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Abstract. We give a semiclassical expansion of the Schrödinger
group in terms of the resonances created by a non-degenerate po-
tential maximum. This formula implies that the imaginary part of
the resonances gives the decay rate of states for large time of order
of the logarithm of the semiclassical parameter.

1. Introduction

This report is based on a series of work concerning spectral proper-
ties of the Schrödinger operator at a maximum of its potential. The
detailed proofs of the results presented here can be found in [BFRZ]
and [BFRZ2].

We consider the semiclassical Schrödinger equation in Rn

Pu = zu, P := −h2∆ + V (x),

where ∆ :=
n∑
j=1

∂2

∂x2
j

, h > 0 is a small (semiclassical) parameter, z ∈

C is a complex spectral parameter and V (x) is a real-valued smooth
potential.

If z = λ0 ∈ R is an isolated eigenvalue of P , then for any ψ(x) ∈
C∞

0 (R) supported near λ0, one has

(1) e−itP/hψ(P ) = e−itλ0/hΠλ0ψ(λ0),

where Πλ0 is the orthogonal projection to the eigenspace of λ0 generated
by orthonormal eigenfunctions {fj}j;

(2) Πλ0 =
∑
j

(·, fj)fj.

Here (f, g) denotes the scalar product
∫
fḡdx.

Analogous formulae may hold also for scattering energy levels with
so-called resonances z instead of eigenvalues. Resonances are poles of
the meromorphic extension of the resolvent, and are characterized as

2000 Mathematics Subject Classification. Primary 81Q20 ; Secondary 35C20,
35P20, 35P25.

Key words and phrases. semiclassical analysis, Schrödinger operator, WKB con-
structions, quantum resonances, microlocal analysis.

1



2 J.-F. BONY, S. FUJIIE, T. RAMOND, AND M. ZERZERI

complex eigenvalues of a non self-adjoint operator Pθ, called analytic
distorsion of P (see §1).

Roughly speaking, resonances are associated with semi-bound states.
In other words, there are no resonances near non-trapping energy levels
(see §2). Formulae of type (1), (2) would imply in particular that a
semi-bound state decays like e−| Im z0|t/hΠz0 for a resonance z0. This is
why the inverse of the width of the resonance | Im z0| is considered to
describe the life span of trapped quantum particles. Remark that the
projection Πz0 is not orthogonal and its operator norm is no longer 1.

Formulae of type (1) have been shown by S. Nakamura, P. Stefanov
and M. Zworski [NSZ] for shape resonances created by a well in an
island, and by J.-F. Bony and D. Häfner [BoHä] for resonances cre-
ated by a potential maximum of the wave operator in the De Sitter-
Schwarzschild metric.

Here we study the global maximal level E0 for a general multidimen-
sional potential, that we assume to be non degenerate and attained
at only one point. In the phase space, the trapped trajectories of
the Hamilton flow in p−1(E0) (see §3 for the terminology) consist of
a unique hyperbolic fixed point. The existence and the semiclassi-
cal distribution of resonances near this level were shown by P. Briet,
J.-M. Combes and P. Duclos [BCD2] and by J. Sjöstrand [Sj1] inde-
pendently (Theorem 4.1). We will give a formula of type (1) in §5
(Theorem 5.1, (7), (8)), and of type (2) in §6 (Theorem 6.1, (14),
(15)). These results are based on a resolvent estimate (Theorem 5.4),
and a microlocal propagation theorem near a hyperbolic fixed point
(Theorem 6.2).

2. Resonances

We assume the following condition (A1) on the potential V .

(A1): V (x) is real on Rn, and analytic in a domain

D := {x ∈ Cn; | Im x| ≤ tan θ0⟨Rex⟩}

for 0 < θ0 < π/2, and V (x) → 0 as |x| → ∞ in D.

Then P is a self-adjoint operator on L2(Rn) with σess(P ) = R+. To
this operator, we associate a distorted operator

P̃µ = UµPU−µ, (Uµf)(x) := |det(Id + µdF )|1/2f(x+ µF (x))

for small real µ and F ∈ C∞(Rn; Rn) with

F (x) = 0 on |x| < R and F (x) = x on |x| > R + 1

for large R. This operator P̃µ is analytic of type-A with respect to

µ, and, taking R large enough, Pθ := P̃iθ is well-defined for θ small
enough. Then σess(Pθ) = e−2iθR+, and the spectrum of Pθ in Cθ :=
{z ∈ C\{0};−2θ < arg z < 0} is discrete.
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Definition 1. Resonances are the eigenvalues of Pθ in Cθ. The multi-
plicity of a resonance z0 is the rank of the spectral projection

(3) Πz0 =
1

2πi

∫
γ

(z − Pθ)
−1dz,

where γ is a small circle centered at z0 and we choose θ with z0 ∈
Cθ. Resonances are independent of θ in the sense that σ(Pθ′) ∩ Cθ =
σ(Pθ) ∩ Cθ for θ < θ′ taking the multiplicity into account. Moreover,
the resonances are also independent of F . Hence we will denote the set
of resonances by Γ(h) without indicating θ and F .

