Time periodic problem for the compressible Navier-Stokes equation on \mathbb{R}^2 with antisymmetry

Kazuyuki Tsuda

MI 2016-7

(Received May 6, 2016)
Time periodic problem for the compressible Navier-Stokes equation on \mathbb{R}^2 with antisymmetry

Kazuyuki TSUDA
Fukuoka Institute of Technology,
Fukuoka 811-0295, JAPAN

Abstract
The compressible Navier-Stokes equation is considered on the two dimensional whole space when the external force is periodic in the time variable. The existence of a time periodic solution is proved for sufficiently small time periodic external force with antisymmetry condition. The proof is based on using the time-T-map associated with the linearized problem around the motionless state with constant density. In some weighted L^1 and Sobolev spaces the spectral properties of the time-T-map is investigated by a potential theoretic method and an energy method. The existence of a stationary solution to the stationary problem is also shown for sufficiently small time-independent external force with antisymmetry condition on \mathbb{R}^2.

Key Words and Phrases. compressible Navier-Stokes equation, time periodic solution, stationary solution, two dimensional case.

1 Introduction
We consider time periodic problem of the following compressible Navier-Stokes equation for barotropic flow in \mathbb{R}^2:

$$\begin{cases} \partial_t \rho + \text{div} (\rho v) = 0, \\ \rho (\partial_t v + (v \cdot \nabla) v) - \mu \Delta v - (\mu + \mu')\nabla \text{div} v + \nabla p = \rho g. \end{cases}$$

Here $\rho = \rho(x,t)$ and $v = (v_1(x,t), v_2(x,t))$ denote the unknown density and the unknown velocity field, respectively, at time $t \geq 0$ and position $x \in \mathbb{R}^2$; $p = p(\rho)$ is the pressure that is assumed to be a smooth function of ρ satisfying

$$p'(\rho_*) > 0,$$

for a given positive constant ρ_*; μ and μ' are the viscosity coefficients that are assumed to be constants satisfying

$$\mu > 0, \quad \mu + \mu' \geq 0;$$

and $g = g(x,t)$ is a given external force periodic in t. We assume that $g = g(x,t)$ satisfies the condition

$$g(x, t + T) = g(x, t) \quad (x \in \mathbb{R}^2, t \in \mathbb{R}),$$

(1.2)
for some constant $T > 0$. We also suppose that g has the form $g = \nabla \perp G := (\frac{\partial}{\partial x_2} G, -\frac{\partial}{\partial x_3} G)$, where $G(x, t)$ is a scalar function satisfying the following antisymmetry condition for $x \in \mathbb{R}^2$;

\[
\begin{align*}
G(-x_1, x_2, t) &= -G(x_1, x_2, t), \\
G(x_1, -x_2, t) &= -G(x_1, x_2, t), \\
G(x_2, x_1, t) &= -G(x_1, x_2, t).
\end{align*}
\] (1.3)

The antisymmetry condition (1.3) was used in the stationary problem for incompressible Navier-Stokes equation on \mathbb{R}^2 ([12]).

In this paper time periodic problem and stationary problem are considered for the compressible Navier-Stokes equation (1.1) on \mathbb{R}^2. Concerning the time periodic problem for (1.1) on the whole space, Ma, Ukai, and Yang [11] showed the existence and stability of a time periodic solution on \mathbb{R}^n with the space dimension $n \geq 5$. In [11] it was shown that if $g \in C^0(\mathbb{R}; H^{N-1} \cap L^1)$ with $g(x, t + T) = g(x, t)$ and g is sufficiently small, then there exists a time periodic solution $(\rho_{\text{per}}, v_{\text{per}})$ around $(\rho_*, 0)$, where $N \in \mathbb{Z}$ satisfying $N \geq n + 2$. It was also shown that for sufficiently small perturbations the time periodic solution is stable and it holds that

$$
\| (\rho(t), v(t)) - (\rho_{\text{per}}(t), v_{\text{per}}(t)) \|_{H^{N-1}} \leq C (1 + t)^{-\frac{n}{2}} \| (\rho_0, v_0) - (\rho_{\text{per}}(t_0), v_{\text{per}}(t_0)) \|_{H^{N-1} \cap L^1},
$$

where t_0 is a certain initial time and $(\rho, v)|_{t=t_0} = (\rho_0, v_0)$. Here the symbol H^k stands for the L^2-Sobolev space on \mathbb{R}^n of order k.

In [4] the time periodic problem on \mathbb{R}^n was investigated for $n \geq 3$. It was proved that if g satisfies the following condition for the space variable;

$$
g(-x, t) = -g(x, t) \quad (x \in \mathbb{R}^n, \ t \in \mathbb{R}),
$$ (1.4)

and g is sufficiently small in some weighted L^2 Sobolev space, then there exists a time periodic solution $(\rho_{\text{per}}, v_{\text{per}})$ for (1.1) around $(\rho_*, 0)$ and $u_{\text{per}}(t) = (\rho_{\text{per}}(t) - \rho_*, v_{\text{per}}(t))$ satisfies

$$
\sup_{t \in [0, T]} (\| u_{\text{per}}(t) \|_{L^2} + \| x \nabla u_{\text{per}}(t) \|_{L^2}) \\
\quad \leq C \{ (1 + |x|)g \| C([0, T]; L^1 \cap L^2) + \| (1 + |x|)g \| L^2(0, T; H^{s-1}) \},
$$

where s is an integer satisfying $s \geq \lceil n/2 \rceil + 1$. Moreover, $(\rho_{\text{per}}, v_{\text{per}})$ is asymptotically stable and it holds that

$$
\| (\rho(t), v(t)) - (\rho_{\text{per}}(t), v_{\text{per}}(t)) \|_{L^2} = O(t^{-\frac{n}{4}}) \quad \text{as} \quad t \to \infty
$$ (1.5)

for sufficiently small initial perturbations. In [10], the existence and stability of time periodic solution were proved for $n \geq 3$, without assuming the condition (1.4); it was shown that if g is small enough in some weighted L^∞ and L^2 Sobolev spaces then there exists a time periodic solution $(\rho_{\text{per}}, v_{\text{per}})$ around $(\rho_*, 0)$; and the time periodic solution is
stable under sufficiently small initial perturbation and the perturbation \((\rho - \rho_{\text{per}}, v - v_{\text{per}})\) satisfies
\[
\|(\rho(t) - \rho_{\text{per}}(t), v(t) - v_{\text{per}}(t))\|_{L^\infty} \to 0 \quad (t \to \infty).
\]
Concerning the stationary problem of (1.1), Shibata and Tanaka [8] showed the existence and stability of a stationary solution on \(\mathbb{R}^\delta\). They showed that if \(g = g(x)\) is small enough in some weighted \(L^\infty\) and \(L^2\) Sobolev spaces then there exists a stationary solution \((\rho^*, v^*)\) around the motionless state \((\rho_*, 0)\). Moreover, it was shown that for sufficiently small initial perturbations the stationary solution is stable and the perturbation \((\rho - \rho^*, v - v^*)\) satisfies
\[
\|(\rho(t) - \rho^*(t), v(t) - v^*(t))\|_{L^\infty} \to 0 \quad (t \to \infty).
\]
In [9], the convergence rate for (1.6) was studied and it was shown if the initial perturbation \((\rho(0) - \rho^*, v(0) - v^*)\) satisfies the estimate \(\|(\rho(0) - \rho^*, v(0) - v^*)\|_{H^3} \ll 1\) and \((\rho(0) - \rho^*, v(0) - v^*) \in L^6\) then
\[
\|(\rho(t) - \rho^*(t), v(t) - v^*(t))\|_{L^\infty} \leq C t^{-\frac{1+\delta}{2}} \quad (t \to \infty),
\]
where \(\delta\) is any small positive number.

To our knowledge there seems no existence result on time periodic (and stationary) problem for (1.1) on \(\mathbb{R}^2\).

In this paper we consider the existence of a time periodic solution for (1.1) on \(\mathbb{R}^2\) under (1.3). It will be proved that if \(g = \nabla^2 G\) satisfies (1.2), (1.3) and the estimate
\[
\|(1 + |x|)g\|_{C([0,T];L^1)} + \|(1 + |x|^3)g\|_{C([0,T];L^\infty)} + \|(1 + |x|^2)G\|_{L^2(0,T;H^s)} \ll 1
\]
for an integer \(s \geq 3\), then there exists a time periodic solution \(u_{\text{per}} = (\rho_{\text{per}} - \rho_*, v_{\text{per}}) \in C(\mathbb{R};L^\infty)\) for (1.1), with \(\nabla u_{\text{per}} \in C(\mathbb{R};H^{s-1})\) having time period \(T\) and \(u_{\text{per}}\) satisfies the estimate
\[
\sup_{t \in [0,T]} \left\{ \sum_{j=0}^{1} \|(1 + |x|^{1+j})\partial_x^j (\rho_{\text{per}} - \rho_*)(t)\|_{L^\infty} + \sum_{j=0}^{1} \|(1 + |x|^{1+j})\partial_x^j v_{\text{per}}(t)\|_{L^\infty} \right\}
\leq C \left\{ \|(1 + |x|^3)g\|_{C([0,T];L^\infty)} + \|(1 + |x|^2)G\|_{L^2(0,T;H^s)} \right\}.
\]
Furthermore, we obtain the existence of a stationary solution for the stationary problem of (1.1). It will be proved that if \(g = \nabla^2 G\) is time-independent and satisfies (1.3) and the estimate
\[
\|(1 + |x|)g\|_{L^1} + \|(1 + |x|^3)g\|_{L^\infty} + \|(1 + |x|^2)G\|_{L^\infty} + \|(1 + |x|^2)G\|_{H^s} \ll 1
\]
for an integer \(s \geq 3 \), then there exists a stationary solution \(u^* = (\rho^* - \rho_*, v^*) \in L^\infty \) with \(\nabla u^* \in H^{s-1} \) for the stationary problem for (1.1), and \(u^* \) satisfies the estimate

\[
\sum_{j=0}^1 \| (1 + |x|^{1+j}) \partial_j^2 (\rho^* - \rho_*) \|_{L^\infty} + \sum_{j=0}^1 \| (1 + |x|^{1+j}) \partial_x^j v^* \|_{L^\infty} \\
\leq C \{ \| g \|_{L^1_1} + \| (1 + |x|^3) g \|_{L^\infty} + \| (1 + |x|^2) G \|_{L^\infty} + \| (1 + |x|^2) \|_{H^s} \}.
\]

The existence of a time periodic solution is shown by using time-\(T \)-map concerned with the linearized problem around the constant state. We use a coupled system of equations for a low frequency part and high frequency part of solution as in [4]. Concerning the low frequency part, we apply the potential theoretic method similar to that in the study of the stationary problem [8] which controls spatial decay properties for a solution. The same method was used to study the time periodic problem in [10] for the space dimension \(n \geq 3 \). The main difference between the analysis in this paper and that in [10] is stated as follows. We denote by \(A_1 \) the linearized operator around \((\rho_*, 0)\) on the low frequency part. Then we estimate \((I - S_1(T))^{-1}\) in some weighted \(L^\infty \) space, where \(S_1 \) denotes the semigroup generated by \(A_1 \). In contrast to [10], since we consider the problem on \(\mathbb{R}^2 \), the integral kernel \((I - S_1(T))^{-1}\) behaves like \(O(\log |x|) \) as \(x \to \infty \), which is the same as the fundamental solution of the Laplace equation. More precisely, it follows from the spectral resolution that

\[
\mathcal{F}(I - S_1(T))^{-1} \sim -\frac{1}{T} \begin{pmatrix} \frac{\nu + \rho}{\nu \xi^2} & -\frac{\nu \xi}{\nu \xi^2} \\ -\frac{\xi^2}{\nu \xi^2} & \frac{1}{\nu \xi^2} \end{pmatrix} \frac{1}{\nu \xi^2} \begin{pmatrix} \frac{\nu \xi^2}{\nu \xi^2} - \frac{i \xi^2}{\nu \xi^2} \\ \nu \xi^2 \end{pmatrix} \quad \text{as} \quad \xi \to 0,
\]

where \(\mathcal{F} \) denotes the Fourier transform. Then the order \(\log |x| \) appears from the Stokes inverse in the right hand side of (1.7). This prevents us from controlling spatial decay properties for the convection term and the external force. To overcome this difficulty, since the slowly decaying order appears from the Stokes inverse, we introduce the antisymmetry condition which was used in the stationary problem for incompressible flow on \(\mathbb{R}^2 \) ([12]). Moreover, we use the following two key observations to estimate the convection term \(v \cdot \nabla v \).

The one is concerned with the formulation for the low frequency part. Due to the slow decay of \(v \) at spatial infinity, for the law frequency part we formulate the equation not only using the conservation form with the momentum as in [10] but also rewriting the convection term into a sum of the incompressible flow part and the potential flow part. More precisely, we rewrite the convection term as

\[
\partial_{x_2} \begin{pmatrix} v_1 v_2 \\ (v_2)^2 - (v_1)^2 \end{pmatrix} + \partial_{x_1} \begin{pmatrix} 0 \\ v_2 v_1 \end{pmatrix} + \nabla (v_1)^2.
\]

This enables us to use of the antisymmetry condition effectively for the low frequency part. (Cf., Remark 4.7 bellow.) Note that in [12], since the incompressible flow was considered, the vorticity formulation was used effectively to estimate the convection term under the
antisymmetry condition (1.3). On the other hand, since we consider the compressible flow, we use a coupled system of the conservation form of the momentum and the velocity formulation with (1.8) instead of the vorticity formulation.

Another key observation is concerned with the potential theoretic method on \(\mathbb{R}^2 \). By making use of the antisymmetry condition (1.3), an estimate for convolution is established in a weighted \(L^\infty \) space on \(\mathbb{R}^2 \). (See Lemma 4.11 below.) Using this estimate, we obtain the estimate for a convolution with the convection term in the weighted \(L^\infty \) space.

As for the high frequency part, we use the velocity formulation to avoid some derivative loss by using the energy method as in [4, 10].

The existence of the stationary solution is proved similarly. Since the fundamental solution for the linearized stationary problem for the low frequency part is the same as the leading part of \((I - S_1(T))^{-1} \), one can prove the existence of the stationary solution by similar estimates to those used in the proof of the existence of a time periodic solution.

This paper is organized as follows. In section 2, notations and auxiliary lemmas are introduced which are used in this paper. In section 3, main results of this paper are stated. In section 4, we reformulate the problem. A coupled system with the conservation of momentum for the low frequency part and the equation of motion for the high frequency part is introduced; and we will then rewrite by a system of integral equations in terms of the time-\(T \)-map. We also establish some estimates for a convolution which will appear in the low frequency part. In section 5, we derive estimates for a solution related to the time-\(T \)-map for the low frequency part. In section 6, some spectral properties of the time-\(T \)-map are stated for the high frequency part. In section 7, nonlinear terms are estimated and we then prove the existence of a time periodic solution by the iteration argument.

2 Preliminaries

In this section we introduce notations which will be used throughout this paper. Furthermore, we introduce some lemmas which will be useful in the proof of the main results.

We denote the norm on \(X \) by \(\| \cdot \|_X \) for a given Banach space \(X \).

Let \(1 \leq p \leq \infty \). \(L^p \) stands for the usual \(L^p \) space on \(\mathbb{R}^2 \). We denote the inner product of \(L^2 \) by \((\cdot, \cdot) \). Let \(k \) be a nonnegative integer. \(H^k \) denotes the usual \(L^2 \) Sobolev space of order \(k \). (As usual, we define that \(H^0 := L^2 \).)

For simplicity, \(L^p \) stands for the set of all vector fields \(w = ^\top (w_1, w_2) \) on \(\mathbb{R}^2 \) with \(w_j \in L^p \) \((j = 1, 2) \), and we denote by \(\| \cdot \|_{L^p} \) the norm \(\| \cdot \|_{(L^p)^2} \) if no confusion will occur. Similarly, we denote by a function space \(X \) the set of all vector fields \(w = ^\top (w_1, w_2) \) on \(\mathbb{R}^2 \) with \(w_j \in X \) \((j = 1, 2) \); and we denote the norm \(\| \cdot \|_X \) on it by \(\| \cdot \|_X \) if no confusion will occur.

We take \(u = ^\top (\phi, w) \) with \(\phi \in H^k \) and \(w = ^\top (w_1, w_2) \in H^m \). Then the norm of \(u \) on \(H^k \times H^m \) is denoted by \(\| u \|_{H^k \times H^m} \), that is, we define

\[
\| u \|_{H^k \times H^m} := \left(\| \phi \|_{H^k}^2 + \| w \|_{H^m}^2 \right)^{\frac{1}{2}}.
\]
Moreover, where $r_1 < r_\infty$. The symbol $H^{k}_{r(\infty)}$ stands for the set of all $u \in H^k$ satisfying $\text{supp} \hat{u} \subset \{ |\xi| \geq r_1 \}$, and the symbol $L^2_{(1)}$ stands for the set of all $u \in L^2$ satisfying $\text{supp} \hat{u} \subset \{ |\xi| \leq r_\infty \}$. It follows from Lemma 4.3 (ii) bellow that $H^k \cap L^2_{(1)} = L^2_{(1)}$ for any nonnegative integer k.

Let k be a nonnegative integer and let r_1 and r_∞ be positive constants satisfying $r_1 < r_\infty$. The symbol $H^{k}_{(\infty)}$ stands for the set of all $u \in H^k$ satisfying $\text{supp} \hat{u} \subset \{ |\xi| \geq r_1 \}$, and the symbol $L^2_{(1)}$ stands for the set of all $u \in L^2$ satisfying $\text{supp} \hat{u} \subset \{ |\xi| \leq r_\infty \}$. It follows from Lemma 4.3 (ii) bellow that $H^k \cap L^2_{(1)} = L^2_{(1)}$ for any nonnegative integer k.

Let k and ℓ be nonnegative integers. The weighted L^2 Sobolev space H_{ℓ}^k is defined by

$$H_{\ell}^k := \{ u \in H^k; \| u \|_{H_{\ell}^k} < +\infty \},$$

where

$$\| u \|_{H_{\ell}^k}^2 := \left(\sum_{|\alpha| \leq k} |\partial^\alpha_x u \|_{L^2}^2 \right)^{\frac{1}{2}}.$$

Moreover, $H_{(\infty),\ell}$ denotes the weighted L^2 Sobolev space for the high frequency part defined by

$$H_{(\infty),\ell}^k := \{ u \in H_{(\infty)}^k; \| u \|_{H_{\ell}^k} < +\infty \}.$$
Let ℓ be a nonnegative integer. The symbol $L^2_{(1),\ell}$ stands for the weighted L^2 space for the low frequency part defined by

$$L^2_{(1),\ell} := \{ f \in L^2; f \in L^2_{(1)} \}.$$

For $-\infty \leq a < b \leq \infty$, the symbol $C^k([a,b]; X)$ denotes the set of all C^k functions on $[a,b]$ with values in X. Similarly, $L^p(a,b; X)$ and $H^k(a,b; X)$ denote the L^p-Bochner space on (a,b) and the L^2-Bochner-Sobolev space of order k respectively.

