Large time behavior of solutions to the compressible Navier-Stokes equations around a parallel flow in a cylindrical domain

Reika Aoyama
& Yoshiyuki Kagei

MI 2015-4

(Received April 30, 2015)
Large time behavior of solutions to the compressible Navier-Stokes equations around a parallel flow in a cylindrical domain

Reika Aoyama and Yoshiyuki Kagei

1 Faculty of Mathematics,
Kyushu University,
Nishi-ku, Motooka 744,
Fukuoka 819-0395, Japan

Abstract

Stability of parallel flow of the compressible Navier-Stokes equation in a cylindrical domain is studied. It is shown that if the Reynolds and Mach numbers are sufficiently small, then parallel flow is asymptotically stable and the asymptotic leading part of the disturbances is described by a one dimensional viscous Burgers equation.

Keywords: Compressible Navier-Stokes equation, parallel flow, cylindrical domain, viscous Burgers equation asymptotic behavior

1 Introduction

This paper studies the large time behavior of solutions of the initial boundary value problem for the compressible Navier-Stokes equation

\[\partial_t \rho + \text{div}(\rho v) = 0, \]
\[\rho(\partial_t v + v \cdot \nabla v) - \mu \Delta v - (\mu + \mu') \nabla \text{div} v + \nabla p(\rho) = \rho g, \]
\[v|_{\partial D_*} = 0, \]
\[(\rho, v)|_{t=0} = (\rho_0, v_0) \]

in a cylindrical domain \(\Omega_* = D_* \times \mathbb{R} \):

\[\Omega_* = \{ x = (x', x_3); x' = (x_1, x_2) \in D_*, x_3 \in \mathbb{R} \}. \]

Here \(D_* \) is a bounded and connected domain in \(\mathbb{R}^2 \) with smooth boundary \(\partial D_* \); \(\rho = \rho(x, t) \) and \(v = (v^1(x, t), v^2(x, t), v^3(x, t)) \) denote the unknown density and velocity, respectively, at time \(t \geq 0 \) and position \(x \in \Omega_* \); \(p(\rho) \) is the pressure that is a smooth function of \(\rho \) and satisfies

\[p'(\rho_*) > 0 \]
for a given positive constant ρ_*; μ and μ' are the viscosity coefficients that satisfy

$$\mu > 0, \quad \frac{2}{3}\mu + \mu' \geq 0;$$

and g is an external force of the form $g = T(g^1(x'), g^2(x'), g^3(x'))$ with g^1 and g^2 satisfying

$$(g^1(x'), g^2(x')) = (\partial_{x_1}\Phi(x'), \partial_{x_2}\Phi(x')),$$

where Φ and g^3 are given smooth functions of x'. Here and in what follows T stands for the transposition.

Problem (1.1)-(1.3) has a stationary solution $\overline{u}_s = T(\overline{p}_s(x'), \overline{v}_s(x'))$ which represents parallel flow. Here \overline{p}_s is determined by

$$\begin{cases}
\text{Const.} - \Phi(x') = \int_{\Gamma_s}^\nu \frac{\nu'(y)}{\eta} dy, \\
\int_{D_s} \overline{p}_s - \rho_s dx' = 0,
\end{cases}$$

while \overline{v}_s takes the form

$$\overline{v}_s = T(0, 0, \overline{v}_3^s(x')),$$

where $\overline{v}_3^s(x')$ is the solution of

$$\begin{cases}
-\mu \Delta' \overline{v}_3^s = \overline{p}_s g^3, \\
\overline{v}_3^s |_{\partial D_s} = 0.
\end{cases}$$

Here

$$\Delta' = \partial_{x_1}^2 + \partial_{x_2}^2.$$

The purpose of this paper is to investigate the large time behavior of solutions to problem (1.1)-(1.4) when the initial value $(\rho, v) |_{t=0} = (\rho_0, v_0)$ is sufficiently close to the stationary solution $\overline{u}_s = T(\overline{p}_s, \overline{v}_s)$.

Solutions of multi-dimensional compressible Navier-Stokes equations in unbounded domains exhibit interesting phenomenon, and detailed descriptions of large time behavior of solutions have been obtained. See, e.g., [6, 7, 16, 18, 19, 20, 21, 22, 24, 25] for the case of the whole space, half space and exterior domains. Besides these domains, infinite layers and cylindrical domains provide good subjects of the stability of flows, for example, the stability of parallel flows.

Concerning the large time behavior of solutions around parallel flow, the case of an n dimensional infinite layer $\mathbb{R}^{n-1} \times (0, 1) = \{ x = (x_h, x_n); x_h = (x_1, \cdots, x_{n-1}) \in \mathbb{R}^{n-1}, 0 < x_n < 1 \}$ was studied in [10, 11, 15]. (See also [3, 4, 5] for the stability of time periodic parallel flow.) It was shown in [10, 11, 15] that if the Reynolds and Mach numbers are sufficiently small, then the parallel flow is stable under sufficiently small initial disturbances in some Sobolev space. Furthermore, in the case of $n \geq 3$, the disturbance $u(t)$ behaves like a solution of an $n-1$ dimensional linear heat equation as $t \to \infty$, whereas, in the case of $n = 2$, $u(t)$ behaves like a solution of one dimensional viscous Burgers equation.

In the case of cylindrical domain Ω_s, Iooss and Padula [8] considered the linearized stability of parallel flow \tilde{u}_s under periodic boundary condition in x_3. It was
proved in [8] that if the Reynolds number is suitably small, then the semigroup
decays exponentially as \(t \to \infty \), provided that the density-component has vanishing
average over the basic period domain. Furthermore, the essential spectrum of
the linearized operator lies in the left-half plane strictly away from the imaginary
axis and the part of the spectrum lying in the right-half to the line \(\text{Re} \lambda = -c \) for
some number \(c > 0 \) consists of finite number of eigenvalues with finite multiplici-
ties. As for the stability under local disturbances on \(\Omega_* \), i.e., disturbances which
are non-periodic but decay at spatial infinity, the stability of the motionless state
\(\tilde{u}_s = T(\rho_s, 0) \) was studied in [17]; and it was shown in [17] that the disturbance
decays in \(L^2(\Omega_*) \) in the order \(t^{-\frac{1}{2}} \) and its asymptotic leading part is given by a solution of
a one dimensional linear heat equation if the initial disturbance is sufficiently small
in \(H^3(\Omega_*) \cap L^1(\Omega_*) \), where \(H^3(\Omega_*) \) denotes the \(L^2 \)-Sobolev space on \(\Omega_* \) of order 3.
(See also [9] for the analysis in

In this paper we will consider the stability of parallel flow \(\tilde{u}_s \) under local distur-
bances on \(\Omega_* \). After introducing suitable non-dimensional variables, the equations
for the disturbance \(u = T(\phi, w, t) = T(\gamma^2(\rho - \rho_s), v - v_s) \) takes the following form:
\[
\begin{align*}
\partial_t \phi + v^2 \partial_{x^2} \phi + \gamma^2 \text{div}(\rho_s w) &= f^0(\phi, w), \\
\partial_t w - \frac{\nu}{\rho_s} \Delta w - \frac{\nu}{\rho_s} \nabla \text{div} w + \nabla \left(\frac{\nu^3(\rho_s)}{\gamma^2\rho_s} \phi \right) + \frac{\nu^3(\rho_s)}{\gamma^2\rho_s} \phi e_3 + v^2 \partial_{x^2} w + (w' \cdot \nabla v^3) e_3 &= f(\phi, w), \\
\text{div}(\phi w) &\bigg|_{t=0} = 0, \\
(\phi, w) \bigg|_{t=0} &= (\phi_0, w_0).
\end{align*}
\]
Here \(\Omega_* \) is transformed to \(\Omega = D \times R \) with \(|D| = 1 \); \(u_s = T(\rho_s, v_s) \) and \(P(\rho) \)
denote the dimensionless parallel flow and pressure, respectively; \(\nu, \tilde{\nu} \) and \(\gamma \) are the
dimensionless parameters defined by
\[
\nu = \frac{\mu}{\rho_s \ell V}, \quad \tilde{\nu} = \frac{\mu + \mu'}{\rho_s \ell V}, \quad \gamma = \sqrt{\frac{P(\rho)}{V}}
\]
with the reference velocity \(V \) which measures the strength of \(\tau_1; e_3 = T(0, 0, 1) \in R^3 \)
and \(\nabla' = T(\partial_{x_1}, \partial_{x_2}) \); \(f^0(\phi, w) \) and \(f(\phi, w) \) are the nonlinearities given by
\[
f^0(\phi, w) = -\text{div}(\phi w),
\]
\[
f(\phi, w) = -w \cdot \nabla w + \frac{\nu^3(\rho_s)}{(\gamma^2 + \rho_s)\rho_s} \left(-\Delta w + \frac{\nu^3(\rho_s)}{\gamma^2\rho_s} \phi \right) - \frac{\tilde{\nu}^3(\rho_s)}{(\gamma^2 + \rho_s)\rho_s} \nabla \text{div} w + \frac{\phi}{\gamma^2\rho_s} \nabla \left(\frac{P'(\rho_s)\phi}{\gamma^2\rho_s} \right) - \frac{1}{2\gamma^2\rho_s} \nabla \left(P''(\rho_s)\phi^2 \right) + \tilde{P}_3(\rho_s, \phi, \partial_{x^2} \phi),
\]
where
\[
\tilde{P}_3(\rho_s, \phi, \partial_{x^2} \phi) = \frac{\phi^3}{\gamma^4(\phi + \gamma^2\rho_s)\rho_s^2} \nabla P(\rho_s) - \frac{1}{2\gamma^2\rho_s} \left(\frac{\phi^3}{\gamma^2\rho_s} P_3(\rho_s, \phi) \right)
\]
\[
+ \frac{\phi^2}{2\gamma^2\rho_s} \nabla \left(P''(\rho_s)\phi^2 + \frac{1}{2\gamma^2} \phi^3 P_3(\rho_s, \phi) \right)
\]
\[
- \frac{\phi^2}{\gamma^4(\phi + \gamma^2\rho_s)\rho_s^2} \nabla \left(\frac{1}{2\gamma^2} P'(\rho_s)\phi + \frac{1}{4\gamma^2} P''(\rho_s)\phi^2 + \frac{1}{2\gamma^2} \phi^3 P_3(\rho_s, \phi) \right),
\]
with

$$P_3(\rho_0, \phi) = \int_0^1 (1 - \vartheta)^2 P''(\rho_0 + \vartheta \eta^{-2}) d\theta.$$

See section 2.2 below for the definition of non-dimensional variables.

In [1, 2], spectral properties of the linearized semigroup e^{-tL} was studied in detail. It was proved that there exists a bounded projection P_0 satisfying $P_0 e^{-tL} = e^{-tL} P_0$ such that if Reynolds and Mach numbers are sufficiently small, then, for the initial value $u_0 = T(\phi_0, w_0)$, it holds that

$$\|e^{-tL} P_0 u_0 - [\mathcal{H}(t) \langle \phi_0 \rangle] u^{(0)}(t)\|_{L^2(\Omega)} \leq C(1 + t)^{-\frac{3}{2}} \|u_0\|_{L^1(\Omega)}.$$ \hspace{1cm} (1.9)

Here $u^{(0)}$ is some function of x; $\langle \phi_0 \rangle$ denotes the average of ϕ_0 over D, (thus, $\langle \phi_0 \rangle$ is a function of $x_3 \in \mathbb{R}$); and $\mathcal{H}(t)$ is the heat semigroup defined by

$$\mathcal{H}(t) = \mathcal{F}^{-1} e^{-(i\kappa_1 x + i\kappa_0 x^3) t} \mathcal{F}$$

with some constants $\kappa_1 \in \mathbb{R}$ and $\kappa_0 > 0$, where \mathcal{F} denotes the Fourier transform on \mathbb{R}. Furthermore, it was proved that the $(I - P_0)$-part of e^{-tL} satisfies the exponential decay estimate

$$\|e^{-tL}(I - P_0) u_0\|_{H^1(\Omega)} \leq C e^{-dt} \{\|u_0\|_{H^1(\Omega) \times \widetilde{H}^1(\Omega)} + t^{-\frac{3}{4}} \|w_0\|_{L^2(\Omega)}\} \hspace{1cm} (1.12)$$

for a positive constant d. Here $\widetilde{H}^1(\Omega)$ is the set of all locally H^1 functions in $L^2(\Omega)$ whose tangential derivatives near $\partial \Omega$ belong to $L^2(\Omega)$.

In this paper, based on the results on spectral properties of e^{-tL}, we investigate the nonlinear problem (1.5)–(1.8). We prove that if the initial disturbance $u_0 = T(\phi_0, w_0)$ is sufficiently small, then the disturbance $u(t)$ exists globally in time and it satisfies

$$\|u(t)\|_{L^2(\Omega)} = O(t^{-\frac{1}{4}})$$

for a positive constant d. Here $\sigma = \sigma(x_3, t)$ satisfies the following one dimensional viscous Burgers equation

$$\partial_t \sigma - \kappa_0 \partial_{x_3}^2 \sigma + \kappa_1 \partial_{x_3} \sigma + \kappa_2 \partial_{x_3}^2 \sigma = 0$$

with initial value $\langle \phi_0 \rangle$.

The proof of (1.11) and (1.12) is given by the factorization of $e^{-tL} P_0$, estimate (1.10) and the Matsumura-Nishida energy method. We decompose the disturbance $u(t)$ into its P_0 and $I - P_0$ parts as in [3, 11]. We then estimate the P_0-part by representing it in the form of variation of constants formula in terms of $e^{-tL} P_0$ and employ the factorization result of $e^{-tL} P_0$ obtained in [2]. For the $(I - P_0)$-part of $u(t)$, we employ the Matsumura-Nishida energy method. In contrast to [3, 11], we make use of the estimate (1.10) and combine it with the energy method. This simplifies the argument in [3, 11] where a complicated decomposition is also used in the energy method to estimate the $(I - P_0)$-part of $u(t)$. In this paper we do not need to use such a complicated decomposition of the $(I - P_0)$-part in the energy method due to (1.10).
This paper is organized as follows. In section 2 we first introduce notations and non-dimensional variables. We then state the existence of stationary solution which represents parallel flow. In section 3 we state our main result of this paper. In section 4 we state some spectral properties of \(e^{-tL} \) obtained in [2]. In section 5 we decompose the problem into the one for a coupled system of the \(P_0 \) and \(I - P_0 \) parts of \(u(t) \). Sections 6 is devoted to estimating the \(P_0 \)-part of the disturbance \(u(t) \), while the \((I - P_0)\)-part is estimated in section 7. Section 8 is devoted to the estimates for the nonlinearities. The proof of (1.12) is given in section 9.

2 Preliminaries

In this section we introduce notations throughout this paper. We then introduce non-dimensional variables and state the existence of stationary solution which represents parallel flow.

2.1 Notation

We first introduce some notations which will be used throughout the paper. For \(1 \leq p \leq \infty \) we denote by \(L^p(X) \) the usual Lebesgue space on a domain \(X \) and its norm is denoted by \(\| \cdot \|_{L^p(X)} \). Let \(m \) be a nonnegative integer. \(H^m(X) \) denotes the \(m \) th order Sobolev space on \(X \) with norm \(\| \cdot \|_{H^m(X)} \). In particular, we write \(L^2(X) \) for \(H^0(X) \).

We denote by \(C^m_0(X) \) the set of all \(C^m \) functions with compact support in \(X \). \(H^m_0(X) \) stands for the completion of \(C^m_0(X) \) in \(H^m(X) \). We denote by \(H^{-1}(X) \) the dual space to \(H^1_0(X) \) with norm \(\| \cdot \|_{H^{-1}(X)} \).

We simply denote by \(L^p(X) \) (resp., \(H^m(X) \)) the set of all vector fields \(w = T_w(1, w^2, w^3) \) on \(X \) and its norm is denoted by \(\| \cdot \|_{L^p(X)} \) (resp., \(\| \cdot \|_{H^m(X)} \)). For \(u = T(\phi, w) \) with \(\phi \in H^k(X) \) and \(w = T(1, w^2, w^3) \in H^m(X) \), we define \(\| u \|_{H^k(X) \times H^m(X)} \) by \(\| u \|_{H^k(X) \times H^m(X)} = \| \phi \|_{H^k(X)} + \| w \|_{H^m(X)} \).

When \(X = \Omega \) we abbreviate \(L^p(\Omega) \) as \(\mathcal{L}^p \), and likewise, \(H^m(\Omega) \) as \(H^m \). The norm \(\| \cdot \|_{L^2(\Omega)} \) is written as \(\| \cdot \|_{L^2} \), and likewise, \(\| \cdot \|_{H^m(\Omega)} \) as \(\| \cdot \|_{H^m} \). The inner product of \(L^2(\Omega) \) is denoted by

\[
(f, g) = \int_{\Omega} f(x)g(x)dx, \quad f, g \in L^2(\Omega).
\]

For \(u_j = T(\phi_j, w_j) \) \((j = 1, 2)\), we also define a weighted inner product \(\langle u_1, u_2 \rangle \) by

\[
\langle u_1, u_2 \rangle = \int_{\Omega} \frac{1}{\gamma} \phi_1 \phi_2 \frac{p'(\rho_s)}{\gamma^2 \rho_s} dx + \int_{\Omega} w_1 \cdot w_2 \rho_s dx,
\]

where \(\rho_s = \rho_s(x') \) is the density of the parallel flow \(u_s \). As will be seen in Proposition 2.1 below, \(\rho_s(x') \) and \(\frac{p'(\rho_s(x'))}{\rho_s(x')} \) are strictly positive in \(D \).