Equivalently, we can define the resonances of P by showing that
the resolvent (z − P )−1 : L2

comp(Rn) → L2
loc(Rn) has a meromorphic

extension R+(z) from the upper half plane to Cθ across (0,∞). We
have

χR+(z)χ = χ(z − Pθ)
−1χ.

for any cut-off function χ whose support is in |x| < R. The poles
are the resonances and the multiplicity of a resonance is also given by
rank 1

2πi

∫
γ
R+(z)dz.

3. Resonance free domain

To the Schrödinger operator P corresponds the classical Hamitonian

p(x, ξ) = ξ2 + V (x),

where ξ = (ξ1, . . . , ξn) denotes the momentum, which is the dual vari-
able of the position x, and ξ2 = ξ2

1 + · · · + ξ2
n. In the phase space

R2n = Rn
x × Rn

ξ , the Hamilton vector field is defined by

Hp = ∇ξp · ∇x −∇xp · ∇ξ.

We denote by exp tHp(x0, ξ0) the integral curve of Hp starting from the
point (x0, ξ0), and we call it a Hamiltonian curve.

The classical Hamiltonian p is invariant along any Hamitonian curve:

d

dt
p(x(t), ξ(t)) = 0,

i.e. any Hamitonian curve is contained in an energy surface p−1(λ) for
some real λ.

A trapped trajectory is a trajectory which is confined to some bounded
set. Consider the following outgoing and incoming set

Γ±(λ) := {(x0, ξ0) ∈ p−1(λ); | exp tHp(x0, ξ0)| ̸→ ∞ as t→ ∓∞}.
Then K(λ) := Γ+(λ) ∩ Γ−(λ) is the union of the trapped trajectories
in p−1(λ) and it is a compact set.

The following result suggests a close relationship between the semi-
classical distribution of resonances near the real positive axis and the
geometry of the corresponding classical dynamics. It is implicit in
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[HeSj2] and was also proved in [BCD1] under a stronger hypothesis
called the virial assumption. For the C∞ potential case, see [Ma].

Theorem 3.1. Let E0 > 0 be such that there are no trapped trajectories
in p−1(E0). Then there exist δ > 0 and h0 > 0 such that for any
0 < h < h0, one has

Γ(h) ∩D(E0, δ) = ∅,
where D(E0, δ) denotes the complex disc centered at E0 with radius δ.

4. Barrier top resonances

According to the previous theorem, there may be resonances near
E0 only if K(E0) is non-empty. Trapped trajectories may have various
type of geometrical structure: fixed points, periodic orbits, homoclinic
and heteroclinic orbits or more complicated structures. Here, we shall
study the case where K(E0) reduces to a point {(0, 0)}. We assume
that it is a hyperbolic fixed point.

We assume the following conditions (A2) and (A3) besides (A1):

(A2): V (0) = E0 > 0, V ′(0) = 0, V ′′(0) < 0, i.e. for suitable
coordinates,

V (x) = E0 −
n∑
j=1

λ2
j

4
x2
j + O(|x|3) as x→ 0,

for some positive constants 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

(A3): K(E0) = {(0, 0)}.
The assumption (A2) implies that the origin (x, ξ) = (0, 0) is a hy-

perbolic fixed point of the Hamilton vector field Hp. Let us consider
the canonical system of p:

(4)
d

dt

(
x(t)
ξ(t)

)
=

(
∇ξp

(
x(t), ξ(t)

)
−∇xp

(
x(t), ξ(t)

) ) =

(
2ξ(t)

−∇xV
(
x(t)

) ) .
The linearization at the origin is

(5)
d

dt

(
x(t)
ξ(t)

)
= Fp

(
x(t)
ξ(t)

)
,

where Fp is the fundamental matrix

Fp :=

 ∂2p
∂x∂ξ

∂2p
∂ξ2

− ∂2p
∂x2 − ∂2p

∂ξ∂x

∣∣(x,ξ)=(0,0)

=

(
0 2 Id

1
2
diag (λ2

j) 0

)
.