The time periodic problem is considered in function spaces with the following anti-symmetry. Γ_j $(j=1,2,3)$ are defined by

$$(\Gamma_1 u)(x) := \top(\phi(-x),-w_1(-x),w_2(-x)),$$

$$(\Gamma_2 u)(x) := \top(\phi(-x),w_1(-x),-w_2(-x)),$$

$$(\Gamma_3 u)(x_1,x_2) := \top(\phi(x_1,x_1),w_2(x_1,x_1),w_1(x_2,x_1))$$

for $u(x) = \top(\phi(x),w_1(x),w_2(x))$, $x \in \mathbb{R}^2$. For a function space X on \mathbb{R}^2, the space X_{sym} denotes the set of all $u = \top(\phi,w_1,w_2) \in X$ satisfying $\Gamma_j u = u$ $(j=1,2,3)$.

Let X be a function space on \mathbb{R}^2. $X_#$ denotes the set of all $f = \top(f_1,f_2) \in X$ satisfying

$$f(-x_1,x_2) = f(x_1,x_2), \quad f(x_1,-x_2) = f(x_1,x_2), \quad f(x_2,x_1) = f(x_1,x_2).$$

$X_{\#}$ denotes the set of all $f = \top(f_1,f_2) \in X$ satisfying

$$f_1(-x_1,x_2) = -f_1(x_1,x_2), \quad f_1(x_1,-x_2) = f_1(x_1,x_2), \quad f_2(-x_1,x_2) = f_2(x_1,x_2), \quad f_2(x_1,-x_2) = -f_2(x_1,x_2), \quad f_1(x_2,x_1) = f_2(x_1,x_2), \quad f_2(x_2,x_1) = f_1(x_1,x_2).$$

Note that if f in X has the form

$$f = \nabla^\top F = \top(\frac{\partial}{\partial x_2} F, -\frac{\partial}{\partial x_1} F),$$

where F satisfies the condition

$$F(-x_1,x_2) = -F(x_1,x_2), \quad F(x_1,-x_2) = -F(x_1,x_2), \quad F(x_2,x_1) = -F(x_1,x_2)$$

for \mathbb{R}^2, then $f \in X_{\#}$.

The space $\mathcal{X}_{(1)}$ is defined by

$$\mathcal{X}_{(1)} := \{ \phi \in L_1^\infty \cap L^2; \text{supp } \tilde{\phi} \subset \{ |\xi| \leq r_\infty \}, \| \phi \|_{\mathcal{X}_{(1)}} < +\infty \},$$

where the norm is defined by

$$\| \phi \|_{\mathcal{X}_{(1)}} := \| \phi \|_{\mathcal{X}_{(1)},L^\infty} + \| \phi \|_{\mathcal{X}_{(1)},L^2},$$

$$\| \phi \|_{\mathcal{X}_{(1)},L^\infty} := \sum_{k=0}^{1} \| \nabla^k \phi \|_{L^\infty_{k+1}}.$$
\[\| \phi \|_{\mathcal{L}^1_{(a,b)}} := \sum_{k=0}^{1} \| \nabla^k \phi \|_{L_k^2}. \]

On the other hand, \(\mathcal{Y}_{(1)} \) is defined by
\[\mathcal{Y}_{(1)} := \{ w \in L^\infty, \nabla w \in H^1; \supp \hat{w} \subset \{ |\xi| \leq r_\infty \}, \| w \|_{\mathcal{Y}_{(1)}} < +\infty \}, \]
where
\[\| w \|_{\mathcal{Y}_{(1)}} := \| w \|_{\mathcal{L}^1_{(a,b)}} + \| w \|_{\mathcal{L}^2_{(a,b)}}. \]

We define a weighted space for the low frequency part \(\mathcal{L}^0_{(a,b)} \) by
\[\mathcal{L}^0_{(a,b)} := C^1([a,b]; \mathcal{L}^1_{(a,b)}) \times \left[C([a,b]; \mathcal{Y}_{(1)}) \cap H^1(a,b; \mathcal{Y}_{(1)}) \right]. \]

Let \(s \) be a nonnegative integer satisfying \(s \geq 3 \). We denote by the space \(\mathcal{L}^k_{(\infty),1}(a,b) \) \((k = s - 1, s)\) the weighted space for the high frequency part defined by
\[\mathcal{L}^k_{(\infty),1}(a,b) := \left[C([a,b]; H^k_{(\infty),2}) \cap C^1([a,b]; L^2) \right] \times \left[L^2(a,b; H^{k+1}_{(\infty),2}) \cap C([a,b]; H^k_{(\infty),2}) \cap H^1(a,b; H^{k-1}_{(\infty),2}) \right]. \]

Let \(s \) be a nonnegative integer satisfying \(s \geq 3 \) and let \(k = s - 1, s \). We define a space \(X^k(a,b) \) by
\[X^k(a,b) := \{ \{ u_1, u_\infty \}; u_1 \in \mathcal{L}^k_{(\infty),1}(a,b), u_\infty \in \mathcal{L}^k_{(\infty),2}(a,b), \partial_t \phi_\infty \in C([a,b]; L^2), u_{j1} = \nabla^j (\phi_{j1}, w_{j1}) (j = 1, \infty) \}, \]
and we define the norm by
\[\| \{ u_1, u_\infty \} \|_{X^k(a,b)} := \| u_1 \|_{\mathcal{L}^k_{(\infty),1}(a,b)} + \| u_\infty \|_{\mathcal{L}^k_{(\infty),2}(a,b)} + \| \partial_t \phi_\infty \|_{C([a,b]; L^2)} + \| \partial_t u_{j1} \|_{C([a,b]; L^2)} + \| \partial_t \nabla u_{j1} \|_{C([a,b]; L^2)}. \]

Let \(s \) be a nonnegative integer satisfying \(s \geq 3 \) and let \(k = s - 1, s \). We define a space \(Y^k \) by
\[Y^k := \{ \{ u_1, u_\infty \}; u_1 \in \mathcal{L}^k_{(\infty),1}, u_\infty \in H^k_{(\infty),2} \times H^{k+1}_{(\infty),2}, u_{j1} = \nabla^j (\phi_{j1}, w_{j1}) (j = 1, \infty) \}, \]
and we define the norm by
\[\| \{ u_1, u_\infty \} \|_{Y^k} := \| u_1 \|_{\mathcal{L}^k_{(\infty),1}} + \| u_\infty \|_{H^k_{(\infty),2} \times H^{k+1}_{(\infty),2}}. \]
Function spaces of time periodic functions with period T are introduced as follows. $C_{\text{per}}(\mathbb{R}; X)$ stands for the set of all time periodic continuous functions with values in X and period T whose norm is defined by $\| \cdot \|_{C([0,T];X)}$; Similarly, $L^2_{\text{per}}(\mathbb{R}; X)$ denotes the set of all time periodic locally square integrable functions with values in X and period T whose the norm is defined by $\| \cdot \|_{L^2(0,T;X)}$. Similarly, $H^1_{\text{per}}(\mathbb{R}; X)$ and $X^k_{\text{per}}(\mathbb{R})$, and so on, are defined.

For operators L_1 and L_2, we denote by $[L_1, L_2]$ the commutator of L_1 and L_2, i.e.,

$$[L_1, L_2]f := L_1(L_2f) - L_2(L_1f).$$

We next state some lemmas which will be used in the proof of the main results.

The following lemma is the well-known Sobolev type inequality.

Lemma 2.1. Let s be an integer satisfying $s \geq 2$. Then there holds the inequality

$$\| f \|_{L^\infty} \leq C\| \nabla f \|_{H^{s-1}},$$

for $f \in H^s$.

The following Hardy’s inequality is known for a function satisfying the oddness conditions in (1.3) on \mathbb{R}^2.

Lemma 2.2. Let $u \in H^1$ and we assume that u satisfies

$$u(-x_1, x_2) = -u(x_1, x_2) \quad \text{or} \quad u(x_1, -x_2) = -u(x_1, x_2) \quad \text{(2.1)}$$

for $x = (x_1, x_2)$. Then there holds the inequality

$$\left\| \frac{u}{|x|} \right\| \leq C\| \nabla u \|_{L^2}.$$

See, e.g., [1] for the proof of Lemma 2.2.

We state the following inequalities which are concerned with composite functions.

Lemma 2.3. Let s be an integer satisfying $s \geq 2$. Let s_j and μ_j ($j = 1, \cdots, \ell$) be nonnegative integers and multiindices satisfying $0 \leq |\mu_j| \leq s_j \leq s + |\mu_j|$, $\mu = \mu^{(1)} + \cdots + \mu_\ell$, $s = s_1 + \cdots + s_\ell \geq (\ell - 1)s + |\mu|$, respectively. Then there holds

$$\| \partial_\xi^{\mu_1} f_1 \cdots \partial_\xi^{\mu_\ell} f_\ell \|_{L^2} \leq C \prod_{1 \leq j \leq \ell} \| f_j \|_{H^{s_j}} \quad (f_j \in H^{s_j}).$$

See, e.g., [3] for the proof of Lemma 2.3.
Lemma 2.4. Let s be an integer satisfying $s \geq 2$. Suppose that F is a smooth function on I, where I is a compact interval of \mathbb{R}. Then for a multi-index α with $1 \leq |\alpha| \leq s$, there hold the estimates

$$\|\partial_x^s F(f_1)f_2\|_{L^2} \leq C \|F\|_{C^{\alpha}(I)} \left\{ 1 + \|\nabla f_1\|^{|\alpha|-1}_{s-1} \right\} \|\nabla f_1\|_{H^{s-1}} \|f_2\|_{H^{\alpha}},$$

for $f_1 \in H^s$ with $f_1(x) \in I$ for all $x \in \mathbb{R}^2$ and $f_2 \in H^{\alpha}$; and

$$\|\partial_x^s F(f_1)f_2\|_{L^2} \leq C \|F\|_{C^{\alpha}(I)} \left\{ 1 + \|\nabla f_1\|^{|\alpha|-1}_{s-1} \right\} \|\nabla f_1\|_{H^s} \|f_2\|_{H^{\alpha-1}},$$

for $f_1 \in H^{s+1}$ with $f_1(x) \in I$ for all $x \in \mathbb{R}^2$ and $f_2 \in H^{\alpha-1}$.

See, e.g., [2] for the proof of Lemma 2.4.

3 Main results

In this section, we state our main result on the existence of a time periodic solution for (1.1). We also state our result on the existence of a stationary solution of (1.1) when g is independent of t. To state our results, the following operators are introduced which decompose a function into its low and high frequency parts respectively. We define operators P_1 and P_∞ on L^2 by

$$P_j f := F^{-1}(\hat{\chi}_j F[f]) \quad (f \in L^2, j = 1, \infty),$$

where

$$\hat{\chi}_j (\xi) \in C^\infty(\mathbb{R}^2) \quad (j = 1, \infty), \quad 0 \leq \hat{\chi}_j \leq 1 \quad (j = 1, \infty),$$

$$\hat{\chi}_1 (\xi) := \begin{cases} \chi (|\xi| \leq r_1), \\ 0 \quad (|\xi| \geq r_\infty), \end{cases}$$

$$\hat{\chi}_\infty (\xi) := 1 - \hat{\chi}_1 (\xi), \quad 0 < r_1 < r_\infty.$$

r_1 and r_∞ are positive constants satisfying $0 < r_1 < r_\infty < \frac{2\gamma}{\nu + \nu'}$ in such a way that the estimate (5.6) in Lemma 5.3 below holds for $|\xi| \leq r_\infty$.

Substituting $\phi = \frac{\rho - \rho_s}{\rho_s}$ and $w = \frac{\nu}{\gamma}$ with $\gamma := \sqrt{p'/(\rho_s)}$ into (1.1), time periodic problem (1.1) is formulated as

$$\partial_t u + Au = -B[u]u + G(u, g),$$

where

$$A := \left(\begin{array}{cc} 0 & \gamma \text{div} \\ \gamma \nabla & -\nu \Delta - \nu \nabla \text{div} \end{array} \right), \quad \nu := \frac{\mu}{\rho_s}, \quad \nu' := \frac{\mu + \mu'}{\rho_s},$$

$$B[u]u := \gamma \left(\frac{\nu \cdot \nabla \phi}{0} \right) \text{ for } u = \hat{\phi}, \hat{w} = \hat{\phi}, \hat{\omega},$$

for $u = \hat{\phi}, \hat{w}$.
and
\begin{align*}
G(u, g) &:= \left(F^0(u) \right), \\
F^0(u) &:= -\gamma \phi \text{div} w, \\
\tilde{F}(u, g) &:= -\gamma (1 + \gamma)(w \cdot \nabla w) - \phi \partial_t w - \nabla (p^{(1)}(\phi) \phi^2) + \frac{1 + \phi}{\gamma} g, \\
p^{(1)}(\phi) &:= \rho_\ast \int_0^1 (1 - \theta)p''(\rho_\ast(1 + \theta \phi))d\theta.
\end{align*}

(3.4)

(3.5)

(3.6)

We now state our result on the existence of a time periodic solution.

Theorem 3.1. Let \(s \) be an integer satisfying \(s \geq 3 \). Let \(g = \nabla^+ G \), where \(G \) is a scaler function. Assume that \(g \) and \(G \) satisfies (1.2), (1.3) and \(g \in C_{\text{per}}(\mathbb{R}; L^2_1 \cap L^\infty_3) \) with \(G \in C_{\text{per}}(\mathbb{R}; L^\infty_2) \cap L^2_{\text{per}}(\mathbb{R}; H^s_2) \). We define the norm of \(g \) by
\[[g]_s := \| g \|_{C([0,T]; L^1_1 \cap L^\infty_3^\ast)} + \| G \|_{C([0,T]; L^\infty_2) \cap L^2(0,T; H^s_2)}. \]

Then there exist constants \(\delta_1 > 0 \) and \(C > 0 \) such that if \([g]_s \leq \delta_1\), the problem (3.1) has a time periodic solution \(u = u(1) + u_\infty \) satisfying \(\{u(1), u_\infty\} \in X^s_{\text{sym,per}}(\mathbb{R}) \) with \(\|\{u(1), u_\infty\}\|_{X^s(0,T)} \leq C[g]_s \). Furthermore, the uniqueness of time periodic solutions of (3.1) holds in the class
\[\{u = \mathbb{T}(\phi, w); u = u(1) + u_\infty, \{u(1), u_\infty\} \in X^s_{\text{sym,per}}(\mathbb{R}), \|\{u(1), u_\infty\}\|_{X^s(0,T)} \leq C\delta_1 \}. \]

We next consider the stationary problem for (1.1). We consider the following stationary problem on \(\mathbb{R}^2 \):
\begin{align*}
\begin{cases}
\text{div} (\rho v) = 0, \\
\rho (v \cdot \nabla) v - \mu \Delta v - (\mu + \mu') \nabla \text{div} v + \nabla p(\rho) = \rho g,
\end{cases}
\end{align*}

(3.7)

where \(g = g(x) \) is a given external force satisfying (1.3). Substituting \(\phi = \frac{\rho - \rho_c}{\rho_c} \) and \(w = \frac{\omega}{\gamma} \) with \(\gamma = \sqrt{\rho'(\rho_\ast)} \) into (3.7), we rewrite (3.7) to
\[Au = -B[u]u + G(u, g). \]

(3.8)

The existence of the stationary solution is stated as follows.

Theorem 3.2. Let \(s \) be an integer satisfying \(s \geq 3 \). Let \(g = \nabla^+ G \), where \(G \) is a scaler function. Assume that \(G \) satisfies (1.3) and \(g \in L_1^1 \cap L^\infty_3 \) with \(G \in L^\infty_2 \cap H^s_2 \). We define the norm of \(g \) by
\[|||g|||_s := |||g|||_{L_1^1 \cap L^\infty_3} + |||G|||_{L^\infty_2 \cap H^s_2}. \]
Then there exist constants $\delta_2 > 0$ and $C > 0$ such that if $\|g\|_s \leq \delta_2$, the problem (3.8) has a stationary solution $u = u(1) + u(\infty)$ satisfying $\{u(1), u(\infty)\} \in Y_{sym}^s$ with $\|\{u(1), u(\infty)\}\|_{Y^s} \leq C\|g\|_s$. Furthermore, the uniqueness of stationary solutions of (3.8) holds in the class $\{u = \top(\phi, w); u = u(1) + u(\infty), \{u(1), u(\infty)\} \in Y_{sym}^s, \|\{u(1), u(\infty)\}\|_{Y^s} \leq C\delta_2\}$.

In this paper we will give a proof of Theorem 3.1 only, since Theorem 3.2 can be proved in a similar manner to the proof of Theorem 3.1. The only difference appears in the analysis of the high frequency part. In fact, Theorem 3.2 can be proved in the following way. As in [10], direct computations show that the low frequency part of the solution operator for the linearized problem for (3.8) coincides with the leading part of $(I - S_1(T))^{-1}$ which provides the key estimates in the proof of Theorem 3.1. Here $S_1(T) = e^{-T^A}$ is the low frequency part of the semigroup generated by A. (See Proposition 5.1 below.) More precisely, it holds that

$$F\{(I - S_1(T))^{-1}\} \sim -\frac{1}{T} \begin{pmatrix} \nu \xi & -\xi \xi \xi \xi \xi \\ \frac{\xi \xi}{\xi \xi} & 1 - \frac{\xi \xi}{\xi \xi} \end{pmatrix} \text{ as } \xi \to 0$$

and the right-hand side corresponds to the fundamental solution for the linearized problem of (3.8) in the Fourier space for the low frequency part. Therefore, one can obtain the estimates for the low frequency part of the solution operator in $(\mathcal{Y}_{(1)} \times \mathcal{Y}_{(1)})_{sym}$ as in Section 5. The high frequency part is analyzed in a similar manner to the case of time periodic problem as in Section 6. The desired estimates for the high frequency part can be obtained by the weighted L^2 energy method. The only difference from the case of the time periodic problem appears in proving the existence of the solution operator for the high frequency part of the linearized problem. In the case of the stationary problem, one can show the existence of the solution operator by the elliptic regularization method as in [6, 8]. Although we consider the two dimensional problem, the existence of the solution operator can be shown more easily than in [6, 8], since 0 belongs to the resolvent sets of the elliptic operators $-\epsilon \Delta$ ($\epsilon > 0$) and $-\nu \Delta - \tilde{v} \text{div}$ restricted to the high frequency part.

