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Preface

These are the proceedings of the conference “Inverse problems for practice, the present
and the future”, held at IMI, Kyushu University, from September second to September
fourth, 2013. It was held in order to promote the collaboration and mutual understanding
between engineers, in both theory and practice, mathematicians and all those who may apply
inverse problems for practice. Recently, there being many mathematical researches in inverse
problems, it seems that few of them meet the real demands of practical application where
the problems originated. The other aim of this conference was to study inverse problems in
order to meet the real demands of practical application. During the conference, the following
problems and invetigations on them were reported and lively dicussions were had on them.

e A control problem of the temperature in the production process
of automobile components

e A new numerical approach to an inverse source problem for the wave equation

e An inverse problem to detect the degree of fixation for the frame structure
in the buildings

e Inverse problems in risk managements

e Inverse problems on magnetic resonance imaging

e An inverse problem for the pipe flow model in karst aquifers

e An inverse problem of the heat equation in view of practical application

Every problem is based on the practice and its investigations are in process with the
return of their results to practice in mind. We wish that we would have more opportunities
to hold such conferences to discuss inverse problems from the viewpoint of both the theory
and the practice.

At the end of the preface, we would express our gratefulness to Ms. Kyoko Sakaguchi,

the secretary of this conference, for her faithful help and contribution for success of our
conference.

December 15, 2013

Takashi Takiguchi
Hiroshi Fujiwara
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Problems arisen in the joint research with
KalsonicKansei

Takashi TAKIGUCHI*

Abstract

In this note, we report several problems arisen in the joint research with Kalson-
icKansei. We report how the problems were posed, especially, in view of practical
application. We also report how they are being studied for the time being.

Keywords: inverse problems, collaboration with industry

1 Preface

It has been three years since KalsonicKansei and the author began discussion on
the problems arisen in the production process of automobile components. Through these
discussions, a number of problems were studied, among which, new research tasks were
created and are under study.

Though, in the conference “Inverse problems for practice, the present and the future”,
held at IMI, Kyushu University, from September second to September fourth, 2013, Mr.
Shohei Nagano and Mr. Makoto Kobayashi from CalsonicKansei gave a talk on the title
“Demands of technology component analysis in manufacturing technique development”,
it is a pity to tell that they could not submit their report to these proceedings in the point
of view of confidentiality in CalsonicKansei.

In this report, the author, instead of S. Nagano and K. Kobayashi, shortly reports their
talk in the conference and introduces several inverse problems arisen in the joint research
with KalsonicKansei to the extent that there is no conflict with the confidentiality in
CalsonicKansei.

Throughout this paper, all contents being arranged in order that there is no conflict
with the confidentiality in CalsonicKansei, some of them may be unclear and not easily
understandable, for which the author is very sorry.

*Supported in part by JSPS Grant-in-Aid for Scientific Research (C) 22540214. Department of Math-
ematics, National Defense Academy of Japan, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686,
JAPAN  tel: +81-46-841-3810 (ext. 3249) fax: +81-46-844-5902 (shared) email: takashi@nda.ac.jp



2 Talk by S. Nagano and K. Kobayashi

In the conference “Inverse problems for practice, the present and the future”, S.
Nagano and K. Kobayashi posed problems arisen in the production process.

Problem 1. The following problems were posed in the talk by S. Nagano and K. Kobayashi.
(a) How to optimize the production process.
(b) Problems to control a molding device.
(¢) How to control the temperature of the welding material in the welding.

We shortly introduce what Problem 1 is about. We cannot comment on the problem
(a) much in detail since it may conflict with the confidentiality in CalsonicKansei, however,
this problem is very new, challenging and complicated to find a suitable mathematical
model. In the problem (b), they posed a problem to control a device to mold aluminium.
Operation of the molding device is very sensitive to the environment, especially when the
plate of aluminium to be molded is very thin. They posed a problem to find a method in
order that the operation of the molding device works with no error from the beginning of
the operation in a new factory. Solution to this problem can be of great help by cutting
off the cost to send the learned engineers to the factory to adjust the molding device. In
problem (c), they posed a problem to control the temperature of the welding material
especially in MIG welding. For this problem, some research is under investigation. It
being very hard to control the temperature of the welding material in MIG welding, it is
possible in TIG welding since we can control the temperature of the heat source in this
method. The author is studying how to modify this method for MIG welding.

3 Inverse Problems arisen in the joint research
with KalsonicKansei

Let us introduce some inverse problems arisen in the joint research by KalsonicKansei
and the author and some relating results. We also mention how they are being studied
for the time being. There are many problems created in the discussion by KalsonicKansei
and the author. Among them are optimization and control problems mentioned in the
previous section. In this section, we introduce two inverse problems arisen in the joint
research by KalsonicKansei and the author.

Problem 2. Following problems are created through the discussion by KalsonicKansei
and the author.

(i) Non-destructive testing for die casting of the aluminium.

(ii) How to control the temperature in the interior of the furnace in the brazing process
of the aluminium.



First, let us explain what the problem (i) is about. In the die casting of the aluminium,
liquid aluminium is poured into a mold. After it gets cold, it is taken out of the mold. After
the heat treatment and the final treatment, the die casting component of the aluminium
is complete. The process of pouring the aluminium into a mold must be finished quickly,
otherwise the aluminium would be solid, the mold of the aluminium contains blow holds
inside it. If there is a blow hole near the boundary (or edge) of the mold of the aluminium,
then, after the heat treatment, it will swell up and the mold would be defective. It is
desirable to solve the following problem before the heat and final treatment of the die
casting product.

Problem 3. Let D, Q0 C R"™ be open sets satisfying D C €. Decide whether

d(0Q,0D):= inf |z —y] (1)

€N, yedD
is small or not, without accessing the interior of €.

This problem has a close relation with the typical inverse problem to reconstruct inclu-
sions in a homogeneous medium. For the time being, application of the same algorithm as
the computerized tomography (CT) is being investigated for this kind of problem. Since
the objects in these problems are much simpler than the interior structure of the human
body, it is expected to reduce the X-ray data for the reconstruction of the object. This
problem is closely related to the geometric tomography and there are many studies on it
both in the viewpoint of theory and in the viewpoint of application. For example, confer
[1, 7, 8] for the results in the viewpoint of theory and [2, 9, 10, 11] for the studies in the
viewpoint of practical application. Unfortunately, the results mentioned above are not
still satisfactory for practical application in view of the following points.

e In the case where we project parallel beams of the X-ray from two directions, we
can classify the shape of the inclusions into the two classes, one is the uniquely
determined ones by these data and the other is non-uniquely determined one ([7,
8, 9]). For the unique class, reconstruction formulas ([7, 9]) are given and we gave
further studies, treatment of the errors, construction of a reconstruction algorithm
and its implementation by computers and so on, satisfactory for practical application
([2, 9]). It is, however, proved that there are very few sets reconstructed by this
method ([10]) and it is not known how to find the exact two directions for the
reconstruction for the uniquely reconstructed sets, even if they exist.

e For general inclusions, the exact data of the beams of the X-ray for the reconstruc-
tion are not known. Needless to say their reconstruction methods, treatment of the
errors, construction of an approximate reconstruction algorithm, its implementation
by computers and so on.

e Since they adopt cone beams of the X-rays in many industrial CT devices, we have
to study the above two problems for the cone beams of projections as well as for
the parallel beams of projections.



There are other problems of the use of the X-ray tomography.

e The cost of the testing is not cheap if we apply the X-ray tomography.

e We cannot ignore the bad effect of the X-ray to the human body.

The problem of the cost seems to be fatal. If we apply the existing industrial CT
to the problem (i), then the cost of the testing is more expensive than the price of the
die casting product. In order to solve this problem, development of a new algorithm,
as well as the idea of development a new CT machine for die casting products, is under
investigation by the author.

There are other approaches. One idea is to detect an inclusion in a homogeneous
medium applying the heat conduction. For this purpose, the author is studying some
modifications of the theory by M. Ikehata and M. Kawashita [3, 4, 5, 6]. There also are
other ideas to solve problem (i) under investigation, which shall be introduced when they
are ready to be published.

Let us turn to the problem (ii). This is a mixed problem of an inverse and a control
problems. For the time being, there is no method to know the distribution of the temper-
ature inside the furnace completely. This is a typical inverse problem to reconstruct the
solution of the heat equation by the observation of some boundary value. The author is
afraid that this problem seems to be very simple and easy, but it is not so simple by the
following points in view of practice.

e We cannot observe the boundary value on the whole boundary. What we can do is to
observe the heat at finite points on the boundary. Technically, we put thermocouples
inside the furnace and observe the temperature.

e On some subset of the boundary of the domain, where the heat equation holds, the
insulation condition does not hold. Instead, there is complicated heat convection
there.

There are more problems to make the situation more complicated. The study of the
problem (ii) is under investigation by considering which condition is to be taken or to
be thrown away to develop a suitable mathematical model of this problem. The process
requires close collaboration between the theory and the practice. We first propose a model
with some hypotheses and check its appropriateness by the experiment. After the model
is decided to be appropriate, we can go for the next step. Step by step, we shall be
approaching the solution to the final problem.
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Introduction
°

Introduction

Geological description of the karst aquifers

Figure: The geological description of the karst aquifers. A, is the hydraulic
head in the matrix and 4. is the hydraulic head in the conduit.

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers 4/46




Introduction
@000

Simplified model

The classic discrete model

Figure: The discrete 2-D CCPF model of the karst aquifers.

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers

Introduction
000

The classic discrete model

Geology description

hm, he the hydraulic head in the matrix and conduit;
fm, fe the recharge rate to the matrix and conduit;
K the hydraulic conductivity;
S the storativity of the water;
Q;; the flow rate from node j to node i;
D the Poiseuille constant.

Hydraulic head #,, =z + &%

z relative depth;
pm dynamic pressure;
p the density;
g gravitational acceleration.

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers 6/46




Introduction
ooeo

The classic discrete model

MODFLOW-2005: US Geologyical Survey’s Software

oh
V- (KVhy) =T +fm = S 8_tm’ (conservation of mass);
Y Qj+4gexi+fei = 0, (Kirchhoff’s law).
J
Fex — Z 6(X - Xi)‘]ex,iv_l7
i
Qex;i = aex,i(hm,i - hC,i)v
Qi = —D%, (Poiseuille flow formula).
ij

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers
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The continuous model

2-D continuous steady model

~V - (KVhy,) = —a(hm — he) O, +fn in Qn
— 2 (D% = a(hyg, —he) +f, (@,

3-D continuous steady model

—V - (KVhy) = —0(hpdr — hedr) ) [Te| +fu in Qp
_%(D%}’;):a(ﬁfrthdlx—hc)—l—fc, in Q.

References: Hua (2009), Wang (2010), Cao,Gunzburger,Hua,Wang (2011)

o
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Forward Model
€00

Analysis of the forward model
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Forward Model
oeo

Analysis of the forward model

The forward model

{ —V - (KVhy) = —(hm —he)So, +fin  in Qun,
—ai(D%>—a(hm|gc he) +fe, in Q.

where dq, is the Dirac delta function concentrated on Q. and «(s) is
the exchange function such that o (s) € L7 (Q.) where s presents the
arc length variable along the conduit Q..

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers

Forward Model
ooe

Bilinear form

Denoting &, := i 'we define a bilinear form a(-,-) of the system on H x H
with H := HI(Q ) x H}(Q,) as follows:

a(h,v) / KVhy,(x,y) - Vo (x,y)dxdy

/L DH.(s vé(s x))
1

!

VP
[ 509) U () el W) 1+ )
= [ a0 5 0) — el s T+ )P

where h = (h,;,h.) € H and the test functions v = (v, v.) € H. The weak
solution yields

a(h,v) = <fm7Vm>L2(Qm) + <fC»V6>L2(Qt)

for all ve H.

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers
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Forward Model
000000

Existence of the forward model

Existence

Assume that f,, € H1(Q,,), f. € H 1(Q.) and « € LT (Q.). Then the
weak solution h of uniquely exists and satisfies the estimation

Ihi[a < C({fnll-1(0,) + Vell-1.))

where C is a constant independent of £,, and f..

Sketch of the proof [Hua(2009), Cao,Gunzburger,Hua,Wang (2011)]
Coercivity of the bilinear form

\)

a(h,h) > /Q ) KV Ay, (x,y) - Vi (x,y)dxdy + /Q CD(dhC(S)>2ds.

The rest of the proof follows the Lax-Milgram theorem and the trace
theorem.

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers

Forward Model

O®00000

Regularity of the forward model

Regularity
Assume that f,, € H=2(Q), f. € L*(Q) and a(x) € L7 (). Then the
weak solution h satisfies h € H%*S(Qm) x H*(Q,) for all € € (0, 3) and

[ < CE)(Wfll -1 (@) +[lfell2(q,))-

3
H2 %(Qy) xH2(Q)

Consequently, /,|q, € H'“¢(Q,).

Why the low regularity? [Hua(2009), Cao,Gunzburger,Hua,Wang (2011)]

By taking the test function v, in the conduit identically to zero in the weak
form, we obtain the following weak form for h such that

/Q K Vh(5,3) - Vo, y)dsdy = — /Q ou(s) (hla, — he(s))vmla,ds

@

+/Q SmVmdxdy, Nvy EHé(Qm).

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers 14/46
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Forward Model
00e0000

Sketch of the proof

Why the low regularity? Cont.