This matrix has n positive eigenvalues {λj}nj=1 and n negative eigen-

values {−λj}nj=1. The eigenspaces Λ0
± corresponding to these positive
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and negative eigenvalues are respectively outgoing and incoming stable
manifolds for the quadratic part p0 of p:

Λ0
± =

{
(x, ξ) ∈ R2n; exp tHp0(x, ξ) → (0, 0) as t→ ∓∞

}
=

{
(x, ξ) ∈ R2n; ξj = ±λj

2
xj, j = 1, · · · , n

}
.

By the stable manifold theorem, we also have outgoing and incoming
stable manifolds for p:

Λ± =
{
(x, ξ) ∈ R2n; exp tHp(x, ξ) → (0, 0) as t→ ∓∞

}
,

which are tangent to Λ0
± at the origin. They are Lagrangian manifolds

and can be written near (0, 0) as

Λ± =
{

(x, ξ) ∈ R2n; ξ =
∂ϕ±

∂x
(x)
}
,

with the generating functions ϕ± behaving like

(6) ϕ±(x) = ±
n∑
j=1

λj
4
x2
j + O(|x|3) as x→ 0.

The assumption (A3) implies that E0 is the global maximum of V , and
it is attained only at x = 0.

Under the assumptions (A1)-(A3), the semiclassical distribution of
resonances is known near the barrier top energy E0 (in [BCD2], the
virial condition is assumed):

Theorem 4.1. ([BCD2], [Sj1]) Let Γ0(h) be the discrete set

Γ0(h) :=

{
z0
α := E0 − ih

n∑
j=1

λj

(
αj +

1

2

)
;α = (α1, . . . , αn) ∈ Nn

}
.

and let C be an h-independent positive constant such that C ̸=
∑n

j=1 λj
(αj + 1

2
) for any α ∈ Nn. Then, in D(E0, Ch), there exists a bijection

bh : Γ0(h) ∩D(E0, Ch) → Γ(h) ∩D(E0, Ch)

such that bh(z) = z + o(h).

Remark 4.2. The discrete set {h
∑n

j=1 λj(αj + 1/2);α ∈ Nn} is the

set of eigenvalues of the harmonic oscillator −h2∆ +
n∑
j=1

λ2
jx

2
j/4.

Let us denote zα = bh(z
0
α). We call z0

α pseudo-resonance (see [Sj2]).
We say that a pseudo-resonance z0

α is simple if z0
α = z0

α′ implies α = α′.
If a pseudo-resonance z0

α is simple, then the corresponding resonance zα
is simple, i.e. its multiplicity is one, and has an asymptotic expansion
in powers of h whose leading term is z0

α.
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5. Representation formula of the propagator

Let us consider the Cauchy problem for the time-dependent Schrödinger
equation {

ih ∂
∂t
ψ(t, x) = Pψ(t, x),

ψ(0, x) = ψ0(x).

We denote the solution ψ(t, x) by e−itP/hψ0. The operator e−itP/h is
unitary on L2(Rn).

Theorem 5.1. Assume (A1)-(A3). Let C be any positive constant such
that C ̸=

∑n
j=1(βj + 1

2
)λj for all β ∈ Nn. Then, for any χ ∈ C∞

0 (Rn)

and any ψ ∈ C∞
0 (R) supported in a sufficiently small neighborhood of

E0, there exists K > 0 such that for any t, one has as h→ 0,

(7)
χe−itP/hχψ(P ) =

∑
zα∈Γ(h)∩D(E0,Ch)

χReszα

(
e−itz/hR+(z)

)
χψ(P )

+O(h∞) + O(e−Cth−K).

If, in particular, all the pseudo-resonances in D(E0, Ch) are simple,
one has, for any t, and as h→ 0,

(8)
χe−itP/hχψ(P ) =

∑
zα∈Γ(h)∩D(E0,Ch)

e−itzα/h χΠzαχψ(P )

+O(h∞) + O(e−Cth−K).

Here, Πzα is the spectral projection given by (3).

Remark 5.2. We will see in §6 Theorem 6.1 (14), (15) that χΠzαχ ∼
h−|α|−n/2 when z0

α is simple. Since, on the other hand, |e−itzα/h| =

e−t| Im zα|/h ∼ e−t
∑n

j=1 λj(αj+
1
2
) for zα ∈ Γ(h)∩D(E0, Ch), the α-th term

of the RHS of (8) is greater than the errors for

(9) t ≥
K − n

2
− |α|

C −
∑n

j=1 λj(αj + 1
2
)
ln

1

h
+ Cte.