In the remaining of this paper we will give a proof of Theorem 3.1.

4 Reformulation of the problem

In this section, we reformulate (3.1). We begin with to decompose u into a low frequency part $u(1)$ and a high frequency part $u(\infty)$, and then, we rewrite (3.1) to equations for $u(1)$ and $u(\infty)$ as in [4].

Similarly to [4], we define

$$u(1) := P_1 u, \quad u(\infty) := P_\infty u.$$

Applying the operators P_1 and P_∞ to (3.1), we see that

$$\partial_t u(1) + A u(1) = F(1)(u(1) + u(\infty), g), \quad \text{(4.1)}$$

12
\[
\partial_t u(\infty) + Au(\infty) + P_\infty(B[u(1) + u(\infty)]u(\infty)) = F(\infty)(u(1) + u(\infty), g).
\]

(4.2)

Here
\[
F_1(u(1) + u(\infty), g) := P_1[-Bu(1) + u(\infty) + G(u(1) + u(\infty), g)],
\]
\[
F_\infty(u(1) + u(\infty), g) := P_\infty[-B[u(1) + u(\infty)]u(1) + G(u(1) + u(\infty), g)].
\]

On the other hand, if some functions \(u(1)\) and \(u(\infty)\) satisfy (4.1) and (4.2), then adding (4.1) to (4.2), we derive that
\[
\partial_t(u(1) + u(\infty)) + A(u(1) + u(\infty)) = -P_\infty(B[u(1) + u(\infty)]u(\infty)) + (F_1 + F_\infty)(u(1) + u(\infty), g) = -Bu(1) + u(\infty) + G(u(1) + u(\infty), g).
\]

Defining \(u := u(1) + u(\infty)\), we get
\[
\partial_t u + Au + B[\phi]u = G(u, g).
\]

Therefore, in order to obtain a solution \(u\) of (3.1), we look for a solution \(\{u(1), u(\infty)\}\) satisfying (4.1)-(4.2).

Concerning antisymmetry of (3.1) and (4.1)-(4.2), We state the following lemmas. Recall that \(\Gamma_j\) \((j = 1, 2, 3)\) is defined by
\[
(\Gamma_1 u)(x) := \top (\phi(-x), -w_1(-x), w_2(-x)), \quad (\Gamma_2 u)(x) := \top (\phi(-x), w_1(-x), -w_2(-x)),
\]
\[
(\Gamma_3 u)(x_1, x_2) := \top (\phi(x_2, x_1), w_2(x_2, x_1), w_1(x_2, x_1))
\]
for \(u(x) = \top (\phi(x), w_1(x), w_2(x))\), \(x \in \mathbb{R}^2\).

Lemma 4.1. We define \(g(x, t) := \top (0, g(x, t))\) and let \(g\) satisfy \((\Gamma_j g)(x, t) = g(x, t)\) \((x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3)\).

(i) \(\Gamma_j u\) \((j = 1, 2, 3)\) is a solution of (3.1) if \(u = \top (\phi, w)\) is a solution of (3.1).

(ii) \(\{\Gamma_j u(1), \Gamma_j u(\infty)\}\) \((j = 1, 2, 3)\) is a solution of (4.1)-(4.2) if \(\{u(1), u(\infty)\}\) is a solution of (4.1)-(4.2).

Lemma 4.2. Let \(g\) satisfy \((\Gamma_j g)(x, t) = g(x, t)\) \((x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3)\).

(i) There holds
\[
[\Gamma_j(\partial_t u + Au + B[\phi]u - G(u, g))](x, t) = [\partial_t u + Au + B[\phi]u - G(u, g)](x, t)
\]
for \(x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3\) if \((\Gamma_j u)(x, t) = u(x, t)\) \((x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3)\).

(ii) There hold
\[
[\Gamma_j(\partial_t u(1) + Au(1) - F_1(u(1) + u(\infty), g))](x, t) = [\partial_t u(1) + Au(1) - F_1(u(1) + u(\infty), g)](x, t)
\]
for \(x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3\) if \((\Gamma_j u)(x, t) = u(x, t)\) \((x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3)\).
and

\[
\begin{align*}
[\Gamma_j(\partial_t u_\infty) + Au_\infty + P_\infty (B[u_1] + u_\infty)]u_\infty) - F_\infty (u_1 + u_\infty, g)) \rangle(x, t) \\
= [\partial_t u_\infty + Au_\infty + P_\infty (B[u_1] + u_\infty)]u_\infty) - F_\infty (u_1 + u_\infty, g)) \rangle(x, t)
\end{align*}
\]

for \(x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3 \) if \(\{\Gamma_j u_1(x, t), \Gamma_j u_\infty(x, t)\} = \{u_1(x, t), u_\infty(x, t)\} \) \((x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3)\).

Direct computations verify Lemma 4.1 (i) and Lemma 4.2 (i). As for Lemma 4.1 (ii) and Lemma 4.2 (ii), since it holds that \(\mathcal{F} \Gamma_j = -\Gamma_j \mathcal{F} \) \((j = 1, 2)\), \(\mathcal{F} \Gamma_3 = \Gamma_3 \mathcal{F} \), \(\chi_j(-\xi_1, \xi_2) = \chi_j(\xi_1, -\xi_2) = \chi_j(\xi_2, \xi_1) = \chi_j(\xi_1, \xi_2) \) \((j = 1, \infty)\), we find that \(\Gamma_k P_j = P_j \Gamma_k \) \((k = 1, 2, 3, j = 1, \infty)\). Hence Lemma 4.1 (ii) and Lemma 4.2 (ii) follow from the above relation by a direct computation.

Therefore, we consider (4.1)-(4.2) in space of functions satisfying \(\{\Gamma_j u_1, \Gamma_j u_\infty\} = \{u_1, u_\infty\} \) \((j = 1, 2, 3)\) by Lemma 4.1 and Lemma 4.2.

To prove the existence of time periodic solution on \(\mathbb{R}^2 \), we use the momentum formulation for the low frequency part due to the slow decay of the low frequency part \(u_1 \) in a weighted \(L^\infty \) space as in [10].

Some inequalities are prepared for the low frequency part to state the momentum formulation. The following lemma is concerned with properties of \(P_1 \).

Lemma 4.3. [4, Lemma 4.3] (i) Let \(k \) be a nonnegative integer. Then \(P_1 \) is a bounded linear operator from \(L^2 \) to \(H^k \). In fact, it holds that

\[
\| \nabla^k P_1 f \|_{L^2} \leq C \| f \|_{L^2} \quad (f \in L^2).
\]

As a result, for any \(2 \leq p \leq \infty \), \(P_1 \) is bounded from \(L^2 \) to \(L^p \).

(ii) Let \(k \) be a nonnegative integer. Then there hold the estimates

\[
\| \nabla^k f_1 \|_{L^2} + \| f_1 \|_{L^p} \leq C \| f_1 \|_{L^2} \quad (f_1 \in L^2_{(1)}),
\]

where \(2 \leq p \leq \infty \).

We state the following inequality for the weighted \(L^p \) norm of the low frequency part.

Lemma 4.4. [10, Lemma 4.3] Let \(k \) and \(\ell \) be nonnegative integers and let \(1 \leq p \leq \infty \). Then there holds the estimate

\[
\| \| x \| \nabla^k f_1 \|_{L^p} \leq C \| \| x \| \nabla^\ell f_1 \|_{L^p} \quad (f_1 \in L^2_{(1)} \cap L^p).
\]

The following inequality holds for the weighted \(L^2 \) norm of the low frequency part.
Lemma 4.5. Let $\phi \in L^\infty_1$ with $\nabla \phi \in L^2_1$ and $w(1) \in \mathcal{Y}(1)$. Then, it holds that

$$
\|P_1(\phi w(1))\|_{\mathcal{Y}(1),L^2} \leq C(\|\phi\|_{L^\infty_1} + \|\nabla \phi\|_{L^2_1})(\|w(1)\|_{L^\infty_1} + \|\nabla w(1)\|_{L^2})
$$

uniformly for ϕ and $w(1)$.

Lemma 4.5 follows directly from Lemma 4.4.

We introduce $m(1)$ and $u_{(1),m}$ by

$$m(1) := w(1) + P_1(\phi w), \quad u_{(1),m} := \top(\phi(1), m(1)), \quad (4.3)$$

where $\phi = \phi(1) + \phi(\infty)$ and $w = w(1) + w(\infty)$. The following Lemma is related to reformulation to the momentum formulation for the low frequency part.

Lemma 4.6. [10, Lemma 4.5] Assume that $\{u(1), u(\infty)\}$ satisfies the system (4.1)-(4.2). Then $\{u(1),m, u(\infty)\}$ satisfies the following system:

$$
\begin{align*}
\partial_t u_{(1),m} + Au_{(1),m} &= F_{(1),m}(u_{(1)} + u_{(\infty)}, g), \quad (4.4) \\
\partial_t u_{(\infty)} + Au_{(\infty)} + P_\infty(B[u_{(1)} + u_{(\infty)}]u_{(\infty)}) &= F_{(\infty)}(u_{(1)} + u_{(\infty)}, g).
\end{align*}
$$

Here

$$
\begin{align*}
F_{(1),m}(u_{(1)} + u_{(\infty)}, g) &:= \top(0, \tilde{F}_{(1),m}(u_{(1)} + u_{(\infty)}, g)), \\
\tilde{F}_{(1),m}(u_{(1)} + u_{(\infty)}, g) &:= -P_1\{\mu \Delta(\phi w) + \mu \nabla \text{div} (\phi w) + \frac{\rho_s}{\gamma} \nabla (p^{(1)}(\phi)\phi^2) \\
&+ \gamma \text{div} (\phi w \otimes w) - \frac{1}{\gamma}(1 + \phi)g \\
&+ \gamma \partial_{x_2} \left(\frac{w_1 w_2}{(w_2)^2 - (w_1)^2}\right) + \gamma \partial_{x_1} \left(\frac{0}{w_2 w_1}\right) + \gamma \nabla (w_1)^2\}. \quad (4.5)
\end{align*}
$$

Remark 4.7. Here we rewrite the convection term $\text{div} (w \otimes w)$ by

$$
\text{div} (w \otimes w) = \partial_{x_2} \left(\frac{w_1 w_2}{(w_2)^2 - (w_1)^2}\right) + \partial_{x_1} \left(\frac{0}{w_2 w_1}\right) + \nabla (w_1)^2
$$

to use the antisymmetry effectively. See Proposition 7.1.

Similarly to Lemma 4.2, the following lemma follows from direct computations which implies that the antisymmetry of (4.4) holds.

Lemma 4.8. (i) $\Gamma_j u_{(1),m} \ (j = 1, 2, 3)$ is a solution of (4.4) if $u_{(1),m} = \top(\phi(1), m(1))$ is a solution of (4.4).
(ii) Let \(g \) satisfy \((\Gamma_j g)(x, t) = g(x, t)\) \((x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3)\). Then there hold
\[
[\Gamma_j (\partial_t u(1,m) + Au(1,m) - F(1,m)(u(1,m) + u(\infty)), g)](x,t) = [\partial_t u(1,m) + Au(1,m) - F(1,m)(u(1,m) + u(\infty)), g)](x,t)
\]
for \(x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3 \) if \(\{\Gamma_j u(1,m)(x,t), \Gamma_j u(\infty)(x,t)\} = \{u(1,m)(x,t), u(\infty)(x,t)\} \) \((x \in \mathbb{R}^2, t \in \mathbb{R}, j = 1, 2, 3)\).

If \(\phi = \phi(1) + \phi(\infty) \) is sufficiently small, we obtain the solution \(\{u(1), u(\infty)\} \) of (4.1)-(4.2) from the solution of (4.2), (4.3) and (4.4), i.e., we have the following.

Lemma 4.9. (i) Let \(s \) be an integer satisfying \(s \geq 3 \) and \(u(1,m) = \tau(\phi(1), m(1)) \) and \(u(\infty) = \tau(\phi(\infty), w(\infty)) \) satisfy \(\{u(1,m), u(\infty)\} \in X^*_{sym}(a,b) \). Then there exists a positive constant \(\delta_0 \) such that there uniquely exists \(w(1) \in C([a,b]; \mathbb{Y}(1,\#)) \cap H^1(a,b; \mathbb{Y}(1,\#)) \) and \(w(1) \) satisfies the following inequality if \(\phi = \phi(1) + \phi(\infty) \) satisfies \(\sup_{t \in [a,b]} (\|\phi\|_{L_\infty^\alpha} + \|\nabla \phi\|_{L_2^\alpha} \leq \delta_0 \).
\[
w(1) = m(1) - P_1(\phi(w(1) + w(\infty))),
\]
where \(\phi = \phi(1) + \phi(\infty) \). Furthermore, we have the estimates
\[
\|w(1)\|_{C([a,b]; \mathbb{Y}(1,\#))} \leq C(\|m(1)\|_{C([a,b]; \mathbb{Y}(1,\#))} + \|w(\infty)\|_{C([a,b]; L_\infty^\alpha)}),
\]
\[
\int_b^a \|\partial_tw(1)(\tau)\|^2_{\mathbb{Y}(1,\#)} d\tau \leq C(\|\partial_t \nabla \phi(1)\|^2_{C([a,b]; L_2^\alpha)} + \|\partial_t \phi(\infty)\|^2_{C([a,b]; L_\infty^\alpha)}\|w(1)\|^2_{C([a,b]; L_2^\alpha)}
\]
\[
+ \|\partial_t \phi(1)\|^2_{C([a,b]; L_2^\alpha)}\|w(1)\|^2_{C([a,b]; L_\infty^\alpha)}
\]
\[
+ \int_b^a C\left(\|\partial_t m(1)(\tau)\|^2_{\mathbb{Y}(1,\#)} + \|\partial_t \phi(1)\|^2_{C([a,b]; L_2^\alpha)}\|w(\infty)(\tau)\|^2_{H_2^\alpha}
\]
\[
+ \|\partial_t w(\infty)(\tau)\|^2_{L_2^\alpha}\right) d\tau.
\]

(ii) Let \(s \) be an integer satisfying \(s \geq 3 \) and \(u(1,m) = \tau(\phi(1), m(1)) \) and \(u(\infty) = \tau(\phi(\infty), w(\infty)) \) satisfy \(\{u(1,m), u(\infty)\} \in X^*_{sym}(a,b) \). We suppose that \(\phi = \phi(1) + \phi(\infty) \) satisfies \(\sup_{t \in [a,b]} (\|\phi\|_{L_\infty^\alpha} + \|\nabla \phi\|_{L_2^\alpha} \leq \delta_0 \) and \(\{u(1,m), u(\infty)\} \) satisfies
\[
\partial_t u(1,m) + Au(1,m) = F(1,m)(u(1,m) + u(\infty), g),
\]
\[
w(1) = m(1) - P_1(\phi w),
\]
\[
\partial_t u(\infty) + Au(\infty) + P(\phi w) + B[u(1) + u(\infty)]u(\infty) = F(\phi(1), u(1) + u(\infty), g).
\]
Here \(w = w(1) + w(\infty) \) and \(w(1) \) defined by (4.6). Then \(\{u(1), u(\infty)\} \) satisfies (4.1)-(4.2) with \(u(1) = \tau(\phi(1), w(1)) \).

By using Lemma 2.1 and Lemma 4.4, Lemma 4.9 can be proved by the same way as the proof of [10, Lemma 4.6] and we omit the details.
we obtain a solution \(f \) of Theorem 3.1.

From (4.11) and (4.12), it holds that
\[
\begin{align*}
\psi &= \psi \\
\sigma &= \sigma
\end{align*}
\]

where \(S \) and \(\psi \) operators will be given later.) where
\[
\begin{align*}
\psi &= \psi \\
\sigma &= \sigma
\end{align*}
\]

and the high frequency part respectively:
\[
\begin{align*}
\partial_t u(1) + Au(1,m) &= F(1,m), \\
u(1,m)|_{t=0} &= u_{01,m},
\end{align*}
\]

where \(\tilde{u} = \tilde{(\phi, \psi)} \), \(u_{01,m}, u_{0\infty}, F(1,m) \) and \(F(\infty) \) are given functions.

The solution operators are introduced as follows. (The precise definition of these operators will be given later.) \(S_1(t) \) stands for the solution operator for (4.9) with \(F(1,m) = 0 \), and \(\mathcal{S}_1(t) \) stands for the solution operator for (4.9) with \(u_{01,m} = 0 \). On the other hand, \(S_{\infty, \tilde{u}}(t) \) stands for the solution operator for (4.10) with \(F(\infty) = 0 \) and \(\mathcal{S}_{\infty, \tilde{u}}(t) \) stands for the solution operator for (4.10) with \(u_{0\infty} = 0 \).

As in [10], we will look for \(\{ u(1,m), u(\infty) \} \) satisfying
\[
\begin{align*}
u(1,m)(t) &= S_1(t) u_{01,m} + \mathcal{S}_1(t)[F(1,m)(u, g)], \\
u(\infty)(t) &= S_{\infty, \tilde{u}}(t) u_{0\infty} + \mathcal{S}_{\infty, \tilde{u}}(t)[F(\infty)(u, g)],
\end{align*}
\]

where
\[
\begin{align*}
u_{01,m} &= (I - S_1(T))^{-1} \mathcal{S}_1(T)[F(1,m)(u, g)], \\
u_{0\infty} &= (I - S_{\infty, \tilde{u}}(T))^{-1} \mathcal{S}_{\infty, \tilde{u}}(T)[F(\infty)(u, g)],
\end{align*}
\]

From (4.11) and (4.12), it holds that \(u(1,m)(T) = u(1,m)(0) \), \(u(\infty)(T) = u(\infty)(0) \). Hence we look for a pair of functions \(\{ u(1,m), u(\infty) \} \) satisfying (4.11)-(4.12). The solution operators \(S_1(t) \) and \(\mathcal{S}_1(t) \) are investigated and we state the estimate of a solution for the low frequency part in Section 5; Some properties of \(S_{\infty, \tilde{u}}(t) \) and \(\mathcal{S}_{\infty, \tilde{u}}(t) \) will be stated and we estimate a solution for the high frequency part in Section 6.

