−β tanh y . His solution for the eigenvalue relation has c = 0 and

J0 = α(1−α). Instability occurs beneath this parabola in the (J, α) plane, whose maximum

is at J0 = Jc = 1
4

and α = 1
2
. The corresponding eigenfunction consistent with a linear

critical layer would be

φ(y) =


(sech y)α(tanh y)1−α, y > 0

(sech y)α| tanh y|1−α e−iπ(1−α), y < 0.

The critical layer branch point at yc = 0 is evident and it can be easily determined by

comparison with (11) that φ is proportional to φ+ for 0 ≤ α ≤ 1
2

and to φ− for 1
2
≤ α ≤ 1.

4 Nonlinear critical layers

From the basic equations in §1, it can be seen that the Rayleigh equation results when in

Eq. (3) the two small parameters ε and δ = (αRe)−1 are set to zero and normal modes are

then used to separate variables. The large Reynolds number asymptotic theory is obtained

by first setting ε = 0 in (3) and then separating variables to obtain the Orr-Sommerfeld

equation. A generalization that we mention, in passing, is to employ a weakly nonlinear

theory. In that approach, ψ̂ is expanded in powers of ε and the perturbation amplitude

satisfies a nonlinear evolution equation. Some of the deficiencies of linear theory (such as

the outcome being independent of the initial perturbation amplitude) can be remedied by

such an approach. Again, viscosity is employed to deal with critical point singularities that

arise at each order. It will be seen below that this probably explains why weakly nonlinear

analyses are less successful in treating flows where there are critical layers than they are in

dealing with problems having no critical layer, such as Bénard convection.

In this section, we present a very different treatment of the critical layer by noting that

even if the viscous terms on the right side of (3) are neglected, there will be no singularity

provided that the nonlinear terms multiplied by ε are retained. An asymptotic normal mode

approach based on this observation was first formulated by Benney & Bergeron (1969).
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Using matched asymptotic expansions, it develops that an inviscid nonlinear critical layer

of thickness O(ε1/2) is appropriate and, because the approach is nonlinear, it is convenient

to introduce a total stream function

ψ =

∫ y

yc

(ū− c) dy + ε ψ̂(ξ, y) , (12)

where c is the phase speed, ξ = αx and the flow is steady in a coordinate system travelling

at speed c. Expanding (ū− c) in a Taylor series near yc and noting that according to (5),

ψ̂ ∼ O(1) as y → yc, we see that the mean flow and perturbation are both O(ε). It is

therefore appropriate to define inner variables Y and Ψ as follows:

y − yc = ε1/2Y and ψ(ξ, y) = ε ū′cΨ(ξ, Y ) .

Employing these variables now in the vorticity equation (2), the governing equation in the

critical layer takes the form

ΨY ΨY Y ξ −ΨξΨY Y Y + O(ε) = λΨY Y Y Y , (13)

where λ ≡ 1/(αRe ε3/2). The parameter λ is seen to be a measure of the ratio of the two

critical layer thicknesses, i.e., λ1/3 = δvisc/δNL and we are interested here in the case λ� 1.

Although the details of the nonlinear critical layer theory are too involved for presen-

tation here, we can still outline the analysis and state the most significant results. The

most successful applications of this theory have been to geophysical shear flows because

the Reynolds numbers are so large. For example, in the context of clear air turbulence, a

typical value for Re is of order 106, so it is clear that unless ε is truly infinitesimal, the

parameter λ is in the nonlinear critical layer regime λ � 1. In engineering applications,

on the other hand, λ is typically O(1) so the value of the theory is more in the insights

that it provides. Nonetheless, the analysis for the case of a homogeneous shear flow will

be outlined below both for these insights and because it is tractable. The results for the

stratified case can then be, at least understood and appreciated, after comparing with those

for the homogeneous flow.
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To begin, we observe that to lowest order in ε, the solution to (13) satisfying the

matching condition to the outer expansion is simply

Ψ(0) =
Y 2

2
+ cos ξ . (14)

Remarkably, the solution (14) applies even when λ ∼ O(1), i.e., the case where both

viscosity and nonlinearity are significant. The streamline pattern associated with (14) is

known as the Kelvin cat’s-eye configuration and it is illustrated in Fig. 2.
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Figure 2: Streamline pattern in the nonlinear critical layer.

The phase change across the critical layer is determined at O(ε1/2) by matching the outer

solution to Ψ(1/2), the O(ε1/2) term in the expansion of Ψ. This can be seen by writing

the log term in (5) as log |y − yc| + i θR for y < yc, where θR is termed the phase change.