Remark 5.3. If {λj}nj=1 are Z-independent, all the pseudo-resonances
are simple and (8) holds for any C.

To prove Theorem 5.1, we need the following resolvent estimate (see
[BFRZ2]). For a, b > 0, let us denote by Ω(a, b) the complex rectangular
domain

Ω(a, b) = {z ∈ C; |Re z − E0| < a, −b < Im z < b}.

Theorem 5.4. Assume (A1)-(A3). Let ϵ > 0 be sufficiently small.
Then for any C,C ′ > 0 and for any χ ∈ C∞

0 (Rn), there exists h0 > 0
such that for 0 < h < h0 there is no resonance in Ω(ϵ, C ′h)\Ω(Ch,C ′h).
Moreover, there exists K > 0 such that, for z ∈ Ω(ϵ, C ′h),

(10) ∥χR+(z)χ∥ . h−K
∏

zβ∈Γ(h)∩Ω(Ch,2C′h)

|z − zβ|−1.
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Sketch of the proof of Theorem 5.1: Here we sketch the proof of
Theorem 5.1 using Theorem 5.4.

We assume that ψ ∈ C∞
0 ([E0 − ϵ

2
, E0 + ϵ

2
]), ψ ≡ 1 on [E0 − ϵ

4
, E0 + ϵ

4
]

for a sufficiently small ϵ > 0, and we calculate I := χe−itP/hχψ(P ). By
the standard theory of pseudo-differential operators (see (13)), we have

I = χe−itP/hf(P )χψ(P ) + O(h∞),

for any cut-off function f ∈ C∞
0 (R) such that f ≡ 1 on [E0−2ϵ, E0+2ϵ].

Let Eλ be the spectral decomposition associated with P . Then

χe−itP/hf(P )χψ(P ) =

∫
R
e−itλ/hf(z)χdEλχψ(P ).

By Stone’s formula,

dEλ =
1

2iπ

(
(P − (λ+ i0))−1 − (P − (λ− i0))−1

)
dλ,

this can be rewritten as

χe−itP/hf(P )χψ(P ) = − 1

2iπ

∫
R
e−itλ/hf(λ)χ

(
R+(λ)−R−(λ)

)
χdλψ(P ),

where R±(z) = (P − z)−1 is analytic for ± Im z > 0.
Let us modify the integral contour R to the union of the following

intervals:

Γ1 = (−∞, E0 − ϵ], Γ5 = [E0 + ϵ,+∞),

Γ2 = E0 − ϵ+ i[0,−Ch], Γ4 = E0 + ϵ+ i[−Ch, 0],

and

Γ3 = [E0 − ϵ, E0 + ϵ] − iCh.

We define

Ij =
1

2iπ

∫
Γj

e−itz/hf(z)χ (R+(z) −R−(z))χdzψ(P ) (j = 1, 5),

Ij =
1

2iπ

∫
Γj

e−itz/hχ (R+(z) −R−(z))χdzψ(P ) (j = 2, 3, 4).

Since R−(z) is holomorphic in Ω(ϵ, Ch) ∩ {z ∈ C; Im z ≤ 0}, one
has, by the residue formula,

I =
∑

zα∈Γ(h)∩Ω(ϵ,Ch)

χReszα

(
e−itz/hR+(z)

)
χψ(P ) −

5∑
j=1

Ij + O(h∞).

The first term of the RHS coincides with that of the formula (7) thanks
to Theorem 5.4.

Hence it suffices to estimate each Ij (j = 1, . . . , 5). We can show by
pseudodifferential calculus that

(11) I1, I5 = O(h∞) and I2, I4 = O(h∞),
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and

(12) ∥I3∥ =

∫
Γ3

|e−itz/h|∥χ (R+(z) −R−(z))χ∥dz = O(e−Cth−K),

as bounded operator on L2(Rn).
Here the resolvent estimate (10) is relevant. It ensures that the

resolvent R+(z), as well as R−(z), stay at most of polynomial order
with respect to h on the contour (of course near E0).

The estimates (11) follow from the fact that the support of ψ is at
positive distance from the real part of Γ1 ∪ Γ2 ∪ Γ4 ∪ Γ5. In fact, for
two functions f, g ∈ C∞

0 (R), it holds that

(13) supp f ∩ supp g = ∅ ⇒ f(P )χg(P ) = O(h∞),

where χ ∈ C∞
0 (Rn). �

6. Projection

In this final section, we give a representation formula of the projec-
tion Πzα in the case when z0

α is simple.