In the remaining of this section some lemmas are stated which will be used in the proof of Theorem 3.1.

We will estimate integral kernels which will appear in the analysis of the low frequency part. Then we use the following lemma.
Lemma 4.10. [10, Lemma 4.8] Let ℓ be an integer satisfying that $\ell \geq 1$ and let $E(x) := \mathcal{F}^{-1}\hat{\Phi}_\ell(x \in \mathbb{R}^2)$, where $\hat{\Phi}_\ell \in C^\infty(\mathbb{R}^2 - \{0\})$ is a function satisfying
\[
\partial_\xi^\alpha \hat{\Phi}_\ell \in L^1 \quad (|\alpha| \leq -1 + \ell),
\]
\[
|\partial_\xi^\beta \hat{\Phi}_\ell| \leq C|\xi|^{-2-|\beta|+\ell} \quad (\xi \neq 0, |\beta| \geq 0).
\]
Then the following estimate holds for $x \neq 0$,
\[
|E(x)| \leq C|x|^{-\ell}.
\]

The following lemma plays important roles to estimate a convolution with antisymmetry for the low frequency part.

Lemma 4.11. Let $E(x) (x \in \mathbb{R}^2)$ be a scalar function satisfying
\[
|\partial_\xi^\alpha E(x)| \leq \frac{C}{(1 + |x|)|\alpha|! + 1} \quad (|\alpha| \geq 0)
\]
(4.13)
and let f be a scalar function satisfying $f \in L^\infty_2$. We assume that f satisfies
\[
f(-x_1, x_2) = -f(x_1, x_2) \quad \text{or} \quad f(x_1, -x_2) = -f(x_1, x_2) \quad \text{or} \quad f(x_2, x_1) = -f(x_1, x_2) \quad (4.14)
\]
Then there holds the following estimate.
\[
|E * f(x)| \leq \frac{C\|f\|_{L^\infty_2}}{(1 + |x|)}.
\]
(4.15)

Proof. We first assume that $|x| \geq 1$. We set $R := \frac{|x|}{2}$. Then we see that
\[
E * f(x) = \int_{\mathbb{R}^2} E(x - y)f(y)dy
= \int_{|x-y| \geq R, |y| \geq R} E(x - y)f(y)dy
+ \int_{|x-y| \leq R} E(x - y)f(y)dy + \int_{|y| \leq R} E(x - y)f(y)dy
= : I_1 + I_2 + I_3,
\]
where,
\[
I_1 := \int_{|x-y| \geq R, |y| \geq R} E(x-y)f(y)dy, \quad I_2 := \int_{|x-y| \leq R} E(x-y)f(y)dy, \quad I_3 := \int_{|y| \leq R} E(x-y)f(y)dy.
\]
Concerning the estimate for I_1, since $|y| \leq |x| + |x-y| \leq 3|x-y|$ if $|x-y| \geq R$ and $|y| \geq R$, it follows from (4.13) that
\[
|I_1| \leq C\|f\|_{L^\infty_2}\int_{|y| \geq R} \frac{1}{(1 + |y|)^3}dy \leq \frac{C\|f\|_{L^\infty_2}}{1 + |x|}.
\]
We next derive the estimate of I_2. Since it holds that $|y| \geq |x| - |x - y| \geq R$ if $|x - y| \leq R$, we obtain from (4.13) that
\[
|I_2| \leq \frac{C\|f\|_{L_x^\infty}}{R^2} \int_{|x - y| \leq R} \frac{1}{|y|} dy \leq \frac{C\|f\|_{L_x^\infty}}{1 + |x|}.
\]

As for the estimate of I_3, we consider the case such that f satisfies $f(-x_1, x_2) = -f(x_1, x_2)$. We define $\tilde{y} := \tau(-y_1, y_2)$ for $y = \tau(y_1, y_2)$ on \mathbb{R}^2 satisfying $y_1 \geq 0$. Note that $f(\tilde{y}) = -f(y)$. This implies that
\[
I_3 = \int_{|y| \leq R, y_1 \geq 0} E(x - y) f(y) dy + \int_{|y| \leq R, y_1 \geq 0} E(x - \tilde{y}) f(\tilde{y}) dy \\
= \int_{|y| \leq R, y_1 \geq 0} \{E(x - y) - E(x - \tilde{y})\} f(y) dy.
\]

In addition, we see from (4.13) that
\[
|E(x - y) - E(x - \tilde{y})| \leq \frac{C|y|}{1 + |x - y|^2} \leq \frac{C|y|}{(1 + R)^2}
\]
for $|y| \leq R$. Hence we arrive at
\[
|I_3| \leq \frac{C\|f\|_{L_x^\infty}}{(1 + R)^2} \int_{|y| \leq R} \frac{1}{|y|} dy \leq \frac{C\|f\|_{L_x^\infty}}{1 + |x|}.
\]

Similarly, we obtain (4.15) in the case such that f satisfies $f(x_1, -x_2) = -f(x_1, x_2)$. If f satisfies $f(x_2, x_1) = -f(x_1, x_2)$, by setting $\tilde{y} := \tau(y_2, y_1)$ for $y = \tau(y_1, y_2)$ on \mathbb{R}^2, $|I_3|$ is written as
\[
|I_3| = \left| \int_{|y| \leq R, y_2 \geq y_1} E(x - y) f(y) dy + \int_{|y| \leq R, y_2 \geq y_1} E(x - \tilde{y}) f(\tilde{y}) dy \right| \\
= \left| \int_{|y| \leq R, y_2 \geq y_1} \{E(x - y) - E(x - \tilde{y})\} f(y) dy \right|.
\]

This together with (4.16) yields the required estimate (4.15). By using the estimates for I_j ($j = 1, 2, 3$), we get the required estimate (4.15) for $|x| \geq 1$.

As for the case $|x| \leq 1$, the required estimate (4.15) can be verified by direct computations and we omit the details. This completes the proof. \qed

In addition, we have the following estimates for a convolution.

Lemma 4.12. (i) Let $E(x)$ ($x \in \mathbb{R}^2$) be a scalar function satisfying (4.13) and let f be a scalar function which is written as $f = \partial_{x_j} f_1$ for $j = 1$ or 2 and satisfy $\|\partial_{x_j} f_1\|_{L_x^\infty} + \|f_1\|_{L_x^\infty} < \infty$. We assume that f_1 satisfies (4.14). Then the following estimate is true.
\[
|E * f(x)| \leq \frac{C}{(1 + |x|)^2} (\|\partial_{x_j} f_1\|_{L_x^\infty} + \|f_1\|_{L_x^\infty}).
\]
(ii) Let \(E(x) \ (x \in \mathbb{R}^2) \) be a scalar function satisfying (4.13) and let \(f \) be a scalar function of the form: \(f = \partial_x f_j \) for \(j = 1 \) or \(2 \) and it holds that \(\| \partial_x f_1 \|_{L^\infty_2} + \| f_1 \|_{L^\infty_2} < \infty \). Then we have the following estimate.

\[
|\partial_x^2 E \ast f(x)| \leq \frac{C}{(1 + |x|)^{1+|\alpha|}}(\| \partial_x f_1 \|_{L^\infty_2} + \| f_1 \|_{L^\infty_2}).
\]

Lemma 4.12 yields in a similar manner to the proof of Lemma 4.11 and we omit the proofs.

The following \(L^2 \) estimates holds for the low frequency part.

Lemma 4.13. (i) Let \(E(\xi) \ (\xi \in \mathbb{R}^2) \) be a scalar function satisfying \(\text{supp} \ E \subset \{ |\xi| \leq r_\infty \} \) and

\[
|\partial_\xi^2 E(\xi)| \leq \frac{C}{|\xi|^{1+|\alpha|}} \text{ for } |\xi| \leq r_\infty, \ |\xi| \neq 0, \ |\alpha| \geq 0.
\]

Let \(f \) belong to \(L^2_{(1),1} \cap L^1_1 \) and we assume that the following case (1) or (2) hold;

1. \(f(-x_1, x_2) = -f(x_1, x_2), \ f(x_1, -x_2) = f(x_1, x_2), \)
2. \(f(-x_1, x_2) = f(x_1, x_2), \ f(x_1, -x_2) = -f(x_1, x_2). \)

Then we have the estimate

\[
\| F^{-1}(E \hat{f}) \|_{\mathcal{X}_{(1),L^2}} \leq C \| f \|_{L^2_1 \cap L^1_1}.
\]

(ii) We suppose that \(E(\xi) \ (\xi \in \mathbb{R}^2) \) is a scalar function satisfying \(\text{supp} \ E \subset \{ |\xi| \leq r_\infty \} \) and

\[
|\partial_\xi^2 E(\xi)| \leq \frac{C}{|\xi|^{1+|\alpha|}} \text{ for } |\xi| \leq r_\infty, \ |\xi| \neq 0, \ |\alpha| \geq 0.
\]

and \(f \) belongs to \(L^2_{(1),1} \cap L^1_1 \) which satisfies the following case (1) or (2);

1. \(f(-x_1, x_2) = -f(x_1, x_2), \ f(x_1, -x_2) = f(x_1, x_2), \)
2. \(f(-x_1, x_2) = f(x_1, x_2), \ f(x_1, -x_2) = -f(x_1, x_2). \)

Then there holds the estimate

\[
\| F^{-1}(E \hat{f}) \|_{\mathcal{X}_{(1),L^2}} \leq C \| f \|_{L^2_1 \cap L^1_1}.
\]

Proof. (i) We assume that \(f \) satisfies (1) without loss of generality. Since \(\hat{f}(\xi_1, -\xi_2) = -\hat{f}(\xi_1, \xi_2) \), we see that

\[
\| \nabla \{ F^{-1}(E \hat{f}) \} \|_{L^2} \leq C \frac{1}{|\xi|} \| \hat{f} \|_{L^2}.
\]
\[\begin{align*}
&\leq C \left\| \xi_2 \frac{1}{|\xi|} \right\|_{L^2(|\xi| \leq r_{\infty})} \left\| \int_0^1 \partial_{\xi_2} \hat{f}(\xi_1, \tau \xi_2) d\tau \right\|_{L^\infty(|\xi| \leq r_{\infty})} \\
&\leq C \|xf\|_{L^1}.
\end{align*} \]

Similarly, we obtain the estimate

\[\| \nabla^2 \{ \mathcal{F}^{-1}(E \hat{f}) \} \|_{L^1} \leq C \| f \|_{L^1} \cap L^1. \]

The assertion (ii) can be proved by the same way as that for (i). This completes the proof. \(\square \)

We find the following estimate for the nonlinear term on the low frequency part in weighted \(L^2 \) spaces.

Lemma 4.14. (i) Let \(w(1) \in \mathcal{Y}(1, \#) \). Then, it holds that

\[\| (w(1))^2 \|_{L^2} + \| w(1) \partial_{x_j} w(1) \|_{L^2} \leq C \| w(1) \|_{\mathcal{Y}(1)}^2 \quad (j = 1, 2). \]

(ii) Let \(\phi \in \mathcal{X}(1) \) and \(w(1) \in \mathcal{Y}(1, \#) \). Then, there holds the estimate

\[\| \phi \partial_{x_j} w(1) \|_{L^2} \leq C \| \phi \|_{\mathcal{X}(1)} \| w(1) \|_{\mathcal{Y}(1)} \quad (j = 1, 2). \]

Proof. Concerning the assertion (i), applying Lemma 2.2, we see that

\[\| (w(1))^2 \|_{L^2} \leq C \| w(1) \|_{L^\infty} \left\| \frac{w(1)}{|x|} \right\|_{L^2} \leq C \| w(1) \|_{L^\infty} \| \nabla w(1) \|_{L^2}. \]

Similarly we derive that

\[\| w(1) \partial_{x_j} w(1) \|_{L^2} \leq C \| w(1) \|_{\mathcal{Y}(1)}^2. \]

The assertion (ii) yields similarly to the proof of the estimate for (i). This completes the proof. \(\square \)

The following inequalities will be used for the analysis of the high frequency part.

Lemma 4.15. [4, Lemma 4.4] (i) Let \(k \) be a nonnegative integer. Then \(P_\infty \) is a bounded linear operator on \(H^k \).

(ii) There hold the inequalities

\[\| P_\infty f \|_{L^2} \leq C \| \nabla f \|_{L^2} \quad (f \in H^1), \]

\[\| F(\infty) \|_{L^2} \leq C \| \nabla F(\infty) \|_{L^2} \quad (F(\infty) \in H^1(\infty)). \]

Lemma 4.16. [10, Lemma 4.13] Let \(\ell \in \mathbb{N} \). Then there exists a positive constant \(C \) depending only on \(\ell \) such that

\[\| P_\infty f \|_{L^2} \leq C \| \nabla f \|_{L^2}. \]
5 Estimates for solution on the low frequency part

In this section we estimate a solution \(u_{(1)} \) satisfying \(u_{(1)}(0) = u_{(1)}(T) \) and

\[
\partial_t u_{(1)} + Au_{(1)} = F_{(1)},
\]

where \(F_{(1)} = \dagger(0, \hat{F}_{(1)}) \).

We define \(A_1 \) by the restriction of \(A \) on \(\mathcal{X}_{(1)} \times \mathcal{Y}_{(1)} \). The symbol \(S_1 \) and \(\mathcal{S}_1(t) \) are defined by \(S_1(t) := e^{-tA_1} \) and

\[
\mathcal{S}_1(t)F_{(1)} := \int_0^t S_1(t-\tau)F_{(1)}(\tau)\,d\tau.
\]

Recall that \(\Gamma_j \) \((j = 1, 2, 3)\) are defined by

\[
\begin{align*}
(\Gamma_1 u)(x) &:= \dagger(\phi(-x), -w_1(-x), w_2(-x)), \quad (\Gamma_2 u)(x) := \dagger(\phi(-x), w_1(-x), -w_2(-x)), \\
(\Gamma_3 u)(x_1, x_2) &:= \dagger(\phi(x_2, x_1), w_2(x_2, x_1), w_1(x_2, x_1))
\end{align*}
\]

for \(u(x) = \dagger(\phi(x), w_1(x), w_2(x)) \) and \(x \in \mathbb{R}^2 \). We have the following.

Proposition 5.1. (i) \(A_1 \) is a bounded linear operator on \(\mathcal{X}_{(1)} \times \mathcal{Y}_{(1)} \). Moreover, \(S_1(t) \) is a uniformly continuous semigroup on \(\mathcal{X}_{(1)} \times \mathcal{Y}_{(1)} \) and \(S_1(t) \) satisfies the following estimates for all \(T' > 0 \);

\[
S_1(t)u_{(1)} \in C^1([0,T']; \mathcal{X}_{(1)} \times \mathcal{Y}_{(1)}), \quad \partial_t S_1(\cdot)u_{(1)} \in C([0,T']; \mathcal{L}^2),
\]

\[\partial_t S_1(t)u_{(1)} = -A_1S_1(t)u_{(1)} = -AS_1(t)u_{(1)}, \quad S_1(0)u_{(1)} = u_{(1)} \text{ for } u_{(1)} \in \mathcal{X}_{(1)} \times \mathcal{Y}_{(1)}, \]

\[
\|\partial_t^k S_1(\cdot)u_{(1)}\|_{C([0,T']); \mathcal{X}_{(1)} \times \mathcal{Y}_{(1)}} \leq C\|u_{(1)}\|_{\mathcal{X}_{(1)} \times \mathcal{Y}_{(1)}}^{T', \infty},
\]

for \(u_{(1)} \in \mathcal{X}_{(1)} \times \mathcal{Y}_{(1)} \), \(k = 0, 1 \)

\[
\|\partial_t S_1(t)u_{(1)}\|_{C([0,T']; \mathcal{L}^2)} \leq C\|u_{(1)}\|_{\mathcal{X}_{(1)} \times \mathcal{Y}_{(1)}},
\]

and

\[
\|\partial_t \nabla S_1(t)u_{(1)}\|_{C([0,T']; \mathcal{L}^2)} \leq C\|u_{(1)}\|_{\mathcal{X}_{(1)} \times \mathcal{Y}_{(1)}},
\]

for \(u_{(1)} \in \mathcal{X}_{(1)} \times \mathcal{Y}_{(1)} \), where \(C \) is a positive constant depending on \(T' \).

(ii) It holds for each \(F_{(1)} \in C([0,T]; \mathcal{X}_{(1)} \times \mathcal{L}^2; \mathcal{Y}_{(1)}) \) that

\[
\mathcal{S}_1(\cdot)F_{(1)} \in C^1([0,T]; \mathcal{X}_{(1)} \times \mathcal{L}^2; \mathcal{Y}_{(1)}) \times H^1([0,T]; \mathcal{L}^2),
\]

and

\[
\partial_t \mathcal{S}_1(t)F_{(1)} + A_1 \mathcal{S}_1(t)F_{(1)} = F_{(1)}(t), \quad \mathcal{S}_1(0)F_{(1)} = 0,
\]

\[
\|\mathcal{S}_1(\cdot)F_{(1)}\|_{C([0,T]; \mathcal{X}_{(1)} \times \mathcal{L}^2; \mathcal{Y}_{(1)})} \leq C\|F_{(1)}\|_{C([0,T]; \mathcal{X}_{(1)} \times \mathcal{L}^2; \mathcal{Y}_{(1)})},
\]

\[
\|\partial_t \mathcal{S}_1(\cdot)F_{(1)}\|_{C([0,T]; \mathcal{X}_{(1)} \times \mathcal{L}^2; \mathcal{Y}_{(1)})} \leq C\|F_{(1)}\|_{C([0,T]; \mathcal{X}_{(1)} \times \mathcal{L}^2; \mathcal{Y}_{(1)})},
\]

where \(C \) is a positive constant depending on \(T' \).
Proposition 5.2. There uniquely exists $u \in (\mathcal{X}_1 \times \mathcal{Y}_1)_{\text{sym}}$ that satisfies $(I - S_1(T))u = F(1)$ and u satisfies the estimate in each (i)-(ii) for $F(1)$ satisfying the conditions given in either (i)-(iii), respectively.