In the case \(X = D \) we denote the norm of \(L^p(D) \) by \(\| \cdot \|_p \). The norm of \(H^m(D) \) is denoted by \(\| \cdot \|_{H^m} \), respectively. On \(D \) we will consider complex valued functions,
and in this case, the inner product of \(L^2(D) \) is denoted by
\[
(f, g) = \int_D f(x')\overline{g(x')}dx', \quad f, g \in L^2(D).
\]
Here \(\overline{g} \) denotes the complex conjugate of \(g \). For \(u_j = t_j(\phi_j, w_j) \) (\(j = 1, 2 \)), we also define a weighted inner product \(\langle u_1, u_2 \rangle \) by
\[
\langle u_1, u_2 \rangle = \frac{1}{2} \int_D \phi_1 \overline{\phi_2} \frac{P'(\omega)}{\sqrt{\rho}} dx' + \int_D w_1 \cdot \overline{w_2} \rho dx'.
\]
For \(f \in L^1(D) \) we denote the mean value of \(f \) over \(D \) by \(\langle f \rangle \):
\[
\langle f \rangle = (f, 1) = \frac{1}{|D|} \int_D f dx',
\]
where \(|D| = \int_D dx' \). For \(u = t(\phi, w) \in L^1(D) \) with \(w = t(w^1, w^2, w^3) \) we define \(\langle u \rangle \) by
\[
\langle u \rangle = \langle \phi \rangle + \langle w_1 \rangle + \langle w_2 \rangle + \langle w_3 \rangle.
\]
We set
\[
[f(t)]_k = \left(\sum_{j=0}^{[\frac{k}{2}]} \|\partial^j_x f(t)\|_{H^{k-2j}}^2 \right)^{\frac{1}{2}},
\]
\[
\|D f(t)\|_k = \begin{cases} \|\partial_x f(t)\|_2, & k = 0, \\ \left(\|\partial_x f(t)\|_k^2 + \|\partial_t f(t)\|_{k-1}^2 \right)^{\frac{1}{2}}, & k \geq 1. \end{cases}
\]
We define a function space \(Z(T) \) by
\[
Z(T) = \{ u = t(\phi, w) \in C^0([0, T]; H^2 \times (H^2 \cap H^1_0)) \cap C^1([0, T]; L^2); \|u\|_{Z(T)} < \infty \}
\]
where
\[
\|u\|_{Z(T)} = \sup_{0 \leq t \leq T} \|u(t)\|_2 + \left(\int_0^T \|D w(t)\|_2^2 dt \right)^{\frac{1}{2}}.
\]
Partial derivatives of a function \(u \) in \(x \), \(x' \), \(x_3 \) and \(t \) are denoted by \(\partial_x u \), \(\partial_{x'} u \), \(\partial_{x_3} u \) and \(\partial_t u \). We also write higher order partial derivatives of \(u \) in \(x \) as \(\partial_x^ku = (\partial_x^k u; |\alpha| = k) \).

We denote the \(n \times n \) identity matrix by \(I_n \). We define \(4 \times 4 \) diagonal matrices \(Q_0 \) and \(\tilde{Q} \) by
\[
Q_0 = \text{diag}(1, 0, 0, 0), \quad \tilde{Q} = \text{diag}(0, 1, 1, 1).
\]
It then follows that for \(u = t(\phi, w) \) with \(w = t(w^1, w^2, w^3) \),
\[
Q_0 u = \begin{pmatrix} \phi \\ 0 \end{pmatrix}, \quad \tilde{Q} u = \begin{pmatrix} 0 \\ w \end{pmatrix}.
\]
We denote the Fourier transform of \(f = f(x_3) \quad (x_3 \in \mathbb{R}) \) by \(\hat{f} \) or \(\mathcal{F}[f] \):
\[
\hat{f}(\xi) = \mathcal{F}[f](\xi) = \int_{\mathbb{R}} f(x_3)e^{-i\xi x_3} dx_3, \quad \xi \in \mathbb{R}.
\]
The inverse Fourier transform is denoted by \mathcal{F}^{-1}:
\[
\mathcal{F}^{-1}[f](x_3) = (2\pi)^{-1} \int_{\mathbb{R}} f(\xi)e^{ix_3\xi} d\xi, \quad x_3 \in \mathbb{R}.
\]

We denote the resolvent set of a closed operator A by $\rho(A)$ and the spectrum by $\sigma(A)$.

We finally introduce a function space which consists of locally H^1 functions in $L^2(\Omega)$ whose tangential derivatives near ∂D belong to $L^2(\Omega)$. To do so, we first introduce a local curvilinear coordinate system. For any $\bar{\omega}_0 \in \partial D$, there exist a neighborhood $\bar{\omega} \subset \bar{\omega}_0$ and a smooth diffeomorphism map $\Psi = (\Psi_1, \Psi_2) : \bar{\omega} \rightarrow B_1(0) = \{z' = (z_1, z_2) : |z'| < 1\}$ such that
\[
\begin{align*}
\Psi(\bar{\omega} \cap D) &= \{z' \in B_1(0) : z_1 > 0\}, \\
\Psi(\bar{\omega} \cap \partial D) &= \{z' \in B_1(0) : z_1 = 0\}, \\
\det \nabla_x \Psi &\neq 0 \text{ on } \bar{\omega} \cap D.
\end{align*}
\]
By the tubular neighborhood theorem, there exist a neighborhood ω_0 of ω_0 and a local curvilinear coordinate system $y' = (y_1, y_2)$ on ω_0 defined by
\[
x' = y_1a_1(y_2) + \Psi^{-1}(0, y_2) : \mathcal{R} \rightarrow \omega_0,
\]
where $\mathcal{R} = \{y' = (y_1, y_2) : |y_1| \leq \delta_1, |y_2| \leq \delta_2\}$ for some $\delta_1, \delta_2 > 0$; $a_1(y_2)$ is the unit inward normal to ∂D that is given by
\[
a_1(y_2) = \frac{\nabla_x \Psi_1}{|\nabla_x \Psi_1|}.
\]
Setting $y_3 = x_3$ we obtain
\[
\nabla_x = e_1(y_2)\partial_{y_1} + J(y')e_2(y_2)\partial_{y_2} + e_3\partial_{y_3},
\]
\[
\nabla_y = \left(\begin{array}{c}
\frac{1}{J(y')}e_1(y_2) \\
J(y')e_2(y_2)
\end{array}\right) \nabla_x,
\]
where
\[
e_1(y_2) = \begin{pmatrix} a_1(y_2) \\ 0 \end{pmatrix}, \quad e_2(y_2) = \begin{pmatrix} a_2(y_2) \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix};
\]
\[
J(y') = |\det \nabla_x \Psi|, \quad a_2(y_2) = \frac{\nabla_x \Psi_1}{|\nabla_x \Psi_1|}
\]
with $\nabla_x \Psi_1 = \left(\begin{array}{c}
\partial_{y_2} \Psi_1, \partial_{y_1} \Psi_1
\end{array}\right)$. Note that ∂_{y_1} and ∂_{y_2} are the inward normal derivative and tangential derivative at $x' = \Psi^{-1}(0, y_2) \in \partial D \cap \omega_0$, respectively. Let us denote the normal and tangential derivatives by ∂_n and ∂, i.e.,
\[
\partial_n = \partial_{y_1}, \quad \partial = \partial_{y_2}.
\]
Since \(\partial D \) is compact, there are bounded open sets \(O_m \) \((m = 1, \ldots, N) \) such that \(\partial D \subset \bigcup_{m=1}^{N} O_m \) and for each \(m = 1, \ldots, N \), there exists a local curvilinear coordinate system \(y' = (y_1, y_2) \) as defined in (2.1) with \(O_{\tau_0}, \Psi \) and \(\mathcal{R} \) replaced by \(O_m, \Psi^m \) and \(\mathcal{R}_m = \{ y' = (y_1, y_2) : |y_1| < \tilde{\delta}_1^m, |y_2| < \tilde{\delta}_2^m \} \) for some \(\tilde{\delta}_1^m, \tilde{\delta}_2^m > 0 \). At last, we take an open set \(O_0 \subset D \) such that
\[
\bigcup_{m=0}^{N} O_m \supset D, \quad O_0 \cap \partial D = \emptyset.
\]
We set a local coordinate \(y' = (y_1, y_2) \) such that \(y_1 = x_1, y_2 = x_2 \) on \(O_0 \). We note that if \(h \in H^2(D) \), then \(h |_{\partial D} = 0 \) implies that \(\partial^k h |_{\partial D \cap O_m} = 0 \) \((k = 0, 1) \).

Let us introduce a partition of unity \(\{ \chi_m \}_{m=0}^{N} \) subordinate to \(\{ O_m \}_{m=0}^{N} \), satisfying
\[
\sum_{m=0}^{N} \chi_m = 1 \text{ on } D, \quad \chi_m \in C_0^{\infty}(O_m) \text{ (} m = 0, 1, 2 \ldots, N \).
\]
We denote by \(\tilde{H}^1(\Omega) \) the set of all locally \(H^1 \) functions in \(L^2(\Omega) \) whose tangential derivatives near \(\partial \Omega \) belong to \(L^2(\Omega) \), and its norm is denoted by \(\| w \|_{\tilde{H}^1(\Omega)} \):
\[
\| w \|_{\tilde{H}^1(\Omega)} = \| w \|_2 + \| \partial_x w \|_2 + \| \chi_0 \partial_x w \|_2 + \sum_{m=1}^{N} \| \chi_m \partial_x w \|_2.
\]
Note that \(H^1(\Omega) \) is dense in \(\tilde{H}^1(\Omega) \).

2.2 Non-dimensionalization and stationary solution

In this subsection we rewrite the problem into the one in a non-dimensional form and state the existence of stationary solution which represents parallel flow. Let \(k_0 \) be an integer satisfying \(k_0 \geq 3 \). We introduce the following non-dimensional variables:
\[
x = \ell \bar{x}, \quad v = \sqrt{\nu} \bar{v}, \quad \rho = \rho_0 \bar{\rho}, \quad t = \ell \bar{t},
\]
\[
p = \rho_0 \nu \bar{P}, \quad \Phi = \sqrt{\nu} \bar{\Phi}, \quad g^3 = \sqrt{\nu} \bar{g}^3,
\]
\[
V = |\bar{\nu}_x|_{C^0(D_x)} = \sum_{k=0}^{k_0} \sup_{x \in D_x} \ell^k |\partial^k_x \bar{\nu}^3(x')|, \quad \ell = \left(\int_{D_x} dx' \right)^{1/2}.
\]
The problem (1.1)-(1.3) is then transformed into the following non-dimensional problem on \(\tilde{\Omega} = \tilde{D} \times \mathbb{R} \):

\[
\partial_t \bar{\rho} + \text{div}_x (\bar{\rho} \bar{v}) = 0, \quad (2.3)
\]
\[
\bar{v} (\partial_t \bar{\rho} + \bar{v} \cdot \nabla_x \bar{v}) - \nu \Delta_x \bar{v} - (\nu + \nu') \nabla_x \text{div}_x \bar{v} + \bar{P}'(\bar{\rho}) \nabla_x \bar{\rho} = \bar{f}_g, \quad (2.4)
\]
\[
|\bar{v} |_{\partial \tilde{D}} = 0, \quad (2.5)
\]
\[
(\bar{\rho}, \bar{v}) |_{t=0} = (\bar{\rho}_0, \bar{v}_0). \quad (2.6)
\]
Here \(\tilde{D} \) is a bounded and connected domain in \(\mathbb{R}^2 \); \(\bar{g} = \frac{\tau}{\phi} (\partial_{\bar{x}_1} \bar{\Phi}, \partial_{\bar{x}_2} \bar{\Phi}, \bar{g}^3) \); and \(\nu \) and \(\nu' \) are non-dimensional parameters:
\[
\nu = \frac{\mu}{\rho_0 \ell V} , \quad \nu' = \frac{\mu'}{\rho_0 \ell V}.
\]
We also introduce a parameter γ:

$$\gamma = \sqrt{\frac{P'(1)}{V}}.$$

Note that the Reynolds and Mach numbers are given by $1/\nu$ and $1/\gamma$, respectively.

In what follows, for simplicity, we omit tildes of $\tilde{x}, \tilde{t}, \tilde{v}, \tilde{\rho}, \tilde{g}, \tilde{P}, \tilde{D}$ and $\tilde{\Omega}$ and write them as $x, t, v, \rho, g, P, \Phi$ and Ω. Observe that, due to the non-dimensionalization, we have

$$\int_D \rho_s dx' = 1;$$

and thus,

$$\langle f \rangle = \int_D f(x') dx'.$$

Let us state the existence of a stationary solution which represents parallel flow.

Proposition 2.1. If $\Phi \in C^{k_0}(\overline{D}), g^3 \in H^{k_0}(D)$ and $|\Phi|_{C^{k_0}}$ is sufficiently small, then (2.3)-(2.5) has a stationary solution $u_s = T(\rho_s, v_s) \in C^{k_0}(\overline{D})$. Here ρ_s satisfies

$$\left\{ \begin{array}{l}
\text{Const.} - \Phi(x') = \int_1^{\rho_s(x')} \frac{P'(\eta)}{\eta} d\eta, \\
\int_D \rho_s dx' = 1, \; \rho_1 < \rho_s(x') < \rho_2 \; (\rho_1 < 1 < \rho_2),
\end{array} \right.$$

for some constants $\rho_1, \rho_2 > 0$, and v_s is a function of the form $v_s = T(0, 0, v_3^s)$ with $v_3^s = v_3^s(x')$ being the solution of

$$\left\{ \begin{array}{l}
-\nu \Delta v_3^s = \rho_s g^3, \\
v_3^s |_{\partial D} = 0.
\end{array} \right.$$

Furthermore, $u_s = T(\rho_s, v_s)$ satisfies the estimates:

$$|\rho_s(x') - 1|_{C^k} \leq C|\Phi|_{C^k}(1 + |\Phi|_{C^k})^k;$$

$$|v_3^s|_{C^k} \leq C|v_3^s|_{H^{k+2}} \leq C|\Phi|_{C^k}(1 + |\Phi|_{C^k})^k|g^3|_{H^{k+2}}$$

for $k = 3, 4, \cdots, k_0$.

Proposition 2.1 can be proved in a similar manner to the proof of [23, Lemma 2.1].

Setting $\rho = \rho_s + \gamma^{-2}\phi$ and $v = v_s + w$ in (2.3)-(2.6) (without tildes), we arrive at the initial boundary value problem for the disturbance $u = T(\phi, w)$ written in (1.5)-(1.8) in section 1.
3 Main result

In this section we state the main result of this paper. Hereafter we set
\[\bar{\nu} = \nu + \nu'. \]

Theorem 3.1. There exist positive constant \(\nu_0, \gamma_0 \) and \(\omega_0 \) such that if \(\nu \geq \nu_0 \),
\[\frac{\nu^2}{\nu + \bar{\nu}} \geq \gamma_0^2 \] and \(\frac{(\nu + \bar{\nu})\omega}{\nu} \leq \omega_0 \), then the following assertions hold. There is a positive number \(\epsilon_0 \) such that if \(u_0 = T(\phi_0, w_0) \) satisfies \(u_0 \in H^2 \cap L^1 \) with \(w_0 \in H^1_0 \) and \(\|u_0\|_{H^2 \cap L^1} \leq \epsilon_0 \), then there exists a unique global solution \(u(t) = T(\phi(t), w(t)) \) of (1.5)-(1.8) in \(C^0([0, \infty); H^2 \times (H^2 \cap H^1)) \cap C^1([0, \infty); L^2) \); and the following estimates hold
\[\|\partial^l_{x_3} u(t)\|_2 = O(t^{-\frac{1}{2}-\frac{l}{2}}), \quad (l = 0, 1) \quad (3.1) \]
\[\|u(t) - (\sigma u^{(0)})(t)\|_2 = O(t^{-\frac{1}{2}+\delta}) \quad (\forall \delta > 0) \quad (3.2) \]
as \(t \to \infty \). Here \(u^{(0)} = u^{(0)}(x') \) is a function given in Proposition 4.1 (iii) below; and \(\sigma = \sigma(x_3, t) \) is a function satisfying
\[\partial_t \sigma - \kappa_0 \partial^2_{x_3} \sigma + \kappa_1 \partial_{x_3} \sigma + \kappa_2 \partial_{x_3} (\sigma^2) = 0, \]
\[\sigma \bigg|_{t=0} = \int_D \phi_0(x', x_3)dx' \quad (3.3) \]
with some constants \(\kappa_0 > 0 \) and \(\kappa_1, \kappa_2 \in \mathbb{R} \).

As in [3, 11], Theorem 3.1 is proved by combining the local solvability (Propo-
sition 5.1 below) and the appropriate a priori estimates. We will establish the
necessary a priori estimates in sections 6-8.

To establish the a priori estimates, we will use the results on spectral properties
of the linearized semigroup \(e^{-tL} \) which will be summarized in section 4. In section 5,
we will decompose the problem into the one for a coupled system of the \(P_0 \) and
\(I - P_0 \) parts of \(u(t) \). The a priori estimates will then be derived in sections 6-8. The
proof of (3.2) will be given in section 9.

4 Spectrum of the linearized operator

In this section we state some results on spectral properties of the linearized operator
established in [1, 2] which will be used in the proof of Theorem 3.1.

