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Aur élie C. Lozano
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
aclozano@us.ibm.com

Abstract

In this review, we will introduce the audience to the notion of boosting, which has
become one of the most successful techniques in machine learning and statistical
modeling today. We will review its historical origin in computational learning the-
ory, as well as more recent developments that relate it to other notions in statistics
(e.g. gradient boosting), and discuss some recent theoretical developments. We
will also touch upon its wide usage and successes in practical applications.

1 Introduction: Origin of Boosting

We will begin with some historical perspective on boosting.Boosting has its origin in the branch of
computer science known as “computational learning theory.” Computational learning theory is an
attempt to formalize learning problems, develop and analyze performance of learning algorithms,
and characterize the computational complexity of learningproblems. The phenomenon of learning
is complex and the subject matter is related to many other disciplines, making the field of com-
putational learning theory a rich and diverse inter-disciplinary field, rather than a mere branch of
computer science. There are many related fields of study, most of which predate computational
learning theory, such as statistics, inductive inference and information theory.

Even with so many related fields, there is still a defining characteristic of this field, which distin-
guishes it from the others, and that is the emphasis it placeson the computational aspects of learning.
The field takes the issue of computational complexity more seriously than perhaps any of its parent
fields. This is a point worth emphasizing, since in a sense, the invention of “boosting” has much to
do with this aspect.

Although some very interesting bodies of work had existed – most notably on learning formal lan-
guages using queries by Angluin [1], and the inductive inference in the limit paradigm of Gold [18]
– it was not until Valiant’s proposal of the so-called “PAC Learning Model” [31], that this area
of study picked up significant interest and popularity. It isprobably fair to say that Valiant’s PAC
learning model is the first model that made a significant progress towards integrating statistical and
computational views on learning into a single mathematicalframework. Since PAC learning model
is so pivotal to the development of the boosting theory, we will review its definition below.

In the subsequent description, we will focus on the problem of binary classification as is done in the
original PAC learning model. That is, the target function tobe learned is a functionf from some
domainX into {−1,+1}. The learner’s goal is to find a hypothesish that approximates this target
functionf , given access to some feasibly small set of training dataS = {(xi, f(xi))|i = 1, ...,m},
where each datumxi is assumed to be drawn i.i.d. from a fixed but unknown distributionD over the
domainX.

Definition 1 A learning algorithmA is a (strong) PAC learning algorithm for a class of functions
F , if for any target functionf ∈ F , for any distributionD, for anyǫ > 0, for anyδ > 0, given an
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input training data setS for f of size exceedingp( 1
ǫ , 1

δ , s) for some polynomialp, with probability
at least1 − δ, A outputs a hypothesish with classification error at mostǫ, namely

Pr{ED[h 6= f ] ≤ ǫ} ≥ 1 − δ

with computation time polyomial in1ǫ , 1
δ and s, wheres is a measure of complexity of the target

functionf .

Given the above definition, one can then identify a learning problem with a class of target functions,
and define the computational complexity of a learning problem using bounds on the computation
time and sample size for all of the target functions in the class, using some fixed learning algorithm.
In particular, a class of target functions is said to bePAC-learnableif and only if its complexity is
bounded above by a polyonomial.

The most notable aspect of this model is the way it unifies the statistical complexity (sample size
required for desired predictive accuracy) with the computational complexity aspect (computation
time required to achieve the same), as a function of the common parameters,ǫ, δ, ands. Exten-
sive theoretical study has been carried out using this modelas the formal framework, and many
interesting results were obtained [2]. The early results obtained, however, were mostly negative –
it was established using some cryptographic assumptions that many subclasses of boolean functions
are not PAC learnable, and the learnability of the most representative class, DNF, is still an open
problem. As an attempt to obtain positive results, Kearns and Valiant [21] introduced the notion
of “weak learnability”, one that relaxes the “probably approximately correct” aspect of the PAC
learning model to a definition that insists only a “slightly better than random” classification. More
precisely, a weak learning algorithm is defined as follows.

