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I. INTRODUCTION

This paper provides a short review on the Hamiltonian theory of ideal fluids and plasmas
from a geometric viewpoint, and then applies it to the perturbation theory for the purpose
of studying waves and instabilities. The common Hamiltonian structure of the governing
field equations (in the Eulerian description) is called Lie-Poisson [1–3], which is intrinsically
noncanonical and originates from a Lie group structure (the Lagrangian description for fluid
particles). This Hamiltonian perspective offers a remarkably succinct expression of dynam-
ics and illuminates its topological feature. The powerful methods in classical mechanics
facilitates the understanding of fluids and plasmas in terms of conservation laws, linear and
nonlinear stabilities, averaged behavior and so on. However, the progress on these theories
seems to be still developing in comparison with finite-dimensional mechanical systems and
quantum mechanics, because of the lack of rigorous spectral theory for non-selfadjoint op-
erators that govern perturbations, i.e., waves. Our recent works [4–7] address a part of this
profound problem and propose new methods that seems to be essential.

After the short review of Lie-Poisson systems in the next section, the main content of
this paper is devoted to two subjects. First, we shall discuss and clarify the notions of
wave energy and wave momentum in a rigorous framework of perturbation theory (Sec. III).
Second, we shall acquire more detailed knowledge, namely, the action-angle variables for
linear perturbations by employing a spectral method (Sec. IV). Our approach is formally
applicable even in the presence of continuous spectrum that is well-known to occur in fluids
and plasmas due to inhomogeneities (gradient and shear) of mean fields [8–12].

In general, the nonlinear evolution equations, say ∂u/∂t = X(u), for ideal fluids and
plasmas are not integrable, and we are often interested in behavior of perturbed solutions
away from a given solution u,

uε = u + εu1 +
ε2

2
u2 +

ε3

3!
u3 + . . . , (1)

where ε ∈ R is assumed to be small. The wave energy and momentum are attributed to
the perturbations u1, u2, . . . and, in many cases, the secondary field u2 needs to be solved
to leading order. Indeed, if u is steady, all oscillatory waves in u1 will average out to zero,
whereas u2 involves a wave-driven mean field (a wave-induced correction of the pre-existing
mean field u) that directly has to do with the wave energy and momentum. This wave-
driven mean field is physically important in itself as a transportation mechanism induced by
wave. Moreover, it possibly makes the wave energy negative, in which case the corresponding
wave is ready to release free energy of the mean fields so that an instability occurs [13]. In
Sec. III, we shall consider these things by taking a Lagrangian approach. Although there is
some similarity to the general Lie perturbation method and existing theories for Lagrangian
description [14, 15], we will explicitly present the equations of Lagrangian perturbations
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(or displacements of particle orbits) in each order of ε. These solutions can reproduce
the Eulerian perturbations owing to the topological nature of the Lie-Poisson system, and
sometimes we can dispense with the laboring derivation of the secondary field u2 [7].

Spectral decomposition of a non-selfadjoint operator that appears in the linear analysis u1

is highly associated with the action-angle representation of waves. In Sec. IV, we will show
that, the Laplace transform approach is, in practice, useful for calculating the action-angle
variables even in the presence of continuous spectrum [5]. This formulation will be demon-
strated in Sec. V by using the simplest and classical model, called the Case-Van Kampen
equation [8, 9]. Other continuous spectra in hydrodynamics and magnetohydrodynamics
can be dealt with in the same manner [5, 6].

II. GEOMETRICAL PROPERTIES OF FLUIDS AND PLASMAS

A. Lie-Poisson equation

The Lie-Poisson bracket is known as the common Hamiltonian structure of rigid bodies,
fluids, magnetohydrodynamics, the Vlasov-Poisson system and so on [1, 16–20]. It is, there-
fore, of great interest to study general properties of the Lie-Poisson system. Here, we briefly
prepare some terminology of geometry and Lie groups, which are requisite for defining the
Lie-Poisson system. The geometrical notations can handle such a variety of mechanical sys-
tems from a unified viewpoint and drastically reduce lengthy calculations in practice. We
will also promote a physical interpretation by showing the example of incompressible fluids.
More complete review of the Lie-Poisson system can be found in many textbooks [2, 3].

Let G be a Lie group and g(' TIdG) its Lie algebra (the tangent space to G at the identity
element Id ∈ G). According to the theory of Lie groups, we can always associate v ∈ g with
a one-parameter subgroup exp tv ∈ G, t ∈ R, through the exponential map exp : g → G.
This exp tv is intuitively understood as “the flow generated by the vector field v”, which
satisfies

v =
d

dt

∣∣∣∣
t=0

exp tv and (exp tv)|t=0 = Id. (2)

For later use, we introduce the adjoint representation. The adjoint action Ad(ϕ) : g → g of
ϕ ∈ G on v ∈ g is defined by

Ad(ϕ)v :=
d

dt

∣∣∣∣
t=0

ϕ ◦ exp tv ◦ ϕ−1, ϕ ∈ G, v ∈ g, (3)

and the so-called “ad” operator is

ad(v1)v2 :=
d

dt

∣∣∣∣
t=0

Ad(exp tv1)v2, v1,2 ∈ g. (4)

This manipulation is known as the definition of the Lie bracket [, ] : g × g → g,

ad(v1)v2 = [v1, v2]. (5)

Denote the pairing between g and its dual space g∗ by 〈v, u〉 for u ∈ g∗ and v ∈ g. Then,
the coadjoint action Ad∗(ϕ) : g∗ → g∗ of ϕ ∈ G and the “ad∗” operator are defined by,
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respectively,

〈v, Ad∗(ϕ)u〉 = 〈Ad(ϕ)v, u〉 , (6)

〈v2, ad∗(v1)u, 〉 = 〈ad(v1)v2, u〉 . (7)

The Lie-Poisson bracket (for the right-invariant case) is defined by

{F1, F2} :=

〈[
δF1

δu
,
δF2

δu

]
, u

〉
for F1,2 : g∗ → R, (8)

where δF/δu ∈ g denotes the functional derivative of F . In this paper, we will restrict our
consideration to this right-invariant case that involves fluids and plasmas. But, the same
observation can be made about the left-invariant case (such as rigid bodies) with a slight
modification of signs.