We denote the linearized operator by \(L \):
\[L = \begin{pmatrix} v_3^2 \frac{\partial_{x_3}}{\gamma^2 \rho_s} & -\frac{\gamma^2}{\rho_s} \nabla \left(\frac{\rho_s}{v_3^2} \right) \div (\rho_s) \nabla \div + v_3^2 \partial_{x_3} \nabla \div + e_3 \otimes (\nabla v_3^3) \end{pmatrix} \],
where \(L \) is considered as an operator on \(L^2(\Omega) \) with domain
\[D(L) = \{ u = T(\phi, w) \in L^2(\Omega); \ w \in H^1_0(\Omega), \ Lu \in L^2(\Omega) \}. \]

Here, for \(a = T(a_1, a_2, a_3) \) and \(b = T(b_1, b_2, b_3) \), \(a \otimes b \) is the \(3 \times 3 \) matrix \((a_ib_j)\). See
[1] for the details.
To investigate the spectrum of L, we consider the Fourier transform of (1.5)-(1.8) in x_3 variable with $f^0 = 0$ and $f = 0$, which takes the form

\[
\partial_t \hat{\phi} + i\xi v_3^3 \hat{\phi} + \gamma^2 \nabla' \cdot (\rho_3 \hat{w}') + \gamma^2 i\xi \rho_3 \hat{w}' = 0, \tag{4.1}
\]

\[
\partial_t \hat{w}' - \frac{\nu}{\rho_s}(\Delta' - \xi^2) \hat{w}' - \frac{\nu + \nu'}{\rho_s} \nabla' (\nabla' \cdot \hat{w}' + i\xi \hat{w}^3) + \nabla' (\frac{P(\rho_s)}{\gamma^2 \rho_s} \hat{\phi}) + i\xi v_3^3 \hat{w}' = 0, \tag{4.2}
\]

\[
\partial_t \hat{w}^3 - \frac{\nu}{\rho_s}(\Delta' - \xi^2) \hat{w}^3 - \frac{\nu + \nu'}{\rho_s} i\xi (\nabla' \cdot \hat{w}' + i\xi \hat{w}^3) + i\xi (\frac{P(\rho_s)}{\gamma^2 \rho_s} \hat{\phi}) + i\xi v_3^3 \hat{w}^3 + \frac{\nu \Delta v_3^3}{\gamma^2 \rho_s} \hat{\phi} + \hat{w}' \cdot \nabla' v_3^3 = 0, \tag{4.3}
\]

\[
\hat{w} \mid_{\partial D} = 0 \tag{4.4}
\]

for $t > 0$, and

\[
T(\hat{\phi}, \hat{w}) \mid_{t=0} = T(\hat{\phi}_0, \hat{w}_0) = \hat{u}_0. \tag{4.5}
\]

We thus arrive at the following problem

\[
\frac{du}{dt} + \tilde{L}_\xi u = 0, \quad u \mid_{t=0} = u_0, \tag{4.6}
\]

where $\xi \in \mathbb{R}$ is a parameter. Here $u = T(\phi(x', t), w(x', t)) \in D(\tilde{L}_\xi) \ (x' \in D, t > 0)$; $u_0 = T(\phi_0(x'), w_0(x'))$ is a given initial value; and \tilde{L}_ξ is the operator on $L^2(D)$ of the form

\[
\tilde{L}_\xi = \begin{pmatrix}
0 & 0 & 0 \\
0 & -\frac{\nu}{\rho_s}(\Delta' - |\xi|^2) I_2 - \frac{\nu + \nu'}{\rho_s} \nabla' \nabla' & -i\frac{\nu + \nu'}{\rho_s} \xi \nabla' \\
0 & -i\frac{\nu + \nu'}{\rho_s} \xi \nabla' & -\frac{\nu}{\rho_s}(\Delta' - |\xi|^2) + \frac{\nu + \nu'}{\rho_s}|\xi|^2 \\
\end{pmatrix}
\]

\[
+ \begin{pmatrix}
0 & \gamma^2 \nabla' (\rho_3) & i\gamma^2 \rho_3 \xi \\
\gamma^2 \nabla' (\rho_3) & i\xi v_3^3 I_2 & 0 \\
i\xi v_3^3 I_2 & 0 & i\xi v_3^3 \\
\end{pmatrix}
+ \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\gamma^2 \nabla' v_3^3 & 0 & \Delta v_3^3 \\
\end{pmatrix}
\]

with domain

\[
D(\tilde{L}_\xi) = \{ u = T(\phi, w) \in L^2(D) ; w \in H^1_0(D), \tilde{L}_\xi u \in L^2(D) \}.
\]

Note that $D(\tilde{L}_\xi) = D(\tilde{L}_0)$ for all $\xi \in \mathbb{R}$. Here we set $\tilde{L}_0 = \tilde{L}_\xi \mid_{\xi=0}$.

We also introduce the adjoint operator \tilde{L}_ξ^* of \tilde{L}_ξ with respect to the weighted inner product $\langle \cdot, \cdot \rangle$. The operator \tilde{L}_ξ^* is given by

\[
\tilde{L}_\xi^* = \begin{pmatrix}
0 & 0 & 0 \\
0 & -\frac{\nu}{\rho_s}(\Delta' - |\xi|^2) I_2 - \frac{\nu + \nu'}{\rho_s} \nabla' \nabla' & -i\frac{\nu + \nu'}{\rho_s} \xi \nabla' \\
0 & -i\frac{\nu + \nu'}{\rho_s} \xi \nabla' & -\frac{\nu}{\rho_s}(\Delta' - |\xi|^2) + \frac{\nu + \nu'}{\rho_s}|\xi|^2 \\
\end{pmatrix}
\]

\[
- \begin{pmatrix}
i\xi v_3^3 \\
\gamma^2 \nabla' \cdot (\rho_3) & i\gamma^2 \rho_3 \xi \\
i\xi \nabla' (\rho_3) & 0 & i\xi v_3^3 \\
\end{pmatrix}
+ \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\gamma^2 \nabla' v_3^3 & 0 & \Delta v_3^3 \\
\end{pmatrix}
\]
with domain
\[D(\hat{\mathcal{L}}_\xi) = \{ u = T(\phi, w) \in L^2(D); \ w \in H^1_0(D), \ \hat{\mathcal{L}}_\xi u \in L^2(D) \}. \]

Note that \(D(\hat{\mathcal{L}}_\xi) = D(\hat{\mathcal{L}}^*_\xi) \) for any \(\xi \in \mathbb{R} \).

Concerning the spectrum of \(-\hat{\mathcal{L}}_\xi\) for \(|\xi| \ll 1\), we have the following proposition, which was proved in [2, Theorem 4.5, 4.7] and [1, Lemma 4.1].

Proposition 4.1. (i) There exist positive constants \(c_0, \nu_1, \gamma_1, \omega_1 \) and \(r_0 \) such that if \(\nu \geq \nu_1, \ \frac{\gamma^2}{\nu + \nu} \geq \gamma_1^2 \) and \(\omega \leq \omega_1 \), then it holds that
\[\sigma(-\hat{\mathcal{L}}_\xi) \cap \{ \lambda : |\lambda| \leq \frac{c_0}{3} \} = \{ \lambda_0(\xi) \} \]
for each \(\xi \) with \(|\xi| \leq r_0\), where \(\lambda_0(\xi) \) is a simple eigenvalue of \(-\hat{\mathcal{L}}_\xi\) that has the form
\[\lambda_0(\xi) = -i\kappa_1 \xi - \kappa_0 \xi^2 + \mathcal{O}(|\xi|^3) \]
as \(|\xi| \to 0 \). Here \(\kappa_1 \in \mathbb{R} \) and \(\kappa_0 > 0 \) are the numbers given by
\[\kappa_1 = \langle v_3^2 \phi(0) + \gamma^2 \rho_s w(0), 3 \rangle = \mathcal{O}(1), \]
\[\kappa_0 = \frac{\nu^2}{\nu} \left\{ \alpha_0 \left((-\Delta')^{-\frac{1}{2}} \rho_s \right)^2 + \mathcal{O}(\frac{1}{\gamma}) + \left(\frac{x}{\gamma} + \frac{1}{\gamma} \right) \times \mathcal{O}(\frac{\nu + \nu}{\gamma}) \right\}. \]
Here \((-\Delta')\) is the Laplace operator on \(L^2(D) \) under the zero Dirichlet boundary condition with domain\[D(-\Delta') = H^2(D) \cap H^1_0(D). \]

(ii) The eigenprojections \(\hat{\Pi}(\xi) \) and \(\hat{\Pi}^*(\xi) \) for the eigenvalues \(\lambda_0(\xi) \) and \(\bar{\lambda}_0(\xi) \) of \(-\hat{\mathcal{L}}_\xi \) and \(-\hat{\mathcal{L}}^*_\xi \) are given by
\[\hat{\Pi}(\xi) u = \langle u, u_\xi \rangle u_\xi, \quad \hat{\Pi}^*(\xi) u = \langle u, u_\xi^* \rangle u_\xi^*, \]
respectively, where \(u_\xi \) and \(u_\xi^* \) are eigenfunctions for \(\lambda_0(\xi) \) and \(\bar{\lambda}_0(\xi) \), respectively, that satisfy
\[\langle u_\xi, u_\xi^* \rangle = 1. \]
Furthermore, \(u_\xi \) and \(u_\xi^* \) are written in the form
\[u_\xi(x') = u^{(0)}(x') + i\xi u^{(1)}(x') + |\xi|^2 u^{(2)}(x', \xi), \]
\[u_\xi^*(x') = u^{*(0)}(x') + i\xi u^{*(1)}(x') + |\xi|^2 u^{*(2)}(x', \xi), \]
and the following estimates hold
\[|u|_{H^{k+2}} \leq C_{k,r_0} \]
for \(u \in \{ u_\xi, u_\xi^*, u^{(1)}, u^{*(1)}, u^{(2)}, u^{*(2)} \} \) and \(k = 0, 1, \cdots, k_0 \) with a positive constant \(C_{k,r_0} \) depending on \(k \) and \(r_0 \). Here \(u^{(0)} \) and \(u^{(0)*} \) are eigenfunctions of \(-\hat{\mathcal{L}}_0 \) and \(-\hat{\mathcal{L}}^*_0 \) for the eigenvalue 0, respectively.
(iii) The functions \(u^{(0)} \) and \(u^{(0)*} \) are given by

\[
u^{(0)} = T(\phi^{(0)}, w^{(0)}), \quad w^{(0)} = T(0, 0, w^{(0)})
\]

and

\[
u^{(0)*} = T(\phi^{(0)*}, 0).
\]

Here

\[
\phi^{(0)}(x') = \alpha_0 \frac{\gamma^2 \rho_\sigma(x')}{F(\rho_\sigma(x'))}, \quad \alpha_0 = \left(\int_D \frac{\gamma^2 \rho_\sigma(x')}{F(\rho_\sigma(x'))} \, dx' \right)^{-1};
\]

and \(w^{(0)*} \) is the solution of the following problem

\[
\begin{aligned}
-\Delta' w^{(0)},3 &= \frac{1}{\gamma^2 \rho_\sigma} \Delta't^3 \phi^{(0)}, \\
\left. w^{(0)},3 \right|_{\partial D} &= 0;
\end{aligned}
\]

and

\[
\phi^{(0)*}(x') = \frac{\gamma^2}{\alpha_0} \phi^{(0)}(x').
\]

Furthermore, it holds that

\[
\langle u_0, u_0^* \rangle = 1.
\]

We next consider the spectral properties of the semigroup \(e^{-tL} \) generated by \(-L\). We denote the characteristic function of the set \(\{ \xi \in \mathbb{R} : |\xi| \leq r_0 \} \) by \(1_{\{ |\eta| \leq r_0 \}}(\xi) \), i.e.,

\[
1_{\{ |\eta| \leq r_0 \}}(\xi) = \begin{cases}
1, & (0 \leq |\xi| \leq r_0), \\
0, & (|\xi| > r_0),
\end{cases} \text{ for } \xi \in \mathbb{R},
\]

where \(r_0 \) is a positive constant given in Proposition 4.1.

We define the projections \(P_0 \) and \(P_\infty \) by

\[
P_0 = \mathcal{F}^{-1} 1_{\{ |\eta| \leq r_0 \}}(\xi) \hat{\Pi}(\xi) \mathcal{F}
\]

and

\[
P_\infty = I - P_0.
\]

Then \(P_0 \) and \(P_\infty \) satisfy

\[
P_0 + P_\infty = I, \quad P^2 = P,
\]

\[
P L \subseteq L P, \quad P e^{-tL} = e^{-tL} P
\]

for \(P \in \{ P_0, P_\infty \} \). The semigroup \(e^{-tL} \) has the following properties. See [2, Theorem 3.1].

Proposition 4.2. If \(\nu \geq \nu_1, \frac{\gamma^2}{\nu + \nu} \geq \gamma_1^2 \) and \(\omega \leq \omega_1 \), then \(e^{-tL} P_0 \) and \(e^{-tL} P_\infty \) have the following properties.

(i) If \(u_0 = T(\phi_0, w_0) \in L^1(\Omega) \cap L^2(\Omega) \), then \(e^{-tL} P_0 u_0 \) satisfies the following estimates

\[
\| \partial_{x_2} \partial_{x_3} e^{-tL} P_0 u_0 \|_2 \leq C_{k,l}(1 + t)^{-\frac{1}{2}} \| u_0 \|_1
\]

(4.7)
uniformly for $t \geq 0$ and for $k = 0, 1, \ldots, k_0$ and $l = 0, 1, \ldots$;

$$\|e^{-tL}P_0u_0 - [\mathcal{H}(t)\langle \phi_0 \rangle]u^{(0)}\|_2 \leq Ct^{-\frac{3}{4}}\|u_0\|_1$$ \hspace{1cm} (4.8)

uniformly for $t > 0$. Here

$$\mathcal{H}(t)\langle \phi_0 \rangle = \mathcal{F}^{-1}[e^{-(i\kappa_1 t + r_0 t^2)}\phi_0],$$

where $u^{(0)} = u^{(0)}(x')$ is the function given in Proposition 4.1; and $\kappa_1 \in \mathbb{R}$ and $\kappa_0 > 0$ are the constants given in Proposition 4.1.

(ii) If $u_0 \in H^1(\Omega) \times \overline{H}^1(\Omega)$, then there exists a constant $a_0 > 0$ such that $e^{-tL}P_\infty u_0$ satisfies

$$\|e^{-tL}P_\infty u_0\|_{H^1} \leq Ce^{-a_0t}(\|u_0\|_{H^1(\Omega)} + t^{-\frac{1}{2}}\|\omega_0\|_2)$$ \hspace{1cm} (4.9)

uniformly for $t \geq 0$.

More detailed information of the P_0-part of e^{-tL} is needed to analyze the non-linear problem; and so we next give a factorization of $e^{-tL}P_0$ which was obtained in [2, Section 5].

Let us introduce operators related to u_ξ and u_ξ^*. We define the operators

$$\mathcal{T} : L^2(\mathbb{R}) \rightarrow L^2(\Omega), \quad \mathcal{P} : L^2(\Omega) \rightarrow L^2(\mathbb{R}), \quad \Lambda : L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R})$$

by

$$\mathcal{T}\sigma = \mathcal{F}^{-1}[\hat{T}_\xi \hat{\sigma}], \quad \hat{T}_\xi \hat{\sigma} = 1_{\{|\eta| \leq r_0\}}(\xi)u_{\xi} \hat{\sigma};$$

$$\mathcal{P}u = \mathcal{F}^{-1}[\hat{P}_\xi \hat{u}], \quad \hat{P}_\xi \hat{u} = 1_{\{\xi \leq r_0\}}(\xi)\langle \tilde{u}, u_\xi^* \rangle;$$

$$\Lambda\sigma = \mathcal{F}^{-1}[1_{\{\xi \leq r_0\}}(\xi)\lambda_0(\xi)\hat{\sigma}]$$

for $u \in L^2(\Omega)$ and $\sigma \in L^2(\mathbb{R})$. It follows that

$$P_0 = \mathcal{T}\mathcal{P}, \quad 1_{\{\xi \leq r_0\}}(\xi)\hat{\Pi}(\xi) = \hat{T}\hat{\mathcal{P}};$$

$$P_0L \subset LP_0 = \Lambda P_0, \quad e^{-tL}P_0 = \mathcal{T}e^{t\Lambda}\mathcal{P}.$$ \hspace{1cm} (4.8)

Note that $P_0 e^{-tL} = e^{-tL}P_0$.

Here and in what follows we assume that

$$\nu \geq \nu_1, \quad \frac{\gamma^2}{\nu + \nu} \geq \gamma_1^2, \quad \omega \leq \omega_1,$$

where ν_1, γ_1 and ω_1 are the constants given in Proposition 4.1.

As for \mathcal{T}, we have the following proposition.

Proposition 4.3. ([2, Proposition 5.1]) The operator \mathcal{T} has the following properties:

(i) $\partial^l_{\xi^3}\mathcal{T} = \mathcal{T}\partial^l_{\xi^3}$ for $l = 0, 1, \ldots$.

(ii) $\|\partial^k_{\xi^l} \partial^l_{\xi^3}\mathcal{T}\sigma\|_2 \leq C\|\sigma\|_{L^2(\mathbb{R})}$ for $k = 0, 1, \ldots, k_0$, $l = 0, 1, \ldots$ and $\sigma \in L^2(\mathbb{R})$. \hspace{1cm} (4.9)
Proposition 4.4. (2, Proposition 5.2) The operator \mathcal{P} has the following properties:

(i) $\partial_{x_3}^l \mathcal{P} = \mathcal{P} \partial_{x_3}^l$ for $l = 0, 1, \cdots$.

(ii) $\|\partial_{x_3}^l \mathcal{P} u\|_{L^2(\mathbb{R})} \leq C \|u\|_2$ for $k = 0, 1, \cdots k_0$, $l = 0, 1, \cdots$ and $u \in L^2(\Omega)$. Furthermore, $\|\mathcal{P} u\|_{L^2(\mathbb{R})} \leq C \|u\|_1$ for $u \in L^1(\Omega)$.

(iii) \mathcal{P} is decomposed as

$$\mathcal{P} = \mathcal{P}^{(0)} + \partial_{x_3} \mathcal{P}^{(1)} + \partial_{x_3}^2 \mathcal{P}^{(2)},$$

where $\mathcal{P}^{(j)} u = \mathcal{F}^{-1} [\hat{\mathcal{P}}^{(j)} \hat{u}]$ ($j = 0, 1, 2$) with

$$\hat{\mathcal{P}}^{(0)} \hat{u} = 1_{\{|u| \leq r_0\}}(\xi) \langle \tilde{u}, u^{(0)} \rangle = \int_{\{|u| \leq r_0\}}(\xi) \langle Q_0 \tilde{u} \rangle,$$

$$\hat{\mathcal{P}}^{(1)} \hat{u} = 1_{\{|u| \leq r_0\}}(\xi) \langle \tilde{u}, u^{(1)} \rangle,$$

$$\hat{\mathcal{P}}^{(2)} \hat{u} = 1_{\{|u| \leq r_0\}}(\xi) \langle \tilde{u}, u^{(2)} \rangle.$$

Here $\mathcal{P}^{(j)}$ ($j = 0, 1, 2$) satisfy estimates (i) and (ii) by replacing \mathcal{P} with $\mathcal{P}^{(j)}$.

Concerning λ, we have the following estimates for $e^{t\lambda}$.

Proposition 4.5. (2, Proposition 5.3) The operator $e^{t\lambda}$ satisfies the following estimates.

(i) $\|\partial_{x_3} e^{t\lambda} \mathcal{P} u\|_{L^2(\mathbb{R})} \leq C(1 + t)^{-\frac{1}{2}} \|u\|_1$,

(ii) $\|\partial_{x_3}^j e^{t\lambda} \mathcal{P}^{(j)} u\|_{L^2(\mathbb{R})} \leq C(1 + t)^{-\frac{1}{2} - \frac{j}{2}} \|u\|_1$, $j = 0, 1, 2$,

(iii) $\|\partial_{x_3} e^{(T - T^{(0)})} e^{t\lambda} \mathcal{P} u\|_2 \leq C(1 + t)^{-\frac{1}{2} - \frac{1}{4}} \|u\|_1$, for $u \in L^1(\Omega)$ and $l = 0, 1, 2, \cdots$.