Definition 2 A learning algorithmA is a weakPAC-learning algorithm for a class of functionsF ,
if for any target functionf ∈ F , for any distributionD, and for anyδ > 0, given a training setS
for f of size exceedingp1(s,

1
δ ) for some polynomialp1, with probability at least1− δ, A outputs a

hypothesish with classification error at most12 − 1/p2(s) for another polyonomialp2, namely,

Pr{ED[h 6= f ] ≤ 1

2
− 1

p2(s)
} ≥ 1 − δ

with computation time polyomial in1δ ands, wheres is a complexity measure of the target function
f .

The idea was to investigate into a general algorithmic mechanism that can be used to transform a
weak learing algorithm into a (strong) PAC learning algorithm. (The existence of weak learning
algorithms could be established easier for some target function classes.) Schapire provided the first
“boosting algorithm”, which indeed was able to convert any weak learning algorithm into a strong
one. The technique he used in his original boosting procedure was quite unlike any other learning
algorithm: it was to change the distribution over the examples in each iteration, feed the resulting
sample into the weak learner, and then combine the resultinghypotheses into a voting ensemble,
which, in the end, would have a boosted classification accuracy, as compared to the component
learning procedure. His technique established the following theorem.

Theorem 1 ([29]) A class of target functions is (strongly) PAC-learnable if and only if it is weakly
learnable.

The original boosting procedure of Schapire was a means to proving this theorem, and did not
provide a method for practical use for a number of reasons. One of them was that the algorithm
consisted of a process that boosts the accuracy by combining3 calls to the weak learning algorithm,
and hence the process had to be iterated to result in a complexhierarchical hypothesis. Another
weakness was that it had to be given the value ofγ of the component weak learning algorithm
apriori, for it to work properly.

2 Practice and Success

When Freund and Schapire came up with AdaBoost, the first practical boosting algorithm, they had
resolved both of these weaknesses. AdaBoost is a simple and elegant procedure that simply keeps

2



AdaBoost
Given(x1, y1), . . . , (xm, ym), wherexi ∈ X, yi ∈ {−1,+1}

1. Initialize the weightsd(1)(i) = 1/m

2. Fort = 1, . . . , T :

(a) Fit a base classifierht(x) to the training data using weightsd(t)(i)

(b) Compute

ǫt =
m
∑

i=1

d(t)(i)I(yi 6= ht(xi))

(c) Computeαt = 1
2 ln ((1 − ǫt)/ǫt)

(d) Update

d(t+1)(i) =
d(t)(i) exp(−αtyiht(xi))

Zt
,

whereZt is a normalization factor.

3. Output the final classifier:H(x) = sign
(

∑T
t=1 αtht(x)

)

Figure 1: The AdaBoost algorithm

a weighting function on the input training data, which are updated in each iteration using a simple
update formula and then the final hypothesis was obtained using a weighted average of the output
hypotheses. The complete AdaBoost algorithm is given in Figure 1.

In their original paper in which AdaBoost was introduced, they provided a performance guarantee,
which among other things, established that AdaBoost indeedwas a “boosting algorithm”, which
converts an arbitrary weak learner into a strong PAC learner. Here we quote their theorem (Theorem
5, [14]).

Theorem 2 ([14]) Suppose that the weak learning algorithm, when called by AdaBoost, generates
hypotheses with errorsǫ1, ..ǫT . Then the errorǫ of the final ensemble hypothesisht output by
AdaBoost is bounded above by

ǫ ≤ 2T
T
∏

t=1

√

ǫt(1 − ǫt)

This theorem not only established the boosting property of AdaBoost, but it also shows that the
algorithm is adaptive, in the sense that any advantage that the weak learner happens to achieve over
random guessing can be leveraged, without the prior knowledge of the edge as was needed by earlier
boosting methods. This was one of the key factors, in addition to the simplicity of the algorithm, that
made AdaBoost practically useful. Subsequent studies haveshown that AdaBoost, when combined
with appropriate weak learners such as decision tree algorithms (e.g. C4.5) achieved the state-of-
the-art accuracy in numerous bench mark classification tasks. (c.f. [13].)