From the assumption that f;, € H 2 (Qun), he € HX(Q,) and a(s) € LT (Q.), we
know that for all v,, € H} (Q) there holds

. (6)nla, —he(®))vmlads < Cllmll, +lhelzia) Imllzie)

c

< C&)mllen (@) + lellz@) Vvl e g -

One can observe that [o_o(s)(lm|a, —he(s))vm|o ds defines a bounded linear
1
functional a(s)(m|q, —he(s)) € H 2 €(Q,) on HZ ' (Q,) and

(s () (om0, Y (%)) = he (S 3oy < CEMmllzn (@) + 1Relliz(@e))-

One then concludes that the righthand side of the first equation

—a(m —he)So, +fm € H/278(Q,,). By the elliptic regularity in domain with
corners, we conclude that &, € H3/2~¢(Q,,). Consequently, by the trace
theorem, hy|q, € H'~¢(Q,) since € € (0,1/2).

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers

Forward Model
0008000

Local regularity

v=—KVh,

where v denotes the seepage velocity of fluid flows in the matrix.

Local regularity

Assume that f,, € L*(Qn), f» € L*(Q.), a(x) € LT (L.) and each
component in K belongs to C!(Q,,). Suppose h € H be the weak
solution with homogeneous Dirichlet boundary conditions. Then for
each open set V C Q,, with VN Q. = 0 we have the local regularity
such that h,, € H*(V).

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers 16/46
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Forward Model
[e]e]e]le] lele]

Local regularity

Sketch of the proof

By taking the test function v, in the conduit identically to zero in the weak
form, we obtain the following weak form for h such that

/ KVhy,(x,y) - Vo (x,y)dxdy = —/ o (s)(hm|a, —he(s))vm|q.ds
Q, Q

+/Q fmvmdxdy, Ny GHé(Qm).
Take
v 1= =D (N* Dihm)

where .@,ﬁhm denotes the difference quotient. For Ve W € Q,, and
wWnNnQ. =0, we have

/Q KV (xy)-V (~ 2 (0 D) ) dty = /Q ¥z (-2 (0> P ) iy,

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers

Forward Model
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Analysis of the forward model

Figure: Singular points for the Neumann boundary conditions

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers 19/46
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Forward Model
[ e}

Example 1 with Dirichlet boundary conditions

® 0= (0,1) x (~1/2,1/2), @ = (0,1) x {0};
@ K=diag{l,1}, D=1, a=1;
® 1, =sin(27x)(max{y,0} + 1) and h, = 2sin(27x).

Figure: Left: the domain and mesh. Middle: the FEM solution of 4,,. Right:
the error between the FEM solution and the exact solution

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers

Forward Model
oe

Example 2 with Dirichlet boundary conditions

@ Q,=(0,1)x(—1/2,1/2), Q. are two half spheres;
@ K=diag{l,1},D=1, o = 1;
@ hy, = sin(27x)(max{y,0} + 1) and A, = 2sin(27x).

Figure: Left: the domain and mesh. Middle: the FEM solution of #,,. Right:
the error between the FEM solution and the exact solution

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers 21/46
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Inverse Problems
[ Yolele}

Inverse Problems

J. B. Keller. Inverse problems. Am. Math. Mon., 83:107-118, 1976

"We call two problems inverses of one another if the formulation of
each involves all or part of the solution of the other. Often, for
historical reasons, one of the two problems has been studied
extensively for some time, while the other is newer and not so well
understood. In such cases, the former problem is called the direct
problem, while the latter is called the inverse problem.”

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers 23/46
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Inverse Problems
Oe00

IP (Determining the exchange rate function o(x))

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers

Inverse Problems
feeY Yo}

Cauchy data

Cauchy data

We assume, at part of the matrix boundary 9Q,,, the following
Cauchy boundary data

hn(0,y)|Ir = p(Y)Ir,

O
HnE D)1 — g3,

where I" is chosen as a part of the y-axis such that

[':={0} x (—M,0)U (0,M).

The Cauchy data at the conduit boundary Q. are assumed to be
known similarly i.e.

Ohe(s)
(4
he(0)=b; and —"2|_y =by.
at
W
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Inverse Problems
[e]e]e] }

Uniqueness theorem

Uniqueness theorem

Denote k(x) = a(s(x))(hm(x, w(x)) —h(s(x))), if there exist two
functions k (x) and k;(x) for the CCPF model
{ -V (KVh,) = —a(hn,—h)0q. +fm in Q,
—Z(D%) = a(hnlo, —he) +fe, in Qe

T

having the same Cauchy data, there holds k; (x) = k»(x) almost
everywhere.

Sketch of the proof

| A

Holmgren’s theorem and the fact that

k(x) = ki (x) — ko (x),
/ kyds =0, forall x & Cy(Q).

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers
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The forward problems

g = (KVhy) = —0u(x) (hm — he) 8, +fin in Q= (0,1) x (—1,1)
_%(D%) = a(x)(hula, —he) +fein Qe = (0,1) x0

and the boundary conditions

ForPBouCond : /|50, =gp, he(0)=ci, h(l)=cy.

The goal is to identify the parameter function a(x) from additional
observations of the Neumann boundary data

I Ol dh,
KW‘F] =”1()’)7 KW’Q =1’l2()’)7 D%h} =3

fromI; ={x=0,ye (-1,0)}, I, ={x=0,y€ (0,1)} and
I3 = {XZO,yZO}
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Inverse Problems
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IP (Determining the exchange rate function o(x))
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Parameter-to-output map

Nonlinear operator F

F:a— KWIx:(),ye(q,o),KW|x=0,ye(0,1)7DW(0) :

Parameter to output: a compact operator

Fla)=z

where z = (KW |x=0,y€(7170)7KW|x=0,y€(0,1)7DW(0)>'
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Inverse Problems
(e]e]e] lele)

Linearized problem

Linearized operator F’

Consider some test function v(x), i.e. piecewise constants function for
o(x) from the parameter function space. Then, the linearization of F
at o is given by

u,, u,, du,
F'=F(a):v— (th—o,ye(1,0)7KW|x—o,ye(o,1)»D%(0)> :

) —V - (KVuy) = —ot(x) (tm — uc)0a, — v(x)(hm —he)dq. in Quy,
LinP 9 ou ¢ o
—5:(D5g) = a(x)(umlg, —uc) +v(x)(hmla, — he) in Qc

with the linearized boundary conditions

um|3£2m =0,
LinPBouCond { u.(0) =0,
uc(1) =0.

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers
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Adjoint linearized problem

Adjoint linearized operator

Suppose we have an element r = (r1,r,,r3) belonging to the same
space as our observation (which finally plays the role of the iterative
residual). Then, the adjoint of /() satisfies

(F'(@)v.r)r, ryr; = (v, F'(@)"r)q,.
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Inverse Problems
00000e

Adjoint linearized problem

V. \4 m) — — m — Ac J m
AdjiP{ (Kaxx ) o0 (x) (Xm — X )fch in
—5:(DFE) = a(x) (Xmla. — Xc) in Qc

with the boundary conditions

er|r1 =T,
Am|T, = 12,
AdjPBouCond § 7|1\ (r,ur,) =0,
Xc(0) = 13,
\Xc(l) =0

with Ty =0 x (—1,0), [, =0 x (0, 1).
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lterative regularization schemes

Landweber iteration

Search for the fixed point
a=a+F(a)(z—F(a)) or minlz—F(a)|?

assuming that the operator F is Fréchet differentiable. The iteration
form then is defined as follows

i1 =+ F (04) (z—Foy)), k=1,2,....

Discrepancy principle (DP)

If the observation data contains noise, i.e. z% = z+ 8& where § is the
noise level and & is a random variable, the iteration will terminate at
k. = k.(8,z%) step when the following criterion is satisfied

HZ5 —F(og,11)|| <18 < H26 —F(a, )|l

with 7 > 1.
e R EEEEEEEEEEBELDEEEEEEPPPEPEEEEEEESSISEESEN——S———N————— NN
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Case study

The forward problem

{—Ahm = —Q(x) (A — he)Bar, +fn in Q= (0,1) x (—1,1)
ForP

—Lhe — ou(x) (o, — he) +fs in Qe = (0,1) x 0

oxz
with exact exchange function o' (x) = 2 4 sin(7zx). Other functions are
he(x) =2sin(x) in x€(0,1);
i (x,y) = sin(mx) in (x,y) € (0,1) x (~1,0);
hn(%,y) = (—(2+sin(zx))y+ Dsin(mx) in (x,y) € (0,1) x (0,1).

Initial guess

In all numerical tests, we choose the initial guess oy = 2.

Jin Cheng (Fudan University)@ Fukuoka, Japan CCPF model for flows in karst aquifers
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IRGNM algorithm

RGNM iteration

The idea of the iteratively regularized Gauss-Newton method
(IRGNM) is to find the next iteration solution oy ; minimizing the
following functional

o(a) == ||z— F (o) — F' (o) (0t — o) ||* + &] | & — et |

In an equivalent form (Euler equation), we obtain the iteratively
regularized Gauss-Newton method

Or1 = O + (F'(04) " F' (o) + &)~ (F'(00)* (2 — F o)) + & (0t — %))

where I is an identity matrix and g is the regularization parameter.
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Summary and References

Outline

o Summary and References
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Summary and References

Extended results: decoupling

Decoupled CCPF model

Assume the exchange coefficient function o/(x) = o with a constant o > 0,
Q= (0,L) x (—M,M) and Q. := (0,L) x {0}. The forward CCPF model with
K = diag(1,1) and D = 1 yields

{ — Dy = — (g —he) S0, +fn 0 D,
_%(%) - a(hmlﬁc _hc) +fc, in Qc~

Additionally, assume the Dirichlet boundary condition of Q,, and Q. such that

then there holds 7, (x,y)|q, = h(x) almost everywhere along the conduit Q..

W
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Extended results: conduit uniqueness

Unigueness of the conduit

Under appropriate assumptions, if two conduits have the same Cauchy data
for h,,; at the boundary I" := {0} x (—M,0) U (0,M) such that

hn,i(0,3)Ir = p(Y)Ir,

ahm,i(XJy)‘ _ ()|
TF—Q)’ I

moreover, assume that 4, |q_(x) # he(x) almost everywhere, there holds
Q.| = Q.,. Additionally, if the Cauchy data for i.(s) at s = 0 is known, namely,

oh.(s
ne(@ = and P,

simultaneously we obtain ; (s) = a,(s) almost everywhere along the conduit.
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@ Introduction of the CCPF model;

© Forward problems:
Well-posedness and simulation of the model;

© Inverse problems:
Uniqueness and reconstruction of the exchange rate function.
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1. [FL&Ic
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NTN5, ZOBEO—DIZHEETHY, BLWVIIEEENRZT LN TS, DRER
HE L TWDMED— Rk, PREOHEICHT HME=— K& KRBT HIHE=—
RIZKBICT& 5, FHEEBICHTHME=D— F T, MEZOBEIHFAELTELT, &<
FCHLHEFAOFEH TH L Z EDRRHEMTOENTND, ZHIx LT, KEICxT 5
MR A CITHMEAET A 7R L TV D0, AMOfERE BT T D, BEICITHIER
OBZEMORMIMEL, BHFHGHOEH TH-o72E LTHLELLORIMEEFIZROND L, K
WE# T, BRICKABEETEL W THEMEREIT LTV A AR S 5,
—75, HEERRICITE LWIEREHCES W TWAREN Y, a2 ERD 2L ICRESL
DHEEITE & BT, BMERRT DM ORMENMET L, o0 THM L~ L ORI T IX
VAT DLV ORPEIR TIZHRE LTV 2 &2 5,

BEY OMMEMEIL, TRE & RIMEOELE D OIS L2 T 72 572, TR OFNI,
TPEELF CHIUTHMIZAE L T DGR EISIU T TH S Z LN L S, B8R
FHZ B W TR A AKEM S DS L BERA KM L ETh D Z & NMERFI O E S
TW5, MMEOFMIZBE L TIARELE L TIRADILTWD, FlxiE, KERPESME T
D&, KEFMOERENREL RV BERELZFHHETIRAE L TExLND, 22T, —
MR OMPEN S L IR OFAMIZ Y 72 > T, AR A2 Rk 5 =
EPBRERENTVDS, INHDHFETIME~NAE=F Y 7 EFEINTEBY, KT
LTI ET & L CER SN D,

T 5 LM I e S S~V A B =2 U 70, HEREp I C SR S iR
77y N7+ — LOWEHE S OREERICET 2D TF = v 7 FiEE LTREI N
NS D, Paura F. Vioro b ViX, ¥ETS T > 7+ — LD E~NVAE=Z Y 7D
FEICB T AHEERHETEE LT, Modal assurance criterion (MAC), Coordinate modal
assurance criterion (COMAC), Modal scale factor (MSF), Modal shape relative
difference method (RD)¥ X} Change in modal vector perpendicular to predominant
modal direction @ 5 O FIEZ I L T\ 5, 215 O J7EIIREEY O IR 2 )
AT260THY, MSLORKNTHERENECHMENMET T2 Z SICRALT, J8Ld
LEEY OE ARG LOEAE— FOZEN OV AT LAOREEZRTT 5 FIETH
Do ZODXIZ, BE—HNANNTA=ZOENEMNTI AT LOREERHET D AT L
[FIENL, JeD b FEOFEOMIZEL S D REIZL > TEZ OFEPREINLTWD, &
Ko NX, 777 4 TREFEEAMTTEBE~NNAE=F Y VT FEFEREZEL TS L,
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ERELTWD, £, FARDL X, EREHEERT —ZZ2HNT, L~ L0fEE
FEEREELTWD, B, IS OFEEmIcHWON L 8RICER L, HBEICHES
PR DIRENEFIEIC OV THRET LR R 2 A LT D,

