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Abstract

Mathematical visualization as always been a key tool in what we now
call discrete differential geometry. The talk will focus on applications
of discrete differential geometry in visualization as well as on visualiza-
tion in discrete differential geometry. An interesting example for such an
mutual interplay are for example discrete conjugate nets - meshes with
planar quadrilateral faces. They play an important role in architectural
geometry where constructions of free form surfaces from pre-manufactured
planar panels is desired. Additional constraints occur when one needs to
have parallel meshes (like for certain glass steel constructions). The the-
ory of conjugate nets that allow for parallel nets gives rise to interesting
definitions of curvature for such surfaces.

1 introduction

Discrete differential geometry is in part motivated by the needs of computer
graphics for discrete analogues of classical differential geometry notions.

In some sense computer graphics and differential geometry model the same
thing: smooth geometric objects. But while differential geometry models them
analytically, describing them through smooth maps, computer graphics needs
to model them through approximation with some discrete sets of values, simply
because representations in the computer (better in the computers graphics card)
are finite. As a consequence many of the techniques that geometers have devel-
oped through the last centuries are not directly applicable in computer graphics
and visualization. This is where discrete differential geometry comes into play.
By developing discrete analogues of the differential geometric notions, methods
from the classical theory become usable in a discrete setup. A main paradigm of
discrete differential geometry is, that the discretizations should “behave” in the
same way the smooth objects do. If for example a class of smooth surfaces is
invariant under a certain transformations group, so should be the discretization;
or if the class of surfaces posesses a special transformation, the the discretization
should heve one as well.



2 the Tractrix of a curve

One of my favorite examples is a very simple one: Given two points linked by a
rigid joint. If the first moves on a given curve how moves the second one?!

This problem can easily be phrased as a differential equation: If the first
point p moves on a curve p(t) the second point ¢ in distance [ moves on a curve
q(t) given by the conditions:

o Lq(t) | qt) —p(t) =v
o [(q(t) —p(t)| =1

Fig. 2 shows the tractrix for p(t) being a straight line. In a discretization of this

Figure 1: The Tractrix of a straight line

the curve on which the first point p moves would be a sequence of points py.
Now a straight forward discretization of the Tractrix would be the following: If
pr moves (jumps) to pgy1 then gri1 is chosen to be the point on the straight
line through p41 and g that is in distance ! from pg41 and on the same side as
qr- While this discretization might work well and even converge to the smooth
solution eventually, it has a crucial drawback: In contrast to the smooth model
the discretization is not time reversible. If pry1 = pr_1 then gx41 need not be
equal to qx_1.

There is, however, a smooth result that leads to a simple discretization that
overcomes this. In the smooth case it turns out that there is a third curve
r(t) at distance 2 from p(t) so that q(t) = 1(p(t) +r(t)) and p(t) and r(t) are
arc-length related: |%p(t)| = |%r(t)|. This curve r is usually called a Darboux
transform of p and this is one of the special transformations I referd to in the
introduction.

The relation between p and r translates easily into the discrete realm: |pg41—
Pkl = |rg+1 — rx|- And since |pr, — 75| = |pPr+1 — rr+1] = 21 one sees that each
four points pi, pr+1,rk+1, and 7, form a parallelogram of a parallelogram folded
along one of its diagonals. The second solution is the one we are interested in.
The discrete Tractrix of p can now be defined as simply g, = 3(pi + rx) and
since the construction of ri41 from pg, prr1, and 7 is completely symmetric in
k and k 4+ 1 time reversibility is build in the definition this time.

This is a very basic example, but it shows how insights from the smooth
theory can help make better (in the sense of better behaving) discretizations.
One can find more on the discrete Tractrix in [HOS].

IThis problem is usually attributed to Leibniz (1646-1716). He states it in his 1693
Leipziger Acta eruditorum Problem: ”In the xy-plane drag a point P with a tightly strained
string PZ of length a. The “drag point” Z shall propagate along the positive y-axis, and
at the beginning P shall be in (a,0). Which curve is described by P?” For comprehension
Leibniz imagined a pocket watch on a chain. But as source of the problem he mentions the
Paris Architect Claude Perault.



Figure 2: The Tractrix and the Darboux transform of a straight line (sometimes
called Euler loop).

3 Conjugate meshes, offset meshes, and the Steiner
formula

Another example are discrete conjugate nets: quadrilateral meshes (all faces
are quadrilateral and usually a map from Z? to R?® (or R")) with planar faces.
They were first introduced by Sauer [S70] and for higher dimensions by Doliwa
and Santini [DoS97]); see for example [P08] and references therein. In discrete
differential geometry quadrilateral meshes are desired when discretizing param-
eterized surfaces, since the lattice direction correspond to the parameter lines?
and meshes with planar faces are in fact polyhedral surfaces.