While the performance guarantee given for AdaBoost in terms of boosting ability was satisfactory, it
did not completely explain some of the desirable propertiesof AdaBoost, particularly with regard to
its ability to generalize, or its predictive accuracy on unseen test data sets. The PAC learning frame-
work provided a general theorem stating that, for any restricted class of target functions, predictive
accuracy on the training data tarnslates well to that on the test data, the general theorem did not fully
explain the excellent performance of AdaBoost in practice.In particular, practitioners noticed that,
even after AdaBoost attained a perfect predictive accuracyon the training data set, its accuracy on
the test data kept improving.

Schapire, Fruend, Bartlett and Lee [30] provided the first account for this phenomenon, in terms
of the notion of “margin.” The margin is a measure of “confidence” of a clsasifer’s prediction,
formerly defined as−y · f(x), wherey is the true label (+1 or -1) andf(x) is the predicted score,
in the continuous range of−1,+1]. For boosting, the final ensemble hypothesis takes a weighted
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voting by the weak learner’s hypotheses, each predicting either +1 or -1 on each data pointx, and
hence the weighted average will be in the range−1,+1], with values close to±1 indicating a higher
degree of agreement among the weak learners, and hence higher confidence.

Schapire et al’s theorem from [30], in one version, is repeated below.

Theorem 3 ([30]) Suppose the classH of weak hypotheses has VC-dimensiond, and thatm ≥ d ≥
1. Then, with probability at least1 − δ, every weighted ensemblef overH satisfies the following
bound for allθ > 0

P [yf(x) ≤ 0] < P [yf(x) ≤ θ] + O(
1√
m

(
d log2(m/d)

θ2
+ log(1/δ))1/2)

This theorem can be interpreted as saying that the predictive accuracy will be improved, as its con-
fidence (margin) improves, upto statistical variations. They then show that AdaBoost is indeed
guaranteed to increase the margin, given the same “weak learning” assumptions as before, com-
pleting an explanation for the fact that AdaBoost’s generalization tends to improve, even after its
training data has reached zero and stabilized.

Theorem 4 ([30]) Suppose that the weak learning algorithm, when called by AdaBoost, generates
hypotheses with errorsǫ1, ..ǫT . Then for anyθ we have that

P [yf(x) ≤ 0] < P [yf(x) ≤ θ] ≤ 2T
T
∏

t=1

√

ǫ1−θ
t (1 − ǫt)1+θ

These theorems provided early account for the impressive performance that many empiricists found
on AdaBoost’s predictive performance in practice. Indeed,starting with Freund and Schpire’s
early experimental work [13], in which consistent advantage of AdaBoost over a popular ensemble
method known as Bagging proposed by the prominent statistician, Leo Breiman [5], among other
competing methods, were repeated in many application areas. Figure 2 shows some representative
experimental results, due to [13], which show this clearly.
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Figure 2: Comparison of Boosting versus Bagging for severalweak learners [13]
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Forward Stagewise Additive Modeling

1. Initializef0(x) = 0

2. Fort = 1 to T :

(a) Compute

(βt, γt) = arg min
β,γ

m
∑

i=1

φ (yi, fm−1(Xi) + βb(xi; γ))

(b) Setft(x) = ft−1(x) + βtb(x; γt).

Figure 3: Forward Stagewise Additive Modeling

3 Recent Developments

3.1 The Statistical view of Boosting

A major theoretical advance towards the understanding of boosting’s success is due to Friedman et
al. [17], who showed that AdaBoost can be seen as minimizing the exponential loss by stage-wise
fitting of additive models.