Theorem 6.1. Assume (A1)-(A3) and suppose z0
α ∈ Γ0(h) is simple.

Then, as operator from L2
comp(Rn) in L2

loc(Rn), one has

(14) Πzα = c(h)(·, fα)fα,
with

(15) c(h) = h−|α|−n
2
e−i

π
2
(|α|+ n

2
)

(2π)
n
2α!

n∏
j=1

λ
αj+

1
2

j ,

where fα = fα(x, h) is a solution to Pfα = zαfα, locally L2 uniformly
in h, vanishes in the incoming region (in the microlocal sense) and has
an asymptotic expansion as h→ 0 for x near the origin

(16) fα = dα(x, h)e
iϕ+(x)/h,

with

(17) dα(x, h) ∼
∑

dα,j(x)h
j as h→ 0,

(18) dα,0(x) = xα + O(|x||α|+1) as x→ 0.

Sketch of the proof: First, it is obvious that the projection Πzα can
be written in the form (14), since it is a rank one operator to the space
generated by a resonant state fα associated with the simple resonance
zα.

Then, again thanks to the simplicity of zα, it suffices to calculate
Πzαv for a certain non trivial function v(x). We write it as

(19) Πzαv = c1(h)fα,
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and we have

(20) c(h) = c1(h)/(v, fα).

To compute (19), we will construct (z−Pθ)−1v for non-resonant energies
z satisfying |z − zα| = ϵh (see (3)). We do this microlocally as follows:

We take for v a function whose microsupport is contained in a small
neighborhood of a point (x0, ξ0) on the incoming stable manifold Λ−.
Then we see, by the standard theory of propagation of microsupport
and a result in [BoMi], that, on Λ−, the microsupport of (z − Pθ)

−1v
is the evolution of the microsupport of v (denoted by MS[v]) by the
Hamilton flow:

MS[(z − Pθ)
−1v] ∩ Λ− ⊂

∪
t≥0

exp tHp(MS[v]).

Furthermore, this microsupport propagates to the outgoing stable man-
ifold Λ+ through the fixed point (0, 0) (see [BFRZ]). As we will see (see
also (16)), the microsupport of the singular part of (z − Pθ)

−1v with
respect to z, (hence also that of fα), reduces only to Λ+, as is expected
since the resonant state is “outgoing”.

More precisely, let γ : t 7→ (x(t), ξ(t)) be the Hamiltonian curve
exp tHp(x0, ξ0). We first construct a WKB solution u of (P − z)u = 0
microlocally near γ:

(21) u(x, h) = b(x, h)eiψ(x)/h, b(x, h) ∼
∞∑
l=0

bl(x)h
l,

namely, the phase function satisfies the eikonal equation

p

(
x,
∂ψ

∂x

)
= E0, ξ0 =

∂ψ

∂x
(x0)

and the coefficients of the symbol satisfy the transport equations

2
∂ψ

∂x
· ∂bl
∂x

+

(
∆ψ − i

z − E0

h

)
bl = i∆bl−1, l ∈ N.

We assume moreover that the Lagrangian manifolds Λψ := {(x, ξ); ξ =
∇xψ} and Λ− intersect transversally along γ. Then, we define v as

v = [χ, P ]u,

for χ(x) ∈ C∞
0 (Rn) identically 1 near x = 0. Thus v = (z − P )(χu)

microlocally near γ. Then χu = (z−P )−1v, and in particular (z−P )−1v
has the WKB form (21) near γ close to x = 0.

Now we have a WKB solution u along γ ⊂ Λ− close to (0, 0). We
need to know the asymptotic behavior of u on Λ+. This was the main
subject of [BFRZ], and we need to recall some of its results now. Since
γ ⊂ Λ−, we have

x(t) ∼
∞∑
k=1

gµk
(t; x0, ξ0)e

−µkt as t→ +∞,
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where 0 < µ1(= λ1) < µ2 < · · · are linear combinations of {λj}nj=1 over
N, gµk

(t; x0, ξ0) are polynomials in t. In particular gλj
is independent

of t, if λj is simple in the sense that the only linear combination over
N of the λk’s equal to λj is the trivial one.

The following theorem is a simplified version of [BFRZ]. The formula
(24) is due to [ABR] and the idea to express the solution in the integral
form (22) goes back to [HeSj1].