(i) $F(1) = \partial_x^2 f(1) \in L^\infty_{x,y} \cap L^2_{x,y}$ with $f(1) \in L^2_{(1)} \cap L^2_{\infty}$ for some α satisfying $|\alpha| = 1$ and $f(1)$ satisfies the following condition

$$f(1)(-x_1, x_2) = -f(1)(x_1, x_2), \text{ or } f(1)(x_1, -x_2) = -f(1)(x_1, x_2)$$

or

$$f(1)(x_2, x_1) = -f(1)(x_1, x_2);$$

(5.2)

$$\|u\|_{\mathcal{X}_1 \times \mathcal{Y}_1} \leq C\{\|F(1)\|_{L^3_{\infty}} + \|f(1)\|_{L^2_{\infty}} + \|f(1)\|_{L^2} + \|F(1)\|_{L^1_2}\}. \quad (5.3)$$

(ii) $F(1) = \nabla (0, \nabla f(1)) \in L^\infty_{x,y} \cap L^2_{x,y}$ with $f(1) \in L^2_{(1)} \cap L^2_{\infty}$;

$$\|u\|_{\mathcal{X}_1 \times \mathcal{Y}_1} \leq C\{\|F(1)\|_{L^\infty_{3}} + \|f(1)\|_{L^\infty_{2}} + \|f(1)\|_{L^2} + \|F(1)\|_{L^1_2}\}. \quad (5.4)$$

(iii) $F(1) = \partial_x^2 f(1) \in L^\infty_{x,y} \cap L^2_{x,y}$ with $f(1) \in L^2_{(1)} \cap L^2_{\infty}$ for some α satisfying $|\alpha| \geq 2$;

$$\|u\|_{\mathcal{X}_1 \times \mathcal{Y}_1} \leq C\{\|F(1)\|_{L^\infty_{3}} + \|f(1)\|_{L^\infty_{2}} + \|f(1)\|_{L^2} + \|F(1)\|_{L^1_2}\}. \quad (5.5)$$

We next investigate invertibility of $I - S_1(T)$. The assertion (i)-(iii) follows by the same way as that in [10, Proposition 5.1]. The assertion (iv) is verified by the fact $\Gamma_j A_1 = A_1 \Gamma_j$, which derive that $\Gamma_j S_1(t) = S_1(t) \Gamma_j$ for $j = 1, 2, 3$.
To prove Proposition 5.2, we use the following lemmas.

Lemma 5.3. [10, Lemma 5.3] (i) The set of all eigenvalues of $-\hat{A}_\xi$ consists of $\lambda_j(\xi)$ ($j = 1, \pm$), where

$$\begin{align*}
\lambda_1(\xi) &= -\nu|\xi|^2, \\
\lambda_{\pm}(\xi) &= -\frac{1}{2}(\nu + \tilde{\nu})|\xi|^2 \pm \frac{1}{2}\sqrt{(\nu + \tilde{\nu})^2|\xi|^4 - 4\gamma^2|\xi|^2}.
\end{align*}$$

If $|\xi| < \frac{2\gamma}{\nu + \tilde{\nu}}$, then

$$\text{Re} \lambda_\pm = -\frac{1}{2}(\nu + \tilde{\nu})|\xi|^2, \quad \text{Im} \lambda_\pm = \pm \gamma|\xi|\sqrt{1 - \frac{(\nu + \tilde{\nu})^2}{4\gamma^2}|\xi|^2}.$$

(ii) For $|\xi| < \frac{2\gamma}{\nu + \tilde{\nu}}$, $e^{-t\hat{A}_\xi}$ has the spectral resolution

$$e^{-t\hat{A}_\xi} = \sum_{j=1,\pm} e^{t\lambda_j(\xi)}\Pi_j(\xi),$$

where $\Pi_j(\xi)$ are eigenprojections for $\lambda_j(\xi)$ ($j = 1, \pm$), and $\Pi_j(\xi)$ ($j = 1, \pm$) satisfy

$$\begin{align*}
\Pi_1(\xi) &= \begin{pmatrix} 0 & 0 \\
0 & I_2 - \frac{\xi^\top \xi}{|\xi|^2} \end{pmatrix}, \\
\Pi_\pm(\xi) &= \pm \frac{1}{\lambda_+ - \lambda_-} \begin{pmatrix} -\lambda_\mp & -i\gamma^\top \xi \\
-i\gamma \xi & \lambda_\pm + \frac{\xi^\top \xi}{|\xi|^2} \end{pmatrix}.
\end{align*}$$

Furthermore, if $0 < r_\infty < \frac{2\gamma}{\nu + \tilde{\nu}}$, then there exists a constant $C > 0$ such that the estimates

$$||\Pi_j(\xi)|| \leq C (j = 1, \pm),$$

hold for $|\xi| \leq r_\infty$.

Hereafter we fix $0 < r_1 < r_\infty < \frac{2\gamma}{\nu + \tilde{\nu}}$ so that (5.6) in Lemma 5.3 holds for $|\xi| \leq r_\infty$.

Lemma 5.4. [10, Lemma 5.4] Let α be a multi-index. Then the following estimates hold true uniformly for ξ with $|\xi| \leq r_\infty$ and $t \in [0, T]$.

(i) $|\partial^\alpha \lambda_1| \leq C|\xi|^{2-|\alpha|}$, $|\partial^\alpha \lambda_\pm| \leq C|\xi|^{1-|\alpha|}$ ($|\alpha| \geq 0$).

(ii) $|\partial^\alpha_\xi \Pi_1(\xi)| \hat{F}_1(\xi) \leq C|\xi|^{-|\alpha|} |\hat{F}_1(\xi)|$, $|\partial^\alpha_\xi \Pi_\pm(\xi)| \hat{F}_1(\xi) \leq C|\xi|^{-|\alpha|} |\hat{F}_1(\xi)|$ ($|\alpha| \geq 0$), where $F_1(t) = \hat{F}_1(\xi)$.

(iii) $|\partial^\alpha_\xi (e^{\lambda_1 t})| \leq C|\xi|^{2-|\alpha|}$ ($|\alpha| \geq 1$).

(iv) $|\partial^\alpha_\xi (e^{\lambda_\pm t})| \leq C|\xi|^{1-|\alpha|}$ ($|\alpha| \geq 1$).
(v) \(|\partial_\xi e^{-t\hat{A}}\hat{F}_1(t)| \leq C(|\xi|^{-1}|\alpha|\hat{F}_1(0) + |\xi|^{-|\alpha|}\hat{F}_1(t))\) (|\alpha| \geq 1), where \(F_1(t) = \tau(F_0, \hat{F}_1(t))\).

(vi) \(|\partial_\xi (I - e^{\lambda t})^{-1}| \leq C|\xi|^{-2|\alpha|}\) (|\alpha| \geq 0).

(vii) \(|\partial_\xi (I - e^{\lambda t})^{-1}| \leq C|\xi|^{-1|\alpha|}\) (|\alpha| \geq 0).

We define
\[
E_{1,j}(x) := \mathcal{F}^{-1}(\hat{\chi}_0(I - e^{\lambda T})^{-1}\Pi_j) \quad (j = 1, \pm) \quad (x \in \mathbb{R}^2),
\]
where \(\hat{\chi}_0\) is a cut-off function defined by \(\hat{\chi}_0 := \mathcal{F}^{-1}\hat{\chi}_0\) with \(\hat{\chi}_0\) satisfying
\[
\hat{\chi}_0 \in C^\infty(\mathbb{R}^2), \quad 0 \leq \hat{\chi}_0 \leq 1, \quad \hat{\chi}_0 = 1 \text{ on } \{ |\xi| \leq r_\infty \} \text{ supp } \hat{\chi}_0 \subset \{ |\xi| \leq 2r_\infty \}. \tag{5.8}
\]
We have the following estimates for \(E_{1,j}\).

Lemma 5.5. There hold
\[
|\partial_\xi E_{1,1}(x)| \leq C(1 + |x|)^{-(1+|\alpha|)}
\]
for \(|\alpha| \geq 1, x \in \mathbb{R}^2\) and
\[
|\partial_\xi E_{1,\pm}(x)| \leq C(1 + |x|)^{-(1+|\alpha|)}
\]
for \(|\alpha| \geq 0, x \in \mathbb{R}^2\).

By using Lemma 4.10 and Lemma 5.4, Lemma 5.5 can be proved in a similar manner to the proof of [10, Lemma 5.5] and we omit the details.

Since \(\Pi_1\) is the projection to the solenoidal vector space on \(\mathbb{R}^2\), we have the following property for \(\Pi_1\).

Lemma 5.6. It holds that
\[
\Pi_1(\xi)\hat{\nabla}F(\xi) = 0 \quad (\xi \neq 0, |\xi| \leq r_\infty),
\]
where \(F\) is a scalar function in \(H^1\).

We are now in a position to prove Proposition 5.2.

Proof of Proposition 5.2. (i) We suppose that \(F_1 = \partial_{x^2}f_1\) without loss of generality. We define \(u = \tau(\phi, w)\) by
\[
u := \mathcal{F}^{-1}((I - e^{-T\hat{A}})^{-1}\hat{F}_1(t))
= \mathcal{F}^{-1}((i\xi_2)(I - e^{-T\hat{A}})^{-1}\hat{f}_1(t)) = \mathcal{E} * f_1(t),
\]

25
where

$$\mathcal{E} := \mathcal{F}^{-1}\{(i\xi_2 \sum_j \hat{E}_{1,j})\}.$$

$E_{1,j}$ are the ones defined in (5.7). We obtain from Lemma 5.5 that

$$|\partial^\alpha_x \mathcal{E}(x)| \leq C(1 + |x|)^{-(1+|\alpha|)}$$

(5.9) for $|\alpha| \geq 0$, $x \in \mathbb{R}^2$. Therefore, by Lemma 4.11, Lemma 4.12 (i) and (5.9), we find that

$$\|w\|_{L_1^\infty} + \|\nabla w\|_{L_2^\infty} \leq C\{\|F_{(1)}\|_{L_3^\infty} + \|f_{(1)}\|_{L_2^\infty}\}.$$

(5.10)

Concerning the weighted L^∞ estimate for ϕ, We also obtain from Lemma 4.4, Lemma 4.12 (ii) and Lemma 5.5 that

$$\|\phi\|_{L_1^\infty} + \|\nabla \phi\|_{L_2^\infty} \leq C\{\|F_{(1)}\|_{L_3^\infty} + \|f_{(1)}\|_{L_2^\infty}\}.$$

This together with Lemma 5.4 and (5.10), we get that $u \in \mathscr{X}_{(1)} \times \mathcal{Y}_{(1)}$, $(I - S_1(T))u = F_{(1)}$ and u satisfies the estimate (5.3). By the assumption of $F_{(1)}$ and Proposition 5.1 (i) and (iii) we see that $\Gamma_j u = u$ ($j = 1, 2, 3$), i.e., $u \in (\mathscr{X}_{(1)} \times \mathcal{Y}_{(1)})_{\text{sym}}$.

(ii) By Lemma 5.6, we derive that

$$u := \mathcal{F}^{-1}\{(I - e^{-T\lambda_1})^{-1} \hat{F}_{(1)}\} = \mathcal{F}^{-1}\{\sum_{j \in \{\pm\}} \hat{E}_{1,j} \hat{F}_{(1)}\}$$

for $F_{(1)} = \mathcal{T}(0, \nabla f_{(1)}) \in L_{3,\text{sym}}^\infty \cap L_{2,1}^2$ with $f_{(1)} \in L_{2,1}^2 \cap L_{2,1}^\infty$. It then follows from Lemma 4.12 (ii), Proposition 5.1, Lemma 5.4 and Lemma 5.5 that $u \in (\mathscr{X}_{(1)} \times \mathcal{Y}_{(1)})_{\text{sym}}$, $(I - S_1(T))u = F_{(1)}$ and u satisfies the estimate

$$\|u\|_{\mathscr{X}_{(1)} \times \mathcal{Y}_{(1)}} \leq C\{\|F_{(1)}\|_{L_3^\infty} + \|f_{(1)}\|_{L_2^\infty} + \|f_{(1)}\|_{L_2^2} + \|F_{(1)}\|_{L_2^2}\}.$$

We arrive at the assertion (iii) from Lemma 4.12 (ii), Lemma 5.4 and Lemma 5.5 similarly to the assertion (ii). This completes the proof.

In view of Proposition 5.2, if $F_{(1)}$ satisfies the each condition (i)-(iii) bellow, the $I - S_1(T)$ has bounded inverse $(I - S_1(T))^{-1}$ in $(\mathscr{X}_{(1)} \times \mathcal{Y}_{(1)})_{\text{sym}}$ satisfying the estimate in (i)-(iii) respectively;

(i) $F_{(1)} = \partial_x^\alpha f_{(1)} \in L_{3,\text{sym}}^\infty \cap L_{2,1}^2$ with $f_{(1)} \in L_{2,1}^2 \cap L_{2,1}^\infty$ for some α satisfying $|\alpha| = 1$ and $f_{(1)}$ satisfies (5.2);

$$\|(I - S_1(T))^{-1} F_{(1)}\|_{\mathscr{X}_{(1)} \times \mathcal{Y}_{(1)}} \leq C\{\|F_{(1)}\|_{L_3^\infty} + \|f_{(1)}\|_{L_2^\infty} + \|f_{(1)}\|_{L_2^2} + \|F_{(1)}\|_{L_2^2}\}.$$

(ii) $F_{(1)} = \mathcal{T}(0, \nabla f_{(1)}) \in L_{3,\text{sym}}^\infty \cap L_{2,1}^2$ with $f_{(1)} \in L_{2,1}^2 \cap L_{2,1}^\infty$;

$$\|(I - S_1(T))^{-1} F_{(1)}\|_{\mathscr{X}_{(1)} \times \mathcal{Y}_{(1)}} \leq C\{\|F_{(1)}\|_{L_3^\infty} + \|f_{(1)}\|_{L_2^\infty} + \|f_{(1)}\|_{L_2^2} + \|F_{(1)}\|_{L_2^2}\}.$$

26
Lemma 5.7. $F_1 = \partial_x^\alpha f_1 \in L^\infty_{3,sym} \cap L^2_{(1),1}$ with $f_1(1) \in L^2_{(1)} \cap L^\infty_2$ for some α satisfying $|\alpha| \geq 2$;

$$
\| (I - S_1(T))^{-1} F_1 \|_{\mathcal{J}'(1) \times \mathcal{Y}(1)} \leq C \{ \| F_1 \|_{L^\infty_1} + \| f_1(1) \|_{L^\infty_2} + \| f_1(1) \|_{L^2} + \| F_1(1) \|_{L^2_2} \}.
$$

We can write $S_1(t) F_1$ and $S_1(t) (I - S_1(T))^{-1} F_1$ as

$$
S_1(t) F_1 = \int_0^t E_1(t, \sigma) * F_1(\sigma) d\sigma, \quad (5.11)
$$

$$
S_1(t) (I - S_1(T))^{-1} F_1 = \int_0^t S_1(t - \tau) F_1(\tau) d\tau = \int_0^t E_2(t, \tau) * F_1(\tau) d\tau, \quad (5.12)
$$

where $E_1(t, \sigma)$ and $E_2(t, \tau)$ are defined by

$$
E_1(t, \sigma) := \mathcal{F}^{-1} \{ \hat{\chi}_0 e^{-t \hat{A}_\chi} (I - e^{-T \hat{A}_\chi})^{-1} e^{-(T - \sigma) \hat{A}_\chi} \},
$$

$$
E_2(t, \tau) := \mathcal{F}^{-1} \{ \hat{\chi}_0 e^{-(t - \tau) \hat{A}_\chi} \}
$$

for $\sigma \in [0, T]$, $0 \leq \tau \leq t \leq T$. $\hat{\chi}_0$ is the cut-off function defined by (5.8). Then $E_1(t, \sigma) * F_1$ and $E_2(t, \tau) * F_1$ are estimated as follows.

Lemma 5.7. $E_1(t, \sigma) * F_1 \in (\mathcal{J}'(1) \times \mathcal{Y}(1))_{sym}$ and $E_2(t, \tau) * F_1 \in (\mathcal{J}'(1) \times \mathcal{Y}(1))_{sym}$

$t, \sigma, \tau \in [0, T], j = 1, 2$ if F_1 satisfies the conditions given in either (i)-(iii) and $E_1(t, \sigma) * F_1, E_2(t, \tau) * F_1$ satisfy the following estimate in each (i)-(iii).

(i) $F_1 = \partial_x^\alpha f_1 \in L^\infty_{3,sym} \cap L^2_{(1),1}$ with $f_1(1) \in L^2_{(1)} \cap L^\infty_2$ for some α satisfying $|\alpha| = 1$ and f_1 satisfies (5.2);

$$
\| E_1(t, \sigma) * F_1 \|_{\mathcal{J}'(1) \times \mathcal{Y}(1)} + \| E_2(t, \tau) * F_1 \|_{\mathcal{J}'(1) \times \mathcal{Y}(1)}
$$

$$
\leq C \{ \| F_1 \|_{L^\infty_1} + \| f_1 \|_{L^2_1} + \| f_1(1) \|_{L^2} + \| F_1(1) \|_{L^2_2} \}
$$

uniformly for $\sigma \in [0, T]$ and $0 \leq \tau \leq t \leq T$.

(ii) $F_1 = \top (0, \nabla f_1) \in L^\infty_{3,sym} \cap L^2_{(1),1}$ with $f_1(1) \in L^2_{(1)} \cap L^\infty_2$;

$$
\| E_1(t, \sigma) * F_1 \|_{\mathcal{J}'(1) \times \mathcal{Y}(1)} + \| E_2(t, \tau) * F_1 \|_{\mathcal{J}'(1) \times \mathcal{Y}(1)}
$$

$$
\leq C \{ \| F_1 \|_{L^\infty_1} + \| f_1 \|_{L^2_1} + \| f_1(1) \|_{L^2} + \| F_1(1) \|_{L^2_2} \}
$$

uniformly for $\sigma \in [0, T]$ and $0 \leq \tau \leq t \leq T$.