I ZETHBARTEIEEH LOFEOREICK LT, BN FEE LTI
TUTANEERWETERD D, IR~ T 4 VFIC R D0 DX, KR E &
HIZELT DE B OBRHE, HEEORFIMEE, & L CHIMEICBET 2 /AERE 525
MIEHERL A T I v 7 VAT KB LT, K£K% THIT 5 Prediction [, BIfEZHEE T
% Filtering M#EZ L T ZEZHEE 9 5 Smoothing MBEIZH W THEIANZ M & VTR
RE~7 M EHET HMBEE LTRELTE, ZHICRLT, HEET7 o207
DI CREMAEBEE L R WZ A UET HZ LTk, 74 2 HRAE#D K
LEtE 7Y XA E L THY, BIRERIEICL DL EHAEDED 2 &1L, K
REE ORI HEET AT DD N~ 7 4 VEBFREZEEARER L TV 5, B T
BEHU L L2 AIRERIEICRE R CTHEAERIEL WD Z L2 X 0, BMERNICSET 2 &
HWEBELTAOMNEE RE SEHET 2 HELIREL TS, EHX O, ZbDhE
EREL, $Rbb AN~ T AN FEBOIBELFETLITY XL E LTHY, BEARS
BAEBRT—2 L LTHEBORYOERAINEZRET D HiEaRE L,

A, 29 LEREMBII KRB 222 A 2MEIC#EHT 5 2 L2 &8s, 7—#
FE DI KW RTRA—ZHHEEL, AN~ T AN ZOFAMEGIEH LT 3T
HN=r T 4NE DPRERENTWD, ZHICK L TEE S 9%, Kalman 7 4 L2 2
WHILTUWD Wiener 7 A VHIZEZTNTA M) v I HE T AN ERND Z & A2#RE
L7z, 2RT A U v I HET 4L 2121X Tikhonov D ERANE/RT A —Z kT HHENE
FNTVDLZ EITREEAL TS, BFEIZIEE b, BE~VAE=F D 7 8L
TOTHMETHE, EAUEART A =2 ZFHEMICIRET 5 Z ENEEND, RIRTHE, %
FOILETVBERINTZE T ANZ DT AT T TRIA N v 757 0 VX OER
{L/RT A= BFHREINCIRET D, AL T A N v I7EE T ¢ & % T2 R g
FricBAL, AR ZBHNT -2 LC5B 7 L—AET LVORBAINEZFET BB
BT, REIE— FZHOTRET 5 EAL/ T A —F ORHEICE-S L, AR/ 8T 2 K
U 7587 4 VZORECOWTHRTEZEEHNE LTS,

7B, KR TEHEDPEIZBWTIERL R T 28R & 2 D MEDHEIE L TV D EIRE
RL, SOICKHEICKT HFOFEE2 R 2 &b ARREO LB 2T 52 LI
T %,

2. EPEICEFTHIMEBEOREKRTERMECS ITHEMEER

B EE, HiEREE S Tk TL— b, KFEETL—F, 74007 L— MK
Rax—F 77— FRBHWVIZER>TWVWD EZAIMELTWS, FL—FT 7 b=
7 ARG T, T — MERATIEIT L= MBBEIL, YL —FERLLEFTL— T
WNEBIZBWT, BEREINTZOTAHAZRALFT—RNONTHIE L 2> THRKEINIBHRTH D,
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Fig.1 Japan and world maps of earthquake distribution.

Fig.1 (TR 7E0 AAJED T AARIKAHB] T E 20 < bW EO#IERLE TE Y
DEINTEY, FAOMFITIIT 2 RS TITAMWICAET 2 A ARITFHTRSEY
DEINTNDZ ENbND, HEOKRE IIL, BRIZBIL2ZAVF—DORE S 2RKT
v =Fa— e, BEYNFET DA MBI OHMBEORE SERTHRERDIBE
WThobbashd, v7=Fa—FBRRETH, B LE N TOIUTHEEY)IZH
BOFBETETRV, ST, FBIR~72X 512, MERG TIE#EL 2 I KRBT 5723,
TREETOMELIIRESBREET }:%;{ DA, R 5 TRUL ORI RHIE & v x K
Do RKMIERIZHBIT DMMERDA A —T % Fig2 ITRLTHEL,

Fig.2 Collapse mechanism of frame structure.

Fig.2 IZB1F 2 EMT T L — 2HEEICHIE ) 2K & LTER S 82546, Brte
VYRR LTEREN RSN TWD, KHEZMER L7 Em B ETE R TR S Tn
B0, EERIC iﬁﬂ@%ﬁ%%‘fétb HIFE—A FORENWE ZATEMEE P ETER
SELHT LT D, BEREVCHENNENT S L, ZTOMBENHEA/NSOHIETY
ACFRIEIFE T LTS L, jtﬂﬁ ST e NS Ko THWEDME 32 72 0 [ A 5 ]
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MWEALT D, ABFIEIE, O X 5 ITHEEIC X - TRIMER T L72REZ EA R O Z{b) 6
HHIRAIHEE L LS & D50 TH D,

3. WRREERNT DK

HESCRAELILIZ K > THIMEK T L7828 E OREL, BEAREMZEHESE L THE
TEERIC R E 3 2 o AT 2 WA T~ 5, W FIEIIZ 7 s V2 B E R L7 1 L
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WREZ BRI ok b s L, #E (FE) TRERMEITARKICNZ bL
LB E, TOWRBEOKBEET VRO L HIIZEZDZENTE D,
HBRFESX (AT A HEK)
- HEE R (o i)

T=B(y) ()

ZIT, XU M IEEEIERETRERAY ML, p BRI by, Tidz okt
TLHHEENZ v, VvIFBITEVIEAT DHEE N2 bv, 175 M ZBLIATSI, B I3HE
ELTH (BT 295, kB, ERXF O MVIEHEERY Fvy OFFEICED, W
TRORERER (X7 bV) L LTRYEDRIER SR,

ZOHHET VLY, WL, BT M 252 T/ A4 Xy OFGHINE S, &
ZHNIBRART by, O b & T, WORMBEEZ - 7 OIRBARHET T Ly 2E
HODHZ LT D,

J =J(,%) > Min 3)

L7eRoT, ZOk/MEMEOME 7 2525 X 5 e HEEITH B % BARRICHER L 722 1T 1
(ECAYSPINAN

3.2 7 4 L& G

HWETHI B AR RMEESRLEOL & CHRT 281275 z OBFFHEZ ZHWT
HEE~NZ MIIRO LD ITHE A BN,

7 =7+B{y- M)} 4)
L7=03o> T, HEETHI B DEEMICE i, Bll~2 vy T kR 4) 2256
HEERT MV PRETE D,

ZOHEEITAIE LT, MR 0 BARRY A RIS L C Wiener 7 4 V2, BT
A NH, NRTGAN) T T ANBERFELTND, TNHDT VX OHFTHARR
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THBEETDTANZEFRTA RN IHET A NVETHD, ZOT 4 I)VZITIROFHNHE
I LTRSS,
ST HEUE -

JB) :=u{(BM —P)(BM - P)" }+yE,|

By|’] s
NIARNY IHET 4 NE
B=M" (MM +y0)’ ©
2120, > 030 bwdg/y L LTOERERT LT A=4THY, plIHEITHIL

L, TIMTHIOBmERIELZRL, 4 3750 b —2EL L, MELSEITI 2T O
XolTEET D,

0= E[ w’ ] 7)
I, EEMIfHEAEE%RT D,

ZZT, Wiener 7 A VA BLIOIHE 7 AN Z LR LN ORI AN v 757 ¢
IVE DRFEER L T, £9, Wiener 7 4 /L ¥ [LRAIRERY bV Z (ZBT 58
BEEITHo T D72, HBERO SV EIT EREE L HEE I NS & 5 2 5B 5% i 2
LCkY, HxDRESY bz EHERZ O/ VA 2-7 | BRI 2 RAEIAHE
L 72\, Fig.3 IZ Wiener 7 1 V% OEILEAR & G E R LT Wiener 7 o /L& O BAKH)
IRFH TR,

Fig.3 Restoration mapping of Wiener filter.
FEAMh KL E(Wiener 7 4 /LX) ¢
EzEsz - ZH2 — Min ®

Wiener 7 4 V4
B=RM"(MRM" +Q)"’ (9

30



ZHUCx U CHEE 7 4 L H T IEEARITIRRER Y vz OFE P BN HEERT &8T5
LRI T\ 5, B, #HERZ IFBRREEOREBICLY,  OREIIE P; DAY
WCHIDIED Z &2 D, W7 4 V2 ITBHRRERT M OB L TR EL B L
MBS AR T A e LTHE AN, T4 NE ) ZHEOLEICBO TR
EEiL W7 4 V& Wz D, Figd [ZHE 7 4 V2 OETEG & MRS T OHE 7 «
T APRERIN VAT 35 KT

Fig. 4 Restoration mapping of Projection filter.

AL (T 4 v 2)

Ev|Z - Pd = Ev|By| — Min (10)
W7 4NH
BZ(MTQ—IM—IMTQ—I (11)
— 5, ST A NY TR T 4 v Z OFHRIEEGHIIEE 7 4 1 & OfiFISI 2 iR
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LRI SN D, Figh T TF X MY v 7T 4 V2 DGR ERT,

Fig.5 Restoration mapping of Parametric Projection filter.
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RIANY  IHET A NZONTIE, RTA=Zy BEENTNDLDT, ZOT7 4 LH
ZRWTHEE 21T 9113y O BRI BN LIE L 725, ZOBEOREICE LT, A#
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ZEMTE B,

?t+1 = I?t (21)

o T, IRT IR Z R T O TR, #HEAT v 7OEEEZEKRL, &HTZ IX
WHEEOHEEM 2 BT 5, REEETH DM & BEAREEK & OBRIIIERIE TH LD T
BTRAIIKRO L Y IcERTZ LicT B,
Ve = my(z,) + v,
=MZ, +v, (22)
ISy BB SATH Y, my(z,) 1 EERER7 PAVBEETH D, MAZIERIE Y
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~VEE% % Taylor BEBR L i R 2 4R L 72 R KD EEATHI TH S,

d Z
M, =< e ”) 23)
t Zi=Z¢/e

MY LFHHET LT X LZERT 57 4 L2 HRAIRA TR SN D,

?t/t = 2t/t—1 +B (w - mt(zt/t—l)) (24)
2, o3BT PATHY, HE— FICHET DEERBBE CTH D, £72 Z)y 1T
t-1 F H OFRICESS t I BOREBETH D, BIZTZ7ANVEZTA U ThHY, Rigg&z D%
fbEEza ba— T 5%EEZFF->TEY, Wiener 7 4 V¥ OFH A MEE LT 5 7 «
NETA AN D EPEEIN~ L T A NI DT I Y ALERY, W7 oV 2lEE L
TONRT AN IHET 4 VZOFHMEEELZ WD Z L TE 5, ARTHE, RAUTR
TINOD2EDCT A NVE T A v EBRAT S,
Wiener 7 4 /L X
B, = RM{(M.R.M{ + Q)" (25)
WRIANY IR/ T 4 NVE
Bppf = (M{Q_lMt + VI)M’{Q_l (26)
Z 2T Ry WEHEERE AL WATIICTH Y, Wiener 7 A VA BIORT A N v 7 W7 ¢
NWEDENGITRKNTEZ NS,
th/t = ﬁt/t—l - BwMtﬁt/t—l (27)
T\\’t/t = ﬁt/t—l + Bppf(Mtﬁt/t—lM{ + Q)ngf
—B,pfMRy )1 — th/t—lM?ngf (28)

R, DR TIHILREAI N~ 7 4 VHZFBICEIR S, IREEZDORSE2HE L LT
HoNTEY, EMOREALE S 220 Ly, L, XTA N v I HET ¢
NAIFEEHRET 7200 R, IFEENTWRN,

E 7 QITBIMES 5 BATHI T H 0, B o & 38 m, (Ze)0s) & B—5T 5 % T
DVIRLEIRT 22 L1tk d, E2ATHRI AN v I HET7 4 VXIIXEANLE y 35 F
NTWb, ZOyaETANEZ) T ATy T THEMICRET /37 A N v V7
A IVE BB RT AN VT 4 V2 TH D,

T AN FRE 24) FHRETHHT-OBRVIRLFET LI XA LT 555, 4
HUE (29) 23EHREAE R LG ELEMEICEET 20 CHIMEOR E MO CTEETH D,

70/—1 = 70) §0/—1 =R, (29)

4.2 AT LAY X AOIERNE

EAMEIEZ e 5RO OFHERRILTEIM 2 7 4 V2 TR EHNTBY, b
L7 4 NVWE ) o TEHEATFAET A 2R LICiTo TnAZ &I L, ZZ2ThHIEmEY)
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PERSAES L Z LT b, £ TAIZETIE, 2EKTHEZ 6N 5RQODEHEICENT

STAITHNIADRFEDRITICER L, 15%E L THET A Z LICK Y EANEEXS Z LT
T5H, TNEV y ZRET HIOOBV K LFFRIIAD T —FKLIN, RATERTZ LN
T& 5,

Yo/-1 = MQ7*(1 — a0nM)®0/—125/1—1 (30)

4.3 T— N

EANEE Y OPEICE Y, 185 L LRGO)EHAWD &, HEDT— FoEAIRE
w1\ AR LTCRIAET DUEN D D, AT TILIR~5KE— FOWTALZ AN D
TLEMTED, THNETORBRNS IR~5KROE— KON, YOE— ROEAEEZ VS
T EIWCE VRO L EMICBT D Z R Do TS, AIFZETIXIR~5RE— R
OFEAMEZ AV TIERNE L7 OREE & ZEMEIZ DWW TE— RKTEME & RO, B2z
H5HLDET B,
44 WREO SR E L TT7 L—AET VL BT —4

A WEAT I X Fig. 617 7 T 6FRAE DS HREL 7 L — A F 7 L O AKCERINE % 520 & 41 7- A 12
B E A OCRET 5, FEMITEICHES D3 Table 1 X OCEHIT — % & L COEAIREIE
BT, ENENOET MIHIG L THEAERBEN R > TNDZ ERbnd,

Fig.6 6 kinds of frame model used in experiments to measure observation data.