For a given Hamiltonian functional H : g∗ → R, the Hamiltonian equation is written as
usual by

∂F

∂t
={F,H}, ∀F : g∗ → R. (9)

This is especially referred to as Lie-Poisson equation since the bracket {, } is not the canonical
one but given by (8). Since F (u) is arbitrary, the Lie-Poisson equation (9) is equivalent to

∂u

∂t
= − ad∗

(
δH

δu

)
u, (10)

and governs the evolution of u(t) ∈ g∗. Although we are mostly interested in this solution
u(t), it is remarkable that there exits an underlying group structure G behind it, which
sometimes plays an essential role especially when studying the topology.

Example: Euler equation for incompressible fluids

The Euler equation is known as a Hamiltonian system with the Lie-Poisson bracket (8).
In that case, G corresponds to the group of volume-preserving diffeomorphisms SDiff(V ) on
a domain V ⊂ R3 filled with a fluid. The Lie algebra g is the space X(V ) of divergence-free
vector fields in V which are tangent to the boundary wall ∂V .

In coordinates {xi, i = 1, 2, 3}, we introduce the global inner product as 〈v, u〉 =∫
V

u(v)d3x =
∫

V
uiv

id3x between a vector field v = vi∂/∂xi ∈ X(V ) and a 1-form u = uidxi.
The dual space X∗(V ) of X(V ) is then the quotient space of all 1-forms on V , modulo all
exact 1-forms on V , namely, u ' u + df ∈ X∗(V ) for any 0-form f [2].

The adjoint action of ϕ ∈ SDiff(V ) is identified as the push-forward ϕ∗ of any vector
field v ∈ X(V ),

Ad(ϕ)v = ϕ∗v :=
∂ϕi

∂xj
(ϕ−1(x))vj(ϕ−1(x))

∂

∂xi
(11)

and hence the “ad” operator (and simultaneously the Lie bracket) becomes

ad(ξ)v =[ξ, v] = (v · ∇)ξ − (ξ · ∇)v, ∀ξ, v ∈ X(V ). (12)
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The coadjoint action is associated with the pull-back of 1-form u ∈ X∗(V ),

Ad∗(ϕ)u = ϕ∗u + df = uj(ϕ(x))
∂ϕj

∂xi
(x)dxi +

∂f

∂xi
(x)dxi, (13)

where f(x) is arbitrary, and we get

ad∗(ξ)u =

(
uj

∂ξj

∂xi
+ ξj ∂ui

∂xj
+

∂f

∂xi

)
dxi, (14)

=ξj

(
∂ui

∂xj
− ∂uj

∂xi

)
dxi +

∂f

∂xi
dxi. (15)

By introducing a Riemannian metric to the manifold V , we can associate a 1-form u =
uidxi + df ∈ X∗(V ) with a vector field u = ui∂/∂xi ∈ X(V ) by the relation ui = gijuj +
gij∂f/∂xj where gij is the metric tensor and f is now chosen such that u becomes divergence-
free. The Riemannian metric is usually prescribed by the Hamiltonian function, which is
given by

H(u) =
1

2

∫
V

|u|2d3x =
1

2

∫
V

uig
ijujd

3x. (16)

In terms of this u, we can write

ad∗(ξ)u =[−ξ × (∇× u) + ∇f ]idxi, (17)

where [ ]i represents the ith covariant component of the parenthetic vector field.
Then, the Lie-Poisson equation (10) indeed coincides with the Euler equation.

∂u

∂t
=u × (∇× u) + ∇f, (18)

= − (u · ∇)u + ∇f, (19)

where f is always chosen such that the right hand side becomes divergence-free. In the last
expression, −f is physically equivalent to the pressure field.

B. Coadjoint orbits

The topological aspect of the Lie-Poisson equation is viewed as follows. Now, suppose
that a solution u(t) of the Lie-Poisson equation (10) is obtained under a Hamiltonian H and
an initial value u(0). We regard δH/δu(t) as a time-dependent vector field v(t),

v(t) =
δH

δu
(t) ∈ g. (20)

This v(t) uniquely generates a one-parameter subgroup ϕt ∈ G that satisfies

v(t0) =
d

dt

∣∣∣∣
t=t0

(ϕt ◦ ϕ−1
t0

), ϕ0 = Id. (21)
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The mapping ϕt is again said to be the flow generated by the vector field v(t), but it differs
from the exponential map, ϕt 6= exp tv(t), since the vector field is now time-dependent. Note
that the ϕt constructed in this way satisfies

∂

∂t

∣∣∣∣
t=t0

Ad∗(ϕ−1
t ) = − ∂

∂t

∣∣∣∣
t=t0

Ad∗(ϕ−1
t0

◦ ϕt ◦ ϕ−1
t0

)

= − ∂

∂t

∣∣∣∣
t=t0

Ad∗(ϕt ◦ ϕ−1
t0

)Ad∗(ϕ−1
t0

)

= − ad∗(v(t0))Ad∗(ϕ−1
t0

).

Therefore, the solution u(t) turns out to be written in the form of

u(t) = Ad∗(ϕ−1
t )u(0). (22)

Even if the Hamiltonian H(u) were replaced by any functional of u, the same expression
would hold with a different flow ϕt. Hence, regardless of the choice of Hamiltonian function,
any solution u(t) must belong to an invariant subspace of g∗ characterized by

Orb(u(0)) := {Ad∗(ϕ)u(0) ∈ g∗|ϕ ∈ G}, (23)

which is called the coadjoint orbits through u(0) [3]. The Lie-Poisson structure thus restricts
the evolution of u(t) to some extent, which can be understood as the topological (or kine-
matical) constraint built into the system. Since all states in Orb(u(0)) are accessible from
u(0) via a continuous map ϕ, they will have the same topology as u(0). In other words, they
are accessible from u(0) without changing the topology.