We next consider the asymptotic behavior of $e^{t\lambda}$. Let us define an operator $\mathcal{H}(t)$ by

$$\mathcal{H}(t) \sigma = \mathcal{F}^{-1} [e^{-(i\kappa_1 \xi + \kappa_0 t^2)} \hat{\sigma}]$$

for $\sigma \in L^2(\mathbb{R})$, where $\kappa_1 \in \mathbb{R}$ and $\kappa_0 > 0$ are given by Proposition 4.1. The asymptotic leading part of $e^{t\lambda}$ is given by $\mathcal{H}(t)$. In fact, we have the following estimates.
Proposition 4.6. ([2, Proposition 5.8]) For \(u \in L^2(\Omega) \), we set \(\sigma = \langle Q_0 u \rangle \). If \(u \in L^1(\Omega) \), then there holds the estimate

\[
\| \partial_{z_3}^l \left(e^{t\Lambda} \mathcal{P} u - \mathcal{H}(t) \sigma \right) \|_{L^2(\mathbb{R})} \leq C t^{-\frac{3}{2} - \frac{l}{2}} \| u \|_1 \quad (l = 0, 1, \ldots)
\]

Observe that, since \(e^{tL} P_0 = T e^{tP} = T(0) e^{tP} + (T - T(0)) e^{tP} \),
we have (4.8) by Propositions 4.3 (iii), 4.5 (iii) and 4.6.

5 Decomposition of Problem

In this section we formulate the problem. The problem (1.5)-(1.8) is written as

\[
\frac{du}{dt} + Lu = F, \quad w|_{\partial \Omega} = 0, \quad u|_{t=0} = u_0.
\] (5.1)

Here \(u = T(\phi, w) \); \(F = F(u) \) denotes the nonlinearity:

\[
F = T(f^0(\phi), f(\phi, w)).
\]

The local solvability in \(Z(T) \) for (5.1) follows from [12].

Proposition 5.1. If \(u_0 = T(\phi_0, w_0) \) satisfies the following conditions;

(i) \(u_0 \in H^2 \times (H^2 \cap H_0^1) \),

(ii) \(-\frac{\alpha^2}{4} \rho_1 \leq \phi_0 \),

then there exists a number \(T_0 > 0 \) depending on \(\| u_0 \|_{H^2} \) and \(\rho_1 \) such that the following assertions hold. Problem (5.1) has a unique solution \(u(t) \in Z(T) \) satisfying

\[
\phi(x, t) \geq -\frac{\alpha^2}{4} \rho_1 \quad \text{for} \quad \forall (x, t) \in \Omega \times [0, T_0];
\]

and the following estimate holds

\[
\| u \|^2_{Z(T)} \leq C_0 \{ 1 + \| u_0 \|^2_{H^2} \}^\alpha \| u_0 \|^2_{H^2}
\]

for some positive constants \(C_0 \) and \(\alpha \).

Theorem 3.1 would follow if we would establish the a priori estimates of \(u(t) \) in \(Z(T) \) uniformly for \(T \).

To obtain the appropriate a priori estimates, we decompose the solution \(u \) into its \(P_0 \) and \(P_\infty \) parts. Let us decompose the solution \(u(t) \) of (5.1) as

\[
u(t) = (\sigma_1 u^{(0)})(t) + u_1(t) + u_\infty(t),
\]

where

\[
\sigma_1(t) = \mathcal{P} u(t), \quad u_1(t) = (\mathcal{T} - \mathcal{T}^{(0)}) \mathcal{P} u(t), \quad u_\infty(t) = P_\infty u(t).
\]
Note that $P_0 u(t) = (\sigma_1 u^{(0)})(t) + u_1(t)$.
Since $u_1(t)$ is written as
\[
 u_1(t) = (T - T^{(0)}) \mathcal{P} u(t) = (\partial_{x_3} T^{(1)}) + \partial_{x_3} T^{(2)} \sigma_1(t),
\]
we see from Proposition 4.3 and Proposition 4.4 the following estimates for $\sigma_1(t)$ and $u_1(t)$.

Proposition 5.2. Let $u(t)$ be a solution of (5.1) in $Z(T)$. Then there hold the estimates
\[
 \|\partial_{x_3}^l \sigma_1(t)\|_2 \leq C \|\partial_{x_3} \sigma_1(t)\|_2
\]
for $1 \leq l \leq 3$; and
\[
 \|\partial_{x_3}^l \partial_{x_3}^k \partial_{t}^m u_1(t)\|_2 \leq C \{\|\partial_{x_3} \sigma_1(t)\|_2 + \|\partial_t \sigma_1(t)\|_2\}
\]
for $1 \leq k + l + 2m \leq 3$.

We derive the equations for $\sigma_1(t)$ and $u_\infty(t)$.

Proposition 5.3. Let $T > 0$ and assume that $u(t)$ is a solution of (5.1) in $Z(T)$. Then the following assertions hold.

\[
\sigma_1 \in \bigcap_{j=0}^1 C^j([0, T]; H^2(\mathbb{R})), \quad u_\infty \in Z(T), \quad \phi_\infty \in C^1([0, T]; H^1).
\]

Furthermore, σ_1 and u_∞ satisfy
\[
 \sigma_1(t) = e^{t\Lambda} \mathcal{P} u_0 + \int_0^t e^{(t-\tau)\Lambda} \mathcal{P} F(\tau) d\tau; \quad (5.2)
\]
and
\[
 \partial_t u_\infty + L u_\infty = F_\infty, \quad u_\infty \big|_{t=0} = 0, \quad u_\infty \big|_{t=0} = u_\infty, \quad (5.3)
\]
where $F_\infty = P_\infty F$ and $u_\infty, 0 = P_\infty u_0$.

Let $u(t)$ be a solution of (5.1) in $Z(T)$. From Proposition 5.2, we obtain
\[
 \sup_{0 \leq \tau \leq t} (1 + \tau)^{\frac{3}{2}} \{\|u_1(\tau)\|_2 + \|\partial_2 u_1(\tau)\|_2\}
\]
\[
\leq C \sup_{0 \leq \tau \leq t} (1 + \tau)^{\frac{3}{2}} \{\|\partial_{x_3} \sigma_1(\tau)\|_2 + \|\partial_t \sigma_1(\tau)\|_2\},
\]
and thus, the estimates for $u_1(t)$ follows from the ones for $\sigma_1(t)$. Therefore, as in [3], we introduce the quantity $M_1(t)$ defined by
\[
 M_1(t) = \sup_{0 \leq \tau \leq t} (1 + \tau)^{\frac{3}{2}} \|\sigma_1(\tau)\|_2 + \sup_{0 \leq \tau \leq t} (1 + \tau)^{\frac{3}{2}} \{\|\partial_{x_3} \sigma_1(\tau)\|_2 + \|\partial_t \sigma_1(\tau)\|_2\};
\]
and we define the quantity $M(t)$ as
\[
 M(t)^2 = M_1(t)^2 + \sup_{0 \leq \tau \leq t} (1 + \tau)^{\frac{3}{2}} E_\infty(\tau) \quad (t \in [0, T])
\]
with
\[E_\infty(t) = \|u_\infty(t)\|^2. \]

We define a quantity \(D_\infty(t)\) for \(u_\infty = \mathcal{T}(\phi_\infty, w_\infty)\) by
\[D_\infty(t) = \|D\phi_\infty(t)\|^2 + \|Dw_\infty(t)\|^2. \]

If we could show \(M(t) \leq C\) uniformly for \(t \geq 0\), then Theorem 3.1 would follow.

The uniform estimate for \(M(t)\) is given by using the following estimates for \(M_1(t)\) and \(E_1(t)\).

Proposition 5.4. There exist positive constants \(\nu_0, \gamma_0, \omega_0\) such that if \(\nu \geq \nu_0, \frac{\gamma^2}{\nu + \nu} \geq \gamma_0^2\) and \(\omega \leq \omega_0\), then the following assertions hold. There is a positive number \(\epsilon_1\) such that if a solution \(u(t)\) of (5.1) in \(Z(T)\) satisfies \(\sup_{0 \leq \tau \leq t} \|u(\tau)\|_2 \leq \epsilon_1\) and \(M(t) \leq 1\) for \(t \in [0, T]\), then the estimates
\[M_1(t) \leq C\{\|u_0\|_{L^1} + M(t)^2\} \]
(5.4)

and
\[E_\infty(t) + \int_0^\infty e^{-a(t-\tau)}D_\infty(\tau)d\tau \]
\[\leq C\{e^{-at}E_\infty(0) + (1 + t)^{-\frac{3}{2}}M(t)^4 + \int_0^t e^{-a(t-\tau)}\mathcal{R}(\tau)d\tau\} \]
(5.5)

hold uniformly for \(t \in [0, T]\) with \(C > 0\) independent of \(T\). Here \(a = a(\nu, \bar{\nu}, \gamma)\) is a positive constant; and \(\mathcal{R}(t)\) is a function satisfying the estimate
\[\mathcal{R}(t) \leq C\{(1 + t)^{-\frac{3}{2}}M(t)^3 + (1 + t)^{-\frac{1}{2}}M(t)D_\infty(t)\} \]
(5.6)

provided that \(\sup_{0 \leq \tau \leq t} \|u(\tau)\|_2 \leq \epsilon_2\) and \(M(t) \leq 1\).

Proposition 5.4 follows from Propositions 6.1, 7.1 and 8.1 below.

As in [3, 11], one can see from Propositions 5.1 and 5.4 that if \(\|u_0\|_{H^2 \cap L^1}\) is sufficiently small, then
\[M(t) \leq C\|u_0\|_{H^2 \cap L^1} \]
uniformly for \(t \geq 0\), which proves Theorem 3.1.

6 Estimates for \(P_0\)-part of \(u(t)\)

In this section, we estimate the \(P_0\)-part of \(u(t)\)
\[P_0u(t) = (\sigma_1 u^{(0)}(t) + u_1(t), \]
where \(\sigma_1(t) = \mathcal{P}u(t)\) and \(u_1(t) = (\mathcal{T} - \mathcal{T}^{(0)})\mathcal{P}u(t)\). We will prove the following estimate for \(M_1(t)\).
Proposition 6.1. Let $T > 0$ and assume that $\nu \geq \nu_1$, $\frac{\gamma^2}{\nu + \nu} \geq \gamma_1^2$ and $\omega \leq \omega_1$. Then there exists a positive constant ϵ independent of T such that if a solution $u(t)$ of (5.1) in $Z(T)$ satisfies $\sup_{0 \leq \tau \leq t} \|u(\tau)\|_2 \leq \epsilon$ and $M(t) \leq 1$ for all $t \in [0, T]$, then the estimate

$$M_1(t) \leq C\{\|u_0\|_1 + M(t)^2\}$$

holds uniformly for $t \in [0, T]$, where C is a positive constant independent of T.

Let us prove Proposition 6.1. We decompose the nonlinearity F into

$$F = \sigma_1^2 F_1 + F_2,$$

where

$$F_1 = F_1(x') = -T \left(0, \frac{1}{2\gamma^2 \rho_s(x')} \nabla' \left\{ P''(\rho_s(x')) (\phi^0(x'))^2 \right\}, 0\right),$$

$$F_2 = F - \sigma_1^2 F_1.$$

Here $\sigma_1^2 F_1(x')$ is the part of F containing only $\sigma_1(t)$ but not $\partial_{x_3} \sigma_1(t)$, $u_1(t)$, $u_\infty(t)$, $\sigma_1^2(t)$ and so on.

Before going further, we introduce a notation. For a function g we define $\langle g \rangle_0$ by

$$\langle g \rangle_0 = F^{-1}[1_{\{|b| \leq n_0\}}(\xi) \langle \tilde{g} \rangle].$$

The nonlinearity F has the following properties.

Lemma 6.2. There hold the following assertions.

(i) $\langle Q_0 F \rangle = -\partial_{x_3} \langle \phi w^3 \rangle$.

(ii) $PF = -\partial_{x_3} \langle \phi w^3 \rangle_0 + \partial_{x_3} \mathcal{P}^{(1)} F + \partial_{x_3} \mathcal{P}^{(2)} F$.

Proof. As for (i), we see from integration by parts that $\langle \nabla' \cdot (\phi w') \rangle = 0$. It then follows that

$$\langle Q_0 F \rangle = -\langle \text{div}(\phi w) \rangle = -\langle \partial_{x_3} (\phi w^3) \rangle = -\partial_{x_3} \langle \phi w^3 \rangle.$$

We next prove (ii). From the definition of $\mathcal{P}^{(0)}$ and (i), there holds that

$$\mathcal{P}^{(0)} F = F^{-1}[1_{\{|b| \leq n_0\}}(\xi) \langle Q_0 \tilde{F} \rangle] = \langle Q_0 F \rangle_0 = -\partial_{x_3} \langle \phi w^3 \rangle_0.$$

We thus obtain (ii). This completes the proof. \hfill \Box

Noting that $\|\sigma_1\|_\infty \leq C \|\sigma_1\|_2^{\frac{1}{2}} \|\partial_{x_3} \sigma_1\|_2^{\frac{1}{2}}$, one can obtain the following estimates by straightforward computations.

Lemma 6.3. There exists a positive constant ϵ such that if a solution $u(t)$ of (5.1) in $Z(T)$ satisfies $\sup_{0 \leq \tau \leq t} \|u(\tau)\|_2 \leq \epsilon$ and $M(t) \leq 1$ for all $t \in [0, T]$, then the following estimates hold for $t \in [0, T]$ with a positive constant C independent of T.

19
By (6.1) and (6.2) we deduce the desired estimate. This completes the proof. □

This, together with (5.2), (6.1) and Lemma 6.3, implies that

We next consider

we obtain

We see from Lemma 6.2 (ii) that

By Proposition 4.5 and Lemma 6.3 we then have

We see from Proposition 4.5 that

We write it as

By Proposition 4.5 and Lemma 6.3 we then have

for \(l = 0, 1 \). Applying Lemma 6.3 (ii) and (v) we have

for \(l = 0, 1 \). We thus obtain

for \(l = 0, 1 \).

Let us estimate the time derivative. Since \(\lambda_0(\xi) = -(i\kappa_1\xi + \kappa_0\xi^2 + O(\xi^3)) = O(\xi) \), we obtain

This, together with (5.2), (6.1) and Lemma 6.3, implies that

By (6.1) and (6.2) we deduce the desired estimate. This completes the proof. □
7 Estimates for P_∞-part of $u(t)$

In this section we derive the estimates for the P_∞-part of $u(t)$.

Throughout this section, we assume that $u(t)$ is a solution of (5.1) in $Z(T)$ for a given $T > 0$. We show the following estimate.

Proposition 7.1. There exist positive constants $\nu_0 (\geq \nu_1)$, $\gamma_0 (\geq \gamma_1)$ and $\omega_0 (\leq \omega_1)$ such that if $\nu \geq \nu_0$, $\frac{\gamma^2}{\nu+\nu} \geq \gamma_0^2$ and $\omega \leq \omega_0$, then

$$E_{\infty}(t) + \int_0^t e^{-a(t-\tau)} D_{\infty}(\tau) d\tau \leq C \{e^{-at}E_{\infty}(0) + (1 + t)^{-\frac{3}{2}}M(t)^4 + \int_0^t e^{-a(t-\tau)} R(\tau) d\tau\}. $$

uniformly for $t \in [0, T]$ with $C > 0$ independent of T.

Proposition 7.1 is proved by the estimate (4.9) for $e^{-tL}P_{\infty}$ and the Matsumura-Nishida energy method.

We introduce notations. In what follows C and $C_j (j = 1, 2, \ldots)$ denote various constants independent of T, ν, ν and γ, whereas, $C_{\nu\nu\gamma\ldots}$ denotes various constants which depends on ν, ν, γ, \ldots but not on T.

We first establish the H^1-estimate for u_{∞} which follows from the estimate (4.9) for $e^{-tL}P_{\infty}$.

Proposition 7.2. There exist positive constants $\nu_0 (\geq \nu_1)$, $\gamma_0 (\geq \gamma_1)$ and $\omega_0 (\leq \omega_1)$ such that if

$$\nu \geq \nu_0, \quad \frac{\gamma^2}{\nu+\nu} \geq \gamma_0^2, \quad \omega \leq \omega_0; \quad (7.1)$$

then, for any $0 < a < 2a_0$,

$$\|u_{\infty}(t)\|^2_{H^1} + \int_0^t e^{-a(t-\tau)} \|u_{\infty}(\tau)\|^2_{H^1} d\tau \leq C_{\nu\nu\gamma} \left\{e^{-at}\|u_{\infty,0}\|^2_{H^1} + \sup_{0 \leq \tau \leq t} \|F_{\infty}(\tau)\|^2_2 + \int_0^t e^{-a(t-\tau)} \|F_{\infty}(\tau)\|^2_{H^1} d\tau \right\}. $$

Proof. We write $u_{\infty}(t)$ as

$$u_{\infty}(t) = e^{-tL}u_{\infty,0} + \int_0^t e^{-(t-\tau)L} F_{\infty}(\tau) d\tau.$$
Since $u_{\infty,0} \in H^1 \times H^1_0$, we see from (4.9) that
\[
\|u_{\infty}(t)\|_{H^1} \leq C\left\{e^{-a_0 t}\|u_{\infty,0}\|_{H^1}^2 + \int_0^t e^{-a_0(t-\tau)}\|F_\infty(\tau)\|_{H^1 \times \dot{H}^1} d\tau\right\} + \int_0^t e^{-a_0(t-\tau)}(t-\tau)^{-\frac{1}{2}}\|F_\infty(\tau)\|_2 d\tau
\]
\[
\leq C\left\{e^{-a_0 t}\|u_{\infty,0}\|_{H^1}^2 + \sup_{0 \leq \tau \leq t}\|F_\infty(\tau)\|_2\right\} + \int_0^t e^{-a_0(t-\tau)}\|F_\infty(\tau)\|_{H^1 \times \dot{H}^1} d\tau
\]
from which we have
\[
\|u_{\infty}(t)\|_{H^1}^2 \leq C\left\{e^{-2a_0 t}\|u_{\infty,0}\|_{H^1}^2 + \sup_{0 \leq \tau \leq t}\|F_\infty(\tau)\|_2^2 + \int_0^t e^{-a(t-\tau)}\|F_\infty(\tau)\|_{H^1}^2 d\tau\right\} \tag{7.2}
\]
for any $0 < a < 2a_0$. Set $V(t) = \int_0^t e^{-\hat{a}(t-\tau)}\|F_\infty(\tau)\|_{H^1}^2 d\tau$. Then $V(t)$ satisfies $dV/dt + \hat{a}V = \|F_\infty\|_{H^1}^2$ and $V(0) = 0$. It follows that $\int_0^t e^{-a(t-\tau)}V(t) d\tau \leq \int_0^t e^{-a(t-\tau)}\|F_\infty(\tau)\|_{H^1}^2 d\tau$ for any $0 < a < \hat{a}$. This, together with (7.2), yields the desired inequality. This completes the proof.