(iii) $F_1 = \partial_x^\alpha f_1 \in L^\infty_{3,sym} \cap L^2_{(1),1}$ with $f_1(1) \in L^2_{(1)} \cap L^\infty_2$ for some α satisfying $|\alpha| \geq 2$;

$$
\| E_1(t, \sigma) * F_1 \|_{\mathcal{J}'(1) \times \mathcal{Y}(1)} + \| E_2(t, \tau) * F_1 \|_{\mathcal{J}'(1) \times \mathcal{Y}(1)}
$$

$$
\leq C \{ \| F_1 \|_{L^\infty_1} + \| f_1 \|_{L^2_1} + \| f_1(1) \|_{L^2} + \| F_1(1) \|_{L^2_2} \}
$$

uniformly for $\sigma \in [0, T]$ and $0 \leq \tau \leq t \leq T$. 27
Proof of Lemma 5.7. It follows from Lemmas 5.3 and 5.4 that
\[
|\partial_\xi^\beta (\chi_0 (i\xi)^\alpha e^{-t\hat{A}_\xi} (I - e^{-T\hat{A}_\xi})^{-1} e^{-(T-\tau)\hat{A}_\xi})| \leq C|\xi|^{-2+|\alpha|-|\beta|},
\]
\[
|\partial_\xi^\beta (\chi_0 (i\xi)^\alpha e^{-(t-\tau)\hat{A}_\xi})| \leq C|\xi|^{||\alpha|-|\beta||},
\]
for \(\sigma \in [0, T] \), \(0 \leq \tau \leq t \leq T \) and \(|\alpha|, |\beta| \geq 0\). Hence by Lemma 4.10 we see that
\[
|\partial_\xi^\alpha E_1(x)| \leq C(1 + |x|)^{|\alpha|} \quad (|\alpha| \geq 1),
\]
\[
|\partial_\xi^\alpha E_2(x)| \leq C(1 + |x|)^{|2+|\alpha||} \quad (|\alpha| \geq 0).
\]
This together with Lemma 4.11 and Lemma 4.12 we obtain the desired estimate in a similar manner to the proof of Proposition 5.2. This completes the proof. \(\square \)

The symbol \(\Psi_1 \) and \(\Psi_2 \) stand for
\[
\Psi_1[F_1(t)] := S_1(t) Y_1(T) (I - S_1(T))^{-1} \left(\begin{array}{c} 0 \\ F_1(t) \end{array} \right), \quad \Psi_2[F_1(t)] := Y_1(t) \left(\begin{array}{c} 0 \\ F_1(t) \end{array} \right). \quad (5.15)
\]

For \(\Psi_1 \) and \(\Psi_2 \) we derive the following estimates.

Proposition 5.8. (i) If \(F_1 \) satisfies \(F_1 = \partial_x^\alpha f_1 \in L^2(0, T; L^L_{3, \#} \cap L^2_{(1,1)}) \) with \(f_1 \in L^2(0, T; L^L_{(1,1)} \cap L^L_{2}) \) for some \(\alpha \) satisfying \(|\alpha| = 1\) and \(f_1 \) satisfies (5.2), then \(\Psi_j[F_1] \in C^1([0, T]; \mathcal{Y}_{(1), \#}) \times [C([0, T]; \mathcal{Y}_{(1), \#}) \cap H^1(0, T; \mathcal{Y}_{(1), \#})] \) \((j = 1, 2) \) and \(\Psi_j[F_1] \) satisfy the following estimates.
\[
\|\partial_t^k \Psi_j[F_1]\|_{C([0,T]; \mathcal{Y}_{(1), \#}) \times L^2(0,T; \mathcal{Y}_{(1), \#})} \leq C(\|\dot{F}_1\|_{L^2(0,T; L^L_{3, \#} \cap L^2_{(1,1)})} + \|f_1\|_{L^2(0,T; L^L_{2})})
\]
for \(k = 0, 1 \) and \(j = 1, 2 \).

(ii) We have that \(\Psi_j[F_1] \in C^1([0, T]; \mathcal{Y}_{(1), \#}) \times [C([0, T]; \mathcal{Y}_{(1), \#}) \cap H^1(0, T; \mathcal{Y}_{(1), \#})] \) \((j = 1, 2) \) for \(F_1 = \nabla f_1 \in L^2(0, T; L^L_{3, \#} \cap L^2_{(1,1)}) \) with \(f_1 \in L^2(0, T; L^L_{2} \cap L^L_{L^2}) \) and \(\Psi_j[F_1] \) satisfy the estimates
\[
\|\partial_t^k \Psi_j[F_1]\|_{C([0,T]; \mathcal{Y}_{(1), \#}) \times L^2(0,T; \mathcal{Y}_{(1), \#})} \leq C(\|\dot{F}_1\|_{L^2(0,T; L^L_{3, \#} \cap L^2_{(1,1)})} + \|f_1\|_{L^2(0,T; L^L_{L^2})})
\]
for \(k = 0, 1 \) and \(j = 1, 2 \).

(iii) Let \(F_1 = \partial_x^\alpha f_1 \in L^2(0, T; L^L_{3, \#} \cap L^2_{(1,1)}) \) with \(f_1 \in L^2(0, T; L^L_{2} \cap L^L_{L^2}) \) for some \(\alpha \) satisfying \(|\alpha| \geq 2\). Then \(\Psi_j[F_1] \in C^1([0, T]; \mathcal{Y}_{(1), \#}) \times [C([0, T]; \mathcal{Y}_{(1), \#}) \cap H^1(0, T; \mathcal{Y}_{(1), \#})] \) \((j = 1, 2) \) and \(\Psi_j[F_1] \) satisfy the estimates
\[
\|\partial_t^k \Psi_j[F_1]\|_{C([0,T]; \mathcal{Y}_{(1), \#}) \times L^2(0,T; \mathcal{Y}_{(1), \#})} \leq C(\|\dot{F}_1\|_{L^2(0,T; L^L_{3, \#} \cap L^2_{(1,1)})} + \|f_1\|_{L^2(0,T; L^L_{L^2})})
\]
for \(k = 0, 1 \) and \(j = 1, 2 \).
Proof. As for the assertion (i), it follows from Proposition 5.1 (i), (ii) and Lemma 5.7 that
\[
\|\Psi_j[\tilde{F}_1]\|_{C([0,T];\mathcal{X}_1(\mathcal{Y}))} \leq C(\|\tilde{F}_1\|_{L^2(0,T;L^2_\mathcal{X} \cap L^2_\mathcal{Y})} + \|f_1\|_{L^2(0,T;L^2_\mathcal{X} \cap L^2_\mathcal{Y})})
\]
for \(j = 1, 2 \),
\[
\|\partial_t \Psi_1[\tilde{F}_1]\|_{C([0,T];\mathcal{X}_1(\mathcal{Y}))} \leq C(\|\tilde{F}_1\|_{L^2(0,T;L^2_\mathcal{X} \cap L^2_\mathcal{Y})} + \|f_1\|_{L^2(0,T;L^2_\mathcal{X} \cap L^2_\mathcal{Y})}),
\]
and
\[
\|\partial_t \Psi_2[\tilde{F}_1]\|_{C([0,T];\mathcal{X}_1(\mathcal{Y}))} \leq C(\|\tilde{F}_1\|_{L^2(0,T;L^2_\mathcal{X} \cap L^2_\mathcal{Y})} + \|f_1\|_{L^2(0,T;L^2_\mathcal{X} \cap L^2_\mathcal{Y})} + \|\tilde{F}_1\|_{L^2(0,T;\mathcal{Y})}).
\]
Note that \(\tilde{F}_1 = \chi_0 * \tilde{F}_1 \), where \(\chi_0 = \mathcal{F}^{-1} \tilde{\chi}_0 \), \(\tilde{\chi}_0 \) is the cut-off function defined by (5.8). Since \(\tilde{\chi}_0 \) belongs to the Schwartz space on \(\mathbb{R}^2 \), we get that
\[
|\partial_x^\alpha \chi_0(x)| \leq C(1 + |x|)^{-(2+|\alpha|)} \text{ for } |\alpha| \geq 0.
\]
Therefore, we derive the following estimate for \(\tilde{F}_1 \|_{L^2(0,T;\mathcal{Y})} \), in a similar manner to the proof of Proposition 5.2.
\[
\|\tilde{F}_1\|_{L^2(0,T;\mathcal{Y})} \leq C(\|\tilde{F}_1\|_{L^2(0,T;L^2_\mathcal{X} \cap L^2_\mathcal{Y})} + \|f_1\|_{L^2(0,T;L^2_\mathcal{X} \cap L^2_\mathcal{Y})}).
\]
Consequently, we obtain the desired estimate in (i). Similarly, we can verify the assertion (ii)-(iii). This completes the proof. \(\square \)

By using Proposition 5.8, we give estimates for a solution of (5.1) satisfying \(u_{1}(0) = u_{1}(T) \).

Proposition 5.9. Set
\[
\Psi[\tilde{F}_1](t) := \Psi_1[\tilde{F}_1] + \Psi_2[\tilde{F}_1],
\]
for \(F_1 = \top(0, \tilde{F}_1) \), where \(\Psi_1 \) and \(\Psi_2 \) were defined by (5.15). If \(\tilde{F}_1 \) satisfies the conditions given in either (i)-(iii), then \(\Psi[\tilde{F}_1] \) is a solution of (5.1) with \(F_1 = \top(0, \tilde{F}_1) \) in \(\mathcal{X}_1 \), satisfying \(\Psi[\tilde{F}_1](0) = \Psi[\tilde{F}_1](T) \) and \(\Psi[\tilde{F}_1] \) satisfies the estimate in each (i)-(iii), respectively.

(i) \(\tilde{F}_1 = \partial_x^\alpha f_1 \in L^2(0,T;L^2_3;\mathcal{X}_1(\mathcal{Y})) \) with \(f_1 \in L^2(0,T;L^2_3;\mathcal{X}_1(\mathcal{Y})) \) for some \(\alpha \) satisfying \(|\alpha| = 1 \) and \(f_1 \) satisfies (5.2);
\[
\|\Psi[\tilde{F}_1]\|_{\mathcal{X}_1(\mathcal{Y})} \leq C(\|\tilde{F}_1\|_{L^2(0,T;L^2_3;\mathcal{X}_1(\mathcal{Y}))} + \|f_1\|_{L^2(0,T;L^2_3;\mathcal{X}_1(\mathcal{Y}))}).
\]
(ii) \(\tilde{F}_1 = \nabla f_1 \in L^2(0,T;L^2_3;\mathcal{X}_1(\mathcal{Y})) \) with \(f_1 \in L^2(0,T;L^2_3;\mathcal{X}_1(\mathcal{Y})) \);
\[
\|\Psi[\tilde{F}_1]\|_{\mathcal{X}_1(\mathcal{Y})} \leq C(\|\tilde{F}_1\|_{L^2(0,T;L^2_3;\mathcal{X}_1(\mathcal{Y}))} + \|f_1\|_{L^2(0,T;L^2_3;\mathcal{X}_1(\mathcal{Y}))}).
\]
Remark 6.2. and we omit the details.

Here Proposition 6.1. in (i)-(iii) are verified by Proposition 5.8. This completes the proof.

6 Estimates for solution on the high frequency part

In this section we estimate a solution for the high frequency part. We begin with some properties of \((5.1)\) with \(F) = \mathcal{T}(0, \tilde{F}(1))\) and satisfies \(\Psi[\tilde{F}(1)](0) = \Psi[\tilde{F}(1)](T)\). The estimates and antisymmetry of \(\Psi[\tilde{F}(1)]\) in (i)-(iii) are verified by Proposition 5.8. This completes the proof.

Proof. By Proposition 5.1 (iii) and Proposition 5.2 we see that \(\Psi[\tilde{F}(1)]\) is a solution of (5.1) with \(F_1) = \mathcal{T}(0, \tilde{F}(1))\) and satisfies \(\Psi[\tilde{F}(1)](0) = \Psi[\tilde{F}(1)](T)\). The estimates and antisymmetry of \(\Psi[\tilde{F}(1)]\) in (i)-(iii) are verified by Proposition 5.8. This completes the proof.

\[
\begin{align*}
\text{(iii) } \tilde{F}(1) = \partial_{x_1}^\alpha f(1) \in L^2(0, T; L^{\infty}_{3,\#} \cap L^2_{(1),1}) \text{ with } f(1) \in L^2(0, T; L^2_1 \cap L^\infty_2) \text{ for some } \alpha \text{ satisfying } |\alpha| \geq 2; \\
\|\mathcal{P}[\tilde{F}(1)]\|_{\mathcal{A}_1(0,T)} &\leq C(\|\tilde{F}(1)\|_{L^2(0,T;L^\infty_3 \cap L^2_1)} + \|f(1)\|_{L^2(0,T;L^\infty_3 \cap L^2_2)}). \\
\end{align*}
\]

\[
(5.19)
\]

Proof. By Proposition 5.1 (iii) and Proposition 5.2 we see that \(\Psi[\tilde{F}(1)]\) is a solution of (5.1) with \(F_1) = \mathcal{T}(0, \tilde{F}(1))\) and satisfies \(\Psi[\tilde{F}(1)](0) = \Psi[\tilde{F}(1)](T)\). The estimates and antisymmetry of \(\Psi[\tilde{F}(1)]\) in (i)-(iii) are verified by Proposition 5.8. This completes the proof.

6 Estimates for solution on the high frequency part

In this section we estimate a solution for the high frequency part. We begin with some properties of \(S_{\infty,\tilde{u}}(t)\) and \(\mathcal{A}_{\infty,\tilde{u}}(t)\).

As for the solvability of (4.10), we state the following proposition.

Proposition 6.1. Let \(s\) be an integer satisfying \(s \geq 3\). Set \(k = s - 1\) or \(s\). Assume that

\[
\begin{align*}
\nabla \tilde{w} &\in C([0, T']; H^{s-1}) \cap L^2(0, T'; H^s), \\
u_{0,\infty} &\in \mathcal{T}(\phi_{0,\infty}, w_{0,\infty}) \in H^k_{(\infty)}, \\
F_{(\infty)} &\in \mathcal{T}(F_{0,\infty}^{(\infty)}, \tilde{F}_{(\infty)}) \in L^2(0, T'; H^k_{(\infty)} \times H^{k-1}_{(\infty)}).
\end{align*}
\]

Here \(T'\) is a given positive number. Then there exists a unique solution \(u_{(\infty)} = \mathcal{T}(\phi_{(\infty)}, w_{(\infty)})\) of (4.10) satisfying

\[
\begin{align*}
\phi_{(\infty)} &\in C([0, T']; H^k_{(\infty)}), \\
w_{(\infty)} &\in C([0, T']; H^k_{(\infty)}) \cap L^2(0, T'; H^{k+1}_{(\infty)}) \cap H^1(0, T'; H^{k-1}_{(\infty)}).
\end{align*}
\]

One can verify Proposition 6.1 in a similar manner to the proof of [4, Proposition 6.4] and we omit the details.

Remark 6.2. Concerning the space dimension \(n\), in [4, Proposition 6.4] we assume that \(n \geq 3\). But we can replace the space dimension to \(n = 2\) by taking a look at the fact that [2, Theorem 4.1] holds for the space dimension \(n = 2\) and the proof of [4, Proposition 6.4]. See also [10, Remark 6.2] for the condition of \(\tilde{w}\).

Therefore, it follows from Proposition 6.1 that we can define \(S_{\infty,\tilde{u}}(t)\) \((t \geq 0)\) and \(\mathcal{A}_{\infty,\tilde{u}}(t)\) \((t \in [0, T])\) as follows.

Let an integer \(s\) satisfy \(s \geq 3\) and a function \(\tilde{w} = \mathcal{T}(\tilde{\phi}, \tilde{w})\) satisfy

\[
\begin{align*}
\tilde{\phi} &\in C_{\text{per}}(\mathbb{R}; H^s), \quad \nabla \tilde{w} \in C_{\text{per}}(\mathbb{R}; H^{s-1}) \cap L^2_{\text{per}}(\mathbb{R}; H^s). \\
\end{align*}
\]

(6.1)
Let $k = s - 1$ or s. We define and operator $S_{\infty, \tilde{u}}(t) : H_k^s(t) \rightarrow H_k^s(t \geq 0)$ by

$$u(\infty)(t) = S_{\infty, \tilde{u}}(t)u_{0\infty} \quad \text{for} \quad u_{0\infty} = \tilde{\gamma}(\phi_{0\infty}, w_{0\infty}) \in H_k^s,$$

where $u(\infty)(t)$ is the solution of (4.10) with $F(\infty) = 0$. Moreover, we define an operator $\mathcal{S}_{\infty, \tilde{u}}(t) : L^2(0, T; H_k^s \times H_k^{s-1}) \rightarrow H_k^s(t \in [0, T])$ by

$$u(\infty)(t) = \mathcal{S}_{\infty, \tilde{u}}(t)[F(\infty)] \quad \text{for} \quad F(\infty) = \tilde{\gamma}(F_0(\infty), \tilde{F}(\infty)) \in L^2(0, T; H_k^s \times H_k^{s-1}),$$

where $u(\infty)(t)$ is the solution of (4.10) with $u_{0\infty} = 0$.

We have the following properties for $S_{\infty, \tilde{u}}(t)$ and $\mathcal{S}_{\infty, \tilde{u}}(t)$ in the weighted L^2 Sobolev spaces.

Proposition 6.3. Let s be a nonnegative integer satisfying $s \geq 3$ and let $k = s - 1$ or s. We suppose that $\tilde{u} = \tilde{\gamma}(\phi, \tilde{w})$ satisfies (6.1). Then there exists a constant $\delta > 0$ such that if $\|\nabla \tilde{w}\|_{C([0, T]; H^s)} \leq \delta$, then the following assertions hold true.

(i) For $u_{0\infty} = \tilde{\gamma}(\phi_{0\infty}, w_{0\infty}) \in H_k^{s+1}$, there holds $S_{\infty, \tilde{u}}(\cdot)u_{0\infty} \in C([0, \infty); H_k^s)$ and there exist constants $a > 0$ and $C > 0$ such that $S_{\infty, \tilde{u}}(t)$ satisfies the following estimate for all $t \geq 0$ and $u_{0\infty} \in H_k^s$:

$$\|S_{\infty, \tilde{u}}(t)u_{0\infty}\|_{H_k^s} \leq Ce^{-at}\|u_{0\infty}\|_{H_k^s};$$

(ii) For $F(\infty) = \tilde{\gamma}(F_0(\infty), \tilde{F}(\infty)) \in L^2(0, T; H_k^s \times H_k^{s-1})$, there holds $\mathcal{S}_{\infty, \tilde{u}}(\cdot)F(\infty) \in C([0, T]; H_k^s)$ and $\mathcal{S}_{\infty, \tilde{u}}(t)$ satisfies the following estimate for $t \in [0, T]$ and $F(\infty) \in L^2(0, T; H_k^s \times H_k^{s-1})$ with a positive constant C depending on T.

$$\|\mathcal{S}_{\infty, \tilde{u}}(t)[F(\infty)]\|_{H_k^s} \leq C\left\{\int_0^t e^{-a(t-\tau)}\|F(\infty)\|_{H_k^s}^2 d\tau \right\}^{1/2}.$$

(iii) We define $r_{H_k^s}^2(S_{\infty, \tilde{u}}(T))$ by the spectral radius of $S_{\infty, \tilde{u}}(T)$ on H_k^s. Then it holds that $r_{H_k^s}^2(S_{\infty, \tilde{u}}(T)) < 1$.