Example: Euler equation for incompressible fluids (part 2)

As for the incompressible fluids, the vector field v(x, t) ∈ X(V ) corresponds to the Eule-
rian velocity field. The flow ϕt ∈ SDiff(V ), which is generated by

dϕt

dt
(x) = v(ϕt(x), t), ϕ0(x) = x, (24)

represents the motion of fluid particles, namely, the Lagrangian description of the fluid.
The coadjoint action of ϕt is what is called the Weber transformation in the fluid me-

chanics [21],

(22) ⇔ ϕ∗
t u(t) + df = u(0). (25)

This implies that the vorticity field w = ∇× u must be frozen to the fluid motion ϕt (the
Kelvin’s circulation theorem). Indeed, the vorticity field w = ∇ × u is identified as the
2-form w = du and the exterior differentiation of ϕ∗

t u(t) + df = u(0) leads to ϕ∗
t w(t) =

w(0). Let St be any arbitrary surface moving with the fluid, St = ϕt(S0). Then, the
vorticity flux passing through the surface will be conserved;

∫
S0

w(0) =
∫

S0
ϕ∗

t w(t) =
∫

St
w(t).

This topological aspect of ideal fluids was pointed out by Arnold, who call Orb(u(0)) the
isovortical sheet [1, 2]. The phase space X∗(V ) is (at least locally) foliated by such isovortical
sheets, and this fact becomes indispensable when developing the perturbation theory in a
rigorous manner.
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III. LAGRANGIAN APPROACH TO NONLINEAR PERTURBATIONS

A. Difficulty in naive perturbation expansion

Suppose that we have a particular solution u(t) of the Hamiltonian equation, which might
be one of trivial or steady states. In order to study behavior of solutions near the basic one
u(t), it is conventional to expand the unknown solution, say uε(t), around u(t) as follows.

uε(t) =u(t) + εu1(t) +
ε2

2
u2(t) +

ε3

3!
u3(t) + . . . (26)

where a parameter ε is assumed to be small and orders the magnitude of perturbations.
Substituting uε into the Hamiltonian function, it is also expanded as

H(uε) = H(u) + εH1 +
ε2

2
H2 +

ε3

3!
H3 + . . . , (27)

where

H1 =

〈
δH

δu
, u1

〉
, (28)

H2 =

〈
δH

δu
, u2

〉
+

〈
δ2H

δu2
u1, u1

〉
, (29)

H3 =

〈
δH

δu
, u3

〉
+ 2

〈
δ2H

δu2
u1, u2

〉
+

〈
δ3H

δu3
(u1, u1), u1

〉
, (30)

and so on. We have naturally introduced the higher-order functional derivatives, δ2H/δu2 :
g∗ → g and δ3H/δu3 : g∗ × g∗ → g, which are all evaluated at the given solution u(t).

The Hamiltonian equation is similarly expanded with respect to ε, which gives a series of
equations for u1, u2, . . . as follows,

∂u1

∂t
= − ad∗

(
δH

δu

)
u1 − ad∗

(
δ2H

δu2
u1

)
u, (31)

∂u2

∂t
= − ad∗

(
δH

δu

)
u2 − 2ad∗

(
δ2H

δu2
u1

)
u1 − ad∗

(
δ2H

δu2
u2 +

δ3H

δu3
(u1, u1)

)
u, (32)

· · ·

One can solve these equations in order. But, the solution u2 stands as an obstacle, because
u2 often diverges secularly and the assumed series expansion loses its validity. The various
techniques have been devised to remedy this failure, most of which exploit some renormal-
ization theory (the weakly nonlinear analysis). Putting aside the mathematical justification,
these techniques require involved calculations.

Note that Hn, n = 1, 2, . . . , are all constant in time and may take either positive or
negative values. At this stage, there is no reason to neglect H1. But, it will be shown that,
if the basic solution u(t) was a steady state, H1 would vanish for most linear perturbation
u1. In that case, the wave energy rests on H2 to leading order, and the secondary field u2

is actually needed for evaluating it. For the same reason, such as the wave momentum and
the wave-driven mean fields are often associated with u2.
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B. Equations for Lagrangian perturbations

In terms of the basic solution u(t), we can construct the corresponding vector field v(t)
and flow ϕt as shown in the previous section and obtain the expression (22). Now, suppose
that the perturbed initial condition uε(0) has the same topology as u(0), namely, there exists
a mapping ϕε,0 ∈ G such that

uε(0) = Ad∗(ϕ−1
ε,0)u(0), ϕ0,0 = Id, (33)

where a parameter ε measures the amplitude of this perturbation. Then, the subsequent
perturbed solution uε(t) must have the same topology uε(t) ∈ Orb(u(0)), and hence there
must exist a two-parameter mapping ϕε,t ∈ G such that the perturbed flow is expressed by
ϕε,t ◦ ϕt. This ϕε,t represents the deviation from the unperturbed orbit as follows.

uε(t) = Ad∗((ϕε,t ◦ ϕt)
−1)u(0) = Ad∗(ϕ−1

ε,t )Ad∗(ϕ−1
t )u(0) = Ad∗(ϕ−1

ε,t )u(t). (34)

u(0)

uǫ(0)
u(t)

uǫ(t)

Ad∗(ϕ−1

ǫ,0) Ad∗(ϕ−1

t )

Ad∗(ϕ−1

ǫ,t )

Orb(u(0))

Fig. Unperturbed and perturbed orbits on Orb(u(0))

Moreover, for rather small ε, this near-identity map ϕε,t is generally represented by an
exponential map;

∃ξε(t) ∈ g s.t. ϕε,t = exp ξε(t). (35)

Thus, any perturbed solution uε(t) having the same topology as u(t) is fully characterized
by a vector field ξε(t) ∈ g, which can be physically thought of as the displacement of the
Lagrangian variables (particle orbits). Now, we are interested in what kind of equation
governs this ξε(t) in place of uε(t). It can be constructed in a perturbative treatment as
follows.

