講演要旨:
We consider the linear thermoelastic plate equation with free boundary conditions. It can be shown that this equation in sufficiently smooth domains is uniquely solvable in $L^p$-Sobolev spaces (i.e., it has maximal regularity) and that the associated first-order system generates and analytic semigroup. The proof is based on careful symbol estimates for the solution operators. We also discuss the situation for structurally damped plate equations and partial damping.
The talk is based on joint results with Yoshihiro Shibata (Tokyo),
Roland Schnaubelt (Karlsruhe), and Felix Kammerlander (Konstanz).
〒819-0395
福岡市西区元岡744番地
TEL:092-802-4402
FAX:092-802-4405
(数理・MI研究所事務室)
IMI(マス・フォア・インダストリ研究所)
共同利用・共同研究拠点
セミナー
![]() |
リスト | ![]() |
全て(掲示受付分)(1778) | ![]() |
今日・明日のセミナー(0) |
$L^p$-theory for linear plate equations: maximal regularity and generation of semigroups
![]() |
開催時期 | 2019-04-02 16:00~2019-04-02 17:00 |
![]() |
場所 | 九州大学 伊都キャンパス ウエスト1号館 中セミナー室 W1-D-610 |
![]() |
受講対象 | |
![]() |
講師 | Robert Denk (University of Konstanz) |