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Abstract

In practical applications of classification, there are often varying costs associated with dif-
ferent types of misclassification (e.g. fraud detection, anomaly detection and medical diag-
nosis), motivating the need for the so-called ”cost-sensitive” classification. In this paper, we
introduce a family of novel boosting methods for cost-sensitive classification by applying
the theory of gradient boosting to p-norm based cost functionals, and establish theoretical
guarantees as well as their empirical advantage over existing algorithms.

1 Introduction

Many real world applications of classification techniques involve dramatically varying costs associ-
ated with different types of misclassification, motivating the need for classification algorithms that
pay attention to the “cost” of misclassification. Relevant application areas include credit rating,
targeted marketing, fraud detection, anomaly detection in manufacturing processes and medical di-
agnosis, among others. For example, in credit rating, the cost of misclassifying a good customer
as bad is the opportunity cost of missing the associated profit, whereas the cost of misclassifying
a bad customer as good is the cost of default, which is generally much higher. Furthermore, these
two types of costs actually depend on the individual customer, namely, depending on their amount
of loan. There has been considerable theoretical as well as empirical research on this topic, which
is known as “cost sensitive learning”, both in the machine learning and data mining communities
[5, 3, 13, 15, 16].

For pure classification, extensive past research has established that the family of boosting methods,
including AdaBoost [6] and its many variations, enjoys superior empirical performance and strong
theoretical guarantees. For cost-sensitive learning, however, there has not been a comprehensive
study of relative merits of different boosting algorithms. Some attempts have been made to extend
the AdaBoost algorithm into cost-sensitive versions, e.g. AdaCost [5] and CSB2 [13], but the ag-
gressive weight updating scheme based on the exponential loss posed difficulties in balancing the
contributions of the cost information and boosting’s focus on misclassification error. More recently,
an effort was made to bridge this gap with the proposal of a cost-sensitive boosting method called
GBSE [1], inspired by the framework of gradient boosting, but only a partial theoretical justification
was provided, where the proof of convergence was given for a variant of the proposed method.

In this paper, we propose a class of new cost-sensitive boosting methods by applying the theory
of gradient boosting to a family of p-norm cost functionals, and investigate their theoretical and
empirical properties. The p-norm cost functionals include, as special cases, the linear cost (expected
cost) and the squared loss based cost functional. We derive a family of general multi-class cost-
sensitive boosting methods, which use binary weak classifiers, and establish some basic properties
for this family, including proof of convergence and the rate thereof. We also give interpretations for
some of the existing algorithms in terms of the proposed family, notably including a generalization
of the costing algorithm [16], DSE and GBSE [1], and the Average Cost method [8].

1



We empirically compare the performance of the proposed family of algorithms with representative
existing methods of cost-sensitive boosting, including AdaCost [5], CSB2 [13] as well as Ada-
Boost.M2 [6] with cost-sensitive weight initialization. Our experiments, using multi-class data sets
from the UCI repository, indicate that the proposed methods based on p-norm cost functionals at-
tain excellent performance in terms of cost minimization. More specifically, the generalized costing
algorithm for the linear loss function compares favorably against AdaCost and CSB2, but does not
out-perform AdaBoost with cost-sensitive weight initialization. In contrast, the variants with higher
order p-norm loss functions, including squared loss, strictly out-perform all three of the comparison
methods, establishing the advantage of the proposed family of methods.

2 Preliminaries

We first describe the framework for cost sensitive learning along with related concepts and notation
used in this paper.

We consider a general formulation of cost-sensitive (multiclass) classification1 where a cost function
C(x, y1, y2) is used to specify the cost of predicting that an example x belongs to class y2 when the
correct label is y1. Formally, denote by X the input space and by Y the set of classes. Let k = |Y |.
We assume that examples (x, ~C) are drawn from a distribution D over X × R+k

. Here ~C is the
vector of costs Cx,y = C(x, y, y∗) where y∗ denotes the label with minimum cost and y ∈ Y . We
note that the above formulation allows C to depend on the individual instances, x, generalizing the
common formulation in terms of cost matrices, following [15].

Based on a sample S = {(x, ~C)} drawn i.i.d. from D, we wish to find a classifier h : X →
{1, . . . , k} which minimizes the expected cost

E(x, ~C)∼D[Cx,h(x)].