Although the PDE satisfied by Ψ(1/2) is linear, finding a solution continuous throughout

the critical layer (i.e., as |Y | → ±∞) proves to be a formidable task. First, all harmonics of

the fundamental perturbation become of the same order of magnitude. Solutions outside of

9



the closed streamline region can be found as integrals, but these cannot be matched to the

solution inside where, according to the Prandtl-Batchelor theorem, the vorticity must be a

constant. To smooth out discontinuities in vorticity along the critical streamline Ψ(0) = 1,

viscous shear layers of thickness O(λ1/2) must be included, as indicated in Fig. 2.

Once a solution having both continuous vorticity and velocity has been found, matching

to the linear, inviscid outer flow leads to the conclusion that the only solutions compatible

with a nonlinear critical layer must have zero phase change. As a result, new solutions

to the Rayleigh equation exist and these were computed for various flows by Benney &

Bergeron. These neutral mode solutions often can be found in regions of parameter space

where linear modes would be damped. This property may make them especially pertinent

in geophysical applications, as discussed below.

To conclude this outline of the nonlinear critical layer theory, we say a few words about

extensions of the idea to stratified shear flows. What makes the analysis more difficult in

the case of a stratified flow is that, according to (11), the branch point singularity in φ is

algebraic rather than logarithmic. Moreover, the density(see (8)) and horizontal velocity

perturbations are even more singular, behaving, for example, as (y− yc)−
1
2 when Jc = 1/4.

One consequence of this is that in the critical layer all the harmonics are the same order

of magnitude as the fundamental disturbance mode.

Fortunately, it is still possible to make some progress analytically even though the

results are less complete than those for the homogeneous case. Utilizing a von Mises

transformation, whereby ξ is replaced by Ψ as an independent variable, the nonlinear

critical layer equations at zeroth order can be integrated to obtain

Θ = F (Ψ) and ΨY Y = JcF
′Y +G(Ψ) , (14)

where Θ is the scaled temperature (or, equivalently, the density in the Boussinesq approx-

imation). The critical layer thickness in the stratified case is εp, where p = 2
3

if Jc ≥ 1
4

and

p decreases from 1
2

to 2
3
, as Jc increases from 0 to 1

4
; the scaling for the stream function

and temperature is, respectively, ψ = ε2pū′cΨ and T − T̄c = εpT̄ ′cΘ.
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The basic flow structure turns out to be similar to that illustrated in Fig. 2, but certain

features are more striking. First, the streamline pattern closely resembles the cat’s-eye

configuration except that there are cusps at the corners, where the critical streamlines

meet. Inside, where there are closed streamlines, the temperature, as well as the vorticity

must be constant for a steady, stratified flow. Again, thin diffusive layers along the critical

streamlines must be added, where viscosity and heat-conduction are included. Although

discontinuities in velocity and temperature are smoothed out in these layers, the local

Richardson number can be very small and small-scale instabilities may result. There is

radar evidence, however (see Fig. 3 below), that the large scale coherence of the wave can

still be maintained despite the presence of localized turbulence.

Figure 3: Radar observation of a Kelvin-Helmholtz billow at 5.6 km altitude.

Interestingly, it is the thermal boundary layers, required by the asymptotic matching,

that render these “Kelvin-Helmholtz billows” observable to sensitive radars. The greatest

utility of the foregoing theory, however, is arguably in numerical simulations where struc-
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tural details first revealed by the critical layer analysis did not appear in actual computa-

tions until the Ph. D. thesis of Patnaik (1973). These numerical simulations illustrating

the fine-scale diffusive structure were published in Patnaik, Sherman & Corcos (1976),

although the comparisons with theory contained in Patnaik’s thesis were omitted.

Figure 4: Pseudospectral simulation of a Kelvin-Helmholtz billow with J0 = 0.10 and

Re = 200; the contours shown are isopycnics (i.e., constant-density contours).

The radar observations and the simulations of Patnaik et al. generated interest in the

question of localized instabilities within the critical layer. Striking examples of these “braid

instabilities” are illustrated in the high Reynolds number simulations reported by Staquet

(1995) done at J0 = 0.167; Sec. 4.6 of her paper discusses the relationship between the

computed structures (which evolve in time) and the steady nonlinear critical layer theory.