Additive modeling forms a prediction function as a basis function expansion:

f(x) =
T
∑

t=1

βtb(x; γt),

whereβt ∈ R are expansion coefficients, andb(x; γ) are some simple functions of the argumentx
depending on some parameterγ. Such models are fit to the training data by minimizing an empirical
cost, i.e., the average over the training set of a loss function:

min
{βt,γt}

T

1

m
∑

t=1

φ

(

yi,

T
∑

t=1

βtb(xi, γt)

)

. (1)

An example of a common loss function is the squared errorφ(y, f(x)) = (y − f(x))
2
.

As solving (1) is computationally intensive, finding an approximate solution is pursued. This is
accomplished by forward stagewise additive modeling, which consists in adding one coefficient and
one parameter at a time in a greedy fashion, i.e., without adjusting the coefficients and parameters
previously added. The algorithm is depicted in Figure 3.

Specifically, the AdaBoost algorithm is equivalent to the forward stagewise additive modeling al-
gorithm of Figure 3 if one setsφ(y, f(x)) = exp(−yf(x)) and lets the simple functionsb(x; γt)
correspond to the weak hypothesisht(x). This view leads to the derivation of additional boosting
algorithms based on various loss functions (e.g. logistic loss, squared loss, etc.) and to the consider-
ation of boosting as a greedy stagewise procedure that minimizes a convex loss function empirically.
Let z = yf denote the margin of a predictionf . Examples of loss functions are the Logistic Loss:
ln(1+z); the Exponential Loss:exp(−z); the Least Squares:12 (z−1)2; the modified Least Squares:
1
2 max(1 − z, 0)2; thep-norm Loss:|z − 1|p, p ≥ 2. These are represented in Fig. 4 along with
the indicator of misclassification (I(z ≤ 0)) of which these loss functions can be viewed as convex
approximation. Notice that the loss functions listed here can all be transformed into upper bounds of
the indicator of misclassification through scaling by a positive factor. Considering loss functions that
are convex surrogate of the indicator of classification leads to computationally tractable procedures.

The statistical view proposed by Friedman et al has been instrumental in further developments of
boosting theory and techniques, since it has led to the generalization of boosting to various loss func-
tions, as well as its extension to the regression setting (e.g. [8]), and it has also enabled significant
progress in understanding of the success of boosting methodology. In the next section, we choose
to focus on a key theoretical question, of whether or not the boosting algorithm enjoys the so-called
“Bayes consistency.”
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Figure 4: Example of loss functions for binary classification. Fory ∈ {±1} and a predictionf ,
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squares:12 (z − 1)2; modified least squares:12 max(1 − z, 0)2; p-norm: |z − 1|p, p ≥ 2,; and
misclassification:I(z ≤ 0).

3.2 Consistency Results

We first recall the definition of Bayes consistency. Given a training set of sizem, denote byhm

the classifier constructed by a certain learning method. Theperformance ofhm is evaluated by the
classification error, which is the probability of misclassifying a new example

L(hm) = P {hm(x) 6= y} .

For a given distributionD, the classifier with smallest error is called theBayes classifierand is
defined by

h∗(x) =

{

1 if η(x) > 1/2
−1 otherwise.

)

,

whereη(X) is the true class conditional probability, i.e.,

η(x) = P(y = 1|x).

The corresponding misclassification error, which is the minimum probability of error, is called the
Bayes errorand is given by

L∗ = E min(η(X), 1 − η(X)).

A learning method is called Bayes consistent if as the training sample size increases the error of the
resulting classifiers approaches the Bayes error.
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Definition 3 ([12], Definition 6.1) A classification rule isconsistentfor a certain distributionD
if EL (hn) = P {hn (X) 6= Y } → L∗ asn → ∞. It is strongly Bayes-risk consistentif
limn→∞ L (hn) = L∗ almost surely.