Without loss of generality we assume that the costs are normalized so that ∀x ∈ X Cx,y∗ =
C(x, y∗, y∗) = 0. Then the problem is equivalent to the minimization in term of misclassification
cost, i.e.

arg min
h∈H

E(x, ~C)∼D[Cx,h(x)I(h(x) 6= y∗)],

where I(·) denotes the indicator function.

Our proposed methods will make use of importance weighted classification, which we review below.
In importance-weighted classification, examples of the form (x, y, w) are drawn from a distribution
D over X×Y ×R+. Given a training set S = {(x, y, w)} the goal is to find a classifier h : X → Y
having minimum expected weighted misclassification error:

E(x,y,w)∼D [w · I(h(x) 6= y)] .

3 Methodology

3.1 Minimization of a Convex Objective: a p-norm Based Cost Functional

The aforementioned concepts were introduced in terms of functional hypotheses h, i.e. h : X → Y.
but also apply to stochastic hypotheses, namely hypotheses h : X × Y → [0, 1] satisfying the
stochastic condition ∀x ∈ X

∑
y∈Y h(y|x) = 1. In particular a stochastic cost-sensitive learner is

expected to minimize
E(x, ~C)∼D[Cx,arg maxy h(y|x)].

Since D is unknown, one could consider methods which, given a training sample, attempt to mini-
mize the sample average

Ê(x, ~C)∼S [Cx,arg maxy h(y|x)] =
1
|S|

∑

(x, ~C)∈S

Cx,arg maxy h(y|x). (1)

1This general formulation allowing costs to depend on individual instances was first proposed by Zadrozny
& Elkan [15].
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Such procedures, however, are computationally intractable for many hypothesis classes, one major
obstacle being the non-convexity of the objective. To remedy this issue, the learning methods pro-
posed in this paper are based on the minimization of a convex surrogate of the objective. Notice that
maxy h(y|x) = ‖h(y|x)‖∞. Thus

Cx,arg maxy h(y|x) =
∑

y

(
h(y|x)

‖h(y|x)‖∞

)∞
Cx,y,

which can be approximated by
∑

y

(
h(y|x)

maxy′ h(y′|x)

)p

Cx,y, p ≥ 1.

Since maxy h(y|x) ≥ 1/k, it is natural to consider the minimization of the following convexification
of the original objective of Eq. 1:

arg min
h

1
|S|

∑

(x, ~C)∈S

∑
y

(h(y|x))p
Cx,y, p ≥ 1 (2)

We expect that the larger p is the closer it approximates Eq. 1.

3.2 Cost Sensitive Boosting with p-norm Loss

The minimization of the convex objective as defined in Eq. 2 is carried out by adopting a boosting-
style functional gradient descent approach (see [10, 9]) combined with a stochastic interpretation of
ensemble hypotheses. We now elaborate on our methodology.

Given multiple functional hypotheses ht, t = 1, . . . , T, we define a stochastic ensemble hypothesis
H as the conditional distribution resulting from the mixture of the component hypotheses, namely,

∀x ∈ X, ∀y ∈ Y H(y|x) =
1
T

T∑
t=1

I(ht(x) = y).

To solve Eq. 2, an incremental algorithm is used, which, at each round t, updates the current en-
semble hypothesis by the convex combination of the previous ensemble hypothesis Ht−1 and a new
hypothesis ht, i.e., by setting

Ht(y|x) = (1− β)Ht−1(y|x) + βI(ht(x) = y),
where β ∈ [0, 1].

Let ft(y|x) = I(ht(x) = y) and let∇ denote the gradient operator. The new hypothesis ht is output
by a weak learner so as to maximize −〈∇L(Ht−1), f −Ht−1〉, where

L(H) =
∑

x∈X

∑

y∈Y

H(y|x)pCx,y.