First, due to the change in the orbits from ϕt to ϕε,t ◦ϕt, the corresponding v(t) and u(t)
are perturbed into

vε(t0) =
∂

∂t

∣∣∣∣
t=t0

(ϕε,t ◦ ϕt ◦ ϕ−1
t0

◦ ϕ−1
ε,t0

) = v +
∞∑

n=0

1

(n + 1)!
[ad(ξε)]

n Dξε

Dt
, (36)

uε(t) =Ad∗(ϕ−1
ε,t )u(t) =

∞∑
n=0

1

n!
[−ad∗(ξε)]

nu, (37)

where

D

Dt
:=

∂

∂t
− ad(v) =

∂

∂t
+ Lv (38)
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denotes the total Lie-derivative along the given vector field v(t).
Now, let us expand ξε(t) with respect to ε as follows.

ξε(t) =εξ1(t) +
ε2

2
ξ2(t) +

ε3

3!
ξ3(t) + . . . . (39)

Then, vε(t) and uε(t) are expanded as

vε = v + εv1 +
ε2

2
v2 + . . . , with v1 =

Dξ1

Dt
, (40)

v2 =
Dξ2

Dt
+ ad(ξ1)

Dξ1

Dt
. (41)

uε = u + εu1 +
ε2

2
u2 + · · · , with u1 = − ad∗(ξ1)u, (42)

u2 = − ad∗(ξ2)u + ad∗(ξ1)ad∗(ξ1)u. (43)

Recall that these vε(t) and uε(t) must satisfy the relation

vε(t) =
δH

δu

∣∣∣∣
ε

(t), (44)

where δH/δu|ε denotes the functional derivative of H evaluated at uε. Both the left and
right hand sides of this relation are now related to ξε(t). By equating them in each order of
ε, we obtain the equations of {ξn, n = 1, 2, . . . }. This can be summarized as follows;

Theorem: Let u(t) be a solution of (10). If uε(0) ∈ Orb(u(0)) at t = 0, the perturbed
solution uε(t) takes the form of (42), where the evolutions of ξ1, ξ2, . . . are determined by
solving

Dξ1

Dt
=

δ2H

δu2
u1, (45)

Dξ2

Dt
+ ad(ξ1)

δ2H

δu2
u1 =

δ2H

δu2
u2 +

δ3H

δu3
(u1, u1), (46)

. . .

with u1, u2, . . . being expressed by (42). ¥

As for perturbed solutions having the same topology as the unperturbed one, this theorem
allows us to solve (45) and (46) instead of (31) and (32). While the calculation cost does not
seem to be reduced, these variables ξ1, ξ2, . . . are more suitable for describing wave energy
and momentum as shown in the next section. Note that it is easy to generate u1, u2, . . .
from ξ1, ξ2, . . . via (42), whereas the converse mapping is generally difficult.

Example: Euler equation for incompressible fluids (part 3)

The equations (45) and (46) can be read as

∂ξ1

∂t
+ (u · ∇)ξ1 − (ξ1 · ∇)u = u1, (47)

∂ξ2

∂t
+ (u · ∇)ξ2 − (ξ2 · ∇)u + (u1 · ∇)ξ1 − (ξ1 · ∇)u1 = u2, (48)
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in the conventional vector representation ξ,u ∈ X(V ). Note that xε(t) = ϕε,t ◦ϕt(x(0)) ∈ V
corresponds to the perturbed motion of a fluid particle that leaves xε(0) = ϕε,0(x(0)) ∈ V
at t = 0, where ϕε,t indicates the deviation from the unperturbed orbit ϕt(x).

x(0)

xǫ(0)
x(t)

xǫ(t)

ϕǫ,0 ϕt

ϕǫ,t
ξǫ(x(t), t)

v(x(t), t)

vǫ(xǫ(t), t)

Fig. Unperturbed and perturbed orbits of a fluid particle

It is interesting to note that the relation (47) recovers the definition of the Lagrangian dis-
placement field ξ1(x, t) [22]. Therefore, we may call ξ2(x, t) the “second-order” Lagrangian
displacement field, which specifies the fluid motion to second order as follows.

ϕε,t(x) = x + εξ1 +
ε2

2
[(ξ1 · ∇)ξ1 + ξ2] + O(ε3). (49)

The isovortical perturbation, namely (42), is written in the form of

u1 = P [ξ1 × w], (50)

u2 = P
[
ξ1 × (∇× (ξ1 × w)) + ξ2 × w

]
, (51)

where w = ∇ × u is the vorticity and P denotes the projection to the space X(V ) of
divergence-free vector fields. This expression completes the equations of ξ1, ξ2, . . . as follows.

∂ξ1

∂t
=∇× (u × ξ1) + P(ξ1 × w), (52)

∂ξ2

∂t
=∇× (u × ξ2) + P(ξ2 × w)

+ ∇× (P(ξ1 × w) × ξ1) + P [ξ1 × (∇× (ξ1 × w))]. (53)

In contrast to the Arnold’s isovortical variation, these Lagrangian displacements evolve
temporally and determine an actual fluid motion, and the corresponding velocity field as
well.

C. Wave energy and wave momentum

We have seen that any perturbed solution uε(t) having the same topology as the basic one
u(t) is expressed by the “displacement” vector field ξε(t). Use of the ξ1, ξ2, . . . (Lagrangian
description) instead of u1, u2, . . . (Eulerian description) reduces the wave energy, (28) and
(29), into

H1 = −
〈

ξ1,
∂u

∂t

〉
, (54)

H2 = −
〈

ξ2,
∂u

∂t

〉
−

〈
ξ1,

∂u1

∂t

〉
, (55)
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where we have used the relation (42) and the fact that ξ1,2 are the solution of (45) and (46).
If the basic solution u(t) was independent of time, H1 would vanish automatically, which

implies that any steady state must be an extremum of H(u) within the coadjoint orbits
Orb(u) (or iso-topological surface). In addition, H2 does not require ξ2 and can be evaluated
only by the linear solution ξ1.