Both convective and shear instabilities were observed in Staquet’s simulations, with the
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initial conditions determining the outcome. From the nonlinear analysis, it is clear that

many Fourier modes (at least 64) are required in pseudospectral simulations and in the

vertical coordinate a critical layer whose thickness can be as small as O(ε2/3)must be

adequately resolved. Indeed, as many as 1536 modes were employed by Staquet (1995),

enabling instabilities to be observed that were absent in earlier simulations performed by

other researchers at lower Reynolds number.
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Resonant interactions in shear flows

By S. A. Maslowe ∗

April 12, 2009

Abstract

The theory of weakly nonlinear resonant wave interactions was applied in the 1960s

to water waves. It is not often recognized that much more dramatic instabilities can

occur in the presence of a shear flow, because all modes can amplify by extracting

energy from the basic mean flow. In this talk, the foregoing idea will be employed

to propose a mechanism for generating subcritical nonlinear critical layer modes;

i.e., neutral modes that cannot be explained by linear theory because their viscous

counterparts would be damped. The problem of Rossby waves propagating in a

mixing layer with velocity profile ū(y) will be utilized to illustrate the theory. The

beta parameter, which is a measure of the stabilizing Coriolis force, is taken to be

large enough so that linear instability cannot occur. Then, full numerical simulations

are carried out to illustrate how nonlinear critical layer modes can be generated by

resonant interaction with ordinary Rossby waves, even when the singular mode is

absent initially.
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1 Introduction

Weakly nonlinear theories can be formulated systematically by employing a perturbation

scheme in which the dependent variables are expanded in powers of ε, a small dimensionless

amplitude parameter. We suppose that the system of governing equations can be expressed

in the form

Lu = εNu , (1)

and the linearized problem is obtained by setting ε = 0. If the linear problem admits

dispersive wave solutions, these will be proportional to Ai exp{i(k · x − ωt)}, where the

frequency and wavenumber are related through the dispersion relation ω = W (k).

Let us now consider the interaction of a set of three such wavetrains by writing

u =
3∑

n=1

Ai(X,T ) exp{i(k · x− ωt)}+ A∗i (X,T ) exp{−i(k · x− ωt)} , (2)

where X = εx and T = εt are slow space and time scales. The nonlinear terms N in (1)

are usually quadratic so that a sum or difference between two of the waves in (2) may be

equal to the third member of the triad. In that case, resonance is possible; the resonance

conditions are often written

k1 ± k2 ± k3 = 0 and ω1 ± ω2 ± ω3 = 0 . (3)

O. M. Philips(1960) is usually credited with first formulating a resonant interaction

theory along the foregoing lines and during the next 20 years, this was a very active area

of research. A nice survey of this work can be found in Philips(1981). However, the

above necessary conditions for resonance are not sufficient for the case of water waves, the

application that had motivated Philips. There, four waves are necessary, the development

must be carried out to higher order and the time scale for the interaction is ε2t. Because we

are most interested in the application to waves in shear flows, the work of L. G. McGoldrick,

who had been a student of Philips, turns out to be most pertinent. McGoldrick’s research

was on capillary-gravity waves and it develops that interacting triads are obtained when

the effect of surface tension is included.
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A special case, that is important, can be best used to illustrate the theory and this

case is termed second harmonic resonance. It has all the features of triad resonance, but is

simpler because only two waves are involved. McGoldrick (1972) used the following model

equation to illustrate the theory:

L{u} = utt − uxx + u+
1

4
uxxxx = 3 ε u2 . (4)

Suppose that we try to find a solution of (4) by a straightforward power series in ε. At

zeroth order, the solution of the linear problem can be written

u(0) = A exp{i(k x− ωt)}+ A∗ exp{−i(k x− ωt)}, where ω(k) = ±(1 +
1

2
k2)

is the dispersion relation. The O(ε) term in the expansion must satisfy L{u(1)} = 3 (u(0))2,

whose solution can be written

u(1) =
3

{[ω(2k)]2 − 2[ω(k)]2}
{A2e2i(k x−ωt) + (A∗)2e−2i(k x−ωt)}+ 6AA∗ .

Clearly, resonance occurs when ω(2k) = 2ω(k).

Whether treating capillary-gravity waves or shear flows, the method of multiple scales

provides a systematic framework to analyze resonant interactions. The relevant slow scales

are X = εx and T = εt, so that in the governing equations we transform derivatives

according to

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
and

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
.