We remark that Mason et al. [10] also used this type of gradient descent formulation. By the Fréchet-
like differentiability condition of the p-norm cost functional considered

〈∇L(H), f −H〉
= lim

α→0+

L ((1− α)H + αf)− L(F )
α

=
∑
x,y

pH(y|x)p−1Cx,y(f(y|x)−H(y|x)). (3)

So at each iteration t, ht is chosen to minimize∑

x∈X

∑

y∈Y

wx,y(I(ht(x) = y)), (4)

where
wx,y = Ht−1(y|x)p−1Cx,y. (5)

This optimization problem with respect to these particular weights is the basis of the family of
methods proposed in this paper. Note, in particular, that the special case in which p = 1, the
weights become wx,y = Cx,y , corresponding to various existing methods with cost based weighting,
including the costing algorithm [16] and DSE [1].
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3.3 Learning Methods

We now consider implementing the optimization problem of Eq. 4 using binary base learning proce-
dures. While it is also possible to use a multi-class classifier as the base learner, in practice it tends
not to work as well as those based on binary classifiers, hence our focus on binary weak learners.
When converting multiclass into binary classification, it is useful to consider the notion of relational
hypotheses, namely those that are relations over X × Y : h : X × Y → {0, 1}.

A straightforward multiclass method to find a new weak hypothesis consists in using a weak learner
minimizing the weighted classification error for the expanded data set

S′ =
{

(x, y)|∃(x, ~C) ∈ S and y ∈ Y
}

and weights
max

y′
wx,y′ − wx,y.

(It was shown in [1] that this also minimizes Eq. 4.) We remark that for linear loss (p = 1), the
resulting procedure is identical to the DSE Method [1], as the weights reduce to maxy′ Cx,y′ −
Cx,y , which are constant over the iterations. Notice that with this expanded dataset formulation all
the labels are effectively treated as correct labels, albeit to varying degrees due to having different
weights, resulting in sub-optimal performance in practice. In subsequent developments, we address
this issue in a number of different ways, resulting in various concrete algorithms implementing the
weighting scheme of Eq. 4.

3.3.1 Lp-Cost Sensitive Boosting

Consider again the optimization problem of Eq. 4, and the corresponding weights in Eq. 5. Notice
that Cx,y∗ = 0 implies wx,y∗ = 0, and hence the optimization problem of Eq. 4 effectively involves
the dataset

B = {(x, y)|x ∈ X, y ∈ Y, y 6= y∗} . (6)

For stochastic hypotheses, (x, y∗) is indirectly taken into account, since for any such hypothesis f ,
∀xf(y∗|x) = 1−∑

y∈Y,y 6=y∗ f(y|x). For relational hypotheses h : X ×Y → {0, 1}, however, the
minimization of Eq. 4 can be achieved simply by assigning h(x, y) = 0 everywhere. The pseudo-
loss [6] is thus introduced as a way to explicitly incorporate h(x, y∗) in the objective:

1
2

∑

(x,y)∈B

wx,y(1− h(x, y∗) + h(x, y)).

We can reformulate this minimization problem as a weighted binary classification problem by con-
verting the weighted sample {(x, y, wx,y), x ∈ X, y ∈ Y } into

S2 =
{
((x, y), l, w′x,y), x ∈ X, y ∈ Y

}
,

where

{
w′x,y = wx,y

2 and l = 0 ∀(x, y) ∈ B

w′x,y∗ =
∑

y 6=y∗ wx,y

2 and l = 1 ∀x ∈ X

The component learner is then to find a relational hypothesis h that minimizes the weighted error on
S2, i.e., ∑

x∈X

∑

y∈Y

w′x,yI(h(x, y) 6= l),

which is equivalent to minimizing the pseudo loss. The resulting procedure, Lp-CSB (Cost Sensitive
Boosting with p-norm Loss) is our main method and is depicted in Figure 1.
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• An input sample S = {(x, ~C)}.
• A component learner A for importance weighted binary classification that takes a sample of
the form ((x, y), l, w) and output a relational hypothesis h.
• An integer T specifying the number of iterations to be performed.
1. Set S′ =

{
(x, y)|(x, ~C) ∈ S, y ∈ Y

}
.

2. Initialize H0 by ∀x ∈ X, y ∈ Y H0(y|x) = 1/k.
3. For t:=1 to T Do

(a) wx,y = Ht−1(y|x)p−1Cx,y for all (x, y) in S′.
(b) For all (x, y) in S′ such that y 6= y∗ w′x,y = wx,y/2 and lx,y = 0.