Theorem 6.2. Assume that Pu = zu, ||u|| ≤ 1, for z ∈ D(E0, Ch)
satisfying dist(z,Γ0(h)) > ϵh for a positive ϵ. Then,
(i) If u = 0 microlocally on Λ−\(0, 0), then u = 0 in a neighborhood of
(0, 0) (and hence on Λ+).
(ii) Suppose that gλ1(x0, ξ0) ̸= 0. If u is of the form (21) near γ, then
one has a formal integral representation of u in a neighborhood of (0, 0):

(22) u(x, h) =
1√
2πh

∫ ∞

0

eiφ(t,x)/ha(t, x;h)dt.

Here the phase φ(t, x) has an asymptotic expansion as t→ +∞:

(23) φ(t, x) ∼ ϕ+(x) +
∞∑
k=1

ϕµk
(t, x)e−µkt,

where ϕµk
(t, x) are polynomial in t. Moreover, if λj is simple ϕλj

(x) is
independent of t and

(24) ϕλj
(x) ∼ −λjgλj

xj as x→ 0.

The symbol a(t, x;h) has a classical expansion in h:

a(t, x;h) ∼
∞∑
l=0

al(t, x)h
l,

whose coefficients have expansion as t→ +∞:

(25) al(t, x) ∼
∞∑
k=0

alk(t, x)e
−(S+µk)t,

with

(26) S(z) =
1

2

n∑
j=1

λj − i
z − E0

h
,

where alk(t, x) are polynomial in t. In particular, the first term a0,0(x)
is independent of t and a0,0(0) is given by

(27) a0,0(0) = e−πi/4λ
3/2
1 |gλ1 |e−

∫∞
0 {∆ψ(x(s))− 1

2

∑n
j=1 λj+λ1}dsb0(x0).

Remark 6.3. It is always possible to choose (x0, ξ0) on Λ− such that
gλ1(x0, ξ0) ̸= 0.
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Remark 6.4. The representation (22) is formal in the sense that the
integral does not always converge depending on Im z (see (26)). For
the rigorous expression, see [BFRZ].

Using this theorem, let us calculate Πzαv to obtain the constant
c1(h) and the resonant state fα. Recall that the multi-index α =
(α1, · · · , αn) ∈ Nn is fixed such that z0

α is simple.
By (23), (25) and the Taylor expansion of ei(φ−ϕ+)/h, the integrand

of (22) can be developed as

eiφ/ha = eiϕ+/h

∞∑
m=0

1

m!

(
i

h

)m
(φ− ϕ+)m

∞∑
l=0

hlal(t, x)

= eiϕ+/he−St
∞∑
m=0

∞∑
l=0

∞∑
k′=0

im

m!
hl−m

(
∞∑
k=1

ϕµk
e−µkt

)m

alk′e
−µk′ t.

Each term of the last sum is of the form eiϕ+/hcβ(t, x;h)e
−(S+λ·β)t, where

cβ(t, x;h) has an expansion in powers of h whose coefficients are poly-
nomials in t. Since

S + λ · β = − i

h
(z − z0

β),

this term produces a pole at z = z0
β after integration with respect to t.

Hence we have only to look at cα(t, x;h) for the study of Πzα .
Since z0

α is simple by assumption, the principal term in h of cα(t, x;h)
comes from l = 0, k′ = 0, m = |α|, more precisely

cα(t, x;h) = eiϕ+(x)/h

{
i|α|

|α|!

(
n∏
j=1

ϕλj
(x)αj

)
a0,0(x)h

−|α| + O(h−|α|+1)

}
.

Notice that this principal term is independent of t (see the assertion
before (24)), and hence it gives a simple pole after integration in t. The
residue of u, which is Πzαv, is then

eiϕ+(x)/h

{
1√
2π

i|α|−1

|α|!

(
n∏
j=1

ϕλj
(x)αj

)
a0,0(x) + O(h)

}
h−|α|+1/2.

This means, by (24) and (27), that the resonant state fα is of the form
(16), (17), (18) and that c1(h) in (19) is given by

c1(h) =
1√
2π

i|α|−1

|α|!

(
n∏
j=1

(−λjgλj
)αj

)
a0,0(0)h−|α|+1/2.

To finish the proof of Theorem 6.1, it remains to compute the as-
ymptotic expansion of (v, f̄α) (see (20)), which can be obtained by a
stationary phase argument thanks to the assumption that Λψ and Λ−
intersect transversally. �
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