This favorable feature of the displacement field is also applicable to the wave momentum.
To show this, we first invoke the Hamiltonian version of the Noether’s theorem [3];

Theorem: For the Hamiltonian equation (9), suppose that there exists a special vector field
η ∈ g that satisfies

{〈η, u〉, H} =

〈[
η,

δH

δu

]
, u

〉
=

〈
δH

δu
, ad∗(η)u

〉
= 0 for all u ∈ g∗, (56)

or, equivalently,

H(Ad∗(exp−τη)u) =H(u) for all u ∈ g∗, τ ∈ R. (57)

Then, the momentum defined by J = 〈η, u〉 is a constant of motion. ¥

Under this assumption, let us expand the momentum Jε = 〈η, uε〉 of the perturbed
solution uε(t) around the basic one J = 〈η, u〉;

Jε = 〈η, u〉 + ε 〈η, u1〉 +
ε2

2
〈η, u2〉 + O(ε3), (58)

=:J + εJ1 +
ε2

2
J2 + O(ε3). (59)

The perturbation terms εJ1 + ε2J2/2 + . . . can be thought of as the wave momentum.
If the perturbed state uε(t) has the same topology as u(t), we get

J1 = 〈ξ1, ad∗(η)u〉 , (60)

J2 = 〈ξ2, ad∗(η)u〉 + 〈ξ1, ad∗(η)u1〉 . (61)

Moreover, if the basic solution u(t) also had the symmetry ad∗(η)u = 0 (or Ad∗(exp−τη)u =
u for all τ), we again find that J1 vanishes identically and J2 = 〈ad(η)ξ1, u1〉 is determined
only by the linear solution ξ1.

Example: Euler equation for incompressible fluids (part 4)

For a steady flow u, the wave energy H2 corresponds to the isovortical second variation
(δ2H) of energy, derived by Arnold [1]. Since our ξ1(t) evolves dynamically, it is also written
as

H2 =

∫
V

w ·
(

∂ξ1

∂t
× ξ1

)
d3x. (62)

The same expression was observed by Kop’ev & Chernyshev [23], but in their treatment,
the existence of the secondary field ξ2 had gone unnoticed. The wave energy H2 is thus
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well-defined in the Lagrangian approach. Since H2 is a constant of motion, either positive
or negative definiteness of H2 implies linear stability of any isovortical disturbance u1.

If the fluid system is invariant under a flow generated by a vector field η, the corresponding
momentum (or impulse) in the direction of η,

J(u) =

∫
V

u · ηd3x (63)

is a constant of motion.
If the basic solution u has the symmetry P[η×w] = 0 (or Lηw = 0), the wave momentum

for perturbation is of second order and given by

J2 =

∫
V

w · (ξ1 × Lηξ1)d
3x. (64)

As an example, let us consider a steady flow u = (0, uθ(r), uz(r)) in the cylindrical
coordinate (r, θ, z), where the boundary wall ∂V may exist at some radius r = r0 (which
may be infinite r0 → ∞) and the cylinder vessel is either infinite or periodic in the z direction.
Note that this basic flow as well as the configuration system are symmetric with respect to
both the translation along and the rotation about the z-axis. Therefore, by regarding η as
the unit vector ez = (0, 0, 1) in the z direction, the z-component of the wave momentum is
obtained as

J2z :=

∫
V

u2 · ezd
3x =

∫
V

w · (ξ1 × ∂zξ1)d
3x. (65)

Similarly, we may choose reθ = (0, r, 0) as η and obtain the wave (angular) momentum
about the z-axis,

J2θ :=

∫
V

u2 · reθd
3x =

∫
V

w · (ξ1 × ∂θξ1)d
3x. (66)

These constant momenta imply the presence of wave-driven mean flow in u2, which modifies
the pre-existing flow u in second order. The integrands of H2 and J2, respectively, resemble
the pseudoenergy and pseudomomentum in the nonlinear wave theory [14, 15]. Although our
approach must proceed to the higher order to explore the nonlinear regime, the perturbative
analysis on a given basic flow is consistently feasible. Moreover, we have shown that the
wave energy and momentum directly amount to the genuine excess of energy and momentum,
without solving an ensemble-averaged nonlinear equation of mean fields.

If the linear perturbation has only one Fourier component such as ξ1(r, θ, z, t) =

Re[ξ̂(r)e−iωt+imθ+ikz], ω,m, k ∈ R, the wave energy and the wave momentum are reduced to

H2 = ωµ, J2z = kµ, J2θ = mµ, (67)

with a common quantity µ. One may call this µ the wave action in the context of the wave
kinetic theory. In the next section, µ will be identified as the action variable for the single
oscillatory mode.
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IV. SPECTRAL APPROACH TO LINEAR WAVES

A. Non-selfadjointness of linearized equations

From now on, we will discuss linear waves on a given steady solution u. The linearized
Lie-Poisson equation about a steady state has an interesting property in itself, and we can
develop a theory for the wave action based on it [5, 6].

Since we shall dwell on linear perturbations, let us simplify the notations for them by
writing ũ and ξ in place of u1 and ξ1. The linear evolution equation (31) for ũ(t) will be
denoted by

∂ũ

∂t
=Kũ. (68)

It is very important to note that the equation (45) for ξ is generated by its adjoint operator
K∗,

∂ξ

∂t
= −K∗ξ. (69)

We define an anti-symmetric operator A : g → g∗ by Aξ := −ad∗(ξ)u. Using the Jacobi
identity, one can directly prove that KA = −AK∗ holds. This fact reconfirms a part of
the foregoing theorem, that is, ũ(t) = Aξ(t) holds for all t if ũ(0) = Aξ(0). We restrict
linear perturbations to be kinematically accessible (or iso-topological) by employing this
assumption ũ(0) = Aξ(0).