For all (x, y∗) in S′ w′x,y∗ = (
∑

y 6=y∗ wx,y)/2 and lx,y∗ = 1.

(c) St =
{
((x, y), lx,y, w′x,y)|(x, y) ∈ S′

}
.

(d) Let ht := A(St).
(e) Choose αt ∈ [0, 1), for example αt = 1

t .
(f) Set Ht := (1− αt)Ht−1 + αtht.

4. End For
5. Return HT .

Figure 1: Method Lp-CSB (Cost Sensitive Boosting with p-norm Loss)

3.3.2 Relationship Between Pseudo-Loss and Original Loss

We now discuss several ways to characterize the relationship between the pseudo-loss and the orig-
inal loss

lw(h) =
∑

x∈X,y∈Y

wx,yh(x, y).

For convenience we omit the factor 1/2 in the pseudo-loss and let

l̃w(h) =
∑

(x,y)∈B

wx,y(1− h(x, y∗) + h(x, y)),

since the minimizer is unaffected. Notice that

l̃w(h) = l(h) +
∑

x∈X

((
∑

y∈Y

wx,y)(1− h(x, y∗))). (7)

Hence if for some hypothesis h, l̃w(h) = ε then lw(h) < ε. So an hypothesis with small pseudo-loss
has small original loss as well.

For stochastic hypotheses, the equivalence between pseudo loss and original loss is expressed by the
following proposition.

Proposition 3.1. For any stochastic hypothesis h : X × Y → {0, 1}, lw(h) = l̃w̃(h) if

∀(x, y) ∈ B w̃x,y = wx,y − 1
k

∑

y′ 6=y∗
wx,y′

where B is as defined in Eq. 6.

Proof.

l̃w̃(h) =
∑

x

∑

y 6=y∗
w̃x,y(1 + h(x, y)− h(x, y∗))

=
∑

x

∑

y 6=y∗
w̃x,yh(x, y) +

∑
x


 ∑

y 6=y∗
w̃x,y


 (

∑

y 6=y∗
h(x, y)) (8)

=
∑

x

∑

y 6=y∗


w̃x,y+

∑

y′ 6=y∗
w̃x,y′


h(x, y). (9)
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• An input sample S = {(x, ~C)}.
• A component learner A(S̃) that takes a training sample S̃ = {(x, y, wx,y)} , and output a
stochastic hypothesis f that attempts to minimize

∑
(x,y)wx,yf(y|x).

• An integer T specifying the number of iterations to be performed.
1. Set S′ =

{
(x, y)|(x, ~C) ∈ S, y ∈ Y

}
.

2. Initialize H0 by ∀x ∈ X, y ∈ Y H0(y|x) = 1/k.
3. For t:=1 to T Do

(a) wx,y = Ht−1(y|x)p−1Cx,y for all (x, y) in S′.
(b) St = {(x, y, wx,y)|(x, y) ∈ S′} .
(c) Let ft := A(St).
(d) Choose αt ∈ [0, 1)
(d) Set Ht := (1− αt)Ht−1 + αtft.

4. End For
5. Return HT .

Figure 2: Method Lp-CSB-A (Abstracted view of Cost Sensitive Boosting with p-norm Loss).

Here Eq. 8 follows from the fact that h is stochastic and hence 1−h(x, y∗) =
∑

y 6=y∗ h(x, y). Now
if one sets wx,y = w̃x,y +

∑
y′ 6=y∗ w̃x,y′ for (x, y) ∈ B, the right-hand side of Eq. 9 equals lw(h),

since for all x ∈ X wx,y∗ = 0. Now setting wx,y = w̃x,y +
∑

y′ 6=y∗ w̃x,y′ for all (x, y) ∈ B implies
w̃x,y = wx,y − 1

k

∑
y′ 6=y∗ wx,y′ for (x, y) ∈ B, since

∑
y′ 6=y∗ w̃x,y′ = 1

k

∑
y′ 6=y∗ wx,y′ .