(iv) $I - S_{\infty, \tilde{u}}(T)$ has a bounded inverse $(I - S_{\infty, \tilde{u}}(T))^{-1}$ on H_k^s satisfying

$$\|(I - S_{\infty, \tilde{u}}(T))^{-1}u\|_{H_k^s} \leq C\|u\|_{H_k^s} \quad \text{for} \quad u \in H_k^s.$$
We can verify Proposition 6.3 in a similar manner to the proof of [4, Proposition 6.5] and we omit the proof.

Remark 6.4. As for the space dimension n, in [4, Proposition 6.5] it is assumed that $n \geq 3$. But it is replaced by $n = 2$ due to taking a look at the proof of [4, Proposition 6.4]. See also [10, Remark 6.2] for the condition of \tilde{w}.

We are now in a position to give the following estimate for a solution $u_{(\infty)}(t)$ of (4.10) satisfying $u_{(\infty)}(0) = u_{(\infty)}(T)$.

Proposition 6.5. Let s be a nonnegative integer satisfying $s \geq 3$. We suppose that

$$F_{(\infty)} = \mathcal{T}(F_{(\infty)}^0, \tilde{F}_{(\infty)}) \in L^2(0, T; (H^k_{(\infty), 2} \times H^{k-1}_{(\infty), 2})_{\text{sym}}),$$

with $k = s - 1$ or s. We also assume that $\tilde{u} = \mathcal{T}(\tilde{\phi}, \tilde{w})$ satisfies (6.1). Then there exists a positive constant δ such that if

$$\|\nabla \tilde{w}\|_{C([0, T]; H^{s-1}) \cap L^2(0, T; H^s)} \leq \delta,$$

then the following assertion holds true.

The function

$$u_{(\infty)}(t) := S_{\infty, \tilde{u}}(t)(I - S_{\infty, \tilde{u}}(T))^{-1}\mathcal{J}_{\infty, \tilde{u}}(T)[F_{(\infty)}] + \mathcal{J}_{\infty, \tilde{u}}(t)[F_{(\infty)}]$$

(6.2)

is a solution of (4.10) in $Z_k(0, T)$ satisfying $u_{(\infty)}(0) = u_{(\infty)}(T)$ and the estimate

$$\|u_{(\infty)}\|_{Z_k(0, T)} \leq C\|F_{(\infty)}\|_{L^2(0, T; H^k_{(\infty), 2} \times H^{k-1}_{(\infty), 2})}.$$

Proposition 6.5 is directly derived by Proposition 6.3.

7 Proof of Theorem 3.1

In this section we prove Theorem 3.1.

The estimates for the nonlinear and inhomogeneous terms are established here. We set $F_{(1), m}(u, g)$ and $F_{(\infty)}(u, g)$ by

$$F_{(1), m}(u, g) := \begin{pmatrix} 0 \\ \tilde{F}_{(1), m}(u, g) \end{pmatrix},$$

$$F_{(\infty)}(u, g) = \begin{pmatrix} F_{(\infty)}^0(u) \\ \tilde{F}_{(\infty)}(u, g) \end{pmatrix} := P_\infty \left(-\gamma w \cdot \nabla \phi_{(1)} + F_{(1)}^0(u) \right),$$

32
Proof. Let \(u = \tau(\phi, w) \) is given by \(u_{(1),m} = \tau(\phi_{(1)}, m_{(1)}) \) and \(u_{(\infty)} = \tau(\phi_{(\infty)}, w_{(\infty)}) \) through the relation

\[
\phi = \phi_{(1)} + \phi_{(\infty)}, \quad w = w_{(1)} + w_{(\infty)}, \quad w_{(1)} = m_{(1)} - P_1(\phi w),
\]

where \(\tilde{F}_{(1),m}(u, g) \) and \(F^0(u) \) and \(\tilde{F}(u, g) \) were given in (4.5), (3.5) and (3.6), respectively.

As for the estimate \(F_{(1),m}(u, g) \), we use the notation \(\Psi \) introduced in section 5, i.e.,

\[
\Psi[\tilde{F}_{(1)}](t) := S_1(t) \mathcal{A}_1(T)(I - S_1(T))^{-1} \left(\begin{array}{c} 0 \\ \tilde{F}_{(1)} \end{array} \right) + \mathcal{A}_1(t) \left(\begin{array}{c} 0 \\ \tilde{F}_{(1)} \end{array} \right).
\]

We have the following estimate for \(\Psi[\tilde{F}_{(1),m}(u, g)] \) in \(\mathcal{X}_{(1),sym}(0, T) \).

Proposition 7.1. Let \(u_{(1),m} = \tau(\phi_{(1)}, m_{(1)}) \in (\mathcal{X}_{(1),sym})_1 \) and \(u_{(\infty)} = \tau(\phi_{(\infty)}, w_{(\infty)}) \in H^s(\infty, 2, sym) \) satisfying

\[
\sup_{0 \leq t \leq T} \|u_{(1),m}(t)\|_{\mathcal{X}_{(1)} \times \mathcal{Y}_{(1)}} + \sup_{0 \leq t \leq T} \|u_{(\infty)}(t)\|_{H^2} + \sup_{0 \leq t \leq T} \|\phi(t)\|_{L^\infty} + \sup_{0 \leq t \leq T} \|\nabla\phi(t)\|_{L^2} \leq \min\{\delta_0, \delta, \frac{1}{2}\},
\]

where \(\delta_0, \delta \) are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and \(\phi = \phi_{(1)} + \phi_{(\infty)} \). Then we obtain the following estimate

\[
\|\Psi[\tilde{F}_{(1),m}(u, g)]\|_{\mathcal{X}_{(1),sym}(0, T)} \leq C\|\{u_{(1),m}, u_{(\infty)}\}\|_{X^s(0,T)} + C\left(1 + \|\{u_{(1),m}, u_{(\infty)}\}\|_{X^s(0,T)} \right)[g],
\]

uniformly for \(u_{(1),m} \) and \(u_{(\infty)} \).

Proof. Let \(u^{(j)} = \tau(\phi^{(j)}, w^{(j)}) \) (\(j = 1, \infty \)), \(w^{(j)} = \tau(w_1^{(j)}, w_2^{(j)}) \) and we define

\[
G_1(u^{(1)}, u^{(2)}) := -P_1 \left\{ \gamma \partial_{x_2} \left(\begin{array}{c} w_1^{(1)} w_2^{(2)} \\ w_2^{(1)} w_2^{(2)} - w_1^{(1)} w_1^{(2)} \end{array} \right) + \gamma \partial_{x_1} \left(\begin{array}{c} 0 \\ w_1^{(1)} w_2^{(2)} \end{array} \right) \right\},
\]

\[
G_2(u^{(1)}, u^{(2)}) := -P_1 \left(\gamma \nabla(w_1^{(1)} w_2^{(2)}) \right),
\]

\[
G_3(u^{(1)}, u^{(2)}) := -P_1 (\mu \Delta(\phi^{(1)} w^{(2)}) + \mu \nabla(\phi^{(1)} w^{(2)})),
\]

\[
G_4(\phi, u^{(1)}, u^{(2)}) := -P_1 \left(\frac{\rho}{\gamma} \nabla(\rho^{(1)}(\phi) \phi^{(1)} \phi^{(2)}) \right),
\]

\[
G_5(\phi, u^{(1)}, u^{(2)}) := -P_1 (\gamma \nabla(\phi w^{(1)} \otimes w^{(2)})),
\]

\[
H_k(u^{(1)}, u^{(2)}) := G_k(u^{(1)}, u^{(2)}) + G_k(u^{(2)}, u^{(1)}), \quad (k = 1, 2, 3),
\]

\[
H_k(\phi, u^{(1)}, u^{(2)}) := G_k(\phi, u^{(1)}, u^{(2)}) + G_k(\phi, u^{(2)}, u^{(1)}), \quad (k = 4, 5).
\]
and we then write \(\Psi[\tilde{F}_{(1),m}(u, g)] \) as

\[
\Psi[\tilde{F}_{(1),m}(u, g)] = \sum_{k=1}^{3} \left(\Psi[G_k(u_{(1)}, u_{(1)})] + \Psi[H_k(u_{(1)}, u_{(\infty)})] + \Psi[G_k(u_{(\infty)}, u_{(\infty)})] \right)
\]

\[
+ \sum_{k=4}^{5} \Psi[G_k(\phi, u_{(1)}, u_{(1)})] + \Psi[H_k(\phi, u_{(1)}, u_{(\infty)})] + \Psi[G_k(\phi, u_{(\infty)}, u_{(\infty)})]
\]

\[
+ \Psi\left[\frac{1}{\gamma}(1 + \phi(1))g \right] + \Psi\left[\frac{1}{\gamma}\phi(\infty)g \right].
\]

Using Lemma 4.14 and (5.17) we have the following estimate for \(\Psi[G_1(u_{(1)}, u_{(1)})] \).

\[
\|\Psi[G_1(u_{(1)}, u_{(1)})]\|_{X^*(0,T)} \leq C\|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)}.
\]

Concerning the estimates \(\Psi[G_2(u_{(1)}, u_{(1)})] \) and \(\Psi[G_4(\phi, u_{(1)}, u_{(1)})] \), applying Lemma 4.14 and (5.18) with \(f_{(1)} = (w_{(1)})^2 \) and \(f_{(1)} = p^{(1)}(\phi)\phi_{(1)}^2 \) we obtain the estimates

\[
\|\Psi[G_2(u_{(1)}, u_{(1)})]\|_{X^*(0,T)} \leq C\|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)},
\]

\[
\|\Psi[G_4(\phi, u_{(1)}, u_{(1)})]\|_{X^*(0,T)} \leq C\|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)}.
\]

By using Lemma 4.14 and (5.19) we arrive at the following estimate for \(\Psi[G_3(u_{(1)}, u_{(1)})] \).

\[
\|\Psi[G_3(u_{(1)}, u_{(1)})]\|_{X^*(0,T)} \leq C\|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)}.
\]

It follows from Lemma 4.4, Lemma 4.14 and (5.17) that we get

\[
\|\Psi[G_1(u_{(1)}, u_{(\infty)})]\|_{X^*(0,T)} \leq C\|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)},
\]

\[
\|\Psi[G_1(u_{(\infty)}, u_{(\infty)})]\|_{X^*(0,T)} \leq C\|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)}.
\]

Similarly, by Lemma 4.4, Lemma 4.14 (5.18) and (5.19) we obtain for \(k = 2, 3 \) that

\[
\|\Psi[G_k(u_{(1)}, u_{(\infty)})]\|_{X^*(0,T)} + \|\Psi[G_4(\phi, u_{(1)}, u_{(\infty)})]\|_{X^*(0,T)}
\]

\[
+ \|\Psi[G_k(u_{(\infty)}, u_{(\infty)})]\|_{X^*(0,T)} + \|\Psi[G_4(\phi, u_{(\infty)}, u_{(\infty)})]\|_{X^*(0,T)}
\]

\[
\leq C\|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)}^2.
\]

\(G_5(\phi, u, u) \) is estimated by same way as that in the estimate for \(\Psi[G_1(u_{(1)}, u_{(1)})] \) and we see that

\[
\|\Psi[G_5(\phi, u, u)]\|_{X^*(0,T)} \leq C\|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)}^2.
\]

As for the estimates for \(\Psi[(1 + \phi(1))g] \) and \(\Psi[\phi(\infty)g] \), it holds from Lemma 4.13 and (5.17) that

\[
\|\Psi[(1 + \phi(1))g]\|_{X^*(0,T)} + \|\Psi[\phi(\infty)g]\|_{X^*(0,T)} \leq C(1 + \|\{u_{(1)}, u_{(\infty)}\}\|_{X^*(0,T)}|g|).
\]
Therefore, we find that
\[\| \Psi[\Phi,(1),m(u,g)] \|_{\mathcal{Y}_0(0,T)} \leq C \| \{u,(1), u,(\infty)\} \|_{X,0(0,T)}^2 + C \left(1 + \| \{u,(1), u,(\infty)\} \|_{X,0(0,T)} \right)[g]_s. \]
Consequently, we obtain the desired estimate by applying Lemma 4.9 (i). This completes the proof.

Proposition 7.2. Let \(u,(1),m = \tau(\phi,(1), m,(1)) \in (\mathcal{X},(1) \times \mathcal{Y},(1))_{\text{sym}} \) and \(u,(\infty) = \tau(\phi,(\infty), w,(\infty)) \in H_{(\infty),2,\text{sym}}^s \) satisfying
\[
\sup_{0 \leq t \leq T} \|u,(1),m(t)\|_{\mathcal{X},(1) \times \mathcal{Y},(1)} + \sup_{0 \leq t \leq T} \|u,(\infty)(t)\|_{H_2^s}
+ \sup_{0 \leq t \leq T} \|\phi(t)\|_{L_\infty^\infty} + \sup_{0 \leq t \leq T} \|\nabla \phi(t)\|_{L_1^1} \leq \min\{\delta_0, \delta, \frac{1}{2}\},
\]
where \(\delta_0, \delta \) are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and \(\phi = \phi,(1) + \phi,(\infty) \). Then we have the estimate
\[
\| F,(\infty)(u,g) \|_{L_2^2(0,T; H_2^s \times H_2^s)}
\leq C \| \{u,(1),m, u,(\infty)\} \|_{X,0(0,T)}^2 + C \left(1 + \| \{u,(1),m, u,(\infty)\} \|_{X,0(0,T)} \right)[g]_s,
\]
uniformly for \(u,(1),m \) and \(u,(\infty) \).

Proposition 7.2 follows in a similar manner to the proof of [10, Proposition 7.2] and we omit the details.

By the same way as that in the proof of Proposition 7.1, we have the following estimate for \(F,(1),m(u,(1), g) - F,(1),m(u,(2), g) \).

Proposition 7.3. Let \(u,(k),(1),m = \tau(\phi,(k),(1), m,(1)) \in (\mathcal{X},(1) \times \mathcal{Y},(1))_{\text{sym}} \) and \(u,(k),(\infty) = \tau(\phi,(k),(\infty), w,(\infty)) \in H_{(\infty),2,\text{sym}}^s \) satisfying
\[
\sup_{0 \leq t \leq T} \|u,(k),(1),m(t)\|_{\mathcal{X},(1) \times \mathcal{Y},(1)} + \sup_{0 \leq t \leq T} \|u,(k),(\infty)(t)\|_{H_2^s}
+ \sup_{0 \leq t \leq T} \|\phi,(k)(t)\|_{L_\infty^\infty} + \sup_{0 \leq t \leq T} \|\nabla \phi,(k)(t)\|_{L_1^1} \leq \min\{\delta_0, \delta, \frac{1}{2}\},
\]
where \(\delta_0, \delta \) are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and \(\phi,(k) = \phi,(k),(1) + \phi,(k),(\infty) \) (\(k = 1, 2 \)). Then it holds that
\[
\| \Psi[\Phi,(1),m(u,(1), g) - \Phi,(1),m(u,(2), g)] \|_{\mathcal{Y}_0(0,T)}
\]
\[\leq C \sum_{k=1}^{2} \| (u^{(k)}_{(1),m}, u^{(k)}_{(\infty)}) \|_{X^s(0,T)} \| (u^{(1)}_{(1),m} - u^{(2)}_{(1),m}, u^{(1)}_{(\infty)} - u^{(2)}_{(\infty)}) \|_{X^{s-1}(0,T)} + C[g]_{s} \| (u^{(1)}_{(1),m} - u^{(2)}_{(1),m}, u^{(1)}_{(\infty)} - u^{(2)}_{(\infty)}) \|_{X^{s-1}(0,T)}, \]

uniformly for \(u^{(k)}_{(1),m} \) and \(u^{(k)}_{(\infty)} \).

We next estimate \(F_{(\infty)}(u^{(1)}, g) - F_{(\infty)}(u^{(2)}, g) \).

Proposition 7.4. Let \(u^{(k)}_{(1),m} = \mathfrak{t}(\phi^{(k)}_{(1)}, m_{(1)}) \in (\mathcal{X}^{(1)} \times \mathcal{Y}^{(1)})_{\text{sym}} \) and \(u^{(k)}_{(\infty)} = \mathfrak{t}(\phi^{(k)}_{(\infty)}, w^{(k)}_{(\infty)}) \in H^{s}_{(\infty), 2, \text{sym}} \) satisfying

\[
\sup_{0 \leq t \leq T} \| u^{(k)}_{(1),m}(t) \|_{\mathcal{X}^{(1)} \times \mathcal{Y}^{(1)}} + \sup_{0 \leq t \leq T} \| u^{(k)}_{(\infty)}(t) \|_{H^{2}_{2}} + \sup_{0 \leq t \leq T} \| \phi^{(k)}(t) \|_{L^{\infty}_{2}} + \sup_{0 \leq t \leq T} \| \nabla \phi^{(k)}(t) \|_{L^{2}_{2}} \leq \min\{\delta_{0}, \delta, \frac{1}{2}\},
\]

where \(\delta_{0}, \delta \) are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and \(\phi^{(k)} = \phi^{(k)}_{(1)} + \phi^{(k)}_{(\infty)} \) (\(k = 1, 2 \)). Then it holds that

\[
\| F_{(\infty)}(u^{(1)}, g) - F_{(\infty)}(u^{(2)}, g) \|_{L^{2}_{(0,T), H^{s-1}_{2} \times H^{s-2}_{2}}}
\leq C \sum_{k=1}^{2} \| (u^{(k)}_{(1),m}, u^{(k)}_{(\infty)}) \|_{X^{s}(0,T)} \| (u^{(1)}_{(1),m} - u^{(2)}_{(1),m}, u^{(1)}_{(\infty)} - u^{(2)}_{(\infty)}) \|_{X^{s-1}(0,T)} + C[g]_{s} \| (u^{(1)}_{(1),m} - u^{(2)}_{(1),m}, u^{(1)}_{(\infty)} - u^{(2)}_{(\infty)}) \|_{X^{s-1}(0,T)},
\]

uniformly for \(u^{(k)}_{(1),m} \) and \(u^{(k)}_{(\infty)} \).

Proposition 7.4 easily follows from Lemmas 2.1–2.4, Lemma 4.4, Lemma 4.15 and Lemma 4.16 in a similar manner to the proof of Proposition 7.2.

The following estimate is concerned with Proposition 7.6.