For such perturbations ũ(t) = A(t)ξ(t), we need to solve only ξ(t), and the following
observations can be made. Suppose that we have a closed family of solutions ξ(t, θ0) including
a parameter 0 ≤ θ0 < 2π that is periodic, ξ(t, θ0) = ξ(t, θ0 + 2π), in terms of θ0. Since the
evolution of ξ is deterministic, the dependence on θ0 must originate from a family of initial
values satisfying ξ(0, θ0) = ξ(0, θ0 + 2π). Then, we claim that the Poincaré’s invariant (or
the action integral associated with the family of solutions) is given by the ensemble average,

S :=
1

4π

∫ 2π

0

〈
∂ξ

∂θ0

, ũ

〉
dθ0 = − 1

4π

∫ 2π

0

〈
ξ,

∂ũ

∂θ0

〉
dθ0. (70)

In fact, it is easy to confirm that ∂S/∂t = 0.
If the family of solutions was attributed to a single oscillatory eigenmode such as ξ(t, θ0) =

2Re[ξ̂e−iωt−iθ0 ], where ξ̂ is a complex eigenfunction for an eigenvalue ω ∈ R, the Poincaré’s
invariant is simply written as

S =
1

4π

∫ 2π

0

〈
ξ̂e−iωt−iθ0 + ξ̂eiωt+iθ0 , iA

(
ξ̂e−iωt−iθ0 − ξ̂eiωt+iθ0

)〉
dθ0 (71)

=
〈
ξ̂, iAξ̂

〉
, (72)

where ξ̂ denotes the complex conjugate of ξ̂. Since ∂ξ/∂t = ω∂ξ/∂θ0 holds for such eigen-
mode, this is related to the wave energy by

ωS =
1

4π

∫ 2π

0

〈
∂ξ

∂t
, ũ

〉
dt =

1

2
H2. (73)

Therefore, S is understood as the action variable for the periodic solution. The angle variable
is obviously θ(t) = ωt + θ0.
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B. Wave action

In fluids and plasmas, it is more likely that many oscillatory modes and continuum modes
coexist. These are respectively associated with point and continuous spectra of the linear
operator K (or K∗). In order to consider wave action (or action variables) in such general
cases, we will formally perform the spectral decomposition by invoking the Fourier-Laplace
analysis.

Let us naturally expand the vector and covector spaces g and g∗ into complex ones;
gc = g × g and g∗

c = g∗ × g∗. By simply multiplying the imaginary unit i, the evolution
equations can look like non-selfadjoint Schrödinger equations,

i
∂ũ

∂t
=Lũ, ũ(0) = ũ0 = Aξ0, (74)

i
∂ξ

∂t
=L∗ξ, ξ(0) = ξ0 (75)

where L∗ = −iK is adjoint operator of L = iK with respect to the inner product 〈◦, ◦〉
between the complex vector and covector spaces.

The aforementioned property becomes LA = AL∗, and hence we have

A(Ω − L∗)−1 =(Ω − L)−1A for all Ω ∈ C. (76)

We technically define a subset of the spectrum of L by

σ :={ω ∈ C|(Ω − L)−1Aξ0 is not regular at Ω = ω}. (77)

Then, this σ has the symmetry of σ = σ = −σ = −σ, which is known as a property of
Hamiltonian spectrum [5].

The solution can be written as the Dunford-Taylor integral [24],

ξ(t) =
1

2πi

∮
Γ(σ)

(Ω − L∗)−1ξ0e
−iΩtdΩ, (78)

where the integral path Γ(σ) positively encircles the whole spectrum σ. Since L is usually a
differential operator, the spectral set σ may be unbounded. While the path Γ(σ) then goes
to infinity, the integration (78) would converge in many physical situations by assuming
sufficiently smooth initial data ξ0. Suppose that σ does not overlap the imaginary axis for
simplicity and decompose σ = σ+ ∪σ− such that σ+ is inside the half plane Re(Ω) > 0. Due
to the reality condition, (78) is rewritten as

ξ(t) =2Re
1

2πi

∮
Γ(σ+)

(Ω − L∗)−1ξ0e
−iΩtdΩ. (79)

By replacing the initial condition ξ0 by ξ0e
−iθ0 , we can generate a family of solutions,

ξ(t, θ0) =2Re
1

2πi

∮
Γ(σ+)

(Ω − L∗)−1ξ0e
−iΩt−iθ0dΩ. (80)
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The corresponding Poincaré’s invariant (70) is then transformed into

S =Re

〈
1

2πi

∮
Γ′(σ+)

(Ω′ − L∗)−1ξ0e−iΩ′tdΩ′, i
1

2πi

∮
Γ(σ+)

(Ω − L)−1ũ0e
−iΩtdΩ

〉
, (81)

=Re
1

(2πi)2

∮
Γ′(σ+)

∮
Γ(σ+)

〈
ξ0, i(Ω

′ − L)−1(Ω − L)−1ũ0

〉
ei(Ω′−Ω)tdΩdΩ′, (82)

=Re
1

2πi

∮
Γ(σ+)

D(Ω)dΩ, (83)

where a function D : C → C is defined by

D(Ω) :=
〈
ξ0, i(Ω − L)−1ũ0

〉
=

〈
ξ0, i(Ω − L)−1Aξ0

〉
. (84)

We naturally regard this S as the wave action, where the integration over the phase angle
0 < θ0 ≤ 2π is converted to an integral path in C enclosing the spectrum σ+. Here, the notion
of the action integral has been extended to general solutions ξ(t) that are not necessarily
periodic in time, since σ+ may include complex eigenvalues and continuous spectrum.

C. Spectral decomposition of wave action

We can analytically deform the integral path Γ(σ+) such that it consists of many closed
paths that individually enclose each singularity of D(Ω).

