Abstract: An anisotropic surface energy is the integral of an energy density that depends on the normal at each point over the considered surface, which is a generalization of the area of surfaces. The minimizer of any such an energy among all closed surfaces enclosing the same volume is unique and it is (up to rescaling) so-called the Wulff shape. When the Wulff shape is a polyhedron, local minimizers for volume-preserving variations serve as a mathematical model of single crystals, and problems on such surfaces are called crystalline variational problems. In crystalline variational problems, the energy density function is not differentiable at the points corresponding to the faces and edges of the Wulff shape, and equilibrium surfaces also have singular points such as edges and vertices. These facts make it impossible to apply the standard variational methods to crystalline variational problems. In this talk, by using “multi-valued Gauss map” and “multi-valued Cahn-Hoffman field”, we show some results on the uniqueness for local minimizers of crystalline variational problems. This is joint work with Dr. Kento Okuda (IMI).
聴講方法については, 下記連絡先まで, お問い合わせ下さい.
連絡先:
Daniel Gaina ( daniel@imi.kyushu-u.ac.jp )
〒819-0395
福岡市西区元岡744番地
TEL:092-802-4402
FAX:092-802-4405
(数理・MI研究所事務室)
IMI(マス・フォア・インダストリ研究所)
共同利用・共同研究拠点
セミナー
![]() |
リスト | ![]() |
全て(掲示受付分)(1961) | ![]() |
今日・明日のセミナー(2) |
Uniqueness of local minimizers for crystalline variational problems
![]() |
開催時期 | 2021-04-13 12:00~2021-04-13 13:00 |
![]() |
場所 | Zoomによるオンライン開催 |
![]() |
受講対象 | 研究者・大学院生 |
![]() |
講師 | 小磯 深幸 (マス・フォア・インダストリ研究所) |