To deal with the case of second harmonic resonance, the basic perturbation must include

both modes, so we write

u(0) =
2∑

n=1

An(X,T ) ei n(kx−ωt) + A∗n(X,T ) e−i n(kx−ωt) . (5)

To separate variables now in the O(ε) problem, it is found that u(1) must be of the form

u(1) = A2A
∗
1 e

i (kx−ωt) + A2
1 e

2i(kx−ωt) + complex conjugates + nonsecular terms .

In order for the expansion of u to be well ordered, the so-called secular terms must be

eliminated and this requires the amplitudes to satisfy the following evolution equations:

∂ A1

∂τ
+ ω′

∂ A1

∂X
= i γ1A2A

∗
1 and

∂ A2

∂τ
+ ω′

∂ A2

∂X
= i γ2A

2
1 . (6)
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It is informative to derive an energy integral from Eqs. (6) by neglecting the variation in

X and forming expressions for d|Ai|2
dτ

. These expressions, for i = 1 and 2, can be combined

and integrated with respect to τ to obtain

|A1|2 +
γ1

γ2

|A2|2 = E . (7)

In a conservative system, γ1 and γ2 will both have the same sign, so that the total energy

is shared by the two waves. For example, in the model Eq. (4), γ1 = 3
ω

and γ2 = 3
4ω

.

What is significant (and not generally realized) in shear flow stability problems is that

it is possible for γ1 and γ2 to have opposite signs, in which case, both waves can amplify.

While this seems counter-intuitive, the explanation is simply that both waves can amplify

by extracting energy from the mean flow. To take into account the mean flow energy, it is

necessary to go one step further in the perturbation expansion. The monograph by Craik

(1985) treats this in detail (see, in particular, Sections 17.2 and 26.1, where it is explained

that the energy is transferred to the perturbations in the vicinity of the critical layer).

Much of Craik’s own research dealt with a special triad configuration that is possible

in both boundary layers and mixing layers. Specifically, a plane wave is employed along

with a pair of subharmonic oblique waves inclined at equal and opposite angles (slightly

less than 60◦) to the flow direction. The frequency of the oblique waves is half that of

the plane wave and, because the conditions for resonance are satisfied exactly, all modes

share a common critical layer. This sort of triad was found by Liu & Maslowe (1999) to be

extremely effective in the case of an adverse pressure gradient boundary layer.

2 Resonance of two modes in a stratified mixing layer

As an application of the foregoing theory, we return to Hølmboe’s mixing layer model. The

stability boundary is given by J0 = α(1− α) and because of the symmetry of the profiles,

c = 0 along this boundary. The conditions for second harmonic resonance are satisfied at

a Richardson number J0 = 2
9

for the two modes with wavenumbers α = 1
3

and α = 2
3
.
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Figure 1: Evolution of constant-density contours for two waves, α = 0.215 and 0.43, with

J0 = 0.07 and Re = 200: the times are (a) t = 16, (b) t = 32 and (c) t = 48.

The results shown in Fig. 1 above are from the paper by Collins & Maslowe (1988).

As discussed therein, the amplitude equations (6) can be generalized to include weakly

amplified modes by adding a term proportional to A on the right hand side. Because the

phase speed cr = 0, even for unstable modes, any two waves for which α2 = 2α1 will interact

resonantly. In the paper by Collins and the author, results are reported primarily for

0.07 ≤ Jc ≤ 0.174. For Richardson numbers in the lower part of this range, the streamlines
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can be said to depict the phenomenon of vortex pairing, familiar in homogeneous mixing

layers. As Jc increases, the pairing is less energetic and at Jc = 0.14 a sort of limiting

case is reached in which the vortex on the left rises only slightly and the one on the right

descends a small amount. There is nonetheless a strong interaction because the equilibrium

amplitude is 35 times as large as that attained by the single most amplified wave when the

subharmonic is absent.

3 Resonant interactions in zonal shear flows

Atmospheric observations of the instability of zonal currents have motivated numerous

studies of the barotropic stability characteristics of such flows. The theory is relevant to

the oceans, as well, with a number of investigations motivated by Gulf Stream phenomena.

We consider here perturbations to the zonal shear flow ū = tanh y . The basic flow is to

the east (x-direction), y is the north-south coordinate, and variations in the vertical are

neglected. Kuo (1973) in a comprehensive survey article presents observational data for

wind profiles over both the Atlantic and Pacific oceans which are well approximated by the

hyperbolic tangent function.