Let us introduce a notation U(Ω) = (Ω − L)−1ũ0, which is essentially equivalent to the
Laplace transform of ũ(t). If there are semi-simple eigenvalues ωn, n = 1, 2, 3, . . . , the
resolvent operator must have poles in the Ω plane, so that

U(Ω) =
ˆ̃un

Ω − ωn

+ . . . . (85)

where ˆ̃un is the projection of ũ0 onto the eigenspace for ωn. An integral path Γ(ωn) around
ωn yields the action variable for the eigenmode,

µn =Re
1

2πi

∮
Γ(ωn)

D(Ω)dΩ = Re
〈
ξ0, iˆ̃un

〉
= Re

〈
ξ0, iAξ̂n

〉
. (86)

Due to the symmetry σ+ = σ+ of spectra, there must exist an eigenvalue ωn, and let ˆ̃un = Aξ̂n

be the corresponding projection. Using the well-known property of the projection [24], we
obtain

µn = Re
〈
ξ̂n, iAξ̂n

〉
= Re

〈
ξ̂n, iAξ̂n

〉
= µn (87)

or µn + µn =
〈
ξ̂n, iAξ̂n

〉
+

〈
ξ̂n, iAξ̂n

〉
∈ R. (88)

When ωn is a real eigenvalue, there is no distinction between ωn and ωn, and µn agrees with
the previous result (72).

As for the continuous spectrum σc ⊂ R on the real axis, the path of integration is
deformed into the two paths that run parallel to σc at the slightly upper and lower sides;

1

2πi

∮
Γ(σc)

U(Ω)dΩ = lim
ε→0

i

2π

∫
σc

[U(ω + iε) − U(ω − iε)] dω.
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Hence, it is reasonable to define the generalized eigenfunction for ω ∈ σc by

ˆ̃u(ω) :=
i

2π
[U(ω + i0) − U(ω − i0)] . (89)

This definition of ˆ̃u(ω) agrees with the Fourier transform of ũ(t) according to Sato’s hy-

perfunction theory [25] (see also the Appendix of Ref. 4). The eigenfunction ˆ̃u(ω) for the
continuous spectrum ω ∈ σc is therefore a generalized (or singular) function. This fact
has been pointed out in many literatures; for example, see Case [9, 10], Sedláček [11] and
Tataronis [12].

The wave action for the continuous spectrum is then given as a function of ω;

µ(ω) =Re
i

2π
[D(ω + i0) − D(ω − i0)] =

〈
ξ0, iˆ̃u(ω)

〉
. (90)

If the spectrum σ is composed of such semi-simple point spectra σp = {ωn ∈ C : n =
1, 2, . . . } and a real continuous spectrum σc ⊂ R, the solution is represented by

ũ(t) =
∑

n

ˆ̃une−iωnt +

∫
σc

ˆ̃u(ω)e−iωtdω, (91)

and the wave action is decomposed into

S =
∑

n

µn +

∫
σc

µ(ω)dω. (92)

The action variable for continuous spectrum was already derived in several problems [26,
27]. Nevertheless, our consideration shown above is not only applicable to any Lie-Poisson
system, but also suggesting an efficient way of derivation utilizing the Laplace transform. In
the next section, we revisit the problem tackled by Morrison & Pfirsch [27] as a demonstration
of our method.

V. EXAMPLE: VLASOV-POISSON EQUATION AND LANDAU DAMPING

A. Governing equations

Consider a collisionless plasma consisting of electrons and ions with charges qe,i and
masses me,i, whereas the ions are assumed to be immobile and form a uniform background
with a charge density qini = const. Let x,v ∈ R3 denote the position and velocity of
particles and f(x, v, t) be the distribution function of the electrons. The Vlasov-Poisson
equations for electrons are

∂f

∂t
+ v · ∂f

∂x
+

qe

me

E · ∂f

∂v
= 0, (93)

divE =
1

ε0

(
qe

∫
fd3v + qini

)
. (94)
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This is also known as a Lie-Poisson Hamiltonian system [17, 18],

∂F

∂t
= {F,H} , (95)

=

∫∫ [
δF

δf
,
δH

δf

]
fd3xd3v, (96)

where the Hamiltonian function is given by

H(f) =

∫∫
me

|v|2

2
fd3xd3v + ε0

∫
|E|2

2
d3x, (97)

and the Lie bracket is defined by

[ζ1, ζ2] :=
1

me

(
∂ζ1

∂x
· ∂ζ2

∂v
− ∂ζ1

∂v
· ∂ζ2

∂x

)
, ∀ζ1,2(x, v). (98)

Our theories developed in the previous sections are all applicable to this system. For
instance, the linearization f + f̃ results in

∂f̃

∂t
=

[
δH

δf
, f̃

]
+

[
δ2H

δf 2
f̃ , f

]
. (99)

As for the Lie perturbation f̃ = [ζ, f ] generated by some ζ(x, v, t), one may solve the adjoint
equation for ζ,

∂ζ

∂t
=

[
δH

δf
, ζ

]
+

δ2H

δf 2
[ζ, f ]. (100)

In order to demonstrate the action-angle representation as shortly as possible, let us
restrict our consideration to spatially uniform steady states f(v), and Fourier-transform f̃
in space

f̃(x, v, t) =
1

(2π)3/2

∫
f̃(k,v, t)eik·xd3k. (101)

For fixed k, the linearized equations are greatly simplified into a 1D problem along the k
vector (v := k · v/k). We further introduce a normalization qe = me = ε0 = 1 and finally
obtain

i
∂f̃

∂t
=kvf̃ + kη(v)

∫
R

f̃dv, f̃(v, 0) = f̃0(v) (102)

i
∂ζ

∂t
=kvζ +

∫
R

kη(v)ζdv, ζ(v, 0) = ζ0(v) (103)

where η(v) is a given function associated with the steady state f(v) by

η(v) = − 1

k2

∂f

∂v
. (104)

For a detailed derivation of this equation, see Case [9], Van Kampen [8]. The relation

f̃ = [ζ, f ] is now reduced to f̃ = −ik3ηζ between f̃(v, t) and ζ(v, t).
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B. Laplace transform analysis

Let F(v, Ω) and Z(v, Ω) be the solutions of

(Ω − kv)F =kη(v)

∫
R

Fdv + f̃0 (f̃0 = −ik3ηζ0), (105)

(Ω − kv)Z =

∫
R

kη(v)Zdv + ζ0. (106)

The relation F(v, Ω) = −ik3η(v)Z(v, Ω) follows immediately, and Z(v, Ω) is explicitly solved
as follows.