We next derive the H^2 estimate for $u_{\infty}(t)$. In what follows we set
\[
f_0^\infty = Q_0 F_\infty, \quad f_\infty = \tilde{Q} F_\infty
\]
and
\[
\phi_0 = \partial_t \phi_\infty + v_3^3 \partial_{x_3} \phi_\infty + w \cdot \nabla \phi_\infty,
\]
where
\[
\tilde{f}_0 = f_0^\infty - w \cdot \nabla \phi_\infty.
\]
Note that
\[
\|\phi_\infty\|_{H^1} \leq C_v \sqrt{\gamma}\left(\|u_\infty\|_{H^1 \times H^2}^2 + \|\tilde{f}_0\|_{H^1}^2\right).
\]
The following Propositions 7.3 – 7.6 can be proved in a similar manner in [1, Section 4]. So we here give outline of proof.

We begin with the L^2 energy estimates for $\partial_t u_\infty$ and $\partial_{x_3}^2 u_\infty$.

Proposition 7.3. Under the assumption (7.1) (with ν_0, γ_0 and ω^{-1} replaced by suitably larger ones), the following assertions hold.

(i) There exists positive constant c such that the following inequality holds:
\[
\frac{1}{2} \frac{d}{dt} \left\{ \frac{1}{\gamma} \left\| \frac{p(r_\rho)}{r_\rho^2} \partial_t \phi_\infty \right\|_2^2 + \left\| \sqrt{\rho} \partial_t w_\infty \right\|_2^2 \right\} + \frac{1}{2}\nu \left\| \nabla \partial_t w_\infty \right\|_2^2 + \frac{1}{2} \nu \left\| \text{div} \partial_t w_\infty \right\|_2^2 + c \frac{1}{\gamma^2} \left\| \partial_t \phi_\infty \right\|_2^2 \leq C_v \sqrt{\gamma}\|u_\infty\|_{H^1 \times H^2} + |A_1|. \tag{7.3}
\]
Here

\[A_1 = \frac{1}{2} \left(|\partial_t \phi_\infty|^2, \text{div} \left(\frac{P'(\rho_s)}{\gamma^4 \rho_s} w \right) \right) + \left(\partial_t \phi_\infty, \text{div} \left(\frac{P'(\rho_s)}{\gamma^4 \rho_s} \partial_t \phi_\infty \right) \right) + \left(\partial_t \phi_\infty, \rho_s \partial_t w_\infty \right) + C \frac{\nu + \bar{\nu}}{\gamma^4} \| \partial_t \phi_\infty \|_2^2. \]

(ii) There exists positive constant \(b \) such that the following inequality holds:

\[
\frac{1}{2} \frac{d}{dt} \left\{ \frac{1}{\gamma^2} \| \sqrt{\frac{P'(\rho_s)}{\gamma^4 \rho_s}} \partial_x^2 \phi_\infty \|_2^2 + \| \sqrt{P_s} \partial_x^2 w_\infty \|_2^2 \right\} \\
+ \frac{1}{2} \nu \| \nabla \partial_x^2 w_\infty \|_2^2 + \frac{1}{2} \bar{\nu} \| \text{div} \partial_x^2 w_\infty \|_2^2 + b \frac{\nu + \bar{\nu}}{\gamma^4} \| \partial_x f_\infty \|_2^2 \leq C \frac{\nu + \bar{\nu}}{\gamma^4} \| \partial_x^2 \phi_\infty \|_2^2 + C \frac{\nu + \bar{\nu}}{\gamma^4} \| u_\infty \|_{H^1 \times H^2} + |A_{0,0,2}|.
\] (7.4)

Here

\[
A_{0,0,2} = \frac{1}{2} \left(|\partial_x^2 \phi_\infty|^2, \text{div} \left(\frac{P'(\rho_s)}{\gamma^4 \rho_s} w \right) \right) + \left(\partial_x^2 \phi_\infty, \text{div} \left(\frac{P'(\rho_s)}{\gamma^4 \rho_s} \partial_x^2 \phi_\infty \right) \right) \\
+ \left(\partial_x^2 \phi_\infty, \rho_s \partial_x^2 w_\infty \right) + \left(\partial_x f_\infty, \partial_x (\rho_s \partial_x^2 w_\infty) \right) + C \frac{\nu + \bar{\nu}}{\gamma^4} \| \partial_x^2 \phi_\infty \|_2^2.
\]

Outline of Proof. We write \(L \) as

\[L = A + B, \]

where

\[
A = \begin{pmatrix}
\nu_3^3 \partial_x^3 \\
- \frac{\gamma^2 \text{div}(\rho_s)}{\gamma^4 \rho_s} \\
- \frac{\nu}{\rho_s} \Delta I_3 - \frac{\nu + \bar{\nu}}{\rho_s} \nabla \text{div} + \nu \partial_x^3
\end{pmatrix},
\]

\[
B = \begin{pmatrix}
0 \\
\frac{\nu \Delta v_3}{\gamma^4 \rho_s^2} \\
e_3 \otimes (\nabla v_3^3)
\end{pmatrix}.
\]

Note that

\[\langle Au, w \rangle = \nu \| \nabla w \|_2^2 + \bar{\nu} \| \text{div} w \|_2^2. \] (7.5)

In terms of \(A \) and \(B \) we rewrite problem (5.3) as

\[\partial_t u_\infty + Au_\infty = -Bu_\infty + F_\infty. \] (7.6)

Let \(j \) and \(k \) be nonnegative integers satisfying \(j + 2k = 2 \). We apply \(\partial_x^j \partial_t^k \) to (7.6) and obtain

\[\partial_t \partial_x^j \partial_t^k u_\infty + A \partial_x^j \partial_t^k u_\infty = -B \partial_x^j \partial_t^k u_\infty + \partial_x^j \partial_t^k F_\infty. \]

We take the weighted inner product \(\langle \cdot, \cdot \rangle \) of this equation with \(\partial_x^j \partial_t^k u_\infty \). One can then arrive at the desired estimates by using (7.5) and the relations

\[
\left(\partial_x^j \partial_t^k (w \cdot \nabla \phi_\infty), \partial_x^j \partial_t^k (\partial_t \phi_\infty, \frac{P'(\rho_s)}{\gamma^4 \rho_s}) \right) \\
= \frac{1}{2} \left(w, \nabla [\partial_x^j \partial_t^k \phi_\infty, \frac{2 P'(\rho_s)}{\gamma^4 \rho_s}] + \left(\partial_x^j \partial_t^k \phi_\infty, \frac{P'(\rho_s)}{\gamma^4 \rho_s} \right) \right) \\
= -\frac{1}{2} \left(\partial_x^j \partial_t^k \phi_\infty, \text{div} \left(\frac{P'(\rho_s)}{\gamma^4 \rho_s} w \right) \right) + \left(\partial_x^j \partial_t^k \phi_\infty, \text{div} \left(\frac{P'(\rho_s)}{\gamma^4 \rho_s} \right) \right)
\]

23
and

$$\partial_t^j \partial_x^k \hat{\varphi}_\infty = -\gamma^2 \text{div} (\rho_s \partial_x^j \partial_x^k w_\infty) + \partial_x^j \partial_x^k \tilde{f}_\infty^0.$$

We note that the lower order norm $\| u_\infty \|_{H^1 \times H^2}$ arises from the lower order term $B u_\infty$. \hfill \square

We next state the interior estimate and the boundary estimates of the tangential derivatives.

Proposition 7.4. Under the assumption \((7.1)\) (with ν_0, γ_0 and ω_0^{-1} replaced by suitably larger ones), the following assertions hold.

(i) There exists positive constant b such that the estimate

$$\frac{1}{2} \frac{d}{dt} \left\{ \frac{1}{\gamma} \| \chi_0 \sqrt{\frac{P(\rho_s)}{\gamma \rho_s}} \partial_x^2 \varphi_\infty \|^2_2 \right\} + \| \chi_0 \sqrt{\rho_s} \partial_x^2 \dot{w}_\infty \|^2_2 \right\} + \frac{1}{2} \| \chi_0 \text{div} \partial_x^2 \dot{w}_\infty \|^2_2 + \frac{b \sqrt{\nu}}{\gamma} \| \chi_0 \partial_x^2 \dot{\varphi}_\infty \|^2_2$$

$$\leq (\epsilon + C \frac{\sqrt{\nu}}{\gamma}) \| \partial_x^2 \varphi_\infty \|^2_2 + C \| \dot{w}_\infty \|_{H^1 \times H^2} + |A^{(0)}|$$

holds for any $\epsilon > 0$. Here

$$A^{(0)} = \frac{1}{2} \left(\left(\partial_x^2 \varphi_\infty \right)^2, \text{div} \left(\chi_0 \frac{P(\rho_s)}{\gamma \rho_s} w \right) \right) + \left(\partial_x^2 \varphi_\infty, w \cdot \nabla \varphi_\infty, \chi_0 \frac{P(\rho_s)}{\gamma \rho_s} \partial_x^2 \varphi_\infty \right)$$

$$+ \left(\partial_x^2 \tilde{f}_\infty^0, \chi_0 \frac{P(\rho_s)}{\gamma \rho_s} \partial_x^2 \tilde{f}_\infty^0 \right) + \left(\partial_x^2 f_\infty, \partial_x^2 \left(\chi_0 \rho_s \partial_x^2 w_\infty \right) \right)$$

$$+ Cb \frac{\sqrt{\nu}}{\gamma} \| \chi_0 \partial_x^2 \tilde{f}_\infty^0 \|^2_2.$$

(ii) Let $1 \leq m \leq N$. There exists positive constant b such that the estimate

$$\frac{1}{2} \frac{d}{dt} \left\{ \frac{1}{\gamma} \| \chi_m \sqrt{\frac{P(\rho_s)}{\gamma \rho_s}} \partial_x^k \partial_x^j \varphi_\infty \|^2_2 \right\} + \| \chi_m \sqrt{\rho_s} \partial_x^k \partial_x^j \dot{w}_\infty \|^2_2 \right\} + \frac{1}{2} \| \chi_m \text{div} \partial_x^k \partial_x^j \dot{w}_\infty \|^2_2 + \frac{b \sqrt{\nu}}{\gamma} \| \chi_m \partial_x^k \partial_x^j \dot{\varphi}_\infty \|^2_2$$

$$\leq (\epsilon + C \frac{1}{\gamma}) \| \partial_x^k \varphi_\infty \|^2_2 + C \| \dot{w}_\infty \|_{H^1 \times H^2} + |A^{(m)}_{0,k,j}|$$

holds for $(k,j) = (2,0)$, $(1,1)$ and any $\epsilon > 0$. Here

$$A^{(m)}_{0,k,j} = \frac{1}{2} \left(\| \partial_x^k \partial_x^j \varphi_\infty \|^2_2, \text{div} \left(\chi_m \frac{P(\rho_s)}{\gamma \rho_s} w \right) \right)$$

$$+ \left(\| \partial_x^k \partial_x^j, w \cdot \nabla \varphi_\infty, \chi_m \frac{P(\rho_s)}{\gamma \rho_s} \partial_x^k \partial_x^j \varphi_\infty \right)$$

$$+ \left(\partial_x^k \partial_x^j \tilde{f}_\infty^0, \chi_m \frac{P(\rho_s)}{\gamma \rho_s} \partial_x^k \partial_x^j \tilde{f}_\infty^0 \right) + \left(\partial_x^{k-1} \partial_x^j f_\infty, \partial_x^2 \left(\chi_m \rho_s \partial_x^k \partial_x^j w_\infty \right) \right)$$

$$+ Cb \frac{\sqrt{\nu}}{\gamma} \| \chi_m \partial_x^k \partial_x^j \tilde{f}_\infty^0 \|^2_2.$$

Outline of Proof. Let us consider (ii). We apply $\partial_x^k \partial_x^j$ to \((7.6)\) to have

$$\partial_x^k \partial_x^j u_\infty + A \partial_x^k \partial_x^j u_\infty = -[\partial_x^k, A] \partial_x^j u_\infty - \partial_x^k B \partial_x^j u_\infty + \partial_x^k \partial_x^j F_\infty.$$

Here $[\partial_x^k, A]$ denotes the commutator of ∂_x^k and A. We take the weighted inner product $\langle \cdot, \cdot \rangle$ of this equation with $\chi_m \partial_x^k \partial_x^j u_\infty$. One can then arrive at the desired
estimate in (i) in a similar manner to the proof of Proposition 7.3. We note that the lower order norm \(\|u_\infty\|_{H^1_\mu H^2} \) arises from the lower order term \(Bu_\infty \) and the term including the commutator \([\partial^k, A]\). The estimate in (i) can be obtained similarly. \(\square \)

The normal derivatives of \(\phi_\infty \) is estimated as follows.

Proposition 7.5. Let \(1 \leq m \leq N \). Under the assumption (7.1) (with \(\nu_0, \gamma_0 \) and \(\omega_0^{-1} \) replaced by suitably larger ones), there exists positive constant \(b \) such that the estimate

\[
\frac{1}{2} \frac{d}{dt} \left(\frac{1}{2} \chi_m \left\| \frac{P'(\rho_s)}{\gamma \rho_s} \partial_n \partial_{y_1} \partial_{y_2} \partial_{y_3} \phi_\infty \right\|_{L^2}^2 \right)
+ \frac{1}{2} \frac{d}{dt} \left(\frac{1}{2} \chi_m \left\| \frac{P'(\rho_s)}{\gamma \rho_s} \partial_n \partial_{y_1} \partial_{y_2} \partial_{y_3} \phi_\infty \right\|_{L^2}^2 \right)
+ b^{\nu+\tilde{\nu}} \left\| \chi_m \partial_n \partial_{y_1} \partial_{y_2} \partial_{y_3} \phi_\infty \right\|_2^2
\leq C \left\{ \frac{\nu+\tilde{\nu}}{\gamma} \left\| \partial_n^2 \phi_\infty \right\|_2^2 + \frac{1}{\nu+\tilde{\nu}} \left\| \partial_t \partial_y w_\infty \right\|_2^2 + \frac{\nu^2}{\nu+\tilde{\nu}} \left\| \chi_m \partial_n \partial_{y_1} \partial_{y_2} \partial_{y_3} \phi_\infty \right\|_2^2 \right\}
+ C(b+1) \left(\frac{\nu+\tilde{\nu}}{\gamma} \right) \left\| \chi_m \partial_n \partial_{y_1} \partial_{y_2} \partial_{y_3} \phi_\infty \right\|_2^2 + \left\| \phi_\infty \right\|_{H^1}^2.
\]

(7.9)

Outline of Proof. We transform a scalar field \(p(x') \) on \(D \cap \mathcal{O}_m \) as

\[
\tilde{p}(y') = p(x') \quad (y' = \Psi^m(x'), \; x' \in D \cap \mathcal{O}_m),
\]

where \(\Psi^m(x') \) is a function given in section 2. Similarly we transform a vector field \(v(x') = (v^1(x'), v^2(x'), v^3(x')) \) into \(\tilde{v}(y') = (\tilde{v}^1(y'), \tilde{v}^2(y'), \tilde{v}^3(y')) \) as

\[
v(x') = E(y') \tilde{v}(y')
\]

where \(E(y') = (e_1(y'), e_2(y'), e_3) \) with \(e_1(y'), e_2(y') \) and \(e_3 \) given in section 2. From the proof of [1, Proposition 4.16], we have

\[
\partial_t \partial_{y_1} \phi_\infty + \tilde{\nu} \partial_{y_3} \phi_\infty + \frac{\tilde{\nu}}{\nu + \tilde{\nu}} \partial_{y_1} \frac{P'(\rho_s)}{\gamma \rho_s} \partial_{y_3} \phi_\infty = \tilde{\rho}_s h,
\]

(7.10)

where

\[
h = -\frac{\tilde{\nu}^2}{\nu + \tilde{\nu}} \left\{ \partial_t \tilde{w}_1 + \nu \left(\partial_{y_3} \partial_{y_2} \tilde{w}_1 \right) \right\} + \tilde{\rho}_s \partial_{y_1} \left(\frac{P'(\tilde{\rho}_s)}{\gamma \tilde{\rho}_s} \right) \tilde{\phi} + \frac{\tilde{\nu}}{\nu + \tilde{\nu}} \tilde{\rho}_s \partial_{y_1} \left(\Delta_{\nu} \tilde{w}_1 \right) \tilde{\phi} + \frac{\tilde{\nu}}{\nu + \tilde{\nu}} \tilde{\rho}_s \tilde{w}_3 \partial_{y_1} \tilde{w}_1 \right\}
- \left\{ \frac{\tilde{\nu}}{\nu + \tilde{\nu}} \partial_{y_3} \partial_{y_2} \phi_\infty + \gamma^2 \frac{\nu}{\nu + \tilde{\nu}} \partial_{y_1} \left(\partial_{y_3} \phi_\infty \right) - \gamma^2 \partial_{y_1} \partial_{y_3} \tilde{w}_1 \right\}.
\]

Here \((\partial_{y_3} \tilde{w}_1) \) denotes the \(e_1(y') \) component of \(\partial_{y_3} \tilde{w} \), and so on. We note that \((\partial_{y_3} \partial_{y_2} \tilde{w}_1) \) does not contain \(\partial_{y_3} \tilde{w}_1 \). See the proof of [1, Proposition 4.16]. Applying \(\partial_{y_1} \partial_{y_2} \partial_{y_3} \) to (7.10) and take the \(L^2 \) inner product with \(\chi_m \frac{P'(\rho_s)}{\gamma \rho_s} \partial_{y_1} \partial_{y_2} \partial_{y_3} \phi_\infty \), one can obtain the desired result.