3.3.3 Lp-Cost Sensitive Boosting with Pseudo-Loss Adjustment

Proposition 3.1 naturally suggests an alternative method, Lp-CSB-PA (Cost Sensitive Boosting with
p-norm Loss and Pseudo-loss Adjustment), which is similar to Lp-CSB but where the weights wx,y

are replaced by w̃x,y, and stochastic hypotheses are required.

Note that, for the linear loss (p = 1), the weights w̃x,y are identical to those of the “Average Cost”
method due to Margineantu [8]. Also, when p = 2, that is under squared loss, the weights become

w̃x,y = Ht−1(y|x)Cx,y − 1
k

CHt−1(x),

where
CHt−1(x) =

∑

y∈Y

Ht−1(x, y)Cx,y.

These weights are remarkably similar (though different) to the weighting scheme of the GBSE-t
algorithm [1] in the sense that for each sample (x, y) both weighting schemes involve relating the
cost at (x, y) to the average cost incurred by the current hypothesis at x divided by the number of
classes.

Notice that the weights w̃x,y can be negative, which implies that the component learner is asked to
minimize weighted misclassification with positive and negative weights. This is a perfectly valid
optimization problem, but implementing it using a standard weak learner requires a transformation:
converting each example ((x, y), 1, w′x,y) for which w′x,y < 0 into ((x, y), 0,−w′x,y).

4 Convergence Analysis

For simplicity we consider the “abstracted” version of our methods depicted in Figure 2, which is
expressed in terms of the original optimization problem stated in Eq. 4. Denote by F the class of
base hypotheses and by H the set of convex combinations of hypotheses in F .

At each round t, the new hypothesis ft returned by the weak learner attempts to minimize∑
x,y wx,yf(y|x), with wx,y = Ht−1(y|x)p−1Cx,y. The following theorem characterizes conver-

gence in terms of the relative performance of the selected weak hypothesis in completing that task
compared to that of the current composite hypothesis Ht−1.
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Theorem 4.1. Consider the method Lp-CSB-A. Assume that at each iteration t the new hypothesis
ft returned by the weak learner is such that

∑
x,y

wx,y (ft(y|x)−Ht−1(y|x)) ≤ −εt,

with εt ≥ 0. Pick

αt = −
∑

x,y pHt−1(y|x)p−1Cx,y(ft(y|x)−Ht−1(y|x))
M‖ft −Ht−1‖2 , (10)

where M = supx∈X,y∈Y Cx,yp(p−1)(2p−2). Then the algorithm converges to the global minimum
of the cost L over H.

Proof. Notice that L is Lipschitz differentiable with Lipschitz constant M, i.e. ‖∇L(H2) −
∇L(H1)‖ ≤ M‖H2 −H1‖, for all H1, H2 in H. Hence

L((1− α)H + αf)− L(H) = L(H + α(f −H))− L(H)

≤ α〈∇L(H), f −H〉+
Mα2

2
‖f −H‖2,

where the inequality is obtained by applying Lemma 3 of [10]. This upperbound can be optimized
by setting:

α = −〈∇L(H), f −H〉
M‖f −H‖2 .

We thus have for this choice of α

L((1− α)H + αf)− L(H) ≤ −1
2
〈∇L(H), f −H〉2

M‖f −H‖2

≤ −1
8
〈∇L(H), f −H〉2

M
, (11)

where the last inequality follows from the fact that ‖f − H‖2 ≤ 4, since H and f are defined on
[0, 1].
Combining Eq. 11 and Eq. 3 we obtain

L(Ht)− L(Ht−1) ≤ −p

8M

(∑
x,y

wx,y (ft(y|x)−Ht−1(y|x))

)2

,

with wx,y = Ht−1(y|x)p−1Cx,y. Hence

L(Ht)− L(Ht−1) ≤ −p

8M
ε2t . (12)

Assume that if at a certain round t′
∑

x,y wx,y (ft′(y|x)−Ht′−1(y|x)) = 0 (i.e. εt′ = 0) then the
algorithm returns Ht′−1 for all t ≥ t′. Since L is lower bounded, this and Eq. 12 imply that the
sequence Ht converges to an accumulation point H . We conclude by using the proof of Theorem 6
of [10], which shows that any such accumulation point has minimum cost L over H.