4.5 BT — % OBEIE

BT — 2 XEERBE TH DL Z LD, WEICHS o> TXERE— RN 2B L=,
FERT— NRVTXEAIRE, BEA T — FBLOBEEILEZRD 5 7200 FEAM 72 EERART
FIETHY, —RITHRERY O5 5N 5 BARBUISEREOWE &, T—FNIRT A —H
DRIED 2ODHT AU —=MNEEE Y Lo TWD, MHRER CIIfHHEARATFEE SN TS A
VXY AN KB FERHOLGNTEY, 4287 bAav=ItHESNTWSRr— R
T L DIMES) & & BICRR B ST BB ONMEE G B DINEIZ X - TR IS
BB A RDE—Z NIRRT A—FEZEELT NS, I—77 4 v h SN EEBISERBRD
77 7 %Fig.8lZrd, FizTable UIARWTE CEHA L7-IEEEE AW E 70k & L7 5E
ET I K DIRITEZ 773, F 7-Table 212 F25E — NFMT & 0 15 5 av7- [E A IRE S oo F2H
xR T,

FT, BICBREZT 4V ) U ZRRBICBTAEIET LV E LTCORBA FRATE SRR
ELToORKEH W,
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\K—wﬁdzo (31)

T i K EAKTRIMETE], M OERATH, © R A ST 5.
FBE— RN OA A — U & Fig TIoR L, s Fig 81c 77,

Fig.7 Experimental modal analysis system (EMA). Fig.8 Frequency Response
Function obtained by EMA.

REDIC LV FHE SN -EAESE A Table LR L, ERE— NETLVELNT-ES
EEIE A table 21077, MFITIFIT—H L TWAZ bbb, ZOBEAREK LV A
EEROBNT—% & LT,

Table 1 Natural frequencies calculated by Eq.(32). Unit (Hz)
DifMode| 7708 6578 6.737 6.988 7301 7.585

22.501 20.232 22.192 21.355 19.349 19.969
35.470 33.526 33.323 31.673 35.002 30.965
45.566 44.483 40.787 44.926 41.892 42.731
51970 51630 50.430 48.256 49.470 51.127

Table 2 Natural frequencies measured by EMA. Unit (Hz)
7.970 6.760 6.902 7.185 7.516 7.781
23.452 20.701 22.684 22.097 20.057 20.820
37.532 35.130 34.963 33.177 36.687 32.534
48.859 47.080 42.997 47.567 44.179 45.114
56.159 55.195 53.586 51.679 52.751 54.470

5. WEENFER LRET
5.1 I~ T 4 VZIZ XD EER R
FigolZ v~ > 7 4 W H(KF) % AW TLUBE XL U3BMBS0%MIPEIL T LizET L DKF
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MPEZFE LR E R, E2AT, 74 NAEROVELHETLVIY XA L LGS,
E A IREN S & MO IERIEOBIRE T T2 7 4 V2 HRERAEZHWL729, EOIRMSIC
WIHMEORENKRESHET D, 22T, MRERTE LT, VHHEORELZZREL,
SOICHERFEMEZME TE D LI TRE T Z LIZ L7z, ZOURITRTRIRER
FEUT T T, B E L7 IE Ch 5, ARMETRE LI2WIEIZ T X TOET v
T, EWET NVOKEMIMEEZSEIZI~272kg/emE L7z, 272kg/em DI IE R €T L DK
FRIMED2EDIETIH D, MEEIFET X EAEMPETH D, 5O REMA EMRE 72
FTEOICT Yy SN TWDENREMEZ E®RT 52 L1k D,

(a) Damaged at 1¢t story

(b) Damaged at 34 story

Fig.9 Results calculated by KF on damage grade with 50% at 1st and 34 stories.
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52 AERINT AN v VHET 0 VFIT K D EERR
AT BB X H 1T, AIERART A NY v I R/ T 0 VXX DN (VPPF)TIE, 1E
AUb/ T A =% y 3 RANTRO DBRICH EAMLE L, <7 MOWNIEE VL& 2T
F—bL Ty ERELTND, ZZTH, IRE—FEAWVWTE T4 NZ I VT RAT v T T
y HRE LIS &, 2IRE— FEAWTZIEEIZOWTIUER LUBE50%MIMER T Lz
EF O ARFRIMEZ FE L 7= $ % Fig. 1035 L OFig. 111274

=

—
28
a8

/
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—

L

(a) Damaged at 1%t story

(b)Damaged at 34 story

Fig.10 Results calculated by VPPF on damage grade with 50% at 15t and 34 stories.
(Case where y was calculated by using 1% mode)
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(a) Damaged at 1* story

(b) Damaged at 3" story

Fig.11 Results calculated by VPPF on damage grade with 50% at 1st and 34 stories.
(Case where y was calculated by using 2% mode)

53 W74 NVFIT K DRERDEE

kalman” « V& Z W54, WTNOWIHEZEE LGS b RERRICES
ERHLI, WHRITT 2 b OOWAMRFEEMERF LTV, BICbilk~7 kI,
kalman™” « /L X TR AL L CTER Y, MEOREICE U COIXIIME IR L fif 2315
HILTWD,

AERINT A NY IR T 4V E ERAWTESEAICE, EAHERT A —% y ZRET D
BRICHWIIREIE— FICREKFEL TS, T72b6, IRE—RZHW Ty Z2RELE
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LA, REMRIIZEA Ekalman” 4 V¥ Z WIS E EEDLT, WENRALR
RV, ZAUCK LT, 2IRE— REHW Ty 2RE LIZHAICIE, /NS RBEOS AT
HZE LW DD, FET HHHIEAKE < 7251 OHIRER RILEMOALEIZPR L
TW ZERbnrd, ZNHOFRERENS, T— NMEEMZEZETLIZ LY, EHEHN
BRI LI BRIRNT A W) v IR T AV E DI T 4 V2 E L THBIEL T D EE 2
bhd,

6. FL&®

AW CTIEHRIE O BEAF R EL) O ACERINE % (R E 7 5 W IREMRAT 2 M5 pk L, WiifAT Bk
L L CHEfEOkalman” 4 VA EEE L OB L2 EBHIRT A N v 75T 4 L2
DL TANE N TTAIT) XEERANTSEY L—AET VOKERINEZRET i
MIREMEAT 21T o 12, ZFOFER, AT A N v 7 /57 4 V2 OB EZRTZ &N
T& T,
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1. Introduction to inverse problems

Inverse problem?

e Determine "Cause” from "Result’

e Determine "Future” from "Past”: forward
problem
Determine "Past” from "Future”: inverse
problem

e useful for better prediction,
identification of physical parameters

e [heoretical subjects: uniqueness, stability

e Numerical subject:
Robust numerical methods against data
errors
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Example: archaeologoical IP
duu(x, 1) = du, 0 <x<1,¢>0,
u,t) =u(@,t) =0.

IP: u(x, T) = u(-, tp)
Here 0 < ty < T: once upon a time

Uniqueness: OK

Stability: NO in general
u,(x, 1) := e ™t gin nmx,
u,(-, T) - 0 but u,(,0) 5H 0.

Conditional stability:
Restored stability under a priori bound

e Holder stability: For tg > 0, AC, 0 € (0, ) s.t.
€, llz0p < Cllut, DIY,
e Logarithmic stability:

-0
lluC:, O)llr201) < C (log T )

)”LZ 0,1

where [|0%u(-, 0)ll1201) < M: a priori bound.
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Lipschitz stability >> Logarithmic stability
But

Lipschitz stability: 108°x Data

Logarithmic stability: 10~8(log ﬁ)-l
Which is better? Better stability for inverse

problem — good
Bad stability — not be disappointed!

Conditional stability =

e How to choose admissible set of unknowns

e Balance between accuracy of available data
and conditional stability:
For bad stability, it is meaningless to find
highly accurate data

e Giving guideline in choosing optimal mesh
size, regularizing parameters, etc.
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Available data for inverse problem are limited
—> We cannot expect high accuracy in
numerics for inverse problems

— We should not rely only on one method,
but we should use suitable a priori knowledge
or empirical knowledge

2. Inverse source problem of
pollution

drulx, t) = Au+u(t)f(x), x € Q,0<t < T,
BCodu+ox)u=00ndQ, c>0
u-,00=0

D :={x € Q|f(x) # 0} cC Q
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Inverse source problem of pollution
f(x): given, xo € : monitoring point

o u(xo, ") = u(f)
o u(, T) = u(t)

u(t): given

® ulyaxom = f(x)
o u(-, T) = f(x)

Y — A REFR-E

a W (HHEMNLG) ENOMRE+ RiEHEE. UA
HRE—IAY b

= - GRIEEH

FLOWEZEVERICANS] =
b 5 ISR DBV
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IP 1: determine u(#)
|. Data: u(xy, t)
G(x, t): Green function for A with B.C.
t
u(x, t) = fo j;) Gx —y,t—s)u(s)f(y)dyds

wi(x, t) := fQ Glx -y, t)f(y)dy

= ulxp, t) = fot wixg, t —s)uls)ds, 0 <t < T
Uniqueness for general u by data over (0, T)?

1. Stability for y > 0

Key lemma (reverse Holder inequality)
Letp 21,0 <A, uin(0,T)
Then:

2p-2 1
A < M7 = AllY
uller oAl 000 < M 7 ||u ”L1(0,T+6)

(Saitoh-Vu-Yamamoto: 2002)
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Theorem 1

xo € Q: arbitrary,

f=0,%0, € C*[0, c0)

Assume u > 0. Then for any 6 > 0,

< N’
”[J”U’(O,T) < Csllu(xo, )”Ll(O,T+5)

Remark: OK for f(xg) = 0 « monitor away
from source
Proof: Set A(t) = w(xy, t) in key lemma.

2. Stability by monitor inside of source
Let f(x()) * 0.

t
u(xg, t) = f wixg, t —s)u(s)ds, 0<t<T.
0

fxg) # 0 — wi(x, 1) >0,0<t < T.
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t
atu(xOr t) — W(xOI O)P(t)+f atZU(xOI t—S)#(S)dS,
0

where w(xy, 0) = f(xg) # 0.
—> Volterra equation of second kind

Theorem 2 Let Af € L*(Q). Then
[lullz0,1) < Cllu(xo, e o,1)-

3. Stability by monitor outside of source in
a special case: Let f(xp) = 0

Theorem3 Letn <3

Q =R", U = {u € C[0, TN ||ullcro,n < M,

p changes signs at most N-times }.

Let f >0,% 0, f € L*(R") and
letp > ﬁn.
Then Y6 > 0, 3C > 0 such that

1/pN
< . forall u € U.
lellron < Clluteo, I forall pe U
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Remark. For n > 4, we assume f € C*(R")
and p > 1.

B. Data u(-, T)
Let supp f cCc Q, f =0, £ 0,
p analytic in (0, o)

Theorem 4 (uniqueness within analytic u)

Let u(-, T) =0in Q \ supp f =
u=so0
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Proof. dsu = Auin D := Q \ supp f,
u(-, Ty =0inD
y: t-analytic = u(-, t): analyticint > 0

u(-, T)=0inD = Ju(-,T)=0inD = ---

= 8:”14(-, T) =0in D for all m
By analyticity of u in t, we have
u=0inD X (0, )

ulxe,t) =0, Ixp e Dfor0 <t < co =
j(;t w(xg, t —s)u(s)ds =0,t >0
Laplace transform = u = 0

IP2. Determine f(x)
A. Data: ulsax0,1)

Key:

dr = Au + u(®)f(x), u(-,0) = 0 + B.C.
diz = Az, z(-,0) = f + B.C.

= ulx, t) = fot p(t — s)z(x, s)ds
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Theorem 5
Let u(0) # 0, I' C JQ: any subboundary
Thenu=00onTx (0, T) = f =0

Bad stability (logarithmic rate)

B. Data: u(-, T)

Theorem 6
letuy >0,%0.
Thenu(-,T) =0inQ= f=0
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Notation

1/2
fllz2 ) = (f If(x)Izdx)
Q

(f,8) = f f(x)g(x)dx.
Q

Proof: A,: eigenvalue of —A with B.C.
including multiplicities

@, eigenfunction for A, l|pulli2@@ = 1. Then
ule, ) = L2 [ e MEI(f, ) (p(s)ds
u-,T) =0 =

Yo et ( fOT eA"Sy(s)ds) (f, @) Pn(x)

=0, x € Q.