Using the estimate for the Stokes system we have the following estimates. \(\square \)
Proposition 7.6. Under the assumption (7.1) (with ν_0, γ_0 and ω_0^{-1} replaced by suitably larger ones), the following assertions hold.

(i) There holds the estimate
\[\frac{\nu^2}{\nu + \nu^2} \| \partial_x^3 w_\infty \|^2 + \frac{1}{\nu + \nu^2} \| \partial_x^2 \phi_\infty \|^2 \leq C \left\{ \frac{\nu + \nu^2}{\nu^2} \| \partial_x^2 \phi_\infty \|^2 + \frac{\nu + \nu^2}{\nu} \| \partial_t \partial_x w_\infty \|^2 + \frac{\nu + \nu^2}{\nu^2} F_\infty^2 \| f_\infty \|_{H^1}^2 \right\} \tag{7.11} \]
+ $C_{\nu \nu} \| u_\infty \|_{H^1 \times H^2}^2$.

(ii) Let $1 \leq m \leq N$. There holds the estimate
\[\frac{\nu^2}{\nu + \nu^2} \| \chi_m \partial_x^2 \partial_x w_\infty \|^2 + \frac{1}{\nu + \nu^2} \| \chi_m \partial_x \partial \phi_\infty \|^2 \leq C \left\{ \frac{\nu + \nu^2}{\nu^2} \| \chi_m \partial_x \partial \phi_\infty \|^2 + \frac{\nu + \nu^2}{\nu} \| \partial_t \partial_x w_\infty \|^2 \right\} \tag{7.12}
+ \frac{\nu + \nu^2}{\nu^2} F_\infty^2 \| f_\infty \|_{H^1}^2 \right\} + C_{\nu \nu} \| u_\infty \|_{H^1 \times H^2}^2.

(iii) There holds the estimate
\[\frac{\nu^2}{\nu + \nu^2} \| \partial_x^2 \partial_x^3 w_\infty \|^2 + \frac{1}{\nu + \nu^2} \| \partial_x \partial \phi_\infty \|^2 \leq C \left\{ \frac{\nu + \nu^2}{\nu^2} \| \partial_x \partial \phi_\infty \|^2 + \frac{\nu + \nu^2}{\nu} \| \partial_t \partial_x w_\infty \|^2 \right\} \tag{7.13}
+ \frac{\nu + \nu^2}{\nu^2} F_\infty^2 \| f_\infty \|_{H^1}^2 \right\} + C_{\nu \nu} \| u_\infty \|_{H^1 \times H^2}^2.

Outline of Proof. We write problem (5.3) as
\[
\partial_t \phi_\infty + v^3 \partial_x \phi_\infty + \gamma^2 \text{div}(\rho_s w_\infty) + w \cdot \nabla \phi_\infty = f^0_\infty, \tag{7.14}
\]
\[
\partial_t w_\infty - \frac{\nu}{\rho_s} \Delta w_\infty - \frac{\nu}{\rho_s} \nabla \text{div} w_\infty + \nabla \left(\frac{P(\rho_s)}{\gamma \rho_s} \phi_\infty \right) + \nu \Delta v^3 \phi_\infty e_3 + v^3 \partial_x w_\infty + (w' \cdot \nabla) v^3 e_3 = f_\infty, \tag{7.15}
\]
\[
w_\infty \mid_{\partial \Omega} = 0, \tag{7.16}
\]
\[
(\phi_\infty, w_\infty) \mid_{t=0} = (\phi_\infty, 0, w_\infty, 0). \tag{7.17}
\]

By (7.14) and (7.15), we have
\[
\text{div} w_\infty = G, \tag{7.18}
\]
\[
-\Delta w_\infty + \nabla \left(\frac{P(\rho_s)}{\nu \gamma} \phi_\infty \right) = F; \tag{7.18}
\]
\[
w_\infty \mid_{\partial \Omega} = 0.
\]

Here
\[
G = \frac{1}{\gamma^2} \left(F^0_\infty - \phi_\infty - \gamma^2 \text{div} ((\rho_s - 1) w_\infty) \right),
\]
\[
F = \frac{\rho_s}{\nu} f_\infty - \frac{\rho_s}{\nu} \left\{ \partial_t w_\infty - \frac{\nu}{\rho_s} \nabla G + \frac{\nu \Delta v^3}{\gamma \rho_s} \phi_\infty e_3 + v^3 \partial_x w_\infty + (w' \cdot \nabla) v^3 e_3 \right\}.
\]
Applying the estimate for the Stokes system, we have the estimate in (i). The estimates in (ii) and (iii) can be obtained similarly by applying $\chi_m \partial_t$ and ∂_{x_3} to (7.18), respectively.

We are now in a position to prove Proposition 7.1.

Proof of Proposition 7.1 Let b_1 and b_2 be constants satisfying $b_1, b_2 > 1$. Define $\tilde{E}_2[u_\infty]$ by

$$\tilde{E}_2[u_\infty] = \frac{1}{\gamma} \sum_{m=1}^{N} \left\{ b_1 \left(\| \chi_m \sqrt{\frac{P'(\rho_0)}{\gamma^2 \rho_0}} \partial_t \phi_\infty \|^2_2 + \| \chi_m \sqrt{\frac{P'(\rho_0)}{\gamma^2 \rho_0}} \partial_{x_3} \phi_\infty \|^2_2 \right) + \frac{1}{\gamma} \left(\| \chi_0 \sqrt{\frac{P'(\rho_0)}{\gamma^2 \rho_0}} \phi_\infty \|^2_2 + b_1 \left(\| \chi_0 \sqrt{\frac{P'(\rho_0)}{\gamma^2 \rho_0}} \partial_{x_3} \phi_\infty \|^2_2 \right) + b_1 \sum_{m=1}^{N} \left(\| \chi_m \sqrt{\rho_s \partial_t^2 w_\infty} \|^2_2 + \| \chi_m \sqrt{\rho_s \partial_{x_3} w_\infty} \|^2_2 \right) \right\}$$

for $u_\infty = T(\phi_\infty, w_\infty)$. We compute

$$b_2 \left[\sum_{m=1}^{N} \left\{ b_1 \left((7.8) \right) \right\} \right]$$

Then

$$\frac{1}{2} \frac{d}{dt} b_2 \tilde{E}_2[u_\infty] + bb_2 \frac{\nu + \nu}{\gamma + \nu} \left(\sum_{m=1}^{N} \| \chi_m \partial_x \phi_\infty \|^2_2 + \| \partial_{x_3} \phi_\infty \|^2_2 \right)$$

and

$$\frac{\nu}{\gamma + \nu} \left(\sum_{m=1}^{N} \| \chi_m \partial_x^2 \partial_t w_\infty \|^2_2 + \| \partial_{x_3}^2 w_\infty \|^2_2 \right) + \frac{1}{\gamma + \nu} \left(\sum_{m=1}^{N} \| \chi_m \partial_x \phi_\infty \|^2_2 + \| \chi_m \partial_{x_3} \phi_\infty \|^2_2 \right)$$

for $u_\infty = T(\phi_\infty, w_\infty)$.
for any $\epsilon > 0$. Here
\[
R_0 = \sum_{m=1}^{N} (|A_{0,2,0}^{(m)}| + |A_{0,1,1}^{(m)}| + |A^{(0)}| + |A_{0,0,2}| + \sum_{m=1}^{N} (|A_{1,1,0}^{(m)}| + |A_{1,0,1}^{(m)}|)).
\]

Fix $b_1 > 8C_1$ and $b_2 > 8\frac{C_1}{\nu}$. It then follows that
\[
\frac{1}{2}\frac{d}{dt} b_2 \tilde{E}_2[u_\infty] + b_2 \frac{\nu + \nu'}{4} \left(\sum_{m=1}^{N} \|\chi_m \partial_x \phi_\infty\|_2^2 + \|\partial_x \phi_\infty\|_2^2 \right)
+ \frac{\nu^2}{\nu + \nu'} \left(\sum_{m=1}^{N} \|\chi_m \partial_x \partial^2 w_\infty\|_2^2 + \|\partial_x \partial^2 w_\infty\|_2^2 \right)
+ \frac{1}{\nu + \nu'} \left(\sum_{m=1}^{N} \|\chi_m \partial_x \partial \phi_\infty\|_2^2 + \|\partial_x \partial \phi_\infty\|_2^2 \right)
\leq C_1 b_2 \left\{ \epsilon + \frac{1}{\gamma^2} + \frac{\nu^2}{\gamma^2} \right\} \|\phi_\infty\|_2^2 + C_{\nu-\gamma} \|u_\infty\|_{H^1 \times H^2}
+ \frac{1}{\nu + \nu'} \|\partial_t \partial_x w_\infty\|_2^2 + R_0
\]
for any $\epsilon > 0$. Here $I_1[w_\infty]$ is given by
\[
I_1[w_\infty] = \nu \left\{ \sum_{m=1}^{N} \left(\|\chi_m \nabla \partial^2 w_\infty\|_2^2 + \|\chi_m \nabla \partial_x \partial x w_\infty\|_2^2 \right) \right\}
+ \|\chi_0 \nabla \partial^2 w_\infty\|_2^2 + \|\nabla \partial_x \partial^2 w_\infty\|_2^2 \right\}
+ \nu \left\{ \sum_{m=1}^{N} \left(\|\chi_m \nabla \partial^2 w_\infty\|_2^2 + \|\chi_m \nabla \partial_x \partial x w_\infty\|_2^2 \right) \right\}
+ \|\chi_0 \nabla \partial^2 w_\infty\|_2^2 + \|\nabla \partial_x \partial^2 w_\infty\|_2^2 \right\}.
\]
Let b_3 and b_4 be constants satisfying $b_3, b_4 > 1$. Define $E_2[u_\infty]$ by
\[
E_2[u_\infty] = b_2 b_3 b_4 \tilde{E}_2[u_\infty] + b_4 \frac{1}{\gamma} \sum_{m=1}^{N} \left\{ \chi_m \sqrt{\frac{P(u_\infty)}{\gamma \rho_0}} \partial_x \phi_\infty \right\}^2
+ \left\{ \frac{1}{\gamma} \right\} \sqrt{\frac{P(u_\infty)}{\gamma \rho_0}} \partial_t \phi_\infty + \|\sqrt{\rho_0} \partial_t w_\infty\|_2^2 \right\}
\]
for $u_\infty = T(\phi_\infty, w_\infty)$. We compute
\[
b_4 \left\{ b_3 (7.19) + \sum_{m=1}^{N} (7.9) \right\}_{(0,0)} + (7.11) + b_5 (7.3).
\]
28
It follows that
\[
\frac{1}{2} \frac{d}{dt} \mathcal{E}_2 [u_\infty] + b_4 \frac{\nu + \tilde{\nu}}{\gamma_1} \| \partial_x^2 \phi_\infty \|^2 + \frac{\nu^2}{\nu + \tilde{\nu}} \| \partial_x^3 w_\infty \|^2 + \frac{1}{2} \frac{\nu}{\nu + \tilde{\nu}} \| \partial_x^3 \phi_\infty \|^2 \\
+ b_3 b_4 \left\{ \frac{\nu^2}{\nu + \tilde{\nu}} \left(\sum_{m=1}^N \| \chi_m \partial_x^2 \partial_x w_\infty \|^2 + \| \partial_x^3 \partial_x w_\infty \|^2 \right) \right\} + \frac{1}{2} b_2 b_3 b_4 I_1 [w_\infty] \\
+ \frac{b_4}{2} \frac{\nu}{\nu + \tilde{\nu}} \sum_{m=1}^N \| \chi_m \frac{P'(\rho_1)}{\gamma_1} \partial_x \nabla \phi_\infty \|^2 + \frac{1}{2} \left\{ \nu \| \nabla \partial_t w_\infty \|^2 + \tilde{\nu} \| \text{div} \partial_t w_\infty \|^2 + \frac{\nu + \tilde{\nu}}{\nu + \tilde{\nu}} \| \partial_t \phi_\infty \|^2 \right\} \\
\leq C_{b_1 \cdots b_4} \left\{ \left(\epsilon + \frac{1}{\nu + \tilde{\nu}} \right) \| \partial_x^2 \phi_\infty \|^2 + \frac{1}{\nu + \tilde{\nu}} \| \partial_t \partial_x w_\infty \|^2 + C_{\epsilon,\eta} \| u_\infty \|^2_{H^1 \times H^2} \\
+ \mathcal{R} \right\} + C_2 \left[b_4 \frac{\nu^2}{\nu + \tilde{\nu}} \sum_{m=1}^N \left(\| \chi_m \partial_x \partial_x^2 w_\infty \|^2 + \| \chi_m \nabla \partial_t \partial_x w_\infty \|^2 \right) \\
+ \| \chi_m \nabla \partial_t \partial_t w_\infty \|^2 + \frac{\nu + \tilde{\nu}}{\nu + \tilde{\nu}} \| \partial_x^3 \phi_\infty \|^2 \right\}
\]
for any \(\epsilon > 0 \). Here
\[
\mathcal{R} = \mathcal{R}_0 + \sum_{m=1}^N | A_{2,0,0}^{(m)} | + | A_1 |.
\]

Fix \(b_3 \) and \(b_4 \) so large that \(b_3 > 8C_2 \) and \(b_4 > 2\frac{C_2}{\nu + \tilde{\nu}} \). We assume that \(\nu, \tilde{\nu} \) and \(\gamma \) also satisfy \(\gamma^2 > 8C_2 b_3 b_4 \) and \(\gamma^2 > 8C_2 b_3 b_4 (\nu + \tilde{\nu}) \). We take \(\epsilon > 0 \) sufficiently small such that \(\epsilon < \frac{1}{8C_2 b_3 b_4 (\nu + \tilde{\nu})} \). It then follows that
\[
\frac{1}{2} \frac{d}{dt} \mathcal{E}_2 [u_\infty] + b_4 \frac{\nu + \tilde{\nu}}{\gamma_1} \| \partial_x^2 \phi_\infty \|^2 + \frac{\nu^2}{\nu + \tilde{\nu}} \| \partial_x^3 w_\infty \|^2 + \frac{1}{2} \frac{\nu}{\nu + \tilde{\nu}} \| \partial_x^3 \phi_\infty \|^2 \\
+ \frac{\nu^2}{\nu + \tilde{\nu}} \left(\sum_{m=1}^N \| \chi_m \partial_x^2 \partial_x w_\infty \|^2 + \| \partial_x^3 \partial_x w_\infty \|^2 \right) \\
+ \frac{1}{2} \left\{ \nu \| \nabla \partial_t w_\infty \|^2 + \tilde{\nu} \| \text{div} \partial_t w_\infty \|^2 + \frac{\nu}{\nu + \tilde{\nu}} \| \partial_t \phi_\infty \|^2 \right\} \\
\leq \{ C_{\epsilon,\eta} \| u_\infty \|^2_{H^1 \times H^2} + \mathcal{R} \}.
\]

We thus see that there are positive constants \(c_1, c_2 \) and \(C_3 \) such that
\[
\frac{d}{dt} \mathcal{E}_2 [u_\infty] + c_1 \mathcal{E}_2 [u_\infty] \\
+ c_2 \left(\| \partial_x^3 w_\infty \|^2 + \| \partial_x^2 \phi_\infty \|^2 + \| \partial_t \phi_\infty \|^2_{H^2} + \| \partial_t w_\infty \|^2_{H^1} + \| \partial_t \phi_\infty \|^2 \right) \\
\leq C_{\nu,\tilde{\nu}} (\| u_\infty \|^2_{H^1 \times H^2} + \mathcal{R}).
\]

Since
\[
\| \partial_x^2 w_\infty \|^2 \leq \eta \| \partial_x^3 w_\infty \|^2 + C_\eta \| w_\infty \|^2
\]
holds for any $\eta > 0$, taking η so small that $\eta < \frac{1}{2} \min\{\frac{C_2}{c_2 + C_{\nu, \gamma}}, 1\}$, we obtain

\[
\frac{d}{dt} E_2[u_\infty] + c_1 E_2[u_\infty] + \frac{c_2}{2} (||\partial^2_x w_\infty||_2^2 + ||\partial^2_x \phi_\infty||_H^2 + ||\partial_t \phi_\infty||^2_{H^1}) \leq 2C_{\nu, \gamma} (||u_\infty||^2_{H^1 \times L^2} + R). \tag{7.21}
\]

We see from (7.21) and Proposition 7.2 that there exist positive constants \tilde{c}_1, \tilde{c}_2 and $C_{\nu, \gamma}$ such that

\[
E_2[u_\infty(t)] + ||u_\infty(t)||^2_{H^1} + \tilde{c}_2 \int_0^t e^{-\tilde{c}_1(t-\tau)} (||\partial^3_x w_\infty||^2_2 + ||\partial_x^2 \phi_\infty||^2_2 + ||u_\infty||^2_{H^1}) + ||\partial_t \phi_\infty||^2_{H^1} + ||\partial_t u_\infty||^2_{H^1 \times L^2}) d\tau \leq C_{\nu, \gamma} \left\{ e^{-\tilde{c}_1 t} (E_2[u_{\infty,0}] + ||u_{\infty,0}||^2_{H^1}) + \sup_{0 \leq \tau \leq t} ||F_\infty(\tau)||^2_2 + \int_0^t e^{-\tilde{c}_1(t-\tau)} R d\tau \right\}. \tag{7.22}
\]

It remains to estimate the term $||\partial^2_x w_\infty||_2$. We write the second equation of (5.1) as

\[
-\nu \Delta w_\infty - \tilde{\nu} \text{div} w_\infty = J, \quad w_\infty |_{\partial \Omega} = 0,
\]

where

\[
J = -\rho_s \left\{ \partial_t w_\infty + \nabla \left(\frac{P'(\rho_s)}{\tau_p} \phi_\infty \right) + \frac{\nu \Delta \nu^3}{\tau_p} \phi_\infty e_3 + \nu_s^3 \partial^3_{x_3} w_\infty + (w'_s \cdot \nabla' e_3) e_3 - f_\infty \right\}.
\]

Since $J \in L^2(\Omega)$, we obtain, by elliptic estimate,

\[
||\partial^2_x w_\infty||^2_2 \leq C (||w_\infty||^2_2 + ||J||^2_2) \leq C_{\nu, \gamma} (E_2[u_\infty] + ||u_\infty||^2_{H^1} + ||f_\infty||^2_2).
\]

From this, with (7.22), we see that

\[
E_2[u_\infty(t)] + ||u_\infty(t)||^2_{H^1} + ||\partial^2_x w_\infty(t)||^2_2 + \tilde{c}_2 \int_0^t e^{-\tilde{c}_1(t-\tau)} (||\partial^3_x w_\infty||^2_2 + ||\partial^2_x \phi_\infty||^2_2 + ||\partial_t u_\infty||^2_{H^1 \times L^2}) d\tau \leq C_{\nu, \gamma} \left\{ e^{-\tilde{c}_1 t} (E_2[u_{\infty,0}] + ||u_{\infty,0}||^2_{H^1}) + \sup_{0 \leq \tau \leq t} ||F_\infty(\tau)||^2_2 + \int_0^t e^{-\tilde{c}_1(t-\tau)} R d\tau \right\}. \tag{7.23}
\]

As we will see in section 8 below, it holds that

\[
\sup_{0 \leq \tau \leq t} ||F_\infty(\tau)||^2_2 \leq C (1 + t)^{-\frac{3}{2}} M(t)^4. \tag{7.24}
\]

Proposition 7.1 follows from (7.23) and (7.24). This completes the proof. \qed

8 Estimates of nonlinear terms

In this section we prove the estimate (7.24) and (5.6).
We first make an observation. By the Sobolev inequality we have
\[\| \phi(t) \|_\infty \leq C [\phi(t)]_{H^2} \leq C_1 [u(t)]_2 \]
for a positive constant \(C_1 \). It then follows that
\[\rho(x, t) = \rho_s(x') + \gamma^{-2} \phi(x, t) \geq \rho_1 - \gamma^{-2} \| \phi(t) \|_\infty \geq \rho_1 - C_1 \gamma^{-2} [u(t)]_2. \]
Fix a positive constant \(\epsilon_s \) satisfying \(\epsilon_s \leq \frac{1}{4} \frac{\gamma^2}{C_1} \). If \([u(t)]_2 \leq \epsilon_s \), then it holds that
\[\| \phi(t) \|_\infty \leq \frac{1}{4} \gamma^2 \rho_1, \quad \rho(x, t) \geq \frac{3}{4} \rho_1 > 0. \]
This implies that \(\bar{Q}F(t) \) is smooth whenever \([u(t)]_2 \leq \epsilon_s \).