The weak learning assumption required by the theorem is reasonable as ft is specifically picked as
an attempt to minimize

∑
x,y wx,yf(y|x), while Ht−1 is not, and hence it is reasonable to expect the

former to outperform the latter. Note that the weak learning assumption is similar to what is asked
of the weak learner in MarginBoost.L1 [10], in the sense that it involves the weighted average of the
difference between current composite classifier and weak hypothesis.

The next theorem considers approximate minimization of
∑

(x,y) wx,y (ft(y|x)) over the prescribed
class F of weak hypotheses as the weak learning condition, and provide some convergence rates for
the Lp-CSB-A procedure.
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Theorem 4.2. Assume that at each iteration t of the algorithm Lp-CSB-A the component learner
returns hypothesis ft such that

∑

(x,y)

wx,yft(y|x) ≤ inf
f

∑

(x,y)

wx,yf(y|x) + εt, (13)

where εt ≤ M
2(t+1)2 . Pick αt as in Eq. 10. Then for all t > 0 we have for Ht obtained by Lp-CSB-A

that

L(Ht)− inf
H∈H

L(H) ≤ 9M

(t + 2)
, (14)

where M = supx∈X,y∈Y Cx,yp(p− 1)(2p−2).

Proof. From the proof of Theorem 4.1, we have

L((1− α)H + αf)− L(H) ≤ −1
8
〈∇L(H), f −H〉2

M
. (15)

By convexity of L, −〈∇L(H), f −H〉 ≥ L(H)− L(f).
Thus

sup
f∈H

−〈∇L(H), f −H〉 ≥ sup
f∈H

L(H)− L(f). (16)

Using Eq. 3 and Eq. 5, notice that the weak learning assumption of Eq. 13 is equivalent to assuming
that ft+1 is such that

−〈∇L(Ht), ft+1 −Ht〉 ≥ sup
f∈F

−〈∇L(Ht), f −Ht〉 − pεt+1

= sup
f∈H

−〈∇L(Ht), f −Ht〉 − pεt+1, (17)

for some εt+1 ≥ 0. Here we used the fact that the supremum of a linear function over a convex
polygon is achieved at one of the vertices. Let L+(H) = L(H)− inff∈H L(f). Combining Eq. 15,
Eq. 16 and Eq. 17 leads to

L+(Ht+1) ≤ L+(Ht)− 1
8M

(L+(Ht))2 +
2pεt+1

8M
(L+(Ht))−

p2ε2t+1

8M

≤ L+(Ht)− 1
8M

(L+(Ht))2+2εt+1, (18)

where the last inequality follows from the fact that L+(Ht) ≤ 4
p−1M, since it can easily be show

that |L(a)− L(b)| ≤ p2p−1|a− b|, for a, b ∈ [0, 1]. An upperbound for L+(Ht+1) can be obtained
by maximizing the right hand side of Eq. 18 with respect to L+(Ht). We obtain

∀t ≥ 0 L+(Ht+1) ≤ 2M + 2εt+1. (19)

The remainder of the proof consists in showing that Eq. 14 holds for all t. We do so by induction
similarly to the proof of Theorem IV.2 in [17]. For t = 1 Eq. 19 implies L+(H1) ≤ 2M + 2ε1 ≤
2M + M

4 < 9M
3 . Assume that L+(Ht) ≤ 9M

t+2 . Note that the function x → x− x2

8M is increasing on
[0, 4M ], and that L+(Ht) ≤ 9M

t+2 ≤ 4M . Thus using Eq. 18, we get

L+(Ht+1) ≤ 9M

t + 2
− 1

8M

81M2

(t + 2)2
+

M

(t + 2)2

=
9M

t + 2
− 73M

8
1

(t + 2)2
≤ 9M

t + 3
.
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Data Set AdaBoost AdaCost CSB2 Linear Loss Sq Loss
Splice 34.62± 5.0 36.03± 3.4 527.62± 3.1 34.85± 2.1 31.31± 1.9
Anneal 3086.18± 201.4 1964.48± 152.9 2231.52± 473.6 26.57± 2.8 24.62± 3.2

Sat 124.44± 7.1 94.32± 8.8 366.26± 16.9 84.22± 6.3 77.32± 5.5
Flare 6030.33± 360.0 6030.33± 360.0 3710.4± 943.6 26.71± 8.5 15.99± 1.2
Letter 619.07± 28.5 613.89± 27.56 614.45± 25.11 621.35± 27.07 549.85± 64.38