For a similar reason quadrilateral meshes are useful in computer graphics
when ever one needs to texture map a surface — the texture coordinates for a
mesh are nothing else than a discretized parameterization. However, general
non planar quadrilaterals have the drawback that they usually need to be trian-
gulated for rendering (most state of the art graphics hardware expects triangles
for rendering) and the choice of triangulation affects the visual result. Only
if the quadrilaterals are planar the choice of triangulation has practically no
influence.

Besides that planar quadrilateral meshes are of importance for architectural
geometry [P08]. When realizing free form surfaces in glass-steel constructions
(see Fig. 3) it is desirable to have flat facets, since curved glass panels are very
expensive.

There is a smooth counterpart to quadrilateral meshes with planar faces:

Definition 3.1 An immersion® f: R? — R? is called a conjugate net, if

0? of Of
axayfespan{%,a—y .

This notion actually belongs to projective geometry (as does the notion of
a quadrilateral mesh with planar faces, so here we have again fullfiled our
paradigm regarding the transformation goups). The condition, that the mixed
second derivative lies in the span of the first ones, says roughly that the points
flx,y), flea+ey), f(x,y+e€), and f(x+ €,y + €) all do lie in a plane for very
small e.

2But there are discrete differential geometry for other combinatorics like triangle meshes,
as well.
3a smooth map for which the differential has maximal rank everywhere



Figure 3: a discrete conjugate mesh (City Island Park, Fukuoka)

For smooth surfaces f with normal field IV there is an interesting formula,
the Steiner formula, that lets one compute the mean and Gauflian curvature
from the area A(f) and the area of an offset surface f; = f + tN:

A(fe) = A(f) + 2tH(f) + K (f)

where H(f) is the integral over the mean curvature of the surface f and likewise
K (f) is the integral over the Gauf} curvature of f.

One can use it to define discrete curvatures for meshes with planar faces once
one has defined what parallel meshes are. The definition of parallel surfaces
involves the normals and in the discrete case there is some choice. It is natural
to call a mesh an offset mesh of another, if it is parallel (in the sense that all
corresponding edges are parallel) and in constant distance. Here the distance
can be taken at either vertices, edges, or faces giving offset meshes with different
properties. For architectural applications for example these offset meshes are
important, since the glass-steel constructions are not infinitesimally thin objects
but the steel frame for example might have a considerable (fixed) width which
would make it necessary that the mesh has a parallel mesh with constant edge
offset. If on the other hand double glass panels are needed these usual should
have a constant distance leading to face offset meshes.

The existence of parallel surfaces allows the definition of curvatures. If @
is a quadrilateral in a quadrilateral mesh with planar faces and @y is its offset
quadrilateral at distance ¢, one finds that the area A(Q;) of Q; changes quadratic
in the distance t. In particular

A(Qy) = (1 +2tH +t2K)A(Q)

with A(Q) being the area of @ and H and K some numbers that we can interpret
as discrete mean and Gauf} curvatures.
In particular surfaces with constant curvatures can now be defined. Fig. 4
is a discrete surface of vanishing mean curvature - a discrete minimal surface.
For more on this see [PLWBWO07] or [PLWBWO7] and references therein ,
which is also a valuable source on the architectural applications.



Figure 4: A discrete minimal surface: the Catenoid.

4 discrete conformal maps

The central problem of texturing a surface is the choice of the mapping. In
general there is no isometric map from a surface in the plane. Thus any texture
map will inevitable have distortions and the question is not how to prevent this
(it is impossible) but how to distribute it. Often a reasonable choice is a confor-
mal map, that does not preserve distances but does preserve angles. Again ideas
from discrete differential geometry can help here: Discretizations of conformal
maps in the plane have been studied and there are good discretizations using
circle packings or circle patterns. The use of circle seems unexpected from a
computer graphics point of view, but the group of conformal transformations
in space are generated by inversions on spheres and these inversions preserve
circles. Thus phrasing a discretization in terms of circles (and their intersection
angles) has the the desired invariance build in from the beginning. For more on
this see e.g. [KSS06].

5 teaching and edutainment

Visualization is of course a great teaching tool as well and here mathematical
visualization learns a lot from computer graphics and game development. Tex-
turing objects with slight bumpiness and decal maps for example helps getting
a better feel for realism and provides marks on the surface, the eye can use for
orientation.

In a recent public lecture I showed a “walk through” of a Klein bottle
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Figure 5: A bear textured with help of a discrete conformal map.

with jReality (www.jreality.de). The immersive environment and the “ego-
shooter” like navigation helps here to get a better feel for depth, size, and
spacial orientation. In fact the visualization group at TU Berlin experimented
for a while with using the “Far Cry” engine to visualize surfaces (http://www.
math.tu-berlin.de/geometrie/gallery/vr/vr.shtml). At that point how-
ever, game engines were not prepared for rendering complicated dynamically
changing geometries. At the moment the physics engine jBullet gets attached
to jReality to add even more realism to the virtual environments.
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Figure 6: A Klein bottle in jReality
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