B20,20=> [ eMu(s)ds # 0

= (f,p,) =0foralln = f=0
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General p(x, t): Let u(, T) > 0 on Q.
Then IP =

_ —Au(-T)
Here K : L2(Q2) — L*(Q2) is compact

— Fredholm equation of second kind

e uniqueness implies the well-posedness
e generic well-posedness in some

parameters
(< Analytic Fredholm perturbation

theorem)

3. Inverse problem for
diffusion-refloating

— cesium-137
— Asian Dust (Yellow sand)
— pollen
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2
Field-data around Chernobyl and
Fukushima

It is difficult to make long-term simulation of diffusion of cesium:
Consider wind and re-floating in each mesh (a few km X km)

cesium-237: ~ 30 years (half-life period)
— serious effect to the health

Previous model for diffusion of density
Ci(x, t) of cesium-137

atCl(xr b= aaxcl — AgecCe

Here a: wind, A4,..: decay constant
— not good matching

We must consider re-floating
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Model for diffusion-reloating

Ci(x, t); density of cesium in the air

C,(x, t): density of cesium on the ground
Adown(t): deposit rate of cesium in air to
ground

Ay (1): re-floating rate of cesium on ground
to air

0:C1(x, 1) = adxC1 —AgecC1— Adouwn C1 + Aup C2
0:Ca(x, t) = —AgecCa + AdownC1 — Aup C

Aup(t): important for estimating interior
exposure to radiation (i.e., from mouth into
body)

risk of interior exposure >> risk of exterior
exposure

Inverse problem
Determine A, () (and Agu (1))
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Empirical formula

Ayy(t) ~ t74/3

Application: determine when explosion
occurred

Inverse problem

druy = adyuy — (Ak(®) + b)uy + ur(Boy,
0rv = A(Bug — (ur(t) + bo)og,

0<x<L O0<t<T k=12,
ui(x, 0), vi(x, 0): given

Take difference
U=1uy —uy, 0 =101 — 0y,

f=A—-Ayg=p1— o
—
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ditt = adyu— (A1 +bo)u+ p1v—f(x)u+ g(H)v,,
0rv = Aqu = (U1 + bo)v + f(X)uy — g(H)va(x, 1),

ulx,0) = ox,0 =0

Inverse problem:
Given x € (0, L), determine f(t), g(t) by
u(xg, t), v(xy, 1),0< t < T.

Result |

Y1, Y2 € (0, L): given monitor points.
Assume

ux(y1,t)  ux(yy, t)
det 0,0<t<T,
© ( vZ(yll t) Uz(yzr t) *

Sl

givent, € (0,7),AC>0,0 € (0,1) s.t.
£ 1lz20,8) + l1g1lL200,5) .
< C(XF_, lltys, Mirzon + o, Mlizon)

under boundedness assumption on f, g.
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Result Il

y1 € (0, L): given monitor point. Assume
0(y, t) #0,0<t<T

givent, € (0,7),AC>0,0 € (0,1) s.t.

1 fllz20,20) <
Cllu(y1, Nz, + lo(y1, Nlrze,n)?

under boundedness assumption on f, g.

Key to Proof

Carleman estimate:
L?-weighted estimate with large parameter

Modification of methodology
by Bukhgeim-Klibanov (1981)
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Same method for

Inverse Problem: u(xq,:) — f(#)
Here

Pu = ZZ;: 9ilaij(x)dju) + f(OR(x, t)
udmatt=0

Concluding remarks

Inverse problems for risk management with
radiation contamination
— Theoretical:
completed: various conditional stability
— Numerics: under work
— Laboratory experiment (e.g., wind tunnel
test):
not yet
— Real data: not yet

60




Inverse problems in Magnetic Resonance Imaging (MRI)

Shin-ichi Urayama
Human Brain Research Center, Graduate School of Medicine, Kyoto University

1. Introduction

MRI, magnetic resonance imaging, is one of medical techniques for taking cross-sectional images
non-invasively. The scanner is non-radiative and can provide various kinds of bio-medical information, not
only anatomical structure but functional information (metabolism, blood flow, brain activity, cell viability
and so on, as shown in Fig.1). Because of these distinct advantages, MRI scanners have been spread many
hospitals all over the world.

Like as another non-destructive scanners, the algorithm of MR image reconstruction is an inverse
problem. Although the problem is known to be based on Fourier transfer (FT) in general, recent strong
demands for scan time shortening push non-FT based image reconstruction. Here, I introduce reconstruction
problems in MRI from principles to recent trend.

Fig.1 MRI scanner and variety of MR images.

2. Principle of MRI

Principle of MRI is based on Nuclear Magnetic Resonance (NMR) phenomenon. NMR is one of
resonance phenomena in which a mass of nulei in magnetic field resonates with an electromagnetic (EM)
wave, like a tuning fork does with a sound wave. Although exact understanding of this phenomenon needs
quantum physics, an intuitive explanation based on classical mechanics is possible as below.

When a mass of nuclei is in a static magnetic field, it is magnetized and a magnetization vector
parallel to the magnetic field is produced. This vector resonates with an EM wave like a tuning fork (Fig.2).

tuning fork
- - magnet
transmit receiver
antenna tot tt antenna
all

|
EM-wave ‘ ‘ ‘ ‘ EM-wave

- - magnet

Fig.2 Like a tuning fork, MRI is based on a resonance effect (NMR effect).
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A tuning fork has a resonance frequency because of its U-shape. Similarly, a magnetization vector also
has because it is spinning, more precisely, it has an angular momentum. If the vector does not spin, an EM
wave with any frequency works as a magnetic vibrator and the vector starts to vibrate with the same
frequency. However, because of the low of conservation of angular momentum, the spinning vector is not
effected by a magnetic vibrator in general and can be effected only by that whose frequency is the same as
the angular frequency. This means that NMR phenomenon has a frequency selectivity property and its
resonance frequency is known to be proportional to strength of the magnetic field B, that is, the resonance
frequency @ is given by

w=y|B| (1)

where ¥ is so-called gyromagnetic ratio, a constant specific for each nucleus (for example, 4.26 x 107 Hz/T
for hydrogen nucleus, i.e., proton). Therefore, a specific nuclei can be "excited" with the corresponding
resonance frequency. And, if there is linear magnetic field gradient, a slice or slab volume perpendicular to
the gradient direction can be excited, that is, "slice-selection".

A difference between tuning fork and magnetization vector is that a vector effected by the magnetic
vibration does not vibrate but precess like a spinning top (Fig.3), because of the spinning property. Then,
when the spinning vector M is tilted from the rotation axis (parallel to B and conventionally it's set to Z-
axis), the vector in precession has a rotating component M,, with rotating frequency of @ , and the
component causes an EM wave of which frequency is also @ . This EM wave can be detected with a receiver
antenna (so-called a receiver coil) before the vector goes back to its initial state. This is so-called NMR
phenomenon and the detected signal is called NMR signal.

Fig.3 A magnetization vector in static magnetic field precesses like a spinning top.

Since NMR signal is coherent (the precessions are synchronized), position information of the signal
source must be encoded in order to reconstruct an image (= spatial distribution of the signal). Interestingly,
the precession frequency (= frequency of the EM wave) can be changed by modifying the local magnetic
field and this characteristic is applied to the encoding by using so-called a gradient coil.

Gradient coil, a hardware differentiating MRI from NMR, is consist of X/Y/Z coils producing linear
magnetic field modulation along each direction (Fig.4). When the coefficients of produced linear modulation
along each direction is G = (Gx, Gy, Gz), the resultant magnetic field B(r) at position r is given by

B(r)=B,+Gr @
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where By is the magnetic field strength at the origin of the MRI coordinate. Since the frequency of the NMR
signal is proportional to local magnetic field as shown in eq.1, a linear gradient G being produced for af
causes relative phase modulation ¢(r) given by

¢(r)=27my(G r)at 3)

Fig.4 Gradient coil produces linear magnetic field modulations along three orthogonal directions
and makes linear spatial modulation of precession frequency.

Fig.5 Spatial phase modulation and the corresponding time course of pulse gradients. Top row shows phase
modulation changes without Y-gradient pulses and middle row does those with only single Y-gradient pulse.
As shown in bottom row, phase modulation can be controlled with numbers of gradient pulses in two
directions, kx and ky.
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Now let's consider a rectangular solid region covering the target object centered at the origin. The
three orthogonal unit vectors are e; (j=1,2,3) and the corresponding length, number of voxels and gradient
coefficients are /;, n; and g; respectively, where they are satisfying

vglar=1  (j=12,3) 4)

When three pulse gradient along the e; directions are generated with the strengths of k;gj, the resultant
relative phase shift is given by (Fig.5)

o(r.k)= 2717)/Atikjgj (e/. ~r)
)
)

r= irj,(l.f/nj)e.f (6)

detected NMR signals are expressed by

5(k)= jij,W@')exp{zm—i k!

} dridr,dr] @)
=1 1
where My,(1') is the rotating component of the magnetization vector. This equation shows that NMR signal
distribution My,(r') and detected signal S(k) (this raw data volume is so-called "k-space") are linked with
discrete Fourier transform (DFT) and so the MR image can be obtained by applying inverse DFT to the
signal.

This is the principle of MR imaging and image reconstruction.

Fig.6 K-space and time courses of gradient pulses in basic sequences. Generally k-space is filled line by line
with changing strength of Y-gradient pulses and in each line scanning, to refocus spin phase at the center of
the line, an inverted gradient pulse is applied just before data acquisition. Phase modulation patterns
corresponding to k-space positions assigned by red circles are shown at the left side of k-space.
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3. Recent non-FT reconstruction

Although DFT based reconstruction is a very easy solution in MRI, scan time for filling all of k-space
is too long in clinical exams. Recent improvement of calculation speed allows non-FT based reconstruction
algorithms based on sparsely sampled data for shortening scan time. And now there are mainly two ways,
arbitrary trajectory method (or non-Cartesian method) [1] and parallel imaging [2].

Considering redundancy in MR images (for example, high correlation between neighboring pixel
values, signal void in background region and so on), there can be some reconstruction algorithms based on
sparsely sampled data, including data at non-integer ; point in k-space.

Since duration for measuring single data point in k-space is sufficiently shorter comparing with NMR
signal decay, a handred to a few thousand of data points are measured successively after each excitation
along a trajectory in k-space. Generally the trajectory is parallel to a side of the rectangular k-space, but in
arbitrary trajectory method, various kind of sampling trajectories in k-space are adopted as shown Fig.7.
These arbitrary trajectories are effective to reduce the number of data points in k-space without hamparing
the reconstructed image.

Fig.7 Various trajectories in k-space, conventional (left), radial (middle) and spiral (right).

In parallel imaging, inhomogeneous sensitivity distributions of receiver coils are utilized for additional
spatial information. Generally, a large receiver coil covers large area with homogeneous sensitivity, but
signal to noise ratio (SNR) is low. Therefore, to cover large area with maintaining sufficient SNR, a number
of small coils (so-called phased-array coil) arranged to cover the target region are used (Fig.8).

In standard usage, an inhomogeneous image is reconstructed with each coil data and then all images
are summed up to the final image. However, if the sensitivity map of each small coil is known, that is
applicable as spatial information addition to that by the gradient based phase encoding explained in the
previous section.

Although DFT can not be applied in these methods, these are still linear systems. Now let m be a
vector of discretized My(r') of which the size is nnzn;3 and s be that of S(k) of the size ncnk, where nc is the
number of the receiver coils and 7 is the number of the data points measured in the k-space. Then, the
system is given by

s=Em ®)
where E is the n_n, X n,n,n, matrix representing gradient and coil encoding, given by
E, . =exp{2n’i(kp -F,;)}Cq(F/;) ©)
(l <qg<n,1<p<n,l<p Snln2n3)

where K, is the p-th position of the measured data point in the k-space, T, is the normalized p -th voxel
position 7, =17, /n, and C, (F,;) is the complex sensitivity of the g-th coil.
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The image reconstruction is the inverse problem of Eq.8. Since often n.nrexceeds ninons, this inverse
problem is underdetermined so that additional constraints, like noise level optimization, are necessary. And
because of the large matrix size and necessity for rapid reconstruction in clinical exams, this is solved with
iterative ways based on the conjugate gradient [1] or recently compressed sensing approaches [3,4].

Fig.8 Two reciver coil system and inhomogeous images obtained from individual coils. (From fig. 5 in ref. 2)

4. Discussion

Image reconstruction algorithms in MRI including recent non-FT ones are described. As shown, they
are basically linear systems and so many techniques have been proposed. However, the non-FT based
algorithms are based on iterative ways with optimization and, that means, resultant images depend on the
energy function of the optimization algorithm. Considering that clinically it is important that a contrast
should be imaged if it exists and that it should not if it does not, these solutions are intuitively problematic
because the best energy function is unknown and because there is no guarantee on the importance.

Another recent interesting trials are ones using non-linear gradient coils. A linear gradient is necessary
for a FT-based reconstruction, but it is not for non-FT based one and the trials with non-linear gradients are
expected that potentially they have some advantages [5-7].

Although almost all of reconstruction algorithms in MRI are also linear systems, it must be
considerably useful if there are analytical solutions of them.
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1 Introduction

Many important problems in engineering and sciences can be formulated as inverse problems for
partial differential equations. In practical applications of inverse problems, studies for numerical
methods are very important as well as studies for theoretical uniqueness and stability. Most of
numerical studies for inverse problems apply optimisation procedures to solve the problem. Such
approaches have some merits, for an example, we can apply well-established solver for partial
differential equations and optimisation problems. However, they have also demerits. For an exam-
ple, they are usually expensive because we have to solve partial differential equations many times
iteratively.

Since 1990s, some researchers started to study the “reconstruction formula” for the solution of
inverse problems without optimisation procedures. Such studies are developed for inverse scattering
problems and inverse source problems, and give successful results. (For inverse scattering problems,
see Ikehata[3, 4], Kirsch[5], and Potthast[11], and for inverse source problems, see El-Badia[l, 2],
Naral7, 8], and our papers[6, 10, 9, 12].) In this paper, we discuss an inverse source problem for a
wave equation, and propose a numerical method for the problem without optimisation procedures.