Z(v, Ω) =
ζ0(v) − Φ(Ω)

Ω − kv
(107)

where we have put

Φ(Ω) = − k

∫
R

η(v)Z(v, Ω)dv = − 1

πD(Ω)

∫
R

kη(v)ζ0(v)

Ω − kv
dv, (108)

πD(Ω) =1 −
∫

R

kη(v)

Ω − kv
dv. (109)

• Point spectra

Some eigenvalues σp = {ωn ∈ C, n = 1, 2, . . . } may arise from the zeros of D(Ω).

πD(ωn) = 1 −
∫

R

kη(v)

ωn − kv
dv = 0. (110)

Using the residue theorem, the corresponding eigenfunctions are given by

ζ̂n(v) = − φ̂n

ωn − kv
and ˆ̃fn(v) = −ik3η(v)ζ̂n(v) (111)

where φ̂n ∈ C is the residue of Φ(Ω) at Ω = ωn. If the eigenmode is neutrally stable ωn ∈ R,
the wave action is given by

µn =

∫
R

ζ̂n(v)i ˆ̃fn(v)dv = |φ̂n|2
∫

R

k3η(v)

(ωn − kv)2
dv. (112)

• Continuous spectrum

On the real axis of Ω, there is a continuous spectrum

σc ={ω ∈ R s.t. η(ω/k) 6= 0} (113)

at which Z(v, Ω) is not analytic with respect to Ω. Let us introduce the following shorthand
notations,

η\(ω) =

∫
R

η(v)δ(ω − kv)kdv = η(ω/k), (114)

η†(ω) = − 1

π
p.v.

∫
R

η(v)

ω − kv
kdv, (115)
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where † corresponds to the Hilbert transform. Using the well-known formula

1

ω − kv ± i0
= p.v.

1

ω − kv
∓ πiδ(ω − kv), (116)

we can evaluate D(Ω) and Φ(Ω) in the limit of Ω → ±i0 as

D(ω ± i0) =λ(ω) ± iη\(ω), (117)

Φ(ω ± i0) =ζ\
0(ω) − α(ω)λ(ω) ± iα(ω)η\(ω), (118)

where λ(ω) = 1
π

+ η†(ω) and

α(ω) = − (ηζ0)
†(ω) − λ(ω)ζ\

0(ω)

λ2(ω) + η\2(ω)
. (119)

Therefore, the singular eigenfunctions (called the Van Kampen modes) are obtained as

ζ̂(v, ω) =
i

2π
[Z(v, ω + i0) − Z(v, ω − i0)] (120)

=α(ω)

[
1

π
p.v.

η\(ω)

ω − kv
+ λ(ω)δ(ω − kv)

]
, (121)

ˆ̃f(v, ω) = − ik3α(ω)η\(ω)

[
1

π
p.v.

η(v)

ω − kv
+ λ(ω)δ(ω − kv)

]
. (122)

Note that we have also derived the appropriate “amplitude” α(ω) of the singular eigenmode,
since we are originally considering the projection onto the eigenspaces. The wave action for
the continuous spectrum ω ∈ σc is found to be

µ(ω) =

∫
R

ζ0(v)i ˆ̃f(v, ω)dv (123)

=k2η\(ω)[λ2(ω) + η\2(ω)]|α(ω)|2. (124)

C. Landau damping

The signs of the action variables are generally important for mode couplings in Hamil-
tonian system [28–30]. The same is true of wave-wave interactions in fluids and plasmas.
Here, by using the above result, let us consider an interaction between waves, one of which
is a neutral eigenmode and the other is a continuum.

Let ωn ∈ R be a real eigenvalue that is isolated from the continuous spectrum, ωn /∈ σc.
From (110), note that η(v) ≡ 0 must hold in the neighborhood of v = ωn/k so that such a
ωn is possible.

Now, suppose that a small change occurs in the steady state f(v) so that η(v) → η(v) +
δη(v) and δη(ωn/k) becomes no longer zero. We denote the resultant movement of the
eigenvalue by ωn ∈ R → ωn + δω ∈ C. Since the complex eigenvalue ωn + δω will be
accompanied by its complex conjugate ωn + δω, one may assume Im(δω) > 0 without loss
of generality. The Taylor expansion of (110) around ωn gives, to first order,

δω

∫
R

η(v)

(ωn − kv)2
dv −

∫
R

δη(v)

ωn + i0 − kv
dv = 0, (125)
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where the limit of Im(δω) → +0 is taken since δη(ωn/k) is not zero. By taking the imaginary
part of this expression, we obtain

Im(δω) = −
π
k
δη(ωn/k)∫

R
η(v)

(ωn−kv)2
dv

= −πk2δη(ωn/k)|φ̂n|2

µn

. (126)

Note that the sign of δη(ωn/k) is the same as the sign of µ(ωn), which is the action (124)
for the continuous spectrum at ω = ωn. If the signs of µn and µ(ωn) were opposite, there
would be a complex eigenvalue ω + δω with Im(δω) > 0, and its conjugate ω + δω as well.
Thus, the eigenfrequency ωn is split into a pair of complex-conjugated frequencies, one of
which is a growing mode and the other is a damping mode.

If the signs of µn and µ(ωn) were the same, the obtained result Im(δω) < 0 contradicts
our assumption Im(δω) > 0, which implies that the eigenvalue ωn would disappear and
be absorbed into the continuous spectrum (the resonant absorption). This phenomenon is
famous as the Landau damping [31].

Such an interaction between point and continuous spectra frequently occurs in fluids and
plasmas [23, 32–34] in more complicated ways. However, if the signs of the action variables
were provided in advance, we could predict which resonance would cause an exponential
instability or an Landau damping.
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