To prove Proposition 8.1, we prepare several lemmas.

Lemma 8.2.

(i) For \(2 \leq p \leq p \leq \infty \). If \(j \) and \(k \) are nonnegative integers
satisfying
\[0 \leq j < k, \quad k > j + n(\frac{1}{2} - \frac{1}{p}), \]
then there exists a positive constant \(C \) such that
\[\| \partial^j_x f \|_{L^p(\mathbb{R}^n)} \leq \| f \|_{L^2(\mathbb{R}^2)} \| f \|_{H^k(\mathbb{R}^n)}, \]
Here \(a = \frac{1}{k}(j + \frac{n}{2} - \frac{n}{p}) \).

(ii) For \(2 \leq p \leq \infty \). If \(j \) and \(k \) are nonnegative integers satisfying
\[0 \leq j < k, \quad k > j + 3(\frac{1}{2} - \frac{1}{p}), \]
then there exists a positive constant \(C \) such that
\[\| \partial^j_x f \|_{L^p(\Omega)} \leq \| f \|_{H^k(\Omega)}. \]

(iii) If \(f \in H^1(\Omega) \) and \(f = f(x_3) \) is independent of \(x' \in D \), then it holds that
\[\| f \|_{L^\infty(\Omega)} \leq C \| f \|_{L^2(\Omega)} \| \partial_{x_3} f \|_{L^2(\Omega)}, \]
for a positive constant \(C \).

The proof of Lemma 8.2 can be found, e.g., in [11, 16].
Lemma 8.3. (i) For nonnegative integers \(m \) and \(m_k \) \((k = 1, \ldots, l)\) and multi-index \(\alpha_k \) \((k = 1, \ldots, l)\), we assume that

\[
m \geq \left\lfloor \frac{n}{2} \right\rfloor, \quad 0 \leq |\alpha_k| \leq m_k \leq 2 + |\alpha_k| \quad (k = 1, \ldots, l)
\]

and

\[
\sum_{k=1}^{l} m_k \geq 2(l - 1) + \sum_{k=1}^{l} |\alpha_k|,
\]

then the estimate holds

\[
\left\| \prod_{k=1}^{l} \partial_x^{\alpha_k} f_k \right\|_2 \leq C \prod_{k=1}^{l} \| f_k \|_{H^{m_k}}
\]

for a positive constant \(C \).

(ii) For \(1 \leq k \leq m \). We assume that \(F(x, t, y) \) is a smooth function on \(\Omega \times [0, \infty) \times I \) with a compact interval \(I \subset \mathbb{R} \). For \(|\alpha| + 2j = k\) the estimates hold

\[
\left\| \left[\partial_x^{\alpha} \partial_t^{j}, F(x, t, f_1) \right] f_2 \right\|_2 \leq \begin{cases}
C_0(t, f_1(t))[f_2]_{k-1} + C_1(t, f_1(t))\left\{ 1 + \| Df_1 \|_{H^{|\alpha|+j-1}} \right\} \| Df_1 \|_{H^{m-1}}[f_2]_k, \\
C_0(t, f_1(t))[f_2]_{k-1} + C_1(t, f_1(t))\left\{ 1 + \| Df_1 \|_{H^{|\alpha|+j-1}} \right\} \| Df_1 \|_{H^m}[f_2]_{k-1},
\end{cases}
\]

where

\[
C_0(t, f_1(t)) = \sum_{(\beta, l) \leq (\alpha, j), (\beta, l) \neq (0,0)} \sup_x \left| \left(\partial_x^{\beta} \partial_t^{l} F \right)(x, t, f_1(x, t)) \right|
\]

\[
C_1(t, f_1(t)) = \sum_{(\beta, l) \leq (\alpha, j), 1 \leq p \leq |\alpha|} \sup_x \left| \left(\partial_x^{\beta} \partial_t^{l} \partial_y^{p} F \right)(x, t, f_1(x, t)) \right|
\]

(iii) For \(m \geq 2 \) the estimates hold

\[
\| f_1 \cdot f_2 \|_{H^m} \leq C_1\| f_1 \|_{H^m}\| f_2 \|_{H^m}, \quad \| f_1 \cdot f_2 \|_m \leq C_2\| f_1 \|_m\| f_2 \|_m
\]

for a positive constants \(C_1 \) and \(C_2 \).

See, e.g., [13, 16] for the proof of Lemma 8.3.

We begin with the following preliminary estimates for \(\sigma_1 \) and \(u_j \) \((j = 1, \infty)\).

Lemma 8.4. We assume that \(u(t) = T(\phi(t), w(t)) = (\sigma_1 u(t)) + u_1(t) + u_{\infty}(t) \) be a solution of (5.1) in \(Z(T) \). The following estimates hold for all \(t \in [0, T] \) with a positive constant \(C \) independent of \(T \).

(i) \(\| \sigma_1(t) \|_2 \leq C(1 + t)^{-\frac{1}{4}} M(t) \),

(ii) \(\| u(t) \|_2 \leq C(1 + t)^{-\frac{1}{4}} M(t) \),

(iii) \(\| D\sigma_1(t) \| \leq C(1 + t)^{-\frac{3}{4}} M(t) \),
Proposition 8.5.

Lemma 8.4 easily follows from Lemma 8.2 and the definition of $M(t)$.

Let us estimate the nonlinearities. For $Q_0 F = -\text{div}(\phi w)$, we have the following estimates.

Proposition 8.5. We assume that $u(t) = T(\phi(t), w(t)) = (\sigma_1 u^{(0)}(t) + u_1(t) + u_\infty(t)$ be a solution of (5.1) in $Z(T)$. If $M(t) \leq 1$ for all $t \in [0, T]$, then the estimates hold with a positive constant C independent of T.

(i) $[\phi \text{div} w]_l \leq \begin{cases} C(1 + t)^{-\frac{5}{2}} M(t)^2 & (l = 1), \\ C(1 + t)^{-\frac{5}{2}} M(t)^2 + (1 + t)^{-\frac{5}{2}} M(t) || Dw_\infty(t) ||_2 & (l = 2). \end{cases}$

(ii) $|| w \cdot \nabla \phi_\infty ||_{H^1} \leq C(1 + t)^{-\frac{5}{2}} M(t)^2$.

(iii) $[w \cdot \nabla (\sigma_1 \phi^{(0)}) + \phi_1]_2 \leq C(1 + t)^{-\frac{5}{2}} M(t)^2$.

(iv) $\left| \left| \left(\partial_{x_3}^2 \phi_\infty \right)^2, \text{div} \left(\frac{P'(\rho_0)}{\gamma^4 \rho_0} w \right) \right| \right| + \left| \left| \left(\partial_{x_3}^2 \phi_\infty \right)^2, \text{div} \left(\lambda_0^2 \frac{P'(\rho_0)}{\gamma^4 \rho_0} w \right) \right| \right| + \sum_{m=1}^N \left| \left| \left(\partial_{x_3}^l \phi_\infty \right)^2, \text{div} \left(\lambda_m^2 \frac{P'(\rho_0)}{\gamma^4 \rho_0} w \right) \right| \right|$

+ $\sum_{j+k+l=1} \left| \left| \left(\partial_{x_3}^l \partial_{x_3}^k \phi_\infty \right)^2, \text{div} \left(\lambda_m^2 \frac{P'(\rho_0)}{\gamma^4 \rho_0} w \right) \right| \right| \leq C(1 + t)^{-\frac{5}{2}} M(t) D_\infty(t)$.

(v) $||[\partial_{x_3}, w \cdot \nabla] \phi_\infty ||_2 + || \lambda_0 [\partial_{x_3}^2, w \cdot \nabla] \phi_\infty ||_2 + ||[\partial_t, w \cdot \nabla] \phi_\infty ||_2$

+ $\sum_{m=1}^N \left| \left| \chi_m [\partial_{x_3}^l \partial_{x_3}^k \phi_\infty] \right| \right|_2 \leq C \{ (1 + t)^{-1} M(t)^2 + (1 + t)^{-\frac{5}{2}} M(t) \sqrt{D_\infty(t)} \}$.

(vi) $||\partial_t (\phi w)||_2 \leq C(1 + t)^{-1} M(t)^2$.

Proof. The estimates (i)-(iii) and (vi) can be proved by applying Lemmas 8.2 and 8.3 similarly to the proof of [11, Proposition 8.5]. As for (iv), we have

$\left| \left| \left(\partial_{x_3}^2 \phi_\infty \right)^2, \text{div} \left(\frac{P'(\rho_0)}{\gamma^4 \rho_0} w \right) \right| \right| + \left| \left| \left(\partial_{x_3}^2 \phi_\infty \right)^2, \text{div} \left(\lambda_0^2 \frac{P'(\rho_0)}{\gamma^4 \rho_0} w \right) \right| \right|$

+ $\sum_{m=1}^N \left| \left| \chi_m [\partial_{x_3}^l \partial_{x_3}^k \phi_\infty] \right| \right|_2 \leq C ||D \phi_\infty||_1 \{(||w||_\infty + ||\nabla w||_\infty) \leq C(1 + t)^{-\frac{5}{2}} M(t) D_\infty(t). \}
We next consider (v). We observe that \([\partial^{k+1} \partial^j_{x_3}, w \cdot \nabla] \phi_\infty \) and \([\partial^l \partial^j_{x_3}, w \cdot \nabla] \phi_\infty \) are written as a linear combination of terms of the forms \(a[\partial^l_x, w] \nabla \phi_\infty \) and \((w \cdot \nabla a) \partial^2_x \phi_\infty \) with smooth function \(a = a(x') \) and integer \(q \) satisfying \(1 \leq q \leq 2 \). Therefore, applying Lemma 8.3, we obtain the desired estimate. This completes the proof. \(\square \)

Let us consider the nonlinearity \(\tilde{Q}F = T(0, f) \). We write \(\tilde{Q}F = T(0, f) \) in the form
\[
\tilde{Q}F = \tilde{F}_0 + \tilde{F}_1 + \tilde{F}_2 + \tilde{F}_3,
\]
where \(\tilde{F}_l = T(0, h_l) \) (\(l = 0, 1, 2, 3 \)). Here
\[
\begin{align*}
 h_0 &= -w \cdot \nabla w + f_1(\rho_0, \phi) \left(-\partial^2_{x_3} \sigma_1 w^{(0)} + \frac{\partial^2_x \psi}{\gamma^2 \rho_x}(\phi_1 + \phi_\infty) \right) \\
 &\quad + f_2(\rho_0, \phi) \left(-\partial^2_{x_3} \sigma_1 w^{(0)} - \partial_{x_3} \sigma_1 \partial_{x'} w^{(0)} \right) \\
 &\quad + f_{0,1}(x', \phi) \phi \sigma_1 + f_{0,2}(x', \phi) \partial_{x_3} \sigma_1 + f_{0,3}(x', \phi) \phi(\phi_1 + \phi_\infty), \\

 h_1 &= -\text{div}(f_1(\rho_0, \phi) \nabla(w_1 + w_\infty)), \\

 h_2 &= -\nabla \left(f_2(\rho_0, \phi) \text{div}(w_1 + w_\infty) \right) + \left(\text{div}(w_1 + w_\infty) \right) \nabla'(f_2(\rho_0, \phi)), \\

 h_3 &= \nabla \left(f_3(x', \phi) \phi(\phi_1 + \phi_\infty) \right) - (\phi_1 + \phi_\infty) \nabla(f_3(x', \phi)).
\end{align*}
\]
Here \(f_{0,l} = f_{0,l}(x', \phi) \) (\(l = 1, 2, 3 \)) and \(f_3(x', \phi) \) are smooth functions of \(x' \) and \(\phi \).

Proposition 8.6. We assume that \(u(t) \) is a solution of (5.1) in \(Z(T) \). If \(\sup_{0 \leq \tau \leq t} \| u(\tau) \|_2 \leq \epsilon_s \) and \(M(t) \leq 1 \) for all \(t \in [0, T] \), then the following estimates hold with a positive constant \(C \) independent of \(T \).

1. \(\| \tilde{Q}F(t) \|_2 \leq C(1 + t)^{-\frac{1}{2}} M(t)^2. \)
2. \(\| h_0(t) \|_2 \leq C \left\{ (1 + t)^{-\frac{1}{2}} M(t)^2 + (1 + t)^{-\frac{1}{2}} M(t) \| Dw_\infty(t) \|_2 \right\}. \)
3. \(\| h_l(t) \|_{H^1} \leq C \left\{ (1 + t)^{-1} M(t)^2 + (1 + t)^{-\frac{1}{2}} M(t) \| Dw_\infty(t) \|_2 \right\}, \quad (l = 1, 2, 3). \)
4. \(\| \partial_t h_l(t) \|_2 \leq C \left\{ (1 + t)^{-1} M(t)^2 + (1 + t)^{-\frac{1}{2}} M(t) \| Dw_\infty(t) \|_2 \right\}, \quad (l = 1, 2, 3). \)

Proposition 8.6 can be proved in a similar manner to the proof of [11, Proposition 8.6] and [3, Proposition 8.6].

Proof of Proposition 8.1 We first prove (8.1). We see from Proposition 8.5 and Proposition 8.6 that
\[
\| Q_0 F \|_2 \leq C(1 + t)^{-\frac{3}{2}} M(t)^2, \\
\| \tilde{Q}F \|_2 \leq C(1 + t)^{-\frac{3}{2}} M(t)^2,
\]
and hence,
\[
\| \tilde{Q}F \|_2^2 \leq C \| F \|_2^2 \leq C(1 + t)^{-\frac{3}{2}} M(t)^4.
\]

This shows (8.1).

We next prove (8.2). We write

\[R = \sum_{i=1}^{4} I_i, \]

where

\[I_1 = \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\frac{P'_\rho}{\gamma \rho^s} w \right) \right| + \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

\[+ \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\frac{P'_\rho}{\gamma \rho^s} w \right) \right| + \sum_{j+k=1}^{N} \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

\[+ \sum_{j+k=1}^{N} \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right|, \]

\[I_2 = \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\frac{P'_\rho}{\gamma \rho^s} w \right) \right| + \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

\[+ \sum_{j+k=1}^{N} \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

\[+ \sum_{j+k=1}^{N} \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

\[I_3 = \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\frac{P'_\rho}{\gamma \rho^s} w \right) \right| + \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

\[+ \sum_{j+k=1}^{N} \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

\[I_4 = \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| + \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

\[+ \sum_{j+k=1}^{N} \left| \left(\partial_{x_3}^2 \phi_\infty \right|^2, \text{div} \left(\chi_0^2 \frac{P'_\rho}{\gamma \rho^s} w \right) \right| \]

From Proposition 8.5 (iv), (v) and Lemma 8.4 we see that

\[I_1 \leq C(1 + t)^{-\frac{1}{2}} M(t) D_\infty(t), \]

\[I_2 \leq C(1 + t)^{-\frac{1}{2}} M(t) \sqrt{D_\infty(t)} \left[\phi_\infty \right]_2 \]

\[\leq C(1 + t)^{-1} M(t)^2 \sqrt{D_\infty(t)} \]

\[\leq C \left\{ (1 + t)^{-\frac{1}{2}} M(t)^3 + (1 + t)^{-\frac{1}{2}} M(t) D_\infty(t) \right\}. \]

As for \(I_3 \) and \(I_4 \), we have

\[I_3 + I_4 \leq C \left\{ \left\| \tilde{f}_0 \right\| H^2 \| \phi_\infty \| H^2 + \| f_\infty \| H^1 \| w_\infty \| H^2 \right\} \]

\[+ \| \tilde{f}_0 \| H^2 \| \phi_\infty \| H^2 + \| f_\infty \| H^1 \| w_\infty \| H^2 \right\}. \]

Since \(\| Q_0 F \|_1 + \| \tilde{Q} F \|_2 \leq C \| F \|_1 \), we find from Proposition 8.5 and Proposition 8.6 that

\[\left\| \tilde{f}_0 \right\| H^2 + \| f_\infty \| H^1 + \| \tilde{f}_0 \|_2 \leq C \left\{ (1 + t)^{-\frac{1}{2}} M(t)^2 + (1 + t)^{-\frac{1}{2}} M(t) \| D_\infty(t) \| 2 \right\}. \]
It then follows from Lemma 8.4 that
\[\|\tilde{f}_0\|_{H^2} + \|f_\infty\|_{H^1} + \|\partial_t f_\infty\|_2 + \|\partial_t w_\infty\|_2 \leq C\{(1 + t)^{-\frac{3}{2}} M(t)^3 + (1 + t)^{-1} M(t)^2 \sqrt{D_\infty(t)}\}. \]

It remains to estimate \(\|\partial_t \tilde{f}_0\|_2 \|\partial_t \phi_\infty\|_2 \). Since
\[\partial_t \phi_\infty = -Q_0 L P u + Q_0 P F, \]
we see from Lemma 8.3 and Proposition 8.5 (i) – (iii) that
\[\|\partial_t \phi_\infty\|_{H^1} \leq C\{\|v_0^2 \partial_{x_3} \phi_\infty\|_{H^1} + \|\partial_x w_\infty\|_{H^1} + \|Q_0 F_\infty\|_{H^1}\} \leq C(1 + t)^{-\frac{3}{4}} M(t). \]

This, together with Lemma 8.3 and Proposition 8.5 (i) – (iii), then yields
\[\|\partial_t \tilde{f}_0\|_2 \|\partial_t \phi_\infty\|_2 \leq C\{(1 + t)^{-2} M(t)^2 + (1 + t)^{-\frac{3}{4}} M(t) \sqrt{D_\infty(t)}\}, \]
and therefore, we have
\[I_3 + I_4 \leq C\{(1 + t)^{-\frac{3}{2}} M(t)^2 + (1 + t)^{-\frac{3}{4}} M(t) D_\infty(t)\}. \]

We thus conclude that
\[R(t) \leq C\{(1 + t)^{-\frac{3}{2}} M(t)^2 + (1 + t)^{-\frac{3}{4}} M(t) D_\infty(t)\}. \]

This completes the proof. \(\square\)

\section{Asymptotic behavior}

In this section we prove the asymptotic behavior (3.2).