2 Problem formulation

Let u be the solution of the following initial- and boundary-value problem for a three-dimensional
scalar wave equation:

10%
C—za—tg(:c,t) — Au(zx,t) = F(x,t), x=(r1,22,23) €Q, t € (0,T),
u(x,0) =0, x€Q,

(1
(
ou (
(

2

3
4

(@0 =0, zeQ,

)

)

)
u(z,t) =0, xel, te(0,T), )
where Q C R3 is a simply connected domain with smooth boundary I', ¢ (> 0) denotes the wave
propagation speed, F'(x,t) is an unknown wave source, and T > 2 - diam(Q)/c. We consider the
problem to estimate unknown source term F(x,t) from observations of the normal derivative of
the solution u on I' given by

ou
ov
In this paper, we assume that the source term F'(x,t) is expressed by multiple moving point sources
as follows:

o(x,t) = (x,t), xel, te(0,T). (5)

ZA 1)op, (). (6)

Here, M is the number of wave sources, p,,(-) = (Pm,1(-)sPm2("),Pm3(")) € C*([0,T]; Q) and
Am(-) € CY(0,T) denote the location and magnitude of m-th wave source, and dp,, is the three-
dimensional Dirac’s delta distribution at p,,. We assume that p,,(t) # p,(t) at every instance ¢
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it m#£m/, and |p,,(t)| < ¢, where p,,(t) is the time-derivative of p,,(¢). In this case, our problem
becomes to estimate the number M, locations p,,(t) and magnitudes A, (¢) of point sources from

o(x,t).

I'=0Q

u=0on T

Figure 1: An inverse source problem for a scaler wave equation with moving point sources.

3 Reconstruction of wave sources

In this section, we discuss a reconstruction of unknown wave sources without optimisation pro-
cedures. Our method is based on the concept of reciprocity gap, and so we first introduce the

reciprocity gap functional for scalar wave equations.
Let W be a class of complex-valued functions v € H2((0,T); H%(2)) that satisfy the homoge-
neous wave equation:
1 9%
?W(m’t) —Av(z,t) =0, x € Q, t € (0,T).

The reciprocity gap functional R(-) for scalar wave equation is the linear functional on W defined
by

_ T 1 ou
R@w) = — /0 /F (e o(@.0is@)it+ 5 [ G T T)iv (@)
—C%/Qu(w,T)%(w,T)dV(m), (7)

where u € C((0,T); L?(2))NCO([0, T); L3(R)) is a weak solution of the initial- and boundary-value
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problem (1)-(4) in the sense where

ou 1 Ov
., ot —(x, T)v (a:,T)dV(a;)—C—Q/QU(az,T)8 (z,T)dV (x / /81/ (z, t)v(x, t)dS(x)dt

/ / (z,t) (—zw(m t) — Av(:c,t)) dv (x)dt
/O/QF(w,t)v(w,t)dV(a:)dt, (8)

for any v € H2((0,T); H?(f2)), and ¢ is the observation data defined by (5). From (7) and (8), we
can establish the following relation between R(v) and the source term F(x,t):

T
v) = /0 /Q Fla, tyo(@, )dV (x)dt. )

The equation (9) shows that the reciprocity gap functional R(v) gives some information on the
source term F'(x,t), and we may reconstruct unknown source term from R(v) with suitable choice
of functions v € W. In the case where the source term F(x,t) is expressed by (6), we note that
R(v) is rewritten as follows :

M T
0=3 / A (£)0(Dy (1), )t

Now, we consider a choice of v € W for the reconstruction of moving wave sources. We use the
following three sequences of functions in W with two positive parameters 7 and e:

falz,t; T,8) = pe(t+ﬂ—7>($1+ix2)”7 n=20,1,2,3,---,
c

0
gn(w7t7 T,E) = _afn(wvtv T7€)7 n :07172737"' )

0 0 . 0
hn(mvt; 7—75) = T3 <8l’ 81132) fn(w t T, 5) (xl 71$2)87$3fn(1:at; T, E)a

n=123,--

where p. € C§°(R) denotes the mollifier function that satisfies supp p. C [—¢, €] and [ p-(s)ds = 1.
We note that these functions are also introduced for the reconstruction of fixed point wave sources
in our previous paper[10].

First, we show the identification of the number M of wave sources, and the reconstruction of
parameters pp, 1(x,t) and pm2(x,t). Suppose that € < 1, then we obtain the following estimate
for R(fn):

M

R(f)(m€) = D &mtm(r)Am (b (1) (Pm,1 (b (7)) + P2t (7)) + O(e)

m=1
M

= Z A (Em (7)) G (Em (7)) + O(e), n=0,1,2,---, (10)

m=1
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where

>
3
—

~
=

1

Em®)Am(t), m=1,2,--- M,

2m(t) = Pmi(t) +ipmeo(t), m=1,2,---, M,

El
E.;\
i
3
I
l—‘
“[\9
IS

and t,,,(7) is the solution of the nonlinear equation

t
tm(T) + Pm3(tm (7)) =7, m=1,2,---,M.
c
Since [p(t)| < ¢, tm(7) is uniquely determined for each 7.
For every 7, let M(7) be the number of point sources such that Ay, (£, (7)) # 0, and suppose

that Ay, (t,(7)) #0 for m =1,2,--- , M(7). We define L x L-matrices

R(fu) R(f/Hl) e R(fM+L*1)
HL,M(T7 5) _ R(f;t-H) R(fu+2) R(fu+L) . u=0,1,
R(furr-1) R(fusr) -+ R(furor—2)

where R(f.) = R(fu)(7,€). Neglecting O(e) term in (10), we can identify M (7) as the maximum
integer L such that det Hy o(7,¢) # 0, and reconstruct 2y, (t, (7)), m =1,2,--- , M(7T) as eigenval-
ues of Hz\_/fl(f),oHM(T),l [1, 7]. Suppose that zp (tm (7)) # 2m (tm (7)) if m # m/, then we can also

estimate Ay, (t (7)), m = 1,2,--- , M(7) as a solution of the system of linear equations (10) for
Tl:07172,"' 7M(T)_]‘
Next, we consider the reconstruction of py, 3(tm (7)), m =1,2,--- , M (7). For this purpose, we

use two kinds of reciprocity gap functionals R(g,) and R(h,). In these reciprocity gap functionals,
R(gn) are used for the identification of some working variables in the reconstruction of pp, 3(tm (7))
Suppose that e < 1, then we obtain the following estimate for R(g,):

M(T) B
Rign)(me) = ) (Enltn(r))? (Am<tm<f>> — 6t (Pt P8l T)

v
+ Z n(gm(tm(T)))2/\m (tm (7)) 2m (tm (7)) (2 (tm (T)))n_l
m=1

+ O(e), n=0,1,2,---. (11)

) Gonltn ()"

Let .
b(t(7)) = (e (o) = 6t (D) 1) P22 )
m=1,2-- M(r),
nltn(7) = At () ol (7) Pn(bn(), = 1,2, M),

and consider complex vectors

b a1 Rig1)
b c
b(r) = .2 e CMm), e(r) = 2 e CMm), r(r) = (92) € C2M().
bar(r) cn(r) R(gnr(r)



where by, = by (tn(7))s em = em(tm (7)), and R(gm) = R(gm)(tm (7)) for m =1,2,--- , M (7). Also
we consider 2M (1) x M (7)-matrices

Ap(T)

ARr(T)

1 1 A 1
z1 z9 ZM(T)
2 2

“M(7)

2M(r)-1

2M.7' —1 QM.T —1 .
SN M
0 0 0
1 1 . 1
2z 229 QZM(T)
322 322 3231(r) ;
L oM(r)-2 L oM (r)-2 ' : 2M () -2
@M(r) - D3O @M(r) —1)ZYO2 L @M(n) - D))

where 2y, = 2z (tm(7)). Then, neglecting O(e) term in (11), we obtain the following linear equation

for b(7) and ¢(7):

(aulr) Ann) (40)) = (o). (12)

Assume that 2y, (tm (7)) # zpy (b (7)) for m # m/, then det (AL(r) Ag(7)) does not vanish, and
we can obtain b(7) and ¢(7) uniquely.

Now, we reconstruct the parameter pm,3(tm (7)), m = 1,2,---,M(7) using reciprocity gap
tunctional R(h,). Under the same assumption for the derivation of equation (10), we obtain the
following estimate for R(hy,):

R(hn)(T,€)

Pin 3t (7)) Em (tn (7)) A (ti (7)) (2 (£ (7))

[\
3
NE

—_

ol
=3
™
3

(tm(r)))? (Am<tm<r>> - m(%(ﬂ)m(m(ﬂ)w)

C

3
£

X
I

m (tm (7)) (2 (t (7))
(7)) A (b (7)) 0 (E1n (7)) (2o (£ (7))

Q-
NE
T

3
ﬂ‘

(tm (7)) At (7)) e (b (7)) 2 (E1a (7)) (2 (1 (7))

o3
NE
T

3
I

@)
~

™
2

Pin 3t (7)) A (b (7)) (2 (£ (7))

S
NE

—

ol
=3

b (tm (7)) 2m (tm (7)) (2 (Em (7)))"

3
ﬂ‘

M
Em(tm (7)) (zm (tm(7)))" + % Z Cm(tm (7)) 2 (b (7)) (2 (tn (7))

Q-
M=

3
I

@)
~

™
N
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Since we have already identified M (1), and zy, (¢, (7)), X;L(tm(T)), b (tm(7))y Cm(tim (7)) for m =
1,2,--+ ,M(7), only ppm3(tm(7)),m =1,2,---, M(7) are unknown in (13). Let

gm (tm(7)) = )‘m(tm(T))pmﬁ(tm(T))v m=12---,M(7),

and

$n(T)

I
Q|
=
o>
3
—
[
3
—
\]
-
S~—
N
3
—
~
—
\]
N
=
©
3
—
—~
3
—
\]
—
=
=
3

then, we can rewrite (13) as

M(r)
R(h)(7,) = 50t (7)) = 20 > @t () (z (b (1)) +0(),  m=1,2,---.  (14)
m=1

Assume that 2y, (£, (7)) # 2/ (L (7)) for m # m/, and neglecting O(e) term, we can solve equation
(14) for gm(tm (7)) uniquely. Then py, 3(tm (7)) can be reconstructed by

pm,3(tm(7-)) = =", m= 1323"' aM(T)'

Finally, we estimate py, 3(¢m (7)) with a suitable numerical differentiation method, and we can
reconstruct Ap, (tm(7)) by

4 Numerical Experiments

In this section, we show a numerical experiment for our reconstruction method. We consider the
case where  is the unit ball {z | |x| = 1}, and set the wave propagation speed ¢ = 1. Unknown
wave source consists of two point wave sources given by

‘Wave source 1:
p;(t) = (0.5c0s(0.2t), 0.2sin(0.2¢), 0.2sin(0.45t)),

1
Ai(t) = 3 sin gt

Wave source 2 :
Po(t) = (r(t) cosO(t), r(t)sinb(t)cos(0.7m), r(t)sinf(t)sin(0.77)),

0(t) = (2m — 200)t/50 + 6y, (B9 = cos™ 0.6875),
r(t) = 0.25/(1.0 — cos(0(t))),

No(t) = 1.0 — cos (2w (t — 5.0)/19.5)) 5.0 <t < 24.5,
270 others.
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We show the profile of locations p,,(tm (7)) and magnitudes X;L(tm(T)) as blue lines in Figures 2
and 3. To give the observation data ¢, we solve the initial- and boundary-value problem (1)-(4)
numerically using the boundary integral equation method, and compute ¢ = % and 386 points
on I We numerically add 0.1% noise to the observations ¢ to simulate a practical observation
situation. In the computation of reciprocity gap functionals R(fy), R(gn) and R(gn), we apply the
trapezoidal rule with respect to the longitude axis, and the Gauss-Legangdre formula with respect
to the latitude axis. .

We show the estimation results of locations p,, (¢, (7)) and magnitudes A\, (¢, (7)) of wave
sources 1 and 2 as red lines in Figures 2 and 3, respectively. For the wave source 1, both of the
location and magnitude are estimated well in the whole interval [0, 40]. For the wave source 2, the
estimation result becomes bad when the source starts up (7 ~ 6) and vanishes (7 ~ 24), however,
the result is very good in the interval 7 < 7 < 20. From these results, we consider that our method
gives good estimates for locations and magnitudes of unknown wave sources.

5 Conclusions

In this paper, we discuss a numerical method for an inverse source problem for three-dimensional
scalar wave equations. We assume that the source term is expressed by multiple point wave sources,
and they move around in the known domain. For the problem, we propose a method based on the
concept of reciprocity gap without optimisation procedures. We examine our method by a numerical
experiment with two wave sources, and show that our method gives a good estimation of the sources
under noisy observation conditions. We have some further works for our method, for examples,
application to limited aperture cases, and to practical problems.
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Figure 2: Estimation results for wave source 1
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Figure 3: Estimation results for wave source 2
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An inverse problem to detect an inclusion in a
homogeneous medium by the Dirichlet to Dirichlet
data for the heat equation

Takashi TAKIGUCHI* and Ryusei YAMASHITA

Abstract

We discuss an inverse problem to detect an inclusion in a homogeneous medium.
For this problem, application of the X-ray tomography being well studied, several
problems are pointed out, such as harmful influence of the X-ray on the human
body, the expensive cost of the industrial computerized tomography and so on. In
this paper, we discuss another approach to this problem where we try to apply the
heat conduction to detect an inclusion in a homogeneous medium.