Pendigits 41.9± 2.4 72.04± 6.2 68.44± 8.8 47.74± 2.3 35.27± 1.7
Segment 26.88± 2.0 48.94± 5.9 109.55± 5.2 30.58± 1.9 16.05± 1.6
Thyroid 310K ± 36K 311K ± 37K 5778± 2395 139.75± 36.6 99.48± 18.2

Table 1: Results for comparison methods and the proposed method (with Squared Loss) on the
multi-class datasets with the class frequency cost model: the average cost and standard error.

Data Set Linear Loss Sq Loss Cub Loss Quad Loss 5th Loss
Splice 34.85± 2.1 31.31± 1.9 30.11± 1.8 30.40± 2.0 31.04± 1.6
Anneal 26.57± 2.8 24.62± 3.2 23.94± 3.2 29.12± 4.1 26.83± 3.1

Sat 84.22± 6.3 77.32± 5.5 72.68± 6.1 73.25± 6.0 73.31± 5.7
Flare 26.71± 8.5 15.99± 1.2 15.99± 1.2 15.11± 1.1 15.09± 1.1
Letter 621.35± 27.07 549.85± 64.38 609.47± 28.07 610.99± 29.15 612.57± 28.29

Pendigits 47.74± 2.3 35.27± 1.7 32.76± 1.7 30.85± 1.7 30.66± 1.7
Segment 30.58± 1.9 16.05± 1.6 16.06± 2.9 19.05± 2.4 14.95± 2.3
Thyroid 139.75± 36.6 99.48± 18.2 109.54± 9.3 139.61± 36.6 125.99± 24.7

Table 2: Results for the proposed methods with various p-norm losses on the multi-class datasets
with the class frequency cost model: the average cost and standard error.

5 Experiments

We conducted systematic experiments to compare the performance of the proposed methods with a
number of existing algorithms: AdaBoost.M2 with cost-sensitive weight initialization, AdaCost and
CSB2,2 using multi-class data sets from the UCI repository.

All of our experiments were run using randomly generated cost matrices, where we basically fol-
lowed one of the the cost matrix generation procedures considered in [3], with modifications em-
ployed in [1]. In our cost model, which we call the class frequency cost model, the rare classes tend
to be assigned proportionally higher costs than the frequent classes.

As data sets, we elected to use those data sets from UCI ML data repository [2] that (i) are multi-class
data sets; and (ii) have a large enough data size (exceeding approximately 1,000). As the “weak”
learner, we use the weka j48 implementation of C4.5 in all of our experiments [11, 14]. Other details
of the experimental procedures can be found in [7].

Table 1 and Table 2 summarize the results or our experiments, giving the average test set cost and
standard error for each of the 8 data sets, and for each of four methods considered.3 Table 1 compares
the average costs of all comparison methods, including a generalization of the costing algorithm (Lp-
CSB with p = 1), with Lp-CSB with squared loss as the representative of the proposed family of
methods. From these results, it appears convincing that the Lp-CSB family of boosting methods
out-perform all of the comparison methods we consider. It is interesting to note that the linear
case (generalization of costing) does not consistently outperform AdaBoost. We need the squared
loss or higher p-norm, which both correspond to boosting weights that vary over iterations, to do
so. Table 2 compares the performance of the Lp-CSB family for different values of p. It is seen
that for many datasets, the performance continues to improve for higher values of p, which is what
would be expected by our motivation to approximate the objective cost function by a convex p-norm
functional.

2We refer the reader to [7] for the detailed description of the comparison methods we use.
3In these and subsequent tables, the figures that correspond to best performance are shown in bold font.
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6 Concluding Remarks

We have proposed a novel family of cost-sensitive boosting methods based on p-norm cost func-
tionals and the gradient boosting framework. Our theoretical development provides a framework to
interpret a variety of existing methods of cost-sensitive learning and their variants. In addition, we
have provided empirical evidence that our approach can lead to excellent performance in practice,
as the proposed family of methods outperforms representative algorithms on benchmark data sets.
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