Since \(M(t) \leq C\|u_0\|_{H^2 \cap L^1} \) for all \(t \geq 0 \), we see that
\[\|u(t) - (\sigma_1 u(0))(t)\|_2 \leq C(1 + t)^{-\frac{3}{2}} \|u_0\|_{H^2 \cap L^1}. \]

Therefore, to prove (3.2), it suffices to show the following

Proposition 9.1. Let \(\sigma = \sigma(x_3, t) \) be the solution of (3.3) with initial value \(\sigma|_{t=0} = \langle \phi_0 \rangle \). Assume that \(\nu \geq \nu_0, \frac{\gamma^2}{\nu + \sigma^2} \geq \gamma_0^2 \) and \(\omega \leq \omega_0 \). Then there exists \(\epsilon > 0 \) such that if \(\|u_0\|_{H^2 \cap L^1} \leq \epsilon \), then
\[\|\sigma_1(t) - \sigma(t)\|_2 \leq C(1 + t)^{-\frac{3}{4} + \delta} \|u_0\|_{H^2 \cap L^1} \quad (\delta > 0). \]

To prove Proposition (9.1), we prepare two lemmas.

In what follows we denote by \(\sigma = \sigma(x_3, t) \) the solution of (3.3) with initial value \(\sigma|_{t=0} = \sigma_0 \).

It is well-known that \(\sigma(t) \) has the following decay properties.
Lemma 9.2. Assume that \(\sigma(t) \) is a solution of (3.3) with \(\sigma|_{t=0} = \sigma_0 \in H^1 \cap L^1 \). Then
\[
\| \partial_t^l \sigma(t) \|_2 \leq C(1 + t)^{-\frac{1}{2}} \| \sigma_0 \|_{H^1 \cap L^1} \quad (l = 0, 1),
\]
\[
\| \sigma(t) \|_\infty \leq C(1 + t)^{-\frac{1}{2}} \| \sigma_0 \|_{H^1 \cap L^1}.
\]

We decompose \(\mathcal{H}(t) \) into two parts. We define \(\mathcal{H}_0(t) \) and \(\mathcal{H}_\infty(t) \) by
\[
\mathcal{H}_0(t) = \mathcal{F}^{-1} 1_{\{|\eta| \leq r_0\}}(\xi) e^{-(in_1 \xi + \kappa_0 t^2) t} \mathcal{F}, \quad \mathcal{H}_\infty(t) = \mathcal{H}(t) - \mathcal{H}_0(t).
\]
Then \(\mathcal{H}(t) = \mathcal{H}_0(t) + \mathcal{H}_\infty(t) \) and \(\mathcal{H}_0(t) \) and \(\mathcal{H}_\infty(t) \) have the following properties.

Lemma 9.3. There hold the following estimates.
\[
\| \partial_{x_3} \mathcal{H}_0(t) \sigma_0 \|_2 \leq C(1 + t)^{-\frac{1}{2}} \| \sigma_0 \|_1,
\]
\[
\| \partial_{x_3} \mathcal{H}_\infty(t) \sigma_0 \|_2 \leq C t^{-\frac{1}{2}} e^{-\frac{4}{3} r_0^2 t} \| \sigma_0 \|_2,
\]
\[
\| \partial_{x_3}(e^{r_1} \sigma_0 - \mathcal{H}_0(t) \sigma_0) \|_2 \leq C(1 + t)^{-\frac{1}{2}} \| \sigma_0 \|_1.
\]

Lemma 9.3 can be proved in a similar manner to the proof of [2, Proposition 5.8]; and we omit the proof.

We now prove Proposition 9.1.

Proof of Proposition 9.1. Let \(\sigma_0 = \langle \phi_0 \rangle \). We define \(N(t) \) by
\[
N(t) = \sup_{0 \leq \tau \leq t} (1 + \tau)^{\frac{1}{2} - \delta} \| \sigma_1(t) - \sigma(t) \|_{H^1}.
\]

We write \(\sigma \) as
\[
\sigma(t) = \mathcal{H}(t) \sigma_0 - \kappa_2 \int_0^t \mathcal{H}(t - \tau) \partial_{x_3}(\sigma^2)(\tau) d\tau. \tag{9.1}
\]
As for \(\sigma_1(t) \), by Lemma 6.2 (ii), we have
\[
\mathcal{F}[\mathcal{P} \mathcal{F}] = -i \xi 1_{\{|\eta| \leq r_0\}}(\xi) \langle \phi \rangle \mathcal{F}[\mathcal{P}^{(1)} \mathcal{F}] + \partial_{x_3} \mathcal{F}[\mathcal{P}^{(2)} \mathcal{F}]
\]
\[
= -i \kappa_2 \xi \mathcal{F}[\mathcal{P}^{(1)}(\sigma^2 \mathcal{F}_1 + \mathcal{F}_2)] + \partial_{x_3} \mathcal{F}[\mathcal{P}^{(2)} \mathcal{F}],
\]
where \(\kappa_2 = \langle \phi \rangle \mathcal{F}[\mathcal{P}^{(3)} \mathcal{F}] \). Furthermore,
\[
\mathcal{F}[\mathcal{P}^{(1)}(\sigma^2 \mathcal{F}_1)] = 1_{\{|\eta| \leq r_0\}}(\xi) \langle \sigma^2 \mathcal{F}_1, u^{\star(1)} \rangle = 1_{\{|\eta| \leq r_0\}}(\xi) \langle \mathcal{F}_1, u^{\star(1)} \rangle \langle \sigma^2 \psi \rangle
\]
\[
= -\kappa_2 \mathcal{F}[\mathcal{P}^{(3)} \mathcal{F}_1],
\]
where \(\kappa_2 = - \langle \mathcal{F}_1, u^{\star(1)} \rangle \). We thus obtain
\[
e^{(t - \tau) \Lambda} \mathcal{P} \mathcal{F} = -\kappa_2 e^{(t - \tau) \Lambda} \partial_{x_3}(\sigma^2) - e^{(t - \tau) \Lambda} \partial_{x_3} \{ \langle \phi \rangle \mathcal{F}[\mathcal{P}^{(3)} \mathcal{F}_1 \rangle \}
\]
\[
+ e^{(t - \tau) \Lambda} J_4 + e^{(t - \tau) \Lambda} J_5.
\]
Here we set $\kappa_2 = \kappa_{21} + \kappa_{22}$,
\begin{align*}
J_4 &= \partial_{x_3} \mathcal{P}^{(1)} F_2 + \partial_{x_3}^2 \mathcal{P}^{(2)} F_2, \\
J_5 &= \partial_{x_3}^2 \mathcal{P}^{(2)} (\sigma_2^2 F_1).
\end{align*}

It then follows from (5.2) and (9.1) that $\sigma_1(t) - \sigma(t)$ is written as

$$
\sigma_1(t) - \sigma(t) = \sum_{j=0}^{5} I_j(t),
$$

where

\begin{align*}
I_0(t) &= e^{tA_1} \mathcal{P} u_0 - \mathcal{H}(t) \sigma_0 + \kappa_2 \int_0^t \mathcal{H}_\infty(t - \tau) \partial_{x_3}(\sigma^2)(\tau) \, d\tau, \\
I_1(t) &= -\kappa_2 \int_0^t \mathcal{H}_0(t - \tau) \partial_{x_3}(\sigma_1^2 - \sigma^2) d\tau, \\
I_2(t) &= -\kappa_2 \int_0^t (e^{(t-\tau)A} - \mathcal{H}_0(t - \tau)) \partial_{x_3}(\sigma_1^2) d\tau, \\
I_3(t) &= -\int_0^t \partial_{x_3} e^{(t-\tau)A} (\langle \phi w^3 \rangle - \langle \phi(0) w(0,3) \rangle \sigma_1^2) d\tau, \\
I_j(t) &= \int_0^t e^{(t-\tau)A} J_j(t) d\tau, \quad (j = 4, 5).
\end{align*}

We see from Proposition 4.6 and Lemmas 9.2, 9.3 that

$$
\| I_0(t) \|_{H^1} \leq C \left\{ (1 + t)^{-\frac{3}{2}} \| u_0 \|_{H^1 \cap L^1} + \int_0^t (t - \tau)^{-\frac{1}{2}} e^{-\frac{\sqrt{2}}{2}(t-\tau)} \| \sigma \|_{\infty} \| \partial_{x_3} \sigma \|_{2}(\tau) \, d\tau \right\}
$$

$$
\leq C \left\{ (1 + t)^{-\frac{3}{2}} \| u_0 \|_{H^1 \cap L^1} + \int_0^t (t - \tau)^{-\frac{1}{2}} e^{-\frac{\sqrt{2}}{2}(t-\tau)} (1 + \| u_0 \|^2_{H^1 \cap L^1}) \, d\tau \right\}
$$

$$
\leq C (1 + t)^{-\frac{3}{2}} \| u_0 \|_{H^1 \cap L^1} \{ 1 + \| u_0 \|^2_{H^1 \cap L^1} \}.
$$

As for $I_1(t)$, we first observe

$$
\| (\sigma_1^2 - \sigma^2) (t) \|_1 \leq \| (\sigma_1 + \sigma)(t) \|_2 \| (\sigma_1 - \sigma)(t) \|_2 \leq C (1 + t)^{-1+\delta} N(t) \| u_0 \|_{H^2 \cap L^1}.
$$

Since $\partial_{x_3}^k \mathcal{H}_0(t) = \mathcal{H}_0(t) \partial_{x_3}^k (k = 0, 1)$, we see from Lemma 9.3 that

$$
\| \partial_{x_3}^k I_1(t) \|_2 \leq C \int_0^t (1 + t - \tau)^{-\frac{3}{2} - \frac{\delta}{2}} (1 + \tau)^{-1+\delta} d\tau \| u_0 \|^2_{H^2 \cap L^1} N(t)
$$

$$
\leq C (1 + t)^{-\frac{3}{2}+\delta} \| u_0 \|^2_{H^2 \cap L^1} N(t)
$$

for $k = 0, 1$.

As for $I_2(t)$, we see from Lemma 9.3 that

$$
\| \partial_{x_3}^k I_2(t) \|_2 \leq C M(t)^2 \int_0^t (1 + t - \tau)^{-\frac{3}{2} - \frac{\delta}{2}} (1 + \tau)^{-1} d\tau
$$

$$
\leq C (1 + t)^{-\frac{3}{2}} \log(1 + t) \| u_0 \|^2_{H^2 \cap L^1}
$$
for $k = 0, 1$.

As for $I_3(t)$, since
\[
\|\langle \phi w^3 \rangle - \langle \phi(0)u(0)^3 \rangle \sigma^2(\tau) \|_1 \\
\leq C\{\|\sigma_1(\tau)\|_2\|u(\tau) - \sigma_1(\tau)u(0)\|_2 + \|u(t)\|_2\|u(\tau) - \sigma_1(\tau)u(0)\|_2\} \\
\leq C(1 + \tau)^{-1}M(t)^2,
\]
we have
\[
\|\partial_{x_3}^k I_3(t)\|_2 \leq CM(t)^2 \int_0^t (1 + \tau)^{-\frac{3}{2}} - \frac{k}{2}(1 + \tau)^{-1}d\tau \\
\leq C(1 + t)^{-\frac{3}{2}} \log(1 + t)\|u_0\|^2_{H^2 \cap L^1}
\]
for $k = 0, 1$.

By Proposition 4.5 and Lemma 6.3, $I_4(t)$ is estimated as
\[
\|\partial_{x_3}^k I_4(t)\|_2 = \|\int_0^t e^{(t-\tau)\Lambda} \partial_{x_3}(P(1)F_2(\tau) + \partial_{x_3}P(2)F_2(\tau)) d\tau\|_2M(t)^2 \\
\leq C\int_0^t (1 + t - \tau)^{-\frac{3}{2}} - \frac{k}{2}(1 + \tau)^{-1}d\tau M(t)^2 \|u_0\|^2_{H^2 \cap L^1} \\
\leq C(1 + t)^{-\frac{3}{2}} \log(1 + t)\|u_0\|^2_{H^2 \cap L^1}
\]
for $k = 0, 1$.

As for $I_5(t)$, since $\partial_{x_3}P(2)(\tau) = P(2)\partial_{x_3}$, we see from Lemma 6.3 that
\[
\|\partial_{x_3}^k I_5(t)\|_2 \leq \left\|\int_0^t e^{(t-\tau)\Lambda} \partial_{x_3}^{k+1}P(2)(\partial_{x_3}(\sigma_1^2)F_i(\tau))d\tau\right\|_2 \\
\leq C\left\{\int_0^t (1 + t - \tau)^{-\frac{3}{2}} - \frac{k}{2}(1 + \tau)^{-1}d\tau M(t)^2 \right\} \\
\leq C(1 + t)^{-\frac{3}{2}} \log(1 + t)\|u_0\|^2_{H^2 \cap L^1}
\]
for $k = 0, 1$.

Therefore, we obtain
\[
\|\langle \sigma_1 - \sigma \rangle(t)\|_{H^1} \leq C(1 + t)^{-\frac{3}{2} + \delta}\|u_0\|_{H^2 \cap L^1}\{1 + \|u_0\|_{H^2 \cap L^1} + \|u_0\|^2_{H^2 \cap L^1} + N(t)\}.
\]
It then follows that if $\|u_0\|_{H^2 \cap L^1}$ is sufficiently small, then
\[
N(t) \leq C\|u_0\|_{H^2 \cap L^1}.
\]
We thus see that if $\|u_0\|_{H^2 \cap L^1} \ll 1$, then
\[
\|\sigma_1(t) - \sigma(t)\|_2 \leq C(1 + t)^{-\frac{3}{2} + \delta}\|u_0\|_{H^2 \cap L^1}
\]
This completes the proof. \hfill \Box

Acknowledgements. Y. Kagei was partly supported by JSPS KAKENHI Grant Number 24340028, 22244009, 24224003.
References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in finite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials
MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAIJWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAIJWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications
MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
 Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
 Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
 Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
 Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
 Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
 Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
 Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
 A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
 Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
 Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
 On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection

MI2009-26 Manabu YOSHIDA
 Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
 Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
 Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
 Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups
MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments

MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow

MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queuing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)_{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAIITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTsu, Hiroki KONDO, Shingo SAIITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing
MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine

MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency
MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO

MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams

MI2012-7 Nobutaka NAKAZONO & Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D^{(1)}_7$

MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem

MI2012-9 Jan BREZINA & Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO & Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso

MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators

MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible Navier- Stokes equations with potential force

MI2013-1 Abduwuiali PAERHATI & Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev’s Theorem

MI2013-2 Yasuhide FUKUMOTO & Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits

MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing
MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing

MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization

MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks

MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun’s differential equations, eigenstates degeneration, and Rabi’s model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA & Sadanori KONISHI
Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space

MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints

MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression

MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints

MI2014-2 Yasuhide FUKUMOTO & Youichi MIE
Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetry-breaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

MI2014-4 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints
MI2014-5 Yoshiyuki KAGEI & Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry

MI2014-6 This paper was withdrawn by the authors.

MI2014-7 Masatoshi OKITA
On decay estimate of strong solutions in critical spaces for the compressible Navier-Stokes equations

MI2014-8 Rong ZOU & Yasuhide FUKUMOTO
Local stability analysis of azimuthal magnetorotational instability of ideal MHD flows

MI2014-9 Yoshiyuki KAGEI & Naoki MAKIO
Spectral properties of the linearized semigroup of the compressible Navier-Stokes equation on a periodic layer

MI2014-10 Kazuyuki TSUDA
On the existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space

MI2014-11 Yoshiyuki KAGEI & Takaaki NISHIDA
Instability of plane Poiseuille flow in viscous compressible gas

MI2014-12 Chien-Chung HUANG, Naonori KAKIMURA & Naoyuki KAMIYAMA
Exact and approximation algorithms for weighted matroid intersection

MI2014-13 Yusuke SHIMIZU
Moment convergence of regularized least-squares estimator for linear regression model

MI2015-1 Hidetoshi MATSUI
Sparse regularization for multivariate linear models for functional data

MI2015-2 Reika AOYAMA & Yoshiyuki KAGEI
Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain

MI2015-3 Naoyuki KAMIYAMA
Stable Matchings with Ties, Master Preference Lists, and Matroid Constraints

MI2015-4 Reika AOYAMA & Yoshiyuki KAGEI
Large time behavior of solutions to the compressible Navier-Stokes equations around a parallel flow in a cylindrical domain