Keywords: inverse problem, the heat equation

1 Introduction

In this paper, we discuss an inverse problem to detect an inclusion in a homogeneous
medium. An approach to this problem, the application of the X-ray is being studied,
where the reconstruction is performed to reconstruct the object, by its section by section.
As examples of application of the X-ray tomography, the following problems of non-
destructive testing are under investigation.

(a) Non-destructive testing for mixed materials of the two kinds
(b) Non-destructive testing for the fuel tank of the rockets

(¢) Non-destructive testing for die casting of the aluminium

The problem (a) arose from the development of the three dimensional CAD system
which enables us to describe the inner structure of the pillars and the walls in the buildings.
In this problem, it is necessary to investigate the internal structure of the pillars consisted
of the steel and the aluminium, which is not clear from their production process. It seems
that it is not difficult to understand the motivation to study problems (b) and (c¢), which
are typical problems in non-destructive testing.

*Supported in part by JSPS Grant-in-Aid for Scientific Research (C) 22540214. Department of Math-
ematics, National Defense Academy of Japan, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686,
JAPAN  tel: +81-46-841-3810 (ext. 3249) fax: +81-46-844-5902 (shared) email: takashi@nda.ac.jp
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For the time being, the same algorithm as the computerized tomography (CT) is
applied to all of the problems, (a), (b) and (c). Since the objects in these problems are
much simpler than the interior structure of the human body, it is expected to reduce
the X-ray data for the reconstruction of the object. This problem is closely related to
the geometric tomography and there are many studies on it both in the viewpoint of
theory and in the viewpoint of application. For example, confer [1, 8, 9] for the results
in the viewpoint of theory and [2, 11, 12, 13] for the studies in the viewpoint of practical
application. Unfortunately, the results mentioned above are not still satisfactory for
practical application in view of the following points.

e In the case where we project parallel beams of the X-ray from two directions, we
can classify the shape of the inclusions into the two classes, one is the uniquely
determined ones by these data and the other is non-uniquely determined one ([8, 9,
11]). For the unique class, reconstruction formulas ([8, 11]) are given and we gave
further studies, treatment of the errors, construction of a reconstruction algorithm
and its implementation by computers and so on, satisfactory for practical application
([2, 11]). Tt is, however, proved that there are very few sets reconstructed by this
method ([12]) and it is not known how to find the exact two directions for the
reconstruction for the uniquely reconstructed sets, even if they exist. In addition to
them, since they apply cone beams of the X-ray in most industrial CT devices, we
have to develop the counterpart of the above theory for the cone beams.

e For general inclusions, the exact data of the beams of the X-ray for the reconstruc-
tion are not known. Needless to say their reconstruction methods, treatment of the
errors, construction of an approximate reconstruction algorithm, its implementation
by computers and so on.

There are other problems of the use of the X-ray tomography.
(d) The cost of the testing is very expensive if we apply the X-ray tomography.
(e) We cannot ignore harmful influence of the X-ray on the human body.

In order to solve the problems (d) and (e), we try another approach. We study to
detect an inclusion in a homogeneous medium applying the heat. It was M.Ikehata and
M.Kawashita [3, 4, 5, 6] who developed the study began to study to detect an inclusion
in a homogeneous medium applying the heat. They studied the following problem.

Problem 1.1. Let © be a bounded domain of R™, n = 2,3, with smooth boundary. Let
D be an open subset of Q with smooth boundary and satisfy that D C Q and Q\ D is
connected. We denote the unit outward normal vectors to 92 and 9D by the same symbol
v. Let T > 0 be an arbitrary. Given f = f(x,t), (x,t) € 0Q x (0,T), let u = u(z,t) be
the solution of the initial boundary value problem for the heat equation

Ou—Au=0 1in (Q\ D) x (0,7),
du=0 ondD x(0,7T),
du=f ondQx(0,T),
w(z,0) =0 in Q\ D.
In this case, is it possible to reconstruct D by the boundary data u|sq if we suitably
control the heat fluz f?

(1)
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This is an inverse problem to apply “Neumann to Dirichlet” boundary data. They
proved that the convex hull, as well as some other information, of the inclusion D is
reconstructed with the choice of a suitable adjoint solution of the heat equation.

Their theory being very excellent and beautiful as mathematical one, it seems that
there are several points to be modified in view of practical application.

e In practical application, it is not easy give the heat flux as the boundary data. In
addition to it, its observation is not easy, either.

e Though Ikehata-Kawashita controlled the input of the heat f(z,¢) on the whole
boundary of 2, in view of the practical application, it is easier to give a point source
0(z) f(t) on the boundary.

In view of these remarks, we study the following problem.

Problem 1.2. Let © be a bounded domain of R™ n = 2,3 with smooth boundary. Let
D be an open subset of Q with smooth boundary and satisfy that D C Q and Q\ D is
connected. We denote the unit outward normal vectors to 9§2 and 0D by the same symbol
v. Let T > 0 be an arbitrary. Given f = f(t), t € x(0,T) and xo € 09, let u = u(z,t)
be the solution of the initial boundary value problem for the heat equation

Ou — Au = §(xo) f(t) in (2\ D) x (0,7),
dyu=0 on oD x(0,T),

d,u=0 ondQx(0,T),

u(z,0)=0 in Q\D.

(2)

In this case, is it possible to reconstruct D by the boundary data u|sq if we suitably
control the heat source f(t) for all xy € 0027

It is our main purpose in this paper to study Problem 1.2. For this purpose, we apply
the idea of hyperfunctions to treat the Delta functions on the boundary 9. Even if the
reconstruction formulas for the inclusions are obtained, the known results on Problems
1.1 and 1.2 are far from being applied for practice. At the end of this paper, we mention
open problems to be solved in order that the studies of these problems should be applied
for practice.

We shall develop our theory in the following sections. In the second section, we review
the known results on Problem 1.1. We shall discuss our main problem, Problem 1.2, in
the third and fourth sections, where we shall prove our main theorems (Theorems 3.2
and 4.1). In the third section, we introduce the essential idea for our theory by studying
the one spatial dimensional case, the result of which is one of the main theorems in this
paper (Theorems 3.2). In the fourth section, we generalize the result proved in the third
section. This generalization is the other main theorem (Theorems 4.1) in this paper. In
the final section, we summarise the conclusion of this paper and mention open problems
to be solved for further development.
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2 Known results

In this section, we review the known results on the inverse problem of the heat
equation to reconstruct an inclusion in a homogeneous medium. The first study on this
problem is by M. Tkehata [4], where this inverse problem for the one spatial dimensional
heat equation is discussed applying Neumann-to-Dirichlet data on the boundary. This
idea was generalized by M. Tkehata and M. Kawashita [5, 6], which we shall review.

Theorem 2.1 (M. Ikehata and M. Kawashita [5]). Let T > 0 be an arbitrary. Given
we S n=2.3, let f be the function of (x,t) € N x (0,T) having a parameter T > 0
defined by the equation f(x,t;7) = O,v(x)p(t), where v(z) = eV and ¢ € L?*(0,T)
satisfying the following condition: there exists p € R such that

lim inf 7

T—00

/0 t e”gp(t)dt‘ > 0. (3)

Let us(z,t) be the weak solution of (1) with f(x,t;7). Then there holds

s 27 tog
Theorem 2.2 (M. Ikehata and M. Kawashita [6]). Let n = 3, y € R, f(z,t;7) =
Oyv(x)e(t), where v(z;T) = e for € Q and p € R3 \ Q. Assume that uf(:v t) be
the weak solution of (1) with f(x,t;7,p). Then assuming (3), one has the formula

/ / e”(v(x)f(:z;t;T)—uﬂ@t)&,v(az))dtdS':hD(w)‘ (@)
onNJo

[z—p|

lim log

T—00 2\/>

where dp(p) = infiep |z — pl.

/m/ f(x, 7, p) — up(z, t)0,v(x; T))dtdS‘ —dp(p), (5)

Theorem 2.3 (M. Ikehata and M. Kawashita [6]). Let n = 3, t € R, f(z,t;7) =
Oyv(x)p(t), where

B emz—y\;—mz—y\’ ifz 4y,
v(w){ A (6)

Assume that ug(x,t) be the weak solution of (1) with f(x,t;7,y). Then assuming (3),
one has the formula

lim ——=log

T—00 2\/7

where Rp(y) = sup,ep |z — y|.

/m / F@ti7,y) — ug(e, )0,0(x)) dtdS| = Rp(y),  (7)

As we can see in Theorems 2.1, 2.2 and 2.3, their theory is very excellent and beautiful
as mathematical ones, however, we cannot directly apply their theory for practice. Let
us summarise the points to be improved for practice.
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Remark 2.1.

e In practical application, it is not easy give the heat flux as the boundary data. In
addition to it, its observation is not easy, either. What we can do is to give heat
sources on the boundary and observe the temperature on the boundary.

e Though Tkehata-Kawashita controlled the input of the heat f(z,t) on the whole
boundary of €2, in view of the practical application, it is much easier give a point
source of the form §(x — x¢) f(t) at a point x¢ on the boundary.

e In Theorems 2.1, 2.2 and 2.3, it is essential to give test objects such high temperature
on the boundary that they would be melted down. This point is fatal for practical
application.

Having these remarks in mind, we shall study modification of the theory by Ikehata-
Kawashita in view of practical application in the following sections.
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3 Main theorem I. —One spatial dimensional case—

In this section, we try to modify Theorems 2.1, 2.2 and 2.3 for one spatial dimensional
case. Let Q@ = (0,X), D = (a,b) and 0 < a < b < X. We study the one spatial
dimensional linear heat equation with the inhomogeneous term as the heat source at the
origin z = 0.

Ou — Ou = o(x) f(t
O,u=0 on {0} x
d,u=0 on {a} x
uw(z,0) =0 1in (0,a

~—

in (0,a) x (0,7,
0,7),

0,7),

x (0,T).

(®)

—~ o~

In the initial and the boundary value problem (8), an inclusion D = (a, b) is included
in a homogeneous medium Q = (0,X). We pose an inverse problem to reconstruct
the inclusion by observing the boundary data at = 0, X with controlling the input
heat source at the boundary z = 0, X. This case, it is impossible to reconstruct some
information about the point x = b from the boundary value at x = 0 and vise versa, that
is, it is also impossible to reconstruct some information about the point z = a from the
boundary value at x = X. Therefore, we pose the following inverse problem.

Problem 3.1. Let u(z,t) be the solution of the initial boundary value problem for the heat
equation (8). In this case, is it possible to recover a by the boundary data u(0,t) =: g(t)
if we suitably control the heat source f?

In this problem, we try to reconstruct the information of the inclusion, namely, its
position z = a, by observing the boundary data at = 0 with controlling the input heat
source f(t) at the boundary point = = 0.

It is our main purpose in this section to give a positive answer to Problem 3.1. For this
purpose, we treat linear ordinary differential equations with Dirac delta function and its
derivatives in the inhomogeneous term, which let us prepare before discussing the main
problem in this section.

Let us study the following linear ordinary differential equation with Dirac delta func-
tion and its derivatives in the inhomogeneous term.

n—1
Yt oy + et ay +agy =Y apd® (@), 9)
k=0
where y = y(x) is a function of z € R and ag, oy, k=0,1,--- ,n — 1 are constants. We

study the initial value problem of the equation (9), that is,

Problem 3.2. Solve the initial value problem of (9) with
y™(0) =0, (10)
where k =0,1,--- ,n—1.

Let us prepare several lemmas in order to solve Problem 3.2. Before proving them, let
us review the definition of the Laplace transform, which plays an important role in the
solution of Problem 3.2.
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Definition 3.1. For a function ¢(z) defined in [0, 00), its Laplace transform L is defined
by

Lotp)i= [ e Ppla)da, (1)
0
for p € C for which the integral (11) is convergent.

Lemma 3.1.
Lo(p) =1, (12)

where 0(z) is the Dirac’s delta function (cf. [7, 10] for whose definition).

Proof. For the proof of this lemma, we apply the idea of hyperfunctions. We first remark
that suppd = {0} (cf. [7]). We regard the Delta function é(x) as a hyperfunction defined
on R, whose defining holomorphic function is F(z) = —5%- (cf. [7] for more detail), which
we denote by

1
2miz

(5(x):[F(z)]:[ }zF(:U—H’O)—F(x—iO): 1( ! ! ) (13)

2r \z+1i0 x—10
Assume that f(z) = [F(z)] is a hyperfunction defined on R whose support is compact
and whose defining holomorphic function is F'(z). Note that f(x) can be regarded as a
real analytic functional. Let ¢ be a real analytic function then it can be extended as a
holomorphic function defined in a neighborhood V' C C of suppf. Then we can define
the duality < f, ¢ > by

< f,p>= /F(z)g@(z)dz (14)

where the integral route 7 can be taken arbitrarily so that it can be the boundary of the
domain in V containing suppf (cf. Figure 1).

Figure 1: An example of the integral route ~.
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For more detail about hyperfunctions, confer [7]. We can define the Laplace transform
L(p) of the Delta function 6(z) by taking d(z) as a real functional and e ?* as a real
analytic function with p as a parameter. We have, for p € C, that

L(p) = /000 e Py(x)dr =< o(z),e P >

1 1 Pz
::—/e_p‘z(— ‘>dz:, ¢ dz
. 2miz 211 y ?

where the integral route 7 is an arbitrary closed Jordan curve in C such that it can be
the boundary of the domain in C containing the origin. Cauchy’s integral formula yields
that the right hand side of (15) is equal to e = 1 for any p € C, which proves the
lemma. O

(15)

When we study the initial value problem of ordinary differential equations containing
the Delta function and its derivatives, it may be necessary to treat the value of the
Heaviside function at the origin. It having no meaning in usual, we can define its value
in the following sense.