The governing equation of the linear, inviscid theory is the Rayleigh-Kuo equation

(ū− c)(φ′′ − α2φ) + (β − ū′′)φ = 0 . (8)

This equation is the analogue of the Taylor-Goldstein equation in the sense that it is

Rayleigh’s equation with an additional term representing a stabilizing influence. Here, it

is the Coriolis force resulting from planetary rotation rather than buoyancy; this influence

is modelled in (8) by a linearization about some mean latitude and β is the derivative of

the Coriolis parameter (assumed constant). The properties of (8) are well-known, the most

significant being the generalization of Rayleigh’s inflection point theorem stating that the

quantity (β − ū′′) must change sign at some value of y for instability to occur.

Neutral mode solutions of (8) are usually regular due to the vanishing of the absolute
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vorticity (β − ū′′) at the critical point yc , where ū = c. However, unlike the case β = 0,

it is possible to have neutral “radiating modes”; for an unbounded, monotonic velocity

profile such modes are singular and they decay exponentially on one side of the shear layer,

but are oscillatory on the other side, where a boundary condition is imposed on the group

velocity to ensure outward energy propagation.

We restrict attention here though to the more conventional “trapped modes” whose

eigenfunctions decay exponentially to zero as |y| → ∞. The linear, neutral solution was

obtained in closed form by Howard & Drazin (1964). The eigenvalue condition relating the

phase speed, wavenumber and beta parameter is given by

c2 = 1− α2 and β = −2c(1− c2). (9)

Figure 2: Stability diagram for the zonal shear flow ū = tanh y.

As shown in Fig. 2, the primary effect of rotation is stabilizing and the range of unstable

wavenumbers decreases with increasing β until the critical value β = 4/33/2 is reached;
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above this value the flow is stable on a linear basis. We should add that the solution (9)

applies also to the velocity profile ū = −tanh y; in that case, which corresponds to the

observations cited by Kuo, the positive root would be taken for c and β would be negative.

We return now to the subject of subcritical neutral modes with nonlinear critical layers.

Within the framework of linear theory, such singular modes cannot exist for β > 4/33/2

(i.e., at a point such as X in Fig. 2). The reason is that the boundary conditions are

not compatible with a jump in the Reynolds stress that would be the outcome of a phase

change across the critical point yc. It was shown, however, by Maslowe & Clarke (2002) that

singular neutral modes can be obtained when there is no phase change and dispersion curves

were computed for β = 3. The critical point singularity in the Rayleigh-Kuo equation (8)

is of the same form as that for the Rayleigh equation. Therefore, in solving the eigenvalue

problem, we simply write log(y − yc) = log |y − yc| and integrate numerically from a small

distance on either side of yc to the boundaries.

Having shown that nonlinear neutral modes are possible mathematically, a mechanism

for generating them must be found if they are to be of physical significance. The mech-

anism we employ here is that of resonant interaction with Rossby waves. The latter are

nonsingular and they are modified only quantitatively by the shear; dispersion curves for

each mode are computed easily by solving (8) numerically. The simulation is initiated us-

ing only the two Rossby waves, each of which in the case ū = tanh y belongs to a different

mode. The frequencies and wavenumbers are chosen so that the triad resonance conditions

(3) are satisfied with the third member being a singular neutral mode. Dispersion curves

with the resonant values of ω and α are illustrated in Fig. 1 of Maslowe & Clarke.

One motivation for this approach is the proof by Becker & Grimshaw (1993) that in the

similar problem of internal gravity wave interaction in a stratified flow, a necessary condition

for explosive instability is that at least one mode must have a critical layer. This idea has

been pursued in the present context by Vanneste (1998), who formulated a finite amplitude

theory. In his analysis, the singular mode is represented by the continuous spectrum, a

procedure quite different from that used in the numerical simulations of Maslowe & Clarke.
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In fig. 3, the total vorticity contours are shown for a numerical simulation of the inviscid,

nonlinear barotropic vorticity equation. Initially, only two Rossby waves are present, but at

later times the nonlinear critical layer mode is generated, as is clear from the propagating

(blue) cats-eyes pattern.

Figure 3: Formation of a nonlinear singular mode with α = 1.2 as a result of resonant

interaction with Rossby modes having wavenumbers α = 0.6 and α = 1.8. The basic zonal

shear flow is the mixing layer ū = tanh y and the Coriolis parameter β = 3.

One important effect that is absent in the theory, but was very noticeable in the nu-

merical simulations is a strong variation in the mean flow during the triad evolution. Very

rapid oscillations were observed in the α = 0 component of our pseudospectral computa-

tion. The linear shear profile ū = y was also investigated, but the nonlinear critical layer

mode generation was less evident for that case.
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