The question of whether boosting methods achieve Bayes-consistency then arises, since minimizing
an empirical loss function does not necessarily imply minimizing the generalization error. When
run a very long time, boosting algorithms, though resistant, are not immune to overfitting [19, 17].
There exist cases when running a boosting algorithm “forever” leads to a prediction error larger than
the Bayes error in the limit of infinite sample size. Consequently, one approach for the study of
consistency is to analyze how the prediction errorL (Boosting(m, t)) for sample sizem evolves
with the number of roundst in order to see whether the algorithm is process consistent,i.e. whether

lim
m→∞

inf
t∈{1,2,3,...}

L (Boosting (m, t)) = L∗,

whereL∗ is the Bayes error. This strategy suggests stopping the boosting procedure early to achieve
consistency. This approach was adopted by Bartlett & Traskin [4] who showed that if AdaBoost is
stopped afterm1−ǫ iterations, wherem is the sample size, Bayes consistency is achieved. Earlier
consistency studies under the early stopping strategy include [20, 7, 34].

An alternative approach is to modify the boosting algorithms by imposing some constraints on the
weights of the composite classifier to avoid overfitting. In these regularized versions of boosting,
the 1-norm of the weights of the base classifiers is restricted to a fixed value. The minimization of
the loss function is performed over the restricted class. This approach is adopted by [23, 24, 25]. A
similar approach is to add a penalty term to the cost for complexity regularization such as [3] in the
context of regression, and [33] where a kernel formulation is considered whose penalty function is
the square norm of the composite classifier.

3.3 Resistance to Overfitting: The margin theory revisited

The statistical view of boosting offers an insightful perspective but has its limitations, as illustrated
very recently in [26]. Specifically, such view fails to shed light on boosting’s remarkable resistance
to overfitting.

The “margin theory” offers a complementary view, and explains boosting’s resistance to overfitting
by the fact that boosting tends to maximize the margins of thetraining examples (and hence the
confidence of the composite classifier on its decisions), andthat such increase results in improving
the performance on test data even if the number of iterationsis large. Breiman [6] subsequently
challenged this justification by proposing a boosting algorithm, arc-gv, that leads to larger margins
than AdaBoost but exhibit worse performance. However Reyzin & Schapire [28] showed that the
poorer performance of Breiman’s algorithm is due to the increased complexity of the base classifiers,
and that this is in agreement with the margin theory.

3.4 Boosting for high-dimensional data

Many recent application areas of machine learning involve data with increasing number of fea-
tures. Boosting performs very well in high dimensions. An intriguing question is why? Empirical
evidence was reported in [8]. Bühlman [10] subsequently stated his belief that it is mostlyfor
high-dimensional data that boosting offers a major advantage over classical methods. Further exper-
imental results were provided to back such statement, as well as a consistency result forL2Boosting
under very high-dimensional linear models, where the number of features can grow asO(exp(m),
wherem is the sample size. It was suggested in [9] that a possible explanation for the success of
boosting with high-dimensional data is in the way boosting seems to perform variable selection over
its iterations intelligently, when given a base learner that does variable selection itself. Whether this
variable selection process of boosting is performed in an optimal way, in some well-defined sense,
remains an open question.

3.5 Boosting and Bregman Divergence

Another insightful view of boosting comes from relating it to bregman distances. Kivinen and
Warmuth [22] demonstrated that boosting can be seen as preforming entropy projection, and Collins
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et al [11] showed that boosting and logistic regression can be unified by casting them as special cases
of optimization of bregman distances. These interpretations served as a basis for the derivation of
new boosting variants, most notably theU -boost algorithms proposed by Murata et al [27].

The various theories on boosting illuminate several aspects of boosting’s success, but many aspects
of the remarkable efficiency of boosting procedures are still mysterious. The connections between
statistical, information-theoretic, optimization-theoretic and computational aspects is a distinguish-
ing feature of boosting and we believe that neither aspect should be overlooked.
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[10] P. Bühlmann, “Boosting for high-dimensional linear models,” Annals of Statistics 34, 559-583, 2006.

[11] M. Collins, R.E. Schapire, and Y. Singer, ”Logistic Regression, Adaboost and Bregman distances,” in
Proc. COLT, San Francisco, 2000.
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