Proposition 7.5. (i) Let \(u_{(1),m} = \mathfrak{t}(\phi_{(1)}, m_{(1)}) \in (\mathcal{X}^{(1)} \times \mathcal{Y}^{(1)})_{\text{sym}} \) and \(u_{(\infty)} = \mathfrak{t}(\phi_{(\infty)}, w_{(\infty)}) \in H^{s}_{(\infty), 2, \text{sym}} \) satisfying

\[
\sup_{0 \leq t \leq T} \| u_{(1),m}(t) \|_{\mathcal{X}^{(1)} \times \mathcal{Y}^{(1)}} + \sup_{0 \leq t \leq T} \| u_{(\infty)}(t) \|_{H^{2}_{2}} + \sup_{0 \leq t \leq T} \| \phi(t) \|_{L^{\infty}_{2}} + \sup_{0 \leq t \leq T} \| \nabla \phi(t) \|_{L^{2}_{2}} \leq \min\{\delta_{0}, \delta, \frac{1}{2}\},
\]

where \(\delta_{0}, \delta \) are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and \(\phi = \phi_{(1)} + \phi_{(\infty)} \). Then it holds that

\[
\| F_{(1),m}(u, g) \|_{C([0,T]; L^{2})} + \| \nabla F_{(1),m}(u, g) \|_{C([0,T]; L^{2})}
\]
\[\leq C \| \{ u(1,m), u(\infty) \} \|_{X^s(0,T)} + C \left(1 + \| \{ u(1,m), u(\infty) \} \|_{X^s(0,T)} \right) [g], \]

uniformly for \(u(1,m) \) and \(u(\infty) \).

(ii) Let \(u^{(k)}(1,m) = \tau(\phi^{(k)}(1), m^{(k)}(1)) \in (\mathcal{Y}^{(1)}, \mathcal{Y}^{(1)})_{sym} \) and \(u^{(k)}(\infty) = \tau(\phi^{(k)}(\infty), u^{(k)}(\infty)) \in H^s(\infty)_{sym} \)
satisfying

\[
\sup_{0 \leq t \leq T} \| u^{(k)}(1,m)(t) \|_{\mathcal{Y}^{(1)}, \mathcal{Y}^{(1)}} + \sup_{0 \leq t \leq T} \| u^{(k)}(\infty)(t) \|_{H^s} \\
+ \sup_{0 \leq t \leq T} \| \phi^{(k)}(t) \|_{L^\infty} + \sup_{0 \leq t \leq T} \| \nabla \phi^{(k)}(t) \|_{L^2} \leq \min \{ \delta_0, \delta, \frac{1}{2} \},
\]

where \(\delta_0, \delta \) are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and \(\phi^{(k)} = \phi^{(k)}(1) + \phi^{(k)}(\infty) \) \((k = 1, 2) \). Then it holds that

\[
\| F(1,m)(u^{(1)}, g) - F(1,m)(u^{(2)}, g) \|_{L^2} + \| \nabla F(1,m)(u^{(1)}, g) - F(1,m)(u^{(2)}, g) \|_{L^2} \\
\leq C \sum_{k=1}^{2} \| \{ u^{(k)}(1,m), u^{(k)}(\infty) \} \|_{X^s(0,T)} \| \{ u^{(1)}(1,m) - u^{(2)}(1,m), u^{(1)}(\infty) - u^{(2)}(\infty) \} \|_{X^{s-1}(0,T)} \\
+ C[g] \| \{ u^{(1)}(1,m) - u^{(2)}(1,m), u^{(1)}(\infty) - u^{(2)}(\infty) \} \|_{X^{s-1}(0,T)},
\]

uniformly for \(u^{(k)}(1,m) \) and \(u^{(k)}(\infty) \).

Proposition 7.5 follows from direct computations based on Lemma 4.14.

We obtain the existence of a solution \(\{ u(1,m), u(\infty) \} \) of (4.2), (4.4) and (4.6) on \([0, T]\] satisfying \(u(1,m)(0) = u(1,m)(T) \) and \(u(\infty)(0) = u(\infty)(T) \) by similar iteration argument to that in \([10]\).

\[
u^{(0)}(1,m) = \tau(\phi^{(0)}(1), m^{(0)}(1)) \text{ and } u^{(0)}(\infty) = \tau(\phi^{(0)}(\infty), u^{(0)}(\infty)) \text{ are defined by}
\]

\[
\begin{cases}
 u^{(0)}(1,m)(t) : = S_1(t) \mathcal{J}_1(T)[(I - S_1(T))^{-1} \mathcal{G}_1] + \mathcal{J}_1(t)[\mathcal{G}_1], \\
 w^{(0)}(1) : = m^{(0)}(1) - P_1(\phi^{(0)} w^{(0)}), \\
 u^{(0)}(\infty)(t) : = S_{\infty,0}(t)(I - S_{\infty,0}(T))^{-1} \mathcal{J}_{\infty,0}(T)[\mathcal{G}_\infty] + \mathcal{J}_{\infty,0}(t)[\mathcal{G}_\infty],
\end{cases}
\]

where \(t \in [0, T], \mathcal{G} = \tau(0, \frac{1}{4} g(x, t)), \mathcal{G}_1 = P_1 \mathcal{G} \Rightarrow \mathcal{G}_\infty = P_\infty \mathcal{G}, \phi^{(0)} = \phi^{(0)}(1) + \phi^{(0)}(\infty) \text{ and } w^{(0)} = w^{(0)}(1) + w^{(0)}(\infty). \text{ Note that } u^{(0)}(1,m)(0) = u^{(1)}(1,m)(T) \text{ and } u^{(0)}(\infty)(0) = u^{(0)}(\infty)(T).

\[
u^{(N)}(1,m) = \tau(\phi^{(N)}(1), m^{(N)}(1)) \text{ and } u^{(N)}(\infty) = \tau(\phi^{(N)}(\infty), u^{(N)}(\infty)) \text{ are defined, inductively for } N \geq 1, \text{ by}
\]

\[
\begin{cases}
 u^{(N)}(1,m)(t) : = S_1(t) \mathcal{J}_1(T)[(I - S_1(T))^{-1} F(1,m)(u^{(N-1)}(1,m), g)] + \mathcal{J}_1(t)[F(1,m)(u^{(N-1)}(1,m), g)], \\
 u^{(N)}(1) : = m^{(N)}(1) - P_1(\phi^{(N)} w^{(N)}), \\
 u^{(N)}(\infty)(t) : = S_{\infty,0}(t)(I - S_{\infty,0}(T))^{-1} \mathcal{J}_{\infty,0}(T)[F(\infty)(u^{(N-1)}(1,m), g)] \\
 + \mathcal{J}_{\infty,0}(t)[F(\infty)(u^{(N-1)}(1,m), g)],
\end{cases}
\]

37
where \(t \in [0,T] \), \(u^{(N-1)} = u^{(N-1)}(t) + u^{(N-1)}(\infty), \ u^{(N-1)} = \sum (\phi^{(N-1)}(t), u^{(N-1)}(t), \phi^{(N)} = \phi^{(N)}(t) + \phi^{(N)}(\infty) \).

\(w^{(N)} = w^{(N)}(t), \) Note that \(u^{(N)}(t) = u^{(N)}(T) \) and \(u^{(N)}(\infty)(T) \).

The symbol \(B_{X_{sym}(a,b)}(r) \) stands for the closed unit ball in \(X_{sym}(a,b) \) centered at 0 with radius \(r \), i.e.,

\[
B_{X_{sym}(a,b)}(r) := \{ \{ u_{(1),m}, u_{(\infty)} \} \in X_{sym}(a,b); \| \{ u_{(1),m}, u_{(\infty)} \}\|_{X_{sym}(a,b)} \leq r \}.
\]

We have the following proposition from Propositions 5.1, 6.5, 7.1, 7.2, and 7.5 by the same argument as that in [10].

Proposition 7.6. There exists a constant \(\delta_1 > 0 \) such that if \([g]_s \leq \delta_1 \), then it holds that

(i) \[
\| \{ u_{(1),m}, u_{(\infty)} \}\|_{X^s(0,T)} \leq C_1[g]_s,
\]

for all \(N \geq 0 \), and

(ii) \[
\| \{ u_{(1),m}^{(N-1)} - u_{(1),m}^{(N-1)}, u_{(1),m}^{(N-1)} - u_{(\infty)}^{(N-1)} \}\|_{X^{s-1}(0,T)} \leq C_1[g]_s \| \{ u_{(1),m}^{(N-1)} - u_{(1),m}^{(N-1)}, u_{(\infty)}^{(N-1)} - u_{(\infty)}^{(N-1)} \}\|_{X^{s-1}(0,T)},
\]

for \(N \geq 1 \). Here \(C_1 \) is a constant independent of \(g \) and \(N \).

Concerning the existence of a solution \(\{ u_{(1),m}, u_{(\infty)} \} \) of (4.2), (4.4) and (4.6) on \([0,T] \) satisfying \(u_{(1),m}(0) = u_{(1),m}(T) \) and \(u_{(\infty)}(0) = u_{(\infty)}(T) \), we state the following

Proposition 7.7. There exists a constant \(\delta_2 > 0 \) such that if \([g]_s \leq \delta_2 \), then the system (4.2), (4.4) and (4.6) has a unique solution \(\{ u_{(1),m}, u_{(\infty)} \} \) on \([0,T] \) in \(B_{X_{sym}(0,T)}(C_1[g]_s) \) satisfying \(u_{(1),m}(0) = u_{(1),m}(T) \) and \(u_{(\infty)}(0) = u_{(\infty)}(T) \). The uniqueness of solutions of (4.2), (4.4) and (4.6) on \([0,T] \) satisfying \(u_{(1),m}(0) = u_{(1),m}(T) \) and \(u_{(\infty)}(0) = u_{(\infty)}(T) \) holds in \(B_{X_{sym}(0,T)}(C_1[\delta_2]) \).

Corollary 7.8. There exists a constant \(\delta_3 > 0 \) such that if \([g]_s \leq \delta_3 \), then the system (4.1)- (4.2) has a unique solution \(\{ u_{(1),m}, u_{(\infty)} \} \) on \([0,T] \) in \(B_{X_{sym}(0,T)}(C_2[g]_s) \) satisfying \(u_{(j)}(0) = u_{(j)}(T) \) \((j = 1, \infty) \) where \(u_{(j)} = \sum (\phi_{(j)}, w_{(j)}) \) \((j = 1, \infty) \) and \(C_2 \) is a constant independent of \(g \). The uniqueness of solutions of (4.1)-(4.2) on \([0,T] \) satisfying \(u_{(j)}(0) = u_{(j)}(T) \) \((j = 1, \infty) \) holds in \(B_{X_{sym}(0,T)}(C_2[\delta_3]) \).

Proposition 7.7 and Corollary 7.8 follows from Lemma 4.9 (i) and Proposition 7.7 by the same way as that in [10] and we omit the proofs.

As for the unique existence of solutions of the initial value problem, (4.1)-(4.2), the following proposition can be proved from the estimates in sections 5-7, as in [4, 10].
Proposition 7.9. Let \(h \in \mathbb{R} \) and let \(U_0 = U_{01} + U_{0\infty} \) with \(U_{01} \in \mathcal{Y}_{(1),\text{sym}} \times \mathcal{Y}_{(1),\text{sym}} \) and \(U_{0\infty} \in H^s_{(\infty),2,\text{sym}} \). Then there exist constants \(\delta_4 > 0 \) and \(C_3 > 0 \) such that if
\[
M(U_{01}, U_{0\infty}, g) := \|U_{01}\|_{\mathcal{Y}_{(1),\text{sym}}} + \|U_{0\infty}\|_{H^s_{(\infty),2}} + [g]_s \leq \delta_4,
\]
there exists a solution \(\{u(1), u(\infty)\} \) of the initial value problem for (4.1)-(4.2) on \([h, h+T]\) in \(B_{\mathcal{X}_{\text{sym}}}(h, h+T)(C_3 M(U_{01}, U_{0\infty}, g)) \) satisfying the initial condition \(u(j) \big|_{t=h} = U_{0j} \) \((j = 0, \infty) \). The uniqueness for this initial value problem holds in \(B_{\mathcal{X}_{\text{sym}}}(h, h+T)(C_3 \delta_4) \).

Therefore, we can extend \(\{u(1), u(\infty)\} \) periodically on \(\mathbb{R} \) as a time periodic solution of (4.1)-(4.2) by using Corollary 7.8 and Proposition 7.9 in the same argument as that given in [4]. Consequently, we obtain Theorem 3.1. This completes the proof.

Acknowledgements. This was partly supported by MEXT Supported Program for the Strategic Research Foundation at Private Universities Grant number S1511036L.

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHI
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ -functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

Masato WAKAYAMA & Keitaro YAMAMOTO
Sparse functional principal component analysis via regularized basis expansions and its application

Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type($A_2 + A_1$)$^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiro FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the \(q \)-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric \(\tau \) functions of the \(q \)-Painlevé systems of type \((A_2 + A_1)^{(1)} \)

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of \(Sp(4) \) with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTsu, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5	Hiroshi INOUE	Implications in Compressed Sensing and the Restricted Isometry Property
MI2011-6	Daeju KIM & Sadanori KONISHI	Predictive information criterion for nonlinear regression model based on basis expansion methods
MI2011-7	Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI	Group variable selection via relevance vector machine
MI2011-8	Jan BREZINA & Yoshiyuki KAGEI	Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow Group variable selection via relevance vector machine
MI2011-9	Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC	Recursive structures in the multispecies TASEP
MI2011-10	Kazunori YASUTAKE	On projective space bundle with nef normalized tautological line bundle
MI2011-11	Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA	An explicit formula for the discrete power function associated with circle patterns of Schramm type
MI2011-12	Yoshiyuki KAGEI	Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow
MI2011-13	Vladimír CHALUPECKÝ & Adrian MUNTEAN	Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence
MI2011-14	Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA	Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves
MI2011-15	Hiroshi INOUE	A generalization of restricted isometry property and applications to compressed sensing
MI2011-16	Yu KAWAKAMI	A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space
MI2011-17	Naoyuki KAMIYAMA	Matroid intersection with priority constraints
MI2012-1	Kazufumi KIMOTO & Masato WAKAYAMA	Spectrum of non-commutative harmonic oscillators and residual modular forms
MI2012-2	Hiroki MASUDA	Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_7^{(1)}$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier- Stokes equations with potential force

MI2013-1 Abduuwali PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem

MI2013-2 Yasuhide FUKUMOTO & Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits

MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing
MI2013-6 Hiroshi INOUE
 Improved bounds on Restricted isometry for compressed sensing

MI2013-7 Hidetoshi MATSUI
 Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
 Variable selection for varying coefficient models with the sparse regularization

MI2013-9 Naoyuki KAMIYAMA
 Packing Arborescences in Acyclic Temporal Networks

MI2013-10 Masato WAKAYAMA
 Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, eigenstates degeneration, and Rabi’s model

MI2013-11 Masatoshi OKITA
 Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA & Sadanori KONISHI
 Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
 The First Painleve Equation on the Weighted Projective Space

MI2013-14 Hidetoshi MATSUI
 Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
 The Popular Condensation Problem under Matroid Constraints

MI2013-16 Hidetoshi MATSUI
 Selection of classification boundaries using the logistic regression

MI2014-1 Naoyuki KAMIYAMA
 Popular Matchings under Matroid Constraints

MI2014-2 Yasuhide FUKUMOTO & Youichi MIE
 Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetry-breaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
 Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

MI2014-4 Naoyuki KAMIYAMA
 The Popular Condensation Problem under Matroid Constraints
MI2014-5 Yoshiyuki KAGEI & Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry

MI2014-6 This paper was withdrawn by the authors.

MI2014-7 Masatoshi OKITA
On decay estimate of strong solutions in critical spaces for the compressible Navier-Stokes equations

MI2014-8 Rong ZOU & Yasuhide FUKUMOTO
Local stability analysis of azimuthal magnetorotational instability of ideal MHD flows

MI2014-9 Yoshiyuki KAGEI & Naoki MAKIO
Spectral properties of the linearized semigroup of the compressible Navier-Stokes equation on a periodic layer

MI2014-10 Kazuyuki TSUDA
On the existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space

MI2014-11 Yoshiyuki KAGEI & Takaaki NISHIDA
Instability of plane Poiseuille flow in viscous compressible gas

MI2014-12 Chien-Chung HUANG, Naonori KAKIMURA & Naoyuki KAMIYAMA
Exact and approximation algorithms for weighted matroid intersection

MI2014-13 Yusuke SHIMIZU
Moment convergence of regularized least-squares estimator for linear regression model

MI2015-1 Hidetoshi MATSUI & Yuta UMEZU
Sparse regularization for multivariate linear models for functional data

MI2015-2 Reika AOYAMA & Yoshiyuki KAGEI
Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain

MI2015-3 Naoyuki KAMIYAMA
Stable Matchings with Ties, Master Preference Lists, and Matroid Constraints

MI2015-4 Reika AOYAMA & Yoshiyuki KAGEI
Large time behavior of solutions to the compressible Navier-Stokes equations around a parallel flow in a cylindrical domain

MI2015-5 Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-Stokes-Korteweg system on \mathbb{R}^3

MI2015-6 Naoyuki KAMIYAMA
Popular Matchings with Ties and Matroid Constraints
MI2015-7 Shoichi EGUCHI & Hiroki MASUDA
Quasi-Bayesian model comparison for LAQ models

MI2015-8 Yoshiyuki KAGEI & Ryouta OOMACHI
Stability of time periodic solution of the Navier-Stokes equation on the half-space under oscillatory moving boundary condition

MI2016-1 Momonari KUDO
Analysis of an algorithm to compute the cohomology groups of coherent sheaves and its applications

MI2016-2 Yoshiyuki KAGEI & Masatoshi OKITA
Asymptotic profiles for the compressible Navier-Stokes equations on the whole space

MI2016-3 Shota ENOMOTO & Yoshiyuki KAGEI
Asymptotic behavior of the linearized semigroup at space-periodic stationary solution of the compressible Navier-Stokes equation

MI2016-4 Hiroki MASUDA
Non-Gaussian quasi-likelihood estimation of locally stable SDE

MI2016-5 Yoshiyuki KAGEI & Takaaki NISHIDA
On Chorin’s method for stationary solutions of the Oberbeck-Boussinesq equation

MI2016-6 Hayato WAKI & Florin NAE
Boundary modeling in model-based calibration for automotive engines via the vertex representation of the convex hulls

MI2016-7 Kazuyuki TSUDA
Time periodic problem for the compressible Navier-Stokes equation on R^2 with antisymmetry