Lemma 3.2. When we apply L6(p) = 1 as in (12), 9(0) must be treated as 0, where
I(x) = { : (<x > 0), (16)

is the Heaviside function.

Proof. In order to prove this theorem, we apply the idea of tempered distributions, for
more in detail of which, confer [10]. Take a function ¢ in the space S(R) of the rapidly
decreasing smooth functions, for the definition of which confer [10]. It being well known
that ¢¥'(z) = d(z), we have

1=L(p) = /000 e P (x)dr = /000 e Py (z)dx
= [e7P"9(2)]5° + /000 Hx)pr Pdx (17)
= —9(0) + /Oopa;pxdx = —9(0) + 1.

Therefore the lemma is proved. O

Making use of Lemmas 3.1 and 3.2, we shall solve the initial value problem to (9).
The solution of the initial value problem to (9) for k& = 0 is obtained by the following
theorem.

Theorem 3.1. Consider the following initial value problem to the following ordinary
differential equation.

(18)

Y™ a1y 4y Fagy = 0(x),
YO0) = y(0) = -+ = 7 1(0) =0
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where ag, k=0,1,--- ,n— 1 are constants. The solution of (18) is given by
y(z) =Y (z(x)) (19)

for x > 0, where Y (x) is the solution of the following initial value problem

Y™+ a1y 4 ay +agy =0,
y(j)(o):(sj(nfl)a ]20717 7n_17

where

L G=n,
5”“"{0 (4K @)

is the Kronecker’s delta function.
Proof. Remarking Lemma 3.2 and the facts

xd(z) =0,
P (x) = d(), ‘ (22)
YO (zd(x))d(z) = YO(0)5(x), j=0,1,2,--- ,n,

holding in the space of tempered distributions, there holds that

Y (z) = Y'(@d)(I(x) + 26(x)) = Y (z0)d (),
y'(x) = Y"(29)0*(x) + Y'(29)d(x) = Y (209)0(x),

: (23)
Y (@) = YD (a0)i(a),
y™(z) = Y™ (20)9(x) + YOV (29)d(x) = Y (29)0(z) + 6(x).
The function y in (23) turns out to be the solution of (18), since
Y9 (z9(x))0(z) = Y (29(z)) = YU (2), (24)
for j=0,1,2,--- ,nand x > 0. O

For x < 0 the solution of (18) is obtained by

y(e) =Y (=zd(-x)), (25)

where Y () is the solution of (20).

The motivation to prove Theorem 3.1 is the application of the Laplace transform. If
we try to solve the initial value problem (18) by the Laplace transform with applying
Lemma 3.1 then we obtain the solution of (20). The essence to prove Theorem 3.1 is how
to modify the solution of (20) in order to obtain the solution of (18) in view of the proofs
of Lemmas 3.1 and 3.2. We can construct the elementary solutions to partial differential
equations with constant coefficients by applying the Fourier transform, which shall be
discussed in our forthcoming paper [14].

Let us give an answer to Problem 3.1 applying Theorem 3.1. The following theorem
is one of the main theorems in this paper, to prove which is our main purpose in this
section.
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Theorem 3.2. Forp <0, let
oa(z,t) = p(z,t) = ef)‘%e)‘(”*m), (26)

where X is a constant and

(o)) = / 9(0)(0(0,) + 0,0(0, £))dt + & / F(t)e . (27)

A solution of Problem 3.1 is given in the following way.
o1
Jim HI(py)[ =p —a. (28)

By (28), we claim that we can reconstruct the information of the inclusion, namely,
its location x = a, by controlling the heat source f(t) at the boundary point z = 0 and by
observing the temperature g(t) at the boundary point = 0. In the rest of this section,
we give a proof of this theorem. We first give a simple representation of the indicator
function defined in (27).

Lemma 3.3.

I(py) = (1— /\)e’\(p“)/o u(a,t)e’\2tdt. (29)

Proof. Let u(z,t) be the solution of the initial and the boundary value problem for the
heat equation (8) and ¢(z,t) be the function defined in (26).
By integration by parts, we have

/OT /Oa w(z, t)p(x, t)dedt = /OT u(a, t)p(a, t)dt — /OTg(t)ap(O,t)dt

_/OT /Oau(xvﬁ)%(ﬂ?,t)dxdt, (30)
since u(0,1) = g(t) and
/ / Uy (2, ) p(2, t)dadt
:/O ug(a,t)p(a, t)dt — /OTugg<O,t)g0(O,t)dt N

T T T pa
—/ u(a,t)goz(a,t)dt—b—/ u(O,t)gow(O,t)dt—&-/ / w(x, ) ez (x, t)dxdt
7 7 v
= —/ u(a,t)gpz(a,t)dt—l—/ g(t)goz(O,t)dt+/ / u(z, t)ue(x, t)dadt,
0 0 o Jo
since u,(0,t) = uz(a,t) = 0 by (8) and u(0,t) = g(t). On the other hand, it is easy to

obtain
/ /5 o(x, t)dzdt = / F)e ™ tdt. (32)

It is clear by the definition (26) that the function ¢ is a solution of the adjoint heat
equation;
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By virtue of (8), (30), (31), (32) and (33), we obtain that

/ / up(7,t) — g (2, 1)) o (0, t)ddt

_ / wla, t)p(a, )t — / 9(1)(0, )t

T T (34)
+/ u(a, t)p,(a,t)dt — /g (t)e(0,t)d
0
/ f 7)\2tdt
which, together with (27), it is proved that
T T ,
I3 = [ 9(06(0.0) + dup(0.00de + ¢ [ flo)e
0 0
T
= [ wla.0)e(atenta )i (3)
0
T 2
=(1- )\)eA(pa)/ u(a, t)edt,
0
which proves the lemma. O
We divide the integral fo ~X’tdt in the right hand side of (29) into two parts;
T 2
/ w(w, et = B, \) = w(w, ) + 2(z, V), (36)
0
where w(x, A) is the solution of the following initial value problem
_\2
(02 — N)w = —d(x fo A,
w,(0,\) =0, (37)
= [} 6(t)e e,
and e(z, A) is the solution of the following initial value problem
(02 — X2)e = ue N7,
e:(0,A) =0, (38)

e(0,A) =0

The initial value problem (38) is a simple one for the second order ordinary equation and
we can solve (37) by virtue of Theorem 3.1.

Lemma 3.4. The solutions to the initial value problems (37) and (38) are obtained as
follows.

w(z; \) = =S cosh(Az) + %sinh()\:m?(ac))7 (39)

2 ¢ 1
e(z; ) = ue™ T/ u(z — v, T)X sinh(Ay)dy, (40)
0
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where
T 2 T 2
K :/ fe =K, S :/ O(t)e . (41)
0 0
With the above preparation, we can prove the main theorem in this section.

Proposition 3.1. A solution to Problem 8.1 is given in the following way.

.1
Jim +log|I(ps)| =p —a. (42)
Proof. By (29) and (36),
I(pa) = (1= N Va2, A) = (1= N (w(, A) + £(x, X)) (43)
holds. It is easily proved that
1 _
Jim +logfuw(z, M) =0 (44)

since the function w(z, \) is concretely represented by Lemma 3.4. Therefore, the rep-
resentation (43) of the indicator function I(y,) and the estimate (44) of the function
w(z, \) prove the theorem. O

Proposition 3.1 completes the proof of Theorem 3.2. Let us comment several remarks
on Theorem 3.2.

Remark 3.1.

e By Theorem 3.2, we can reconstruct the inclusion x = a by the observation of the
temperature at the boundary point x = 0 with controlling the heat source f(t) on
the boundary point x = 0. As mentioned above, it is very important, in view of
practical application, that the source term f(t) to be controlled is the heat source,
not the heat flux.

e We claim that the idea to prove Theorem 3.2 is essential for the study of the higher
spatial dimensional case, where we reconstruct some information on the inclusion
by the observation of the temperature on the boundary with controlling the heat
source f(t) on a boundary point.
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4 Main theorem II. —General case—

In this section, we study Problem 1.2, which yields a generalization of Theorem 3.2.
Concretely, we study the following problem.

Problem 4.1. Assume the same assumptions as Problem 1.2. Reconstruct the inclusion
D by the observation of the boundary data

g(xlvt) = ulaﬂ(xlat)v (45)
for x1 € 0, with suitably controlling the heat source f(t) for zy € OS.
In the case o = x1, we have an answer to this problem as follows.

Theorem 4.1. Assume the same assumptions as Problem 1.2 and For xy € 98 and a
constant X, let ,
ox(z,t) = p(x,t) = e N le T, (46)

where w € S™, and let

I(p) = / / (oo )l ) + Ol ) Sl (47)

Forn = 2,3, a solution of Problem 4.1 is given by

1
}LHOlOX |I((;0A)| = _dw(l'O?D)a (48)
where
d.(zo, D) :==inf{t € R | 29+ tw € D}. (49)

The proof of this theorem is given by modifying the proof of Theorem 3.2. The essential
idea of both theorems are the same. In the proof of Theorem 4.1, we can treat the heat
conduction like one spatial dimensional one in the direction w € S™~! if we consider the
high temperature state, which is the essence to generalize the idea of the proof of Theorem
3.2.

We proved Theorem 4.1 as the first step to study the inverse problem of the heat
conduction in view of practical application. We remark that Theorem 4.1 is not still
enough for practical application. There are many better generalizations, some of which
we shall mention, as well as the merits of our main theorems, in the following remark.

Remark 4.1.

(a) In Theorems 3.2 and 4.1, we control the heat source, not the heat flux, at one point
of the boundary, which generalizes Theorems 2.1, 2.2 and 2.3 in two senses. One is
that the heat source is much more easily controlled in practical application that the
heat flux. The other is that controlling the heat at one point is more desirable for
practice, since if we would try to control the heat on the whole boundary in practice
we have to prepare a special device in accordance with the shape of the test object.
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(b)

In Theorems 2.1, 2.2 and 2.3, M. Ikehata and M. Kawashita extracted information
on the inclusion with theoretical one measurement, which is one of the excellent and
superior points of their study. It is possible to prove similar result by modifying
Theorem 4.1 with the observation of the boundary value g(x, t) defined in (45) for all
x € 0N). For this purpose, it is an interesting problem to find a more suitable solution
 to the adjoint heat equation in the construction of the indicator function. In the
paper [6], M. Tkehata and M. Kawashita studied the relation between the solutions
to the adjoint heat equation and the information of the inclusion D to be obtained
in the study of Problem 1.1, which is very suggestive for the study of our problem
(Problem 1.2).

In all Theorems 2.1, 2.2, 2.3, 3.2 and 4.1, the limit A — oo is required, which
means that the heat source or the heat flux f to be controlled must be in such high
temperature that the test object would be melt down. This is the fatal fault to be
modified in these theorems, in view of the practical application.
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5

Conclusion and open problems

As the final section of this paper, we conclude the conclusion of this paper and mention
some open problems left to be solved for further development. Let us first summarise what
we have discussed in this paper.

Conclusion 5.1 (Conclusion of this paper).

(i) We have given generalizations (Theorems 3.2 and 4.1) of the theory by M. Ikehata

and M. Kawashita (Theorems 2.1, 2.2 and 2.3), which was the main purpose in this
paper. Confer Remark 4.1 (a) for more detail.

(ii) It is possible to generalize Theorem 4.1. As an example of these generalizations,

confer Remark 4.1 (b).

(iii) As a by-product of the proof of Theorem 8.2. We have given a solution (Theorem 3.1)

to the initial value problem of linear ordinary differential equation with Dirac delta
function and its derivatives in the inhomogeneous term, which itself is interesting
and may be applied to the construction of the elementary solutions to linear partial
differential equations.

As we have mentioned at the end of the last section, Theorems 3.2 and 4.1 are not
enough for practical application. In addition to it, there are many open problems for
further development. At the end of this paper, we shall mention these open problems.

Problem 5.1. (i) Let us first remark the most important open problem. In both Theo-

(i)

(iii)

rems 3.2 and th.ndim, the heat source f to be controlled on the boundary is required
to be very high. It must tend to infinity to obtain the information of the inclusion,
which is impossible in practice in two ways. One reason is very simple; we cannot
gwe infinitely high heat source or heat flux. The other reason is that the object will be
melt down at high temperature (cf. Remark 4.1 (c)). Therefore, we have to develop
a method which enables us to detect the inclusion without tending the temperature
to infinity. For this purpose, we propose two ways to generalize our main theorems.

e One approach to this problem is to develop another method to extract some
information of the inclusion in the low temperature state.

o The other way is to give suitable error estimates for the limiting processes (28)
and (48) in order that Theorems 3.2 and th.ndim can be applied for practice in
the reasonable temperature state.

We claim that both approaches are interesting and are to be studied.

Even if the above problem is solved, there still are a number of problems left to
be solve for practice; the treatment of the errors, construction of a approzimation
algorithm for the inclusions, its implementation by computers and so on.

There are many generalization of Theorem 4.1, the study of which is interesting and
important. One of them is remarked in Remark 4.1 (b).
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(iv) Theorem 3.1 is obtained as a by-product of the proof of Theorem 3.2. More generally,
it is an interesting problem to study the initial value problem of linear ordinary differ-
ential equation with Dirac delta function and its derivatives in the inhomogeneous
term (Problem 3.2), as well as its application to the theory of partial differential
equations.
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